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Executive summary

The decision support system (DSS) to be developed in the EnRiMa project is built
around two optimization models, one focused on operational models and one on strategic
ones. The quality of the solutions suggested by these models depends heavily on the
quality of their input parameters. The preceding deliverables D1.1 and D4.1 in work
packages 1 and 4, respectively, emphasized that some of these input data are subject to
uncertainty and identified the key uncertainties for the selected test sites.

The role of WP3 is to provide data for the stochastic parameters in the form of sce-
narios, i.e., a discretization of the underlying stochastic distributions and/or processes.
The present report, deliverable D3.1, describes the first steps toward this goal: collection
and analysis of relevant data. The subsequent deliverable D3.2 will be concerned with
the process of actually creating scenarios for the model input parameters.

After a brief introduction, we start by describing the two optimization models in
Section 2. We describe their requirements with respect to stochastic data, explaining
the differences between the operational and strategic models. Since the strategic model
is planned as a two-stage optimization problem, there is no need for a full time-series
analysis for these parameters. What is needed instead will depend on the actual time
scale of the strategic model, which is still being decided upon. We will therefore come
back to these parameters in the forthcoming deliverable D3.2.

Even though the main focus of this report is on time-series analysis of historical
data, we explain that some of the stochastic parameters cannot be addressed properly
using this approach. These parameters are, therefore, treated separately in Section 3.
Without them, and having excluded the strategic parameters in the previous step, the
only parameters we need to do the time-series analysis for are hourly electricity prices.

The last step before the time-series analysis itself is data collection. In Section 4, we,
thus, present all relevant data sources. Section 5 then presents the main results of this
report, namely the time-series analysis of the electricity prices. Since the project’s test
sites are in Austria and Spain, we had to analyze prices in these two countries. We have
tried two different frameworks, one based on mean-reverting stochastic processes and
the other on time-series models. For both of them, and for both countries, we tried to
model either the whole hourly series at once, or to split it into 24 series, one for each
hour of the day. Since this would be too many results to present and the mean-reverting
framework turned out to be inferior to the one based on time series, we present only
results of the latter one in this report. In addition, we include one of the mean-reverting
reports in the appendix, as it might work better for some other data series.

In the presented time-series based framework, we used a combination of seasonal
autoregressive moving-average (seasonal ARMA, or SARMA) and generalized autore-
gressive conditional-heteroskedasticity (GARCH) models for the series of log-returns of
the prices, for both countries. In both cases, modelling the whole series at once was, on
the whole, better than splitting it into 24 per-hour series. We have also observed that,
for both countries, the modelling errors are largest for the early morning hours.

It should be pointed out that the optimization models, for which we analyze the data,
are still under development, so it is possible that some additional data analysis will be
needed. In such a case, we would include results of this analysis in some suitable later
EnRiMa report.
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1. Introduction

The goal of work package 3 (WP3) is specified as operational goal O2 in the description
of work:

We will model energy prices and loads to use as part of the stochastic model
within the DSS Engine. Characteristics such as seasonality, short-term mean
reversion, and weather fluctuations will be considered in generating short-
and long-term price scenarios. By scenarios, we refer to a distribution of
random parameters and not just point estimates. Such forecasts are used for
the stochastic optimisation in Objective O3, where we want to find decisions
that will be robust in all possible futures, not just the most probable one.

In other words, the goal of this package is to provide the stochastic models devel-
oped in WP4 with data for their stochastic parameters, in a format suitable for the
models. Since we use stochastic programming as our optimization tool, the “suitable
format” means a discretization of the underlying stochastic distributions and/or pro-
cesses, usually referred to as scenarios (see, for example, Kall and Wallace, 1994; Birge
and Louveaux, 1997; Dupačová et al., 2000; Høyland and Wallace, 2001). The work
needed to achieve the goal can be divided in the following steps:

1. Collect all the required data

2. Perform time-series analysis of the data, to extract trends, seasonal effects, etc.

• this means identifying and fitting a suitable time-series model

• the result is a set of models, their parameters, and the historical residuals
(differences between the predicted and observed values)

3. Generate scenarios for the residuals

4. Use the time-series models to convert the scenarios of the residuals into scenarios
of the actual values

Deliverable D3.1, described in this report, covers the first two steps of the sequence,
while the rest will be done in deliverable D3.2. In addition, there are some stochastic
parameters that do not fit the above framework, mostly because we do not need to—or
cannot—do the time-series analysis. As an example consider the weather, for which we
can use external forecasts instead of doing the analysis ourselves. These parameters are
treated in more detail in Section 3 of this report.

1.1. Relation to WP4

The goal of WP3 is to produce input data for the optimization models developed in
WP4, in a format suitable for the models developed for the EnRiMa decision-support
systems (DSS)s. This report is based on deliverable D4.1, which includes specifications
for stochastic parameters for the models. It is, however, important to realize that the
specifications can be expected to change as the models get developed and tested; we
might find out that some of the parameters are not necessary, or that we have missed
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some, or that we have to change the time scale of the model, etc. In such a case, we
would have to re-run the time-series analysis presented in this report. Nevertheless, the
foundation of the methodology will have been laid.

This all implies that this report describes only an initial version of the scenario-
generation toolbox, which will have to be further adjusted as the optimization models
get developed and tested. Such changes would then be included in a later report.

The rest of the report is organized as follows: in the next section, we explain the
differences between the operational and strategic optimization models, as they have
different data requirements. Section 3 then describes stochastic parameters that for some
reason need special treatment, while Section 4 describes the data sources used needed
for the deliverable. Finally, Section 5 presents the main results of this deliverable: for
each data series that needs analyzing, we include a report in which we describe the
time-series model used for that series, calibrate (fit) it to the data and then validate the
results using several goodness-of-fit measures. The paper is then concluded in Section 6.

2. Operational vs. strategic model

The goal of WP4 is to develop a model based DSS for operators of energy facilities.
The DSS will be composed of two modules, operational and strategic, each based on
a corresponding optimization model. The operational model will be used for planning
the operation of the installed devices for the next period. It is expected to have a time
horizon of between one day and one week, with hourly resolution. Since the operational
model does not consider any changes to the installed equipment or building structure,
these are all taken as input data. The strategic model, on the other hand, will be used
for deciding investments into new equipment. This model is planned to have a horizon
of several years, possibly up to ten or even twenty years.

2.1. Operational model

The operational model is expected to work with one-hour time steps and a horizon
of up to one week. At the moment, all the test sites have long-term contracts for all
energy sources (electricity, gas, heat), so the corresponding parameters of the operational
model are assumed to be known. This means that the main operational uncertainties
are occupancy and weather, with the latter being treated in a special way described in
Section 3.1.

As for occupancy, none of the sites seems to have actual data that we could analyze,
so the different occupancy patterns will have to be estimated in co-operation with the
site managers, by dividing users into groups and establishing user profiles for each of
them (expert opinion). The occupancy scenarios will then be converted into energy
loads using the LoadCalc tool, which we describe in more detail in Section 3.2. This all
implies that as long as we have fixed energy prices, there are no historical data series to
be analyzed for the operational model, at least not in context of this deliverable1.

1Deliverable D3.1 is about time-series analysis, i.e. analyzing data for which we have a whole series of
historical values. Handling of the other parameters will be described in deliverable D3.2.
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embedded simplified
operational model

Figure 1: The strategic model, with operational models embedded at each node. The
strategic tree, represented by the circular nodes, has period lengths of months,
or even years. The period length of the embedded trees, corresponding to the
operational model, is in hours; each scenario represents a ‘typical’ or ‘critical’
day/week of the corresponding strategic period.

Real-time pricing

Since it is expected that real-time pricing of electricity will become available throughout
Europe in the near future, it is important to test the effect that this would have on
the operation of the sites. We, thus, plan to test our models under the assumption of
real-time pricing, which means that we have to collect and analyze the electricity spot
prices, with at least hourly resolution.

2.2. Strategic model

The goal of the strategic model is to support long-term decision making. The model has
to deal with two seemingly contradictory requirements: by definition, it has to be long
term, with a horizon of at least several years (up to twenty years). On the other hand,
the model has to be able to evaluate how the infrastructure it proposes performs on a
daily basis. For this, the model should have a time resolution close to the operational
model, i.e. on the scale of hours—yet having hourly resolution in a model that spans
ten or twenty years is simply not realistic. Fortunately, it is not needed, either: the
strategic decisions are clearly not made every hour, not even every day or week. In other
words, the hourly resolution is needed only to evaluate the performance of the strategic
decisions. Consequently, the scenario tree for the strategic decisions can have period
lengths of months or years, as long as we can evaluate it with the resolution required by
the operational model.

Our solution is a kind of “hybrid tree”, presented in Figure 1: a tree for the strategic
decisions, where every strategic-decision node (circular nodes in the figure) includes the
operational model, or more likely a simplified version of it, for evaluation. Ideally, the
operational model should be run for every day or week for the strategic period, with
several scenarios for each day (week)—which is obviously not possible. Instead, the
idea is to select a small set of ‘representative’ and ‘critical’ days (weeks), with assigned
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probabilities. An example of the former would be a “typical” summer day, while an
example of the latter would be an “extremely cold” winter day. The number of these
operational scenarios will depend on the solution time of the strategic model and will
therefore be determined first when the model gets implemented (in deliverable D4.3 of
WP4). In Figure 1, there are three such operational scenarios, denoted by the small
rectangular nodes, for each strategic node.

Since the strategic model is expected to have a horizon of several decades, we will
have to model the way the parameters of these typical and critical days (weeks) evolve
during the time scale of the model. In addition, there are stochastic parameters specific
to the strategic model itself, i.e. parameters influencing the infrastructure decisions.
These include prices and performance characteristics of the available technologies as
well as changes in the tariffs’ structure (such as availability of time-of-use and real-time
tariffs). Most of these parameters are close to impossible to estimate using a time-series
analysis of historical data, since they depend on many external factors: new inventions
in the case of future technology parameters or political decisions for the electricity tariffs.
Fortunately, there are third-party predictions for many of these parameters, which we
intend to use wherever possible. This topic will be further discussed in the forthcoming
D3.2 report.

Furthermore, the strategic model is planned to be a two-stage stochastic program,
which means that we have to estimate the stochastic parameters only one period ahead.
This implies that the parameters do not need to be modelled as stochastic processes, but
as distributions—which means that we do not need to do time-series analysis for them.
This places these parameters outside the scope of this report; we will come back to them
in the forthcoming D3.2 report.

This all implies that the only data series for which we have to do time-series analysis
are the hourly electricity prices, needed by the operational model. Results of these
analyses are presented in Section 5.

3. Stochastic parameters requiring special treatment

Not all stochastic parameters of the optimization models can be treated in the way
described above: for some parameters, we do not have data for the values directly, so
they have to be inferred from other observable data. Other parameters might have data
available, but there might be better ways of estimating their future development than
doing data analysis. In this section, we list these parameters and describe how to treat
them.

3.1. Weather

By weather, we mean the following set of parameters of the optimization models: outside
temperature, humidity, wind speed (and possibly also direction) and solar irradiation
(the amount of sunlight, needed to compute the output of solar technologies). While
there are historical data available for most of the parameters, we do not need to use
data analysis for their prediction for the operational models; instead, we will use weather
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forecasts, which should be better than any time-series model we can hope to develop.
After all, meteorologists use some of the most powerful computers for a reason.

Using weather forecasts is straightforward if we want to trust them completely and
use them as a deterministic predictor of the weather. If we, on the other hand, want
to have weather as a stochastic parameter in the optimization models, then there is no
obviously correct way of doing this. We have identified the following options:

1. Get a weather forecast with some information about uncertainty of at least some of
the parameters. Such forecasts are available, for example, from the European Cen-
tre for Medium-Range Weather Forecasts2, but they are quite expensive, so there
is little chance that the sites would be willing to subscribe for such service. The
only stochastic information in freely available weather forecasts is the precipitation
probability, which is not enough for our purpose.

2. Get some information about the error in weather forecasts, for example, by com-
paring historical forecasts with actually observed weather. The critical issue is
the availability of the historical forecasts: none of the freely available forecasts
seems to provide this information, so we would probably have to start collecting
the forecasts now and do the analysis at some time (perhaps one year) in the fu-
ture. Another issue with this approach is that the forecasting error is not constant:
in some situations, a weather forecast may be relatively certain even several days
ahead, while another time even the next day’s forecast might be uncertain.

3. Finally, we could take advantage of the fact that there are several freely available
weather forecasts and simply use each of them as one possible scenario of the
future weather. We would just have to check that they use different sources, to
avoid using the same forecasts several times.3 The advantage of this approach is its
simplicity, the downside is that it is likely to underestimate the uncertainty of the
weather, as all the forecasts present what they believe is the most likely outcome.

After some deliberation, we have decided to use the last option, since it is the one
most readily available. Then, once the system is in place, we should start collecting the
weather forecasts and weather data. This will allow us to estimate the distributions of
the errors these forecasts make throughout the year. With this data in place, we should
be able to use the second way of getting stochastic forecasts, or possibly even to combine
the last two approaches.

Forecasting output of solar technologies

In addition to forecasting weather parameters, we also need to be able to convert the
weather forecasts into forecasts of the output of solar technologies such as photovoltaic
(PV) and solar heating. This requires quite complex calculations, since the output
depends on the latitude of the location, direction and inclination of the panels, cloud
cover, temperature, date and time, to name at least the main parameters.

2See http://www.ecmwf.int/, with an example forecast at http://www.ecmwf.int/products/d/

sampler/epsgrams/europe/page.html
3Though we cannot expect complete independence of the forecasts, since many European weather offices

base their forecasts on the same global forecast, but process it differently.
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Figure 2: Using LoadCalc to forecast the energy load (electricity and heat).

Fortunately, there is the Photovoltaic Geographic Information System (PVGIS4),
which includes an European solar radiation database with grid resolution of 1 km×1 km.
PVGIS includes also an online tool5 to calculate the output of PV technologies at any
location, taking into account local geographical conditions (mountains etc). The output
can be either cumulative per year or month, or in the form of typical daily profiles.
There is also a description of how to calculate the outputs6, based on Šúri et al. (2007).
These formulae can be used to calculate PV outputs for the operational model, taking
into account current forecast for temperature and cloud cover.

3.2. Energy loads

Energy loads of the buildings are perhaps the most important stochastic parameters of
the optimization models. They are also an example of parameters for which there are
no historical data for estimation, as the energy consumption is measured annually, while
the operational model has hourly resolution.

Even if we had the data available, it is not sure how useful they would be. The reason
is that the energy loads are themselves a function of several other parameters, the most
important ones being building occupancy and outside temperature. Using historical
data for the loads would, by definition, be based on historical weather and occupancy,
so it would not allow us to take into account the current weather forecast or expected
occupancy.

The solution is to forecast, and generate scenarios for, the underlying parameters and
then calculate the load from them. This calculation then forms an additional step that
can be seen either as a post-process of the scenario generation, or as a pre-process of the
optimization.

The calculation of energy loads from the parameters is done using LoadCalc, a building-
simulation model developed at CET, Austria. LoadCalc creates a simplified model of a
building, based on German norms DIN 18599 (draft) and VDI 6020 (Balada et al., 2007;
Gebäudeausrüstung, 2001). This implies the following simplifications: room air temper-
ature is constant within the entire operative zone, calculations are made for a stationary
situation, the building is regarded as a cuboid or cube, and heat flow is normal to the
given surfaces. This makes the energy flows in the building tractable, while keeping the
model sufficiently accurate to meet the requirements of the EnRiMa project. For more
information about LoadCalc, see Groissböck et al. (2011).

4See http://re.jrc.ec.europa.eu/pvgis/.
5See http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php.
6See http://re.jrc.ec.europa.eu/pvgis/solres/solmod3.htm.
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The goal of LoadCalc is to obtain hourly load data for cooling, heating, and electricity,
used primarily for the strategic optimization model. To do this, it needs the following
input data: weather (temperature, humidity and wind), heat transfer and heat transfer
coefficient, external loads (solar radiation), internal loads (people, working machines),
natural infiltration, air ventilation systems (without humidity constraints), and business
and non-business hours. Since LoadCalc is a deterministic tool, it will be used for every
scenario in the way illustrated in Figure 2: the weather and occupancy forecasts for a
given scenario are used to generate forecasts for electricity and heat demands for the
scenario.

4. Available data sources

In this section, we describe data sources for estimating the stochastic parameters. We
include also sources for the data on which we will not run a time-series analysis, such as
weather forecasts. The data are divided with respect to the model type to which they
belong.

4.1. Data for the operational models

As we have described in Section 2.1, the main operational uncertainties are occupancy,
weather, and, in case of real-time pricing, electricity prices. Unfortunately, none of the
sites has historical occupancy data, so these values would have to be estimated in a
co-operation with building operators—which is outside of the scope of this deliverable.

Weather

There are several online weather forecast providers, whose forecasts differ not only in
actual values but also in the parameters they forecast and the granularity and length of
the forecasts. We have selected services that provide weather forecasts of at most 3-hour
granularity for all our test sites.

http://www.weather24.com/ is a German site that provides one-week ahead forecasts
with three-hour resolution, including precipitation probability and amount; plus
16-day forecasts without precipitation data.

http://www.yr.no/ is a Norwegian site providing 48-hour-ahead forecasts with three-
hour resolution, including cloud coverage (split between fog, low, middle, and
high-clouds); plus a nine-day forecast with precipitation data (only amount).

http://www.weather.com/weather/ is an US-based weather site with a more limited
selection of European locations (it does not, for example, have forecasts directly for
Pinkafeld); otherwise, it provides three-day forecasts with one-hour resolution and
ten-day forecasts with half-a-day resolution, both including precipitation probabil-
ity.

http://www.aemet.es/ is the site of the Spanish meteorological agency (Agencia Es-
tatal de Meteoroloǵıa, AEMET), limited to forecasts for Spain. It provides fore-
casts one week ahead, with four values per day for the first two days, two per day
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for the next two, and one for the last three days; all these include precipitation
probability.

Electricity prices

For Austria, we can get historical spot electricity prices from Energy Exchange Austria
(EXAA7). They provide data from March 22, 2002, with one hour granularity, plus daily
averages, peak and off-peak prices, and prices for eleven other intervals. (Those intervals
are partly overlapping: for example, the period 01–08 hours can be divided either into
‘dream’ (01–06) plus ‘wakeup’ (07–08), or into ‘moon’ (01–04) and ‘sun’ (05–08).)

For Spain, we have historical spot electricity prices with hourly resolution, starting
from January 1, 2006. These data were provided by HCE (one of the EnRiMa partners).

4.2. Data for the strategic models

As we have already mentioned in Section 2, we have decided that most—if not all—
parameters for the strategic models will not be modelled using time-series analysis of the
historical data. Nevertheless, we will at some point need data also for these parameters,
so we present data sources for all identified strategic parameters below.

Weather data

Weather data will be needed also for the strategic models, namely for the “embed-
ded” operational scenarios. These scenarios should include both representative days,
for estimating the average per-year running costs, and extreme days, to ensure that the
installed infrastructure can guarantee user comfort even in extreme weather. Assuming
stable weather patterns—a reasonable assumption, given the time scale of the model—,
we can use the same set of weather scenarios in all the strategic nodes. This will simplify
their generation considerably.

Energy prices

Just like the weather, the energy prices will appear in the embedded operational scenar-
ios. However, unlike the weather, the energy prices in the later stages are different in
each strategic node, so we cannot simply use the same scenarios throughout the tree.

What we will do instead is the following: we generate operational scenarios for the
root node and then record their values relative to the average price of the last year or
so. Then, we generate scenarios for the strategic level, modelling the development of the
average annual energy prices. In other words, each of the strategic nodes of the tree will
have a different value for the long-term average of the energy prices. Then we take, for
each strategic node, the operational scenarios expressed in relative terms and combine
them with the node’s prices to produce the scenario values for the node.

How we generate values for the long-term scenarios depends on the time horizon of
the model. Should the horizon be ten or even twenty years, we would use expert-
created scenarios instead of historical data, as the data cannot be expected to have
much predictive power so far ahead. If the time horizon turns out to be only a couple

7See http://en.exaa.at/market/historical/austria_germany/.
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Figure 3: Electricity and gas prices at FASAD. Line “ ” depicts the power prices in
e/month and line “ ’ energy prices in e/MWh.

of years, which is the current proposal, then we can estimate the distribution of future
prices by analyzing the historical distribution of changes over the given time horizon—of
course providing we have long-enough time series.

For electricity and gas, we can get half-yearly prices for all European countries from
the European Commission’s Eurostat web page8. The length of the series varies between
the countries; most of them start at the end of the 1980s, giving us enough data for our
purpose. In addition, if the time horizon turns out to be five years or less, then we can
use the futures prices as the means of the scenario values to guarantee the generated
data agree with the market’s expectations. The current futures prices can be obtained
from the European Energy Exchange (EEX9), for both electricity and gas.

The problem with the above approach is that it generates scenarios for the market
price of the energy sources. On the other hand, all our test sites have long-term energy
contracts, so the price they pay can be significantly different from the market price. This
means that the prices will have to be adjusted and for this we have to have data for the
tariff prices faced by the sites.

For this purpose, we have obtained the electricity and gas prices for FASAD, both for
power (fixed price per month) and for the consumed energy. The electricity data include
twelve irregularly spaced prices, starting from December 2007, while the gas data include
twelve irregularly spaced prices, starting from January 2007; see Figure 3. We have also
the current version of a conversion table used to calculate the gas price from a six-month
average of the Brent oil price and three-month average of the Euro/Dollar exchange rate.

We have also received monthly data for several commodity indices, including the
IPE natural gas index (gas futures delivered at the National Balancing Point (NBP) in
London), which is the base for gas prices faced by HCE. The file also includes monthly
EUR/USD and EUR/GBP exchange rates.

Feed-in tariffs

In addition to the prices the sites pay for the energy they buy, we have to have data
for the prices they get for the electricity they sell to the grid—the feed-in tariffs. The

8See http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database.
9See http://www.eex.com/en/Market Data/Trading Data.
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structure of these tariffs varies between the countries: some countries do not use any
special tariffs at all, while other countries have a wide range of feed-in tariffs, depending
on the way the electricity was produced.

We have data feed-in tariffs in Spain, with quarterly resolution since July 2007. This
data are published by the Ministry of Industry of Spain and are available from https:

//www.boe.es. In addition to the tariff prices, the data set includes also values for the
consumer price index (CPI) and natural gas index, which are used for updating the tariff
prices.

5. Results of the analyses

As we have explained at the end of Section 2, the only series on which we actually need
to run a time-series analysis are the electricity prices. It is, of course, possible that some
developments in the optimization models will require further data to be analyzed; in
such a case, we will include these analyses in a later report.

We have used two different frameworks to analyze the electricity prices, one based
on mean-reverting stochastic processes and the other on time-series models. For both
of them, we tried two ways of modelling the hourly price series: (i) one entire hourly
series with all available data and (ii) 24 separate series, one for each hour of the day.
Since we have to do all this for two countries (Austria and Spain), we have done in total
eight different analyses. On the other hand, we observe that the mean-reverting models
perform worse than the time-series ones for all the studied cases, so we report only the
latter in this section. In addition, we include one analysis based on the mean-reverting
processes in the Appendix,in order to document the approach. After all, it might turn
out to be better for some future data sets.

In this section, we therefore present, fit and test time-series models for the hourly
electricity prices in Austria and Spain, using both the mentioned approaches. In both
cases, we split the data set into an in-sample period for estimating the unknown pa-
rameters of the models and an out-of-sample one for evaluating the forecasting perfor-
mance of the models. All the series exhibit seasonality, as their autocorrelation function
shows a peak every twenty-four hours. The linear dependence in the series and the
seasonality is captured by a seasonal autoregressive moving-average (seasonal ARMA,
or SARMA) model, while the volatility is modelled using a generalized autoregressive
conditional-heteroskedasticity (GARCH) model. For more background reading on time-
series analysis, see, for example, Hamilton (1994); Tsay (2002); Bueno (2008); Aiube
(2007).

5.1. Methodology

Basic concepts

A time-series analysis begins by fitting an ARMA(p, q) model to the series and examining
the behavior of the error term. We start with the following ARMA(p, q) model:

Φp (L) rt = Θq(L)εt , (1)
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where L is the lag operator, Φ and Θ are polynomials of degrees p and q, respectively,
rt is the studied time series, and εt is a N(0,σ2ε ) error term. In our case, we will be
analysing log-return series for electricity prices pt,

rt = log

(
pt
pt−1

)
. (2)

The basis of time-series analysis is stationarity. In the finance literature, it is common
to assume that returns are weakly stationary, and this characteristic can be checked
through statistical tests, such as unit root tests.

A linear time-series model can be characterized by its autocorrelation function (ACF),
and modelling makes use of the sample ACF to capture the linear dynamics of the data.
From the literature on financial time series, in general, an AR(p) is enough to capture
the linear dependence. The order (p, q) of an ARMA model in financial applications
may depend on the frequency of the return series and can be obtained analyzing the
ACF and the Partial ACF. In the case of electricity log-return series considered here,
it is necessary to use a Seasonal ARMA (SARMA) model to capture the seasonality as
well.

Also, it is well known that there is a strong non-linear dependence in the second
moment, which can be seen by the fat tails in the histogram of the log-returns. To verify
all these properties in practice, some analysis and statistical tests are conducted through
QQ-plots, normality tests and dependence tests on the residuals and on the square of
the residuals.

After modelling the possibly existing linear dependence, it is necessary to study the
volatility. The variance will be modelled using an ARCH-GARCH model to capture
these stylized facts. The conditional variance will be

E
[
υt

2
∣∣ It−1

]
= σ2t ,

where It−1 is the information available until time t− 1. The residuals in Eq. (1) can be
written as

εt = σtηt , (3)

where ηt ∼ N(0, 1) and independent on each other. It follows that εt|It−1 ∼ N(0, σ2t ).
Using an in-sample period, the unknown parameters for the linear ARMA and GARCH

models are estimated. The forecast is obtained and analyzed for the out-of-sample
period. For a generic ARMA(p, q) and GARCH(m, s) model, we have

rt =

p∑
i=1

φirt−i + εt −
q∑
j=1

θjεt−j (4)

σ2t = αo +

m∑
i=1

αiε
2
t−i +

s∑
j=1

βjσ
2
t−j (5)

Under this framework, the best model will be chosen using the Akaike information
criterion (AIC) and Bayesian information criterion (BIC). Also, the comparison among
different models relating to estimation in the in-sample period and forecasting for the
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out-of-sample period can guide us to the best fitting model. In addition, the model will
be prepared to capture seasonality and intra-day effects.

To verify the forecast performance, we use the following aggregate error measures:

1. Mean Absolute Error (MAE), given by:

MAE=

∑N
t=1 |Et|
N

, (6)

where Et is the difference between the actual and the forecasted value.

2. Mean Absolute Percentage Error (MAPE), given by:

MAPE=

∑N
t=1

∣∣∣Et
pt

∣∣∣
N

, (7)

where pt is the actual value.

3. Root Mean Squared Error (RMSE), given by:

RMSE=

√∑N
t=1 E

2
t

N
. (8)

Two different approaches

We test two different approaches for modelling the hourly returns. First, we work with
the entire hourly series. The hourly prices observations are taken in sequence, as a whole
time series, in the way described above.

In the second approach, we work with 24 time series, one for each hour of the day.
Following the methodology of modelling the linear dependence by a SARMA model and
the conditional variance by a GARCH model, we will obtain 24 different time series
models for each hour series, with different orders and different estimated values for the
parameters.

For each hour h, we have

rht =

p∑
i=1

φhirht−i + εht −
q∑
j=1

θhjεht−j (9)

σh
2
t = αho +

m∑
i=1

αhiεh
2
t−i +

s∑
j=1

βhjσh
2
t−j . (10)

Each of these series will then be analyzed in the same way as the complete series in the
first approach.

5.2. Austrian data

Descriptive analysis

A total of 43 080 hourly observations over five years of electricity spot prices in e/MWh
from Austria/Germany markets, provided by Energy Exchange Austria (EXAA), are
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Figure 4: Electricity spot price in Austria, in e/MWh – whole series. Note that the figure
has been capped, the highest value is e 519.93 from 2007-11-15 18:00.
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Figure 5: Electricity spot price in Austria, in e/MWh – October 2011
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Table 1: Descriptive statistics for the entire hourly series, Austrian data

Statistic Price ( e
MWh) Log-return

Mean 48.20 2.06e-05
Std. dev. 23.92 0.36
Variance 572.32 0.13
Skewness 2.40 0.48
Kurtosis 25.67 316.42
# of obs. 43080 43079

Table 2: Descriptive statistics for per-hour series, Austrian data (1795 observations)

Electricity price in e/MWh, per hour

Statistic 1 2 3 4 5 6 7 8 9 10 11 12

Mean 37.23 32.72 29.32 26.90 27.24 31.68 38.51 50.55 55.44 58.81 61.17 64.79
Std. dev. 12.37 12.34 12.41 12.31 12.47 13.40 17.50 24.16 23.75 23.74 24.29 27.30
Variance 153.0 152.3 154.1 151.6 155.6 179.6 306.4 583.8 564.2 563.5 590.2 745.1
Skewness 0.17 0.02 -0.03 0.08 0.07 -0.08 -0.01 0.57 0.88 1.31 1.60 1.97
Kurtosis 2.86 2.67 2.56 2.43 2.48 2.72 2.78 3.71 4.74 5.95 6.80 8.76

Statistic 13 14 15 16 17 18 19 20 21 22 23 24

Mean 60.41 56.93 53.72 51.17 51.39 57.86 61.72 59.02 54.09 48.56 47.18 40.43
Std. Dev. 22.45 21.86 21.38 20.47 21.63 34.35 33.82 23.64 18.25 14.72 13.52 12.10
Variance 503.9 478.0 456.9 418.9 468.0 1179.7 1143.7 558.9 333.1 216.5 182.9 146.4
Skewness 1.55 1.39 1.32 1.24 1.54 5.51 5.03 2.05 1.02 0.75 0.45 0.29
Kurtosis 6.60 5.92 5.66 5.32 7.18 55.83 49.25 13.57 4.75 3.87 3.20 2.99

available. The sample period begins on January 1st, 2007 and ends on November 30th,
2011. There are five missing values, all of them for hour 3. These were replaced by
0.001, in order to obtain the return series. The resulting series is presented in Figure 4.
In addition, Figure 5 presents only prices for one month, so we can see the daily and
weekly cycles. The data set is then split into two periods:

• an in-sample period, from January 1st, 2007 to December 31st, 2010 (35 064 obser-
vations), which is used to estimate the unknown parameters, and

• an out-of-sample period, from January 1st, 2011 to November 30th, 2011 (8016
observations), which is used to assess the forecast of the model proposed.

The descriptive statistics of the entire hourly series of prices, as well as the log-returns,
are presented in Table 1. Statistics for each of the 24 hours of the day separately are
presented in Tables 2 for the prices and Table 3 for the log-returns.

First approach: one entire hourly series in sequence

In this approach, we work with one entire hourly series, with the observations in sequence.
The autocorrelogram for the series is presented in Figure 6. There, column “AC” includes
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Table 3: Descriptive statistics for log-returns of 24 per-hour series of Austrian electricity
prices (1794 observations)

Log-returns of electricity price, per hour

Statistic 1 2 3 4 5 6 7 8 9 10 11 12

Mean 4e-04 7e-04 1e-03 2e-03 5e-03 5e-03 5e-03 5e-03 1e-03 1e-03 1e-03 4e-03
Std. Dev. 0.51 0.75 1.18 0.98 1.07 1.07 1.10 1.06 0.66 0.35 0.28 0.31
Variance 0.3 0.6 1.4 1.0 1.2 1.2 1.2 1.1 0.4 0.1 0.1 0.1
Skewness -0.08 -0.29 -0.03 0.14 0.11 0.19 0.63 0.74 -0.46 0.90 1.05 6.19
Kurtosis 168.4 77.68 49.41 40.03 34.36 35.50 28.79 38.18 89.10 16.99 5.85 124.7

Statistic 13 14 15 16 17 18 19 20 21 22 23 24

Mean 5e-04 6e-04 7e-04 7e-04 7e-04 7e-04 7e-04 5e-04 6e-04 6e-04 4e-04 5.e-04
Std. Dev. 0.24 0.27 0.31 0.31 0.30 0.26 0.22 0.18 0.15 0.14 0.21 0.18
Variance 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Skewness 0.96 1.04 0.90 1.08 1.11 1.13 1.18 0.57 0.41 0.46 -0.06 -1.39
Kurtosis 6.22 5.67 15.97 5.25 5.93 9.79 11.97 8.33 5.62 48.01 254.6 190.2

autocorrelations and “PAC” the partial autocorrelations, for each lag. The “Q-Stat”
and “Prob” columns then show values of the Ljung-Box statistic and their p-values,
respectively. The figure was created using the EViews statistical package.

Following the methodology of modelling the linear dependence by a Seasonal ARMA
model and the conditional variance by a GARCH model, the best fitted model for the se-
ries was a SARMA(2, 2)× (2, 2)24 + GARCH(1, 1). The estimation results are presented
in Table 4. The estimated SARMA and GARCH(1, 1) equations are(

1− 0.68L− 0.15L2
) (

1− 1.50L24 + 0.55L48
)
rt

=
(
1 + 0.60L+ 0.40L2

) (
1 + 1.24L24 − 0.38L48

)
εt . (11)

σ2t = 0.0019 + 5.2663ε2t−1 + 0.1360σ2t−1 . (12)

The autocorrelogram of the residuals is presented in Figure 7. We can see that the
seasonality was mostly captured by the SARMA model. Although statistically signifi-
cant, the autocorrelation absolute values are not relevant except for lags 23, 24 and 25,
related to seasonality. However, we decided to work with a parsimonious model, which
presents order 2 for both seasonal autoregressive and moving average parts, and provides
an acceptable forecast error (forecast performance is shown at the end of this section).

In Figure 8, we present the autocorrelogram for the squared residuals. The results
show that the non-linear dependence was well captured by GARCH. Even though lag 24
presents a relevant value, we decided to work with a GARCH(1,1) model, which provides
an acceptable forecast error as already mentioned.

From the fitted model, the forecasts are obtained for the out-of-sample period, from
January 1st, 2011, hour 1 to November 30th, 2011, hour 24. The aggregate error measures
(RMSE, MAPE and MAE) are presented in columns 2–4 of Table 5. We present now the
overall results for the forecasted series. Besides, in order to compare the accuracy of this
model—which works with an entire hourly series—, with the model in the next section,
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Figure 6: Autocorrelations of the entire hourly series, Austria
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Figure 7: Autocorrelations of residuals of the entire hourly series, Austria
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Figure 8: Autocorrelations of squared residuals of the entire hourly series, Austria
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Table 4: Estimated parameters for SARMA-GARCH in entire hourly series, Austria

Model Coef. Std. err. z-stat. Prob.

AR (1) 0.677 0.002362 286.527 0.000
AR (2) 0.153 0.002154 70.919 0.000

SAR(24) 1.498 0.000823 1820.920 0.000
SAR(48) −0.547 0.000681 −803.382 0.000
MA (1) −0.599 0.001899 −315.661 0.000
MA (2) −0.400 0.001898 −210.751 0.000

SMA(24) −1.244 0.000808 −1539.009 0.000
SMA(48) 0.378 0.000465 811.090 0.000

C 0.002 0.000011 165.035 0.000
ARCH(1) 5.266 0.006853 768.490 0.000

GARCH(1) 0.136 0.000312 435.133 0.000

we also present measures for each hour separately. To obtain this result, we considered
the entire hourly forecasted series and separated the forecasts in 24 series, one for each
hour of the day. For example, the aggregate error for hour 1 series is calculated from
the forecasted series composed by E [p1], E [p25] ,E [p49], etc, where the expectation is
conditional on the in-sample values.

For hours 3, 5 and 8, the MAPE values are very high. This is due to very low data
values that influence the overall measure. Including in-sample and out-of-sample periods,
besides the missing values, there is a total of 184 observations with values equal or less
than e 1/MWh. In the out-of-sample period, there is one missing value in the original
data and 14 very low values (equal or less than e 1/MWh). Excluding those values for
the additional analysis of the forecasting performance, the aggregate error measures are
presented in the last three columns of Table 5. These results are much better than the
previous ones.

Second approach: 24 separate series for each hour of the day

In this approach, we work with 24 time series, one for each hour of the day, each treated
the same way as the whole series in the previous section. For each series, we adjusted
several models and analyzed their residuals in order to find the best one, observing the
AIC and BIC criteria. Table 6 shows the best fitted model for each one of the 24 series.

From the fitted models, we forecast the prices in the out-of-sample period, from Jan-
uary 1st, 2011 to 30th. Table 7 presents the aggregate error measures (MAE, MAPE
and RMSE) for the price series forecast. For the hours between 3 and 9, the MAPE
measures are very high. Just as in the previous case, this is due to very low values
in the data series, which influence the overall measures. Excluding those values for the
additional analysis of the forecasting performance, the aggregate error measures improve
significantly, as shown in Table 8. In the same table, we also include the corresponding
results from the previous section, so we can compare the two approaches.

From MAPE and MAE measures, the model using one entire series gives better results
than the 24 separate series model. Regarding the RMSE measure, for some hours in the
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Table 5: Aggregate measures for the SARMA-GARCH model for Austria

Complete series Excluding small values

hour MAE MAPE RMSE MAE MAPE RMSE

1 2.74 7% 3.93 2.74 7% 3.93
2 1.82 6% 2.50 1.82 6% 2.50
3 2.39 13187% 5.05 2.26 8% 4.45
4 4.90 14% 42.97 4.91 14% 43.03
5 4.00 209% 40.64 4.00 11% 40.88
6 2.62 9% 3.92 2.65 7% 3.95
7 6.04 17% 8.83 6.05 16% 8.85
8 4.97 449% 7.51 4.96 10% 7.49
9 4.49 9% 28.63 4.51 8% 28.68

10 2.70 5% 9.15 2.70 5% 9.14
11 1.51 3% 3.09 1.50 3% 3.09
12 1.42 2% 1.98 1.42 2% 1.98
13 1.17 2% 1.66 1.18 2% 1.66
14 2.46 5% 3.06 2.46 5% 3.06
15 1.61 3% 2.09 1.61 3% 2.08
16 1.28 3% 1.66 1.28 3% 1.66
17 1.46 3% 2.05 1.47 3% 2.06
18 2.49 4% 3.72 2.51 4% 3.74
19 2.41 4% 3.45 2.41 4% 3.45
20 2.33 3% 3.74 2.34 3% 3.74
21 2.17 4% 2.93 2.17 4% 2.92
22 1.71 3% 2.30 1.71 3% 2.30
23 1.44 3% 1.89 1.44 3% 1.89
24 2.04 4% 2.55 2.04 4% 2.55

Overall 2.59 582% 13.99 2.59 6% 14.03

morning, the result using 24 separate series is better. Considering the comparison as a
whole, and since in the entire series approach we work with only one model instead of
24 different models, we consider the first one the best model for the considered data. It
is worth mentioning that both models perform worst in the early morning hours.

5.3. Spanish data

Descriptive Analysis

A total of 42 720 hourly observations (close to five years) of Spanish electricity spot
prices in e/MWh are available. The sample period begins on January 1st, 2007 and
ends on November 15th, 2011. There are 5 missing values and 379 zeros; these values
were, again, replaced by 0.001 in order to be able to obtain the log-return series. The
resulting series can be seen in Figure 9, while Figure 10 again presents prices from a
one month sub-interval. The data set is split into two periods: an in-sample period
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Figure 9: Electricity spot price in Spain, in e/MWh – whole series
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Figure 10: Electricity spot price in Spain, in e/MWh – October 2011
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Table 6: Best fitted models for 24 separate series, Austria

hour Best fitted model

1 SARMA(0, 1)× (1, 1)7 + GARCH(2, 0)
2 SARMA(1, 1)× (1, 1)7 + GARCH(1, 1)
3 SARMA(0, 2)× (1, 1)7 + GARCH(2, 1)
4 SARMA(0, 1)× (1, 1)7 + GARCH(2, 1)
5 SARMA(1, 1)× (1, 1)7 + GARCH(1, 1)
6 SARMA(3, 1)× (1, 1)7 + GARCH(2, 1)
7 SARMA(1, 1)× (2, 1)7 + GARCH(2, 1)
8 SARMA(1, 1)× (1, 1)7 + GARCH(2, 0)
9 SARMA(1, 1)× (1, 2)7 + GARCH(3, 1)

10 SARMA(1, 1)× (1, 2)7 + GARCH(1, 1)
11 SARMA(2, 1)× (1, 2)7 + GARCH(2, 1)
12 SARMA(1, 2)× (2, 1)7 + GARCH(2, 2)
13 SARMA(1, 2)× (1, 2)7 + GARCH(2, 2)
14 SARMA(1, 2)× (1, 2)7 + GARCH(2, 1)
15 SARMA(1, 2)× (1, 2)7 + GARCH(1, 1)
16 SARMA(1, 1)× (2, 2)7 + GARCH(2, 1)
17 SARMA(2, 1)× (2, 1)7 + GARCH(2, 2)
18 SARMA(1, 1)× (1, 2)7 + GARCH(2, 2)
19 SARMA(2, 2)× (2, 2)7 + GARCH(1, 1)
20 SARMA(1, 1)× (2, 1)7 + GARCH(2, 1)
21 SARMA(1, 1)× (2, 1)7 + GARCH(2, 1)
22 SARMA(1, 2)× (1, 2)7 + GARCH(2, 1)
23 SARMA(1, 1)× (1, 1)7 + GARCH(2, 1)
24 SARMA(1, 1)× (1, 1)7 + GARCH(1, 1)

(January 1st, 2007 to December 31st, 2010) with 35 064 observations, used to estimate
the unknown parameters; and an out-of-sample period (January 1st, 2011 to November
15th, 2011) with 7656 observations, used to assess the model’s forecast.

A summary of the descriptive statistics of the entire hourly series, for both the prices
and log-returns, is presented in Table 9. Considering the 24 series for each hour of the
day, their statistics are presented in Table 10 for prices and Table 11 for log-returns.

First approach: one entire hourly series in sequence

Just like for the Austrian data, we start by analyzing the hourly prices as one data series.
The autocorrelogram for the series is presented in Figure 11.

Following the methodology of modelling the linear dependence by a Seasonal ARMA
model and the conditional variance by a GARCH model, the best fitted model for the se-
ries was a SARMA(2, 2)× (2, 2)24 + GARCH(2, 1). The estimation results are presented
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Figure 11: Autocorrelations for Spanish log-return series
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Table 7: Aggregate error measures for the per-hour series, Austrian data

hour MAE MAPE RMSE

1 3.44 9% 4.93
2 4.65 16% 6.58
3 7.42 8959% 9.95
4 5.33 690% 7.16
5 7.69 1411% 10.28
6 6.20 1589% 9.08
7 5.30 901% 7.88
8 7.94 968% 11.47
9 5.60 658% 8.50

10 4.04 8% 5.72
11 3.58 6% 4.94
12 3.56 6% 4.86

hour MAE MAPE RMSE

13 3.54 6% 4.71
14 3.76 7% 5.15
15 3.62 7% 4.95
16 3.61 7% 5.01
17 3.66 7% 5.01
18 3.65 6% 4.99
19 3.79 6% 5.45
20 3.47 6% 4.54
21 3.21 5% 4.20
22 2.86 5% 3.61
23 2.62 5% 3.43
24 2.36 5% 3.21

in Table 12. The resulting SARMA and GARCH(2, 1) models are(
1− 1.55L+ 0.79L2

) (
1− 0.08L24 − 0.26L48

)
rt

=
(
1 + 1.39L− 0.70L2

) (
1− 0.13L24 + 0.08L48

)
εt (13)

σ2t = 0.00012 + 2.6585ε2t−1 − 2.2343ε2t−2 + 0.8680σ2t−1 . (14)

The autocorrelogram of the residuals is presented in Figure 12. The seasonality was
partially captured by a SARMA model, as for the Austrian data. The absolute autocor-
relation values are negligible, even if statistically significant, with the exception of lags
24, 25 and 48, related to seasonality. Nevertheless, we decided to work with a parsimo-
nious model, which presents order 2 for both seasonal autoregressive and moving-average
parts, and provides an acceptable forecast error.

In Figure 13, we present the autocorrelogram for the squared residuals. The results
show that the non-linear dependence was successfully captured by GARCH. The aggre-
gate error measures (RMSE, MAPE and MAE) are presented in columns 2–4 of Table 13.
In addition to the overall results, this table presents measures for each hour separately,
so we can compare the results with the Austrian case. These values were obtained in
the same manner as for the Austrian data.

We see that for hours 2, 3, 4, 9 and 24 the MAPE values are very high. This is again
due to very low values in the database. Including in-sample and out-of-sample periods,
there are 5 missing values, 379 zeros, and 84 values that are very low (equal or less than
e 1/MWh), 468 observations in total. In the out-of-sample period, there are 32 missing
values / zeros in the original data and 15 very low values. Excluding those values for the
additional analysis of the forecasting performance, the aggregate error measures improve
significantly, as we can see in the last three columns of Table 13. It is interesting to note
that, just like in the Austrian case, the largest errors occur in the early morning hours.
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Table 8: Aggregate measures for series with excluded small values, both approaches for the
Austrian data

24 separate series 1 entire series

hour MAE MAPE RMSE MAE MAPE RMSE

1 3.44 9% 4.93 2.74 7% 3.93
2 4.65 16% 6.58 1.82 6% 2.5
3 7.28 22% 9.68 2.26 8% 4.45
4 5.28 20% 7.06 4.91 14% 43.03
5 7.54 24% 10.08 4.00 11% 40.88
6 6.01 17% 8.77 2.65 7% 3.95
7 5.23 16% 7.72 6.05 16% 8.85
8 7.89 17% 11.44 4.96 10% 7.49
9 5.55 12% 8.43 4.51 8% 28.68

10 4.04 8% 5.72 2.70 5% 9.14
11 3.58 6% 4.94 1.50 3% 3.09
12 3.56 6% 4.86 1.42 2% 1.98
13 3.54 6% 4.71 1.18 2% 1.66
14 3.76 7% 5.15 2.46 5% 3.06
15 3.62 7% 4.95 1.61 3% 2.08
16 3.61 7% 5.01 1.28 3% 1.66
17 3.66 7% 5.01 1.47 3% 2.06
18 3.65 6% 4.99 2.51 4% 3.74
19 3.79 6% 5.45 2.41 4% 3.45
20 3.47 6% 4.54 2.34 3% 3.74
21 3.21 5% 4.20 2.17 4% 2.92
22 2.86 5% 3.61 1.71 3% 2.3
23 2.62 5% 3.43 1.44 3% 1.89
24 2.36 5% 3.21 2.04 4% 2.55

Overall 2.59 6% 14.03

Table 9: Descriptive statistics of the Spanish data

Statistic Price ( e
MWh) Log return

Mean 45.38 1.59e-06
Std. dev. 16.37 0.52
Variance 268.1 0.27
Skewness 0.24 0.75
Kurtosis 3.55 246.77
# of obs. 42720 42719
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Table 10: Descriptive statistics for 24 series of electricity prices, Spain (1780 observations)

Electricity price in e/MWh, per hour

Statistic 1 2 3 4 5 6 7 8 9 10 11 12

Mean 44.79 40.25 35.88 34.03 32.59 33.69 37.80 42.70 44.76 47.22 49.98 50.18
Std. Dev. 13.51 13.63 14.05 14.18 14.08 13.81 13.98 14.69 15.91 15.80 15.78 15.59
Variance 182.4 185.8 197.3 201.0 198.2 190.6 195.5 215.8 253.1 249.7 249.1 243.2
Skewness 0.14 -0.04 -0.19 -0.20 -0.18 -0.23 -0.25 0.01 0.04 0.19 0.31 0.33
Kurtosis 3.43 3.54 3.26 3.03 2.89 3.00 3.31 3.40 3.39 3.38 3.42 3.41

Statistic 13 14 15 16 17 18 19 20 21 22 23 24

Mean 50.90 49.76 46.74 45.61 45.37 46.85 49.66 52.75 54.16 55.70 51.11 46.71
Std. Dev. 15.38 15.37 14.49 14.58 15.00 15.27 16.50 17.53 16.77 15.65 14.34 14.42
Variance 236.5 236.2 209.9 212.7 225.1 233.3 272.3 307.1 281.2 244.8 205.7 208.0
Skewness 0.33 0.29 0.24 0.10 0.10 0.20 0.56 0.57 0.58 0.68 0.52 0.27
Kurtosis 3.45 3.43 3.45 3.45 3.42 3.31 3.41 3.01 2.78 3.32 3.03 3.27

Table 11: Descriptive statistics for log-returns of the 24 series of Spanish electricity prices
(1779 observations)

Log-returns of electricity price, per hour

Statistic 1 2 3 4 5 6 7 8 9 10 11 12

Mean 4e-05 -4e-06 1e-04 2e-04 3e-04 3e-04 4e-04 7e-04 9e-04 9e-04 5e-04 4e-04
Std. Dev. 0.72 1.02 1.43 1.43 1.37 1.32 1.12 1.04 1.17 0.94 0.90 0.75
Variance 0.52 1.03 2.04 2.05 1.88 1.74 1.26 1.08 1.38 0.88 0.81 0.56
Skewness -0.38 0.20 0.23 -0.45 -0.31 0.04 -0.41 0.69 0.38 -0.16 -0.60 0.39
Kurtosis 158.4 66.99 39.11 38.10 40.34 43.65 64.35 79.50 64.30 95.19 112.7 148.3

Statistic 13 14 15 16 17 18 19 20 21 22 23 24

Mean 4.e-04 4e-04 4e-04 5e-04 5e-04 4e-04 2e-04 2e-04 4e-05 -4e-05 -1e-04 -2e-04
Std. Dev. 0.75 0.73 0.78 0.81 0.80 0.74 0.50 0.35 0.17 0.17 0.28 0.94
Variance 0.56 0.53 0.61 0.65 0.65 0.54 0.25 0.13 0.03 0.03 0.08 0.89
Skewness 1.31 1.47 0.94 -0.21 0.27 1.21 1.05 1.51 -1.68 -0.63 -0.89 -0.41
Kurtosis 153.5 154.3 135.7 126.5 119.7 140.7 327.6 480.1 33.86 20.27 257.6 119.4

29



Figure 12: Autocorrelations for the residuals, Spain
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Figure 13: Autocorrelations for the squared residuals, Spain
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Table 12: Estimated parameters for SARMA-GARCH models, Spain

Model Coef. Std. err. z-stat. Prob.

AR (1) 1.553 0.003385 458.915 0.000
AR (2) −0.794 0.002591 −306.311 0.000

SAR(24) 0.082 0.005103 16.138 0.000
SAR(48) 0.255 0.002996 85.265 0.000
MA (1) −1.388 0.003305 −420.035 0.000
MA (2) 0.702 0.002848 246.328 0.000

SMA(24) 0.132 0.005197 25.399 0.000
SMA(48) −0.084 0.001969 −42.668 0.000

C 0.000 0.000003 43.570 0.000
ARCH(1) 2.659 0.011179 237.812 0.000
ARCH(2) −2.234 0.010239 −218.226 0.000

GARCH(1) 0.868 0.000731 1187.177 0.000

Second approach: 24 separate series for each hour of the day

In this approach, we work with 24 time series, one for each hour of the day, as we
presented for Austrian data. Just as before, we have tested many different models for
each of the series, to find the one that gives the best fit, measured by the AIC and BIC
criteria. The identified models are presented in Table 14.

We then use the fitted models to forecast prices for the out-of-sample period and
measure the forecast errors; results are in Table 15. For hours between 2 and 10, and
hour 24, MAPE measures are really high. This is again caused by several very low prices,
which have a big impact on the measure. Moreover, the proposed ARMA+GARCH
models for early hours in the morning do not fit the data very well.

Just like in the previous cases, excluding the very low prices for the data set improves
the forecasting perfomance considerably, and shown in columns 2–4 of Table 16. The
table includes also the error measures from the previous section for comparison. We
can see that the model using all hours as one series is better in terms of the MAE and
MAPE measures, for 23 out of 24 hours. The results are less clear when looking at
the RMSE measure, where the per-hour approach performs better in the morning, and
the one-series approach in the afternoon. On the whole, the one-series model performs
slightly better than the per-hour models; it is also significantly less labour-intensive, as
we need to fit one series instead of 24.

5.4. Summary of the analysis

In this section, we have presented, fitted and tested models under a time-series framework
in order to analyze hourly electricity prices in Austria and Spain. For both countries,
we tried to model the hourly prices either as one entire series, or as 24 separate series,
one for each hour. Hence, we did, in total, 25 analyses for each country.

For both countries, the best-fitted models for all the series were SARMA + GARCH,
with different orders. Analysing the error terms of the chosen models and the forecasting
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Table 13: Aggregate measures for the SARMA-GARCH model for Spain

Complete series Excluding small values

hour MAE MAPE RMSE MAE MAPE RMSE

1 6.08 13% 40.76 6.08 13% 40.76
2 3.18 53% 5.11 3.13 10% 5.02
3 3.76 1554% 6.30 3.74 21% 6.25
4 2.40 1357% 4.27 2.44 10% 4.32
5 2.15 9% 3.85 2.20 8% 3.90
6 2.84 10% 7.01 2.92 8% 7.11
7 6.19 16% 26.26 6.28 16% 26.47
8 4.90 16% 14.90 4.94 11% 14.99
9 4.84 1786% 19.03 4.90 12% 19.17

10 6.98 17% 29.22 7.00 17% 29.26
11 3.27 9% 9.19 3.27 9% 9.19
12 1.87 5% 7.11 1.87 5% 7.11
13 2.44 5% 5.05 2.44 5% 5.05
14 1.99 4% 4.10 1.99 4% 4.10
15 1.77 4% 3.15 1.77 4% 3.15
16 1.56 4% 2.63 1.56 4% 2.63
17 1.18 3% 2.04 1.18 3% 2.04
18 1.66 4% 3.75 1.66 4% 3.75
19 2.31 5% 4.35 2.31 5% 4.35
20 2.26 4% 3.89 2.26 4% 3.89
21 2.59 5% 5.05 2.59 5% 5.05
22 2.33 4% 4.98 2.33 4% 4.98
23 2.60 5% 4.85 2.60 5% 4.85
24 2.73 13382% 5.42 2.60 5% 4.87

Overall 3.08 761% 13.36 3.09 8% 13.39

accuracy measures, the entire-series approach provided the best results, compared to the
24 separate series—in addition to requiring significantly less work. In both cases, the
forecasting power of the fitted model was best in the afternoon and worst in the early
morning hours and the MAPE error measures improved significantly when we excluded
the lowest prices from the test. Comparing results for the two countries, the Austrian
forecast results were better than the Spanish.

Overall, we consider the quality of the predictions to be sufficient for our purposes,
that is for generating scenarios for the optimization models. Should we find out that
this is not the case, however, we might consider the following directions in refining the
analysis:

• Since SARMA partially captured the seasonality, it is worth testing other alterna-
tives to model it, using dummies or trigonometric functions. However, the gain in
forecast accuracy might not be relevant.
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Table 14: Best fitted models for 24 separate series, Spain

hour Best fitted model

1 SARMA(1, 1)× (1, 1)7 + GARCH(1, 1)
2 SARMA(1, 1)× (1, 1)7 + GARCH(2, 1)
3 SARMA(1, 2)× (1, 1)7 + GARCH(1, 1)
4 SARMA(2, 1)× (1, 1)7 + GARCH(1, 1)
5 SARMA(1, 1)× (1, 1)7 + GARCH(2, 1)
6 SARMA(2, 3)× (2, 2)7 + GARCH(2, 2)
7 ARMA(2, 2) + GARCH(2, 1)
8 SARMA(2, 1)× (2, 2)7 + GARCH(2, 1)
9 SARMA(2, 2)× (1, 1)7 + GARCH(2, 2)

10 SARMA(2, 2)× (1, 1)7 + GARCH(2, 1)
11 SARMA(2, 2)× (1, 1)7 + GARCH(1, 1)
12 SARMA(1, 1)× (1, 1)7 + GARCH(1, 1)
13 SARMA(2, 1)× (1, 1)7 + GARCH(2, 1)
14 SARMA(1, 2)× (1, 1)7 + GARCH(2, 1)
15 SARMA(1, 1)× (1, 0)7 + GARCH(1, 1)
16 SARMA(1, 2)× (1, 1)7 + GARCH(2, 1)
17 SARMA(2, 1)× (1, 1)7 + GARCH(2, 1)
18 SARMA(1, 1)× (2, 2)7 + GARCH(1, 0)
19 SARMA(1, 2)× (1, 1)7 + GARCH(1, 1)
20 SARMA(1, 1)× (1, 1)7 + GARCH(2, 1)
21 SARMA(1, 1)× (1, 1)7 + GARCH(2, 1)
22 SARMA(1, 1)× (1, 1)7 + GARCH(2, 1)
23 SARMA(2, 1)× (1, 1)7 + GARCH(1, 2)
24 SARMA(2, 1)× (1, 1)7 + GARCH(1, 0)

Table 15: Aggregate error measures for the per-hour series, Spanish data

hour MAE MAPE RMSE

1 3.33 7% 4.83
2 5.56 109% 8.44
3 10.23 3612% 21.95
4 8.52 26955% 11.57
5 9.26 21452% 12.97
6 8.15 9032% 11.52
7 13.21 18142% 40.47
8 6.65 23925% 10.83
9 11.19 33176% 20.17

10 10.30 117% 12.78
11 5.90 15% 8.91
12 6.31 14% 7.98

hour MAE MAPE RMSE

13 4.55 11% 7.37
14 3.83 9% 6.10
15 4.54 12% 7.02
16 4.69 18% 7.92
17 4.88 17% 7.46
18 5.46 14% 8.67
19 4.40 10% 6.51
20 3.97 8% 6.26
21 3.15 6% 4.96
22 3.15 5% 5.47
23 2.82 5% 4.35
24 3.75 15600% 6.86
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Table 16: Aggregate measures for series with excluded small values, both approaches for
the Spanish data

24 separate series 1 entire series

hour MAE MAPE RMSE MAE MAPE RMSE

1 3.33 7% 4.83 6.08 13% 40.76
2 5.46 17% 8.18 3.13 10% 5.02
3 10.28 49% 22.07 3.74 21% 6.25
4 8.44 30% 11.21 2.44 10% 4.32
5 9.27 43% 12.79 2.20 8% 3.90
6 8.08 28% 11.23 2.92 8% 7.11
7 13.13 38% 40.31 6.28 16% 26.47
8 6.36 20% 10.12 4.94 11% 14.99
9 10.84 23% 19.66 4.90 12% 19.17

10 10.30 117% 12.79 7.00 17% 29.26
11 5.90 15% 8.91 3.27 9% 9.19
12 6.31 14% 7.98 1.87 5% 7.11
13 4.55 11% 7.37 2.44 5% 5.05
14 3.83 9% 6.10 1.99 4% 4.10
15 4.54 12% 7.02 1.77 4% 3.15
16 4.69 18% 7.92 1.56 4% 2.63
17 4.88 17% 7.46 1.18 3% 2.04
18 5.46 14% 8.67 1.66 4% 3.75
19 4.40 10% 6.51 2.31 5% 4.35
20 3.97 8% 6.26 2.26 4% 3.89
21 3.15 6% 4.96 2.59 5% 5.05
22 3.15 5% 5.47 2.33 4% 4.98
23 2.82 5% 4.35 2.60 5% 4.85
24 3.60 7% 6.28 2.60 5% 4.87

Overall 3.09 8% 13.39

• We recommend outlier treatment to obtain better forecasts, regarding the quantity
of missing, zero or low-value observations.

6. Conclusions

This report presents the first deliverable of WP3 of the EnRiMa project, whose goal is to
generate scenarios for stochastic optimization models being developed as part of WP4.
It is, in particular, based on findings presented in deliverable D4.1, which identified the
stochastic parameters needed by the optimization models.

In this report, we describe the first steps needed for the scenario-generation pro-
cess: data sources, data series, and their analyses. In particular, we present detailed
time-series analyses of hourly electricity prices from Austria and Spain. The time-series
models identified there will be needed for the scenario-generation procedure that is be-
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ing developed in WP3. In addition, we describe how to deal with parameters where
straightforward data analysis is not possible or optimal to do, such as the weather and
the energy loads of the buildings. The next step to fulfilling the goals of WP3 is to use
the results from this report to actually generate the scenarios; this task will result in
deliverable D3.2.

We would like to point out that these results should not be considered final: it can be
expected that the optimization models will change during their development and testing
and that those changes might trigger the need to change some of the input data, or even
to add new data series. Such changes would then be described in a future report of work
package 4.
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In this Appendix, we analyse historical data for hourly electricity prices in Austria. 

We propose a model based on mean-reverting stochastic process for the 

logarithms of hourly prices. The tested data set consists of spot prices in 

Austria/Germany markets, provided by EXAA, for the period of January 1st, 2007 

(hour 1) to November 30th, 2011 (hour 24).  

We split the data set into two periods: from January 1st, 2007, hour 1, to December 

31st, 2010, hour 24, which is used as in-sample period, and from January 1st, 2011, 

hour 1, to November 30th, 2011, hour 24, which is used as out-of-sample period. 

The logarithm of electricity price is decomposed in a sum of two factors: a 

deterministic seasonal function and a stochastic part. The deterministic part 

includes intraday effects, and weekly and yearly seasonality. To model the 

stochastic part, a mean-reverting process is used. 

The resulting model will be applied for the hourly series, to obtain a forecast 

model for electricity prices. The unknown parameters are estimated using the in-

sample period data. The out-of-sample period data is used to evaluate the 

forecasting performance of the models. 

In section 2, we present a description of the data used and some descriptive 

analysis. In section 3, the seasonal function is modelled and some results related 

to seasonality are discussed. In section 4, the stochastic process is modelled and 

the parameters are estimated. In section 5, we provide the forecasting results, 

which are compared to the results obtained from working with 24 separate series.. 

1. Data and descriptive statistics 

In total 43,080 hourly observations over five years of electricity spot prices in 

€/MWh from Austria/Germany markets, provided by Energy Exchange Austria 

(EXAA) are available. The sample period begins on January 1st, 2007, hour 1, and 

ends on November 30th, 2011, hour 24. In order to compare the results presented 

here with other analyses, we removed the observations with missing values or 

Appendix A. Austrian prices using a mean-reverting process
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values equal or less than 1 €/MWh, in a total of 189 observations in the sample 

(less than 0.5% of the number of observations). 

The data set is split into two periods: 

• an in-sample period, from 1 January 1st, 2007 to December 31st, 2010 (34,890 

valid hourly observations, in a total of 35,064 observations), which is used to 

estimate the unknown parameters, and 

• an out-of-sample period, from January 1st, 2011 to November 30th, 2011 (8001 

valid hourly observations, in a total of 8016 observations), which is used to 

assess the forecast of the model proposed. 

According to Heydari and Siddiqui (2010), the natural logarithms of spot prices are 

decomposed into two factors: 

 ln(𝑆𝑡) = 𝑋𝑡 + 𝑓𝑡  , (1)  

where 

𝑆𝑡 – is the energy spot price observed; 

𝑋𝑡 – is the stochastic part of log prices; and 

𝑓𝑡 – is a deterministic seasonal function. 

 

Considering one series with all the hourly observations, a summary of descriptive 

statistics of electricity prices and log electricity prices is presented in Table 1. 

Table 1 – Summary of descriptive statistics for electricity prices (EUR/MWh) and ln electricity prices 

Statistic Electricity Ln electricity 
Mean 48.41 3.76 
Standard Deviation 23.76 0.51 
Variance 564.66 0.26 
Skewness 2.47 -1.00 
Kurtosis 26.32 6.66 
# of observations        42,891  42,891  
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According to EXAA, the hours 9 to 20 are considered peak hours. Off-peak hours 

include hours 1 to 8 and from hours 21 to 24. 

2. Seasonality 

Since we have one aggregated hourly series, now the seasonality treatment should 

include intraday effects, as well as weekly and yearly seasonality. Now, we work 

with 23 hourly dummies to explain intraday effect, 2 weekdays dummies (one for 

Monday to Friday and one to Saturday) to explain weekly seasonality and 11 

monthly dummies to explain yearly seasonality. The model is represented by the 

following equation: 

 

ln(𝑆𝑡) = (𝛼 + 𝜀𝑡) + {(𝐼𝑊𝐷𝑊 + 𝐼𝑆𝐷𝑆) + 

+ {(𝐼1𝐷1 + 𝐼2𝐷2 + 𝐼4𝐷4 + 𝐼5𝐷5 + ⋯+ 𝐼12𝐷12)

+ (𝐴1𝐻1 + 𝐴2𝐻2 + 𝐴3𝐻3 + 𝐴5𝐻5 + ⋯+ 𝐴24𝐻24)} 

(2)  

where: 

ln(𝑆𝑡) – is the natural logarithm of the daily energy price; 

𝛼 – is the independent coefficient of the regression; 

𝐷𝑖 – are the binary variables (dummies) related to the weekdays. We define 

three types of days: type 1: Sundays, type 2: Monday to Friday and type 3: 

Saturdays. 

𝐷𝑖 = �
1, 𝑖𝑖  𝑖𝑖 𝑜𝑜 𝑡𝑡𝑡𝑡 𝑖

 0,𝑓𝑓𝑓 𝑜𝑜ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡 𝑖 = 2(𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹), 3(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

𝐼𝑖 – are the linear coefficients of the regression for weekdays, 𝑖 = 2,3 

Sundays are used as reference, so there are no dummies or linear 

coefficients related to this weekday. 

𝐷𝑗  – are the binary variables (Dummies) related to the months of the year. 

𝐷𝑗 = �
1,𝑓𝑓𝑓 𝑚𝑚𝑚𝑚ℎ 𝑗

 0,𝑓𝑓𝑓 𝑜𝑜ℎ𝑒𝑒 𝑚𝑚𝑚𝑚ℎ𝑠 𝑗 = 1(𝐽𝐽𝐽𝐽𝐽𝐽𝐽), 2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹), … ,12(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 
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𝐼𝑗 – are the linear coefficients of the regression for the months of the year, 

𝑗 = 1,2,4,5, … ,12 

The month of March is used as reference, so there are no dummies or linear 

coefficients related to this month. 

𝐴𝑙 – are the binary variables (Dummies) related to the hours of the day. 

𝐴𝑙 = �
1,𝑓𝑓𝑓 ℎ𝑜𝑜𝑜 𝑙

  0,𝑓𝑓𝑓 𝑜𝑜ℎ𝑒𝑒 ℎ𝑜𝑜𝑜𝑠  𝑗 = 1(ℎ𝑜𝑜𝑜 1), 2(ℎ𝑜𝑜𝑜 2), … ,24 (ℎ𝑜𝑜𝑜 24) 

𝐻𝑙 – are the linear coefficients of the regression for the hours of the day, 𝑙 =

1,2,3,5, … ,24 

In this regression, we did not use the coefficient related to slope since it was not 

statistically significant for all analysis. 

We execute the regression of Eq.(3) to estimate the coefficients. Afterwards, the 

seasonal effects are eliminated as follows:  

 
𝑋𝑡 = ln(𝑆𝑡) − (𝐼1�𝐷1 + 𝐼2�𝐷2 + 𝐼4�𝐷4 + 𝐼5�𝐷5 + ⋯+ 𝐼12�𝐷12 + 𝐼𝑊�𝐷𝑊 + 𝐼𝑆�𝐷𝑆

+ 𝐴1�𝐻1 + 𝐴2�𝐻2 + 𝐴3�𝐻4 + 𝐴5�𝐻5 + ⋯+ 𝐴24� 𝐻24) 
(3)  

The estimated parameters are shown below in Table 2. 

Table 2 - Results for entire hourly series regression 

 Parameter Estimated 
Value 

Parameter Estimated 
Value 

𝜶 2.580 𝑨7 0.353 
𝑰𝑾 0.475 𝑨8 0.646 
𝑰𝑺 0.275 𝑨9 0.787 
𝑰𝟏 0.147 𝑨10 0.879 
𝑰𝟐 0.150 𝑨11 0.932 
𝑰𝟒 0.053 𝑨12 0.997 
𝑰𝟓 -0.002 𝑨13 0.929 
𝑰𝟔 0.107 𝑨14 0.861 
𝑰𝟕 0.114 𝑨1𝟓 0.792 
𝑰𝟖 0.037 𝑨1𝟔 0.737 
𝑰𝟗 0.239 𝑨𝟏7 0.735 
𝑰𝟏𝟏 0.407 𝑨18 0.832 
𝑰𝟏𝟏 0.285 𝑨19 0.905 
𝑰𝟏𝟏 0.180 𝑨20 0.877 
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 Parameter Estimated 
Value 

Parameter Estimated 
Value 

𝑨𝟏 0.399 𝑨21 0.799 
𝑨𝟐 0.243 𝑨22 0.697 
𝑨𝟑 0.119 𝑨23 0.673 
𝑨𝟓 0.018 𝑨24 0.500 
𝑨𝟔 0.184   

 

Fig. (1) shows the estimated monthly seasonal parameters and Fig.(2) shows the 

estimated hourly parameters. 

 
Fig. 1 – Monthly seasonal coefficients 
 

 
Fig. 2 – Hourly intraday coefficients  
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The monthly coefficients curve presents an expected shape. We see higher values 

for the months by the end of the year (September, October, November and 

December) and lower values for the months of March, April and May. The hourly 

coefficients curve also presents an expected shape based on the prices levels for 

peak hours (hours 9 to 20), which are higher, and off-peak hours.    

3. Stochastic Linear Model 

As explained before, after the elimination of seasonal effects we use an Ornstein-

Uhlenbeck stochastic process to model the natural logarithm of energy prices for 

each hour of the day: 

 𝑑𝑋𝑡 = 𝜅(𝛼 − 𝑋𝑡)𝑑𝑑 + 𝜎𝜎𝑧𝑡 , 
(4)  

where: 

𝑋𝑡  – is the natural logarithm of the hourly electricity price, without 

seasonal effects; 

𝜅 – is the magnitude of the speed of adjustment, which measures the 

degree of mean reversion to the long-run log price. 𝜅 > 0; 

𝛼 – is the long-run mean natural logarithm of the price; 

𝜎 – is the term of volatility of the process; 

𝑑𝑧𝑡 – is the increment of a standard Brownian motion. 

 

In this model, as we are working with one entire hourly series, we will have only 

one parameter of long-run mean and only one of speed of adjustment. 

According to Dixit and Pindyck (1994), Eq.(4) is the continuous-time version of 

the first-order autoregressive process in discrete time. The limiting case as 𝛥𝛥 → 0 

is: 
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 𝑥𝑡 − 𝑥𝑡−1 = 𝛼(1 − 𝑒−𝜅) + (𝑒−𝜅 − 1)𝑥𝑡−1 + 𝜖𝑡 (5)  

where 𝜖ℎ𝑡 is normally distributed with mean zero and standard deviation 𝜎𝜖ℎ, and 

 𝜎𝜖2 =
𝜎2

2𝜅
(1 − 𝑒−2𝜅) (6)  

Again, we estimate the parameters of Eq.(4) using the discrete time data available 

to run the regression of Eq.(7), 

 𝑥𝑡 − 𝑥𝑡−1 = 𝑎 + 𝑏𝑥𝑡−1 + 𝜖𝑡 (7)  

and then calculate for each hour ℎ: 

 𝛼� = −𝑎� 𝑏��  (8)  

 𝜅̂ = − 𝑙𝑙(1 + 𝑏�) (9)  

 
𝜎� = 𝜎�𝜀�

2 𝑙𝑙(1 + 𝑏�)
(1 + 𝑏�)2 − 1

 
(10)  

Where σ�ε is the standard error of the regression of Eq. (7). 

In Table 3, we have the results of the regression. Both parameters are significant at 

a 5% confidence level. As we reject the null hypothesis of  𝑏 = 0, we can also reject 

the hypothesis of unit root (random walk), what reinforces the idea of mean-

reversion in log hourly prices. 

Table 3 - Results of the regression of Eq. (7) 

  Coefficients Std Error t Stat P Value 
𝒂� 0.221 0.006 39.066 0.000 
𝒃� -0.086 0.002 -39.534 0.000 

 

The application of Eqs. (8) to (10) give the estimated values for mean-reversion 

parameters as follows in Table (4). 

Table 4 - Estimated mean-reversion parameters for hourly price series 

𝜶 = 𝟐.𝟓𝟓𝟓 𝜿 = 𝟎.𝟎𝟎𝟎 𝝈 = 𝟎.𝟏𝟏𝟏 
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4. Forecasting 

The value of the stochastic process in Eq. (5) for a future date 𝑇, 𝑋(𝑇), conditional 

on the initial value 𝑋(0), may be written as the stochastic integral (Bjerksund and 

Ekern, 1995): 

 𝑋(𝑇) = 𝑒−𝜅𝜅𝑋(0) + (1 − 𝑒−𝜅𝜅)𝛼 + 𝜎𝑒−𝜅𝜅 � 𝑒−𝜅𝜅𝑑𝑑(𝑢)
𝑇

0
 (11)  

𝑋(𝑇) is normally distributed, and its expected value and its variance, are given by: 

 𝔼0[𝑋(𝑇)|𝑋(0)] = 𝑒−𝜅𝜅𝑋(0) + (1 − 𝑒−𝜅𝜅)𝛼 (12)  

 𝕍𝕍𝕍0[𝑋(𝑇)|𝑋(0)] =
𝜎2

2𝜅
(1 − 𝑒−2𝜅𝜅) (13)  

 

Fig. (3) presents the real hourly log prices without seasonal effects (dotted line), 

the expected value of log daily average prices and the confidence interval of 95% 

(continuous lines). 

Fig. 3 – Results of forecast for the year 2011 given by Eq. (11) 
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As discussed before, 𝑋(𝑇) is normally distributed, with mean and variance given 

by Eqs. (12) and (13), respectively. So we can find the expected value of daily prices 

for each hour of the day: 

 𝔼[𝑆𝑡|𝑋(0)] = 𝔼[𝑒𝑓𝑡 𝑒𝑋𝑡|𝑋(0)] = 𝑒{𝑓𝑡+𝔼0[𝑋(𝑇)]+12𝕍𝕍𝕍0[𝑋(𝑇)]} , (14)  

where 𝑒𝑓𝑡   is deterministic and 𝑒𝑋𝑡  is stochastic. 𝔼[𝑺𝒕|𝑋(0)] is the conditional 

forecast of prices of electricity and can be compared to the actual prices 𝑺𝒕.  

These results provide forecasts for each observation during the out-of-sample 

period. This means that we have hourly forecasts in sequence starting on January 

1st, 2011 hour 1 until November 31st, 2011 hour 24.  

We calculate measures of aggregate error and present the results for the forecasted 

series. Besides, in order to compare the accuracy of the model to the one we 

worked with 24 separate series, we also present here measures for each hour 

separately from this model which works with an entire hourly series. To obtain this 

result, we took the entire hourly forecasted series and separated the forecasts in 24 

series, one for each hour of the day. For example, the aggregate error for hour 1 

series is calculated from the forecasted series composed by 𝔼[𝑆1], 𝔼[𝑆25], 𝔼[𝑆49] 

etc. The results are presented in Table 5. 

Considering the measures of aggregate error, there is no significant gain to work 

with one entire hourly series compared to 24 separate series. The results are very 

similar. We observe again that the accuracy of the model is better for peak hour 

series, although still not satisfactory. The accuracy is worst for the off-peak hours 

in the morning. The real gain is that, instead of working with 24 different models, 

it can be easier to work and adjust only one model. 
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Table 5 – Aggregate error measures 

 24 series 1 series   

  Ln Prices Prices                Prices  

Hour MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE Dif 
MAE 

Dif 
MAPE 

H01 0.31 8.2% 0.35 11.00 24.5% 12.45 11.43 25.3% 13.54  -0.43 -0.7% 

H02 0.47 12.8% 0.55 14.13 35.1% 16.28 12.70 31.5% 14.62  1.43 3.6% 

H03 0.46 12.6% 0.51 13.13 34.8% 14.82 13.36 34.8% 15.15  -0.23 0.1% 

H04 0.52 15.0% 0.59 13.82 39.9% 15.59 14.47 40.4% 16.22  -0.65 -0.6% 

H05 0.51 14.2% 0.57 13.83 37.2% 15.60 14.30 37.9% 16.07  -0.48 -0.7% 

H06 0.42 11.3% 0.49 12.30 29.9% 14.11 13.01 31.2% 14.76  -0.71 -1.3% 

H07 0.39 10.7% 0.48 12.61 29.0% 14.55 14.61 33.2% 16.28  -1.99 -4.2% 

H08 0.29 7.7% 0.38 11.33 23.0% 13.48 12.61 24.8% 14.73  -1.27 -1.8% 

H09 0.22 5.6% 0.28 10.03 18.7% 12.20 9.97 18.3% 12.32  0.06 0.3% 

H10 0.17 4.2% 0.22 8.48 15.1% 10.66 7.90 14.1% 10.06  0.58 1.0% 

H11 0.14 3.6% 0.18 8.12 13.7% 10.13 7.62 12.8%  9.68 0.50 0.9% 

H12 0.20 4.9% 0.35 10.58 17.7% 13.87 8.74 14.5% 11.07  1.84 3.2% 

H13 0.14 3.4% 0.18 7.81 13.3% 9.61 7.99 13.6% 10.21  -0.19 -0.3% 

H14 0.15 3.7% 0.19 7.70 13.8% 9.59 7.52 13.4% 9.62  0.18 0.4% 

H15 0.16 4.1% 0.21 7.89 14.7% 9.78 7.64 14.0% 9.66  0.26 0.7% 

H16 0.18 4.6% 0.23 8.19 15.7% 10.10 7.79 14.7%  9.65  0.40 1.0% 

H17 0.20 5.0% 0.25 8.59 16.6% 10.56 7.96 15.0%  9.77  0.62 1.6% 

H18 0.21 5.2% 0.26 9.82 17.4% 11.97 8.66 14.7% 11.08  1.16 2.7% 

H19 0.20 4.9% 0.24 10.29 16.8% 12.32 9.80 15.1% 12.63  0.49 1.7% 

H20 0.21 5.1% 0.25 10.98 17.4% 13.03 9.32 14.7% 11.90  1.65 2.7% 

H21 0.22 5.4% 0.26 11.03 18.1% 12.79 9.93 16.3% 12.68  1.10 1.8% 

H22 0.22 5.5% 0.25 10.22 17.9% 11.86 10.69 18.9% 13.35  -0.47 -1.0% 

H23 0.22 5.4% 0.25 9.82 17.6% 11.33 10.90 19.8% 13.53  -1.08 -2.2% 

H24 0.27 7.0% 0.30 10.76 21.5% 12.15 11.09 22.4% 13.31  -0.33 -0.9% 

Overall 0.27 7% 0.33 10.52 21.6% 12.45 10.41 21.3% 12.77 0.11 0.4% 
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5. Conclusions 

We implemented a similar mean-reversion methodology we have been using to 

model electricity prices, but now considering an hourly series, where the 

observations are hourly prices in sequence.  

We decomposed the logarithms of electricity price series in two parts. The first 

part was related to a deterministic function to model daily, weekly and yearly 

seasonality. We observed an expected shape in both monthly and hourly 

coefficients curves. In monthly coefficients curve, we obtained higher values for 

the months of September, October, November and December and lower values for 

the months of March, April and May. Regarding the hourly coefficients curve, we 

observed higher price levels in peak hours (hours 9 to 20).    

After the elimination of seasonal effects we used a mean-reverting stochastic 

process to model the natural logarithm of electricity prices. Using the results of 

parameters’ estimation we calculated the forecast for the stochastic process 𝑿𝒕, 

and then the forecasts for the hourly electricity prices. Some measures of 

aggregate error are presented, in order to compare the results with the results 

obtained from working with 24 separate series. 

Considering the measures of aggregate error, there is no significant gain to work 

with one entire hourly series compared to 24 separate series. The results are very 

similar. We observe again that the accuracy of the model is better for peak hour 

series, although still not satisfactory. The accuracy is worst for the off-peak hours 

in the morning. The real gain is that, instead of working with 24 different models, 

it can be easier to work and adjust only one model. 
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