
D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

1 / 43

Project Number 260041

SUPPORTING ACTION

EnRiMa
Energy Efficiency and Risk Management in

Public Buildings

Deliverable 4.1a: Requirement Analysis of the
Decision Support System Engine

Supplement to deliverable D4.1: Requirement Analysis

Start date of the project: October 1, 2010

Duration: 42 months

Organisation name of lead contractor for this deliverable: IIASA

Lead authors: IIASA, URJC, SINTEF, and Tecnalia

Revision: final, August 10, 2012

Project funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

2 / 43

Contents

List of Figures .. 4

List of Tables .. 5

List of Acronyms .. 6

Executive summary .. 7

1 Introduction .. 8

2 Overview of the Decision Support System Engine (DSSE) .. 10

2.1 Role of the Symbolic Model Specification (SMS) .. 11

2.1.1 Overview .. 11

2.1.2 Elements of the SMS .. 11

2.1.2.1 Common attributes .. 12

2.1.2.2 Sets .. 12

2.1.2.3 Parameters ... 13

2.1.2.4 Variables ... 13

2.1.2.5 Relations ... 13

2.1.3 Representations of the SMS ... 13

2.1.4 Summary .. 13

3 The DSS Kernel ... 15

3.1 Overview ... 15

3.2 Web-Services (WS) ... 15

3.2.1 Overview .. 15

3.2.2 Functionality of the WSs .. 16

3.2.3 Summary of WSs specification .. 16

3.3 Data-Warehouse (DW) .. 17

3.4 Data services .. 17

3.4.1 Internal Kernel data services .. 17

3.4.2 Interim data provision from test sites ... 18

3.5 Back-office applications .. 18

3.6 DSS Kernel architecture .. 18

3.7 Data privacy ... 20

3.8 Consuming Web-services in the DSS components ... 21

3.9 Summary .. 22

4 Solver Manager .. 23

4.1 Overview ... 23

4.2 Functionality of the Solver Manager ... 23

4.3 Inputs and outputs .. 23

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

3 / 43

4.4 Solver Manager Components .. 24

5 Scenario Generation Tool ... 25

6 Interface to and between the DSSE components ... 27

6.1 Triggering execution of stand-alone DSSE components ... 27

6.2 Consuming WSs for downloading data and uploading results 27

7 DSSE services supporting workflows defined by use cases .. 29

7.1 Initial data set ... 29

7.2 Data for operational planning .. 30

7.3 Scenario generation ... 31

7.4 Operational planning ... 32

7.5 Summary .. 32

8 Kubik laboratory building .. 33

8.1 DSS operational module tests in Kubik ... 33

8.1.1 Objectives of the tests to be performed in Kubik ... 33

8.1.2 Operational model calibration and validation .. 34

8.1.3 Tests procedure definition .. 35

8.1.3.1 Tests performed at the Kubik facility ... 35

8.1.3.2 Parameters in Kubik and data from the information model 35

8.1.3.3 Defining the tests .. 36

8.2 Tests of the ICT requirement analysis ... 38

9 Conclusion .. 41

Acknowledgements .. 42

References .. 43

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

4 / 43

 List of Figures

Figure 2-1 Overview of the DSS Engine architecture. ... 10

Figure 3-1 The DSS kernel components. ... 18

Figure 3-2 DSS Kernel layers. ... 20

Figure 3-3 DSS Kernel Web-services. ... 21

Figure 3-4 Examples of technology for the DSS Kernel clients. ... 22

Figure 4-1 Solver Manager scheme. .. 24

Figure 6-1 Interface between DSS Kernel and solver manager. .. 27

Figure 8-1 Workflow illustrating the role of tests performed at Kubik. 34

Figure 8-2 Integration of different ICT services involving Kubik. .. 39

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

5 / 43

List of Tables

Table 8-1 Summary of tested parameters. .. 35

Table 8-2 Characteristics of Tests 1. .. 37

Table 8-3 Characteristics of Tests 2. .. 37

Table 8-4 Characteristics of Tests 3. .. 38

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

6 / 43

List of Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programing Interface

BMS Building Management System

D4.1 Deliverable D4.1 (Requirement Analysis, October 2011)

D4.1a This deliverable

DBMS Data-Base Management System

DoW Description of work, Annex 1 to the EnRiMa Grant Agreement

DTO Data Transfer Object

DSS Decision Support System

DW Data Warehouse

HTTP The Hypertext Transfer Protocol

ICT Information and Communication Technology

JAXB Java Architecture for XML Binding

JAX-WS Java Architecture for Web Services

OOP Object-Oriented Programing

OXM Object--XML Mapping

RA Requirement Analysis

SM Structured Modeling

SMS Symbolic Model Specification

SMT Structured Modeling Technology

SOAP Simple Object Access Protocol

UI User Interface

WPx x-th Work-Package of EnRiMa

WSDL Web Service Definition Language

WS Web-Service

XML Extensible Markup Language

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

7 / 43

Executive summary

This deliverable (labelled D4.1a) serves as the revision of deliverable D.4.1 (Requirement

Analysis, IIASA et al, 2011), as well as provides information about the Decision Support

System Engine (DSSE) that is useful for the forthcoming activities. The main part of D4.1a

presents the DSSE components, namely the DSS Kernel, Solver Manager, and Scenario

Generator, and their services to be provided to the EnRiMa DSS. The second part describes

the role of the Kubik facility. D4.1a is complementary to the following earlier deliverables:

D4.1 (Requirement analysis, October 2011), D1.1 (Requirement assessment, December

2011), and D5.1 (Draft specifications for services and tools, June 2012).

This report starts with an overview of the DSSE components and a summary of the services

each of them provides; the overview also explains how the Symbolic Model Specification

(SMS) supports consistency of services provided by all EnRiMa DSS components that share

(either provide or modify or use) various types of information, as well as outlines how the

SMS facilitates effectiveness of development and maintenance of the DSS components. Next,

each of the three DSSE components is presented. The DSS Kernel description deals with the

following topics: Web-services, data-warehouse and the corresponding data services, and the

data privacy; moreover, we present the Kernel architecture, as well as the approach to, and

corresponding tools for, development of the DSS components that consume Web-services.

The other two DSSE components (Solver Manager and Scenario Generator) are then

described. This is followed by a summary of the interface to and between the DSSE

components. We conclude the part dealing with the DSSE components by illustrating their

roles in execution of workflows specified in selected use cases of the EnRiMa DSS developed

in D4.1. The second part of D4.1a consists of a description of the Kubik laboratory building

and its services for development and verification of the EnRiMa models.

In addition to fulfilling the EC request for the D4.1 revision, this deliverable contributes to the

on-going and forth-coming EnRiMa activities. Most of the D4.1a content has been known to

EnRiMa partners from many discussions and the corresponding background notes, results of

tests performed at Kubik, as well as from experiments with the Web-services testing-package.

However, the request for the D4.1 revision triggered the organization of this dispersed

information into a consistent document; it will guide the EnRiMa partners in the effective use

of possibilities offered by the available methodology and technology (especially the Symbolic

Model Specification and the Web-services), as well as by the capabilities of the Kubik

facility. The scope of Web-services and data services, although well defined in the DoW, is

now specified in more detail, and illustrated by the presentation of services that they provide

to workflows defined in the use cases developed in the Requirement Analysis (IIASA et al.,

October 2011).

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

8 / 43

1 Introduction

This deliverable (further on referred to as D4.1a) has been developed in response to one of the

requests the Commission specified in the letter received on 13.7.2012, namely, "to take into

consideration the comments under "remarks" for both D4.1 and D8.3 and to submit the

revised deliverables within one month of reception of this letter." This deliverable concerns

only the request related to D4.1; the D8.3 revision will be submitted separately.

The scope of D4.1a covers not only the above mentioned remarks, but also issues raised

during the review meeting on June 5th, 2012, as well as the more detailed recommendations

included in the Technical Review Report for the EnRiMa project, dated 20.6.2012, in

particular, the following two elements of item 1.b (page 3):

 "Deliverable D4.1 covers the requirement analysis for the entire DSS without an

overview of the system functional components underlining the ones to be developed in

the project. Deliverable D4.1 has to be revised and resubmitted in order to have clear

conclusions linking the requirement analysis with design elements and software

architecture."

 "The KUBIK facility is not considered, neither in the Sankey diagram evaluation

neither for Requirement Analysis (in deliverable 4.1). In this context it is not clear at

which level of testing the KUBIK facility will be used. At this stage of the project, the

added value of using the KUBIK facility is not evident and the impression is that the

ENRIMA project could run adequately without the involvement of the KUBIK

facility. A clear justification regarding the need of involving the KUBIK facility into

the ENRIMA project is required."

Therefore, we have extended the scope of the requested revision in order to not only respond

to the EC request but also to report on the related work done after the D4.1 delivery in

October 2011. For justification of this deliverable content it is desired to summarize the

following issues:

 The D4.1 submitted in October 2011 was the first EnRiMa deliverable. Its committed

scope was the Requirement Analysis (RA) of the EnRiMa DSS Engine (DSSE).

However, a RA of the DSSE had to be based on the RA of the whole DSS. Therefore,

the consortium decided to extend the scope of D4.1. The delivery time of D4.1 did not

enable a presentation of the description of the DSS components and the architecture;

these both critically important elements have been designed later.

 The EnRiMa partners agreed already during the review meeting on June 5th, 2012,

that it would be useful to develop a description of the DSSE components and their

roles in fulfilling the RA, as well as present the DSS architecture. Following this

discussion, the deliverable D5.1 (submitted in June, 2012) includes the corresponding

descriptions of the DSSE components, and of the DSS Kernel architecture. These

elements have been extended and included in D4.1a (this deliverable) together with

several new elements that we consider useful for the D4.1 revision.

 D5.1 (submitted in June, 2012) describes the overall architecture of the EnRiMa DSS,

its main software modules, and their relations; hence, it partly addresses the above

quoted EC recommendations that were formulated before D5.1 was submitted.

Therefore, this report focuses on the DSSE components, which was the originally

planned scope of D4.1, and presents the topics that could not be included in D4.1.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

9 / 43

 D4.1 provided RA for the public buildings as sites for which the EnRiMa DSS will be

implemented. Kubik is a laboratory building designed for diverse tests (including

simulations of given situations, e.g., different occupancies, energy loads, and energy

flows); therefore, it was not rational to prepare a DSS RA for Kubik. However, Kubik

is critically important for proper development and verification of models developed

for the EnRiMa DSS. In order to justify this statement, we describe in D4.1a the

Kubik role, and illustrate it by summarizing the tests to be made at Kubik for

development and verification of the EnRiMa models.

 The D4.1 is, due to its wide scope, a rather long (84 pages) document with the content

that is needed and remains valid, but does not meet the EC revision recommendations

summarized above; in order to fulfill the EC request for D4.1 revision, rather

extensions by new parts than modifications of the old ones are needed. Therefore, a

rational way appears to be the development of a self-contained supplement. Thus, we

have taken this approach, and developed this deliverable (named D4.1a) as a

supplement to D4.1.

This deliverable consists of two parts, each addressing the corresponding (above cited)

element of the request for the D4.1 resubmission. The first part presents the DSSE

components, namely the DSS Kernel, Solver Manager, and Scenario Generator, and their

services to be provided to the EnRiMa DSS; it presents their design, software architecture,

shows how each component contributes to meeting the DSS requirements specified in D4.1,

as well as how they shall work together. The second part describes the role of the Kubik

facility; it explains the tests to be carried out at Kubik, and their role in calibration and

verification of EnRiMa DSS models; it also presents the interactions between the EnRiMa

DSS components and the Energy Management System of Kubik, which is essential for

verifying the integration of EnRiMa DSS with the ICT infrastructure of actual Building

Management Systems (BMSs).

The remaining part of D4.1a contains the following elements. Section 2 provides an overview

of the DSSE components; it also includes, in response to the discussion during the review

meeting, a summary of the role the Symbolic Model Specification (SMS) plays in supporting

consistency of services provided by the DSS components. The next three Sections provide

descriptions of each of the DSSE components, i.e., the DSS Kernel, Scenario Generator, and

Solver Manager, and the services each of them provides to the EnRiMa DSS. Following the

discussion during the review meeting, the Kernel description includes a presentation of its

architecture, as well as comments on the data privacy issues. Section 6 outlines the interface

between the DSSE components. The services provided by the DSSE components are

illustrated by their roles in the execution of workflows specified in selected use cases

developed in D4.1. The Kubik laboratory building and its services for the development and

verification of the EnRiMa models are described in Section 8. The conclusion is presented in

Section 9.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

10 / 43

2 Overview of the Decision Support System Engine (DSSE)

The DSS Engine (DSSE) is the backbone of the EnRiMa DSS providing to its users three

types of state-less services, each through one of the DSS components, the DSS Kernel, Solver

Manager, and Scenario Generator. Diverse types of actual DSS users and stakeholders are

characterized in Section 3 of deliverable D4.1 (IIASA et al. 2011). They will use the DSSE

services in a transparent way, i.e., consume them through the User Interface (UI) being

developed by WP5, and documented by the corresponding deliverables. Thus, diverse DSSE

services will be used whenever requested by users through the UI. The UI will organize

workflows controlled by the users, and composed of tasks needed for achieving the

corresponding DSS functionality.

The general assumption of the EnRiMa architecture is that all DSSE services used by end-

users will be accessed through the UI, and provided through Web-services (WSs). This

approach has several important advantages; we mention only three of them. First, it enables

robust integration of heterogeneous (i.e., developed and run on diverse hardware and software

platforms, possibly at distant locations) components into a DSS fitting particular needs.

Second, it supports efficient development and modifications of the DSS components, with

minimum interdependences during the whole cycle of software development use, and

maintenance. Third, it facilitates software reusability.

The DSSE has modular structure illustrated in Figure 2-1, and is designed to make it reusable

for other buildings without substantial modifications. Actually, the modifications are limited

to adaptation of the Symbolic Model Specification to the new building, and provision of the

corresponding data.

The three DSSE components, each described in a subsequent section, have the following main

functions. The DSS Kernel provides the set of harmonized WSs that enables integration of

heterogeneous components into the DSS. The Scenario Generator provides realizations for the

stochastic parameters for a scenario tree, which is then used for stochastic optimization. The

Solver Manager provides solutions of the stochastic optimization problems. These

descriptions are preceded by presentation of the role the SMS plays in integration of

heterogeneous software components into the EnRiMa DSS.

Figure 2-1 Overview of the DSS Engine architecture.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

11 / 43

2.1 Role of the Symbolic Model Specification (SMS)

2.1.1 Overview

Semantic consistency of objects used in different DSS components is a key necessary

condition for the DSS usability. In the EnRiMa DSS it is achieved by adopting the Structured

Modeling Technology (SMT) approach (see e.g., Makowski, 2005), which uses the Symbolic

Model Specification (SMS) as the common (for all involved DSS components) source of

specification of model entities. The SMSs of operational and strategic EnRiMa models are

maintained by the DSSE; therefore we present here the role of SMS in the DSS development

and maintenance.

Models used for model-based DSS are composed of three types of compound entities, i.e.,

coefficients, variables, and relations, as well as sets (including subsets, optionally indexed by

members of other sets) of indices. The indexing structure, implied by the sets of indices, is

used for populating the compound entities into the corresponding sets of actual entities

(coefficient, variables, and relations); thus, the sets serve as dictionaries of eligible (for each

specific version of data) values of the corresponding indices. This approach implies

consistency of the model components between applications that deal with different phases of

the model development. We comment here on only key elements of the corresponding

modeling cycle:

 The SMSs (for operational and strategic models, respectively) provide an adequate

(for the EnRiMa DSS) specification of parameters, variables and relations, as well as

the corresponding indexing structure; thus corresponding model instances support

analysis of the decisions and the representation of consequences of their

implementation. Hence, the SMS is the right basis for assuring consistency between

interdependent processes of the data (to be used as model parameters) management,

and the corresponding model generation and analysis.

 The data will come from different sources, and may be provided by different users at

different times. The data management processes will be done by the DSS users within

the workflows supported by the UI; the SMS may include additional data attributes

that support the organization of these processes. Data management includes

versioning, which is a very useful approach for data sets in which small parts are

modified, e.g., for comparative analysis, or for periodic data updates. The authorized

users will decide which data versions can be used for defining model instances; only

the corresponding model instances will be used for model analysis.

 The consistency of data with the SMS will be checked, during the data management

processes, through WSs provided by the DSS Kernel. Therefore the model parameters

will be consistent with the SMS.

 All DSS components will therefore operate on consistent sets of data, in particular

model parameters defining model instances, parameters used for scenario generation

and stochastic optimization, and the results of the corresponding analysis. Using the

SMS will also assure that the generated model instances will be consistent with the

model documentation (both generated from the same SMS).

2.1.2 Elements of the SMS

As already mentioned, the EnRiMa models, like any non-trivial model, are composed of

compound (generic) entities (parameters, variables, and relations) that are populated into

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

12 / 43

actual entities through indices that take values from the corresponding sets. Depending on the

needs of modelers and users, specification of the model entities optionally includes additional

(to those needed by mathematical programming representation) attributes. To illustrate this

approach, we provide examples of the necessary and optional attributes.

2.1.2.1 Common attributes

Here we list attributes that are common for all types of entities, i.e., sets, parameters,

variables, and relations. At the minimum, each entity has two attributes:

 Label (symbol): a (very) short string; used as the entity id, e.g., in relations, data

services, etc. The symbol has to be unique within a model (or a name-space, if the

latter is used; see below).

 Iterator: a vector (empty for scalar entities) composed of indexing sets; members of

indexing sets are used for populating a compound (generic) entity (a set, parameter,

variable, or relations) into the corresponding collection of entities. In other words, a

number (defined by all combinations of members of the corresponding indexing sets)

of entities are created as instances of one compound entity.

The following optional attributes are also worth considering, either for all or some types of

entities, because they provide information useful for other (not just those belonging to DSSE)

components:

 Short name: a string (preferably short) having an easy association with the meaning of

the entity, used e.g., in listings, tables, etc.

 Description: a 1-2 lines of text, used e.g., in UI-hints, documentation, etc.

 Measurement unit.

 Name-space (can be used for either keeping the corresponding entity private within a

model, or sharing its specification with other models).

The above list contains the most commonly used attributes; other attributes can be added, if

desired.

2.1.2.2 Sets

Here, a set means a container for indices of a specific type. Sets are often organized in

hierarchical structure. The root (base) set contains all indices of a specific type. Subsets can

optionally be indexed. If subsets are used, then each needs to have, in addition to the common

attributes, the following attribute:

 Parent set: indicates that the set is a subset of the corresponding parent set; e.g., if S is

a set of energy sources, then might be a subset of renewable sources, and

 might be a subset of sources available at time , where T is a set of time

periods. Note that is an indexed subset, and is a not-indexed subset.

Members of an indexing set are used as indices for instantiating entities, some of them may

have an iterator composed of several indices. Therefore it is practical to associate with each

member (index) two descriptors (ids):

 Symbol: a (very) short string; used as the index id, especially for internal purposes

(e.g., handling of data and results) e.g., for a country index: at, be, es, no, se, uk; and

 A word, used in the communication with (less advanced) users; e.g., for a country

index: Austria, Belgium, etc.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

13 / 43

2.1.2.3 Parameters

In addition to the common attributes, the following attributes of parameters should be used for

parameters:

 Type: math-type, e.g., integer, float, double; also deterministic or stochastic;

implementation of the latter depends on the agreed representations of stochastic

parameters.

 Lower and upper bounds (either constants or other parameters).

 Source: specification of the data source (optional, but very useful for organizing data

management processes).

 Group: for grouping parameters (optional, but very useful for management of the data

access rights).

2.1.2.4 Variables

In addition to the common attributes, the following attributes should be used for variables:

 Type: math-type (same as specified above for parameters).

 Lower and upper bounds (either constants or selected parameters).

 Role (optional, but very useful for analysis of large models):

o decisions (inputs), controlled by the DSS user;

o external decisions (inputs), exogenously given;

o outcomes (outputs), used for measuring the consequences of the

implementation of inputs; to be used as criteria (objectives); auxiliary variables

introduced for various reasons (e.g., to simplify model specification, or to

allow for easier computational tasks).

2.1.2.5 Relations

Relations (in mathematical programming often called constraints or functions) should have, in

addition to the common attributes, the following attributes:

 Lower and upper bounds.

 Group: (optional, for grouping relations).

 Activity: (optional) binary indicator to enable excluding the relation from the model.

 Role: (optional, for presenting relations in diversified ways, e.g., as assignments,

definitions, or constraints).

2.1.3 Representations of the SMS

EnRiMa DSS shall have three SMS representations of each model (with optional versions), to

be developed, and be available for all DSS components:

 The DW representation, transparent for developers of other DSS components, to be

handled by the Kernel.

 XML-based representation, containing information requested by a specific DSS

component; it will be provided by the Kernel through the corresponding Web-services.

 Human readable representations (HTML and PDF), to be generated from the XML

representation.

2.1.4 Summary

Structured Modeling (SM), originally proposed by Geoffrion (1987), provides a proven

framework supporting the whole modeling cycle, which is especially effective for non-trivial

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

14 / 43

models developed by collaborating teams. Separation of model specification from

management of data used for model instances was a break-through in modeling technology,

and it is now considered as a key element of good modeling practice. The SMT (Makowski,

2005) extends the original SM framework by offering additional functionality, in particular

optional attributes of the SMS, which facilitate development and maintenance of the UI, as

well as separating the modeling activities into two parts. First, handled by users through a UI;

second, provided by a server (DSS Kernel) that maintains all persistent elements of the model

and the corresponding modeling process. SMT also extends the SM approach by providing

the Data Warehouse (DW) that handles all data of the whole modeling process in a way

transparent to the model users. The SMS plays a key role in assuring consistency of these

data. The Kernel provides Web-services through which all needed modeling information is

exchanged. Thus, the Kernel is model-independent, and therefore can be re-used for other

models.

In order to illustrate the scope of advantages offered by a more complete (than the minimum

necessary for a model specification) definition of SMS, we outline some of them:

 Defining and using optional attributes of model parameters (such as data source or

data group) substantially ease organization and maintenance of data management

processes by the UI.

 Information about available data, and its completeness, can be structured according to

the needs of handling specific data subsets, and thus make the data management

processes through UI much easier to implement and maintain.

 Dynamic generation of forms (e.g., driven by specifications of subsets of parameters

downloaded from SMS by a Web-service) makes form maintenance much easier than

forms with hard-coded field specifications.

 Use of optional attributes enables validation of form's fields by the client, which is by

far more efficient than data validation by the server, and subsequent handling of

possible errors. Validation may include not only the data types, but also conformity to

the corresponding range of feasible values (also downloaded by a Web-service).

 The UI forms handling indexed data may use choice lists composed of downloaded

values of indices, thus eliminate errors caused by specification of undefined values of

indices.

 Optional attributes of variables facilitate specification of preferences (for

optimization-based integrated model analysis) and diverse analyses of results.

 Maintenance of user data-access rights is much easier to be handled by the UI.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

15 / 43

3 The DSS Kernel

3.1 Overview

The DSS Kernel provides state-less services requested by the DSS users through the User

Interface (UI) or directly through other DSS components, including applications integrated

with the ICT infrastructure of the corresponding building. The Kernel provides the needed

functionality through the corresponding Web Services (WSs). The latter requires also "back-

office" applications needed for actual implementation of WSs, such as checking consistency

of the provided data with the SMS, organizing the data provided as Data Transfer Objects

(DTOs) into structures suitable for effective handling by the Data Warehouse (DW)

implemented in a DBMS; organizing data available from the DW into DTOs used by

applications consuming the WSs; user handling; access control; user’s on-line problem

reporting and comments; preparing data for diverse on-line reports to be provided by the UI

for developers and users.

Thus, the DSS Kernel consists of:

 WSs for interfacing the DSS components that need to exchange data through the

Kernel.

 Data Warehouse (DW) supporting handling of the DSS data that needs to be stored.

 Data services providing access to the DW.

 Back-office applications supporting implementation of the WSs.

These elements are presented in the corresponding Sections below. Additionally, the

following topics are presented in the subsequent Sections:

 The Kernel architecture.

 Data privacy issues.

 Consuming the WSs within the DSS components.

3.2 Web-Services (WS)

3.2.1 Overview

A Web-Service (WS) is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-processable

format (specifically WSDL). Other systems interact with WSs in a manner prescribed by its

description, i.e., using SOAP messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards. The main advantages of using

WSs are as follows:

 Flexibility: WSs are only concerned with the transfer of semi-structured data between

software components. This gives flexibility of implementation, allowing systems to

adapt to changes of requirements, technology etc. without directly affecting users.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

16 / 43

 Interoperability: WSs support exchange of data between heterogeneous (i.e.,

developed and run on diverse hardware and software platforms) software components

that can run at distant locations.

 State-less: WSs are independent, self-contained requests; they do not require

information from, or state of, other requests; they are also independent of the content

or state of other WSs.

Thus the clients (applications that consume WSs) can build various business processes that

typically need exchange of data available from different sources and in diverse formats.

3.2.2 Functionality of the WSs

The Kernel shall provide WSs supporting the following top-level functionality:

 Interfacing the DSSE with the UI developed in WP5.

 Interfacing the Kernel with the scenario generator and solver manager.

 Other functionality needed for a DSS such as user handling, access control, user’s on-

line problem reporting and comments, providing data for diverse reports for users and

developers, backups, etc.

In order to meet these requirements, the WSs provided by the Kernel shall support:

 Storing various types and sets of the provided data (parameters of the model,

specification of model analysis tasks, results of model analysis, data needed for

administration of the DSS).

 Checking consistency of the provided data with the SMS, and with the specified sets

of indices.

 Management of data versioning and acceptance.

 Definitions of model instances, analysis tasks.

 Providing information about the status of the solver tasks, and availability of solutions.

 Providing the stored data to the DSS components in diverse (corresponding the needs

of the client applications) DTOs.

 Management of the DSS users, including authentication, specification of roles, access

rights.

 Triggering execution of the scenario generator and solver manager.

3.2.3 Summary of WSs specification

From the client (applications that will use Web-Services provided by the Kernel) perspective,

a WS consists of four components:

 Envelope containing data needed for identification of the context within which the WS

is used. The envelope includes elements such as: id of the user and his/her credentials,

model id, data set and version, etc.

 Request (specification of the service). It identifies a specific WS, and provides the

corresponding parameters.

 Response (specification of the response to the service). The message sent by WS

server that may include one or more of the following: HTTP status, SOAP body

contains the data of the response, error messages, and warnings.

 DTO (Data Transfer Object) containing structured data needed for processing the

request or the response. DTO optionally contains specification of objects transferred

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

17 / 43

as attachments for requests of storing/retrieving objects (files) that are not processed

by the Kernel.

3.3 Data-Warehouse (DW)

The DW shall be designed and implemented within a suitable DBMS, using the technology

available from the SMT, thus be also efficient for handling huge amounts of data with

complex indexing structures. The corresponding DBMS schema should be independent of the

data specification, and be transparent for the client applications. The data services used for

accessing the DW should assure consistency of all persistent elements of the modeling

process, and support control of access to the data. However, the data services shall be hidden

from the client applications; they shall access the data only through WSs using the DTOs

suitable for their data structures.

The DSS Kernel shall maintain the following data types:

 SMS.

 Model data, including sets, parameters, and results of analyses (all consistent with the

SMS).

 Model instances.

 Model analysis tasks (specifications and results of the tasks corresponding to the

requested runs of the scenario generator and solver manager).

 Data of authorized users of the DSS, together with their roles as users of the EnRiMa

DSS.

 Model journal, i.e., automatically gathered information about modeling activities

passing through the DSSE.

3.4 Data services

The data services shall be developed for two different purposes, therefore we present them

separately.

3.4.1 Internal Kernel data services

The internal Kernel data services will provide functionality needed by Kernel components.

These services will be hidden from the client applications, and independent of a specific data

structure implied by the SMS. They will support management of the data provided to, and

requested from, the Kernel through WSs and the corresponding DTOs:

 Convert data provided in diverse DTOs into structures suitable for the DW.

 Organize data from DWs into diverse DTOs.

 Organize and maintain data structures for handling indexing structures for compound

model entities, including support for indexed subsets of indices.

 Read/store data from/to DBMS-based DW.

 Check consistency of the uploaded/requested data with the SMS.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

18 / 43

 Support data persistency and versioning.

 Provide diagnostics (completeness regarding the SMS) of a selected data version.

 Manage access rights to the DSSE and the (subsets of) data.

 Maintain the modeling journal (automatic documentation of the modeling process).

3.4.2 Interim data provision from test sites

The DSSE shall host a small dedicated activity that will provide data from the test sites in the

period starting with the termination of WP1 until the prerelease version of the UI (to be

developed by WP5) will be available; this will be combined with testing the WSs. This

activity does not contribute to the Kernel development; it shall use the results of WP1, in

particular tasks 1.2 and 1.3, and provide results to the corresponding activities of WP5.

3.5 Back-office applications

In addition to the internal Kernel data services, diverse applications shall be developed for

providing services such as user handling, access control, feedback from users, data for on-line

reports to be provided through the UI, backups, etc. The needed functionality shall be

provided by a harmonized collection of applications, complementary to the internal Kernel

data services.

3.6 DSS Kernel architecture

The Kernel, in order to effectively process the wide scope of WSs and be reusable, has

modular structure illustrated in Figure 3-1. We first summarize the communication with and

within the Kernel. The Kernel is accessed by the external components through WSs; the

Kernel components developed in the Java programming language communicate through Java

methods. Next, we outline functionality of each Kernel component.

Figure 3-1 The DSS kernel components.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

19 / 43

The function and characteristics of each Kernel component are as follows:

1) Web services: publish the contract (as the WSDL file) through lightweight application

service (Tomcat) and the endpoints implement the Web-services through calling the

service adapter.

2) Service adapter: provides link between WSs and the internal data services; transform

formats between Web services domain objects and database domain objects; makes

the data services transparent (a black box) for components that do not belong to the

Kernel.

3) Web services domain: the DTOs based on the contract (WSDL file) are used for

generating objects through an Object/XML mapping (OXM) tool (e.g., JAX-WS,

JIBX, XStream, gSoap). Such tools also generate classes for applications consuming

WSs in other DSS components (UI, Solver Manager, Scenario Generator, data

wrappers and other applications integrated with the ICT infrastructure of each

building); more details are provided in Section 3.8.

4) Database domain: the Java Persistence API (JPA) entity objects generated using the

database schema through object-relational mapping tools, such as Hibernate, Eclipse

link, Toplink, etc.

5) Data services: transactional business logic, read/store data from/to DBMS through

JPA which will handle conversion of DTOs into the Data-Warehouse schema that

will be independent of the DTOs thus remaining transparent for clients and stable, i.e.,

not requiring modifications when DTOs will be modified.

6) Data Warehouse: dedicated data structures implemented within a DBMS, accessible to

external (to the Kernel) clients only through the WSs provided by the Kernel.

Therefore neither a DBMS choice nor the corresponding DBMS schema influences

other (than Kernel) DSS components. Currently, PostgreSQL is used for prototyping,

and will be used for the final Kernel version.

7) Utilities: a container of diverse back-office applications that support various functions

needed by the Kernel.

The multi-layered representation of the Kernel is illustrated in Figure 3-2. The top layer

contains the WSs published within the WS-domain in the WSDL format, and endpoints

indicating a location for accessing the service. This domain is shared by all components of the

EnRiMa DSS. The middle layer contains the service adapter which maps the requested

operations into the domain data services. Data services layer provides stateless transactional

business logic, the data access layer provides interface to the data warehouse built on a

DBMS. The data access and services layers share cross-cutting applications, e.g., for handling

logging, transaction management and security.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

20 / 43

Figure 3-2 DSS Kernel layers.

3.7 Data privacy

The data privacy policy is decided by the EnRiMa consortium, and conforms to the

corresponding standard rules. The Kernel shall provide mechanisms to implement this policy.

We comment here on key issues only. The data handled by the EnRiMa DSS is of two types:

 Personal data of the DSS users: it will include a minimum set needed for the user

authorization, assigning and verifying her/his roles in using the DSS, and email

address for communication. All of this data will be kept confidential, and will be

provided only to the DSS applications that actually need them.

 Data used for the DSS models, and resulting from their analysis. The ownership of

this data belongs to the entity that provides it. An authorized person of this entity

(either the EnRiMa partner or the site manager) will decide the data access rights.

These rights will be managed by the Kernel.

The data access rights of each user will be decided during the DSS configuration, and

implemented in the standard way. The DSS administrator will grant to a person designated by

each site the role of administrator of access rights to the corresponding site-related data. The

site administrator will then manage the access rights to this data. A similar approach will be

used for access rights to the data developed by the EnRiMa partners.

The Kernel shall implement the standard approach to the data protection. Access to the data

will be through WSs consumed in the UI and in the authorized applications integrated with

the ICT infrastructure of each test site. Each WS request will contain credentials of the user

running the corresponding application. These will be checked with the access rights defined

by the authorized persons. Moreover, the Kernel shall maintain the model journal, which will

support the monitoring of the data access, and thus help to detect possible abuse of the access

rights.

The above outlined mechanism will be used during the project duration. The EnRiMa

consortium will decide what shall happen with the data after the project termination.

Depending on this decision, the data will either be made available to the specified

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

21 / 43

institution(s), or will be permanently removed from the DBMS and the corresponding back-up

files.

3.8 Consuming Web-services in the DSS components

Figure 3-3 illustrates the philosophy of developing and using the WSs. One starts with the

requirements from clients, i.e., other DSS components (UI, Solver Manager, Scenario

Generator, Data Wrappers and possibly other applications to be integrated with the ICT of the

sites that will require WSs), and develop the XML schema and the WSDL file that meet the

requirements. After this is completed, the clients can use the WSs directly. Marshalling

(serialization) the WS-domain objects (DTOs) to XML, unmarshalling XML to WS-domain

objects, and translations between the WS-domains and DBMS-domain are totally transparent

for the clients.

Figure 3-3 DSS Kernel Web-services.

Moreover, there are tools for generating definitions of objects (e.g., classes) directly from the

XML schema for all widely used programming languages and tools. A selection of such tools

is illustrated in Figure 3-4. Therefore, following the philosophy outlined here, and using the

corresponding tools, substantially reduces the resources needed for the development of

applications in diverse components, enables parallel development, supports consistency

between these applications, and thus contributes to the effectiveness of the software

development and to the reliability of the applications, as well as of maintenance and

reusability of the DSS components.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

22 / 43

Figure 3-4 Examples of technology for the DSS Kernel clients.

3.9 Summary

It is worth stressing that the EnRiMa architecture based on the WSs and SMT enables

effective development of DSS components that can be combined into a robust model-based

DSS. The WSs provided by the Kernel enable efficient interface between components that

consume WSs, and use of the SMS assures data consistency across all components accessing

data through WSs. Moreover, the DTOs can be specified according to the needs of each

component, and the public-domain tools support the automatic generation of the

corresponding classes that can be directly embedded into the client applications. The DBMS

schema used for implementation of the DW is independent of data models used by clients;

moreover the use of the DBMS is transparent for the client applications. The client

applications can be developed on heterogeneous hardware and software platforms, and run at

distant locations. There are public-domain tools supporting use of WSs within all

programming languages and software tools commonly used for modeling tasks. The SMT has

been successfully used for collaborative interdisciplinary research on the development of

large and complex models.

All these arguments justify the statement that the EnRiMa architecture is based on efficient

and robust modeling methodology and technology that supports efficient development and

implementation of the DSS, as well as its use, maintenance, and reusability.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

23 / 43

4 Solver Manager

4.1 Overview

The Solver manager will be the module within the DSS Engine which will provide the

solution of the stochastic optimization problems. This module will be independent and will

work in coordination with the rest of the DSS Engine modules, namely: the Scenario

Generation tool and the Kernel. As a low-level tool (that is, without direct interaction of the

end user), it will take the models and parameters provided by other modules (e.g. database or

UI), and after preparing data and applying the appropriate algorithms and computations a

solution will be returned. This solution will be used by other modules, mainly to store and

present the results to the user (eventually the decision maker).

4.2 Functionality of the Solver Manager

The features that will be included in the solver manager will be:

 Capability to consume the Web services provided by the Kernel.

 Capability to generate different file formats (e.g. MPS, GAMS, AMPL, etc.).

 Capability to communicate with different third party software, both stand-alone

solvers and optimization software.

 Specific solvers and optimization software including stochastic optimization

capabilities.

The communication with other modules of the DSS will be made through the WSs of the DSS

Kernel described in Section 3. Thus, the operations inside the Solver Manager will be

transparent (black box) from the perspective of the rest of the modules.

4.3 Inputs and outputs

The inputs of the solver manager will be:

 The model, from the Symbolic Model Specification.

 The problem instance, including the parameters of the model and the actual sets to

be considered in the problem.

 The scenario tree, from the scenario generation tool.

 Building configuration, options and decision maker’s preferences.

The outputs of the solver manager will be:

 The optimal values for the variables.

 Further analysis, depending on the solver used, e.g. sensitivity analysis.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

24 / 43

4.4 Solver Manager Components

The components of the Solver Manager are represented in Figure 4-1. The interface will

consume the WSs in the kernel, and provide the results once the problem is solved. The

data preparation (both input and output) modules will interface with the solver using the

suitable protocols for it. The solver is called from the Data preparation programs.

Figure 4-1 Solver Manager scheme.

For the data preparation modules, R programs will be used. The data provided by the

Interface, will be prepared and translated into the solver required format. Then, a call to

the solver is done, requesting the appropriate output. Finally, the output is processed

and sent to the kernel through the Interface.

As the selection solver is a task out of the scope of this deliverable, it is not defined here

which solver will be used (it will be done in Task 4.5). In any case, as it is an

independent part of the solver manager, any solver can be supported. For the prototypes,

calls to the GAMS software and to R solvers’ APIs are being used.

There are several ways to interface R with XML services, directly using packages such

as XML or using Python interfaces. The final solution for the interface will be decided

while developing the data preparation modules, in close cooperation with the kernel

developers.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

25 / 43

5 Scenario Generation Tool

The scenario generation tool provides realizations for the stochastic parameters for all nodes

in a scenario tree, based on input data about the parameters with their statistical properties and

about the structure of the scenario tree. This means that it transforms the information the user

has about these parameters to information which can be used by the optimization model. In

this sense, the tool does not generate new information; it merely processes all available

information in a best possible way. The tool itself is completely embedded within the DSSE,

making it (normally) invisible to the average user. For a more advanced user, input and output

values may be visible as they are communicated to and from the tool, but beyond this, the tool

will appear as a "black box" also to these users. A detailed description of the tool is given in

deliverable D3.2, “Scenario generation software tool” (SINTEF, 2012).

The scenario generation tool will have three main inputs; module type, parameter data and

scenario tree:

 Module type (operational or strategic) - specified by the user. It might also be locked at

installation time in the case where the operational and strategic modules are used by

different users.

 Data for the stochastic parameters (for more details, see deliverable D3.2):

o in case of the strategic module

 weather prediction; automatic download from some weather-service provider

- the choice of provider might be country-specific, or even site specific.

 long-term trends of energy prices - provided by local EnRiMa partner;

country or site specific.

 technology development: efficiency and prices - provided by the EnRiMa

team; common for all installations.

 government subsidies and regulations: provided by local EnRiMa partner;

country specific.

o in case of the operational module

 historical weather data; either from a weather-service provider, or from own

database (site-operated weather station).

 electricity and heating prices - in case of long-term contracts, the values are

stored in a database, with possibility of manual updating; in case of real-time

pricing for electricity, we will need a tool to download the prices for the next

period from the electricity provider (automatically).

 Scenario-tree structure: time periods, number of stages, number of branchings. This will

likely be set at the installation time. Could be made changeable in case of an advanced

user.

In case of missing or insufficient data for some of the parameters, we can either consider the

parameter as deterministic (i.e., it has the same value in all the scenarios), or we can use an

expert opinion to estimate its statistical properties. Since this would mean some adjustments

to the tool, it would have to be done at installation time.

The outputs of the tool are tables with values of the stochastic parameters for each node in the

scenario tree, together with information about the tree structure (parent/predecessor node,

stage and probability). This basically consists of a set of realizations of each stochastic

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

26 / 43

parameter for each scenario tree node – and "directions" how to put them in the multistage

stochastic model to be built. The main purpose of these tables is to serve as an input for the

optimization modules, though we will also provide a visualization tool so the user can

examine the scenario-tree values before using them.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

27 / 43

6 Interface to and between the DSSE components

The WSs provide a simple, flexible, robust, and effective interface between heterogeneous

DSS components. As described in Section 3, tools are available for consuming the WSs

provided by the Kernel. Here we comment on two issues. First, the execution of a stand-alone

DSS-component can be triggered. Second, how downloading diverse data-structures can be

organized. Both issues are illustrated by the interface between the Kernel and the Solver

Manager illustrated in Figure 6-1.

Figure 6-1 Interface between DSS Kernel and solver manager.

6.1 Triggering execution of stand-alone DSSE components

The execution of a stand-alone component (such as Solver Manager or Scenario Generator)

can be started by a simple http call that passes a small number of arguments identifying the

requested service, and optionally used for the caller identification. Such a call can be

generated directly by the UI, or requested through a corresponding WS to be executed by the

Kernel. Embedding the required functionality into the application is easy: there are standard

solutions enabling same binaries to be executed through either an http-call or a command line

statement. Both types of calls use the same set of the call arguments that can be processed by

one C++ or Java class. Such an approach also greatly simplifies the development of the

application; the same binaries can be tested using the command-line calls, and made available

as a Web-enabled application.

6.2 Consuming WSs for downloading data and uploading results

Some stand-alone applications operate on complex data structures organized into classes

according to the OOP paradigms. We use the Solver Manager (here simply referred to as the

solver) to outline how the WSs combined with the SMS support effective download and

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

28 / 43

upload of the corresponding data. The approach is illustrated by the sequence of the selected

solver actions:

 Solver is started by the http call with arguments identifying the computational task.

 After processing the call arguments, the solver uses a WS to get the data fully

identifying the task. These data will contain id's of all needed components, i.e., SMS,

model instance, type of analysis, parameters of the analysis, scenarios prepared by the

scenario generator, etc.

 Each of these data components can be handled by objects of the corresponding class,

e.g., C++ or Java or R. The corresponding data structures define the DTOs which can

be used for WSs supporting the download of the corresponding data identified by the

elements of the response of the first WS used by the solver.

 The solver can use the WSs to download each needed data components directly to the

objects of the corresponding classes. The order of downloads shall correspond to the

solver needs; from the Kernel perspective any order can be used because WSs are not

interdependent.

 During the optimization process, the solver can use a WS to report the optimization

progress.

 After the optimization is completed, the solver uploads the results to the Kernel using

the WSs with DTOs corresponding to the structures used for optimization results.

Figure 6-1 outlines just an example of the WSs used to downloading the needed data

components. Actually, the real solver implementation may use another composition of DTOs,

if it corresponds better to the solver data structures. Moreover, we point out that the

consistency of data with the SMS is checked during the data commitment; therefore the

downloaded data will be consistent with the SMS.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

29 / 43

7 DSSE services supporting workflows defined by use cases

In order to present the roles of the DSSE components and their interactions with the UI, we

show here how each of them will contribute to achieving the required DSS functionality

defined by workflows specified by the four use cases selected from Section 9 of deliverable

D4.1 (IIASA et al., 2011). The use cases were selected with the aim to illustrate the key

functionalities of the DSSE components. Therefore, the presentation focuses on the services

provided by the DSSE. The roles of the UI and of the applications to be integrated with the

ICT of each building are only outlined because they will be presented in the forthcoming

deliverables of WP5 and WP6.

7.1 Initial data set

This use case (Section 9.5.2, p. 74 of the D4.1) is representative for using the WSs during the

model development, which is being done by the EnRiMa partners. The initial data sets for

both EnRiMa models (operational and strategic) will be prepared by the model developers,

and provide the basis for subsequent data modifications (versioning). We summarize the WSs

functionality supporting each step (copied below in the italics font) specified in this use case:

1. Run automatic generation of the data space for model parameters and results. The

data space will be made available by the Kernel for each submitted SMS. It

includes not only the model parameters and results of the model analysis, but also

other data needed for supporting the whole modeling cycle. Therefore, this step of

the workflow is performed during the DW initialization.

2. Import available data from the data warehouse. WSs will provide information

about the available data in DTOs corresponding to the needs of the UI. Also either

the whole data set or parts of it can be requested by WSs, and will be provided as

the response to the corresponding request. Thus, the data will be provided in

structures suitable for handling through the UI.

3. Receive or develop the missing data. WSs will handle the upload of data provided

in DTOs consistent with the SMS. The model developers will use these WSs either

by inputting the data to the forms provided by the UI (with associated actions

executing the corresponding WS) or by dedicated applications that consume the

needed WSs.

4. Verify the data completeness. Data completeness can be verified in several

complementary stages that shall be controlled by the UI. We mention here only

those most commonly used. First, the SMS offers the possibility of specifying data

types and ranges. Second, a WS will provide this information to be used for the

standard form validation procedures by UI. Third, WSs will provide the lists of

valid values of indices corresponding to the data items being processed; such a list

can be used as a choice list within the corresponding form (or application) to

support using only appropriate values of indices. Fourth, the WS used for uploading

the data (from either a form or an application) will check the consistency of

uploaded data with the SMS. Fifth, WSs will be available for providing information

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

30 / 43

about data items (and groups of data, if defined in the SMS) already uploaded to the

DW.

5. Commit data. Each data subset uploaded through a WS will be stored in the DW, if

the provided data is consistent with the SMS, and with the specified values of

indices. An authorized user can change any data until the corresponding data (sub-)

set is committed. A WS with the request for committing data will lock it, and define

the corresponding data version, which will be available for specification of a model

instance. The locked data cannot be changed; however, the committed data set can

be used as a basis for further data versions. This approach to data handling is

necessary for meeting three requirements: first, the data persistency and

replicability of results; second, efficient handling of data modifications; third,

providing the committed data subsets for reuse as parts of data of another model, or

another instance of the same model.

6. Send information about the data availability. WSs will provide information about

both committed and stored (but not yet committed) data (sub-) sets. This

information therefore will be available either through the UI or dedicated

application, both using the available WSs.

7.2 Data for operational planning

This use case (Section 9.2.1, p. 68 of the D4.1) is representative for data management

processes, in which the users shall be supported by the workflows organized by the UI. In this

case the workflows should support consistent execution of all nine steps; the corresponding

WSs will provide the requested Kernel functionality supporting this process. Below we

comment on the roles of the DSS components in each of the steps specified in this use case:

1. Select a version of symbolic model specification. A WS handling the request for

providing the list of SMSs of a selected model will return the corresponding list.

The list will contain the information provided with the SMS submission (including

the user-id, date, optional description and notes). The list can be presented by the

UI as an annotated choice list, and the user will select one of its items.

2. Select a base data set. Support of this step will be the same as for Step 1.

3. Receive all needed data updates from external sources. The user (or users

responsible for specific sub-sets of data) will check the corresponding sources. This

can be supported by the site-specific applications. WSs can be consumed in these

applications (as explained in Step 3 of Section 7.1). Data conversions (from the

formats provided by the sources to the DTOs corresponding to the data objects used

by the applications processing data) shall be done by site-specific data wrappers.

4. Receive all needed data updates from local sources. The approach shall be similar

to that summarized in Step 3. The BMS may upload data to the site-specific data

wrapper module. Alternatively, the wrapper may download the data from the

building ICT, if requested through the UI, or a site-based scheduler triggering tasks

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

31 / 43

based on either the status of the available data or time intervals. Each of these

applications can consume a corresponding WS, for either to get the needed

information from the Kernel, or upload the data to the Kernel. Moreover, a WS will

support uploading unstructured data that will be available for later downloading and

further processing by a dedicated application.

5. Process/adapt data. Data processing and adaptation shall be done interactively

(through the UI), optionally supported by the underlying dedicated applications,

including site-specific data wrappers. The WSs shall be used in the same way as

described in Step 3. Thus, the user shall review, change, and approve all parameters

to be used in the analysis through the corresponding forms of the UI. This can be

done in several stages, each dealing with a subset of data. At each stage, a WS can

be used for querying the current state of the corresponding data subsets.

6. Optionally, run the scenario generation (see the corresponding use-case). Support

for this Step is presented in Section 7.3

7. Check data completeness. Support for this step is presented in Step 4 of Section 7.1.

8. Commit data. Support for this step is presented in Step 5 of Section 7.1.

9. Define the corresponding model instance. This shall be done by a simple UI form

providing optional fields for the model instances description and notes. A WS will

be available for handling the corresponding data submission.

7.3 Scenario generation

The workflow of this use case is specified in Section 9.4.3, p. 72 of D4.1 (IIASA et all, 2011).

It consists of the following steps:

1. Run the scenario generator. Preconditions for running the scenario generator are

selections of (1) a parent model, and (2) a data set for the scenarios. Both will be

supported in a way similar to that described in Step 1 of Section 7.2. After the

selections are completed, execution of the scenario generator will be triggered by a

simple https call, either directly by the corresponding UI form, or through a

dedicated WS that will execute such a call. After the scenario generator is started,

another WS can be used for getting information about computation status.

2. Analyze the diagnostics from the generator. The results of the scenario generation

will be provided by WSs, and therefore available for analysis through the UI.

Another WS can be used by the Scenario Generator for providing users with

optional information supporting analysis of the diagnostics, and/or characteristics of

the generated scenarios.

3. Upload the scenarios into the DW. The scenarios will be uploaded through WSs

used directly by the scenario generator. The user however, shall decide about

committing them to a specific version of data that will then be available for

operational and strategic planning.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

32 / 43

4. Send the notification on the availability of the scenarios. This will be supported in

the way described in Step 6 of Section 7.1.

7.4 Operational planning

The workflow of this use case is specified in Section 9.2.2., p. 69 of D4.1 (IIASA et all,

2011). It consists of the following steps:

1. Select a model instance. Same support as described in Step 1 of Section 7.2

2. Select a type of analysis. Same as Step 1. Additionally, we note that different types

of analysis can be supported by the solver manager.

3. Select parameters of analysis. Same as Step 1. Additionally, we note that some

parameters of the analysis may be predefined, and therefore their values will be

available through a WS to be displayed in a dialog provided by the UI.

4. Start the computations, and wait for notification of availability of results. Similar to

the support presented in Step 1 of Section 7.3.

5. Analyze the results. Similar to the support presented in Step 2 of Section 7.3.

6. Get approval, if appropriate. This is the site-specific procedure, which can be

supported by a dedicated workflow implemented by UI.

7. Implement the HVAC control parameters. Also this is the site-specific procedure,

which can be supported by a dedicated workflow implemented by UI, which may

involve dedicated applications integrated with the ICT infrastructure of the

building.

We note that the strategic planning use case contains a very similar workflow, and thus the

corresponding support by the WSs will be similar.

7.5 Summary

The presented DSSE support for the workflows belonging to different use cases shows also

the flexibility and reusability of the WS-based approach, as well as advantages of the modular

approach, which provides the users and the client-applications with all the necessary support

without involving clients in details of the pretty complex underlying processes handled by the

multi-layer Kernel architecture described in Section 3. The client applications can request and

submit the data in DTOs that best fits the way each application processes the data, and is

independent of the way data is maintained in a DBMS. This is a qualitative advantage in

comparison to the traditional approach, in which the applications had to adapt to a specific

DBMS schema, which moreover had to be changed whenever the data structure was changed.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

33 / 43

8 Kubik laboratory building

The aim of this section is to explain the purpose of the tests to be carried out in Kubik, the

usefulness of these tests for the EnRiMa project and DSS operational module and the

potential of Kubik laboratory building.

Secondly, the interactions between EnRiMa’s DSS (Decision Support System) architecture

specification and the existing Energy Management System in Kubik will be analysed.

8.1 DSS operational module tests in Kubik

Within the frame of the operational module of the DSS being developed in EnRiMa, Kubik

plays a key role.

It has been mentioned in previous chapters of D4.1 that one of the objectives of the DSS

operational module is to support the building operator in the decision making for operating

the HVAC system.

8.1.1 Objectives of the tests to be performed in Kubik

The principal goal is to test the DSS operational module for its analysis and characterization

as well as possible improvements suggestions definition.

Particular objectives are:

• to test the building envelope and HVAC model behaviour,

• to test the energy demand calculation in a “controlled environment”.

This means testing the key equations of the operational module in what refers the HVAC

system behavior, defined in D2.2, with the least uncertainties, hence the use of Tecnalia´s

laboratory building Kubik.

In Figure 8-1 below a graphical representation of the links between Kubik tests and other

tasks is shown.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

34 / 43

.

Figure 8-1 Workflow illustrating the role of tests performed at Kubik.

It can be seen that Kubik aim is to assist the development and optimisation of the DSS

operational tool which will be particularly developed for Fasad and Pinkafeld sites.

Furthermore, Kubik tests are also required for the optimisation part of the DSS operational

module.

8.1.2 Operational model calibration and validation

By building envelope behavior we mean the evolution of the internal space temperature as a

function of the building fabric characteristics and the supply air temperature to the space.

Internal air temperature is also determined by the building solar gains, internal gains (people,

lights and equipment), as well as infiltration and fabric heat gains/losses.

It is important to calibrate the building in terms of these parameters which are inherent to a

real building. While supply air temperature and internal air temperature are parameters that

the building operator can modify/adjust, heat gains/losses that come from solar, external

temperature and internal gains, are not possible to modify, therefore those need to be

determined under different scenarios. In Kubik, internal gains from people could be neglected,

as this is test facility where no people are found during the tests. However, it is anticipated

that a few lights and some equipment would be in the rooms where the test are to be

performed.

These behaviors are characterized by equation 11 in D2.2.

In line with the same principles, Kubik HVAC system is able to adapt in order to perform the

DSS operational module tests. The HVAC system in Kubik currently supplies a constant

amount of air at a constant temperature. The final room temperature is generally achieved by

the room fan coil units which add heat or cool to the air by recirculation in order to meet the

room set point temperature.

WP3

Kubik
tests for calibration of

the operational module

D5.1

ICT

integration

WP5 & WP6WP2

D
2
.2

 M
a
th

e
m

a
tic

a
l
fo

rm
u
la

tio
n

…

WP1

D
1
.1

 R
e
q
u
ire

m
e
n
t

a
s
e
s
s
m

e
n
t

…

WP4

D
4
.1

 R
e
q
u
ire

m
e
n
t

A
n

a
ly

s
is

(C
h
a
p
te

r
o
n

E
n
R

iM
a

te
s
ts

 in
 K

u
b
ik

la
b
o
ra

to
ry

b
u
ild

in
g)

…

F
a

s
a
d

P
in

k
a
fe

ld

Kubik
tests for

optimisation

Pinkafeld

DSS tests

Fasad

DSS tests

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

35 / 43

The tests that are required to calibrate the HVAC system’s behavior modeled by the equations

defined in D2.2 equation 19 are limited to the AHU operation and therefore, the current Kubik

operation must be modified in order to calibrate the equations.

Similarly, the heating demand can be calculated in Kubik to test the validity of equation 20 in

D2.2.

8.1.3 Tests procedure definition

8.1.3.1 Tests performed at the Kubik facility

With regards to the cell or groups of cells that are available to perform the tests, two floors

have been identified as potential areas to carry out the tests. Table 3-27 of D1.1 shows the

current Kubik floor layouts.

Preferably the tests shall be carried in room K on the first floor or another one with similar

conditions. This area comprises a sufficient volume of air and has a considerable external

glazed area, facing South and West.

The air supplied to this space come from the main AHU and passes through a final

distribution element named MCU (Measurement Control Units). A MCU consists of a

variable air volume fan, an electrical heater, a flow measurement device and a temperature

sensor. All of the parameters of the MCU are controllable

8.1.3.2 Parameters in Kubik and data from the information model

A set of tests will be carried out, by continuously monitoring certain parameters. In particular,

for each test the data that will be collected in a given time interval (usually 15 minutes or one

hour) are the following:

Table 8-1 Summary of tested parameters.

Parameters Source Nomenclature

External ambient

temperature

Meteo forecasts

(Euskalmet)

 χ

Solar irradiance Meteo forecast

(Euskalmet)

 σ

Internal ambient

temperature in the space

BMS Room temperature

sensor
Λ

Air flow rate supplied into

space

BMS MCU air flow rate Ω

vent

Constant internal gains in

the space: IT equipment

and lighting

BMS Estimated λ

Supply Air Temperature

(SAT) into the space

BMS MCU temperature

sensor
γ

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

36 / 43

Additionally the following parameters although not critical for the tests, might be useful for

the purpose of identifying sources of errors. Therefore it is worth logging the following

parameters:

 AHU supply temperature

 External ambient relative humidity

 Internal ambient relative humidity in the space

 Heating and cooling consumption in AHU coils

 AHU set point temperature

 AHU return temperature

 AHU external temperature sensor

 Volume of incoming fresh air

 Volume of extracted air

 AHU Supply fan velocity

After the data gathering exercise the data will need to be refined to ensure its suitability.

8.1.3.3 Defining the tests

The following is a description of the works that intent to assist in the development of the DSS

operational module.

Kubik is a modular and flexible laboratory where tests can be carried out simultaneously.

However, due to the nature of the tests (where multiple aspects are being considered) it must

be ensured that no other experiment will interact with the DSS operational tests. Therefore,

the following are the conditions under which the tests are to be carried out.

 AHU unit must be operated as required by EnRiMa team.

 All space fan coil units must be switched off.

 Supply air into space only from AHU, all windows and doors must be closed, in order

to minimise uncontrolled air flows.

 Tests will need to be carried out in at least two HVAC modes: heating and cooling

periods. It is expected that in November Kubik will be available to carry out the

heating mode tests and possibly the cooling mode tests will be performed in May.

The tests that are envisaged at this stage are described below. The convenience of generating

more scenarios will be continuously evaluated.

In addition, for each of the tests performed a Sankey diagram will be generated and provided

via a Web service along with other graphs that will provide relevant information.

• Scenario 1: Evolution of internal temperature without HVAC system. Aim: Calibration

of building fabric heat/losses of equation 11 in D2.2.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

37 / 43

Table 8-2 Characteristics of Tests 1.

 Test 1.a Test 1.b

Mode Heating Cooling

HVAC on/off Off Off

Duration Two consecutive days: Saturday and Sunday

Frequency Four weekends

• Scenario 2: Evolution of internal temperature with HVAC system on and fixed supply

air temperature into the space. Aim: Calibration of the HVAC system parameters in

equation 11 in D2.2 and behaviour of the HVAC system according to equation 19 in

D2.2.

Table 8-3 Characteristics of Tests 2.

 Test 2.a Test 2.b

Mode Heating Cooling

HVAC on/off On On

Room set point Constant at 21ºC/23ºC/25ºC

Supply Air

temperature

Fixed and determined by AHU controls according

with equation 19 in D2.2.

Duration One week each temperature, 3 weeks in total

Frequency One in each mode

• Scenario 3: Evolution of internal temperature with HVAC system on and variable

supply air temperature into the space. Aim: Optimisation of HVAC system operation.

Note that the extent of the optimisation tests is subject to the progress of WP 2 and 4 at

the time of the tests.

It is anticipated that Test 3.a (November 2012) is likely to be run in an offline mode at

best. The optimization tool should be developed within WP3 and WP4 for then.

However, it is potentially possible that the optimisation tool will be ready to test online

(following the implementation of the specifications defined in D5.1) in May 2013 (Test

3.b).

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

38 / 43

 Table 8-4 Characteristics of Tests 3.

 Test 3.a Test 3.b

Mode Heating Cooling

HVAC on/off On On

Room set point Variable depending on external conditions

Supply Air temperature Determined by AHU controls

Duration of tests One week

Frequency of tests One in each period

8.2 Tests of the ICT requirement analysis

The previous chapter has defined:

• what is the purpose of the tests to be developed in Kubik,

• the suitability of the building for performing this kind of tests,

• and the need within the EnRiMa project for using this building as a test facility.

This chapter will try to define the borders and interactions between the EnRiMa’s DSS

(Decision Support System) architecture specification, defined in D5.1, and the existing

Energy Management System in Kubik, described in D1.1. Figures 2-8 and Figure 3-1 of D5.1

are the reference ones in what concerns the EnRiMa’s DSS architecture specification.

The architecture defined here will be used for the final tests in which the EnRiMa’s DSS

operational module’s full capabilities will be tested. That is the optimization functions and

solutions applied to the HVAC system operation. However, it is not necessary to be used for

the off-line operational module’s calibration tests.

The Figure 8-2 links the existing architectures for the different services provision: the Kubik

Energy Management System (BMS), the weather forecast provided by Tecnalia Meteo within

the Energy and Environment Division, and the EnRiMa’s DSS.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

39 / 43

Figure 8-2 Integration of different ICT services involving Kubik.

In the following points the different elements of this integration will be described:

• EnRiMa’s DSS: Decision Support System being developed in the frame of the

EnRiMa project. It is useful for different stakeholders who take decisions at strategic

and operational level in what refers to the use of energy and investments in the

building.

• EnRiMa’s DSS data wrapper to external data sources: The data wrapper module is

responsible for communicating with external data sources, and converting relevant data

into a suitable format for storage by the DSS Kernel. The data wrapper module can be

triggered by an FTP file upload from an external source (push), or being set to fetch

information from external sources on a regular interval (pull).

• Kubik BMS: The different energy subsystems in Kubik are controlled by a Building

Energy Management System, described in D1.1. The different control orders to these

subsystems can be automatized through XML files by means of the Updater Kubik

tests.

• Kubik Tests Data Base: In this database the different energy subsystems regulation,

control parameters and measurement values obtained in the tests are stored.

• Updater Kubik Tests through XML files: This module will be developed by Tecnalia

from specifications defined within WP5. This module facilitates:

o The reading of certain measured values from the existing BMS in Kubik. For

example one of these values could be the actual cell’s zone temperature value.

o The transfer of the constructive data or test parameters affecting the

operational module.

o The transfer of the measured values constructive data and/or test parametres to

the DSS’s data wrapper through XML files.

• FTP Server dedicated for meteo forecasts: Tecnalia’s Meteo service provides a file

containing temperature, relative humidity and sun irradiance forecasted values for the

following 24 hours in one hour time intervals via an FTP server.

• Updater Meteo forecasts through XML files: To be developed by Tecnalia from

specifications defined within WP5. This module facilitates the transfer of the weather

forecasted data to the DSS’s data wraper through XML files.

…

KUBIK

Tests DB
Updater

Kubik tests

EnRiMa’s DSS

Data

wrapper

Updater

Meteo forecasts

FTP Server

Temperature, relative

humidity, irradiance

forecasts

XML data

transfers

Kubik BMS

…

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

40 / 43

Concerning the input and output data to the EnRiMa’s DSS and taking into account the

information model defined within EnRiMa, figure 2-8 in deliverable D5.1, at least the

following set of information would be considered within the tests in EnRiMa:

• Building,

• InternalBuildingP t,

• BuildingTarget,

• EnvironmentP t,

• HVACsystemP,

• EMarketPrice t,k,n

• Pollutionrate k,l,n

• TechControl.

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

41 / 43

9 Conclusion

The EnRiMa DSS has been developed to support decision-making aimed at improving

energy-efficiency of buildings. It will be tested on selected buildings with the aim to be

reusable, i.e., easily adaptable to other buildings or facilities. Therefore, a modular structure

of the DSS is a key condition to achieve both goals. Any DSS has to meet specific needs of

the users for which it is provided. In order to meet these needs efficiently, it is rational to

design the DSS architecture in such a way that possibly many components can be reused

without substantial modifications; and the needed modifications should be easy to implement.

Moreover, since the building ICT infrastructures use diverse hardware and software

platforms, interoperability of the DSS components is necessary for efficiency of reusability.

The EnRiMa DSS architecture was designed to meet the above summarized needs; it also

supports efficient software development and maintenance through the following key features:

modular structure, clearly defined responsibilities of each of the top-level components (UI,

DSSE, applications to be integrated with the ICT of each building), as well as WSs used for

robust and effective communication between heterogeneous DSS components. The DSSE

components can be very easily reused; its only one building-specific DSSE element, namely

the SMS, has been designed to be easily adaptable for other buildings. The UI needs to be

modified to meet specific requirements of each building, but it can be designed and

implemented in such a way that the modifications will be relatively easy. Finally, the

applications that need to be integrated with, or interface the building ICT infrastructure will

have to be modified to fit the ICT of each building.

In addition to fulfilling the EC request for D4.1 revision, this deliverable contributes to the

on-going and forth-coming EnRiMa activities. Most of the D4.1a content has been known to

EnRiMa partners from many discussions and the corresponding background notes, results of

tests performed at Kubik, as well as from experiments with the Web-services testing-package.

However, the request for the D4.1 revision triggered organization of this dispersed

information into a consistent document. This will guide the partners in the effective use of

possibilities offered by the available methodology and technology (especially the Symbolic

Model Specification and the Web-services), as well as by the capabilities of the Kubik

facility. The scope of Web-services and data services, although well defined in the DoW, is

now specified in more detail, and illustrated by presentation of services that they provide to

workflows defined in the use cases developed in the Requirement Analysis (IIASA et al.,

October 2011).

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

42 / 43

Acknowledgements

This report has been prepared at a very short notice, and it is therefore composed of sections

prepared by partners who lead the corresponding activities, and also take responsibility for the

content of corresponding section. We point out extremely short time available for comments

by other EnRiMa partners. However, although the time constraints enforced segmentation of

work on this deliverable, the underlying work results from collaborative activities started in

October 2010.

Contributions to this deliverable are as follows. Eugenio Perea (Tecnalia) has developed the

section on the Kubik facility. Sections on the Solver Manager and Scenario Generation Tool

have been prepared by Emilio Lopez Cano and Javier Martinez Moguerza (URJC), and by

Michal Kaut and Adrian Werner (Sintef), respectively. All other parts of this report have been

written by Marek Makowski, Hongtao Ren and Janusz Granat (IIASA), who also compiled

the whole document.

Finally, the authors note that parts of contributions the respective partners provided for

deliverable D5.1 (SU et al, 2012) have been adapted for this report, and gratefully

acknowledge the editorial-type comments provided by Markus Groissboeck (CET).

D4.1a Requirement analysis of the DSS Engine EC FP7 Project 260041

43 / 43

References

Geoffrion A., An Introduction to Structured Modeling (1987), Management Science, vol 33,

no 5, pp 547-588.

HCE, IIASA, SU, UCL, URJC, SINTEF, CET, and Tecnalia (2011). Requirement

Assessment. EnRiMa Deliverable D1.1, European Commission FP7 Project Number 260041.

IIASA, SU, UCL, URJC, SINTEF, CET, HCE, and Tecnalia (2011). Requirement Analysis.

EnRiMa Deliverable D4.1, European Commission FP7 Project Number 260041.

Makowski M., (2005), A Structured Modeling Technology, European Journal of Operational

Research, vol. 166, no 3, pp 615-648.

SU, IIASA, SINTEF, URJC, and CET (2012). Draft Specification for Services and Tools.

EnRiMa Deliverable D5.1, European Commission FP7 Project Number 260041.

SINTEF (2012). Scenario Generation Software Tool – Documentation for the Software Tool,

part of EnRiMa Deliverable D3.2, European Commission FP7 Project Number 260041.

	List of Figures
	List of Tables
	List of Acronyms
	Executive summary
	1 Introduction
	2 Overview of the Decision Support System Engine (DSSE)
	2.1 Role of the Symbolic Model Specification (SMS)
	2.1.1 Overview
	2.1.2 Elements of the SMS
	2.1.2.1 Common attributes
	2.1.2.2 Sets
	2.1.2.3 Parameters
	2.1.2.4 Variables
	2.1.2.5 Relations

	2.1.3 Representations of the SMS
	2.1.4 Summary

	3 The DSS Kernel
	3.1 Overview
	3.2 Web-Services (WS)
	3.2.1 Overview
	3.2.2 Functionality of the WSs
	3.2.3 Summary of WSs specification

	3.3 Data-Warehouse (DW)
	3.4 Data services
	3.4.1 Internal Kernel data services
	3.4.2 Interim data provision from test sites

	3.5 Back-office applications
	3.6 DSS Kernel architecture
	3.7 Data privacy
	3.8 Consuming Web-services in the DSS components
	3.9 Summary

	4 Solver Manager
	4.1 Overview
	4.2 Functionality of the Solver Manager
	4.3 Inputs and outputs
	4.4 Solver Manager Components

	5 Scenario Generation Tool
	6 Interface to and between the DSSE components
	6.1 Triggering execution of stand-alone DSSE components
	6.2 Consuming WSs for downloading data and uploading results

	7 DSSE services supporting workflows defined by use cases
	7.1 Initial data set
	7.2 Data for operational planning
	7.3 Scenario generation
	7.4 Operational planning
	7.5 Summary

	8 Kubik laboratory building
	8.1 DSS operational module tests in Kubik
	8.1.1 Objectives of the tests to be performed in Kubik
	8.1.2 Operational model calibration and validation
	8.1.3 Tests procedure definition
	8.1.3.1 Tests performed at the Kubik facility
	8.1.3.2 Parameters in Kubik and data from the information model
	8.1.3.3 Defining the tests

	8.2 Tests of the ICT requirement analysis

	9 Conclusion
	Acknowledgements
	References

