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Scope of Document 

This document is a requirement for graduation at KTH and describes some 

of the major differences between, on one hand, my approach and, on the 

other hand, Per-Erik Malmnäs’ and Love Ekenberg’s approach to interval 

decision analysis. We all work in the same research group, DECIDE, and 

two of us have had the third as thesis supervisor, Per-Erik Malmnäs, so 

there are similarities. The research topic is similar – decision analysis using 

imprecise information – and the two different research directions were 

both inspired by Malmnäs’ old interest in philosophical decision analysis. 

Research Differences 

My starting point was, to some extent, Malmnäs’ work during the 1980s and 

early 1990s. This was also the starting point for Ekenberg and I was familiar 

with Malmnäs’ and Ekenberg’s work since I was, as a new Ph.D. student, 

the implementer of the  decision solver software based on Malmnäs’ and 

Ekenberg’s results (1993). It was during that implementation that I realised 

that such a decision-analytic method must have rather different and more 

powerful features and I decided to make that my thesis topic [D97]. Some 

of the more important differences include: 

• Constraints are not enough, especially since the decision maker is told 

to be deliberately imprecise – they will be too wide and the evaluation 

will have too much overlap in the sense that too many plausible 

solutions have different alternatives as the preferred one. The inter-

pretation of constraints as ‘negative’ statements, cutting off excluded 

parts of the space, and the introduction of estimates as ‘positive’ 

statements solve this problem. 

• The evaluation rules were not powerful enough, showing the ‘t’ values 

for the alternatives separately. Also, the concept of proportion was 

flawed, as is discussed separately below. The introduction of the 

concepts of contraction and expansion rectifies this and makes the 

Delta method coincide with the ordinary expected value at full 

contraction, which is not the case with proportions. 

• The evaluation algorithm in the  solver was too slow and it covered 

only the case where a strict order was forced on all the values in each 
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alternative. Also, it required more preconditions than was realised at 

that time. The corrected algorithm is called VB-Opt in the thesis.1 The 

main algorithm in the thesis is instead PB-Opt, covering a more 

realistic subset of possible constraint sets and admitting fast solving of 

a large class of decision problems. Also, the algorithms in  were not 

formulated in terms of well-known procedures, such as for example 

LP formulations for consistency and hull calculations. Further, the 

bilinear elimination algorithm suggested by Malmnäs suffered from 

severe complexity and was not practically implementable. In my thesis, 

I suggest a solver hierarchy with good performance for the exact 

global solution and nice approximate behaviour for local anytime 

results (suitable for interactive applications). 

More information on the differences is provided at the beginning of the 

thesis. In my thesis preface [D97] there is a section called Contributions, 

which tries to list my research findings without referring to flaws in 

Malmnäs’ and Ekenberg’s work, who are good friends and esteemed 

colleagues, since I have no desire to point out other’s mistakes. However, 

because it is a requirement for graduation, and as a case in point, below is a 

description of one such problematic issue – the inadequacy of their concept 

of proportion and reduction procedure. 

The Concept of Proportion 

This section argues that Malmnäs’ and Ekenberg’s concepts of reduction 

and proportion are ineffectual in a method for decision analysis of interval 

and comparative statements. 

Usually, different alternatives are superior in different parts of the 

consistent space. A procedure for comparing the volumes in which the 

respective alternatives dominate seems a reasonable way of finding out the 

“best” alternative. If an alternative is superior to another in a considerably 

larger part of the consistent space, then it is reasonable to call that 

alternative better. The ability to make volume estimates in the combined 

base P  U is therefore important.  

                         

1 “Thesis ” in this document refers to my Ph.D. thesis manuscript, to be presented at a 

dissertation seminar on Monday, May 26, 1997, in Electrum, Kista. 
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Were it not for the high dimensionality of the consistent space for real-

life decision problems, a Riemann integral could be calculated to measure 

the volumes of the consistent parts. Considering interactive use, however, 

the evaluation must resort to approximations. One suggestion is to make a 

(possibly weighted) Monte Carlo simulation [M90] but because of the high 

dimensionality, that would be an inefficient approach. Another suggestion 

is to measure the dominated regions indirectly by using the concept of 

proportion as an alternative volume measurement [E94]. Proportions apply 

to any consistent base, be it a probability, utility, or combined base. 

The Reduction Procedure 

Interval statements are imprecise and uncertain by nature. Hence it is 

natural to consider values near the boundaries of the intervals to be less 

reliable than more central values. By using the concepts of reduction and 

proportion this can be presented as follows.2 First, there is a need for a 

procedure for studying decreasing volumes in the base. 

Definition 1:  X is a base in the variables x1,…,xn and d  [0,1] is a 

real number. Further, [ai,bi] are the intervals corresponding to the 

variables xi in the orthogonal hull.  

Then a G(d)-reduction of X is to add the interval statements 

{i = 1,…,n: xi  [ai+d·(bi–ai)/2, bi–d·(bi–ai)/2]} to the base.3 

Example 1:  Suppose there is a probability base P with the following 

statements for alternative A1: 

 p11  [0.20, 0.60] 

 p12  [0.10, 0.30] 

 p13  [0.30, 0.50] 

To reduce the base by 50%, a G(0.5)-reduction of P yields 

 p11  [0.20 + 0.5·(0.60–0.20)/2, 0.60 – 0.5·(0.60–0.20)/2] =[0.30, 0.50] 

 p12  [0.10 + 0.5·(0.30–0.10)/2, 0.30 – 0.5·(0.30–0.10)/2] = [0.15, 0.25] 

 p13  [0.30 + 0.5·(0.50–0.30)/2, 0.50 – 0.5·(0.50–0.30)/2] = [0.35, 0.45] 

From inspecting the resulting intervals, it is clear what a reduction does. 

A more elaborate reduction algorithm that introduces the statements 

into X one at a time can be found in [E94] but it is shown there to be order-
                         

2 Although the definitions in [E94] are slightly different and adapted here to fit this 

presentation, the resulting procedures are the same. 
3 A G(0)-reduction of X is X itself. 
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dependent, i.e. it gives different results depending on the order in which the 

variables appear. 

Unfortunately, there are some problems with the concept of reduction. 

Very few probability bases are reducible by 100%, only precisely those 

bases where the arithmetical midpoint of the hull in each dimension is a 

consistent point. The random chance for this to occur is very slim. For 

other bases, reduction might be possible to any extent in the interval 

[0%, 100%]. Although a base reducible by 0% is clearly undesirable, it is not 

clear that a base with an 80% possible reduction should be inferior in any 

respect to a 100% reducible base. In effect, the reduction procedure often 

dismisses all consistent points in a base, keeping only inconsistent points. 

Even worse is that the reduction is not invariant when the same decision 

model is refined. Two examples show the counter-intuitive behaviour of 

the reduction operator. 

Example 2:  Consider the following probability base P1: 

 p11  [0.00, 1.00] 

 p12  [0.00, 0.40] 

By the normalisation ∑i p1i = 1, the orthogonal hull is 

 p11  [0.60, 1.00] 

 p12  [0.00, 0.40]. 

This base is reducible by 100% to 

 p11  [0.80, 0.80] 

 p12  [0.20, 0.20] 

which is a reasonable result. The same situation can be modelled in more 

detail by splitting the consequence C12 into two consequences C22 and C23. 

 p21  [0.00, 1.00] 

 p22 + p23  [0.00, 0.40] 

By the normalisation ∑i p2i = 1, the orthogonal hull is 

 p21  [0.60, 1.00] 

 p22  [0.00, 0.40] 

 p23  [0.00, 0.40]. 

This base is only reducible by 67% to 

 p21  [0.73, 0.87] 

 p22  [0.13, 0.27] 

 p23  [0.13, 0.27] 
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after which there is no consistent point left in the base. This argument can 

continue with finer splits of C12 and for each split, the possible reduction 

decreases. A base with a split to four consequences is only reducible by 

40%, and to eight consequences only by 20%. Since the same situation is 

being modelled, it is not satisfying to see the reduction, and thus the 

proportion, go down closer to zero for modelling situations that should 

have the same result. Thus, the reduction operation is not invariant with 

respect to the model. 

Example 3:  Next consider another probability base P3. Suppose it contains 

the following statements: 

 p1i  [0.00, 0.25] for i  {1,…,5}. 

By the normalisation ∑i p1i = 1, the orthogonal hull is the same as the 

statements themselves. This base is reducible by 40% to 

 p1i  [0.05, 0.20] for i  {1,…,5}. 

If the decision maker decides to make the intervals a little wider, say by 

5%, he will have the base P4 with 

 p1i  [0.00, 0.30] for i  {1,…,5}. 

The orthogonal hull is again equal to the statements themselves. This base 

is reducible by 67% to 

 p1i  [0.10, 0.20] for i  {1,…,5}. 

By the same reasoning, making the intervals 5% wider again will result in 

the base being reducible by 86%. It is not intuitively clear for a decision 

maker what this would mean and what information he might receive from 

those figures. For a decision situation with ten consequences, the results 

are even more remarkable. It is not clear what correspondence the 

possible reductions have to the real merits of an alternative.

For utility bases, the situation is different but no less troublesome. The 

main differences are the absence of compound statements (in their 

formulation) and the absence of a normalisation constraint (by definition) 

for each alternative. Hence, utility bases without comparisons are always 

reducible by 100% while bases with comparisons are often not. This should 

not be considered to imply that utility bases without comparisons are 

“better” in any respect. On the contrary, a base with many comparative 

statements often contains more useful ordering information that yields 

clearer results when comparing the alternatives. 
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The Concept of Proportion 

Based on the reduction procedure the concept of proportion measures how 

far a sequence of G-reductions can be carried out in a base while main-

taining consistency. 

Definition 2:  X is a consistent base. The proportion of the base X is the 

number PROP(X)  [0, 1] such that PROP(X) =def sup(   [0, 1] and 

the G()-reduction of X is consistent). 

To see how the proportion can be used to discriminate between more than 

one alternative being t-admissible, consider the proportion of the combined 

base P  U in a decision frame when the statement ij ≥ –t is added.  

Definition 3:  Given a decision frame F with a probability base P 

and a utility base U. tPROPij(PU) =def PROP({ij ≥ –t}  P  U) is 

the proportion of the alternative Ai compared to Aj at level t. 

Due to the definition of ij the values tPROPij(PU) and tPROPji(PU) need 

not be the same, nor sum to one or to any other constant. 

Example 4:  Consider a decision situation with two alternatives. The 

alternative A1 has the consequences C11, C12, and C13, and A2 has the 

consequences C21 and C22. The utility base contains the following 

statements. 

 u11 = 1.00 

 u12 = 0.00 

 u13 = 0.00 

 u21 = 0.40 

 u22 = 0.40 

In the probability base, the consequence C11 has the probability 

p11  [0.00, 0.67]. For the probabilities of all the other consequences, only 

the normalisation constraints apply. An evaluation of the two alternatives 

will result in the following proportions. For all t-values down to t = 0 both 

alternatives have the proportions 67%. For t = –0.1 both have 60%. The 

next two proportions differ and they are the values that discriminate the 

alternatives. For t = –0.2 A1 has a proportion of 30% while A2 has 40%. 

Likewise, for t = –0.3 A1 is worse with 0% where A2 reaches 20%. From 

t = –0.4 downwards, none of the alternatives have any proportion at all. 

This can be displayed as in Figure 1.4 The bars of a recommendable 

                         

4 The x-axis shows t-values but with opposite signs. Thus, larger horizontal axis values 

indicate a stronger alternative. 
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alternative should be tall as far left as possible. Here, A2 is clearly 

favourable to A1. 

 

 

Figure 1.  Comparing the proportions of two alternatives (from the  software) 

Definition 4:  Given a decision frame F with m alternatives. F 

contains a probability base P and a utility base U. An alternative Ai 

is preferable to Aj iff for all t  [–1, 1] tPROPij(PU) > tPROPji(PU). 

Definition 5:  Given a decision frame F with m alternatives. F 

contains a probability base P and a utility base U. Two alternatives 

Ai and Aj are equally preferable iff for all t  [–1, 1] tPROPij(PU) = 
tPROPji(PU). 

These two concepts are used to discover preferable alternatives. But what if 

one alternative has taller bars for higher t-values5 and the other one has 

                         

5 Weaker tests. 
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taller bars when both are falling for lower t-values6 – which alternative 

should then be recommended? This question points to the simplest form of 

the t/proportion duality; one alternative has larger proportions but falls faster 

for stronger tests, and the other one has smaller proportions but falls 

slower for stronger tests. In [E94] it is shown under which circumstances 

this occurs, and it is from there that Example 5 is taken. The conclusion is 

that no general criteria exist for comparing such alternatives, and only rules 

of thumb are left for the simplest situations. Comparing two alternatives Ai 

and Aj, one of three situations may occur. 

(i) One of Ai and Aj is preferable 

(ii) Ai and Aj are equally preferable 

(iii) Ai and Aj are t/proportion dual 

For case (iii), when the two definitions of preferable above fail for some  

t-value, nothing can be said about which alternative to choose. It is not 

clear that considering criteria such as the total bar area displayed for a 

certain alternative would help the decision-maker. 

Example 5:  Consider a decision situation, almost similar to the previous 

example, with two alternatives. A1 has the consequences C11, C12, and C13 

and A2 has the consequences C21 and C22. The utility base contains the 

same statements as above: 

 u11 = 1.00 

 u12 = 0.00 

 u13 = 0.00 

 u21 = 0.40 

 u22 = 0.40 

This time, there are no decision-maker statements of probability. Only the 

normalisation constraints apply to the probability variables. If the alterna-

tives are compared according to the proportion method, the results will be 

as in Figure 2. The proportions for alternative A1 do not fall as fast for 

lower t-values. Since the utility statements are pointwise statements in the 

example for the sake of simplicity, the evaluation can easily be discussed 

analytically.  

                         

6 Stronger tests. 
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Figure 2.  t/proportion duality when comparing two alternatives (also from ) 

For a G()-reduction, the probability variables become 

 p1i  [/2, 1–/2] for i = {1,2,3} 

 p2i  [/2, 1–/2] for i = {1,2} 

as long as 1.5· ≤ 1, after which the base becomes inconsistent and thus 

impossible to work with. 

It is easy to obtain the ranges for the expected utilities. 

 E1  [/2, 1–] 

 E2  [0.40, 0.40] 

This leads to determining ij > –t for the range t  [–1, 1]. Consider a few 

sample values of t and try to make a maximal G()-reduction. Here, PU' 

refers to P  U  {ij > –t} for appropriate i and j. 
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t = –0.4: 12 > –t, PU'max() = 0.20   –0.4PROP12 = 20% 

 21 > –t, PU'max() = 0.00   –0.4PROP21 = 0% 

t = –0.1: 12 > –t, PU'max() = 0.50    0.1PROP12 = 50% 

 21 > –t, PU'max() = 0.60    0.1PROP21 = 60%

The example clearly demonstrates that it is a t/proportion situation. 

Already these two points exhibit the duality property. Even in this 

oversimplified case, it is not clear which alternative is the best. In more 

realistic problems, duality can become a complicated issue. 

Figure 2 above shows an information base with several alternatives of 

which one has three consequences and where the only probability 

statement for that alternative is ∑j pij = 1. Such a base is bound to become 

inconsistent for proportions above 67%. Thus, for those t-values, the 

method delivers no information. 

The concept of proportion inherits the deficiencies of the reduction 

operator. The proportion expresses how much a base can be reduced while 

still maintaining ij ≥ –t, but a failure can have more than one cause. 

Assume that there is a consistent probability base P that is to be G()-

reduced. Then either  

(i) the G()-reduction itself fails for the base P, or  

(ii) the G()-reduction is possible for the base P, but ij ≥ –t is  

inconsistent with P.  

In case (ii) at least the algorithm has found some kind of quality measure, 

but in case (i) the base is not centred enough to be reduced in this way. 

Even worse, if more than two alternatives are compared, the statements 

concerning a third alternative might make the base P impossible to reduce 

beyond, say, 15%. Then the proportion of any alternative cannot reach any 

higher than 15%.7 As more alternatives with more consequences are added, 

the chance of being exposed to this deficiency increases. This clearly 

demonstrates that the proportion cannot be employed to determine which 

alternative constitutes the best choice.  

                         

7 If none of the compound or comparative statements involve probability variables 

from different alternatives, the dependency on a third alternative can be remedied by 

reducing the probability base separately for each alternative. However, this does not 

save the concept of proportion. 
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