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Abstract: Assigning meaningful weights to evaluation criteria remains one of the central challenges in 

Multi-Criteria Decision Analysis (MCDA). While precise preference elicitation is foundational to many 

MCDA methods, decision-makers often struggle to articulate exact trade-offs, particularly when facing 

uncertainty, cognitive burden, or a large number of criteria. This article surveys current directions in 

surrogate weighting. It presents a comprehensive examination of surrogate weighting techniques designed 

to generate plausible weight vectors from limited or indirect information. Drawing on developments span-

ning five decades, it categorises surrogate methods into four principal families: ordinal rank-based, car-

dinal extensions, dominance- and regression-based, and objective weighting approaches. Each category 

is analysed in terms of theoretical motivation, algorithmic formulation, robustness, and empirical perfor-

mance. The study reviews classical ordinal methods such as Rank Sum and Rank Order Centroid in rela-

tion to contemporary enhancements like the SR weighting schemes. Dominance-based models and sto-

chastic techniques such as SMAA are also discussed for their ability to support decisions without com-

mitting to a single weight vector. Objective weighting approaches, including entropy and CRITIC, are 

positioned as valuable complements when preference data are unavailable. Performance evaluation crite-

ria, such as hit ratio, rank correlation, and stability radius, are used to compare methods systematically 

across simulated decision problems. While most articles take a narrow view, looking at the surrogate 

problem from a specific methodological standpoint, this article instead makes an overview of many cur-

rent trends and research directions that aim at simplifying weight elicitation by automating the weight 

generation through representations and algorithms. The findings suggest that no single research direction 

dominates across all contexts; rather, the suitability depends on the available input structure and the de-

sired goals with the analyses.  

Keywords: Multi-Criteria Decision Analysis, Surrogate Weights, Preference Modelling, Weight Generation 

Techniques, Ordinal and Cardinal Weighting, Entropy Weighting 

1. Introduction 

Multi-criteria decision analysis (MCDA) constitutes an important part of decision theory as 

well as operational research, concerned with formulating, structuring, and solving problems 

that involve evaluating alternatives based on multiple, often conflicting, criteria or perspectives 

(Greco et al., 2016). At its core, MCDA provides a formal framework for integrating disparate 

pieces of information into coherent judgements, allowing decision-makers to move from con-

flicting data and values to defensible conclusions (Keeney and Raiffa, 1993). Its emergence has 

been motivated by the recognition that many real-world decisions resist reduction to a single 

objective function. A basic idea of MCDA is that decision alternatives are seldom evaluated on 

a single perspective. Real-world decision contexts frequently involve a mixture of economic, 

technical, environmental, and social criteria, each of which may be measured in different units 

and valued differently by stakeholders. MCDA methods provide a mathematical and conceptual 

toolkit for integrating these diverse dimensions into an overall assessment. Depending on the 
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context, this integration may take the form of a complete ranking of alternatives, an identifica-

tion of robustly non-dominated solutions, or the selection of a preferred compromise. The 

power of MCDA thus arises from its ability to accommodate conflicting objectives while main-

taining logical consistency and traceability. Unlike single-criterion optimisation, which pre-

sumes a clearly defined goal function and scale of value, MCDA allows value pluralism. This 

feature positions MCDA as both a computational framework and an epistemological tool. It 

provides mechanisms not only for calculating rankings or scores but also for clarifying the value 

structures and preference assumptions underlying those results (Ishizaka and Nemery, 2013). 

MCDA methods can be differentiated along several dimensions, reflecting varying assump-

tions about trade-offs, information availability, and decision-maker engagement. Some models 

are compensatory, allowing poor performance on one criterion to be offset by superior perfor-

mance on another, as in weighted-sum models and multi-attribute utility theory (MAUT) 

(Keeney and Raiffa, 1993). Others are non-compensatory, using thresholds, outranking, or veto 

principles to model strict acceptability conditions, as seen in the ÉLECTRE and PROMÉTHÉE 

families (Roy, 1991; Brans and Mareschal, 2005). Further distinctions arise between construc-

tive methods, which build a preference model interactively with the decision-maker, and de-

scriptive or indirect methods, which infer preferences from holistic judgements or observed 

choices. The diversity of MCDA methods reflects the diversity of decision contexts. Some ap-

proaches are rooted in value theory and assume fully compensatory behaviour, where trade-offs 

among criteria are modelled explicitly using additive value functions or utility constructs. Oth-

ers assume non-compensatory logic, introducing veto thresholds or outranking relations to rep-

resent decision-maker caution or intolerance for poor performance on certain dimensions 

(Bouyssou et al., 2006). These differing assumptions have led to the development of method 

families such as MAUT/SAW, AHP and outranking (ÉLECTRE, PROMÉTHÉE). Each offers 

distinct epistemological bases and computational mechanisms, and their selection often hinges 

as much on the decision-maker’s comfort with a particular mode of expression as on formal 

properties of the models themselves. While most articles take a narrow view, looking at the 

surrogate problem from a specific methodological standpoint, this article instead makes an 

overview of many current trends and research directions that aim at simplifying weight elicita-

tion by automating the weight generation through representations and algorithms. 

2. Background 

In recent decades, MCDA has broadened its methodological base to include formal treatments 

of preference uncertainty and incomplete information. It is now common to distinguish between 

interactive models, in which the decision-maker refines preferences during the evaluation pro-

cess, and non-interactive or a priori models, in which all preference information is specified in 

advance (Belton and Stewart, 2002). The former group includes techniques that give feedback 

iteratively to converge on a preferred solution, while the latter relies on constructing a model 

based on the information available at the outset. In both cases, increasing attention has been 

given to the robustness of recommendations, particularly in light of incomplete preference input 

or the presence of imprecise data. Robustness in MCDA has been conceptualised in various 

ways. It may refer to the stability of rankings under small perturbations in weight parameters, 

the consistency of conclusions across different normalisation or scaling procedures, or the ex-

tent to which alternative decisions remain optimal under a range of admissible inputs (Roy and 

Slowinski, 2013). A robust MCDA model is one that offers recommendations not just under 

idealised assumptions, but under real-world uncertainty and imperfection. As such, robustness 

analysis has become a standard component of serious MCDA applications, whether through 
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sensitivity analysis, scenario analysis, or the identification of decision regions where multiple 

alternatives perform equivalently well. 

In addition to modelling preference structures, MCDA also provides tools for supporting 

deliberative processes. It plays an increasingly important role in participatory decision-making, 

where multiple stakeholders must converge on an acceptable solution. In such contexts, MCDA 

serves not only as a computational apparatus but also as a communicative device, making ex-

plicit the trade-offs and value conflicts involved. It structures discussions around transparent 

criteria and provides a vocabulary for articulating compromise. Techniques such as multi-actor 

aggregation, value-focused thinking, and consensus models are now embedded in the MCDA 

literature, reinforcing its role in collaborative governance and multi-stakeholder negotiation (de 

Marchi et al., 2000). 

3. Surrogate Weights 

Among the central components of any MCDA model is the elicitation and representation of 

preferences. This contains not only the evaluations of alternatives under each criterion but also 

the relative importance assigned to the criteria themselves. These importance weights function 

as the value-generating structure for the aggregation process. Specifying them is known to be 

cognitively demanding, particularly in high-dimensional problems or under uncertainty. Indi-

viduals often lack the clarity or confidence to express sharp trade-offs, especially when alter-

natives are complex or criteria are unfamiliar (French and Xu, 2005). As a result, a significant 

portion of MCDA research is devoted to preference modelling strategies that either reduce the 

cognitive load or reconstruct preferences from partial or indirect inputs. 

To address the cognitive burden and incomplete preference information issues, researchers 

have since the 1970s developed automatic weight generation techniques, often termed surrogate 

weights, which derive a weight vector from limited or ordinal information about preferences. 

Over almost five decades, but especially after 2010, a rich variety of theoretical and algorithmic 

approaches to surrogate weighting have emerged. These methods range from simple rank-based 

formulas to more complex dominance-driven models and objective data-driven schemes. This 

research overview spans the evolution of these approaches, highlighting major directions such 

as rank-based ordinal and cardinal methods, geometric techniques, dominance-based models 

and entropy-based schemes. 

3.1 Ordinal Surrogates 

Early recognition of the need for surrogate weighting can be seen in the work of Stillwell et al. 

(1981), who provided one of the first comparisons of weight approximation techniques in multi-

attribute utility problems. They introduced the idea of simple rank-order weighting heuristics 

that require only an ordering of criteria by importance, not exact numerical trade-offs. The 

premise was that decision-makers find it easier to rank criteria than to assign exact weights, so 

one could convert the rank order into approximate weights by a formula. Stillwell et al. pro-

posed classic methods like the Rank Sum (RS) and Rank Reciprocal (RR) schemes. In Rank 

Sum weighting, weights are assigned in proportion to rank positions. If there are N criteria, the 

most important receives the number N, the second N1, etc., down to 1, and then the sum is 

normalised to 1 by division. In Rank Reciprocal, weights are instead proportional to the recip-

rocal of each criterion’s rank (i.e. 1/N) and then normalised, hence its name. These simple for-

mulas were motivated by the idea of maximising discrimination among alternatives using only 

ordinal importance information. Stillwell et al. also considered a Rank Exponent (RE) method 
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as a generalisation, where weights decline according to a power function of the rank position. 

The Rank Exponent method essentially introduces a parameter p governing how steeply 

weights decrease: p = 0 yields equal weights, p = 1 reproduces Rank Sum, and p values in 

between moderate the weight function. In the original formulation, Stillwell’s rank exponent 

scheme required knowing the weight of the top criterion to calibrate the exponent, which fell 

within 0 < p < 1 (Barron and Barrett, 1996). Later, (Danielson and Ekenberg, 2020) generalised 

Rank Exponent to RX, allowing p > 1 as well, and showed that RX performed best with p 

around 1.51.6 for most decision models. 

By the 1990s, these rank-based surrogate weight methods became more refined and were 

systematically evaluated. Barron and Barrett used this work in the MCDA method SMARTER 

(Simple Multi-Attribute Rating Technique Exploiting Ranks). They used the now well-known 

Rank Order Centroid (ROC) method, attributed to Barron (1992). The ROC method sets each 

weight to the average of all possible weights it could take given its rank, effectively the centroid 

of the feasible weight simplex under the rank ordering constraints. If the criteria are ranked 

from 1 (most important) to N (least important), the ROC weight for the criterion ranked in 

position i is 𝑤𝑖 =  
1

𝑁
∑

1

𝑗

𝑁
𝑗=1 . This formula yields a sharply decreasing weight profile, with 

higher-ranked criteria getting proportionally more weight, sometimes overwhelmingly so. In-

tuitively, ROC assumes that a priori (in the absence of detailed information) all weight assign-

ments consistent with the rank order are equally likely, and it uses the average (centroid) of that 

set. Early simulation studies thought that ROC weights often led to better decision outcomes 

(i.e. higher chance of selecting the true best alternative) than other rank-based schemes known 

at the time. For example, Barron and Barrett (1996) reported that ROC outperformed Equal 

Weights (EW), RS and RR in terms of decision quality across many random test problems. 

Surprisingly, before their measurements, many held the view that EW was a plausible method 

with relatively good performance, such that the additional effort required to elicit more precise 

weight information was often seen as unnecessary. Subsequent analyses indicated that RR and 

definitely even more so EW are generally less effective surrogates and are easily overshadowed 

by improved methods like ROC and others (Chergui and Jiménez-Martín, 2024).  

By the beginning of the 2010s, it became common to view RS, RR and ROC as baselines to 

be improved upon. These older methods, while easy to apply, have limited expressiveness (they 

assume a fixed pattern of weight decline) and may perform poorly if the true criterion im-

portance differences are irregular. The early rank-based methods also set a standard for under-

standing trade-offs between accuracy and discrimination. RS and ROC heavily discriminate 

between ranks (especially ROC, giving a big spread), which can misrepresent a decision-maker 

who actually saw criteria as nearly equal; RR is more “soft” in that it keeps weights tighter. A 

shortcoming, however, is that if the true preferences are very skewed (for instance, the top 

criterion is vastly more important than all others), RR will underestimate those differences, 

potentially leading to suboptimal choices in those cases. 

Centroid-based approaches form a subset of rank-based methods, represented by ROC de-

scribed above. The term centroid emphasises its geometric interpretation: given a partial order 

on weights (e.g. criteria 1 ≥ 2 ≥ 3 … ≥ N in importance), one can consider the convex polytope 

of all weight vectors satisfying those order constraints (and non-negativity, summing to 1). The 

centroid of this feasible region, i.e. the average of all extreme points or the uniform centroid of 

the polytope, is a seemingly natural candidate for a neutral or unbiased weight vector respecting 

the rank order. The ROC formula is exactly that when only the rank ordering (no further 
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strength information) is known. One attractive property of the centroid weight is that it is in-

variant to any further ignorance. It does not arbitrarily favour any corner of the weight space 

and thus can be seen as a neutral compromise. This relates to the principle of insufficient reason 

or maximum entropy: if nothing beyond an order is known, one might assume weights are as 

“spread out” as possible (maximum entropy) under that order, yielding the centroid (Ezell et 

al., 2021). In practice, centroid weights (ROC) tend to have a bias toward the highest ranked 

criterion. Despite this, extensive empirical tests have affirmed ROC’s performance across many 

decision distributions, making it “the most famous method in the state-of-the-art” of rank-based 

weighting in earlier times (Ahn, 2011). This was before the upsurge of surrogate weight re-

search in the 2010s. It became a benchmark for new methods, and some recent studies have 

proposed tweaks to ROC. As an example, the Improved ROC (IROC) method adjusts the aver-

aging formula to further enhance accuracy in certain decision problems (Hatefi, 2023). Overall, 

centroid approaches have the advantages of convexity (providing interior and balanced weight 

vectors) and often exhibit robustness to noisy inputs, at the cost of good performance when the 

decision-maker’s weight distribution is more even. 

3.2 Cardinal Surrogates 

A limitation of ordinal rank-order methods is their lack of expressiveness. They treat all suc-

cessive rank information equivalently, which may not reflect the decision-maker’s view. For 

instance, a decision-maker might feel the first criterion is much more important than the second, 

while the second and 3rd are almost tied; a simple rank order 1 > 2 > 3 does not convey this 

nuance. To bridge this gap, researchers introduced methods that accept additional preference 

strength information beyond a simple ordering. One classic approach is the Simos method, pro-

posed by Simos in 1990. In Simos’ procedure, the decision-maker sorts criteria on a series of 

cards from least to most important, and is allowed to insert blank cards to signify larger “gaps” 

between importance levels. The analyst then computes weights by assigning equal increments 

within groups of equal importance and larger jumps between groups, effectively translating the 

ordinal grouping into cardinal weights. A refined version known as Revised Simos (Figueira 

and Roy, 2002) adjusted how blank cards are counted to obtain more consistent results. The 

Simos family of methods was one of the first to incorporate cardinal information, which can 

alternatively be seen as a mild form of ratio information while remaining fairly simple for elic-

itation. Algorithmically, Simos’ method yields weights by linear interpolation: all criteria in the 

lowest importance category get the smallest weight, those in the next category get a higher 

weight determined by the number of blank cards (importance levels) in between, and so on. 

This method, being cardinal, lies in between ordinal and fully interactive weighting, and has 

been popular in conjunction with the ÉLECTRE method. However, despite its intuitive appeal, 

analyses have found that Simos’ approach does not perform any better than other good rank-

based cardinal methods, for example cardinal extensions to ordinal methods such as RS, SR 

and ROC, in terms of precision and robustness (Danielson and Ekenberg (2017). One major 

disadvantage of Simos’ method is that it requires an exogenously determined parameter, thus 

not making it a fully automatic surrogate weight method. 

Modern developments have proposed alternative ways to encode preference strength on car-

dinal scales. For example, one can ask the decision-maker to rate the differences between suc-

cessive ranks on a verbal or numeric semantic scale (e.g. “criterion 1 is of much greater im-

portance than criterion 2, which is only slightly more important than criterion 3”, etc.). This 

information can then be incorporated into weight-generation formulas. Cardinal RS (CRS) and 

Cardinal RR (CRR) are extensions of RS and RR that allow the decision-maker to specify not 
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just an ordering but also an importance level for each rank position. One way to implement this 

is to imagine an “importance scale” with Q discrete levels (for instance, 10 levels from least to 

most important). Each criterion’s ordinal rank is mapped to a specific position on this scale, 

which may not be equally spaced. The decision-maker can effectively compress or stretch gaps 

between ranks by assigning ranks to scale levels. Danielson and Ekenberg (2015) introduced a 

method called Cardinal Rank Order Centroid (CRC) which generalises ROC using the im-

portance scale concept. In their formulation, one first computes the “ordinal ROC” weights as 

if the criteria were simply ranked, then treats those as baseline weights for each importance 

level on the scale, and finally recomputes a centroid weight given the criteria’s assigned levels 

on the scale. The result is a Cardinal ROC (CRC) weight vector that reduces to ordinary ROC 

if all rank gaps are equal but deviates if the decision-maker indicates smaller (none) or larger 

gaps for some ranks. Likewise, they define a Cardinal SR (CSR) method that extends the ordinal 

SR concept to account for uneven rank intervals (Danielson and Ekenberg, 2015).  

In an empirical investigation spanning many weighting scenarios, Danielson and Ekenberg 

(2014) found that this CSR method achieved very good precision and stability. It was more 

accurate in matching true underlying weights than earlier methods and showed good robustness 

under reasonable assumptions about preference strength variability. In fact, the ordinal SR ap-

proach from (Danielson and Ekenberg, 2014) and its cardinal counterpart CSR outperform not 

only RS/RR/ROC but also other, more recent proposals. These findings align with a broader 

insight: allowing some quantitative input (like strength ranks or a semantic differential) can 

significantly improve weight estimation if used judiciously. Not all such extensions are equal, 

however. The weighting method must integrate the extra information in a way that remains 

robust. For example, Chergui and Jiménez-Martín (2024) conclude in a comprehensive review 

that when the decision-maker provides additional information via a semantic scale, the best 

cardinal method is indeed CSR. On the other hand, if only a pure rank order is given (no strength 

information), or if the decision-maker provides other forms of inputs (precise numerical ratios, 

a ranking of differences, etc.), the literature has several promising methods but no single one 

has been universally recommended yet. This underscores that research is still ongoing to iden-

tify the most effective and reliable surrogate weighting techniques for each type of preference 

input. 

3.3 Regression Surrogates 

Another branch of methodologies treats the weight derivation problem as an inverse decision 

problem using dominance relations or ordinal regression. Instead of starting from criteria pref-

erences, these approaches start from holistic judgments about alternatives and work backward 

to infer weights that would make those judgments consistent with an additive utility model. For 

instance, the old UTA/UTASTAR methods (Jacquet-Lagrèze and Słowiński, 1982; Siskos and 

Yannacopoulos, 1985) take as input a ranking or partial ranking of a set of alternatives and 

solve a linear programming problem to find an additive value function (criteria weights and 

value scores on each criterion) that best reproduces that ranking. Similarly, in ordinal regression 

approaches, the decision-maker might say “Alternative A should outrank B, given my prefer-

ences” (without explicitly stating any weights), and the algorithm searches for any weight vec-

tor (and perhaps criterion utility shapes) that satisfies these pairwise dominance statements. If 

multiple weight vectors can fit the preference ordering, the outcome might be a set of feasible 

weights rather than a unique surrogate. Early work in this direction includes the ÉLECTRE 

family’s indirect weight inference and MACBETH (which uses qualitative pairwise compari-

sons to derive interval scales), though those involve some user-supplied judgments.  
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A later key contribution was the development of robust ordinal regression (ROR) for 

MCDA. ROR does not select a single “best” weight vector. Instead, it characterises all weight 

vectors compatible with the decision-maker’s ordinal statements (on criteria or alternatives) 

and uses this to provide robust conclusions such as identifying alternatives that are optimal for 

all such weights or calculating the frequency an alternative is optimal (Sarabando et al., 2019). 

This approach gave rise to tools like SMAA (Stochastic Multi-criteria Acceptability Analysis), 

which treat uncertain or partially specified weights as random variables and compute statistics 

such as each alternative’s probability of being top-ranked (Mazurek and Strzałka 2022). For 

example, SMAA can assume a uniform distribution over all weight vectors consistent with 

whatever partial information is available and estimate an acceptability index for each alternative 

(the percentage of weight vectors for which that alternative is the best. These dominance-based 

techniques shift the focus from picking a single surrogate weight vector to understanding the 

space of possible weights. They leverage pairwise dominance: if under all admissible weights 

alternative A has a higher total score than B, A ≻ B can be concluded without ever having exact 

weights.  

Some recent methods explicitly compute dominance intensity indices. For instance, Mateos 

et al. (2014) proposed to calculate a dominance matrix where each element indicates how 

strongly one alternative dominates another across the weight space. By aggregating these pair-

wise dominance values, they derive a ranking of alternatives without needing to commit to one 

weight vector. Such methods are particularly useful when criteria weights are highly conten-

tious or hard to pin down: they produce a ranking that is robust to weight uncertainty and high-

light cases of close trade-offs (where dominance intensity is low or mutual). An illustrative 

example is minimax regret weighting: one can choose the alternative that minimises the maxi-

mum regret over all weight vectors consistent with the rank order of criteria. This essentially 

finds a decision that is safest against weight ambiguity, a concept explored by Sarabando and 

Dias (2009) who compared decision rules like maximax, maximin (optimist/pessimist criteria), 

and central weight heuristics under ordinal weight information and measured how often each 

rule selected the truly best alternative (their “hit rate”). Interestingly, they found that using the 

ROC weights as a representative point estimate was quite competitive with more elaborate rules 

across many test problems.  

In general, dominance-based models contribute important theoretical insights: for instance, 

they highlight that if a particular alternative is never top-ranked under any weight vector satis-

fying the decision-maker’s constraints, then no surrogate weighting (short of violating the de-

cision-maker’s input) could make it optimal. They also introduce concepts like weight stability 

regions, the set of weight vectors for which a given alternative remains optimal. Recent work 

by Mazurek and Strzałka (2022) defined a notion of central weights for each alternative: essen-

tially the weight vector within that alternative’s optimality region that is farthest from the 

boundaries (in some metric), along with a robustness radius that indicates how much weights 

can change before the alternative loses its top position. These concepts provide quantitative 

robustness indices: e.g. an alternative with a large stability radius is robustly optimal (requires 

a big weight perturbation to lose its status. While dominance and regression approaches are not 

“surrogate weighting” in the sense of producing a single weight vector, they often underpin the 

validation of surrogate methods and guide the design of new ones. By understanding the struc-

ture of weight space and dominance, researchers can craft surrogate weight formulas that, for 

example, maximise the probability of identifying the correct decision or maximise the stability 

of the choice. 
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3.4 Entropy Surrogates 

Apart from subjective preference-based methods, a distinct category of automatic weight gen-

eration consists of objective weighting methods, which determine criteria weights from the data 

characteristics of the decision matrix alone (without any direct input from the decision-maker 

about importance). These approaches, often described as geometric or entropy-based, stem 

from the idea that the relative importance of a criterion can sometimes be inferred from how 

much information or variability that criterion contributes to the overall evaluation of alterna-

tives. One of the best-known objective techniques is the Shannon entropy weight method. In 

this method, each criterion’s performances across the set of alternatives are analysed to compute 

an entropy value 𝐸𝑗 which reflects the amount of uncertainty or “disorder” in that criterion. If 

criterion j has identical values for all alternatives, its entropy is maximal (indicating it provides 

no useful discrimination) and it should receive a low weight. Conversely, if one alternative is 

very high and another very low on that criterion (high contrast), entropy is lower and the crite-

rion is considered more informative for making distinctions (Zakeri et al., 2025). The normal-

ised complement of entropy (often 𝑑𝑗 = 1 − 𝐸𝑗) is taken as a measure of criterion j’s infor-

mation content, and weights are assigned proportionally to 𝑑𝑗. This entropy weight scheme 

(dating back to the 1980s) has been widely used in engineering and selection problems where 

the criteria are objective indicators (Dwivedi, and Sharma 2022). It automatically emphasises 

criteria that show more divergence among alternatives, on the rationale that such criteria carry 

more decision-relevant information.  

A closely related method is the CRITIC method (Criteria Importance Through Inter-criteria 

Correlation) proposed by Diakoulaki et al. (1995). CRITIC goes beyond individual criterion 

variability by also accounting for conflict or redundancy between criteria. For each criterion j, 

it computes a contrast intensity 𝐶𝑗 =  ∑ (1 − 𝑟𝑗𝑘
𝑁
𝑘=1 ) where 𝑗 is the standard deviation of cri-

terion j (measuring its intra-criterion variability) and 𝑟𝑗𝑘 is the Pearson correlation coefficient 

between criteria j and k. The term ∑ (1 − rjk𝑘 ) effectively gauges how independent criterion j 

is from the others. It sums to a larger value if j is not strongly correlated with any other criterion, 

meaning j provides unique information. Thus, 𝐶𝑗 will be high for criteria that both vary greatly 

across alternatives and are not duplicating information provided by other criteria. These 𝐶𝑗 val-

ues are then normalised into weights. The philosophy behind CRITIC is to extract all the infor-

mation included in the criteria investigated. Criteria with higher inherent information (variance) 

and less overlap with others get more weight. In a sense, entropy and CRITIC weights are ge-

ometric in that they depend on the geometry of the data cloud in the criteria space (entropy 

relates to the distribution shape, CRITIC to data spread and correlations). They require no input 

from the decision-maker, which makes them useful as default or supporting analyses.  

However, these methods implicitly assume that all variation is valuable, which may not 

align with a decision-maker’s values. A criterion might show high variability, but the decision-

maker could still judge it as unimportant (e.g. perhaps cost varies a lot, but for some reason, 

cost is not a key criterion in a particular decision). Therefore, objective weights are often used 

in combination with subjective judgment rather than a replacement. They do, nonetheless, sat-

isfy certain formal properties: typically, the objective weight formulas define a unique convex 

weight vector given the data, and these weights often maximise some entropy or dispersion 

criterion. For example, equal weights can be seen as the weights that maximise the entropy of 

the weighted sum since they treat all criteria uniformly (Ezell et al., 2021), whereas CRITIC 

weights could be seen as solving a certain variance allocation problem. In terms of robustness, 
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objective weights can be sensitive to outliers or changes in the dataset (since a change in alter-

natives’ values alters the computed weights). This raises an interesting point about stability: a 

robust surrogate weighting method ideally should not be too volatile to minor changes.  

Some extensions in recent years, like MEREC (Method based on Removal Effects of Crite-

ria), emphasise robustness by measuring how the overall evaluation would change if a criterion 

was removed (Keshavarz-Ghorabaee et al., 2021). In MEREC, the importance of a criterion is 

judged by the difference in some aggregate score (e.g. sum of performances or a composite 

utility) with and without that criterion; larger differences imply the criterion has a greater im-

pact, thus a higher weight. This method is another data-driven weighting heuristic that tends to 

align with CRITIC/entropy in highlighting criteria that significantly affect outcomes. 

It is important to point out that objective methods by design ignore the decision-maker’s 

subjective value trade-offs since they measure information content, not value. Therefore, in 

theoretical discussions, they are often recommended as a starting point or a complementary 

analysis rather than a final say on weights. They work well in contexts where no decision-maker 

is available to provide detailed preferences, or where one wants to test how much the structure 

of the data alone would dictate the weighting. In the broader landscape of surrogate weighting, 

objective methods represent an extreme end of information requirement (requiring zero prefer-

ence input), opposite the other extreme of full preference articulation (AHP, swing weights, 

etc.). Many real-world MCDA applications use a mix, for example using entropy weights to set 

an initial weighting which is then adjusted based on stakeholder feedback. 

4. Performance Evaluation 

After deriving weights through any of the above methods, researchers evaluate their perfor-

mance using various validation methodologies and metrics. Since the ground truth weights in a 

real decision are rarely known, a common approach is simulation experiments: one generates 

synthetic decision problems with known “true” weights, applies the surrogate weighting meth-

ods using limited information (like only the rank order of those true weights), and checks how 

well each method approximates the true decision outcome (Sarabando et al., 2019). One key 

metric is the hit ratio, which measures the frequency that a method correctly identifies the top-

ranked alternative (or the correct full ranking) as would be obtained with the true weights (Cher-

gui and Jiménez-Martín, 2024). For instance, if method X yields a weight vector that leads to 

the same best choice as the true weight vector in 90 out of 100 simulated cases, its hit ratio is 

90%. A high hit ratio indicates a method is effective at preserving the decision ordering. An-

other common metric is the rank correlation (such as Kendall’s tau or Spearman’s rho) between 

the alternative ranking produced by the surrogate weights and the ranking under the true weights 

(Chergui and Jiménez-Martín, 2024). This assesses overall ordering accuracy, not just the top 

choice. A high Kendall’s tau (close to 1) means the surrogate weighting closely mirrors the true 

ordering of all alternatives (Danielson and Ekenberg, 2017). 

Beyond alternative ordering, one can evaluate weight vector accuracy directly. This might 

involve computing the distance between the surrogate weight vector and the true weight vector 

(e.g. Euclidean or Manhattan distance in the weight space). However, a small error in weights 

does not always translate to a wrong decision if the decision problem is insensitive to those 

differences. Therefore, outcome-based measures (such as hit rate, rank correlation or regret) are 

usually more relevant. In some studies, researchers use the mean absolute error or mean squared 

error of weights as a descriptive metric, but focus interpretation on whether those errors matter 

for the decision. 
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5. Robustness 

Another performance aspect is robustness: how stable the method’s recommendations are under 

uncertainty or varying assumptions. Robustness can refer to internal robustness (sensitivity to 

noise in the provided input) or external robustness (stability of the decision with respect to 

weight perturbations). Internal robustness is evaluated by, for example, introducing slight errors 

or inconsistencies in the decision-maker’s input (like a small mistake in the rank ordering) and 

seeing if the method still yields similar weights. A robust method should not drastically change 

weights for minor input changes. External robustness is often quantified by metrics like the 

stability radius or robustness index mentioned earlier. For a given alternative that is top-ranked 

by the surrogate weights, one can compute the minimum change in the weight vector needed to 

make a different alternative become the best. Methods that yield a larger such radius (meaning 

their recommended decision remains best for a larger neighbourhood of weight perturbations) 

are considered more robust.  

Mazurek and Strzałka’s (2022) concept of central weights and robustness radius provides a 

concrete way to measure this. If surrogate method A often produces weight vectors that are near 

the centre of the true optimality region (hence large radius), and method B produces weights 

near the boundary (small perturbation could flip the decision), then A would be judged more 

robust in a practical sense. In the context of rank-based surrogates, ROC has been lauded for 

its robustness: it tends to pick weight vectors that are not extreme, thereby avoiding borderline 

cases. On the other hand, a method like pure Rank Reciprocal yields more extreme weights 

(favouring the top-ranked criterion heavily), which could be risky. If the top two criteria were 

actually closer in importance than assumed, such a weighting might misrank alternatives. 

Researchers also consider “efficacy” metrics that combine multiple aspects, for example a 

composite score that penalises both large weight estimation error and wrong alternative selec-

tion. Some studies use a loss function approach: define a loss if the chosen alternative is not the 

true best (perhaps weighted by how far down it is), or use the concept of regret (difference in 

value between the alternative chosen by surrogate weights and the value of the ideal alternative 

under true weights). The maximum regret across scenarios or the average regret can indicate 

how well a method performs in the worst case or on average. Sarabando and Dias (2009) ex-

amined such measures by looking at how close each method’s chosen alternative’s utility was 

to the optimal utility, on average, a measure also used in (Danielson and Ekenberg, 2016). 

6. Recommendations 

This has led to guidelines and recommendations, for instance: “if the decision-maker can pro-

vide a rough quantitative sense of differences (e.g. via a semantic scale of importance), then 

use method X”; “if only a rank order is available with no strength information, method Y (like 

ROC or CSR) is a safe choice”; if data characteristics are the only guide (no preference input), 

use entropy to at least reflect criterion variability” and so on. A recent review by Chergui and 

Jiménez-Martín (2024) attempts to identify which weighting methods are best suited for which 

type of input information, summarising decades of comparison studies. They concluded that for 

purely ordinal inputs, several methods (not just one) are “outstanding” and more comparative 

analysis is needed to pinpoint a winner, whereas for cardinal input, a clear winner CSR) 

emerged. A guide for choosing between ordinal and cardinal surrogate methods is provided in 

(Danielson and Ekenberg, 2021).  
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7. Conclusion 

Automatic weight generation in MCDA has evolved from simple ad-hoc rules to a sophisticated 

toolkit of methods grounded in both normative theory and empirical testing. Rank-based meth-

ods like RS, RR, and ROC provided the first viable surrogates, with ROC generally offering an 

excellent balance of discrimination and robustness. Centroid/average approaches formalised the 

idea of neutrality under ignorance, giving a principled rationale for methods like ROC. En-

hancements incorporating strength information (Simos, ROL, CSR, etc.) have increased the 

expressiveness of surrogate weights, allowing decision-makers to convey more nuance and 

thereby improving accuracy when used appropriately. Dominance-based models and ordinal 

regression shifted focus to what can be definitively concluded without precise weights, enrich-

ing our understanding of weight robustness and guiding the creation of surrogates that perform 

well across many weight scenarios. Geometric and entropy-based objective weighting offered 

an orthogonal perspective by deriving weights from data patterns, which is useful in the absence 

of preference information and ensures criteria with greater impact (variance or information) are 

not overlooked.  

Each category comes with trade-offs in convexity (extreme vs. balanced weighting), robust-

ness (sensitivity to input or data), information needs, and ability to represent the decision-

maker’s true value structure. The state-of-the-art today does not point to a one-size-fits-all so-

lution; rather, the best surrogate weighting method depends on the context of information and 

the desired properties. If a decision-maker can only supply a rank ordering, methods like SR or 

other advanced ordinal techniques are recommended for their proven efficacy. If some strength 

distinctions are available, newer methods like CSR should be employed. And if no subjective 

input is available, entropy or CRITIC weights can serve as a starting point, albeit remaining 

cautious of their assumptions. The literature since 2010 has greatly expanded the toolbox and 

provided systematic comparisons, but it also highlights open questions. As noted recently by 

researchers, further comparative analyses are needed, especially for cases with only ordinal 

inputs, to decisively recommend a single method. The ongoing development of validation 

frameworks, from simulation testbeds to analytical measures of robustness, will continue to 

shape the understanding of which surrogate weights perform the best and under which circum-

stances. 
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