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FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS

If we have been accustomed to deplore the spectacle [...] of a workman
occupied during his whole life in nothing else but the making of knife
handles or pins’ heads, we may find something quite as lamentable in
the intellectual class, in the exclusive employment of the human brain
in resolving some equations, or in classifying insects. [...] It occasions
a miserable indifference about the general course of human affairs, as
long as there are equations to solve and pins to manufacture.

Auguste Comte

Comte, A. (1835/1853/2009). The Positive Philosophy of Auguste Comte, Vol. |1
(H. Martineau, Trans.). Cambridge University Press. (Original work published
1835; English translation published 1853).
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Preface

Decision methodology, mainly in the form of decision theory and decision analysis,
has been studied for quite some time. A number of Nobel Prize laureates in econom-
ics have contributed to the field, including Simon, winner in 1978; Allais in 1988;
Kahneman in 2002; and Hurwicz in 2007. Most of these contributions belong to
normative theory, that is, the study of how we should rightfully choose. However,
such theories are usually presented in a highly idealised and theorised form which
offer little guidance in actual decision-making situations. Neither in organisations,
nor in everyday life.

Hence, normative research is not such a great help to us when making real deci-
sions of any reasonable quality. Normative theories say “This is the outcome if you
decide in an optimal way” but they say nothing about how to get there. It is about as
helpful as a theoretical description of how to ride a bicycle. You cannot simply read
the description and then pedal off. Or read a couple of books on swimming. Thrown
into the deep end of the pool, those books will not help much.

Kahneman, by contrast, belongs to a different school, the descriptive one, which
explores what people really do when they make decisions. Not surprisingly, people
underperform in many situations and the brain is easily fooled by all kinds of infor-
mation and disinformation. This can be both amusing and sobering to read about,
and Kahneman’s book Thinking, Fast and Slow is recommended for both entertain-
ment as well as thought-provoking reading. Still, what we really need is perhaps not
a catalogue of cognitive missteps, but rather a method that can guide us in a reason-
ably sound way from decision problems to decisions. Descriptive research, there-
fore, is unfortunately not much help to us either when we are going to make real
decisions of good quality. Continuing the cycling analogy: reading about bicycle
accidents and how riders fell off their bikes, or how large their grazes were, will not
help us much either. We will still not be able to pedal off after reading about them.
The same holds for stories of lifeguards and swimming incidents: hearing how oth-
ers sank or struggled in the water does not help us float.

Fortunately, there is a third research direction, prescriptive decision analysis,
which focuses on methods for analysing real-life decisions. That is the subject of
this book. It is based on the kind of information people can actually provide with
reasonably preserved quality. As such, the methods advocated for in this book do
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not rely on unrealistic assumptions about the decision-makers’ abilities to supply
precise information. Rather, they aim to provide useful and trustworthy support in
actual real-world decision situations of various kinds.

A prescriptive foundation necessarily emphasises applicability, which in turn im-
plies the use of computational tools. Today, there is a wide gap between normative
and descriptive decision theories on one side and the practical needs of real-world
decision making on the other. As a result, decision analysis is underused and under-
valued in society despite the growing complexity of the many complex decisions
that must be made every day. However, writing and publishing more books on nor-
mative or descriptive aspects will not bridge this gap since much of their content
remains inapplicable to practical real-life decision analysis.

The origin of the book is a set of course notes for graduate courses at the Royal
Institute of Technology and Stockholm University, partly based on the author’s PhD
thesis. The text has been rewritten more than once but not published until now. It is
hoped to serve as a foundation to rejuvenate research interests in real-world deci-
sion-analytic methods solidly based on sound and well-established theoretical re-
sults, both from within decision theory and outside from adjacent fields such as
mathematics, statistics, microeconomics and computer science. Not least multi-cri-
teria decision analysis (MCDA), the main subject of Part 11, seems to be in need of
that. Note the difference between MCDA, making an analysis, and MCDM (where
the last ‘M’ stands for decision making), the latter encompassing the wider process
from data collection, over elicitation, analysis, presentation and possibly negotia-
tions, all the way through to making a decision. Thus, Part 1l of the book is con-
cerned with the core of MCDM, namely MCDA.

Happy reading!
The author, Stockholm, September 2018

Preface to the Second Edition

Decision analysis is, like almost any management or professional support method,
dependent on computer power to be highly effective. But the users of most technol-
ogies need not do the modelling themselves — they just use the designed artefact or
device. If you walk on a bridge, you need not be familiar with the design theories
behind its construction. In many cases, neither do the architects since the theoretical
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knowledge is embedded in CAD software. The same goes for driving a car — de-
signed mostly by using CAD systems — or turning on a light switch, whereby elec-
tricity flows through a well-dimensioned power grid, again based on theoretical
principles not explicitly considered by consumers and often not by design engineers
either, instead using specialised design software.

However, making decisions requires the modelling to take place in the end users’
minds. Therefore, the power embedded in decision-supporting software has to be
different, opening up mechanisms through the user interface that other advanced
software tools would have hidden away. Too much research in decision analysis has
been directed to inventing new ad hoc formalisms and procedures, sometimes not
even being in accordance with established theories, and too little to finding better
interfaces between the decision-makers and their needs for modelling and interpre-
tation support on the one hand, and the computer algorithms on the other.

This second edition is motivated by the book being bundled with an advanced
decision-analytic software platform. The UNEDA (Universal Engine for Decision
Analysis) software platform is released today as open source for all uses, research
as well as commercial. The release day coincides with the expiry of US Patent
7257566, which covers some of the algorithms used in UNEDA. While the first two
parts of the book remain largely unchanged, the original Part 111 on current software
tools has been replaced by a new Part 111 on the UNEDA platform in order to keep
the book’s length below 150 pages, which was always a goal. After all, a book does
not need to be very long to make a point — only long enough to be comprehensible
and short enough to be read.

The purpose of this second edition is to enable a broader range of open science
research into, and applications of, real-life decision analysis, inevitably supported
by computer tools. The UNEDA platform can enhance almost any decision-analytic
method with interval representations, belief distributions and a variety of sensitivity
analyses. Like this book, the software is also freely available as an open-access re-
source. Together, they are made available in an effort to promote and revitalise re-
search in decision analysis that is fundamental, well-founded and real-world rele-
vant at the same time. A narrow path to walk, but one well worth the effort.

Happy reading and programming!
The author, Stockholm, June 6, 2025
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01. Introduction

Classic decision analysis is a systematic, predominantly quantitative, and highly ef-
fective approach to making decisions under uncertainty, the term itself coined by
Howard (1966). It provides a structured framework for evaluating complex choices
by incorporating probabilities, outcomes, and preferences. The goal is to identify the
best course of action given available information, risks, and trade-offs. It supports
decision-makers in structuring problems, assessing risks, and optimising choices us-
ing probabilistic models and utility functions. The process typically involves defin-
ing objectives, identifying alternatives, evaluating possible outcomes, and selecting
the most rational option based on well-founded decision rules. A common mistake
many authors do is failing to distinguish between organisational and personal deci-
sion making, illustrating principles of the former with examples such as how to
choose a car. While personal decisions rightly involve emotional factors, impersonal
organisational decisions should not. The two contexts lead to different approaches.

The formal study of decision analysis dates back to the mid-20"" century, with
contributions from pioneers such as von Neumann and Morgenstern, who intro-
duced utility theory, and Savage, who developed subjective expected utility. Bayes-
ian inference was introduced into decision theory, initially through the work of Sav-
age. In 1954, he laid out a subjective Bayesian framework for decision making under
uncertainty. He built upon earlier ideas from Ramsey (who in the 1920s first pro-
posed subjective probabilities and utility-based decisions) and de Finetti (an early
advocate of subjective probability). However, it was Savage who systematically in-
tegrated Bayesian inference with utility theory, forming the basis of what is now
called Bayesian decision theory. Savage’s contributions included the axioms of ra-
tional choice under uncertainty, the use of subjective probabilities (based on per-
sonal belief, not objective frequency), and the concept of expected utility maximi-
sation. More on this in Chapters 2 and 3.

Uncertainty is perhaps the most defining characteristic of classic decision analy-
sis. In virtually every decision, some elements cannot be known with certainty.
These unknowns arise from a variety of sources, such as limited information, unpre-
dictability in the environment, and inherent variability in processes. For instance, a
business decision might involve predicting future market conditions, which are in-
fluenced by numerous unpredictable factors like consumer behaviour, competitor
actions, or macroeconomic events. Uncertainty in decision making can be classified
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into two main types: aleatory (stochastic) uncertainty and epistemic (systematic) un-
certainty. Aleatory uncertainty refers to the inherent randomness or variability in the
system being analysed. For example, the variability in weather patterns or stock
market prices reflects aleatory uncertainty, as these events are governed by complex
systems that are inherently unpredictable. On the other hand, epistemic uncertainty
arises from a lack of knowledge or information about a particular system or process.
Epistemic uncertainty is often reducible through further research or data collection,
making it distinct from aleatory uncertainty, which is fundamentally irreducible.

Risk, a specific form of uncertainty, is present when the likelihood of different
outcomes can be reasonably estimated. This contrasts with ambiguity, where the
probabilities of various outcomes are largely unknown. For instance, in investment
decisions, risk can be quantified through historical data and probability distributions,
whereas ambiguity arises when the future market conditions are highly uncertain,
and no clear distribution of outcomes can be assigned. The distinction between risk
and ambiguity is central in decision analysis, as it informs the strategies used to
model uncertainty. In situations of risk, decision-makers can use probabilistic mod-
els to quantify the uncertainty and make rational choices. However, in the case of
ambiguity, decision-makers may rely on methods that handle incomplete or uncer-
tain information, such as interval representation techniques or belief distributions.

The implications of uncertainty are vast. Probabilistic (Bayesian) decision anal-
ysis provides a rigorous framework for understanding and mitigating the effects of
uncertainty, allowing decision-makers to make more informed, defensible choices.
By integrating probabilistic reasoning into decision models, it is possible to quantify
risk, evaluate potential outcomes, and derive optimal strategies. Probabilistic deci-
sion models are central to decision analysis, offering a formalised way to incorporate
uncertainty into the decision-making process. These models utilise probability the-
ory to evaluate the likelihood of different outcomes and help decision-makers
choose the best alternative, given their preferences and the risks involved. The use
of probability in decision analysis not only helps quantify uncertainty but also pro-
vides a way to compare alternative outcomes in terms of their expected utility. Ex-
pected utility is a measure of the satisfaction or value a decision-maker derives from
a particular outcome, weighted by the probability of that outcome occurring. This
concept is central when dealing with uncertain outcomes, as it allows decision-mak-
ers to make comparisons between alternatives with different risk profiles.
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In a decision tree, for example, outcomes are represented as branches, with each
branch corresponding to either a different decision or state of nature. Probabilities
are assigned to each branch to represent the likelihood of each outcome. By calcu-
lating the expected utility for each branch, decision-makers can determine the best
course of action. Decision trees are particularly useful for modelling sequential de-
cisions, where the outcome of one decision affects the subsequent decisions.

Bayesian decision theory extends the principles of decision analysis by incorpo-
rating Bayesian probability, which allows decision-makers to update their beliefs
about a situation as new information becomes available. This framework is particu-
larly useful in dynamic environments where decision-makers must adjust their strat-
egies based on evolving data. In Bayesian decision analysis, prior probabilities are
combined with new data to form posterior probabilities, which then inform the de-
cision-making process. A comprehensive treatment of probability viewed as a form
of extended logic can be found in Jaynes (2003). The power of probabilistic (Bayes-
ian) decision models lies in their ability to quantify uncertainty and enable decision-
makers to make informed choices. By incorporating probabilities into decision mod-
els, these methods allow for a more objective and systematic approach to decision
making, even in highly uncertain environments. They provide decision-makers with
tools to assess the risks associated with different alternatives, compare potential out-
comes, and select the course of action that maximises the expected utility.

In probabilistic decision analysis, several frameworks are employed to guide de-
cision making under uncertainty. These frameworks are built around the principle
of maximising expected utility (PMEU). PMEU is the most widely used framework
in probabilistic decision analysis. It suggests that decision-makers should choose the
alternative that maximises their expected utility, which is calculated by summing
the utilities of all possible outcomes, weighted by their probabilities. This approach
is grounded in the assumption that decision-makers act rationally and prefer out-
comes with higher utility. However, it also accounts for individual risk preferences,
allowing for flexibility in decision making. A decision-maker who is risk-averse will
assign a higher utility to certain outcomes and will prefer alternatives with less var-
iability in outcomes.

A key aspect of decision making under uncertainty is the concept of sensitivity
analysis. It involves examining how changes in the input parameters of a decision
model affect the resulting outcomes. This is important for understanding the robust-
ness of decision analyses, particularly when there is uncertainty in the assumptions
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or when future conditions are difficult to predict. Sensitivity analysis can be used to
explore the impact of changes in probabilities, utilities, or other parameters on the
optimal decision. It helps decision-makers identify critical factors that influence
their choices and assess the stability of their decisions under varying conditions.

The first part of the book consists of five chapters. Chapter 2 outlines key histor-
ical developments that led to the emergence of a theory for how decisions could be
understood and made. Chapter 3 presents a formal foundation for decision analysis
as a field of study and discusses alternative formulations. Thereafter, Chapter 4 ad-
dresses the evaluation of alternatives, i.e. how to derive ordinal or cardinal orderings
of the alternatives within a decision-analytic model. Conceptually, Chapter 3 deals
with the representational aspects of a decision situation model, the input side, while
Chapter 4 mirrors this by discussing aspects of producing meaningful output through
evaluations based on the model’s representation of the decision data. Finally, Chap-
ter 5 expands the scope to better meet the real-life demands for realistic data in the
model, introducing methods for handling the various kinds of uncertainty and im-
precision that inevitably arise in real-life decision making.

The second part of the book contains ten chapters. Six of these present wide-
spread multi-criteria decision analysis (MCDA) methods while the remaining four
provide discussions related to those methods and to MCDA in general. Chapter 6
opens Part Il with an introduction to MCDA and to ways of assessing different meth-
ods. Chapter 7 presents the SMART family of methods for reference. Chapters 8-12
cover the Big Five methods, those that have the strongest brand recognition and a
remarkable dominance in published MCDA research. No unbranded method comes
close to matching the visibility or citation footprint of the Big Five. However, in
contrast, almost no papers scientifically assess and compare the Big Five or other
similar methods in a systematic way, a gap addressed in Chapter 13. Chapter 14
concludes part Il with notes on four selected topics connected to MCDA.

In the second edition, Part 111 contains two new chapters and an appendix. Chap-
ter 15 introduces a framework where probabilistic (Bayesian) models (Part 1) and
multi-criteria models (Part I1) are unified, enabling decision-analytic models that
contain event modelling under multiple criteria. Chapter 16 contains computational
aspects of prescriptive decision analysis, especially of the model introduced in
Chapter 15, and contains links to the open-source software platform that is bundled
with the book. Finally, an appendix elaborates on the findings in Chapter 13.
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02. Formation of a Theory for Decisions

While elements of probabilistic reasoning can be found in ancient Greek, Indian,
and Arabic texts, it was not until the 16" and 17" centuries that probability theory
began to take shape as a formal mathematical discipline. This development was
driven by practical problems, particularly in games of chance, and by the intellec-
tual climate of the early scientific revolution. Before that, Fibonacci’s Liber abaci
(A book on calculation, 1202), which also introduced Hindu numerals (the current
Western number system) including the concept of zero to Europe, and Pacioli’s
Summa de arithmetic, geometria, proportioni et proportionalita (A summary of
arithmetic, geometry, proportions and proportionality, 1494) constitute early writ-
ten work on such questions. Pacioli (1447-1517) raised the question of how the
stakes should be divided between two players of balla, who have agreed to play
until one of them wins six rounds, but are interrupted and cannot continue when
one player has won five rounds and his counterpart has won three (David, 1962,
p.37). More than half a century later, Cardano (1501-1571), an Italian mathemati-
cian, physician and gambler, tried to answer this question in Liber de ludo aleae (A
book on games of chance, 1564/1663), in which he formulated the fundamental
concept of solving a probability problem by identifying a sample space with equally
likely outcomes. However, his treatment lacked formal mathematical structure, and
his ideas did not immediately influence contemporary thought (Hacking, 1975). de
Montmort further stimulated the early work on probability theory in Essay d "analyse
sur les jeux de hazard (Essay on the analysis of games of chance, 1708), where he
wanted to show superstitious gamblers how to behave rationally at a time when
gambling was a noble pastime.

Other important early contributors to a general theory of probability include Pas-
cal (1623-1662) and de Fermat (1601-1665), who, after they encountered a gam-
bling question from the French nobleman Gombaud (a.k.a. Chevalier de Meré,
1607-1684), initiated an exchange of letters in which fundamental principles of
probability theory were formulated. Gombaud’s game consisted of throwing two
six-sided dices 24 times, and the problem was to decide whether or not to bet even
money on the occurrence of at least one pair of sixes among the 24 throws. A seem-
ingly well-established but deceiving gambling rule had led Gombaud to believe that
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betting on a double six in 24 throws would be profitable; however, his calculations
had indicated the opposite. Pascal and Fermat approached this issue using combi-
natorial methods, establishing foundational principles that would later define clas-
sical probability theory (David, 1962). Huygens (1629-1695) further advanced
probability theory with De ratiociniis in ludo aleae (On the calculations in games
of chance, 1657). Huygens generalised Pascal’s and Fermat’s ideas, introducing the
concept of expected value as a formal definition. He formulated probability as a
ratio of favourable outcomes to possible outcomes, a principle that would later be-
come central to probability theory and still is so to this day. Huygens’ work was
influential in shaping later developments and cementing probability as a legitimate
field of mathematical inquiry (Stigler, 1986).

The importance of statistics grew in the 17" and 18" centuries with the introduc-
tion of life annuities and insurance. Mortality statistics and life annuities were re-
search areas of de Moivre (1667—-1754), and in Doctrine of Chance (1718), he de-
fines statistical independence. Later, in Miscellanea analytica (Miscellany of anal-
ysis, 1730) the same de Moivre introduced the normal distribution as an approxi-
mation of the binomial distribution for use in the prediction of gambles. In the sec-
ond edition of Miscellanea analytica (1738), de Moivre improved the formula for
the normal distribution with the support of Stirling (1692-1770).

Furthermore, Bayes (1702-1761), an English Presbyterian minister, famous for
the posthumously published An Essay Toward Solving a Problem in the Doctrine of
Chances (1763), introduced the widely applied Bayes’ theorem and the concept of
Bayesian updating. As a result, Bayes is credited with the introduction of subjective
probability theory as well as the theory of information. Bayes’ conclusions were
later accepted by Laplace (1749-1827) and published in the double volume Théorie
analytique des probabilites (Analytic theory of probability, 1812). In this compre-
hensive work, Laplace investigated generating functions, approximations to various
expressions occurring in probability theory, methods of finding probabilities of
compound events when the probabilities of their simple components are known,
and a discussion of the method of least squares. His work established probability as
a fundamental tool for scientific reasoning and, later, decision theory.

In the early 19" century, probability theory continued to evolve, influenced by
both theoretical advancements and practical applications. Poisson (1781-1840)
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contributed significantly with his study of probability distributions, particularly the
Poisson distribution (sic!), which describes the probability of a given number of
events occurring in a fixed interval of time or space (Poisson, 1837). His work had
wide-ranging applications in areas such as physics, finance, and insurance. Gauss
(1777-1855) also played a pivotal role in the development of probability theory
through his work on the normal distribution, sometimes referred to as the Gaussian
distribution. The normal distribution emerged as an important concept in statistics,
describing the distribution of errors in measurements and forming the basis for sta-
tistical inference (Gauss, 1809). Gauss’ insights had profound implications for
fields ranging from astronomy to social sciences.

By the mid-19™ century, probability theory had developed into a rather mature
mathematical discipline with growing applications in science, engineering and eco-
nomics. Quetelet (1796-1874), a Belgian statistician and sociologist, applied prob-
ability theory to social statistics, pioneering the concept of the “average man” and
using statistical methods to study human behaviour. His work demonstrated the ef-
ficacy of probability in analysing complex social phenomena and influenced the
development of modern statistics (Quetelet, 1846).

The early origins of probability theory were thus shaped by practical concerns,
particularly in gambling, but quickly evolved into a formal mathematical discipline
with broad applications that laid the groundwork for modern probability theory. By
1850, probability had established itself as an essential tool for understanding uncer-
tainty, with applications ranging from the physical sciences to economics and soci-
ology. The later formalisation of probability in the 20" century by Kolmogorov
(1903-1987) built upon these early foundations, leading to the rigorous axiomatic
framework in use today.

When a decision-maker has to act in situations where uncertainty prevails, and
this uncertainty can be quantified in terms of a probability measure, it is said that
the decision is made under risk. In Bayesian decision theory, probabilities are used
to capture and model beliefs. Thus, they are considered to be measures of degrees
of beliefs. Needless to say, performing statistical investigations to obtain these de-
grees of beliefs is recommended, but in many real-life situations historical data is
not available and the probability assessment has to be made on subjective grounds.

Although the theories of probability can be traced back to the 16" century, the
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foundations of modern probability theory were laid by Kolmogorov. He rigorously
constructed a probability theory from fundamental axioms, defining conditional ex-
pectation, and laid the foundations for Markov random processes in Grundbegriffe
der Wahrscheinlichkeitsrechnung (Basic concepts of probability theory, 1933) and
in Analytic Methods in Probability Theory (1938).

Basic formulas for probability calculus usually take the form P(A) = pa, and are
read as “the probability of the uncertain event A is pa”, where pa € [0, 1] is a real
number. For example, A can be the statement “There will be no storm with fatal
consequences in Sussex County during next month”. Every event is a subset of a
sample space Q, capturing every possible event in the model. The Kolmogorov ax-
ioms are usually stated as follows:

1. 0<P(A) <1, forall events A
2. P(@Q)=1
3. If Aand B are mutually exclusive events,
then P(A U B) =P(A) + P(B) and P(A n B) = 0.

The second axiom can be interpreted as it being certain that one of the events in the
sample space will be the true outcome, i.e., a condition of exhaustiveness. Condi-
tional probability arises when additional information is obtained, and is formulated
as P(A | B) which can be interpreted as: “the probability of A given that B has
occurred”. Thus, the decision-maker knows that B is true and this might have an
impact on the probability of A. For example in medical applications, a test yields a
positive result, which in turn implies some probability of an actual disease.
Conditional Probability: P(A | B) =P(A n B) / P(B).
Independence: Event A with outcomes {Ay, ..., An} and B with outcomes
{By, ..., Bm} are independent if and only if P(Ai | B;) = P(Ai) for all A; and B;.
Conditional Independence: Events A and B are conditionally independent given
event C if and only if P(Ai | Bj, Cx) = P(Ai | Ck).
Bayes’ Theorem: P(B|A)=P(A|B)-P(B)/ (P(A|B)-P(B) +P(A|-B)P(—-B)),
where —B means not B.

It follows from these definitions that two mutually exclusive events cannot be
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independent. The set of probabilities associated with all possible outcomes is a prob-
ability distribution. When the sample space Q consists of a discrete set of outcomes,
the probability distribution on it is discrete.

Alongside the early development of a theory of probability, the Swiss physician
and mathematician Daniel Bernoulli (1700-1782) wrote an article, Specimen theo-
riae novae de mensura sortis (Exposition of a new theory on the measurement of
risk, 1738), in which a motivation for the concept of utility is given, commonly
referred to as his solution to the famous St. Petersburg Paradox posed in 1713 by
Daniel Bernoulli’s cousin, Nicolaus Bernoulli. The name St. Petersburg Paradox is
due to the distinguished Bernoulli family’s multiple connections to the city of St.
Petersburg. In this paradox, Nicolaus Bernoulli considered a fair coin (i.e., a coin
with a % probability of landing heads). The coin is tossed repeatedly until it lands
heads for the first time. The gambler receives 2" ducats if the first occurrence of
heads is on the nth toss. The expected monetary value of this game is

> (/272" = (1/2)-2 + (1/4)-22 + (1/8)-2° + ... =1+1+1+ .. =0

It is difficult to believe that any gambler would be willing to pay an infinite amount
of money to participate in such a game. Bernoulli therefore concluded that expected
monetary value is an inappropriate decision rule. His resolution to this paradox in-
volved two ideas that would later have a great impact on economic theory. First, he
argued that the utility of money is not linearly related to its amount, but instead
increases at a decreasing rate. Bernoulli recognised that the value of an outcome to
a decision-maker may differ from its objective monetary amount, a principle now
known as diminishing marginal utility. His second key insight was that individuals
evaluate risky prospects not according to their expected monetary value, but ac-
cording to their expected utility

Eulp, X) =2, pO)-u()
where X is the set of possible outcomes, p(x) is the probability of a particular out-
come X € X, and u: X —» R is a utility function over the outcomes X on the real
numbers. Thus, expected utility refers to the mathematically expected value when
subjective utility is taken into account. In the St. Petersburg Paradox, the value of
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the game becomes finite due to the principle of diminishing marginal utility. Orig-
inally, Bernoulli employed a logarithmic utility function, u(x) = a log x, where a
depends on the gambler’s wealth before the gamble and x is the outcome. Substi-
tuting this function into the expected monetary value formula yields a finite number.
Consequently, people would only be willing to pay a finite amount to participate,
even though the expected monetary value of the game is infinite.

The term utility can be regarded as a measure of the degree of satisfaction asso-
ciated with an outcome, and a utility function is a mapping from outcomes such as
losses or gains to real numbers representing this degree of satisfaction. The loga-
rithmic utility function suggested by Bernoulli was considered adequate on its own
for almost two hundred years. However, Menger (1902-1985) showed in Das Un-
sicherheitsmoment in der Wertlehre (The element of uncertainty in value theory,
1934) that the Bernoulli function was heuristic and ad hoc, while the function was
unsatisfactory already on its formal grounds. Menger showed the existence of a
game related to the game presented in the St. Petersburg Paradox, in which the sub-
jective expectation of the gambler based on this value function is infinite when
evaluating additions to a fortune by any unbounded function (Menger, 1934, p.264).
The implication of this is that it is always possible to provide a paradox, in the re-
spects equivalent to the St. Petersburg Paradox, which cannot be resolved only
through the idea of diminishing marginal utility. Menger also showed the inade-
quacy of mathematical utility functions of the type suggested by Bernoulli’s con-
temporary Cramer (1704-1752).

Utility functions are defined on an interval scale, i.e., they are unique up to a
positive affine transformation; such transformations are the only admissible trans-
formations of utility functions. In formal terms: Let U be a utility function on a set
C of consequences, then there exists o > 0 and  such that W(x) = a-U(X) + B is a
utility function representing the same preferences, i.e., two different interval scales
count as equivalent if and only if they can be obtained from each other through
positive affine transformations. Unlike ratio scales, interval scales do not have an
absolute zero point, nor do they represent the ratio of some measured entity to some
standard unit of measurement (e.g., meters or seconds). Thus, in an interval scale,
the gap between two numbers has a meaning, while the gap between two ratios does
not.
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In general, people are willing to pay more for outcomes they consider more de-
sirable. In this sense, a monetary scale can at least be expected to function as an
ordinal scale, meaning a scale that captures preference orderings without expressing
the strength of those preferences. For many business decisions, the use of monetary
scales is considered a reasonable and acceptable proxy for utility. However, it is not
uncommon for monetary values to be used when scaling non-monetary outcomes,
such as public health or environmental damage. In many cases, this results from a
lack of suitable methods and practical tools for representing and evaluating intan-
gible or vague values. This becomes particularly problematic when aggregating or-
dinal information and can lead to seriously misleading conclusions.

Decision analysis is often regarded as a conjunction of subjective probability and
subjective utility. Ramsey (1903-1930), suggested a theory that integrated these ar-
eas in Truth and Probability (1926/1931). In that article, Ramsey informally pre-
sented a general set of axioms for preference comparisons between acts with un-
certain outcomes. From this set of axioms, he could justify a procedure to measure
a person’s degree of belief from preferences between acts of certain forms.

Preceding Ramsey’s work, the concept of degree of belief as an approach to sub-
jective probability had been introduced by Keynes (1883-1946) in A Treatise on
Probability (1921). Subjective probability, as opposed to objective probability,
means that the different values reflect the decision-maker’s actual beliefs, thus they
are ameasure of the degree of belief in a statement. These beliefs are not necessarily
logical or rational, and they should be interpreted in terms of the willingness to act
in a certain way. In contrast, an objective or classic view on probabilities, as defined
by Laplace, says that probabilities are exogenously given by nature. In Probability,
Statistics and Truth (1928), von Mises (1883-1953) introduced the relative fre-
quency view, which argues that the probability of a specific event in a particular
trial is the relative frequency of occurrence of that event in an infinite sequence of
similar trials.

The modern and formal approach to game theory is attributed to von Neumann
(1903-1957), who in Zur Theorie der Gesellschaftsspiele (On the theory of parlor
games, 1928) laid the foundation for a theory of games and conflicting interests.
Later he wrote, together with Morgenstern (1902-1976) the book Theory of Games
and Economic Behaviour (1944), in which they introduced a considerable amount of
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important elements such as the axiomatisation of utility theory per se and a formal-
isation of the expected utility hypothesis. This axiomatisation is sometimes deemed
reasonable to a rational decision-maker, and it is demonstrated that the decision-
maker is obliged to prefer the alternative with the highest expected utility to act
rational, given that she acted in accordance with the axioms. Of further importance,
through this work, von Neumann and Morgenstern bridged the gap between the
mathematics of rationality and social science. However, von Neumann and Mor-
genstern did not take subjective probability into account since they regarded prob-
ability in an objective sense, and thus the decision-maker could not influence the
probabilities. Savage (1917-1971) combined the ideas by Ramsey and the ideas by
von Neumann and Morgenstern in The Theory of Statistical Decision (1951).
Savage here gives a thorough treatment of a complete theory of subjective expected
utility and associated utility functions.

In Statistical Decision Functions (1950), Wald (1902—-1950) makes use of loss
functions and an expected loss criterion, as opposed to utility functions and the ex-
pected utility criteria. Loss functions and expected loss criteria later become stand-
ard basic elements in what is commonly referred to as Bayesian or statistical deci-
sion theory. The name Bayesian derives from that this theory utilises prior infor-
mation and non-experimental sources of information. However, in the general case,
it is easy to adjust Wald’s statistical decision theory to include utilities (cf. Savage,
1972, p.159). Further, Wald had an objective view of probabilities. His concern
focused on characterising admissible acts and alternatives for experimentation,
where an act or alternative is admissible if no other act is better. Hence, Wald’s
decision analysis could result in a family of admissible alternatives, i.e., the non-
dominated set of alternatives.

Gardenfors and Sahlin (1982) give the following characterisation of decision
theory and decision analysis: the main aims of a decision theory are, first, to provide
models for how we handle our wants and our beliefs and, second, to account for
how they combine into rational decisions. Such a point of view is typical of research
in decision theory as it takes a descriptive view with a touch of normativity. Lacking
a prescriptive perspective, such research does not aid in creating models and tools
for real-life use. In previous decades, solving decision problems computationally
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was often categorised as belonging to the area of optimisation, and in particular lin-
ear optimisation with goal functions subject to a set of linear constraints. Typically,
questions asked were of the form “What is the maximum/minimum value of this
variable expression subject to these constraints?” When discussing optimisation
problems, such constraints typically include financial, time, or personnel aspects.
Viewing decision analysis in this way made the field a disservice since mathemati-
cal programming cannot provide the tools required, even if both linear and non-
linear optimisation algorithms can be employed.

The use of formal methods and mathematics for evaluating possible alternatives
of action had an important upswing during World War 11, and after the war, the
terms operations analysis and operations research became closely related to deci-
sion analysis and optimisation techniques. Later, the militaristic area of operational
research is often being studied together with topics such as management science,
industrial engineering, and mathematical programming. At present time, the wide-
spread use of computers and the rise of the graphical user interface could have ren-
dered it possible to facilitate the use of decision-analytic techniques to a wider group
of users. The growth of operational research since it began is, to a large extent, the
result of the increasing computational power and widespread availability of desktop
computers. But since this has not happened to any larger extent, this book is written
to try to fill the gap.

Taking a wider perspective, decision theory can be seen as serving different pur-
poses. As mentioned already in the preface, there are three different ways to utilise
and effectuate decision theory. Since the mid-20"" century, it has evolved into a
widespread tool for economists, mainly for predicting how a population will react
to changes in their environment (Friedman, 1953). From this perspective, the logi-
cal foundation of the theory is less important, while the ability to predict the behav-
iour of decision-makers is what matters. When using decision theory in such con-
texts, the decision theory is said to be descriptive, thus we speak in terms of de-
scriptive decision theory. A descriptive theory aims to explain how decisions are
being made and why human decision-makers choose to act in a certain way.

A central result is the bounded rationality theorem, which states that due to lim-
itations in the processing of information, people cannot act entirely rationally (Si-
mon, 1955; March and Simon, 1958). Further, there is a tendency that depending
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on how the information is presented, people choose differently although according
to the theory of expected utility, the alternatives are the same. This behaviour is
referred to as the framing process in the descriptive theory (Tversky and Kahneman,
1986). Another violation of the expected utility hypothesis occurs when gains are
replaced by losses in choosing between alternatives with uncertain outcomes; peo-
ple tend to be less keen on risk-taking when there are gains involved rather than
losses (Markowitz, 1952).

Another perspective is that of the normative kind. The aim of normative decision
theory is to mandate yardsticks and norms for various decision procedures and de-
cision rules, implying “rational” decision making when followed. In this case, the
logical foundations and the validity of the model do matter. The proponents of such
models often argue for them by constructing axiom systems (like the one of Savage
presented below), and then deduce some decision rules, which induce a (normative)
preference order on a set of alternatives. Naturally, this does not convince everyone,
leading to inquiries regarding whether individuals accept the axioms upon which
the model is based (Fischhoff et al., 1981).

Prescriptive decision theory is a more recent perspective, developed in response
to the limitations of the two earlier perspectives when applied to real-life decision
situations. It focuses on identifying and bridging the discrepancies between how
decisions are made in practice (descriptive) and how they should be made according
to normative theory. One of its purposes is to bridge the gap between traditional
decision analysis and actual decision making. This body of theory includes ap-
proaches that aim to mechanise, rather than automate, the structuring and analysis
of decision situations. Assuming the decision-maker has a desire to act rationally,
the prescriptive mechanical model assists in devising suitable courses of action
based on the information elicited. A decision-analytic tool based on these principles
handles a finite number of alternative courses of action and supports the decision-
maker in evaluating and selecting among them. In other words, such a tool assists
decision-makers in identifying a preference order over a set of alternatives. The
remainder of this book adopts a prescriptive perspective, aiming to provide a foun-
dation for procedures and tools that are applicable in real-life decision contexts,
probabilistic (Bayesian) decisions (Part I) as well as multi-criteria decisions (Part
I1) and both combined (Part I11).
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03. Foundations of Decision Analysis

Traditional decision theory deals with only one decision making part, one player.
The environment is considered neutral, and the probabilities of events are not af-
fected by some conscious opponent. The only ‘opponent’ is often referred to as
nature. Game theory introduces opponents to the decision situation. This means that
the possibilities of consequences occurring depend on the acts of both the player
and his opponent(s). Many complicated dependencies can arise, and only in special
cases are there simple solutions to game problems.

Many aspects of decision making are to a large extent qualitative, like the dis-
covery and formulation of the problem itself. Searching for and gathering infor-
mation also requires deliberate choices, as does the compilation of the information
into a number of alternative courses of action. In other words, there is a soft side to
the decision process. Despite its importance, many traditional decision tools are
unable to handle qualitative statements. Later it will be discussed how modern
methods handle qualitative information, both by allowing such statements to be en-
tered into the model and by allowing the decision-maker to work actively with the
decision model parameters throughout the decision process, thereby gaining a better
understanding of the entire decision situation. Quantitative facts and decisions
abound in all types of organisations. Often when decision parameters are being val-
uated, the different alternatives are given monetary or other numeric values. Based
on the given values, and perhaps on estimated probabilities for the events, decisions
are made using some simple decision rule, often a rule of thumb or the repetition of
an old decision. For reasons of computational tractability, many traditional decision
methods require the user to make significant assumptions and also require artificial
precision in the collected information.

The possible outcomes of a decision can often be represented by a set of num-
bers, either as an interval (continuous) or as a countable number of cases (discrete).
For models with continuous outcomes and a discrete number of actions, statistical
methods, such as hypothesis testing, are suitable. If the alternatives are also contin-
uous, methods have been developed for many special cases, for example inventory
control methods, portfolio theories, and network models. A characteristic of such
models is that they first and foremost give analytical solutions or at least provide
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closed expressions suitable for iterative solution methods which are often com-
puter-assisted. Decision-analytic methods work best with discrete outcomes, and if
the decision situation has a continuous representation from the outset, it can often
be made discrete by clustering.

Most decision problems cannot be formulated in terms of some known special
model, and then the decision-maker often has to use more primitive models. Interval
methods have a computationally demanding user interaction, and ten years ago they
would have been classified as impractical and not suitable for interactive use. As
mentioned above, they belong to the area of decision tools and do not use any results
particular to game theory. This means that the method only treats decision situations
where one decision-maker is about to make a decision, the outcome of which is
seemingly decided by nature. Many decision situations fit this description.

The terminology used within decision theory does not correspond exactly to the
mundane interpretations of some concepts. Within decision theory, strict uncer-
tainty refers to a situation where no information is available regarding the different
probabilities of the states. In situations where some probability information is avail-
able, either as subjective probabilities or as frequencies, the term risk is used. An
event is something discernible occurring at a certain moment and should not be
confused with a state, which is something observable and constant over a period of
time. A decision-maker chooses a course of action and this choice results in a con-
sequence which is an event occurring after a deliberate choice of course of action.
The consequences of each alternative in the model are exhaustive and exclusive.
Exhaustive means that the consequences together cover all possible cases, and ex-
clusive means that every outcome belongs to only one consequence.

Various decision models exist for a number of different purposes. In this chapter,
some model categories are studied more closely. The models can be divided into
three categories. The categories described differ with respect to their assumptions
of the predictability of the future. In the risk-free (deterministic) world, there is no
doubt about future events and all decisions can be made with certainty. In the
strictly uncertain world, there are a number of possible scenarios but their respective
probabilities are not taken into account. Finally, in the risky world, both different
outcomes and their probabilities are taken into account when a good course of ac-
tion is sought.
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In management science, a decision problem is often defined as follows: To
choose from a set of alternative courses of action aq,...,a, the alternative a; that (in
some sense) optimises the decision-maker’s return vj, where vjy is the value of the
consequence C;y corresponding to the pair (a;, Sj) and where {s;} is the set of states
of nature. Using this terminology, a hierarchy of decision problems has been sug-
gested. Luce and Raiffa (1957, p.13) provided a useful classification of decision
situations, addressing that an important factor in every decision problem is the de-
cision-maker’s knowledge and beliefs about the situation. They distinguish between
three types of (structured) decision situations. On top of that, there is a fourth cate-
gory that does not easily lend itself to a formal treatment.

* Structured
» Decisions under certainty (risk-free)
If all of a;, Cjy, Vjk, and s; are known with certainty, and there is a known

deterministic relationship between the choice of an a; and the correspond-
ing C;y, then it is a problem under certainty.

* Decisions under strict uncertainty
If the relationship is known and probabilistic but the probabilities them-
selves are unknown, the situation is called a problem under strict uncer-
tainty.

* Decisions under risk
If the relationship is known but probabilistic and the probabilities them-
selves are known, the situation is called a problem under risk.

* Unstructured
If, on the other hand, one or more of the a;, Cjy, Vjk, Or Sj are unknown, the
problem is called unstructured, even sometimes wicked.

In decisions under certainty, the decision-maker knows the true state before she
performs an act; or can predict the consequences with certainty. Thus, in this case,
it is reasonable to demand of a rational decision-maker that she should choose the
alternative whose one and only consequence has a value not less than the value of
any other alternative. The value of a consequence may be expressed by an ordinal
value function defined on an ordinal scale.
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Definition: Given a set of consequences P and a relation >p denoting the decision-
maker’s preferences over P, an ordinal value function m(x), representing these pref-
erences, is a real-valued function with domain P such that m(Ci) > w(cj) iff ci>pc;.

When the set P of consequences is finite, and a reasonable ordering relation is
defined, then a numerical order-preserving function w(x) can be constructed. In de-
cisions under certainty, such a function is all that is needed, since it is enough in this
context only to treat the cases involving a finite number of consequences. Uncount-
able sets are treated in (Debreu, 1952), which demands that you are comfortable
with topological arguments, as well as in (Krantz et al., 1971, Ch.4). The corre-
sponding result for countable sets can be found in (French, 1988, p.98), together
with a straightforward induction argument. Because an ordinal value function can
always be constructed, it makes sense to talk about the value of a consequence. This
is valid also when P is an arbitrary set of objects over which a decision-maker can
express preferences.

In decisions under strict uncertainty, the decision-maker cannot quantify her un-
certainty in any way, thus no probability estimations are possible or they are mean-
ingless. Milnor (1954) provides an exposition of four proposals by four different
authors:

The principle of insufficient reason (Laplace, 1825)
The maximin principle (Wald, 1950)
The pessimism-optimism index (Hurwicz, 1951)

e The minimax-regret principle (Savage, 1951)

Laplace’s rule is based on the assumption that if the probabilities of the different
states are completely unknown, then they can be assumed to be equal. This idea is
commonly referred to as the principle of insufficient reason. Choose the alternative
axk such that the average value of the possible outcomes from this alternative is max-

imised: max(2.__vij)/n, where 1 <k < nand vi; denotes the value of cj;.

j<n

Wald’s rule can be expressed as follows:
1. Set a security level by choosing an index pi= min{vjj: j =1,...,n}
2. Choose ax such that its index px = max{pi}.

As can be seen, Wald’s view on strict uncertainty was not an optimistic one since
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according to him, you should always choose the alternative that gives the best result
if the worst possible outcome will occur for each alternative. Hence the name the
maximin utility criterion, which originated from Wald’s work within game theory.

Hurwicz’s rule has a less pessimistic approach compared to Wald. Hurwicz rec-
ommends a mixture of an optimistic and a pessimistic attitude:

1. Select a constant o € [0, 1] as the pessimism-optimism index.

2. Let oi=max{vij, j = 1,...,n} and pi= min{vi, j = 1,...,n}.

3. Choose ak such that a-pk + (1 — a)-0k = max{o-pi + (1 — a)-0i}.
Note that if o = 1 this is again the maximin utility criterion, whereas if a = 0, it is
the so-called maximax utility criterion. Different ways of choosing appropriate pes-
simism-optimism indices have been presented, but we will not enter into that dis-
cussion here.

In Savage’s rule, the decision-maker should choose the alternative giving the
smallest possible “regret”.

1. Let rij= max{vsj, s =1,...,m} — vi.

2. Let pi=max{rij, j=1,..,n}

3. Choose ax such that px = min{pi}.

This minimax risk criterion was first suggested as an improvement over Wald’s max-
imin utility criterion. Regrets and security levels will return later. Table 1 shows a
counter-example (Milnor, 1954, p.50) of a decision problem where all of the above
decision rules yield different results.

N S, S3 Sy Rule picks alternative
a, 2 2 0 1 Laplace
a, 1 1 1 1 Wald
a3 0 4 0 0 Hurwicz (o > Y4)
C 1 3 0 0 Savage

Table 1. Milnor’s counter-example
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The question remains: to act rationally, which one of the above rules should be
employed? Milnor showed that no decision criterion is compatible with ten seem-
ingly reasonable axioms that constituted his test set (Milnor, 1954, p.53). It turns
out that it is relatively easy to show that it is impossible to find a decision rule that
fulfils all desirable properties. Further, Ackhoff (1962) argues that any concept of
strict uncertainty is inappropriate, i.e., strict uncertainty implies that there is always
some information or some beliefs being disregarded.

Bayesian Decision Analysis

When the decision-maker is able to quantify her beliefs in terms of a probability dis-
tribution on the set of possible outcomes given a chosen course of action, it is said
that the decision is made under risk. If all utilities and probabilities in a decision
problem are subjectively assigned numerical values by the decision-maker, and then
the problem is evaluated according to the principle of maximising the expected util-
ity, the decision-maker conforms to Bayesian decision analysis. This kind of deci-
sion problem is our main concern in Part 1.

The decision method is called Bayesian, named after an English clergyman
named Bayes, due to the use of subjective probability assignments and the common
procedure of updating the probabilities by employing Bayes’ theorem. In this re-
spect, the probabilities are treated subjectively as a statistical procedure that, in
many cases, endeavours to estimate parameters of an underlying probability distri-
bution (posterior distribution) based on an observed probability distribution (prior
distribution).

Suppose that each alternative a can be represented by a set of consequences and
a set of numbers ({ci}, {pi}), where {ci} is the set of possible consequences of a, and
pi is the probability that c; occurs given that a is implemented. (Note here that prob-
abilities are assigned to consequences instead of being assigned to states of the
world. These two models are fully compatible when considering only a finite num-
ber of states and consequences.) Then, the meaning of accepting the utility principle
and the principle of maximising the expected utility can now be formulated as fol-
lows (Malmnads, 1994b):

Definition: If ais ({ci}, {pi}), and Va is a real-valued function on {ci}, then a has
a value equal to 2piVa(ci), denoted by Ev(a).
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Definition: A decision-maker accepts the utility principle if and only if she assigns
the value 2piVa(ci) to a, given that it has assigned the value Va(ci) to ci.

Definition: An ordering >, of the alternatives is compatible with the principle of
maximising the expected utility if and only if a >, b implies Ev(a) > Ev(b).
Definition: A decision-maker accepts the principle of maximising the expected util-
ity if and only if its ordering of the values of the alternatives is compatible with that
principle.

A survey of different interpretations of the utility principle and PMEU, as well as
a more general characterisation of the class of expected utility models, is given in
(Schoemaker, 1982, p.530 ff). An expected utility model is one that predicts or pre-
scribes that people maximise the expression

Lo(P)U(X),
where X is an outcome vector. The models differ in i) how utility U(x) is measured,
i) what kind of concept of probability ®(p) is allowed, and iii) how the outcomes

are measured. Schoemaker examines some frequently used variants of models, in
accordance with this structure.

Utility theory was, even after taking Menger’s results into account, not a well-
founded subject until the late 1930s, when the works of Ramsey and von Neumann
and Morgenstern appeared. They proposed reasonable principles governing deci-
sions, from which a set of axioms was formulated whose purpose was to justify their
particular attitude towards the utility principle. Surveys over a wide variety of axi-
omatisations are given in, e.g., (Fishburn, 1981; Malmnés, 1994b), of which this
chapter follows the latter.

The idea is to in a systematic way define the meaning of rationality. The point
is, if a decision rule can be deduced from an indisputable axiomatisation, then this
rule should be the natural and obvious rule for a rational entity, provided that the
necessary information is available. Fgllesdal (1984, p.268) suggests the following
conditions for a decision rule:

e A decision rule should recommend an alternative with valuable conse-
quences before an alternative with less valuable consequences.

e A decision rule should recommend an alternative with a high probability of
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valuable consequences before an alternative with a low probability of valua-
ble consequences.

e A decision rule should recommend an alternative with a low probability of
bad consequences before an alternative with a high probability of bad conse-
guences.

This seems to be reasonable but is too vague to fill the needs of a prescriptive deci-
sion theory and has to be elaborated a bit. In this, we introduce some axiomatisa-
tions using the following notation:

a >p b means that the decision-maker holds alternative a to be strictly preferred

to alternative b. This binary relation is transitive and asymmetric, thus it is a

strict order.

a >p b means that the decision-maker holds alternative a to be at least as good

as alternative b, i.e., b is weakly preferred to a. This binary relation is complete

and transitive, thus it is a weak order.

a ~p b means that the decision-maker is indifferent between alternative a and al-

ternative b. This binary relation is reflexive, transitive, and symmetric, thus it is

an equivalence relation.

If the decision-maker can assign a number u(a) such that u(a) > u(b) if and only

if a >p b, then it is said that there exists a utility function over a and b.

The axiom systems that will be presented consist of primitives and axioms con-
structed from the primitives. Typical primitives include states, sets of states, and or-
dering relations such as >p. The axioms then imply a numerical representation of
probabilities and preferences, i.e., the axioms imply the existence of a probability
distribution and a utility function. Although Ramsey (1931) and von Neumann and
Morgenstern (1944) are credited for the axiomatic foundation of utility theory, this
book follows the axiom system of Luce and Raiffa (1957), very similar to the
aforementioned, followed by the axiomatic justification of the utility principle ac-
cording to Savage (1972). At first glance, the two systems seem dissimilar, but the
important implications boil down to the same central results. Starting with Luce and
Raiffa, in which alternatives (or gambles) with uncertain outcomes are called



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 27

lotteries: An alternative is denoted {(p1-v1, ..., pi-Vi, ..., pr-Vr), Which can be consid-
ered as a lottery with the probability pi for the outcome vi. All the probabilities are
supposed to sum up to one. For example, the alternative a with uncertain outcomes
v1 and v2 associated with probabilities p1 and (1-p1) respectively is represented as
the lottery a = (pi-vi1, (1-pi)-vr).

Axiom 1: Ordering of alternatives and transitivity: For any two alternatives a and
b, either a>p b orb >, a, and ifa>, b and b >, c then a >y .

Axiom 2: Reduction of compound lotteries: Any compound lottery (which may be
thought of as a mixture of lotteries, i.e., the prize of a lottery consists of another lot-
tery instead of a certain reward.) is indifferent to a simple lottery with vi, vz, ..., vr
as prizes, in which the probabilities for the prizes in the simple lottery is computed
according to ordinary probability calculus.

Axiom 3: Continuity: Each prize vi is indifferent to some lottery involving just vi
and vr. Thus, there exists some number (or probability) pi€[0,1] such that
Vi~p(Pi-V1, 0-v2, ..., 0-Vr-1, (1-pi)-Vr).

Axiom 4: Substitutability (independence of irrelevant alternatives): In any lottery
L, vi' is substitutable for vi, that is, {p1-v1, ..., pi-Vi, ..., prVr) ~p{(P1-V1, ..., pi- Vi, ...,
pr-Vry When vi' ~p Vi.

Axiom 5: Monotonicity: (pi-vi, (1-pi)-Vr) 2p(pi-v1, (1-pi')-vr) iff pi > pi".

Note that nothing is being explicitly said about the origin of the probability distri-
butions, they are just assumed to exist, and thus the view on probabilities is of the
objective kind. From these axioms, the principle of maximising the expected utility
as well as some other important results in utility theory are readily derived.

Savage argues that if utility is regarded as affecting only consequences (rather
than acts), then for a weakly ordered consequence set C, the following is valid:
®1(X) and m2(x) are numerical order-preserving functions representing the ordering
relation between the consequences if and only if there is a strictly increasing func-
tion r such that, for every cieC, wi(ci) = r(w2(ci)). This shows that w.(ci) is just an
ordinal scale: it cannot be interpreted as quantitatively measuring the strength of
preferences in any meaningful way. Savage adopted this argument from Pareto
(1848-1923). The primitives building up the axiom system of Savage slightly differ
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from the ones of Luce and Raiffa. Savage proposes the following: i) the binary pref-
erence relation >p, ii) a set S = {s1,52,...} of states, iii) a set C ={cz,cC,...} of con-
sequences, and iv) a set F = {f: S — C} of all possible mappings from S to C where
such a mapping is called an act. Now, Savage defines E as the power set of S, where
the elements of E are called events denoted by A, B, C, ... and further defines the
following concepts:
1. Forf,g,f,g'eF and B,B°<cE, f<, g given B if and only if f' <, g' for every f' and
g' that agree with f and g respectively, on B, and with each other on B¢ and
also g' <p f' either for all such pairs or for no such pair (where B®is the com-
plement of B).
2. ¢i<pcjifand only if f <, T when f(s) = ci and f'(s) = cj, for all seS.
3. Bisnull (B =) ifand only if f <, g given B, for all f,geF.

4. A'is not more probable than B (A <B) if and only if fa <p fg or Ci < ¢j, for
every fa fg,Ci,¢j such that fa(s) = ¢i for seA, fa(s) = ¢j for se A, fa(s) = ci for
seB, fa(s) = ¢j for seB".

5. f < cigiven B (¢i <p f given B) if and only if f <, h given B (h <, f given B),
when h(s) = ci, for all seS.

In the first concept, when act f' agrees with act f on B, then performing f will yield
the same consequence as performing f' given the event (set of states) B, thus f (s) =
f'(s) for all seB. The third concept says that if weak preference holds regardless of
which pair of acts compared given the event B, implying that all acts are equal given
B, then B is an empty set of states (and vice versa). The fourth concept: When an
act fg given A is preferred to an act fa given not A, and fs given not B is preferred
to fa given B, then if fg is preferred to fa this means that a decision-maker holds
event B more probable than event A (and vice versa). Then Savage proposes the
following seven axioms:

Axiom 1: Transitivity: The relation <, is a weak order.

Axiom 2: Completeness: For every f,g, and B, f <, g or g <, f given B.

Axiom 3: Resolution independence: If f(s) = ci, f'(s) = ¢j, for every se B, B=J,
then f <, f given B if and only if ¢i <; ¢j.
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Axiom 4: Qualitative probability: For every A, BeE, A<BorB<A.

Axiom 5: Minimal strict preference: It is false that for every ¢;, ¢;, Ci <p Cj.

Axiom 6: Continuity: Suppose h <p g, then for every c; there is a finite partition
{Bi} of Ssuch that, if g' = ci(Bi), and h' = ci(Bi), for some i, then h <, g' or h' <, g.
Axiom 7: Dominance: If f <, g(s) given B (g(s) <p f given B) for every seB,
then f <, g given B (g <p T given B).

The second axiom says that when two acts have the same consequences, the relation
between f and f' must be independent of states. Furthermore, the third axiom says
that the knowledge of an event cannot discard any preference between two conse-
quences. Together, axioms 2 and 3 constitute Savage’s debated sure-thing principle.
Informally, if a decision-maker does not prefer f to g, either knowing that the event
B occurred or knowing that B has not occurred, then the decision-maker does not
prefer f to g (Savage, 1972, p.21). Further, from axiom 3 follows that preferences
between acts depend only on realised consequences, and not possible ones.

The fourth axiom says that < is a qualitative probability, thus < is a weak order,
and B<Cifandonlyif (B u D) <(C u D) when (B n D) = (C n D) = 0. Further-
more, 0 < B, 0 < S (all events are at least as probable as the impossible event and
the universal event S must not be regarded as impossible). Axiom 5 says that there
is at least one pair of consequences such that one is strictly preferred to the other,
and axiom 6 implies the existence of a unique probability measure P on E. This
probability measure is consistent with the qualitative probability in that E is not
more probable than E' if and only if P(E) < P(E'). The last axiom says that if f <p
g(s) for all consequences of f for a set of states B, then f <, g, if one of those states
occurs, of further importance this axiom implies that the utility function is bounded
(nothing is infinitely bad or infinitely good).

Given these assumptions, Savage proved the existence of a real-valued utility
function on C with the following property: Let {Li} be a partition of S and let f be an
act with consequences {f(si)} on {Li}, and let {Li'} be another partition of S and
let g be an act with consequences {g(si)} on {Li'}. Then f <, g if and only if
Zpi-u(f(si)) < Zqi-u(g(si)) where pi = P(Li) and gi = P(Li"), i.e., the principle of max-
imising the expected utility (PMEU).
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Looking back at the system of Luce and Raiffa, it has been proved by von Neu-
mann and Morgenstern (1944) that if a decision-maker has preferences between
lotteries, i.e., given that the assumptions in the axiom system are fulfilled, then there
is a real-valued utility function, unique up to a positive affine transformation, on
the set of lotteries. Furthermore, let Lc = {L1, Lo, ...} be a set of lotteries on C (al-
ternatives with uncertain outcomes in the consequence set C), then they showed that
the utility function u:Lc — R, has a representation u(Li) = Zpi(ci)-u(ci) and Li <p L
if and only if u(Li) < u(L;). Thus, both axiom systems serve as attempts at a formal
justification of the utility principle and the principle of maximising the expected
utility. Due to the subjective nature of Savage’s approach, his theory is often re-
ferred to as subjective expected utility.

Descriptive decision theory

Human decision-makers tend to, under given circumstances, behave inconsistently
with the utility principle. Famous so-called paradoxes include Allais’ paradox and
Ellsberg’s paradox. Allais’ paradox shows that people tend to act inways inconsistent
with the sure-thing principle. This paradox derives from a common human behav-
iour of preferring a good outcome for certain to having a chance between something
not as good and something even better. Ellsberg’s paradox is quite similar, while it
shows people’s tendencies towards preferring known risks to unknown uncertain-
ties, and thereby violating the utility principle.

Paradoxes of these kinds are often resolved by arguing that even intelligent be-
ings make mistakes, and after some explanation of the inconsistency in their
choices, they change their minds. However, for instance, an empirical study by
Slovic (1974) has shown that as much as about 30% refuse to change their opinion
and conform to the utility principle even after having had their errors pointed out to
them. Tversky (1981) tries to understand why this is the case, and he concludes that
irrelevant contextual effects often influence people, making them act inconsistent
with the utility principle, i.e., the framing process. Further, it can be argued that no
normative theory of decision making can embrace all inherent peculiarities in a free
world of heterogeneous decision-making inhabitants.

However, this perspective has been critiqued. A common descriptive counter-
argument is the suggestion that the axioms of utility theory are inherently flawed.
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For instance, it has been shown that people do not always behave according to cer-
tain independence axioms in the system proposed by (Savage, 1954/1972; Allais,
1953). A more serious issue with the formal justifications of the utility principle
from a normative point of view is that even if the axioms in various systems are
accepted, the principle itself does not necessarily follow; in other words, the axio-
matic systems are seemingly too weak to imply utility theory and PMEU. This is
addressed in (Malmnés, 1994) who demonstrates the weaknesses of the systems in
(Herstein and Milnor, 1953; Oddie and Milne, 1990; Savage, 1972). A comprehen-
sive review of numerous such systems is provided in (Malmnés, 1994), who argues
that it is implausible for these systems to be extended in any reasonable way to
imply PMEU. Therefore, from a purely normative viewpoint, the logical founda-
tions of utility theory appear to be quite weak. But without serious contenders, it is
still a viable basis for prescriptive decision analysis, keeping this in mind.

Another criticism is that utility theory is inadequate for modelling risk attitudes
effectively. Proponents of utility theory often argue for the concept of a risk pre-
mium to demonstrate that utility theory captures varying risk attitudes (French,
1986). However, the use of a utility function to model all possible risk attitudes is
inherently limited. Critics argue that many decision-analytic models oversimplify
the problem and ignore important factors (cf., e.g., (Schoemaker, 1982). For in-
stance, even if the evaluation of an alternative yields an acceptable expected utility,
its consequences might be so undesirable that the alternative should be avoided en-
tirely, even if the probabilities of such consequences are very low. In such cases,
PMEU would need to be extended with additional functionality. It has been sug-
gested that a viable decision theory should allow for a broader range of risk attitudes
and provide decision-makers with means to express these attitudes in various ways
plus offer procedures for managing both qualitative and quantitative aspects.

Some researchers have in vain sought to modify the behaviour of PMEU by in-
corporating regret or disappointment into the evaluation, especially for cases where
numerically identical outcomes are perceived differently depending on the deci-
sion-maker’s previous experiences. See Chapter 4 for a discussion on such attempts.
However, Malmnas has demonstrated that, at best, these modifications result in per-
formances nearly equivalent to that of expected utility, and at worst, being incon-
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sistent with first-order stochastic dominance (Malmnas, 1996). The apparent prob-
lem here is that the discussion emanates from a normative point of view, and in
such a setting, the problem never ends. But from a prescriptive point of view, the
focus is instead on finding guiding rules of the best kind, and Malmnés’ observation
paves the way for a solid prescriptive approach.

Defenders of classical Bayesian decision theory instead argue that the concept of
utility captures different risk attitudes. The assumption is that to each expected util-
ity, there corresponds a certainty monetary equivalent Xe. The decision-maker is
indifferent between having this monetary value with certainty and performing an
alternative with uncertain outcomes, i.e., u(Xc) = Z piu(x;), where u(x;) is the utility
of gaining the monetary value x;. The risk premium, r, of an act is now defined as
the demand that a decision-maker has for carrying out the act, instead of having the
monetary equivalent X, for certain, i.e., r = 2 piX; — Xce. With respect to the premium
r, a classification of decision-makers into three classes can be made: a decision-
maker is risk-averse if r > 0; risk-prone if r < 0; and risk-neutral if r = 0.

As an example, assume that a decision-maker is in desperate need of a certain
amount of money, and any lesser amount than this amount would not be useful. For
instance, a person may need money for medical treatment of a disease that, if not
cured, will result in death. If this person should seize the opportunity of entering a
bet with their last funds that will give them a chance of winning an amount sufficient
enough for the treatment to be affordable, this person would probably not be labelled
irrational. In this situation, the risk premium r is probably negative.

With the foundations of Bayesian decision theory in place, we next explore meth-
ods for evaluating such expressions involving probabilities and utilities. The objec-
tive is to establish systematic and transparent approaches for ranking alternatives,
thereby providing consistent and well-founded guidance to decision-makers.

This chapter builds on (Danielson, 1997, Ch.1)
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04. Decision-Analytic Evaluation

In this chapter, situations where in addition the decision-maker has some estimates
of the probabilities of the states involved are discussed. Usually, the probabilities
are not the same for each alternative as in Laplace’s rule, traditionally called deci-
sion under risk. Any decision problem under risk can be transformed into a problem
in normal form. Further, tree and matrix forms of presenting a decision problem are
equivalent. Therefore, it is sufficient to handle decision problems in normal form.
In this chapter, a decision problem will be modelled in a decision frame.

Definition: Given a decision situation with m alternatives (Ay,...,An), each with
m; consequences, and statements about the probabilities and values of those con-
sequences. A decision frame is a structure (C,P,V) = ({{Cik}m,}m,P,V) containing
the following representation of the situation:

» For each alternative A; the corresponding consequence set

{Cik}rek, for Ki = {1,...,mj}.
* A set P of inequalities representing all probability statements.
* A set V of inequalities representing all value statements.

A large set of evaluation functions is the family of all functions that assign a nu-
merical value to a consequence set for subsequent comparison, see for example
(Schoemaker, 1982) for an overview. Such an evaluation function results in nu-
meric values ranking the alternatives (or, more precisely, the consequence sets).

Definition: Given a decision frame ({{Cjy} . } m,P,V) and a function f, the nu-
meric value N(C;) of a consequence set {Ciy } . 18 f(Dj1,- . --PimpVils- - ->Vimy)» 8
function over all consequences C;; in the consequence set.

To be reasonable, the value of N(C;) should range over the interval [0,1] since
the values range over that interval. Of the numeric values, the expected value seems
to be one of the most natural rules to apply to a decision problem on alternative-
consequence-form. This is partly because the expected value E(C;) is established in
mathematical statistics, where it is employed as the mean value to be assigned to a
stochastic variable taking on various values with specific probabilities. E(Cj) is
clearly an instance of N(C;) above. In this book, only discrete probability distribu-
tions are considered, and thus the following definition of the expected value applies.
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Definition: Given a decision frame ({C;},,P,V), the expected value E(C;) of a
consequence set C; = {Cj} ;18 the sum Y pji-vix over all consequences Cjy in
the set.

The use of the principle of maximising the expected value (PMEV) dates several
hundred years back, preceding the formal area of mathematical statistics and instead
originating from pure monetary gambling. Over the years, a number of problems
have been discovered with the principle when applied to real-life decision situa-
tions. A serious paradox was first suggested by Allais (1953), and other paradoxes
along the same line have subsequently been suggested. Many people tend to choose
alternatives in a way that seems to violate the PMEV, no matter what utility values
are assigned to the respective outcomes. See for example (Savage, 1972) for a math-
ematical argument regarding Allais’ paradox. In experiments where the violation
was afterwards pointed out to subjects who understood the mathematical argument,
up to 1/3 retained their choice despite this.

Such problems with PMEV warrant further investigation, and several research-
ers, not least within economics, have proposed a number of alternative decision
rules to replace (or sometimes supplement) the PMEV. Fishburn (1983) suggests an
evaluation based on the quotient between two separate expected values, which has
the form

EC. f)
EC. f)
where f; and f, are two functions of the values involved.
Loomes and Sudgen (1982) bring regret or disappointment into the evaluation to

cover cases where numerically equal results are appreciated differently depending
on what was once in someone’s possession. Their suggested formula has the form

Zli: Pic '(Vik + R(Vik - E(Ci))

where R is supposed to be a regret function related to the ordinary expected value.

Quiggin (1982) tries to resolve the problem by requiring functions to modify the
probabilities in the evaluation rule such as
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n
Z(f (Sik) —f (Si(k—l))) Vi
k=1
where f is a strictly increasing function, the sjj’s are in increasing vjj order, and

K
S, =, p; - Yaari has pointed out that under certain reasonable assumptions
j=1
(Yaari, 1987), it must be the case that f(p;;) = pjj and then he made the following
extended suggestion

Zli:(f (1_Si(k—1)) —f (1_Sik)) Vi t+ f (pimi ) 'Vimi

where s;; is as above.

As noted in Chapter 3, Malmnés (1996) shows for those above and for other
proposals that their performances can at best be equal to that of the expected value
and at worst are much poorer, for example not even being consistent with first order
stochastic dominance. Since no rule performs consistently better than the expected
value, it is the only possible rule from a prescriptive viewpoint. It has sometimes
been argued that the prescriptive approach consists of selecting axioms to adhere
to, rather than accepting and using the axiom systems of established theories
(Keeney, 1992). Such a view would reduce prescriptive decision analysis to meta-
arguments on which axiomatic results to believe in and adhere to, and which to
dismiss. However, that would constitute a road that does not lead to better tools for
real-life decision support.

In many decision contexts, the decision-maker may want to exclude particular
alternative courses of action that are, in some sense, too risky. If the PMEU modi-
fications on the previous pages do not work, what does? The exclusion can be
achieved by a class of supplementary decision rules called qualitative sorting or
security levels. While an evaluation of a consequence set may result in an accepta-
ble expected value, the consequences of selecting it might be so dire that it should
nevertheless be avoided. It might, for example, endanger the entire purpose of the
decision context, and in that case, even a consequence with a low probability is too
risky to neglect. Such exclusions can be dealt with by specifying a security level for
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the probability and a threshold for the value. Then a consequence set would be un-
desirable if it violates both of these settings. Malmnés’ proposal (1994a) is to sup-
plement the expected value with qualitative evaluations. An example is the qualita-
tive sorting function, which has the basic form
S(Ci’ r,s)= (Z Pij <s)

where r is the minimally tolerable value threshold and s is the maximally acceptable
probability for events below the threshold to occur. This is a boolean function sort-
ing out unwanted consequence sets. But to treat this and other supplements, a more
general discussion on dominance is required.

Delta Dominance
In this section, a general dominance rule is suggested as a unifying concept. In its
generic form, it describes the type of dominance to be considered and thus also the
type and amount of computation involved in evaluating consequence sets in the
framework. It includes all of the above-suggested evaluation functions, even though
the expected value is by far the most common. For convenience, a shorthand nota-
tion for the difference in expected values is introduced.

Definition: Given a decision frame ({{Ciy} m;} m,P, V), 8;; denotes the expression
E(C)) — E(C)) = Xk Pik ' Vik — 2k Pjk ' Vjk over all consequences in the consequence
sets C; and C;.

Terminology: Given a decision frame (C,P,V), the functions f, g, and h are
specified as f:R'—[0,1], g: RI—[0,1], and h: RK- [0,1] with 1,j,k € N+ as appro-
priate. The a and 3 parameters are real numbers in the range [0,1].

In order to describe the dominance, a couple of concepts are required. The index
set pair captures the consequences within each of the consequence sets that possess
some desired property, in this case their value being at least as great as a given
parameter.

Definition: Given a decision frame (C,P,V) and a real number d € [0,1], an index
set pair (K. K;)(d) is K; = {k | vy >d} and K;={k | Vi = d}.
When the parameter d varies over some range, the content of the index set may
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vary as well. This represents a selection procedure for selecting all consequences
within a pair of consequence sets with a desired property. The set of all such index
sets is defined next.

Definition: Given a decision frame (C,P,V) and real numbers a,b,d € [0,1],
Mj;[a,b] is the set {(K;K;)(d) | d e [a,b]}.

Mij[a,b] is the set of all different index set pairs in the range [a,b], i.e. all the com-
binations of index sets that satisfy any threshold condition in that range. Those two
definitions enable the following compact definition of the A-dominance. The idea
behind the dominance is a pairwise comparison of the consequence sets employing
the desired numerical function. Note that the weak inequality must hold for all index
set members, i.e. over the entire interval range I.

Definition: Given a decision frame (C,P,V), a function f, and two parameters
(P, Vo) and B(P, V), C; A/I]-dominates C; iff

V (KpKi)d) € Ml > £ (p o) = D> F(Pye, vy, B) 2 0 and

keK; keK;
3 (Ki’Kj)(d) € Mij[I] z f(pikavikaa)_ Z f(pjkavjkaﬂ) >0-
keK; keK;

This is a very general definition based on traditional admissibility concepts, and
many instantiations are possible. In this book, a few are given and it is shown that
some well-known evaluation concepts are special cases of A-dominance. The first
subdivision of the A-dominance is into dominance orders depending on the function
employed in the evaluation. First and second orders are specifically addressed be-
low, while higher orders are not further discussed.

The A-dominance is of the first order if the function used is a function of only
probabilities. The values are not taken into account when evaluating the conse-
quence sets.

Definition: Given a decision frame (C,P,V) and functions f and g, C; 1/1]-domi-
nates C; iff C; A[I]-dominates C; with f(pj,vix,0) = g(pji) and f(pji. Vji.B) = g(Djk)-

Thus, first order specialisation turns dominance into a difference of sums of a func-
tion of probabilities.
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Note: C; I/I]-dominates Giff v (Ki,Kj)(d) € M;(1] Z a(p,) = Z 9(p;) -

keK; keK;
The note points out the resemblance with some familiar dominance concepts. One
further specialisation of the first order A-dominance is the first order stochastic dom-
inance, a well-known concept. To reach there, the general first order A-dominance
is considered. It consists of specifying the range for the index set pairs to be the full
[0,1] range.

Definition: Given a decision frame (C,P,V), C; 1S-dominates Cj iff C; 1[0,1]-dom-
inates C;. C; 1SE-dominates C; iff C; 1S-dominates C; with g(pj) = pik-
When the function g employed is the simple g(pji) = pjk the general stochastic dom-
inance turns into the commonly used first order stochastic dominance, which in the
A-dominance concept is a specialisation of function as well as of index set range.
To see that this is indeed the ordinary first order stochastic dominance as claimed,
it is convenient to make the following note, in which the form for 1SE-dominance
coincides with the definition of first order stochastic dominance.
Note: C; ISE-dominates CJ iff v (Kl,KJ)(d) € Mij[I] Z Py > Z P °

keK; keK;
Earlier, a supplementary function was mentioned under the name of qualitative sort-
ing or security levels. This was a kind of threshold function separating wanted and
unwanted outcomes (or desirable and undesirable consequence sets) according to a
threshold rule applicable to the evaluation situation. This type of evaluation rule
also turns out to be a special case of the A-dominance, viz. the dominance of a
reference consequence set, i.e. the threshold.

Definition: Given a decision frame (C,P,V) and two real numbers s,t € [0,1], G
violates general security level s for threshold value t iff C, 1[t,t]-dominates C;,
where C; is a consequence set with two consequences, g(p;;) = 1-g(s), vi = 1,
g(pr2) = &(s), vip = 0.

When the function g is the simple g(pjx) = Pik. then the general security level turns

into the ordinary security level concept, which again is a specialisation of both func-
tion and index set range.
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Definition: Given a decision frame (C,P,V) and two real numbers s,t € [0,1], Cj
violates security level s for threshold value t iff C; violates general security level s
for threshold value t with g(pji) = pjk-

To see that this is indeed the same concept as the security levels discussed above,

the following observation can be helpful. Note that there can only be one index set
pair since the range of the value interval only contains r.

Note: C; violates security level s for threshold value t iff for K; = {k | Vi = t}

> py<l-s-

keK;
It can be seen that the first-order stochastic dominance and qualitative sorting or
security levels are both variants of the same concept of first-order A-dominance.

The A-dominance is of the second order if the function used is a function of both
the probabilities and the values.

Definition: Given a decision frame (C,P,V) and functions f and h, C; 2/1]-domi-
nates C; iff C; A[I]-dominates C; with f(pjy,vix,a) = h(pjy,vjy) and

f(Pjk-Vik-P) = h(pji- Vi)

Then the domination turns into a difference of sums of a function of probabilities
and values.

Note: Ci 2[1]-d0minates CJ iff v (KI,KJ)(d) € MIJ[I]

Z h(pik1vik) 2 Z h(pjklvjk) .

keK; keK;

As for the first order, a further specialisation into second-order stochastic domi-
nance is possible. This is a well-known concept as well, and it turns out to be an-
other case of A-dominance. First, the general second-order stochastic dominance is
defined. As in the first order case, it consists of specifying the range for the index
set pairs to be the full [0,1] range.

Definition: Given a decision frame (C,P,V), C; 2S-dominates Cj iff C; 2[0,1]-dom-
inates C_] C; 2SE-dominates CJ iff C; 2S-dominates CJ with h(p;i,Vik) = Pik Vik-
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If the function h employed is the most common h(pijy,Vik) = Pik"Vik. then the domi-
nance turns into the commonly used second-order stochastic dominance, which in
the A-dominance concept is a specialisation both of function and of index set range.
To see explicitly that we have arrived at the ordinary second-order stochastic dom-
inance, it is helpful to make the following note, in which the form for 2SE-domi-
nance can be seen to be almost equivalent to the textbook definition of second-order
stochastic dominance.

Note: C; 2SE-dominates CJ iff v (Kl,KJ)(d) € Mij[O,l] Z P Vi = Z Py Vi
keK; keKi

Another second order A-dominance is the ordinary expected value and some of the

suggested replacements. One of their characteristics is that they evaluate only by

full index set pairs, i.e. pairs that contain all members of each consequence set. The
general numerical dominance is a straightforward specialisation of 2A-dominance.

Definition: Given a decision frame (C,P,V), C; N-dominates G iff C; 2[0,0]-dom-
inates C] C; NE-dominates CJ iff C; N-dominates CJ with h(p;i,Vik) = Pik Vik-

This corresponds to the evaluation rules that apply a probability and value formula
to the consequence set in order to reach a numerical verdict on which one is prefer-

able. The last specialisation of the second order is the ordinary expected value,
which is termed NE-dominance and is realised by letting f(pjx,Vik) = Pik-Vik in the

N-dominance. This can be seen to be the expected value, since the only index set
pair generated by the [0,0]-range is the pair of complete consequence sets.

Note: C; NE-dominates C; iff for (K;,K;)(0) &;; = 0.

Further, note that 5;; > 0 does not apply to 2SE-dominance since it involves different

index set pairs while NE-dominance always applies only to the full index sets of the
consequence sets. It has been demonstrated that some well-known dominance rules
and the ordinary expected value are special cases of A-dominance, which acts as a
unifying concept in comparing and discussing evaluation rules.

This chapter builds on (Danielson, 1997, Ch.5)
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05. Realistic Input Information

In a vast majority of real-life decision situations, the decision-maker does not have
access to the significant amount of statistical data demanded to aggregate precise
numerical values and probabilities, nor does the decision-maker have the ability to
perform precise estimations of utilities. Furthermore, people find it hard to distin-
guish between probabilities ranging from approximately 30% to 70% (Slovic,
1974). A great deal of attention has been given to problems of imprecise infor-
mation as a source of decision uncertainty, Morgan and Henrion (1990) identify
two main types of uncertainty. The first type of uncertainty derives from a lack of
historical data and takes its form from statistical variation, subjective judgements,
linguistic imprecision, variability, inherent randomness, disagreement and approx-
imation. For example in experiments, errors in the measurements of quantities give
rise to statistical variation. The second type of uncertainty arises from the model
chosen. Furthermore, uncertainty due to biases in communication and value differ-
ences is unavoidable in the use of expertise in policy processes. Instead of address-
ing the sources of uncertainty, Funtowicz and Ravetz (1990) discuss different types
of uncertainties, including inexactness (or technical uncertainty), unreliability (or
methodological uncertainty), and border-with-ignorance (or epistemological uncer-
tainty). These authors consider ignorance to be endemic to scientific research.

Even if a decision-maker is able to discriminate between different probability
measures, very often adequate, reliable, and precise information is missing. Conse-
quently, there seem to be significant reasons for discriminating between measurable
and immeasurable uncertainty. Measurable uncertainty is often referred to as risk
and can be represented by precise probabilities. In contrast, immeasurable uncer-
tainty occurs frequently in high-consequence/low-frequency situations since the low
frequency implies a lack of statistical data, and thereby the axiom systems given
by, e.g., Savage and von Neumann and Morgenstern, are not satisfied. Ellsberg
(1961) proposes a class of choice situations involving immeasurable uncertainty, in
which the behaviour of people is inconsistent with the suggested axiomatic systems.
He does not object to the use of the principle of maximising the expected utility
(PMEU) but suggests that the underlying axiomatic systems should not be applied
in situations where the available information is to some extent not precisely defined.
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Doyle and Thomason (1997) present an approach where imprecision is being mod-
elled by using only qualitative data. However, in many cases this restriction will
yield a too narrow outlook of a decision problem, numerical estimates should still
play arole.

There is a wide variety of mathematical models for the representation of impre-
cise probability. Most research in imprecise probabilities has been concerned with
different types of upper and lower probability (Walley, 1991). However, some com-
mon and useful kinds of uncertainty cannot be modelled through the use of upper
and lower probability models, especially, commonly used comparative statements
of the form “A is at least as probable as B” cannot be allowed for. Walley’s book
Statistical Reasoning with Imprecise Probabilities introduces the concept of upper
and lower previsions. Briefly speaking, the lower prevision of a gamble is defined
by the amount a gambler is willing to pay for a lottery ticket, and the upper prevision
is defined by how much he is willing to sell the same ticket for.

Many attempts have been made to express imprecise probabilities in terms of
intervals. In (Choquet, 1953), the concept of capacities is introduced. These capac-
ities can be used to define a framework for modelling imprecise probabilities as in-
tervals (Huber, 1973). The use of interval-valued probability functions, by means of
classes of probability measures, has also been integrated into classical probability
theory by e.g., Good (1962) and Smith (1961). A similar approach was taken by
Dempster (1967), where a framework for modelling upper and lower probabilities is
investigated. This was further developed by his PhD student in (Shafer, 1976), where
the concept of basic probability assignments was also introduced. The Dempster-
Shafer theory for quantifying subjective judgements has received a lot of attention,
but it seems to be unnecessarily strong with respect to interval representation
(Weichselberger and P6hlmann, 1990). Weichselberger’s theory of interval proba-
bility instead argues in favour of an axiom system for interval probabilities clearly
related to the one of Kolmogorov, i.e. an already established theory.

Imprecision in decision situations often prevails in both probability estimates and
utility assessments. For example in business decisions when acting upon a forecast,
the forecasted value often is subject to some forecast error encouraging the use of a
prediction interval instead of a predicted fixed number which in almost every case
will be more or less incorrect. Furthermore, many types of decisions involve utility
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measures of non-monetary outcomes which then must be measured on some pre-
cisely defined interval scale, such measurements are often hard to motivate, e.g.,
due to underlying ethical responsibilities and democratic values.

When more than one probability distribution defined on the same set of outcomes
Is reasonable given the information obtained, we speak in terms of sets of probabil-
ity distributions. The American philosopher Levi gives three conditions such sets
of probability measures B must satisfy. These imply (among other things) that the
probability distributions in B for a given state of nature form an interval, in literature
such sets are commonly referred to as convex sets of probability measures. The sig-
nificance of Levi’s work is emphasised as Levi compares the different alternatives
in decision situations. He gives an example in which two similar decision situations
with different sets of probability measures yield results different from his theory,
even if the generated intervals are the same (Levi, 1974, pp.416-418). He notices
that some authors have presupposed such an interval in their theories, but concludes
that his own theory “[...] recognises credal states as different even though they
generate the identical valued function —provided they are different convex sets of
Q-functions.” The significance is emphasised as Levi compares the different alter-
natives in decision situations. He gives an example in which two similar decision
situations with different sets of probability measures yield results different from his
theory, even if the generated intervals are the same.

Levi also relaxes the Bayesian requirement on representing the utilities of the
consequences. He introduces a set G of permissible utility functions, which do not
obey the classical Bayesian requirement that all elements in G are linear transfor-
mations of each other. He then stipulates the following definitions:

Definition: An alternative A is E-admissible if and only if there is a probability
distribution p in B and a utility function u in G, such that E(A), defined relative to
p and u, is optimal among all alternatives.

Definition: An alternative A is S-admissible if and only if it is E-admissible and
there is a function u in G such that the minimum u-value assigned to some possible
consequence is at least as great as the u-values assigned to the consequences of any
other of the remaining alternatives. These definitions seem reasonable, but they
have some counter-intuitive implications. They clearly violate the reasonable con-
dition of independence of irrelevant alternatives, i.e. that the ordering between the
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alternatives is not affected by the addition of a new alternative. The theory is also
problematic in some respects when confronted with some empirical results.

In (Danielson, 1997), another approach is suggested. Imprecise probabilities, as
well as imprecise utilities, are handled by modelling a decision situation with nu-
merically imprecise sentences such as “the probability of consequence c11 is greater
than 5% and comparative sentences such as “consequence cq1 is preferred to con-
sequence C1»”. These kinds of sentences are represented by suitable intervals and
comparisons. Sentences such as “the probability of cjj lies between the numbers ay
and by are translated to pjj € [ax,bk]. Similarly, sentences such as “the probability
of ¢;jj is greater than the probability of cy”. are translated into inequalities such as
pij > Pwi. In this way, each statement is represented by one or more constraints. The
conjunction of all constraints together with X pjj = 1 for each alternative A, is called
the probability base (P). The utility base (V) consists of similar translations of utility
estimates. The collection of probability and utility statements constitutes the deci-
sion frame. The following terminology and definitions are from (Danielson, 1997).

Definition: A decision frame with m alternatives is a structure

..........

of linear constraints in the probability variables and V is a finite list of linear con-
straints in the utility variables.

Given such a structure, various decision rules can be applied. One such structure
is a generalisation of the expected utility of an action. With respect to a decision
frame, this can be expressed by the following definition.

ity E(A;) of an action A; is E(Ai) = Zy<p; Pik- Uik, Where pik and Uik are variables in
P and V, respectively. uij denotes the utility of the consequence cij, and pi; denotes
the probability of cij occurring given that action A, is taken.

vectors of real numbers (ajy,...,ain,) and (biy,...,bin,) respectively. Then define
8E(Ai) = Zyp; aik- bik, where aix and bix are numbers substituted for pix and uik in
E(A).
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If the expected utility in the definition above seems to be very similar to the
expected utility as defined in the previous chapter, it is important to bear in mind
that this is evaluated with respect to the solution sets of the decision frames rather
than to precise numbers. Using precise numbers, evaluating the expected utility is
straightforward. However, when numerically imprecise information is involved, the
situation is a bit more intricate, i.e., the expected utility has to be evaluated with
respect to the solution sets to the probability and utility bases. The solution set to a
set of linear constraints L consists of vectors consistent with L.

Definition: Given a base expressed in the variables {p1...., pk}. A list of numbers
[n1,...,ny] is a solution vector to a base L if the substitution of n; for p;, forall 1 <i
<k, in L does not yield a contradiction. The set of solution vectors to L constitutes
the solution set for L.

With respect to the solution sets to the probability and utility bases, substituting
all possible vectors (aj,...,ai) and (bjs,...,bi,), consistent with the solution sets to
the probability and utility bases, in the expected utility above, a range of possible
values is received. Thus, by the introduction of interval in this way, the meaning of
the expected utility is no longer clear, and a reasonable decision strategy must be
defined. A quite uncontroversial strategy of evaluation is to never eliminate or dis-
qualify an action that might be the best one. The only option then becomes never to
eliminate any alternative, which might be considered too weak a decision strategy.
Another strategy is to investigate the differences between the various alternatives.

expected utility ij between two alternatives Aj and A; are &ij = E(Ai) — E(A)). Sim-
ilarly, define abcdgy; = abE(A;) — CAE(A)).

Using this notation, we can introduce a variety of rules to discriminate between
different actions. For instance, the concept of admissibility (64) is expressed in the
following way.

good as Ay iff abcdg; > 0, for all a, b, ¢ and d, where the expression {pi; = a1} & ...
& {pin, = ain} & {pPj1 = Cj1} & ... & {pjn, = cjhj} is consistent with P. Similarly, {u;;
=bi1} & ... & {uip, = bin} & {u;p = djp} & ... & {ujhj = djhj} Is consistent with V. A;
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is better than A iff A, is at least as good as Aj and abcdg;; > 0, for some a, b, ¢, d,
that is consistent with P and V as above. A; is admissible iff no other A; is better
than A,.

Intuitively, an action can be discarded if it is always worse than all other actions,
i.e., an admissible alternative is in some sense a non-dominated alternative. The
concept of admissibility is computationally meaningful in this framework. How-
ever, the imprecision represented in the decision frames, viz. most non-trivial situ-
ations, often results in the ranges of the expected utility of some actions overlap-
ping. The set of admissible alternatives will therefore often be too large. Conse-
quently, even if PMEU is employed, there is a need for further principles of discrim-
ination. One way to proceed is to determine the stability of the relation between the
actions under consideration. Values near the boundaries of the intervals are proba-
bly less reliable than more central values due to interval statements being deliber-
ately imprecise. This can be taken into account by measuring the dominated regions
indirectly with the use of the concept of contraction, which is motivated by the dif-
ficulties of performing sensitivity analyses in several dimensions simultaneously. It
can be difficult to gain a real understanding of the solutions to large decision prob-
lems using only one-dimensional analyses since different combinations of dimen-
sions can be critical to the results of evaluation.

In order to assess the overlap, sensitivity analyses of the admissibility are called
for. The hull cut is a generalised sensitivity analysis for this purpose. It is reasonable
to consider values near the boundaries of the intervals in a constraint set to be less
reliable than more central values, due to interval constraints being deliberately im-
precise. The core, on the other hand, represents the most reliable estimates. It is
therefore desirable to be able to study the bases with varying cut rates, i.e. studying
smaller or larger decrements to the orthogonal hull. If the core itself is not enough
to yield the desired evaluation results, it can be further cut towards the focal point
with varying degrees of contraction.

Definition: Given a base X in {X;};c|, a set of real numbers {a;,b;}; .|, a core
[c;,d;i], of {X;}ie, and a real number ©t € [0,1], a 7-cut of X is to replace the core
by [ci+tn(aj—c;), dj+m-(b;—d;)],,. If the set {a;,b;};<y 1s the hull (a;,b;),, then it is
called a m-expansion of X. If (ry,...,ry) 1s a focal point and a; = b; =r;, then it is
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called a m-contraction of X.

The m-cut is a linear procedure, but non-linear procedures are plausible as well.
In addition, the procedure can work from either side ((L)n-cut and (R)=n-cut) or with
varying, even non-uniform rates of contraction. The cut structure is studied with
respect to admissibility, i.e. at which cut rates admissibility is affected. If there is
no verdict in the original core, it may be further cut towards the focal point in order
to achieve a result.

Various kinds of sensitivity analyses based on the concept of contraction are
suggested in (Danielson, 1997). By co-varying the contractions of an arbitrary set
of intervals, it is possible to gain much better insight into the influence of the struc-
ture of the decision frame on the solutions. Contrary to, e.g., volume estimates,
contractions are not measures of the sizes of the solution sets but rather of the
strength of statements when the original solution sets are modified in controlled
ways. Both the set of intervals under investigation and the scale of individual con-
tractions can be controlled. The idea behind contractions is to investigate how much
the intervals can be decreased before an expression such as E(A;) — E(A;) > 0 ceases
to be consistent. At the same time, we must avoid the complexity inherent in com-
binatorial analyses, but still be able to study the stability of a result.

It should be emphasised that the concept of admissibility is still based on PMEU,
and thus the approach of considering only admissible actions cannot be entirely
uncontroversial. Since the idea of dismissing a clearly inferior action seems to be
reasonable, we must be careful about how to measure this inferiority.

One major drawback of the classic Bayesian approach as well as Levi’s approach
is that it does not account for variations of the epistemic reliability in different deci-
sion situations (G&rdenfors and Sahlin, 1982). Even if an outcome is associated with
a set of probability measures and a set of utility measures, some of these measures
are often regarded as more reliable than others, due to the nature of the obtained
information. Thus, we have a second-order belief in the sense that we hold some of
our beliefs to be more reliable.

The interval model requires defining a set of all epistemologically possible prob-
ability distributions within a decision context. However, a decision-maker may not
assign equal confidence to all these distributions, necessitating a model of belief
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strength in different vectors. A further refinement of the interval model can be
achieved using distribution theory. This approach allows for differentiation among
various probability distributions and utility functions by defining a global distribu-
tion that expresses various beliefs over sets of intervals. For each vector of proba-
bility estimates, a belief value is assigned to reflect the decision-maker’s confidence
in that particular distribution. This global distribution is defined over a polytope, a
region of possible solutions described by linear inequalities. This model generalises
the interval-based approaches discussed earlier, enabling a more flexible represen-
tation of beliefs in decision making. However, one major limitation is that decision-
makers can rarely envision such high-dimensional distributions, especially in com-
plex decision situations.

Gérdenfors and Sahlin (1982, 1983) address these issues by considering global
belief distributions, though they focus primarily on the probability case. A limita-
tion of this approach is its lack of exploration of the relationship between local and
global distributions and the methods for ensuring the consistency of user-specified
belief statements. For example, if a decision-maker considers a class of probability
distributions, it is reasonable to assume that belief should be zero in vectors where
the mapping does not sum to one. Hence, the belief in impossible outcomes should
be zero, and this constraint must be consistent with the overall belief distribution.

In general, interval decision analysis conforms to traditional statistical reasoning
by being compatible with the concept of admissibility. The emphasis in prescriptive
decision theory is not on describing another formalism for representing imprecision
but rather on presenting a way of handling the imprecision inherent in many real-
life decision problems within standard decision theory.

This chapter builds on (Danielson, 1997, Ch.4)
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06. Multiple Criteria

As discussed in detail in Part I, the roots of prescriptive decision theory can be
traced to the mid-20™" century with the development of utility theory and the axio-
matic foundations of rational choice, notably by the works of von Neumann and
Morgenstern, Savage, and others. The classical expected utility theory, underpinned
by axioms such as completeness, transitivity, independence, and continuity, repre-
sents the ideal of rational behaviour under uncertainty. Probabilistic (Bayesian) de-
cision analysis, which builds directly upon this foundation, involves the modelling
of uncertainty through probability distributions and the quantification of prefer-
ences via utility functions. Decision trees, influence diagrams, and Bayesian updat-
ing are among the standard tools employed in this tradition. These methods are par-
ticularly powerful when uncertainty can be meaningfully represented probabilisti-
cally and when the decision-maker’s utility function can be elicited and incorpo-
rated into the analysis.

However, the limitations of classical probabilistic approaches for real-life deci-
sion analysis have long been recognised. In practice, many decision situations in-
volve multiple objectives. Among the most significant developments to address
these challenges is the emergence of multi-criteria decision analysis (MCDA). It
encompasses a set of methods designed to support decision making in contexts
where multiple, often conflicting criteria must be considered simultaneously. Un-
like classical probabilistic (Bayesian) methods, which assume a single objective
function, MCDA explicitly acknowledges and structures the presence of multiple
criteria, which may be qualitative, ordinal, or quantitative.

MCDA methods are diverse in formulation, but they share certain methodologi-
cal features. First, they require the articulation of criteria relevant to the decision
context, often through stakeholder engagement. Second, they typically involve the
valuation or scoring of alternatives on each criterion, using performance scales that
may be quantitative or qualitative. Third, they incorporate a mechanism for aggre-
gating these evaluations into a global preference or ranking of alternatives, which
may be deterministic or incorporate uncertainty. However diverse they are, there is
still an inescapable requirement to be aligned with classic decision theory.

Well-known MCDA methods include value-based approaches such as SMART,
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VIKOR and TOPSIS, and outranking methods such as ELECTRE and PRO-
METHEE, among others. Value-based methods often rely on compensatory aggre-
gation rules and require preference elicitation while outranking methods try to en-
compass non-compensatory reasoning to deal with what they see as incomparabili-
ties. Nevertheless, regardless of approach, they must by necessity stay within the
scientific borders of classic decision theory which they build upon.

Most present-day developments in computational decision analysis occur within
MCDA rather than single-criterion probabilistic (Bayesian) methods. To recap the
evolution discussed in Part I, the beginnings of MCDA can be traced back to the
development of decision theory and operations research (OR) during World War 1.
OR itself emerged as a discipline in the early 1940s, driven by military needs for
efficient resource allocation, optimal supply chain management, and strategic plan-
ning. Pioneering researchers, such as Dantzig, developed linear programming, a
mathematical approach that provided optimal solutions to problems of allocation
under constraints. Early decision models were primarily concerned with single-ob-
jective optimisation, seeking to identify the best solution according to a single cri-
terion, typically minimising costs or maximising profit (Dantzig, 1947).

However, as noted above, decision-makers in the real world often face problems
with multiple, often conflicting objectives. In these more complex scenarios, the
concept of MCDA began to take shape as researchers sought to extend optimisation
techniques to consider trade-offs between competing criteria. This led to the devel-
opment of early multi-objective optimisation methods in the 1950s and 1960s,
which sought to find solutions that balanced competing objectives. One of the ear-
liest contributions to this field was the work of Kuhn and Tucker on the theory of
optimality in decision making (Kuhn and Tucker, 1951), which set the groundwork
for future developments in multi-criteria analysis by formalising the need to con-
sider multiple constraints in decision-making problems.

In the 1950s and 1960s, as both OR and decision theory matured, the necessity
of incorporating multiple objectives into decision making became more apparent.
At this time, mathematical models for decision making began to account for various
factors beyond simple profit or cost optimisation. Multi-attribute utility theory
(MAUT) early became a cornerstone of MCDA. MAUT posits that individuals
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make decisions based on the expected utility derived from each alternative, with
each attribute (or criterion) contributing to the overall utility in a weighted manner.

The classic concept of utility, however, assumes that preferences can be quanti-
fied and aggregated into a single utility function. For complex decision problems
with multiple criteria, this assumption is often difficult to meet. In response, Keeney
and Raiffa at 1IASA developed methods to analyse trade-offs between criteria in
their book Decisions with Multiple Objectives (1976/1993). Their work introduced
a more structured approach to multi-criteria decision making by emphasising the
importance of defining and eliciting the decision-maker’s preferences over multiple
criteria. They recognised that many real-world decision problems do not lend them-
selves easily to the construction of a single utility function and therefore suggested
the use of non-aggregative methods, where each criterion is considered inde-
pendently but in relation to the others via scale alignments.

The first applications of MCDA methods were primarily in the fields of manage-
ment science, engineering, and public policy, where decision-makers had to evalu-
ate alternatives based on multiple criteria. In the 1960s, ad hoc multi-criteria meth-
ods, based on optimisation models, were applied to a wide range of decision prob-
lems, from resource allocation and industrial engineering to urban planning and en-
vironmental management. In the 1970s, as the availability of computing power in-
creased, MCDA models became more computationally feasible for a wider range
of applications. The development of decision support systems (DSS) during this
period allowed for the systematic application of MCDA methods in interactive de-
cision making. These systems enabled decision-makers to model multiple criteria
and evaluate the performance of different alternatives, taking into account not only
quantitative but also qualitative data. The integration of MCDA into DSS marked a
significant step forward in making complex decision making more accessible and
analytically rigorous. It was not, however, until the 1990s that computational power
was used for complex decision-analytic calculations in a way they had been used in
OR for a long time. One of the first descriptions of computational decision analysis
is (Danielson, 1997), however in a single-criterion setting.

In parallel with the development of traditional MAUT, other methods were
emerging in the 1970s that focused on the structuring and evaluation of complex,
multi-criteria problems. Among the earliest was the Analytical Hierarchy Process
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(AHP), developed by Saaty already in the late 1970s (Saaty, 1977). AHP introduced
a method for structuring multi-criteria problems into a hierarchy of objectives, sub-
objectives, and alternatives, which could be compared pairwise in terms of relative
importance. The pairwise comparison approach allowed for s seemingly precise
evaluation of trade-offs and the calculation of a final score for each alternative by
synthesising the results of comparisons. However, the approach also opened up se-
rious problems when applying it to real-world decision problems.

The traditions in MCDA are a bit different from those in probabilistic (Bayesian)
decision analysis (PDA). While PDA traditionally has a more theoretical and axio-
matic approach, focusing on well-foundedness, MCDA is more concerned with pro-
cesses, procedures and calculation schemes. There is nothing inherently wrong in
any of the two sets of approaches, rather they simply stem from different traditions.
PDA originates from mathematics, statistics and economics, and hence inherited
methods and ways of thinking and expression from those disciplines. MCDA, on
the other hand, has a more pluralistic background, with for example some of the
more widespread methods coming from civil engineering (VIKOR) and industrial
engineering (TOPSIS). While an engineering approach to a research problem is not
per se better or worse than a mathematical/theoretical one, they often yield vastly
different outcomes. For an insight into the epistemic fragmentation within the
MCDA field, cf. Greco et al. (2016) for a 1350-page, 50+ author overview accom-
modating numerous divergent research directions and philosophies, presenting
sometimes isolated and often disparate perspectives and methods without a com-
mon coherent foundation. In the overview, each method is presented by eager and
invested advocates, emphasising the foundational divide within the field.

In contrast, this book aims at unifying PDA and MCDA by mapping the results
in Part 1 onto MCDA and adding computability as the third pillar in Part I11. In
(Danielson, 1997), only PDA is treated in detail. Since then, and characterising the
21% century, multi-criteria decision problems have been much more in focus. Luck-
ily, many results from Bayesian PDA carry over to MCDA, albeit with some mod-
ifications. This second part of the book will deal with the similarities and differ-
ences between the two approaches and ends with a unified model (MPDA = multi-
criteria probabilistic decision analysis) where all three types of decision variables
(probabilities, utilities and criteria weights) are modelled and evaluated together.
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In early MCDA development, the question was raised of how decision-makers
should compare the alternatives with respect to different types of objectives of the
decision. Each objective is referred to as one attribute in the decision context, and the
approach is to define one individual utility function for each attribute. These are
then aggregated into a global utility function, in which weights express the relative
importance of each attribute. Each consequence C; may be thought of as a vector of
achievement levels regarding the identified attributes, in the case of n attributes, the
consequence set Ci = (¢, ..., c¢"). Some literature uses the terms criteria or perspec-
tive instead of attribute, however, from a theoretical point of view these terms may
be used interchangeably.

Several approaches to aggregate utility functions under a variety of attributes
have been suggested, such as (Keeney and Raiffa, 1976/1993; Saaty, 1980; von
Winterfeldt and Edwards, 1986). The most widely employed method is the additive
utility function, sometimes referred to as the weighted sum. Some conditions must
be fulfilled for the additive utility function to serve properly as an aggregated utility
function. Firstly, the assumption of mutual preferential independence must hold,
which states that when a subset of alternatives differs only on a subset G; — G of
the set of attributes G. Then the preferences between the alternatives must not depend
on the common performance levels G \ Gi. Secondly, the condition of additive in-
dependence must hold, meaning that changes in the uncertain outcomes (its proba-
bility distribution) in one attribute will not affect preferences for lotteries in other
attributes. The weights are restricted by a normalisation constraint 2w = 1,
w;j € [0,1], where w; denotes the weight of attribute G;. A global utility function U
using the additive utility function is then expressed as

U (%) =ZWiUi )
where w; is the weight representing the relative importance of attribute i. ui: Xi >
[0, 1] is the increasing individual utility function for attribute G;, and X;is the state
space for attribute G;. It is assumed that the functions u; map to zero for the worst
possible state regarding the ith attribute, and map to one for the best.

Another global utility function is the multiplicative utility function, introduced in
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(Keeney and Raiffa, 1976/1993). The multiplicative model requires that every at-
tribute must be mutually utility-independent of all other attributes, saying that
changes in certainty levels of one attribute do not affect preferences for lotteries in
the other attributes. In contrast to additive independence, the condition of utility
independence allows the decision-maker to consider two attributes to be substitutes
or complements of each other. In this respect, it is a weaker preference condition
than additive independence. Generally, the global utility function is usually ex-
pressed as

1+ KU (i) = ] J(Kkiui (xi) +1)
where ui: Xi — [0,1]. ui is the increasing individual utility function for attribute G;,
and Xiis the state space for attribute G;. As for the additive function, the utility

functions ui map to zero for the worst possible state regarding the ith attribute, and
map to one for the best. The scaling constant K is the non-zero solution to

1+ K =] J(1+Kk)

where the ki represent scaling constants, similar in their meaning to weights, but
without the normalisation requirement.

Other formal methods of decision evaluation under multiple objectives include
the outranking approach (Benayoun et al., 1966; Brans, 1982), often referred to as
the French school of decision analysis. This approach is based on a search for out-
ranking relations deduced from a set of binary preference relations. However, these
approaches do not incorporate the modelling of uncertainty in the probabilistic
sense and thus do not capture the risk associated with different courses of action.

Two major theoretical systems of thought underpin the computational founda-
tions of decision analysis, viz. von Neumann-Morgenstern’s (VNM) expected utility
theory and Keeney-Raiffa’s multi-attribute utility theory (KR), the latter developed
at [TASA, the International Institute for Applied Systems Analysis, during Raiffa’s
years as Director General 1972-1975, with Keeney employed as Research Scholar,
and thus sometimes referred to as the I1ASA theory of MCDA. While both theories
originate from a similar rationalist tradition, they differ substantially in scope and
structure. The vNM formulation is based on choices under uncertainty, where out-
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comes are lotteries over consequences. Preferences that satisfy completeness, tran-
sitivity, continuity, and independence axioms can be represented by a linear ex-
pected utility function: where is a lottery over outcomes with probabilities, and is a
utility function defined over outcomes. The independence axiom is central: prefer-
ences over lotteries must not change if all options are mixed with a third lottery in
the same proportions.

KR generalises utility theory to deterministic multi-attribute decisions. It re-
places lotteries with multi-criteria score profiles and aims to construct utility func-
tions over combinations of attribute levels. The key axioms include i) Utility inde-
pendence of attributes, if) Monotonicity in attributes, and iii) Decomposability (e.g.,
additive or multiplicative form) When these are satisfied, an additive utility func-
tion can represent preferences. Unlike vNM, KR treats the modelling of preferences
without uncertainty. While vNM and KR are often treated as distinct, they are best
understood as kin since their mathematical representations of utility differ mainly
in context and notation. Both frameworks seek to represent preferences via utility
functions that are linear in the appropriate domains. vNM handles linear expectation
over probabilistic outcomes while KR handles linear aggregation over deterministic
attributes. The similarity lies in the additivity: in both cases, preferences are con-
sistent with a sum of utilities, weighted by either probabilities or attribute weights.
Thus, the VNM expected utility function can be interpreted as a variant of a multi-
attribute probabilistic utility function where the attributes are mutually exclusive
outcomes governed by probability.

In KR, this convergence becomes especially clear: the aggregate utility function
in MAUT is the practical analogue of vNM’s expected utility formula, with proba-
bilities replaced by weights and outcomes replaced by criteria scores. This kinship
underscores the deeper unity of decision theory: whether one is choosing under risk
or across multiple attributes, the rational structure of preferences, grounded in util-
ity, independence, and monotonicity, remains the same. A key difference is whether
uncertainty is external (vNM) or multi-dimensional (KR).

To sum up, the main similarities are i) both systems rest on axiomatic represen-
tations of rational preference; ii) both aim to construct numerical representations
that respect ordinal rankings; and iii) each incorporates separability and independ-
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ence in different forms. While the main differences are i) vNM requires probabilis-
tic lotteries; MAUT does not; ii) vVNM utility is cardinal (up to affine transfor-
mations); MAUT utility is typically interval or ordinal depending on scale assump-
tions; and iii) MAUT has trade-offs between attributes; vNM captures risk attitude.
In Part I, we will discuss some popular MCDA methods and check whether they
comply with core fundamentals of mathematical statistics, decision theory and anal-
ysis. If not, they seem to be victims of over-engineering and ought to be either re-
formulated to be used as proper decision analysis frameworks or not considered
theoretically motivated tools and methods. To properly discuss them, we introduce
ten desiderata that are derived from vNM, KR, and multi-attribute utility in general.
Desideratum 1 (Ordering): The preference relation is complete. For all A and B,
either A > B, B > A, or A ~ B. vNM takes completeness as axiomatic to ensure co-
herent preferences. KR carries it over to deterministic multi-attribute models.

Desideratum 2 (Transitivity): The preference relation is transitive. If A > B and

B > C, then A > C. vNM assumes transitivity as axiomatic to ensure coherent pref-
erences. KR brings it over to deterministic multi-attribute models.

Desideratum 3 (Dominance): If for all i, si(A) > si(B) and for some j, sj(A) > s;j(B)
then A > B. Strong dominance is compatible with both vNM and KR. It ensures
that if one alternative is objectively better, it must be preferred.

Desideratum 4 (Monotonicity): If A > B, and A' is such that si(A) = si(A") for all

I #j and si(A) = si(A")+¢ for some € > 0, then A" > B. This is a standard assump-
tion in both vNM and KR.

Desideratum 5 (Independence of Irrelevant Alternatives, 11A): If A > B in set X,
and C € {A, B}, then A > B in X U C, provided that criterion weights are automati-
cally adjusted to preserve the importance of one unit on the original scales if C
caused scale renormalisations. Follows from vNM’s independence axiom (in its
strong form). KR reinterprets it in terms of trade-off consistency: adding an irrele-
vant alternative should not affect preference ordering.

Desideratum 6 (Rank Preservation): If A > B in X, and C is a third alternative not
affecting the scores of A or B, then removing C from X does not alter the ranking
A > B (allowing for automatic weight adjustment to preserve per-unit criterion
meaning). Follows up on Desideratum 5 and stability assumptions. In additive
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utility models, preferences among pairs are unaffected by alternatives with no im-
pact on the value functions of the focal options.
Desideratum 7 (Criteria Transparency): For any preference A > B, there exists a
representable and decomposable justification based on the contribution of each
criterion to the total evaluation. This follows from KR’s value function decompo-
sition principle. It ensures additive or multiplicative representations are intelligi-
ble and traceable to criterion-level contributions.
Desideratum 8 (Weight Sensitivity): Let w; € [0, 1] be weights summing to 1. A
change in a w; that increases the influence of criterion C;i in which si(A) > si(B)
should not reverse the preference A > B. This follows from sensitivity analyses
in MAUT (KR) and reflects the principle that weights encode preference intensi-
ties and must affect final utility accordingly.
Desideratum 9 (Criteria Independence): If criteria Ci and C; produce identical
scores for all alternatives, the results should be cardinally invariant under merging
them into one criterion with a combined weight w; + w;. Related to the independ-
ence of attributes in MAUT (KR). A duplication of identical attributes without
properly adjusting the weights violates utility independence.
Desideratum 10 (Scale Invariance): For any criterion Ci, if a positive affine trans-
formation f: R — R is applied to all si(-), then the preference relation A > B
should remain unchanged. In both vYNM and MAUT (KR), utility functions are or-
dinal up to a monotonic transformation and cardinal under positive affine ones.
These ten desiderata form a requirements system that will, for reference, be
called DAMS (Decision-Analytic Methodological System) and which guarantees
well-behaving and well-functioning MCDA methods if the ten are all adhered to.
From the ten DAMS desiderata, some consequences follow.
Proposition 1 (Utility Representability): If DAMS Desiderata 1-8 are accepted,
then there exists a utility function U: X— R, representable as an additive model

U(A) = lewi -v;(s:(4))

where each v; is a continuous, increasing value function and w; > 0 with Zw; = 1.
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This follows from classical multi-attribute utility theory in the deterministic case.
The axioms ensure the separability, monotonicity, and decomposability needed for
an additive representation.

Proposition 2 (Rank Reversal Exclusion): If DAMS Desiderata 5 and 6 are ac-
cepted, then the decision method is immune to rank reversal caused by irrelevant
alternatives.

Desideratum 5 ensures rankings are stable under expansion of the alternative set
and Desideratum 6 maintains ranking under deletion. Together they exclude the
structural basis for rank reversal which plagues some currently popular MCDA
methods.

Proposition 3 (Weight Responsiveness): If DAMS Desiderata 7 and 8 are accepted,
then rankings will adjust appropriately under changes in criterion weights, without
violating transitivity or dominance.

These three propositions together define a class of prescriptively robust MCDA
methods that are logically sound, preference-sensitive, and transparent. Violations
of these desiderata entail logical or interpretive compromises of different kinds.
There is an eleventh unofficial desideratum, concerning the decision-maker’s un-
derstanding of the underlying procedural elements. It places demands on the con-
sistent transparency of the logic used by the method and extends Desideratum 7.

Desideratum 11 (Explanatory Transparency): It must be possible for the users to
form and maintain a requisite mental model of the analytic process as a whole, in-
cluding but not limited to its computational steps. The method should provide a
conceptually accessible and intelligible mapping from inputs (scores, weights,
thresholds) to outputs (rankings and numerical scores), enabling both auditability
and replicability. This includes the ability to trace how changes in inputs influence
outcomes, without reliance on hidden mechanisms or opaque procedures.

This last desideratum is sometimes not understood by designers of methods.
They test their methods on decision problems, some real-life and some artificial,
and observe the steps unfolding, Often, the process is facilitated by an intermediate
or an expert, which makes the users not question the traceability of the output from
the input, instead often relying on the perceived expertise of the facilitator. How-
ever, if MCDA methods are to become more widespread, there is a need for more



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 59

transparency in the processes to build trust in the output results. Desideratum 11 is
different from 7 (Criteria Transparency) despite sharing the concept ‘transparent’.

While the desiderata are formulated to be conceptually independent, some ex-
hibit logical or functional overlap under classic utility theory assumptions. DAMS
Desiderata 1 (Ordering), 3 (Transitivity), 3 (Dominance) and 4 (Monotonicity) form
a foundational core. These suffice to guarantee transitive, rational preferences that
respect utility dominance and maintain independence from unrelated alternatives.
Desideratum 6 (Rank Preservation) can be viewed as a corollary of Desideratum 5
(IA). If preferences are independent of irrelevant alternatives and based solely on
score vectors, the deletion of an irrelevant third option should not affect the out-
come. Desideratum 9 (Criteria Independence) implicitly relies on Desiderata 7 (Cri-
teria Transparency) and 8 (Weight Sensitivity). If a method transparently reflects
weight changes and scores, duplication or merging of criteria without correspond-
ing weight adjustments violates score attribution logic. Desiderata 7 (Transparency)
and 8 (Weight Sensitivity) are not strictly necessary but conceptually desirable
since they ensure interpretability. Desideratum 10 (Scale Invariance) stands some-
what independent from the others but supports robustness under unit changes. It is
justified on theoretical rather than logical grounds. For pedagogical reasons as well
as argument’s sake, all ten desiderata are kept in the DAMS system as guidelines
and discussion points in the ensuing presentations of MCDA methods. These de-
siderata should not be confused with Howard’s 14 desiderata and five processing
rules for a decision process as a whole (2009), which conflate higher-level proce-
dural steps with axiomatic and computational elements.

As will be shown in the sequel, most MCDA methods depart in several ways
from DAMS. Specifically, they fail to deliver decomposable, monotonic, and util-
ity-independent representations. They do not support consistent trade-off interpre-
tation at the attribute level. These methods seemingly offer practical tools but lack
coherence. As a case in point, take rank reversal (see Proposition 2), the phenome-
non where the introduction or removal of irrelevant alternatives alters the ranking
of existing ones. It serves as a powerful litmus test for compliance with DAMS. In
line with the desiderata, preferences are supposed to be constructed to be invariant
under irrelevant changes. This is encoded as independence of irrelevant alternatives
(I1A), separability, and utility independence. Rank reversal directly violates these
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principles. Thus, any method that admits rank reversal is, by definition, out of align-
ment with the desiderata as well as the core of classical utility theory. Moreover,
rank reversal highlights violations of independence of irrelevant alternatives (l1A,
Desideratum 5) and rank preservation (Desideratum 6), which are direct conse-
quences of utility separability. In practice, a method that allows rank reversal is one
in which utility is not decomposable or context-stable, which is an immediate red
flag for any hopes of a sound utility-theoretic grounding.

The DAMS framework with ten desiderata will be employed to discuss six dif-
ferent well-known MCDA methods in separate chapters: SMART (representing the
SAW class of methods evaluating the alternatives using a sum-of-weighted-values
approach), and the Big Five: VIKOR, TOPSIS, ELECTRE, PROMETHEE and
AHP. All except ELECTRE were designed in 1977-1982, after Keeney and
Raiffa’s IIASA work was published (1976). These methods were selected for this
book because of their spread and reach — they are the most commonly used methods
in decision analysis by a wide margin. Their usage and citation patterns suggest that
method popularity often reflects branding success more than demonstrated method-
ological superiority. The prominence of certain methods appears to be driven less
by performance or theoretical soundness and more by factors such as catchy acro-
nyms, compelling narratives, and academic network effects. This was noted already
by Belton and Stewart (2002). Additionally, being early to the methods scene has
afforded some approaches a lasting advantage, allowing them to establish a domi-
nant position before competing approaches emerged, further reinforced by cumula-
tive citation effects. In classic marketing theory, users are locked in to a product or
a service by branding and narratives, creating a mental barrier to switching. The
proliferation of some MCDA methods resembles a form of implicit marketing,
where name recognition and earlier citations heavily influence uptake, often inde-
pendently of rigorous comparative validations or theoretical coherence, circum-
stances one could wish at least academia were largely devoid of. While these meth-
ods promote structured decision making, their branding leverage some of the very
cognitive biases they aim to mitigate, such as the availability heuristic and affective
association, both well-known from descriptive decision theory and ironically at play
in the meta-selection of the methods themselves.
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07. SMART

The SMART family of methods originated in the context of problems with struc-
turing decision situations under multiple criteria, drawing inspiration from early
multi-attribute utility theory and the desire to provide a structured yet relatively
simple approach to decision making. The Simple Multi-Attribute Rating Technique
(SMART) was developed by Edwards (1977) as a tool for decision-makers to eval-
uate alternatives based on multiple attributes or criteria. SMART was conceived as
a practical method to facilitate decisions in complex environments without requir-
ing overly sophisticated modelling of preferences or trade-offs. Edwards’ motiva-
tion was to provide a method that was simple enough for non-experts to use while
still retaining the essential elements and rigor of decision theory.

The SMART (Simple Multi-Attribute Rating Technique) family of methods con-
stitutes a set of approaches developed within MCDA for the evaluation and ranking
of alternatives characterised by multiple attributes. Originating in the early 1970s,
SMART was introduced by Edwards as a response to the perceived complexity and
limited practical usability of existing MCDA methods, particularly those requiring
full elicitation of utility functions or cardinal preference structures. The core idea
behind SMART was to provide a simpler, more intuitive framework for supporting
decision making by relying on additive models and direct rating procedures.

At its inception, SMART mandated that decision-makers assign a weight to each
criterion, reflecting its relative importance, and then rate each alternative with re-
spect to each criterion on a typically numerical and bounded scale. These ratings
are then aggregated via a weighted linear sum to yield an overall score for each
alternative. The attractiveness of SMART lay in its procedural simplicity: it as-
sumed mutual preferential independence of criteria and linearity of value functions,
which allowed for direct and transparent computations of aggregated scores.

In subsequent decades, SMART evolved into a family of related methods, each
designed to address specific theoretical or practical issues that emerged during its
application. One such extension is SMARTS (SMART using Swings), which re-
fines the weight elicitation process. Instead of assigning importance weights di-
rectly, SMARTS asks decision-makers to assess the value difference between the
worst and best levels of each criterion, given that all others are fixed at their worst
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levels. This swing approach yields more correct relative weightings by anchoring
them in the perceived impact of changes across the criteria range.

A further extension is SMARTER (SMART Exploiting Ranks), which attempts
to reduce the cognitive burden of precise weight elicitation. Instead of assigning
numerical weights, SMARTER relies on ordinal rankings of criterion importance
and employs a surrogate technique, rank-order centroid (ROC) weighting, to derive
approximate cardinal weights from the rankings. This approach trades off some the-
oretical precision for increased ease of use and constitutes a practical compromise
in setting weights with limited time or cognitive resources.

Other variants and refinements include methods that relax the assumption of lin-
ear value functions or incorporate uncertainty in the weights and performance rat-
ings. For example, probabilistic versions of SMART have been proposed that model
ratings or weights as distributions rather than fixed quantities, allowing sensitivity
analyses and robustness assessments within the SMART framework. Its various
forms share a common structure rooted in additive value models but diverge in their
assumptions, elicitation procedures, and treatment of uncertainty.

The SMART methods are built on a set of relatively simple computational rules
that require the decision-maker to perform the following steps: first, the decision-
maker lists the criteria relevant to the decision problem. Then, each criterion is as-
signed a weight representing its relative importance in the decision-making process.
The weights are typically normalised so that they sum to one. Next, each alternative
is evaluated on each criterion, usually on a numerical scale, such as 1 to 10, with
the scale representing the performance of the alternative relative to the others.

The final step in SMART involves computing a weighted sum of the scores for
each alternative. The alternative with the highest weighted sum is typically chosen
as the preferred option. Mathematically, the decision rule in SMART can be ex-
pressed as follows:

m
SI: = Z u{,-;t',:j
i1
where §; is the overall score for alternative i, w; is the weight for criterion j, x;; is
the performance score of alternative i on criterion j, and m is the number of criteria.
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This weighted sum approach ensures that the decision-maker’s preferences are re-
flected in the final decision and that the process is computationally efficient.

To address the limitations inherent in the original SMART approach, Edwards
and Barron (1994) proposed SMARTER (SMART Exploiting Ranks), an extension
designed to accommodate greater complexity in decision modelling. The principal
objective of SMARTER was to enhance methodological flexibility in representing
nuanced preference structures. While preserving the additive architecture of
SMART, SMARTER replaces direct numerical weighting with a rank-based ap-
proach, using the rank order centroid (ROC) method to derive criterion weights.
This substitution introduces a non-linear mapping from rank to weight, better cap-
turing how decision-makers perceive importance differences among criteria. How-
ever, the aggregation of alternative scores remains strictly linear. By easing the cog-
nitive burden of weight elicitation while preserving structural simplicity,
SMARTER is well-suited to situations in which full cardinal precision is unrealis-
tic, yet preference structures demand more than uniform weighting or arbitrary ap-
proximations.

SMARTER also offers improved flexibility in eliciting preferences across mul-
tiple criteria. In complex decision problems, trade-offs between criteria often reflect
underlying tensions, such as economic efficiency versus environmental sustainabil-
ity, where improving performance on one dimension may entail losses on another.
While SMARTER does not explicitly model interdependencies, it enables decision-
makers to express the relative importance of criteria through complete ordinal rank-
ings. These rankings are then transformed into weights using the ROC surrogate
method, implicitly capturing asymmetries in perceived importance. This increased
flexibility, however, introduces additional complexity by requiring more structured
input in the form of a full ranking of all criteria.

SMART and its variants are, in fact, members of a broader methodological tradi-
tion commonly referred to as the SAW family, named after its foundational use of a
sum-of-weighted-values approach. Also known as weighted linear combination or
scoring models, the SAW family is built on the principle of linear additive aggrega-
tion, whereby the performance of an alternative is, as in SMART, expressed as a
weighted sum of its evaluations across multiple criteria. At its core, the SAW family
operationalises a special case of additive value models, in which the total value V(a)



64 FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS

of an alternative a is computed as a weighted sum of marginal value functions As
noted earlier, this formulation presupposes interval-scale measurements. In its SAW
formulation, the marginal value functions u; (xj) are typically assumed to be identity
mappings over normalised criteria scales, and the weights w; serve as pure scaling
constants reflecting the decision-maker’s trade-offs among criteria. This corre-
sponds directly to additive independence and cardinal representation as laid out in
MAUT. The SAW computational form is typically expressed as in the formula on
page 62. It assumes that the attribute levels x;; have been transformed into commen-
surate scales, typically via linear transformations. Once the transformations are ac-
cepted, aggregation proceeds under the expected value logic of utility theory, where
alternatives are scored according to the weighted sum of marginal utilities.

SMART in its basic form complies with most of the desiderata of DAMS, pri-
marily due to its additive structure, monotonicity, and transparency. Scores and
weights are transparent, independence and dominance are preserved, and rank sta-
bility is assured. It is sometimes argued that the method does not align with Desid-
eratum 9 (Criteria Independence) in that duplicating a criterion inflates its influence.
This is true for original SMART but not for SAW methods in general, though, since
SAW methods should always adjust their weights when the criteria set changes, and
that can be carried out by an automatic procedure. This reflects an inherent property
of criteria weights, not of the SAW family itself.

The SAW family gained influence during the 1960s and 1970s, driven by general
developments in cost-benefit modelling, optimisation and systems analysis. It was
during this period that Keeney and Raiffa (1976) formulated the axiomatic founda-
tions of additive preference models at IIASA, providing the formal justification for
SAW as a special case of a broader utility-theoretic theory. In practice, however, the
family’s intuitive arithmetic transparency made it popular well before its theoretical
justifications. In Danielson and Ekenberg (2016), SMART representing numerical
SAW is compared to the CAR method representing cardinal SAW ranking and to
AHP. In the study, 100 decision-makers each made one significant decision over a
three-week period using all three methods, after which they compared the methods
across five performance indicators. The results showed that both SAW-based ap-
proaches were strongly preferred to the ratio-based AHP (presented in Chapter 12).
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08. VIKOR

VIKOR (a Serbian acronym; in English: multi-criteria optimisation and compro-
mise solution) is a method developed from the late 1970s onwards (David and
Duckstein, 1976; Duckstein and Opricovi¢, 1980), initially under the name IKOR.
It was described as building on ideas from ELECTRE, favouring that method over
MAUT. The method changed names in 1998 (Opricovi¢, 1998, p.iii) and the new
backronymed name VIKOR originally referred to a FORTRAN program, not the
method. IKOR was designed for ranking and selecting alternatives in the presence
of conflicting criteria, based on concepts of compromise programming and individ-
ual regret. The development of (V)IKOR emerged from work in multi-objective
optimisation within water resource management. Its formulation is related to a met-
ric used in compromise programming, where the distance of each alternative to an
ideal solution is computed. VIKOR uses two measures: the S measure (representing
aggregated utility) and the R measure (representing maximum regret). They are then
combined into a total ranking index Q, modulated by an external parameter v.

The computational procedure of VIKOR involves the identification of the best
values for each criterion among all alternatives (known as the ideal solution), nor-
malisation of the performance matrix to make criteria comparable, and the calcula-
tion of the S, R, and Q values for each alternative. The alternatives are then ranked
according to these values. A compromise solution is proposed based on the ranking
of the Q values, subject to two acceptability conditions (C1, C2) that involve both
rank consistency and a threshold for closeness between top-ranked alternatives.

The first computational step in VIKOR involves the construction of a decision
matrix, where the rows represent the alternatives, the columns represent the criteria,
and the entries in the matrix correspond to the performance of each alternative under
each criterion. After that, the ideal- and regret-based solutions are determined. The
ideal solution is obtained by selecting the best performance for each criterion across
all alternatives, while the regret solution is obtained by selecting the worst compo-
nent for each criterion.

The next step is the calculation of the distance of each alternative from the ideal
and solution and the amount of regret selecting each alternative would incur. Once
the distances from the ideal solution (S) and the regret (R) are calculated, the method
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computes a compromise index (Q) for each alternative. This index represents the
degree to which an alternative offers a balance between proximity to the ideal so-
lution and regret. The index is calculated by combining the distance from the ideal
solution and the regret, weighted by the relative importance of each metric. The
final step involves ranking the alternatives based on the three metrics.

The calculation details are as follows. Assume there are n alternatives (denoted
Ay, Ay, ..., A,) and m criteria (denoted as C;, C», ..., C,,) used to evaluate each alter-
native. The values for each alternative and criterion are typically represented in a
matrix X, where each element x;; represents the performance of alternative A; with
respect to criterion C;.

The values in matrix X are then normalised in order to transform them into a
comparable scale. The normalisation function depends on whether the criterion is
beneficial or non-beneficial. For beneficial criteria, the normalisation formula is

S Lij Lmin,j
dij o o
Lmax,j Lmin,j

while for non-beneficial criteria, it is
) Tmax, j Lij

Yij = —

Lmax,j Lmin,j

Where xqy jand Xy, jare the maximum and minimum values in the jth criterion
across all alternatives. Thus, this is a standard normalisation where the best alterna-
tive in each criterion receives the value 1 and the worst 0. This can be interpreted
as the one-dimensional closeness to the best outcome.

The ideal solution A" is then defined as the best performance for all criteria:
AT = {yl:mx.l y» Mg 2a ey f:l'm:{x_rrl_}

where yn, j are the maximum values for each normalised criterion j. For each al-

ternative A;, the (L1) distance to the ideal solution is then calculated using the re-
versed formula

i

Sr' — Z wj - [yl:mx._.l' yu‘]

j=1
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rather than a more traditional formula

S; = Z Wi (Yij — Ymin,j)
j=1
where w; in both cases represents the weight of the jth criterion. Thus, the normal-

ised scores are now reversed and reinterpreted as the multi-dimensional closeness
to the best outcome instead. Next, the regret is computed by the (L) formula

R; = max ['”-’_,r' : [y::mx._." y;ﬂ)
I

with the same meaning of its constituents as above. The regret for an alternative in
this method is the worst weighted closeness of any of the constituent criteria.

Finally, the compromise index Q; combines the two measures S; and R; using an
exogenous factor v. The formula for the index is

S — Suin R; — Ruin

Qi —wv- —Slm 5 F(1—w)- —R:lm R
where S,,,;, and S,,,4, are the minimum and maximum values of S; across all alter-
natives, R,,;, and R,,, are the minimum and maximum values of R; across all
alternatives, and v is an external factor that represents the relative importance of
the majority of criteria. For v = 1, completely disregarding the ranking based on R;,
VIKOR is a reversed additive utility model since the S; and Q; rankings coincide,
but for any other value of v, it is not. Somewhat surprisingly, some descriptions of
the method do not seem to require 0 <v <1, which opens up for strange interpreta-
tions. This calculation procedure yields three ranking orders of the alternatives
based on their performances S;, R; and Q;. A set of rules (C1 and C2 plus if-then-
else rules) determines which of the rankings take precedence, with the Q;-ranking
being the primary to consider first. C1 is called the acceptable advantage and is a
threshold Q; — Q,>DQ for the two top-ranked alternatives where DQ=1/(J—1)
for J alternatives in total. In (Opricovi¢, 1998, p.154), an upper limit of %4 was in-
troduced on D@, upheld in 2002 but strangely omitted in (Opricovi¢ and Tzeng,
2004). From 2004 onwards, a decision situation with J = 2 alternatives results in
DQ=1, which can almost never be satisfied, rather of the more reasonable DQ= V4.
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The ideal solution is the best synthetic alternative, i.e. it does not exist in reality.
Such alternatives are themselves, in swing-type methods, tools for elicitation rather
than calculation devices. However, in VIKOR they are bases for distance calcula-
tions. For a simple example, consider the normalised values y;;, i.e. their ranges are

[0, 1]. Then A* becomes the vector (1, 1, 1, ...) and all S; become Zi[wi- (1—yij)],
I.e. a reversed weighted sum, where lower values represent better alternatives. This
is a linear operation on an additive scale. Next, three measures are calculated for
each alternative, of which S; mostly resembles a standard DAMS measure. How-
ever, as pointed out, with a reversed scale where lower numbers are better, a meas-
ure of distance from the synthetic ideal (optimal) alternative. Still, this is in line
with DAMS since all operators are linear and thus there exists a 1-1 relation. The
other two measures involve a max operator, which is not linear and these measures
lack the foundational validity of S;. The S and R rankings, together with a linear
combination Q of S and R, which does not add any information except an exogenous
factor v, are a basis for a compromise procedure which may not produce a complete
ranking or even a top-ranked alternative. It might be unclear why a compromise is
required, how that need is expressed in any computable form, and how that form
can be validated. While the calculations are easy to follow for the mathematically
inclined, they lack the transparency of DAMS Desideratum 11.

VIKOR fails Desideratum 8 (Weight Sensitivity) and 9 (Criteria Independence)
due to the behaviour of the regret component. It also violates Desideratum 6 (Rank
Preservation) by its post-decision rules (C1, C2, and thresholds) since these depend
on score differences, full-set reference points and exogenous decision-maker input.
Thus, while seemingly compliant at the numerical ranking stage, the full method
sacrifices robustness. The use of compromise ranking regret measures similarly de-
viates from the desiderata. Its aggregation formula includes a balance parameter v,
which lacks a clear grounding in utility theory. It fails decomposability and is sen-
sitive to dataset composition, violating utility independence, making it structurally
prone to rank reversal when the ‘best” or ‘worst’ alternatives change upon set mod-
ification. Already (Duckstein and Opricovi¢, 1980) documented different ranking
orders for VIKOR, ELECTRE and classic MAUT (SAW) for a small river basin
problem (not even resulting in the same top-ranked alternative).
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09. TOPSIS

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a
method developed by Hwang and Yoon (1981), who admit that their method is
clearly inspired by ELECTRE, which they consider to be “one of the best” and also
“Imost] refined” (ibid., p.127). TOPSIS was created to partly mimic ELECTRE and
identify solutions that simultaneously have the shortest geometric distance from an
ideal solution and the farthest distance from a nadir (anti-ideal) solution. The eval-
uation principle is that the optimal alternative should be the closest to the positive
(ideal) solution (P1S) and the farthest from the negative (anti-ideal) solution (NIS).

The process begins with the normalisation of the decision matrix to eliminate the
differing scales across criteria. After normalisation, the values are multiplied by the
corresponding criterion weights, which reflect the relative importance of each cri-
terion. Once the weighted normalised matrix is formed, the PIS and NIS are deter-
mined. The PIS consists of the best values for each criterion (maximum for benefit
type, minimum for cost type), while the NIS consists of the worst. The Euclidean
distance of each alternative from both the PIS and the NIS is then calculated. These
distances are used to compute a closeness coefficient for each alternative, defined
as the ratio of the distance to the NIS over the sum of distances to the PIS and NIS.
The evaluation principle stems from the concept of distance measurement. Distance
functions provide a way of comparing alternatives by quantifying the deviation of
each alternative from an ideal solution representing the optimal choice across all
criteria, and an anti-ideal solution represents the worst possible outcome. These two
solutions form a bounded space within which the method operates, and all alterna-
tives are measured relative to these bounds. The choice of a vector-space (L., Eu-
clidean distance) measure is, however, as doubtful as in ELECTRE.

In more detail, the first step, after forming the traditional two-dimensional matrix
of alternatives and criteria, is to transform the decision input so that the data for
each criterion is dimensionless and can be compared. The transformed value r;; for
each utility is calculated as:



70 FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS

where x;; is the original utility of alternative A; with respect to criterion C;. By

squaring (r%), it is easy to see that all x7; / Z x7; always fall within a [0, 1] scale but
without spanning the scale as a standard normalisation does. Thus, this RMS-rescal-
ing (root-mean-square), which is a cornerstone operation in statistics but not in de-
cision analysis, is not the same as standard normalisation.

Each criterion has an associated number w; representing the relative importance
of criterion C;. However, these numbers are not MCDA weights. Such weights are
trade-off factors between spanned [0,1] scales. Since TOPSIS scales are not
spanned, the numbers called w; are not pure weights but a mixture of weights and
scaling factors. The fundamental requirement that the weights are trade-off factors
between equal scales is not met. The transformed values v;; are computed as

Vij = wj - Tij

The ideal and anti-ideal solutions are then determined by considering the best and
worst values for each criterion. The ideal solution A* is the set of values for which
each criterion has the best value (for beneficial criteria) or the worst one (for non-
beneficial criteria).

AT = {"'-1111:111- Umax, 2, ---.-'f-’:unx_.'.'r}

Where vyqyj = max(vij) for beneficial criteria and min(vij) otherwise. Con-
versely for the anti-ideal solution A~

A = {‘r.‘1n=_11_1._ Vmin2y «ees L-‘mau_,-,,»}
If the components of the A™ and A~ vectors had been properly normalised, they
would have been similar to anchor points in a standard swing process. The next step
is to compute the Euclidean distance between each alternative and the ideal (S;)

and anti-ideal (S;") solutions. They are the RMS (root-mean-square, vector measure)
distances to the vectors of the ideal A* and anti-ideal A~ solutions calculated by

m

Sf_ - \ Z[:T-!.f_j .E‘.]:Lil.“{._.l-‘JE
j=1

and
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9
S ,i \ E (vi ij — Vmin,j )

respectively. The larger the value of S;" (S;7), the farther the alternative is from the
(anti-)ideal solution. Given these two opposite measures, another ranking of the
alternatives is made using the combined measure

J.%‘I'_

Ci= ———
b.,' T J.LJ.,'

The alternatives are ranked in decreasing order of C; with the alternative having the
highest C; being the most preferred since it is closest to the ideal solution.

As seen above, the transformation of the utilities v;; into the calculation values
r;; is an RMS (root-mean-square, i.e. non-linear) operation. Thus, a linear relation-
ship between v;; and r;; is lost even before weighing the values. The weighing
comes next, which is a linear operator and does not distort the calculations further.
After weighing the transformed values, each alternative’s distance to the best (ideal)
and worst (anti-ideal) possible (but usually non-existent) values are calculated. Alt-
hough the criteria have weights that sum to one in a standard (linear) way, this dis-
tance is not the (linear) sum of each of the criteria’s distances. Instead, it is the Lo-
metric (Euclidean) distance between the two points in a metric polytope. This is
clearly not according to the DAMS desiderata and not in alignment with the nature
of the input data. Consider an alternative that is a units away from the fictive opti-
mal solution A" in criterion s and also a units away from A* in criterion t. Since
the criteria scales have been weighted (normalised), a unit in either criterion has the
same influence on the end result — that is the meaning of scale normalisation by
weights. Thus, the alternative would need an improvement of o + o = 2a units to
become equal to A*. But TOPSIS would consider the required improvement to be
v2a which is clearly wrong. The distance in a weight space should be measured by
a city block (L1 or Manhattan) measure, not a Euclidean (L.) one. To realise the
problem with the TOPSIS calculation method, assume wlog that the input data is
on a [0, 1] format, i.e. the worst alternative for each criterion has the value 0 and
the best has the value 1. Then A™ becomes {wl, Wz} and A~ becomes {0, 0} given
a weight vector (wy, w,) where wy +w, = 1 as usual. For the scale space to be
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invariant under traversal, every path from A~ to A* must have the same length and
be equal to 1. This is not the case in TOPSIS which assigns the length \/ (W + w3)
to the traversal while a DAMS-compliant method, requiring a city block L1 metric,
will have 1 for every conceivable traversal. For a given alternative, every path to
the same final improvements in a set of criteria must be considered equal.

To assess the real-world effects of TOPSIS’ deviation from the DAMS model,
the author has performed a Monte Carlo simulation of 30-10° rounds comparing the
ranking order of a standard DAMS formulation and TOPSIS for a decision situation
with 5 alternatives under 4 criteria. In about 73-74% of the rounds, the ranking was
the same. In more than 4% of the rounds, at least one alternative had a ranking that
differed by two positions or more from SDA. Given the small decision situation
with only 5 alternatives, that is a lot. Thus, in more than % of the cases, TOPSIS’
results differ from the linear-based standard DAMS model.

The method it violates criteria independence (D9), scale invariance (D10) and
rank preservation (D6). These failures stem from its reliance on data-dependent ref-
erence points and Euclidean (L) distance aggregation, which are sensitive to score
distribution and structural redundancy.

TOPSIS ranks alternatives by their relative proximity to an ideal and anti-ideal
point, based on weighted Euclidean distances over vector-normalised criteria. The
method is transparent and decomposable, allowing criterion-wise contributions to
be traced via squared deviations, though not additively. While it aligns with DAMS
in using compensatory aggregation and strict orderability, it departs in key ways: it
violates strong dominance, lacks scale invariance, and depends on dataset-specific
reference points. These context-sensitive anchors cause failures in criteria inde-
pendence and rank preservation, reducing its compliance.

Let alternatives A and B be evaluated on two criteria. Suppose A is initially closer
to the ideal point than B. Introducing a third alternative C with extreme values in
one criterion can shift the ideal and anti-ideal reference points. This change may
cause B to appear relatively closer than A, even though neither alternative's perfor-
mance has changed. This behaviour violates Desideratum 6 (Rank Preservation):
preference orderings should not be affected by the removal or addition of irrelevant
alternatives.
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10. ELECTRE

ELECTRE (ELimination Et Choix Traduisant la REalité) is a family of methods
developed in France during the mid-1960s by Benayoun and colleagues at SEMA,
Société d’Economie et de Mathématiques Appliquées (Benayoun et al., 1966; Be-
nayoun and Sussmann, 1966). Although Roy is often credited as the originator of
the ELECTRE method, the foundational work was carried out within one of his
teams at SEMA. The two initial SEMA papers, cited above, list Benayoun as first
author, with Roy appearing on only one of them. Roy, serving as Directeur de la
Direction Scientifique at SEMA, published the first academic article on ELECTRE
as sole author, reflecting his position as the institution’s leader (Roy, 1968). Back
then, ELECTRE was the name of a FORTRAN computer program running on a
CDC computer, not of the method. Neither had it been backronymed yet.

The method was originally designed to support decision making in complex sit-
uations where preferences may be non-compensatory and where full ranking of al-
ternatives is not always appropriate or feasible. A key idea of ELECTRE is to con-
struct an outranking relation based on concordance and discordance between pairs
of alternatives evaluated over multiple criteria. The first version, ELECTRE I, was
introduced in 1966. It was designed to solve the problem of choosing a subset of
alternatives rather than producing a full ranking. The method operates by construct-
ing an outranking relation, denoted as “a outranks b,” when there is sufficient evi-
dence that alternative a is at least as good as alternative b. This is determined using
two indices: the agreement (concordance) index and the disagreement (discordance)
index. The concordance index measures the degree to which the majority of criteria
support the statement that a is at least as good as b, taking the criteria weights into
account. The discordance index captures the extent to which any criterion strongly
contradicts this statement. An outranking is established if the concordance is high
enough and discordance is not too strong.

ELECTRE Il, introduced shortly after ELECTRE I, was designed for ranking
problems and introduced the concepts of strong and weak outranking relations to
reflect varying levels of support for preference statements. It uses different thresh-
olds for concordance and discordance and introduces procedures for partial and
complete pre-orders based on these relations.
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ELECTRE llI, developed in the 1970s and formalised in the early 1980s, intro-
duced pseudo-criteria and the use of indifference, preference, and veto thresholds.
ELECTRE IV further developed the approach for cases where criteria weights are
not available. It uses ordinal information only, relying on the ranking of criteria and
performance without requiring numerical weights. ELECTRE IS is a later adapta-
tion of ELECTRE | for use in decision support software systems, integrating tech-
nical refinements and improved routines. ELECTRE TRI, introduced in the early
1990s, shifts the focus from ranking or choosing among alternatives to sorting them
into predefined categories. ELECTRE TRI has been further developed into ELEC-
TRE TRI-B and ELECTRE TRI-C, differing in the treatment of assignment rules
and model structure. The set of methods is notably diverse, giving rise to a meta-
decision problem on which of the methods in the set to use and when.

The ELECTRE family of methods follows a series of steps to derive the preferred
alternatives. The first step in any ELECTRE application is the construction of a
decision matrix. This matrix typically consists of rows corresponding to the alter-
natives and columns corresponding to the criteria. The decision-maker populates
the matrix by providing performance values for each alternative with respect to each
criterion. Once the matrix is established, ELECTRE proceeds by defining prefer-
ence thresholds for each criterion. These thresholds are critical to the method’s op-
eration as they determine how differences in performance between alternatives will
be perceived. Typically, there are two thresholds for each criterion:

1. Indifference threshold: This threshold specifies the range within which the
difference in performance between two alternatives is so small that it does not
affect the ranking. If the difference in performance between two alternatives
on a given criterion is less than this threshold, the alternatives are considered
indifferent to each other for that criterion.

2. Preference threshold: This threshold defines the minimum performance dif-
ference required for one alternative to be considered preferred over another
for a given criterion. If the difference in performance between two alterna-
tives exceeds this threshold, one alternative is considered preferred over the
other for that criterion.

In addition to these two thresholds, some versions of ELECTRE also use a veto
threshold, which is applied when an alternative is deemed completely unacceptable
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based on a critical criterion, regardless of its performance on other criteria. The veto
threshold ensures that the decision-maker’s priorities are respected, preventing al-
ternatives that fall below a certain level of performance on essential criteria from
being considered at all, even if they perform better on other criteria.

Once the thresholds are established, ELECTRE proceeds with the pairwise com-
parison of alternatives. For each pair of alternatives, the method evaluates whether
one alternative outranks the other. The outranking relationship is determined by
comparing the alternatives for each criterion and assessing whether the difference
in performance exceeds the appropriate preference or indifference thresholds. If the
difference in performance is larger than the preference threshold, the alternative is
considered preferred; if it is smaller than the indifference threshold, the alternatives
are considered indifferent; and if the difference is larger than the veto threshold, the
alternative is deemed outranked.

The results of these pairwise comparisons are summarised in an outranking ma-
trix, where each entry reflects the degree to which one alternative outranks another
across all criteria. The outranking matrix forms the basis for constructing the pref-
erence structure, which organises alternatives into groups or sets based on their rel-
ative performance. This ranking is partial rather than complete, as some alternatives
may not be ranked in a strict order.

The final decision-making step in ELECTRE involves applying a series of con-
cordance and discordance indices to further refine the rankings. The concordance
index quantifies the degree of agreement between alternatives in terms of the num-
ber of criteria where one alternative is preferred over the other. In contrast, the dis-
cordance index measures the extent to which an alternative is disfavoured by a cri-
terion, representing the degree of disagreement between the two alternatives. These
indices are then used to aggregate the pairwise comparisons and to generate an
overall outranking relation between alternatives.

To examine the computations in detail, six steps have to be scrutinised:
1. Normalising the decision matrix.

2. Calculating concordance and discordance for each pair of alternatives.
3. Constructing the concordance and discordance matrices.

4. Aggregating them into the dominance matrix.



76 FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS

5. Defining the outranking relation.
6. Ranking the alternatives based on the outranking relation.

The first step is the transformation of the input so that the data for each criterion is
dimensionless and can be compared. The transformed value r;; for each utility is
calculated in the same way as for TOPSIS:
Tij
ry = ———
\/ 2 il Tij

where x;; is the original utility of alternative A; with respect to criterion C;. As for
TOPSIS, it is easy to see that all x7; / X x7; always fall within a [0, 1] scale but
without spanning the scale as a standard normalisation does. Thus, this RMS (root-
mean-square) operation, which is a cornerstone in statistics but not in decision anal-
ysis, is not the same as standard normalisation. TOPSIS copied this RMS rescaling,
which is a vector-space metric rather than a DAMS-compliant one, from ELECTRE
without reflecting on the consequences of adopting it (Hwang and Yoon, 1981).

However, after this step ELECTRE diverges from TOPSIS. The concept of con-
cordance compares each pair of alternatives based on the criteria, indicating the
degree to which one alternative dominates another. For each pair of alternatives A;
and A, the concordance index cy; is calculated as

Cll = Z w;
_Ji‘—L'T';,.
using the concordance set membership function (v;; is the same as r;; above)
Cr = {J Ukj = 'L-‘,IJ,'}

In a different way, the discordance index is calculated as

H1AX j= [y [V Ukj

d.’-'!' -

lllax.‘_f!.j |T-'1.f_,i' T-'F!_,i'|
based on the discordance set membership function
D kL {J !-'.p'-.'l‘i. < "!;."_'i'}

This concept of disagreement (or discordance) has inspired VIKOR’s subsequent
regret ranking, which also leads to several overlapping or inconsistent rankings with
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a number of rules of thumb devised to try to separate them into one final ranking.
So while the ELECTRE family has been a trendsetter, it is no more DAMS compli-
ant because of that. On the contrary, the ideas copied by other methods are non-
compliant in nature. Next, define a threshold c¢* such that

¢ = ;ﬂ Z CLi

mlm
{ kA1

or some similar function, different versions of the method have different functions.
Then construct a two-dimensional binary matrix F with elements

, 1 ey =
T = ,
0 otherwise
which shows where alternative a; concordance-dominates a;. Next, construct an-
other two-dimensional binary matrix G with elements

1 ifdy < d*
i =

0 otherwise

indicating where a;, is not too much worse than a; in the discordance sense. After
a few more steps, a partial ranking is arrived at by ELECRTE | which is considered
the end result. No total ranking can be promised with this method, this depends on
lucky circumstances among the input data. The ELECTRE family contains many
methods that differ in various respects. The final rankings in the methods are based
on the outranking relationships between all pairs of alternatives. The alternatives
are sorted based on how strongly they outrank others. The alternative that outranks
the most others (with the highest dominance value) is considered the most preferred.

ELECTRE violates most desiderata, for example, 1-5 and partially 6. Its thresh-
old logic undermines monotonicity and independence. Rank reversals are common,
and preferences can be reversed by introducing or removing unrelated alternatives.
Additionally, it does not produce a total ordering and partly fails to satisfy utility-
based decomposability (Desideratum 7). Further, the way of introducing arbitrary
user-defined thresholds in the computations instead of imposing all such operations
on the end result is not in alignment with DAMS.
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ELECTRE relies on concordance and discordance indices and veto thresholds to
establish outranking relations. Although it attempts to reflect dominance, it fails in
decomposability and transparency. The method’s qualitative thresholds obscure
continuous preference trade-offs and often produce incomparabilities. From a
MAUT viewpoint, ELECTRE violates utility independence and introduces arbi-
trary cut-offs without functional justification. Adding a new alternative can alter
concordance and discordance thresholds due to recalculated matrices. An alterna-
tive A previously considered non-dominated may now be outranked due to shifts in
veto thresholds, partly violating Desideratum 6 by indicating that utility structure is
not preserved. The methods use thresholds and concordance-discordance matrices
that are recalculated for every new alternative. This context-sensitive process
causes violations of both 1A and Rank Preservation. Moreover, incomparabilities
may arise or disappear when the set changes, leading to rank inconsistencies. The
transparency of ELECTRE is the least among the MCDA methods surveyed so far
(but it will get worse). No real-life decision-maker the author has met (as opposed
to mathematicians and decision theorists) comprehended the steps and how or why
they lead to a suggested ranking of the alternatives.

Further, the fact that ELECTRE only yields a partial ranking as output, with no
reliable cardinal information (strengths between the ranked alternatives), reveals a
naive view on decision-analytic support, as if the MCDA method should make the
decision (in line with the strongest formulation of the MCDM decision-making as-
sumption), a standpoint that is at odds with how modern MCDA is (and should be)
used as a guiding tool. Not least in decision situations where large sums of money
are involved, the desire to have a cost-benefit step as the last one in the decision
process is common. In such a step, partial (or even complete) rankings will not do.
It has to be cardinal, numeric output to be of any use. Besides, in all other decision
situations, cardinal information is also always preferable, not least since a sensitiv-
ity analysis should follow the initial results. Such analyses are much harder (bor-
dering impossible) to perform with only ordinal output information available.



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 79

11. PROMETHEE

PROMETHEE (originally called Préférence par Ordination selon la Méthode
ELECTRE pour les Hiérarchiques Evaluations Enrichies, later anglicised to Prefer-
ence Ranking Organisation Method for Enrichment of Evaluations — both referring
to the Greek god Prometheus, meaning forethought) is a family of methods devel-
oped by Brans in the early 1980s. PROMETHEE belongs to the class of outranking
methods (also known as the French school of MCDA) pioneered by the SEMA
Group (ELECTRE). The initial formulations, PROMETHEE | and I, which were
counter-reactions to ELECTRE I-1V, were presented in (Brans, 1982). There, it is
pointed out that the ELECTRE methods contain difficulties that PROMETHEE
aims to overcome, such as handling the concordance and discordance thresholds.
Those are complicated to set, and further, the results obtained do not provide a com-
plete ranking of alternatives. These difficulties are circumvented i.a. by introducing
generalised preference functions and a unified ranking procedure (ibid., Section 3).

A core concept in PROMETHEE is the use of a preference function that trans-
lates the difference in performance between two alternatives on a single criterion
into a degree of preference ranging from 0 (no preference) to 1 (strict preference).
Decision-makers choose among several predefined preference functions, each cor-
responding to different assumptions about how preferences behave with respect to
differences in criterion performance. As usual, each criterion also has a weight, re-
flecting its relative importance in the overall decision situation (Brans and Vincke,
1985).

PROMETHEE | produces a partial ranking of alternatives based on the calcula-
tion of positive and negative preference flows. The positive flow measures how
much an alternative is preferred over others, while the negative flow indicates how
much it is outranked by others. These flows are used to identify incomparabilities
when conflicting preferences occur. PROMETHEE I, by contrast, derives a com-
plete ranking by computing the net flow (positive minus negative), thus eliminating
incomparabilities but possibly reducing information about preference structures.

Following the ELECTRE tradition, the initial formulations of PROMETHEE
were followed by several extensions to address specific methodological require-
ments. PROMETHEE 111 was developed to deal with rankings that involve interval
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data or require robustness in the presence of uncertainty. PROMETHEE IV extends
the method to handle continuous alternatives, particularly useful in problems where
alternatives form a continuous set rather than a discrete list. This version involves
the integration of preference functions over continuous domains, relying on integral
calculus rather than discrete summation. PROMETHEE V incorporates constraints,
such as resource or budget limitations, and enables the selection of a subset of al-
ternatives that satisfy these constraints while preserving preference relations. This
variant merges the outranking methodology with optimisation techniques to support
constrained decision problems. PROMETHEE VI was designed to accommodate
multiple decision-makers by aggregating their individual preference flows through
various consensus or voting procedures.

A central idea of all PROMETHEE versions, as well as all ELECTRE ones, is
that alternatives are ranked based on their outranking relationships. An outranking
relation expresses the degree to which one alternative is considered superior to an-
other, taking into account all relevant criteria. This is achieved by comparing the
performance of each pair of alternatives with respect to each criterion and evaluat-
ing the intensity of preference for one over the other. This comparison is not always
straightforward, as decision criteria may have different importance levels or even
exhibit interdependencies. To handle these complexities, PROMETHEE incorpo-
rates preference functions that model the intensity of preference for one alternative
over another, based on the performance difference for each criterion. The method
allows for non-linear preferences, meaning that a small difference in performance
may be more or less significant depending on the criterion in question.

PROMETHEE operates in several stages, from the formulation of the decision
matrix to the final ranking of alternatives. The first stage involves the construction
of a decision matrix, where each row represents an alternative, and each column
corresponds to a criterion. In this matrix, the values for each alternative-criterion
pair represent the performance of the alternative with respect to that criterion.

Next, the decision-maker is asked to provide preference functions for each crite-
rion. These functions are important to the method because they capture how the
decision-maker perceives the trade-offs between alternatives. A preference function
specifies how much better one alternative is preferred over another, given a certain
difference in performance on a given criterion. For example, if the criterion is cost,
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the decision-maker may consider a small reduction in cost as highly desirable, but
a larger reduction as less significant. In this case, the preference function could be
designed to reflect a diminishing marginal utility for cost savings.

The preference function is typically a non-decreasing function that expresses the
intensity of preference. Depending on the criterion, it can take different forms. For
example, in the case of a benefit criterion (where higher values are preferred), the
function could be linear or exponential, indicating that the higher the performance
of an alternative, the greater the preference. For a cost criterion (where lower values
are preferred), the function might be decreasing, reflecting the increasing prefer-
ence for alternatives that perform better (i.e., have lower costs).

Once the preference functions are established, the method proceeds with the cal-
culation of preference indices for each alternative pair. These indices quantify the
degree to which one alternative is preferred over another for each criterion, based
on the difference in their performance. The total preference index for an alternative
is obtained by summing these individual preference indices over all criteria.

After calculating the preference indices, the method computes two global out-
ranking flows for each alternative: the positive outranking flow and the negative
outranking flow. The positive flow reflects the degree to which an alternative is
preferred to all other alternatives, while the negative flow reflects the degree to
which it is outranked by other alternatives. These flows are calculated by consider-
ing all the pairwise comparisons and aggregating the preference indices for each
alternative.

Originating from political and social sciences, the methods are designed to facil-
itate negotiation and compromise rather than a definite result. In this, behavioural
components get mixed with analytical ones. PROMETHEE | calculates a partial
ranking of alternatives. This version considers only the positive and negative flows
of each alternative, and it ranks alternatives according to their outranking relation-
ships. However, the results of PROMETHEE | do not necessarily provide a strict
total order of all the alternatives, as some alternatives may be ranked equivalently
in terms of their outranking relations. PROMETHEE 11, on the other hand, provides
a complete ranking of alternatives by incorporating a net outranking flow, which is
the difference between the positive and negative flows. This version of PRO-
METHEE is appropriate when a complete and unambiguous ranking of alternatives
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is necessary. PROMETHEE |1 produces a strict total order of the alternatives, with
the alternative that has the highest net flow being the most preferred.

Since PROMETHEE ranks alternatives by calculating preference values be-
tween pairs of alternatives based on each criterion, the method considers both the
magnitude of the preference and the relative importance of the criteria. This is done
by the following calculation steps. As with almost every other method, it begins
with normalising the input values. This time, it is a regular linear transformation of
the input data where the scales are reversed for non-beneficial data (i.e. where lower
numbers are preferred) to produce normalised utilities. For ordinary input values,
this is

L x;; — min(z;)

Lis o T
' max(x;) — min(x;)

while for reversed scales, it is instead

max(x;) — x;;

*

Tij

max(x;) — min(z;)

where x;; is the normalised value for alternative A; under criterion C;, and where

max(x;) and min(x;) are the maximum and minimum values in criterion C; across
all alternatives. The method uses a preference function to quantify the preference
of one alternative over another with respect to each criterion. The preference func-
tion can take different forms, depending on how the decision-maker perceives the
relative importance of differences between alternatives. Its general form is

Pij = p(xi, ziy)

where ¢ can be any of six prescribed transform functions, none of them being a
simple linear function. The functions include a stepwise linear threshold function
and a dichotomic threshold function that evaluates to 0 or 1 depending on whether
a threshold number is met or not.

Next, for each pair of alternatives A; and Ay, the net preference is calculated
based on the individual preferences for each criterion. The net preference m; of al-
ternative A; over A4, is computed as
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ik = Z w; - P..
=1
where w; is the weight of criterion C; and P;; is the preference function value for
criterion C; for alternatives A4; and Ay.

Next, the outranking relation is established to compare two alternatives. The net
preference values m;;, are used to determine whether one alternative dominates an-
other. The positive flow @; and negative flow @; of each alternative A; are calcu-
lated to assess its overall preference relative to all other alternatives as follows:

qu_ = Z ik

kot
and

D = Z T
ki
The positive flow is said to represent how much each A; outranks the other alterna-
tives while the negative flow represents how much A4; is outranked by other ones.
The final ranking of the alternatives is in PROMETHEE 1l determined by the net
flow ®; = &} — @7 while PROMETHEE I relies only on the separate positive and
negative flows. The alternative with the highest @; is the most preferred, and the
one with the lowest @; is the least preferred. If two alternatives have very similar
flows, an indifference threshold can be used to label them inseparable.

PROMETHEE fails to comply with Desiderata 5 and 6, as the net flow scores
depend on the entire set of alternatives, not just pairwise comparisons. It also partly
violates Desideratum 3 (Dominance) due to preference function tuning. Though
relatively transparent and responsive to weight changes, it does not ensure scale
invariance or rank preservation under deletion. It uses pairwise comparisons and
preference functions to derive outranking flows. While these flows offer some in-
terpretability, they do not result from a decomposable utility function. The method’s
dependence on the full alternative set undermines attribute-level separability. The
flows also obscure individual criterion contributions, violating transparency. As
such, it is definitively incompatible with DAMS.
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In PROMETHEE, the net preference flow of an alternative is calculated based
on pairwise dominance across the entire set. If an alternative C is added, even one
with no dominance over A or B, the net flows might change. This violates 11A (De-
sideratum 5) and undermines utility decomposability. Because the method relies on
pairwise comparisons across the full set of alternatives, the net flow scores are sen-
sitive to the composition of the alternative set. This relational structure violates not
only IIE but also 1A and can lead to rank reversals when alternatives are added or
dropped.

Being a follow-up method to ELECTRE, albeit conceived 15-16 years later, it
is not surprising that PROMETHEE displays some of the same weaknesses in that
it only yields ranking as output as well, and again with no reliable cardinal infor-
mation to supplement the output. It is not as naive as ELECTRE since some variants
(not PROMETHEE I at least result in complete rankings. However, almost the
same arguments apply to PROMETHEE as to ELECTRE since cardinal infor-
mation is always preferred, not least as a sensitivity analysis should follow the ini-
tial results. See the previous chapter on ELECTRE for a more thorough discussion
of these shortcomings and how they relate to an outdated and monolithic MCDM
view of decision-analytic support in general, rather than seeing MCDA as one use-
ful tool in a toolbox.

Ending the chapter with a sidenote, Electre (Electra) is a tragic figure from Greek
mythology, known for her relentless pursuit of vengeance, moral absolutism, and
emotional isolation, traits often portrayed without a prospect of redemption. Electre
brings conflict and harsh justice to the table, making uncompromising decisions
without sentiment. In contrast, Prométhée (Prometheus), also from Greek mythol-
ogy, is a god who gave fire to humanity and stands as a symbol of enlightenment,
rational defiance, and hope for human progress. He is portrayed as empowering
rather than punishing, suffering so that others might see more clearly. Electre de-
mands justice in a broken world while Prométhée represents the hope for a better
one. Why those names were chosen as backronyms for the respective methods is
unclear.
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12. AHP

The Analytic Hierarchy Process (AHP) is a method developed by Saaty in the mid-
1970s, with its theoretical foundations first formally presented in (Saaty, 1977).
AHP was introduced to support decision making by structuring problems into a
hierarchical model and enabling the quantification of subjective preferences
through pairwise comparisons. The method is based on the principles of ratio-scale
measurement and relies on human judgement to derive priority scales (Saaty, 1980).

AHP involves decomposing a decision problem into a hierarchy with at least
three levels: the overall goal at the top, criteria (and possibly sub-criteria) at inter-
mediate levels, and the set of decision alternatives at the bottom. Decision-makers
are required to make pairwise comparisons between elements at each level with
respect to their parent node. These comparisons are captured using a 1-to-9 scale
proposed by Saaty, where 1 indicates equal importance and 9 indicates an extreme
preference for one element over another.

From the pairwise comparison matrices, AHP derives a set of priority vectors
using eigenvalue calculations. The principal right eigenvector of the matrix is nor-
malised to produce relative weights, reflecting the intensity of preferences among
the compared elements. Consistency of the pairwise judgements is measured using
a consistency index (ClI) and a consistency ratio (CR). These measures compare the
observed consistency of the matrix to a random matrix of the same order. A CR
below a threshold, typically 0.1, is generally considered acceptable.

There are also various methods for improving the efficiency and scalability of
AHP, especially in high-dimensional problems. These include methods for incom-
plete pairwise comparisons, where not all element comparisons are required, and
consistency-driven adjustments to reduce redundancy and cognitive load.

Computational implementations of AHP and its variants have been developed
extensively. These implementations often incorporate mechanisms for consistency
checking, sensitivity analysis, and visualisation of results. AHP is susceptible to
inconsistencies in pairwise comparisons. AHP uses the Consistency Ratio (CR) to
assess the degree to which the pairwise comparisons are logically consistent. How-
ever, even when the consistency ratio is within acceptable limits (typically below
0.1), inconsistencies can still affect the accuracy and reliability of the decision. The
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requirement for pairwise comparisons can become overwhelming for decision-
makers, particularly in decision problems with a large number of alternatives and
criteria. This can lead to inconsistencies that are difficult to detect or rectify, thereby
affecting the quality of the final decision. AHP is more of a procedure-driven
method than a formula-driven one. Thus, it is best described by the steps involved.
An AHP evaluation involves the following steps:

Performing pairwise comparisons.

Normalising the pairwise comparison matrices.

Calculating the priority vectors (weights).

Conducting consistency checks.

5. Calculating global weights and determining the final ranking of alternatives.

In the first step, Pairwise Comparisons, decision-makers compare each pair of ele-
ments using a scale (usually from 1 to 9):

o 1 means equal importance.
o 3 means one element is slightly more important.
o 5 means one element is significantly more important.
o 7 means one element is very strongly more important.
o 9 means one element is extremely much more important.
The comparisons for the criteria would be represented as a pairwise comparison

matrix. Next in the same step, construct the Pairwise Comparison Matrix. It is con-
structed from the elements that represent the relative importance of the elements

compared. The matrix is reciprocal, meaning ay;;; = ai . Next, normalise the pair-
{ji}

wise comparison matrix. Normalise each column of the matrix by dividing each

element by the sum of the elements in that column. This step ensures that the col-

umns represent the relative importance on a common scale. The resulting matrix is

the normalised matrix.

The next step is to calculate the eigenvector (priority vector), which represents
the relative weights of the elements (either criteria or alternatives). This is done by
calculating the dominant eigenvector of the pairwise comparison matrix. Such an
operation might yield an inconstant matrix. Thus, the step that follows is to check
the consistency of the comparisons. AHP assumes that the pairwise comparisons

M owobdhde
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should be consistent (if A > B and B > C then A > C should hold, i.e. transitivity).
The consistency ratio (CR) is computed to assess how consistent the pairwise com-
parisons are. The steps to check consistency are:

1. Compute the consistency vector by multiplying the comparison matrix by
the priority vector.

2. Divide the resulting vector by the priority vector element-wise to get the
lambda max (largest eigenvalue).

3. Calculate the consistency index (CI) using

o — Mmax =1
T
4. Finally, compute the consistency ratio (CR) by dividing the Cl by a random

consistency index (R1) that depends on the size of the matrix. If CR is below
an exogenous threshold (typically 0.1), the comparisons are considered con-
sistent enough.

The finalising step is to calculate the global weights. Once the priority vector for

the criteria is determined as well as the pairwise comparison matrices for the alter-

natives relative to each criterion, the global weights of the alternatives are computed

by combining the local weights for each criterion with the global weights of the

criteria. This is as complicated as it sounds from a user perspective, and the method

is not transparent as seen by decision-makers.

AHP fails or partially violates almost every desideratum: Desideratum 4 (mono-
tonicity not guaranteed), and Desiderata 5-10 (due to scale sensitivity, context de-
pendence, and rank reversal), plus conditionally Desideratum 2 (due to tolerated
inconsistency) and Desideratum 3 (dominance ignored),. The eigenvector approach
further obscures criteria transparency (Desideratum 11) and utility interpretability.

Let alternatives A and B be evaluated in an AHP framework with pairwise com-
parisons indicating A > B. Now introduce C, which is strictly worse than both A
and B across all criteria, i.e. A > C and B > C. The pairwise comparison matrix
must be expanded to accommodate C, and due to renormalisation, the original rel-
ative weights between A and B shift. The risk: B > A might occur. This violates
Desideratum 5 (11A) and by extension the separability required in utility theory, a
problem that has been known since long (Belton and Gear, 1983). AHP’s pairwise
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comparison matrices are scale-dependent and inherently sensitive to the number
and configuration of alternatives. A rank reversal might occur when a new, perhaps
even dominated, alternative is added (Dyer, 1990). AHP is a preference elicitation
method, not a dominance-checking procedure. It assumes the decision-makers are
perfectly consistent in their judgements. Since this is almost impossible, dominance
violations can occur. But that is a feature, not a bug, in the AHP worldview. Of the
methods discussed, it is certainly the least compliant with DAMS and has been la-
belled as outright flawed (Abbas, 2018, Ch.3).

Although the contributions of Belton and Gear (1983), Dyer (1990) and others
have served as important red signals, they are in a sense unnecessary. An inspection
of the internal mechanics of AHP reveals that only a few of the fundamental under-
lying principles from established theories, what we refer to as desiderata, are actu-
ally adhered to. Consequently, issues such as rank reversal unfortunately arise. The
entire process is opaque, leading to results that are difficult to trace and interpret. It
is hoped that future research will redirect its focus and resources towards the ad-
vancement of MCDA methods that are grounded in well-established scientific prin-
ciples, rather than engaging in efforts that contradict them.

AHP has been criticised for using ratio scales, which from a measure-theoretic
standpoint are not compatible with the interval scales foundational to classic deci-
sion-analytic theories and thus violate key desiderata. Ratio scales conflict with the
linearity assumption underpinning expected utility theory, where utility functions
must support additive operations over probabilities or weights. Next, ratio scales
lack invariance under positive monotonic transformations, an important property
for preserving preference orderings in both ordinal and interval-based MCDA mod-
els. Third, the use of ratio-based inputs may violate preferential independence,
which is essential for constructing valid additive models. Further, ratio-derived
weights challenge the assumption of commensurability across criteria, as the scale
intensities lack a consistent unit of value, making cross-criteria comparisons am-
biguous. This is not to say that ratio scales are flawed per se. Rather, their assump-
tions and properties do not align well with the structure in the MCDA domain.
However, they have been demonstrated to be very useful and of importance in other
fields, such as representing perceptual and cognitive processes (Saaty, 2001). Dif-
ferent scale types are discussed further in Chapter 14.
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13. Comparisons

The DAMS desiderata framework for MCDA provides a principled foundation that
integrates classical utility theory with the realities of multi-criteria environments.
The axioms synthesise formal requirements such as transitivity, dominance, and
independence with practical necessities like criteria weighting and score transpar-
ency. Table 2 summarises how the methods discussed in Part Il comply with the
DAMS desiderata.
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Desiderata— & & € 2 § ¥ & 2 & =
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Methods | S F o =2 £ & F =2 &6 o
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General SAW OK OK OK OK OK OK OK OK OK OK
VIKOR OK OK NO OK OK NO NO NO NO OK
TOPSIS OK OK OK OK OK NO OK OK NO NO
ELECTRE NO NO NO NO NO NO NO OK NO NO
PROMETHEE NO NO NO NO NO NO NO OK OK NO

AHP OK NO NO NO NO NO NO NO NO NO
Table 2. SMART and the Big Five methods compared using the DAMS desiderata

As demonstrated in this book through analyses, classifications, and sometimes
counterexamples, many popular MCDA methods fall short of satisfying these de-
siderata. Regarding Desideratum 9, Criteria Independence, the outcome depends on
how the criteria are handled in the outer-layer MCDM process, outside of the core
MCDA calculations. Therefore, it is not possible to draw a definite conclusion re-
garding that desideratum based only on the discussions in the preceding chapters.
But methods such as TOPSIS and ELECTRE, which confound trade-off weights by
using fundamentally non-comparable scales, stand a far less chance of fulfilling the
desideratum. See the Appendix for a more detailed discussion on each of the ten
desiderata and the methods’ adherence to them (SAW is not discussed further).
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The literature is replete with comparisons of MCDA methods in which the re-
sulting rankings diverge significantly. Rather than seeking to identify a single win-
ning method, which is often the goal, such outcomes should instead be viewed as
troubling indicators of the epistemic standards within the field. For example,
Opricovi¢ and Tzeng (2004) compare VIKOR and TOPSIS. The comparison clearly
illustrates the ad hoc nature of both methods as well as the many differences when
it comes to details. In their example, a total of 18 variants of the two methods are
used to rank three alternatives, and they point out different alternatives as the best
one, but the reasons for or against either result are hard to grasp for a reader. Re-
markably, the 18 variants together succeed in ranking the three alternatives in all
eight (1) possible permutations of the ranking order. Imagine how impossible it
would be for a non-expert to understand the pros and cons of each variant. Moreo-
ver, none of the methods offer any means of sensitivity analyses, instead presenting
the results with three decimals. Further, in (Opricovi¢ and Tzeng, 2007), the four
methods VIKOR, TOPSIS, ELECTRE and PROMETHEE are compared. There are
six sets of criteria weights, and for each set, the methods arrive at 12 rankings in
total. The rankings manage to divide the six alternatives into two sets of three alter-
natives each, but within the top set, the best alternative changes frequently or re-
mains undetermined.

In (Zlaugotne et al., 2020), five methods are compared of which three are VI-
KOR, TOPSIS, and PROMETHEE. For the four alternatives in the article’s deci-
sion problem, the five methods (only one variant of each this time) manage to pro-
duce four different rankings among the five methods. In a subsequent meta-ranking,
averaging the results of the five methods, a final ranking is arrived at. However,
this is not how MCDA analyses should have to be conducted — exploring a large set
of methods in an ensemble fashion and hoping that their average is a “better” indi-
cator than any single method by itself. The substantial efforts required notwith-
standing, there is no theoretical proof that such averaging should lead to a better
analysis. If that were the case, one could in principle construct a single optimal the-
more-the-merrier method, an all-encompassing meta-method made up of every
known MCDA method (and perhaps all their variants), each weighted according to
some mysterious, all-purpose meta-weighing scheme.

What all the methods (except SMART) fail to do is to separate the core calculus
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in decision analysis from the psychological aspects of decision making. Given a set
of input data, there should be one set of output data, computed according to the
well-established theories that underlie DAMS. The output data should be amenable
to different sensitivity analyses in order to study the stability of the results. At the
next level up, the MCDM level, negotiation, bargaining, regret and similar consid-
erations should be processed in an orderly fashion. If that processing requires addi-
tional calculations, they could be performed on the output data, but only if they can
be motivated by well-founded and verified principles rather than engineering-style
patches that take some property from a handy mathematical concept such as ordi-
nary least squares or the max operator, without a solid theoretical motivation as to
why and without subsequent suitability verifications by empirical studies.

It stands to reason that MCDA methods should not behave like this. Rather, these
articles are a testament to the sad state of affairs that the MCDA field is currently
in. The possibility of a “smorgasbord” approach: picking methods, parameters and
formulas of liking, and mixing in descriptive and psychological factors, in order to
allow for a ranking with a preferred alternative on top is surely a contributing factor
to the prevailing mistrust and underutilisation of MCDA in society today.

This book provides both a prescriptive and diagnostic perspective: identifying
logical weaknesses in existing methods, while also pointing at a route towards
greater decision-theoretic coherence. This is not a plea for MCDM-level process
conformity. The differences in philosophy and the different brandings of methods
should influence the elicitation processes, the presentation formats, group decision
mechanisms, and much more — as long as the methods stand on established scien-
tific ground. Substituting a since-long well-established and sound axiomatic com-
putational core for homemade calculi only leads to questionable results and opaque-
ness. As does mixing descriptive and psychological factors with an axiomatically
grounded computational core; the former should belong only to an outer MCDM
layer. The need to stand out by branding and perceived uniqueness should be satis-
fied in other ways than by a faulty core, ways less detrimental to the MCDA field.

Despite the logical clarity and mathematical rigor of the unified utility frame-
work grounded in the axiom systems of von Neumann-Morgenstern and Keeney-
Raiffa (VNM/KR), a wide range of popular MCDA methods exist that violate these
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principles. This prompts the question: are there any compelling mathematical or
logical reasons to prefer such methods? The answer, in short, is a resounding no.

None of the Big Five methods (VIKOR, TOPSIS, ELECTRE, PROMETHEE
and AHP), all of which violate vNM/KR axioms, are grounded in a rigorous theo-
retical foundation. These methods often make heuristic or procedural sense, or are
generally appealing on the surface, but fail when held to standards of decomposa-
bility, independence and consistency. Some of their problems include:

« No representation theorem supports the forms of aggregation used.

« Non-decomposability in scoring means there is no underlying unifying utility
function being optimised.

o Rank reversal and reference dependence violate basic tenets of rational choice.

Despite these shortcomings, the Big Five proliferate and are widely used in practice.
There are several reasons for that:

1. Software Tools: Embedded in decision-support systems or consulting tools.

2. Visual Appeal: Techniques like outranking or ideal point comparisons offer
intuitive geometric interpretations.

3. Lack of Training: Decision analysts are often unfamiliar with the formal
structure of vYNM and KR, and thus default to admiring procedural heuristics
instead of questioning the basis on which a particular method stands.

There is no compelling mathematical justification for the widespread use of MCDA
methods that violate the DAMS desiderata. Their popularity stems from practical,
psychological, or institutional factors, not coherence. As such, their results should
be viewed as suggestive, not rationally prescriptive. The proliferation of non-com-
pliant methods underscores the need for a shift towards foundationally sound, axi-
omatically justified decision analysis.

DAMS draws a clear boundary between rational and pseudo-rational prescriptive
decision analysis. These modes of reasoning differ fundamentally in objective,
methodology, and evaluative standards. Rational prescriptive analysis is concerned
with guiding decision-makers to make sound decisions given their limitations while
adhering to coherent principles of preference and utility. The DAMS model devel-
oped in this book exemplifies rational prescriptive analysis:

« It rests on internally consistent axioms.
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« It supports additive utility representations and generalises both von Neu-
mann-Morgenstern’s (classic) and Keeney-Raiffa’s (IIASA) theories.

« It yields decisions that are transparent, defensible, and logically justified.

Pseudo-rational prescriptive analysis aims for the same goals but fails to deliver
coherent and justifiable methods due to a lack of theoretical underpinnings.

It promotes heuristics and non-linearity over consistency.
« It focuses on perceived soft factors over correctness.
« It adopts procedures that fail DAMS but are good for branding.

Part 1l of this book demonstrates that the Big Five methods, VIKOR, TOPSIS,
ELECTRE, PROMETHEE and AHP, are pseudo-rational tools. They aid decision
making but do not meet the conditions of rationality defined in DAMS. Traditional
and classic SAW methods, however, are by contrast rational tools, providing com-
prehensible outputs while satisfying utility-theoretic foundations. The proliferation
of pseudo-rational prescriptive methods, despite their foundational shortcomings,
highlights a gap between what is rational and what seems to be. The DAMS frame-
work offers a reconciliation path: preserve coherence while retaining formats fa-
miliar to prescriptive users. This convergence can elevate decision analysis from
plausible heuristics to justifiable practice.

It has been argued that a prescriptive analysis method can choose axioms “like
dishes from a smorgasbord”, selecting whichever seem useful and discarding others
(see, e.g., Keeney, 1992). While this pragmatic flexibility may appear liberating, it
undermines the very essence of decision-theoretic integrity in the methods. DAMS
offers an opposite position to that stance. As discussed in this book, axioms and
desiderata are not decorative or optional, they are foundational constraints that pre-
serve coherence, comparability, and defensibility. Selectively picking them distorts
the decision methods, making results opaque, less comprehensible and often logi-
cally wrong. Some problems with incoherent pick-and-choose methods include:

1. Loss of Interpretability: Methods that violate decomposability, transitivity,
or independence lose any possibility of being preference-preserving. Their
rankings are artefacts of procedure, not reflections of rational preference.

2. Context-Dependence: As discussed above, violations of key axioms pro-
duce rank reversals when irrelevant alternatives are added or removed.
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3. Undermining Trust: Stakeholders rightly expect that decisions guided by
formal models are consistent and principled. Violating axioms without justi-
fication breaks that trust.

In this respect, it is important to draw a boundary between two distinct conceptual
layers in decision analysis:

« Mathematical-logical rigor consists of axioms, representation theorems, and
their consequences. These define the structure of rational preference and the
conditions under which a utility function exists. They should make up the
basis for a coherent prescriptive decision-analytic calculus.

e Procedures, such as outranking, voting mechanisms, or pairwise flows, are
process strategies. While they may offer heuristic appeal and branding dif-
ferentiation, they are not substitutes for foundational coherence.

Confusing these two levels leads to mistaken beliefs, for instance, that a narratively
compelling ranking procedure is comparable to a DAMS-based decision-analytic
method. It is not. Only when procedures are derivable from or consistent with rig-
orous formulations such as DAMS can they be said to reflect genuine preference
orderings in a reasonable way.

This does, of course, not entail that all methods should look the same or have the
same procedures. On the contrary, different philosophical approaches call for vari-
ous user interactions, various elicitation processes, and various presentation for-
mats. That is where the variability and differences should lie, not in the computa-
tional core. Outputs can and should be post-processed in several ways for presenta-
tion at the end of the line, but only after the core results according to established
theories have been calculated, and only if the post-processing can be shown still to
comply with desiderata based on well-established scientific theoretical bodies in-
stead of arbitrary made-up procedures — arbitrary seen from a decision-theoretic
soundness point of view.

To move the MCDA field forward in a well-founded scientific direction, and to
unify rigor with usability, a set of guiding principles are suggested. The principles
acknowledge the dual demands of decision analysis: to be both prescriptively sound
and practically appealing. The following is a suggestion of such a set:
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Principle 1: Maintain the Hierarchy of Foundations Over Procedure
Well-founded desiderata must form the backbone of any decision method. Proce-
dures must be tested against the desiderata, not the other way around. This ensures
that decision outcomes are rational, interpretable, and stable.

Principle 2: Preserve Formal Integrity, Even When Approximating

In settings where full elicitation of utilities and probabilities is impractical, ap-
proximate methods may be used, but only if they preserve key properties such as
transitivity, monotonicity, and independence.

Principle 3: Ensure Representability

Every decision method should correspond to a representable utility function, even
if hidden or abstracted. Such a function should be recoverable and auditable to
justify preference orderings.

Principle 4: Separate Computation from Justification

Computation is necessary, but not sufficient. A method that produces results must
also justify them in terms of rational calculations. Algorithms and procedures
must be interpretable through the lens of utility theory.

Principle 5: Design for Transparency and Explainability

MCDA methods should reveal their internal logic: how weights are applied, how
preferences are inferred, and what axioms are assumed. Stakeholders must be able
to trace conclusions back to their inputs.

Principle 6: Protect Against Rank Reversal and Context Drift

Methods should be validated against benchmark scenarios involving irrelevant al-

ternatives or added options. If a method produces rank reversal, it violates deci-

sion-theoretic hygiene and should be revised or rejected.

Principle 7: Accept Well-Founded Minimalism, Not Arbitrary Pluralism

While it may be tempting to mix and match axioms as preferences or contexts

vary, a minimal coherent set such as DAMS could provide sufficient flexibility

without compromising logical structure. Pluralism must be principled, not ad hoc.
These principles do not restrict creativity in method design or formulation, they

ensure its coherence. They invite prescriptive researchers to innovate within the

bounds of rationality rather than outside of it. The future of MCDA lies not in

choosing between rigor and usability, but in making them inseparable.
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Among the foundational principles of sound reasoning stands Occam’s Razor.
In decision analysis, it translates to a call for simplicity: if two methods yield equiv-
alent or even similar performance, the simpler one is to be preferred. This is a cor-
nerstone in the effort to have MCDA being used more in society. Yet this principle
is routinely neglected in contemporary MCDA practice. Many modern methods
feature complicated data transformations, scoring algorithms, or aggregation
schemes without corresponding gains, rather the opposite. There are clear reasons
why simplicity matters in this case:

Transparency: Simpler models are easier to understand, explain, and audit. This
improves stakeholder confidence and supports democratic decision processes.

Axiomatic Tractability: Simple structures are more likely to satisfy foundational
axioms such as transitivity, decomposability, and continuity.

Error Robustness: Fewer moving parts reduce the risk of hidden inconsistencies,
unintended rank reversals, or sensitivity to input noise.

Theoretical Discipline: Simplicity forces clarity in assumptions. Complex meth-
ods often obscure which principles are being applied (or violated).

However, the surveyed methods (and many others with them) violate simplicity in
the following ways:

o Methods that produce partial orderings through procedures that cannot be
linked to any utility representation.

« Outranking methods that require multiple thresholds and preference func-
tions across criteria.

The desiderata proposed in DAMS are supposed to lead naturally to models that are
both simple and prescriptively sound. Additive utility models, dominance-based
comparisons, and weighted sums are not simplistic. They can be elegant, interpret-
able, and justifiable. Simplicity is not the enemy of sophistication, rather it is its
friend. When methods are equally performant, the simpler model has both epistemic
and explanatory advantages. Future MCDA development should not merely pursue
feature richness, especially not in the number of steps and complexity of proce-
dures, but axiomatic parsimony. Simplicity is not an aesthetic, it is a logical imper-
ative. Branding and product differentiation should be realised by other means.
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14. Frequently Raised Topics

This chapter discusses some topics that came up repeatedly during the graduate
classes. While they are important questions, they are not closely related to each
other and are collected in the final chapter of Part 11 for reference.

Scale Types

The difference scale is a scale where the numbers are meaningful in terms of their
differences but not necessarily in terms of their ratios. That is, you can measure
relative differences between values, but ratios between values are not necessarily
meaningful. For instance, you can say that alternative A is “3 units better” than
alternative B, but saying alternative A is “3 times better” than B does not necessarily
make sense. In the additive model of MCDA, you sum up the weighted differences
in performance across various criteria. In other words, you are aggregating the dif-
ferences in scores or performance metrics, which is typically associated with the
difference scale.

Score of Alternative 4; — Z w; - Tij
j=1

where w; is the weight of criterion j and x;; is the performance of alternative A;

under criterion j. This form of aggregation implies that you are combining the dif-

ferences between each alternative’s performance across criteria, not their ratios.

AHP, on the other hand, explicitly requires the pairwise comparison scale to be
ratio-based, because it is built on the idea that decision-makers can express prefer-
ences between pairs of alternatives or criteria in terms of relative importance. The
standard pairwise comparison scale used in AHP typically ranges from 1 to 9 (and
the reciprocals for inverse preferences), where these numbers reflect the ratio of
importance between criteria or alternatives. For instance, if you compare two crite-
ria C; and C, and judge that C; is 3 times as important as C,, the pairwise compar-
ison matrix will reflect that in the form of a ratio-based scale. In this case, a ratio
scale assumption allows you to say that C;has a 3:1 importance over C, and you
carry this ratio into the calculation of the weight vector. AHP’s use of a ratio scale
means that it assumes the pairwise comparison judgements correspond to a multi-
plicative relationship. When you aggregate the results of pairwise comparisons for
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each criterion (which are ratio-based), the result is a weighted sum of alternatives.
This sum reflects the global preference for each alternative in terms of the ratios of
importance, rather than just the differences.

To conclude: AHP’s ratio scale means that when comparing alternatives (or cri-
teria) pairwise, you are dealing with multiplicative relationships between alterna-
tives’ importance levels, which will then be aggregated in a weighted sum. The
additive model, which typically works with a difference scale, involves linear com-
binations of values that do not require the ratios between them to be meaningful,
but rather just their relative differences (additive increments).

The Independence Assumption

The standard assumption within MCDA is that of independence between criteria,
and the likewise standard solution when that condition is not met between two cri-
teria is to jointly model them as a third, overarching criterion instead. This way, a
decision situation with dependent criteria can be seamlessly mapped onto a DAMS-
compliant model that presupposes criteria independence. This remapping requires
some skills on the part of the modeller, which is why method inventors have tried
to come up with alternative ways of handling dependence.

The first obvious candidate is the correlation concept from statistics, and it has
been employed in PDA models with some success. PDA models already contain
conditional probabilities (without signalling) since every chain of events is a calcu-
lation of conditional global probability (A | B). For more on conditional probabili-
ties, refer to any entry-level textbook on statistics. Updates of conditional probabil-
ities are, needless to say, a centrepiece within the area of probabilistic reasoning,
where Bayesian updates constitute an important topic of research — a topic that is
out of scope for this book, though.

Some MCDA methods have approached the dependence issue by requiring pair-
wise comparisons of all criteria weights. This leads to a much heavier burden when
assigning weights, essentially taking an O(n) task and turning it into an O(n?) one.
The immediate effect of a pairwise procedure is inconsistency since it is very hard
for humans to keep all pairs and their transitive implications in mind at the same
time. Of course, computers can help by indicating such inconsistencies in the form
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of, for example, the consistency index in AHP. However, any such artificial meas-
ure introduced tends to alienate the decision-maker from the original task and thus
carries a mental cost that often overshadows the possible benefits.

In cases where the criteria dependence/overlap is severe, a remodelling and map-
ping of criteria is the first step. As an example, Howard recounts a consulting ses-
sion with an oil company that had identified 30 overlapping criteria, which after a
thorough analysis turned out to be only two fundamental criteria (Howard, 2009,
p.52). While that is an extreme example, it is much more often the case that criteria
overlap is a consequence of bad modelling than a real inherent property of the de-
cision problem. Thus, the resolution lies in the performance of the analysis process
rather than in the method itself.

Compensation

A central distinction in MCDA lies between compensatory and non-compensatory
approaches to modelling trade-offs among conflicting criteria. This distinction is not
merely technical; it reflects deeper philosophical assumptions about how rationality,
preferences, and decision constraints should be represented and processed. The com-
pensatory tradition, as in DAMS and many other additive value models, allows for
trade-offs: strong performance in one area can offset weaknesses in another. In con-
trast, non-compensatory methods, such as outranking methods like ELECTRE and
PROMETHEE, are designed to integrate the handling of decision problems in which
certain criteria represent thresholds or veto points that cannot be offset, regardless
of performance elsewhere, into the core calculi.

Outranking methods achieve this by embedding thresholds, calling them features
such as concordance, discordance, and veto levels, into the core calculations of the
methods. These mechanisms are intended to model realism: in many real-world de-
cisions, a minimum standard on certain criteria is essential, and failure to meet it
could disqualify an alternative, even if it is otherwise highly rated. For instance, in
supplier selection, an offer may be unacceptable regardless of cost or delivery speed
if it fails to meet basic quality standards. From this perspective, outranking methods
seem to respond to a real need: expressing incomparability.

However, this modelling choice comes with several well-known challenges.
First, embedding such logic directly in the calculations of the method, as opposed to
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the modelling phase, makes the reasoning process opaque. Threshold values are of-
ten context-sensitive, difficult to justify empirically, and may lack a clear interpre-
tation to decision-makers. Moreover, the internal decision logic becomes more dif-
ficult to audit or explain, particularly when the result is not a complete ranking, but
a partial order riddled with incomparabilities, violating Desideratum 11 (Explana-
tory Transparency). In attempting to mirror the complexity of real-world judgement
inside the calculation core, outranking methods inadvertently produce black-box-
like behaviour. Rather, in DAMS, non-compensatory elements are handled up-
stream, during the modelling phase of a decision problem. That is, criteria deemed
essential or even indispensable (must-have) are treated as filters or constraints: al-
ternatives that fail to meet them are excluded before any aggregation takes place.
Criteria that are strongly correlated are remodelled together instead of standing
alone. The core calculation then operates under a clean, compensatory logic, allow-
ing weights and scores to be meaningfully interpreted, compared, and audited.

The conceptual clarity of this separation between structural constraints and pref-
erential trade-offs supports easier communication of the results, clearer justification
of rankings, and easier integration with value-for-money assessments. While it may
at first glance seem that compensatory models oversimplify certain judgemental
subtleties, in reality they offer greater coherence and operational transparency by
handling the issues at a higher level. In this light, the divide between compensatory
and non-compensatory methods (at the calculation core) reflects a deeper philosoph-
ical divide: whether the complexities of real-world decision making should be inter-
nalised in the method’s inner logic or externalised and structured before calculations
begin. As seen, outranking methods favour the former, often in response to misun-
derstood limitations of additive trade-off structures. DAMS-compliant models fa-
vour the latter, on the grounds that a good method should illuminate its calculations,
not obscure them with embedded conditional logic. This is important, not least in
real-world settings, where often a value-for-money approach is taken and hence, the
MCDA analysis does not include monetary criteria — those are handled at a higher
level in a subsequent cost-benefit (or cost-effectiveness) analysis. Not least procure-
ment is often handled this way, making an outranking-based process unsuitable for
such analyses. So again, real-world process requirements are at odds with opaque
calculation methods.
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Weight/Scale Dualism

One of the most persistent and under-examined conceptual pitfalls is what may be
called the great illusion of multiple scales. This illusion arises from the implicit be-
lief that decision alternatives, evaluated on fundamentally different criteria (e.g.,
cost in dollars, safety in qualitative ranks, voltage in volts), can be meaningfully
combined through a weighted aggregation without first aligning these criteria onto
a truly comparable scale. At the heart of this issue lies a subtle but critical confusion
between scaling and weighting, two distinct operations that are frequently conflated
in MCDA methods.

The fundamental requirement for any meaningful weighting scheme is that all
criteria be expressed on comparable scales, not merely in a superficial or cosmetic
sense, but in a rigorous, mathematical one. For weights to function as intended (that
Is, to represent the relative importance or trade-offs among criteria), the input scales
must be dimensionless and span a common interval, typically the unit interval [0, 1].
This is not a matter of convention; it is a precondition for consistency. Only when
all criteria are transformed to a shared domain such as [0, 1] and this domain is fully
spanned by each criterion can the weights act solely as importance coefficients. If
the scales are not aligned in this way, the weights inadvertently become scale trans-
formers as well, distorting their intended role.

This phenomenon, formally known as weight/scale dualism, undermines the the-
oretical coherence of many MCDA methods. The clearest examples are found in
TOPSIS and ELECTRE, which perform their own normalisation schemes (vector-
based or L» norm), thus failing to span the full [0, 1] intervals. These normalisations
yield dimensionless numbers but not truly comparable ones. As a result, the weights
applied to such pseudo-normalised criteria (in the [0, 1] spanning sense) retain the
burden of resolving both scale disparities and preference intensities, thereby con-
founding measurement with judgement. In such cases, the aggregated output, typi-
cally a composite score or ranking, rests on ambiguous foundations. It is unclear
whether the ranking reflects actual preferences or is merely an artefact of hidden
scale effects that have been absorbed (but not resolved) by the weighting process.
The supposed clarity of trade-offs dissolves under scrutiny: Is criterion A preferred
because it is more important or because its scale was narrower mapped and thus less
amplified by the weighting vector, or both? The illusion is complete when decision-
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makers believe they have articulated their preferences clearly, when in fact they have
merely masked a scale incoherence.

This illusion is not only a technical flaw; it becomes a cognitive trap in a wider
MCDM setting. It misleads decision-makers and analysts alike into believing that
decision models reflect informed value judgements, when in fact they often reflect
arbitrary or inconsistent scale manipulations. The only robust escape from this illu-
sion is to enforce rigorous scale alignment in the methods before weighting, typi-
cally through full-range (spanned) normalisations to [0, 1], and to preserve this in-
terpretability throughout the analysis. Anything less invites semantic ambiguity,
mathematical confusion, and decision analyses built on misinterpretations.

This great illusion of multiple scales, i.e. the weight/scale dualism, should not be
confused with the illusion of absolute weights, another issue that emerges at the level
of MCDM preference elicitation rather than MCDA method computation. It has
nothing to do with the methods’ calculations, but is a testament to the mental com-
plexities involved in eliciting criteria weights. The latter illusion refers to the cogni-
tive error of assigning fixed importance values to criteria, without regard for the
scales they inhabit. The illusion of absolute weights manifests in decision-makers
insisting on assigning weights to criteria without considering the original scale
spans. For instance, if criterion A is assigned weight wa based on a scale [a;, a;],
and a new alternative extends this to [a4, as], the weight wa needs to be recalibrated
so that one unit on A’s scale has the same importance as before. The illusion lies in
treating weights as if they were anchored in absolute terms, which is impossible,
when in fact they are inherently tied to the scales. Failing to understand and accom-
modate that is falling for the illusion of absolute weights. Thus, as discussed before,
it is important to clearly differentiate between the outer MCDM layer where descrip-
tive behaviour, procedures and results can be taken into account, and the inner
MCDA layer, which must conform to known objective scientific results. In the outer
MCDM layer, compensation can be made for regrets and other human behaviours
and biases, although it still has to be done in a traceable way. The transparency re-
quirement does not vanish at the MCDM level.
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15. Probabilistic MCDA

Part 111 of the first edition contained an overview of different software applications
that employed the methods of Part Il. In this second edition, it has been replaced
with this chapter on combined probabilistic multi-criteria models and the next chap-
ter, which describes how UNEDA, the open-source universal decision-analytic soft-
ware platform, is implemented.

The structural similarities between the von Neumann—Morgenstern (vNM) and
Keeney-Raiffa’s (KR) IIASA utility models indicate that they are not competing
frameworks, but rather special cases of more general probabilistic multi-criteria de-
cision analytic models (MPDA). This theory integrates both risk and multi-dimen-
sionality by considering preferences over uncertain, multi-attribute alternatives.

In this unified framework, an alternative is characterised by a matrix of com-
pound outcomes, where each attribute has multiple probabilistic (Bayesian) out-
comes. This nested structure expresses VNM utility as the special case where there
is only one attribute and only uncertainty exists, and KR as the case where uncer-
tainty is removed (i.e., all pj; are degenerate, with probability 1 on a single state).
Thus, MPDA generalises both. When attribute weights represent relative impor-
tance and probabilities represent uncertainty, the resulting model supports decisions
under both value trade-offs and risk. The utility function applies consistently across
the two cases, indicating that both models rely on the same fundamental valuation
mechanism. Both vNM and KR build on core axioms: completeness, transitivity,
continuity, independence, and decomposability. These remain valid in the general
case and justify the functional form of as both additive and expected.

There are several benefits of a unified view. It brings coherence to decision mak-
ing under hybrid conditions (e.g., strategic planning with uncertain costs and com-
peting objectives). Further, it supports more precise elicitation: decision-makers can
assess trade-offs and risks in tandem. Lastly, it reinforces the idea that utility is the
core construct, whether over lotteries, attributes, or both. This unified view vali-
dates the effort to develop MPDA methods that respect both probabilistic and multi-
criteria aspects. The desiderata serve as a scaffold for such synthesis, and their ex-
pansion into this domain may mark the next frontier in decision theory.
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In complex real-world decision situations, alternatives often involve uncertainty
in addition to, not instead of, multiple criteria. A natural extension of MCDA thus
involves incorporating probability distributions over outcomes, leading to hybrid
models where both criteria weighting and probabilistic beliefs play a role. This gen-
eralisation leads to expressions of the form

U(A) = Z;Wi 'ijiju(xij)

where wi is the weight of criterion, representing its importance, pj; is the probability
of state j under criterion i, and u(x;;) is the utility of outcome x;; under that state
and criterion. This formulation reflects an additive multi-attribute expected utility
function. It is consistent with both vNM and KR formulations. The outer sum rep-
resents aggregation over attributes, as in MAUT. The inner sum represents expec-
tations over uncertain events within each attribute, as in vNM. Importantly, this
model preserves the axiomatic commitments of both theories. i) additivity across
independent criteria; ii) expected utility within each uncertain dimension, and iii)
coherence in the joint treatment of trade-offs and risk.

A generalised MCDA of this kind opens up doors to richer, securely grounded
models. It allows method designers (and thus their customers, the decision-makers)
to accommodate both subjective probabilities and value trade-offs in a unified
model. It supports elicitation techniques familiar from both MAUT (e.g., swing
weighting) and vNM (e.g., lottery comparisons). Although vNM utility theory and
KR/MAUT align closely in structure and intent, their merger into a unified proba-
bilistic multi-criteria framework raises some questions that have to be addressed.
This section examines whether any modifications are necessary to either theory to
ensure consistency and whether they violate each other’s fundamental axioms.

Compatibility of Axioms: At a high level, the core axioms shared by both frame-
works, such as completeness, transitivity, continuity, and a form of independence,
are broadly consistent. However, the definition and application of the independence
axiom differs in that vNM requires probabilistic independence while KR requires
utility independence, i.e. preferences over one attribute remain unchanged regard-
less of fixed levels of other attributes. These are structurally distinct. Probabilistic
independence governs mixtures of lotteries, while utility independence governs the
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separability of trade-offs. In a unified model, one must accept both forms for it to
function as intended.

Decomposability: KR assumes additive decomposability under specific forms of
independence. vNM requires linearity in probabilities but has no native treatment
of attribute composition. Combining both requires assuming that utility is additively
separable in attributes and linear in probabilities. This dual requirement imposes a
stronger structure than either theory individually.

Functional Form: To align vNM and KR under one expression, it must be assumed
that the same utility function applies across both probabilistic and multi-attribute
domains. This may require rescaling or transforming attribute-specific value func-
tions in MAUT to be consistent with cardinal utility in VNM.

Weight Interpretation: vVNM is typically used in contexts with measurable uncer-
tainty; KR often treats uncertainty implicitly through scoring. A unified theory im-
plies that attribute weights and probabilities should be formally equivalent in the
role they play within the utility aggregation. This requires an interpretation of
weights that is stronger than mere preference intensity, they must be utility-theo-
retic scalars.

Thus, while no outright axiomatic contradiction exists, a unified model imposes
stronger assumptions than either theory individually. In particular i) utility inde-
pendence and probabilistic independence must coexist, ii) additivity across both
probabilities and attributes must be assumed, and iii) a common utility function
must serve both. These are manageable but nontrivial requirements. Their adoption
transforms both vNM and KR from context-specific models into components of a
more general system. To reconcile and extend vNM and KR within a general prob-
abilistic multi-criteria decision framework, the following unifying desiderata are
proposed. They are designed to support utility representations of the form

U(a) = Xiw; X;Dpij u(xij)
where wi are the weights of the criteria (attributes), pij are the probabilities over the
outcomes under the criteria, and u(x;) is the utility of outcome xi;.
Desideratum MP1 (Completeness and Transitivity): For all alternatives A, B, and

C, preferences are complete and transitive. For all A and B, either A > B, B > A, or
A ~ B. Further, if A> B and B > C then A > C.
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Desideratum MP2 (Continuity): For any alternatives A, B, and C, with A > B > C,
there exists a A € (0, 1) such that B ~ A-A + (1-1)-C This applies both to probabil-
istic mixtures (as in VNM) and to attribute trade-offs (as in KR).

Desideratum MP3 (Probabilistic Independence): For all alternatives A, B, and C,
if A> B, thenforany A € (0, 1): A-A + (1-1)-C > A-B + (1-A)-C. This ensures
linearity in probabilities.

Desideratum MP4 (Utility Independence of Attributes): For any attribute i, pref-
erences over levels of i are independent of the fixed levels of other attributes, pro-
vided the preferences are conditional on those fixed levels.

Desideratum MP5 (Additive Decomposability): If utility independence holds for
all attributes, then the overall utility function U (a) is additive across attributes and
linear in probabilities such that U(a) = ¥; w; ¥ pij u(x;j) -

Desideratum MP6 (Monotonicity): If an outcome x;; is replaced by x;; such

that U(x’l.j) > U(x’ij), and all other terms remain fixed, then the overall utility
increases.

Desideratum MP7 (Normalisation): For all weights w;>0, 2w; = 1 and proba-
bilities p;;>0, 2'p;; = 1 respectively for each i and j.

Desideratum MP8 (Common Utility Representation): There exists a single cardi-
nal utility function u defined over outcomes x;; such that preferences over all
combinations of attributes and uncertainties can be represented by U (A).

These desiderata, DAMS-MP, unify the vNM and KR theories into a single co-
herent foundation for MPDA. They allow trade-offs across attributes and beliefs
while preserving coherence and a clear interpretative structure. DAMS-MP forms
the basis for the UNEDA platform, which can handle tri-linear MPDA decision
problems of the form

max lU(a) = Ziwi ijij u(xij)l

according to the generalised PMEU principle afforded by MPDA and with arbitrary
depths in the event trees and criteria hierarchies. The open-source software library
is described in the next chapter.
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16. Computational Evaluation

To make a decision analysis method computational, and thus making it a method
for real-life decisions, two main ingredients are necessary. The first is a suitable
representation and evaluation rules of the decision problems, such as those pre-
sented in Part I. The other is reasonably fast computational algorithms, which is the
topic of this part. Most of the demanding computations required are optimisation-
related algorithms.

This chapter is divided into three main sections. The first deals with calculating
properties of decision frames using linear programming methods and the second
deals with algorithms for computing evaluation rules by employing bilinear opti-
misation. The last section contains a discussion of the BEDA method for handling
second-order information. The two first sections are built on (Danielson, 1997),
which describes the DELTA method for interval decision analysis that was later gen-
eralised to multi-level trees (the original text handles only single-level trees, but the
generalisation is straightforward and does not introduce any new concepts). Deci-
sions under risk (probabilistic decisions) are often given a tree representation. This
is the reading of the tree as a sequence of events leading up to the final conse-
guences, the end nodes.

A decision tree consists of a root node, representing a decision, a set of interme-
diary (event) nodes, representing some kind of uncertainty about which event will
eventually occur, and consequence nodes, representing possible final outcomes.
Usually, probability distributions are assigned in the form of weights in the proba-
bility nodes as measures of the uncertainties involved. The informal semantics are
simply that given that an alternative Ai is chosen, there is a probability pjj that an
event will occur. This event can either be a consequence with a value vijk assigned
to it or another event. Usually, the maximisation of the expected value is used as an
evaluation rule. In the case of precise probability and utility assessments, this is
straightforwardly evaluated. However, when the probabilities and utilities are im-
precise, several complications appear, including the non-uniqueness of the expected
value of an alternative (leading to the need to find upper and lower bounds). The
first step in obtaining a solution is generalising the decision tree structure.
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Let a decision frame represent a tree decision problem. This is convenient for
presentational purposes. The idea with such a frame is to collect all information
necessary for the model in one structure. One of the building blocks of a decision
frame is a graph.

Definition: A graph is a structure {I,N,E), where I is an index set, N is a set {ni},
iel, of nodes, and E is a set {(ni,n;)}, i,j€l, i#j, of edges (node pairs). A tree is a
connected graph without cycles.
Definition: An r-tree (rooted tree) is a tree (I,N,E,r) where exactly one node n, has
the property —3 k : (nk,nr) €E. ny is called the root of the tree. The set N is parti-
tioned into two subsets of leaf nodes (N\) and intermediate nodes (N'). ni € N' iff
3k : (ni,n) E. Since N- = N\ N!, nieN" iff -3 k : (nj,n) €E. The index set I is
partitioned accordingly: an index iel' iff nieN' and an index icl" iff nicN‘. An
intermediate node nieN' has children indices Ci = {j : (ni,n;)E}.
Then all the rooted trees representing alternatives are joined together into a decision
frame. In the sequel, the notation is used that the n children of a node x; are denoted,
Xi1, Xi2,....Xin and the m children of the node xij are denoted Xij1, Xijz,. . .,Xijm, etc.
Decision-maker statements of probability and value are translated into con-
straints (inequalities) in order to be entered into the decision problem. Range state-
ments (i.e. intervals) translate into range constraints, inequalities involving a single
variable. A reasonable interpretation of such statements is that the estimate is not
outside of the given interval. For a value scale [a, b], there is a default range con-
straint vije[a, b] for each value variable. Likewise, there is a default range constraint
pije[0, 1] for each probability variable (although, in practice, the normalisation
takes care of this). Comparative statements compare the probabilities of two conse-
quences occurring with one another, such as “the events C1 and C, are equally
probable” or “the event Csis more likely to occur than C4”. Those statements are
translated into comparative constraints, inequalities involving more than one varia-
ble. The term interval constraints is used for the kinds of constraints above. A col-
lection of interval constraints concerning the same set of variables is called a con-
straint set, and it forms the basis for the representation of decision situation state-
ments.
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Terminology: Given an index set | and a set of variables {xi}ici, a constraint set in
{xi}iel is a set of interval constraints in {Xi}icl.

To begin with, it is important to determine whether the elements in a constraint
set are at all compatible with each other. This is the question of whether a constraint
set has a solution, i.e. if there exists any vector of real numbers that can be assigned
to the variables.

Definition: Given an index set | and a set of variables {xi}ici, a constraint set X in
{xi}ic1 is consistent iff the system of weak inequalities in X has a solution. Other-
wise, the constraint set is inconsistent. A constraint Z is consistent with a con-
straint set X iff the constraint set {Z} w X is consistent. The collection of all con-
sistent instances of a constraint set X is called the solution set to X.

Definition: Given an index set | and a consistent constraint set X in {xi}ici and a
function f, the maximum is *max(f(x)) =ar sup (a | {f(x) > a} U X is consistent).
Similarly, the minimum is *min(f(x)) =qer inf (a | {f(x) < a} U X is consistent).

Definition: Given an index set I, a consistent constraint set X in {Xi}ic1and a
function f, Xargmax(f(x)) is a solution vector that is a solution to *max(f(x)), and
Xargmin(f(x)) is a solution vector that is a solution to *min(f(x)).

Note that argmax and argmin need not be unique. The feasible box (i.e., the set
of feasible variable assignments) can be calculated if the constraint set is consistent.
The feasible box is a concept that in each dimension signals which parts are infea-
sible within the constraint set. Intuitively, the feasible box represents a conservative
extension of the solution set of a set of constraints.

Definition: Given an index set | and a consistent constraint set X in {Xi}ici, the set
of optimum pairs {(Xmin(Xi),XmaX(Xi»}iel is the feasible box (orthogonal hull) of
the set and is denoted (*min(xi),max(xi)).

This feasible box represents upper and lower probabilities if X consists of prob-
abilities and upper and lower values if X consists of values. For convexity rea-
sons, the entire interval between those extremal points is feasible. Using this con-
cept, an application program can display to the user which statements are incom-
patible or which parts of intervals are incompatible with the rest of the statement
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set. Hence, at all times, an application program can maintain a consistent model of
the user’s problem in collaboration with the user.

There are two types of constraint sets (c-sets), probability c-sets and value c-sets.

The smallest c-set unit is the event node c-set, which collects all probability state-
ments made regarding a specific event node in an r-tree.
Definition: Given an r-tree T =(I,N,E,r) and an event node nj, consider the set C;
of disjoint and exhaustive consequences of the event (children nodes), user event
statements in {p;}j<ci, and a discrete, finite probability mass function IT:nj—[0,1]
over Ci. Let pj denote the function value I1(n;). I'T obeys the standard probability

axioms, and thus pje[0,1] and X pj = 1 are default constraints. Then the event
node c-set Pi is derived from the set of user range and comparative statements
with the following content.

e A feasible box (ax,bk), keCi, which represents the user and default range
constraints Vk € C; : p, €[0,1].
e All user comparative constraints.

e The normalisation constraint Z p, =1.

keC;
Thus, the c-set transforms statements into linear constraints while maintaining the
same meaning. A c-set is more convenient to handle than a pure set of statements.
An event node c-set characterises a set of discrete probability distributions. The
next aggregation level is that of a probability c-set, which collects together all prob-
ability statements belonging to all nodes in the same tree.
Definition: Given an r-tree T = (I,N,E,r) with all event nodes nj, iel'. Then the
probability c-set P is all event c-sets Pj combined, i.e. feasible boxes, normalisa-
tions, and user comparative statements.

Requirements similar to those for probability variables are found for value vari-
ables. There are apparent similarities and differences between probability and value
statements. The normalisation (X« pik = 1) requires the probability variables of an
intermediate node to sum to one. No such constraint exists for the value variables.
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Further, the value scale endpoints can be arbitrarily selected and need not be [0,1]
as in the probability case.

Definition: Given an r-tree T = (I,N,E,r), consider the set N" of leaf nodes. Then a
value c-set is derived from the set of user range and comparative statements. The

user statements, together with the default statements VK € | - v, €[0,1], form the
c-set constraints in the following way.
e A hull (ax,bk), kel which represents the user and default range constraints.
e All user comparative constraints.

Similar to probability c-sets, a value c-set characterises a set of value functions. The
statements are transformed into a set of linear constraints. Using the above concepts
of constraint and c-set, a decision situation is modelled by a decision frame. To
begin with, each alternative is represented by a tree frame.

Definition: Given a decision alternative, statements are made about the probabili-
ties of the events as well as the values of the consequences. A tree frame is a
structure (T,P,V) containing the following representation of the alternative:

e Arrooted tree T = (I,N,E,r) with index set partitions I' and I-, and, for each
icl', the child index set Ci.
e A probability c-set P in variables {pi}, ieI\{r}, representing all probability
statements in the form of a feasible box and constraints.
e Avalue c-set V in variables {vi}, iel-, representing all value statements in
the form of a feasible box and constraints.
All alternatives are modelled in the same structure. This structure (the decision
frame) fully represents the entire decision problem, and all evaluations are made
relative to it. The probability and value c-sets, together with structural information,
constitute the decision frame.
Definition: Given a probabilistic decision situation with m alternatives, a decision
frame is a structure (m,F), F = {Fi} for ie{1,....m}, where F; = (T;,P;,Vi) is a tree
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frame for alternative Ai. Thus, the decision frame contains, for each alternative, a
decision tree structure and a tree frame.

Now that the representation structure is defined, the next item is algorithms for
computing upper and lower bounds for the expected value in the tree, i.e. optimisa-
tion of sums of products derived from the tree structure. The primary evaluation
rule is based on the expected value. Since neither probabilities nor values are fixed
numbers, evaluating the expected value yields multi-linear objective functions
(with bilinear functions as a special case for one-level trees). Evaluate the expected
value of an alternative given a decision frame (m, {(Ti,Pi,Vi)}), i.e.

My Mo im-1

EV(Ai) = Z piilz piiliz"'_z Piii, s Z Pii i, i Viiy *imaininl o

n
=1 =1 ina=1 in=1

timisation of such non-linear expressions subject to linear constraints (the probabil-
ity and value constraint sets) are described in (Danielson, 1997).

The contraction is a generalised sensitivity analysis to be carried out in an arbi-
trary number of dimensions. In non-trivial decision situations, when an information
frame contains numerically imprecise information, the different principles sug-
gested above are often too weak to yield a conclusive result. Often, a far too
crowded set of candidates is received. One way to proceed could be to determine
the stability of the relation between the consequence sets under consideration. A
natural way to investigate this is to consider values near the boundaries of the in-
tervals as being less reliable than more central values due to interval statements
being deliberately imprecise. This is taken into account by measuring the dominated
regions indirectly using the concept of contraction.

The principle of contraction is motivated by the difficulties of performing sim-
ultaneous sensitivity analysis in several dimensions at the same time. It can be hard
to gain a real understanding of the solutions to large decision problems using only
one-dimensional analyses since different combinations of dimensions can be criti-
cal to the evaluation results. Investigating all possible such combinations would
lead to a procedure of high complexity in the number of cases to investigate. Using
contractions, this difficulty is circumvented. The contraction avoids the complexity
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inherent in combinatorial analyses. However, it is still possible to study the stability
of a result by gaining a better understanding of how important the interval boundary
points are. By co-varying the contractions of an arbitrary set of intervals, it is pos-
sible to gain much better insight into the influence of the structure of the information
frame on the solutions. Both the set of intervals under investigation and the scale of
individual contractions can be controlled. Consequently, a contraction can be re-
garded as a focus parameter that zooms in on central sub-intervals of the full state-
ment intervals.

Definition: X is a base with the variables x,...,x,, @ € [0,1] is a real number,
and {m; € [0,1]:1=1,...,n} is a set of real numbers. [aj, bj] is the interval cor-
responding to the variable x; in the solution set of the base, and k = (ki,...,ky)
is a consistent point in X. A z-contraction of X is to add the interval statements
{xj € [ajtr-mi- (ki—aj), bi—m-mi-(bi—k{)] : i = 1,...,n} to the base X. K is called the
contraction point (or focal point).

By varying © from 0 to 1, the intervals are decreased proportionally using the
gain factors in the m;-set, thereby facilitating the study of co-variation among the
variables. This is a form of sensitivity analysis, which is described in more detail in
(Danielson, 1997). In order to assess the properties of a frame, computational meth-
ods are required that can determine whether a given base has a particular property
or not. One of the most fundamental components is a way of determining con-
sistency in a base. Since the base consists of a linear system of inequalities, a natural
candidate area for an algorithm is linear programming.

The area of linear programming (LP) was formed in the 1940s and has been a
large and lively area of research ever since. It deals with the maximising (or mini-
mising) of a linear function with a large number of likewise linear constraints in the
form of weak inequalities. Research efforts in the field are partly focused on devel-
oping clever algorithms for fast numerical computations. This chapter assumes that
the reader is familiar with the basics of LP in general and with the Simplex method
in particular. Those unfamiliar with these subjects may refer to any standard text-
book on the subject. The LP problem is the following optimising problem:
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max f(x)

when Ax > b

andx=>0
where f(x) is a linear expression of the type kix; + KoXo + ... + KX, AX>Db is a
matrix inequality with rows aj1Xq + ajpXo + ... + a;X, = bq through apnx; +
AmaXo * ... + amnXp = by, and x > 0 are the non-negativity constraints x; > 0 for
each variable. Amongst all feasible points, the solution to f(x) is sought that has the
highest numerical value, i.e. the best solution vector x, the components of which

are all non-negative and satisfy all constraints. A minimum can be searched for by
negating f(x).

Consistency
The first algorithm is a procedure for determining whether a base is consistent or
not. A base is consistent if any solution whatsoever can be found to the set of inter-
val constraints. Note the similarities with the LP problem formulation. Let there be
m interval constraints in the base. By introducing new variables yj,...,yx, with

k = 2-m, to the consistency problem, it can be reformulated as

min (yg + ... +yy)

when Ax > b

andx>0,y>0
where each of the interval constraints aj;x; + ajoX, + ... + aj X, € [a, b] is trans-
formed into corresponding inequalities a;1Xq1 + @joXo + ... + @jpXp + Y2i-1 = @ and
aj1X1 T+ @jpXo + ... + AjpXp — Yoi < b. If the obtained minimum of y; + ... + y has
the value zero, then a solution has been found that does not contain any y;. Remov-
ing the y;’s, the resulting solution vector X is indeed a feasible solution, i.e., the base
is determined to be consistent. If the minimum of y; + ... + y is positive, then the
optimal values of the yj’s are larger than zero, i.e. at least one of the y;’s is necessary
to keep the base consistent. Since the y;’s were added to the base, the problem itself
has no solution. Hence, the base is inconsistent. This forms the algorithm for deter-
mining consistency in a decision frame by applying it to the probability and value
bases.
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Orthogonal Hull

Another important property of a base is the orthogonal hull. According to the defini-
tion, in order to calculate the hull, find the pairs (Xmin(x;),Xmax(x;)),, i.e. finding
minima and maxima for single variables in the base. First, a consistent point is de-
termined by employing the procedure above. A search then begins from that point
for the minimum and maximum of each variable in turn by forming LP problems
with that variable as the objective function. For convexity reasons, the entire inter-
val between those extremal points is feasible. If the base is consistent, the orthogo-
nal hull can be calculated. From the two properties consistency and orthogonal hull,
most of the other ones follow from less demanding computations.

Evaluation Algorithms

The problem addressed in this section is how to compare the different consequence
sets computationally using the methods of the previous chapter. The computational
pattern that reoccurs several times in that chapter and needs to be solved fast in long
sequences is PVmax(Aij) and PVmin(Aij). The optimisation of general Ajj-type of
expressions as they appear in Chapter 5 is a demanding computational task as soon
as the problem to solve is above toy size. In most cases, however, the expected
value rule is employed, making the task less demanding from a computational point
of view. In this section, it is assumed that the expected value is being used. Then,
the general PVmax(Aij) turns into PVmax(Zk Pik — 2k Pjk) for first order A-domi-
nance such as 1SE and security levels, and into PVmax(Zk Pik-Vik — 2k Pjk-Vjk) for
second order ones such as 2SE or NE.

First Order Dominance

For first order dominance, the evaluation expressions are of the form

"ma Zpik] or Pmax{ > Pik — ijk} (or corresponding F)min)

keKj keKj keK;

for some index sets K; or index set pairs (K;,K;)(d) respectively.
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These maximisation problems map directly onto LP since it is possible to identify
the linear f(x) with ¥ ik or >k Pik — 2k Pjk and note that Ax > b is the probability

base P. The solution to the problem is thus obtained by running a suitable LP solver
such as Simplex described later in the chapter. This is an efficient solution to first
order problems.

Second Order Dominance
For second-order dominance, the expressions are more complicated. They involve
non-linear elements in the form of bilinear terms pjy-Vjk. The optimisation problems

PVmax(Zk Pik-Vik) and PVmax(zk Pik:Vik — 2k Pjk-Vjk) cannot be solved by a simple

application of an LP solver even if the P- and V-bases are independent and still
consist of only linear expressions. The objective function is Y Pik-Vik — Xk Pjk' Vjk
= PizVie * Pi2'Vi2 * - * PimyVimi — (Pj1-Vje + Pj2:Vjz2 + - * PjmyVjm)- Thisis a
bilinear expression with all terms of the form pj\-vj,. There is one such expression
together with many linear inequalities. Thus, it is an optimisation problem with a
bilinear objective function and a system of linear inequalities as constraints. It will
be called a bilinear programming problem with +1 term constants (a BLP1 problem
for short).

Two alternative algorithms for use in an interactive environment are proposed.
The bilinear objective function is an instance of quadratic objective functions, and
thus the general BLP1 is solvable with quadratic programming (QP) methods. A
QP-based one is the most general, able to solve all BLP1 problems, but it is not as
fast as desired for interactive use for larger decision problems. The other algorithm
is LP-based and is well-suited for user interaction. Since the bilinear objective func-
tion is quadratic, the first natural candidate area for a solver algorithm is quadratic
programming.

Quadratic Programming

The theory of QP can be found in any standard textbook on non-linear optimisation.
Here, only the top-level procedure for searching quadratic optima is considered.
The general QP problem with both equalities and inequalities in the constraints is
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(QPI)  max (xTQx + cTx)
when Ax>Db

where A is a m x n matrix with linearly independent rows, Q is a symmetric n x n
matrix, and ¢ is a vector in R". The expression xTQx is a quadratic form and can
contain all possible quadratic terms.

Since the objective function is quadratic, the theory of linear programming as
discussed above does not apply. Even though a method similar to Simplex was orig-
inally devised by Dantzig and Wolfe to solve QP, most methods today use factor-
ised matrices. For any given solution the inequality problem QPI can be considered
a problem with only equalities (QPE), namely all weak inequalities satisfied without
slack. Since the other inequalities are not active at that solution point they need not
be considered locally. This reasoning leads to the active set strategy, a well-known
technique within non-linear programming. One of the problems with the active set
is that its members at any given step are hard to determine in advance. This means
resorting to a guessing strategy, where a choice is made without enough information
and corrected later on should the choice be proven unsuitable. QPE problems can
be solved using a number of standard methods such as Lagrange methods or null-
space methods, depending on matrix sparsity, stability requirements, and other cri-
teria. The BLP1 problem maps well onto QPI since there is one second-order non-
linear expression as the objective function and a larger number of linear constraints
in the probability and value bases. The bilinear objective function is a special case
of a quadratic function where most of the entries in the Q matrix are zero. This
forms the basis for the general QB-Opt algorithm.

Observation: Given a decision frame (C,P3,V3), PYmax(8;;) = max (xTQx + ¢Tx)
with &;; as xTQx, 0 as cTx and PV as Ax > b.

The QPE is computationally fairly demanding, and QPI, being an iterative se-
guence of QPEs, is even more so. Since QPI often does not admit interactive re-
sponse times, it would be preferable to use an LP-based solver instead. This is pos-
sible in most cases using PB-Opt below. Together with QB-Opt, it forms a solver
hierarchy from which the fastest is selected for each given optimisation problem.
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Probability Bilinear Optimisation

The LP-based algorithm described is the probability bilinear optimisation, PB-Opt.
For PVmax(zk Pik-Vik) it solves the general BLP1 problem for (C,P3,Vo)-frames
while for PVmax(Zk Pik:Vik — 2k Pjk:Vjk) it solves all cases where there are no com-
parative constraints between the consequence sets involved in the calculation, either
directly or indirectly. To begin with, expressions of maximal and minimal proba-
bilities are introduced.

Definition: Given a decision frame (C,P,V),

- mi
VE; " g S ik - by » Where by = Vmax(vy).
kel

m'” is ijk , where by = Vmin(vjy).

The last difference was formed from two linear expressions in only probability var-
iables. The main proposition for PB-Opt is now stated as follows.

Proposition: Given a decision frame (C,P3,V5). If none of the comparative con-
straints in V involve variables from different C;’s, then PVmax(8;;) = Pmax(V§;;)
for any pair Cj and C;.

Proof: Let (bjy,...,bim;) and (bjg,....bjm,) be as in the definitions of VE;™ and

VE; MiN above. For aII feasible vectors (p.l, ,Pum.) (Pja>---Pjmy)s Vit---»Vimy), and
(vjl, - Vim;) VE;"™™ >3\ pik-Vik and VE <3y Pjk-Vjk. It follows from

bix = Vmax(viy) and by, = Vmin(vj)) and from pik =0V k e {1,...,mj} and pj >0
Vke {1,...,mj}. This implies V8ij > >k Pik*Vik — 2k Pk Vjk-

Cj contains m; consequences. Given two integers 1 < k,1 < m;, assume

bix = Vmax(vj). Then for v;;, either i) there is no comparison v;; — vy, € [a,b] in
V, in which case vj; is independent of vjy, or ii) there is a comparison vj; — Vjx €
[a,b]. For case ii), the constraint can be written ii a) vj; > a + v; and ii b) vjj < b

+ Vj. In ii a) vj, does not constrain the maximisation of vj;, and in ii b) vj, = by,
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maximises v;;. Thus vj, and v; can be independently maximised and (bjq,...,bjm;)
is a feasible vector as is (bjy,.. .,bjmj) by a similar argument. Since there are no
constraints vj, — vjj € [c,d] in V for different Cj and Cj, each bjy in (bjg....,bim;)
and each by in (bjl,...,bjmj) can be chosen within a consequence set independently
of the other sets.

This justifies the basis for the PB-Opt algorithm. The rest of the algorithm al-
most suggests itself. It searches for the optimum F’max(VE‘)ij) by means of an LP
algorithm such as Simplex. The proposition then guarantees that PVmax(Sij) can
be determined by calculating Pmax(VSij) instead provided the precondition is met.
Similarly, PVmax(Zk Pik-Vijk) can be found by searching for an LP solution in-
stead.

Second-Order Computations

The DELTA Method is a distribution-free decision analysis method for the handling
and evaluation of decision and risk trees (Danielson, 1997). It has thereafter in
2001-2002 been extended from probabilistic decision situations also to cover deci-
sions under multiple criteria. Decision alternatives are evaluated by so-called con-
tractions of the intervals combined with several complementary evaluation rules.
The advantage of a distribution-free approach is the generality and freedom from
assumptions that it allows. However, a disadvantage is the unintuitive interpretation
of the results of a contraction. In order to alleviate that problem, an additional anal-
ysis method is introduced in this report, based on a belief mass interpretation of the
output intervals from DELTA. Each input and output interval consists of a lower
bound, an upper bound, and a focal point. These three points are interpreted as pa-
rameters for belief distributions (Dirichlet distributions for probabilities and criteria
weights, triangle distributions for values).

A Kkey observation in the DELTA method is that the belief in points closer to the
endpoints of the intervals is lower than the belief in more central points. This is the
reason for the contraction procedure above. The same observation underlies the
BEDA method, but it is effectuated differently — by assigning explicit distributions
of belief on the intervals. The distributions used for expressing beliefs are well-
known distributions from statistics: the Dirichlet distribution for probabilities (since
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they need to sum to one following Kolmogorov’s axiom system) and the triangle
and uniform distributions for utilities/values, the choice depending on whether there
are two or three points defining an interval. The properties of both Dirichlet and
triangle distributions are well described in (Kotz and van Dorp, 2004). To see how
it works, begin by revisiting the expression for the expected value:

EV(A) = Z pni Piiyi, i Biyi, i pims i Py i g Vit i gy il
=1 i i

=1 ing=1 in=1

To evaluate this expression, and thus arrive at an analysis of the decision situation,
employ calculation methods for the two operators addition and multiplication. The
addition operator is handled by ordinary convolution, i.e. if h is the distribution over
asum z = x + y whose components have distributions f(x) and g(y), then h(z) is

d VA
h2) =+ f F(0g(z — x)dx.
0

The multiplication operator is treated analogously. Using the same assumptions as
above, if h is the distribution over a product z = x - y, h(z) is found by letting

1@ = [[ reagiaxay = | 1 | Y 09 dxdy = | P62/

where G is a primitive functionto g, I', = {(X,y) | x'y <z}, and 0 <z < 1. Then h(z)
is the corresponding density function

h(z) = %flf(x)G(z/x)dx = IIWCM.

In theory, the products are calculated and the abovementioned convolution of two
densities then effectuates the summations of the products. This combination of op-
erators computes the distribution over the expected utility. In practice, however,
these calculations are very complicated for a decision-analytic tool to carry out,
especially when additional requirements are added, such as asymmetry in the input
distributions and truncated distributions due to the input intervals being narrower
than the default [0, 1] range assumed in the standard theory.

The evaluation method in BEDA is based on the principle of going concern
(PGC). It is the same PGC observation that enables the use of probability theory as
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a risk calculus. The probability of an event occurring is the proportion of times it
occurs if the event is repeated an infinite number of times. In using probabilities for
modelling real-life events, the approximation is used that the probability best rep-
resents the risk involved. For this approximation to be reasonable, several events
need to take place for the real-world outcomes to cancel out in the sense that they,
on average, tend to the probability. This is the assumption of going concern, and
the approximation is viable in most decision situations, which is why probability
calculus is accepted for use in this way. The same PGC reasoning applied to distri-
butions involves the central limit theorem and the law of large numbers in statistics.
This leads to the well-founded approximation that the total distribution of expected
value over a large number of decision situations will tend to the normal distribution.
Using this approximation, the evaluation in the BEDA method amounts to finding
parameters for a suitable approximately normal distribution. Two factors slightly
complicate matters. i) The input distributions are seldom symmetric in the sense
that their mean values are not midway between the lower and upper boundaries of
the intervals. And even if they were, the multiplication operator’s non-linearity still
yields an asymmetric result. ii) The lower and upper bounds themselves introduce
truncations into the resulting distributions, leading to non-standard outcomes. This
eventually turns the BEDA evaluation into a moment calculus using the NEMO (net
moment) technique. NEMO includes all moments that have a noticeable impact on
the end result and excludes those that have negligible impact to save computation
time. For a detailed description of BEDA and NEMO, refer to the documentation
on the UNEDA webpage.

This chapter builds on (Danielson, 1997, Ch.6)
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Universal Engine for Decision Analysis

The software platform UNEDA (Universal Engine for Decision Analysis) has been
developed in parallel with the book over a extended period of time. A substantial
amount of material associated with UNEDA has never been published, except on
the author’s university webpages. Those documents cover aspects of prescriptive
decision analysis that have now been incorporated into the UNEDA computational
engine.

UNEDA is an open-source library for MPDA (probabilistic MCDA). It imple-
ments the DAMS-MP framework from Chapter 15 and thus integrates the two fields
of probabilistic and multi-criteria decision analysis into a unified computational en-
vironment. The library is freely available to use for any purpose, academic and non-
profit as well as (from June 6, 2025) commercial. The software library can be ac-
cessed via the GitHub repository at

github.com/uneda-cda/UNEDA

and the documentation is found at a link in the same repository. The original release
of the software platform can also be found via the DOI link

doi.org/10.5281/zenodo.15114623.
Background material for UNEDA is available via links in the GitHub repository.

UN=DA>

0ol | 10.528]1 /fzenodo. 15114625


https://github.com/uneda-cda/UNEDA
https://doi.org/10.5281/zenodo.15114623
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Appendix

Some graduate students found the discussion and Table 2 in Chapter 13 to be a little
too condensed to follow with ease. As a consequence, the teaching material was
supplemented with some explanatory notes. In the second edition of the book, these
notes have been added as an appendix. It discusses the Big Five methods through
the DAMS desiderata lens in a structured form and in more detail. In the following,
all methods include both formula and thresholds and all alternative sets are finite.

Desideratum 1 (Ordering): The preference relation is complete. For all A and B,
either A > B, B > A, or A ~ B. This requirement together with Desideratum 2 im-
plies that the decision-maker’s preferences can be modelled as a complete weak
order (or total pre-order), i.e. an ordered partition into indifference classes.

Method Fulfils D1 = Comment

VIKOR OK VIKOR ranks all alternatives using a compromise
measure (Q) combining: (1) the utility (distance
from the ideal) and (2) the regret (maximum devia-
tion for any criterion). The underlying preference
relation induced by Q; is a complete weak order.

TOPSIS OK TOPSIS assigns each alternative a scalar closeness
coefficient based on its distance to the ideal and
anti-ideal points. Because these scalar scores are
totally ordered, all alternatives are comparable.

ELECTRE NO ELECTRE produces outranking relations (not full

by design  preference orders), with thresholds, veto rules, and

incomparability. These design features include in-
completeness and non-transitivity to model non-
compensatory and threshold-based preferences.

PROM I NO PROMETHEE | allows for incomparability; thus, it
does not satisfy completeness.
PROMIlI OK PROMETHEE Il computes a scalar net flow for

each alternative and imposes a complete ranking,
ensuring that pairs of alternatives are comparable.
AHP OK AHP has a matrix output allowing comparisons.
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Desideratum 2 (Transitivity): The preference relation is transitive: If A > B and
B > C, then A > C. This requirement together with Desideratum 1 implies that
the decision-maker’s preferences can be modelled as a complete weak order.

Method Fulfils D2
VIKOR OK

TOPSIS OK

ELECTRE NO
by design

PROM I NO

PROMII  OK
after ag-
gregation

Comment

VIKOR ranks all alternatives using a compromise
measure (Q) combining: (1) the utility (distance
from the ideal) and (2) the regret (maximum devia-
tion for any criterion). The underlying preference
relation induced by Q; is a complete and transitive
weak order.

TOPSIS assigns each alternative a scalar closeness
coefficient based on its distance to the ideal and
anti-ideal points. Because these scalar scores are
totally ordered, every pair of alternatives is compa-
rable and the strict preference relation is transitive.
ELECTRE produces outranking relations (not full
preference orders), with thresholds, veto rules, and
allowance for incomparability. These design fea-
tures include incompleteness and non-transitivity to
try to model such preferences in the core.
PROMETHEE | allows for incomparability; thus, it
does not satisfy completeness. Even when it asserts
A >Band B > C, it may leave A and C incompa-
rable due to conflicting flow values, so transitivity
IS not guaranteed either.

PROMETHEE Il computes a scalar net flow for
each alternative and imposes a complete ranking,
ensuring that every pair of alternatives is compara-
ble. Because these net flow values are real num-
bers, the induced strict preference relation is transi-
tive.
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AHP Only under AHP assumes transitivity, but it only holds if the
perfect pairwise comparison matrix is consistent. In prac-
consistency  tice, inconsistency is common. The method has a
consistency index to detect but not enforce it.

VIKOR, TOPSIS and PROMETHEE |1 satisfy both completeness and transitivity.
They provide full rankings based on cardinal values (scores). PROMETHEE | falls
short because of two rankings as output which may differ, declaring the alternatives
incomparable. ELECTRE is explicitly built to not require completeness or transitiv-
ity. It is more aligned with partial and ambiguous preferences. AHP is formally com-
plete and transitive if judgement matrices are consistent, but that is a big if in prac-
tice since a consistency index of zero is notoriously hard to obtain.

Desideratum 3 (Dominance): If for all i, si(A) > si(B) and for some j, sj(A) > sj(B)
then A > B. This is often referred to as Pareto dominance or the strong dominance
rule. This desideratum demands that if alternative A is at least as good as B in
every criterion, and strictly better in at least one, then A must be strictly preferred
over B. It is a straightforward principle in spirit, better is better, and important for
rational consistency.

Method Fulfils D3 Comment

VIKOR Partly The Q-index blends utility (S) and regret (R). Be-
cause Q; is monotonically increasing in both S;
and R;, it follows that Q4 > Qg = B > A if it had
not been for the C1/C2 threshold rules.

TOPSIS OK TOPSIS compares relative closeness to the ideal
vs. anti-ideal. A dominant alternative will always
have equal or better distance metrics, leading to a
better closeness coefficient.

ELECTRE NO ELECTRE is built on outranking, not dominance.
It allows for thresholds, veto effects, and incompa-
rability. A dominated alternative (in the Pareto
sense) might appear above a dominant one in the
final ranking, due to indifference or thresholds.
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PROM I NO

PROM Il  Partly

AHP Only under
perfect
consistency
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PROMETHEE | does not always respect domi-
nance due to thresholds. A dominating alternative
might get the same preference flows. Further, in-
comparability is still possible, which can obscure
strict dominance.

PROMETHEE Il does not have incomparability in
its output but still suffers from thresholds. De-
pends on which stage you call “the relation”. Once
reduced to a single real score, dominance is re-
spected (so the final ranking is consistent).

AHP is vulnerable to dominance violations due to
inconsistencies in pairwise comparisons. If the de-
cision-maker’s judgements do not reflect domi-
nance, the eigenvector weights may still assign a
higher rank to a dominated alternative. Dominance
is not structurally enforced.

Only TOPSIS robustly preserves the dominance principle. That is, if one alternative
is strictly better in at least one criterion and no worse in the others, it will be pre-
ferred. Others may violate this property due to compromise calculations or judge-
ment inconsistencies. ELECTRE, by design, allows outranking contradictions and
veto thresholds to override dominance, reflecting its commitment to modelling par-
tial and conflicted preferences rather than idealised rational consistency.

Desideratum 4 (Monotonicity): If A > B, and A' is such that s;(A) = si(A") for all
i # j and si(A) = si(A")+¢ for some small € > 0, then A' > B. This says that if A is
better than B, and an alternative A’ is created that is worse than A in one criterion,
then A" should not be worse than B (i.e., B should not leap ahead just because A’
got slightly worse than A in a differential sense). This is a stability condition:
weakening a better alternative should not reverse an established preference.

Method Fulfils D4
VIKOR OK

Comment
VIKOR preserves monotonicity: worsening an al-
ternative increases both the utility loss (S) and po-
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TOPSIS

ELECTRE

PROM I

PROM II

AHP

OK

NO
not neces-
sarily

NO

OK

NO
no guarantee

tentially the regret (R), which raises the compro-
mise index (Q). Even if the worsening shifts the
maximume-regret criterion from a low-weighted to
a high-weighted one, the regret term cannot cause
the ranking to flip. And C1/C2 can at worst make
A and B equally preferred (incomplete ranking).
When an alternative is worsened, its distance to
the ideal increases and its closeness coefficient de-
creases. The method ensures that preference is
preserved unless the worsening is large enough to
fully reverse the closeness relation, making it con-
sistent with monotonicity.

ELECTRE can violate this rule due to veto thresh-
olds and discordance. If A" is slightly worse than
A in a vetoed criterion, it might lose the outrank-
ing status, even if B is globally worse. Also, in-
comparability may replace a previous strict prefer-
ence.

PROMETHEE | respects this property when A'
and B are comparable because of monotonic pref-
erence functions. If A’ is strictly worse than A, it
will score slightly lower but still above B if A did.
However, it can collapse the order into incompara-
bility due to how flows are separately compared.
PROMETHEE Il assigns net flow scores via pair-
wise comparisons. A' being slightly worse than A
reduces its score while still being comparable.
AHP depends on subjective pairwise judgements,
not direct performance scores. If A > B because
of a particular judgement and then A" worsens in
objective terms, it does not automatically follow
that A' > B. The pairwise matrix might yield dif-
ferent eigenvalue-based rankings, especially if in-
consistencies are present.
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The monotonicity property that worsening a preferred alternative should not reverse
its dominance over a clearly inferior one is fully respected by three Big Five meth-
ods. ELECTRE and PROMETHEE may switch preference status based on thresh-
olds or veto conditions. AHP, based on subjective judgements, has no structural
mechanism to enforce this kind of ordinal stability.

Desideratum 5 (Independence of Irrelevant Alternatives): If A > B in set X, and
C ¢ {A, B}, then A > B in X U C, provided that criteria weights are automatically
adjusted to preserve the relative importances of one unit on each original scale if
C caused any scale renormalisations.

Method Fulfils D5 Comment

VIKOR OK VIKOR normalises criterion values based on the
best and worst in the current set, which can alter the
loss profiles and rankings when a new alternative is
introduced. If the weights are automatically re-
scaled, the relative preference between two un-
changed alternatives remains stable.

TOPSIS OK TOPSIS defines ideal and anti-ideal reference points
based on the full set of alternatives, making its nor-
malisation sensitive to the presence of new options.
If weights are rescaled, the preference between any
two unchanged alternatives remains stable.

ELECTRE NO ELECTRE is based on pairwise outranking with
thresholds, and adding a new alternative C can
change the concordance/discordance matrices, espe-
cially if C introduces new veto situations or changes
credibility scores. It satisfies 1A at the outranking
level but violates it at the final ranking level.

PROM I NO PROMETHEE | uses pairwise preference flows, and
adding C introduces new comparisons (A vs. C and
B vs. C), which can affect overall flow values. Thus,
the preference between A and B may change.

PROMII  NO Same as PROMETHEE I: net flow scores are
recomputed based on all pairwise comparisons.
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Adding an irrelevant third option can redistribute
outranking flows, which may alter A > B.

AHP NO AHP uses pairwise comparison matrices, so adding
C creates new comparisons (A vs. C, B vs. C, etc.).
The derived priority vector can shift even if A > B
held before.

Two of the five benchmarked methods satisfy the condition of independence of ir-
relevant alternatives. Three of them define preferences in relation to the full set of
alternatives, whether through outranking flows (PROMETHEE), concordance ma-
trices (ELECTRE), or pairwise judgements (AHP). Consequently, adding or remov-
ing an option not directly involved in a preference relation (e.g. C ¢ {A, B}) can
still cause a reversal of A > B, making the methods context-dependent rather than
strictly ordinal.

Desideratum 6 (Rank Preservation): If A > B in X, and C is a third alternative not
affecting the scores of A or B, then removing C from X does not alter the ranking

A > B (allowing for automatic weight adjustment to preserve per-unit criterion
meaning). This is an instance of the rank reversal property in its removal form. It is
a consistency condition under contraction. If C is irrelevant to the comparison be-
tween A and B, then removing C should not disturb that comparison. Violation of
this desideratum is a hallmark of context-dependent or relativistic MCDA methods
where scores are based on entire sets of data.

Method Fulfils D6 Comment

VIKOR NO Even if alternative C does not affect the scores of
A or B, its removal changes the threshold DQ,
which increases and might obliterate A > B.

TOPSIS NO Its use of context-sensitive extreme artificial solu-
tions (ideal and anti-ideal) means that removing
an irrelevant alternative can shift the reference
points. Even with automatic weight adjustment,
the non-linear geometry shifts and closeness can
change.
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ELECTRE  Partly Although its pairwise outranking relations A = B
are computed independently, the final rankings
depend on the entire set of alternatives. Removing
a third alternative C can alter the structural domi-
nance relations or the set of outranked alterna-
tives. However, the many variants of the method
have different sensitivity to rank reversal.

PROM /Il NO In PROMETHEE, the net flow scores are aggre-
gate constructs over the entire set. Removing an
irrelevant alternative C can change the flow bal-
ance, and alter the ranking between A and B, de-
spite their pairwise scores being unchanged.

AHP NO Its ranking outputs are based on eigenvectors or
geometric means of a full matrix. Removing a
third alternative changes the dimensional struc-
ture, and can shift relative priority values, leading
to preference reversals between unchanged pairs.

The desideratum of invariance under irrelevant removal asks whether removing a
third alternative leaves the ranking A > B intact. None of the five methods reviewed
satisfy this condition. VIKOR trips on the finalising rules C1 and C2. TOPSIS de-
pends on reference points derived from the entire alternative set. Removing C can
shift the ideal or anti-ideal positions, thereby altering A’s and B’s closeness or com-
promise scores. ELECTRE shows some resilience, thanks to its pairwise structure.
But also here, changes in the concordance or veto dynamics can distort the ranking.
PROMETHEE, relying on net preference flows, also fails: any contraction of the
alternative set alters the flow landscape, making outcomes sensitive to seemingly
irrelevant options. AHP, built on global pairwise matrices, responds to removal with
complete recalibration, often changing weights and ranks. It has no internal model
of what a score means and only sees the ratios as directly meaningful.

Desideratum 7 (Criteria Transparency): For any preference A > B, there exists a
representable and decomposable justification based on the contribution of each cri-
terion to the total evaluation. This is a prescriptive rationality requirement. It im-
plies three things: i) that the decision process should be transparent, i.e. not a black
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box, ii) the contribution of each criterion to the ranking must be explicit and trace-
able, and iii) a decision-maker (or stakeholder) should be able to understand and
explain why A > B, broken down by criteria.

Method
VIKOR

TOPSIS

ELECTRE

PROM I

PROM II

Fulfils D7 Comment

Partial

OK

Partial

Partial

Partial

VIKOR produces scores S (utility) and R (regret),
which are aggregated into the Q-index. While S is
decomposable (weighted sum of distances to ideal
per criterion), R is non-compensatory, taking the
maximum deviation. This makes full decomposition
asymmetric and harder to explain. Moreover, condi-
tional decision rules further obscure interpretability.
Although the closeness coefficient is not additive, it
is constructed entirely from per-criterion terms that
are geometrically and algebraically interpretable.
This allows preferences such as A > B to be justi-
fied based on specific criteria that favour A in rela-
tion to the ideal solution.

ELECTRE builds an outranking relation using con-
cordance (supporting criteria) and discordance (op-
posing criteria). While it can be described why A
outranks B, veto rules and thresholds make explana-
tions non-additive and discontinuous, and thus hard
to justify in scalar terms.

PROMETHEE uses criterion-wise preference func-
tions and produces positive/negative flow contribu-
tions. One can break down A > B by examining
how much each criterion contributes to A’s net flow.
The final ranking is based on the net flow ¢p(A)
which is traceable but blends information about A’s
performance vs all others.

PROMETHEE Il extends this with a complete rank-
ing. Since it is still based on criterion-wise prefer-
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ence functions and weighted net flows, one can gen-
erate a step-by-step breakdown of why A > B. Same
reservation as I.

AHP Partial AHP computes local priorities per criterion and ag-
gregates them into global weights. In theory, the
preference A > B can be decomposed. However, be-
cause it is based on subjective judgements, and due
to eigenvalue-based weighting, explanations may
lack clarity. Also, when inconsistencies exist in the
matrix, the decomposability decreases.

The desideratum is fully satisfied by VIKOR and partly satisfied by all others.
ELECTRE, relying on thresholded outranking logic, produces qualitative preference
relations that resist scalar decomposition, making justifications difficult to articulate
in terms of continuous contribution. AHP, while decomposable in principle, lacks
interpretive clarity due to reliance on subjective pairwise judgements and potential
inconsistency.

Desideratum 8 (Weight Sensitivity): Let w; € [0, 1] be weights summing to 1. A
change in w7 that increases the influence of criterion Cj in which si(A) > si(B)
should not alter the preference A > B. This is a monotonicity property with respect
to weights, an important consistency criterion in weight-sensitive MCDA methods.
This expresses directional weight monotonicity. If A is already as good as or better
than B under criterion C; and the weight of C; is increased, then A > B should be
preserved. It assumes that methods are sensitive to weights in a directionally con-
sistent way.

Method Fulfils D8 Comment

VIKOR NO VIKOR normalises each criterion into [0, 1], mak-
ing weights operate proportionally on commen-
surable scores. However, the regret term (R) uses a
max function, which is sensitive to weight shifts if
the criterion is the worst for an alternative.

TOPSIS OK TOPSIS uses vector normalisation, but this does
not guarantee that the transformed scores span the
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full [0, 1] interval, often falling within a narrower
subrange. Thus, increasing w; may have a dampen-
ing or unpredictable effect. However, it preserves
ranking in the ordinal sense as requested.

ELECTRE OK ELECTRE’s concordance relations use weights,
but because normalisation is not standardised to
[0, 1], and thresholds/veto rules apply, weight mul-
tiplication is not cleanly interpretable. But at worst,
the preference is not strengthened.

PROM I/Il  OK PROMETHEE apply weightings to preference de-
grees derived from non-linear, threshold-based
functions. These preference functions introduce re-
gions of flat sensitivity (indifference thresholds),
where increasing the weight on a favourable crite-
rion has no impact, so at worst the preference is
not strengthened.

AHP NO AHP works on ratio-scale judgements, not normal-
ised performance data. The weights are derived,
not applied, and the final ranking is influenced by
the entire matrix, not marginal criterion values. In-
creasing w; directly (e.g. through matrix adjust-
ments) does not reliably preserve A > B, and this
behaviour is not interpretable as scalar weight ap-
plication at all.

When evaluating weight sensitivity, it is important to distinguish between the ag-
gregation logic and the normalisation method used by each technique. PRO-
METHEE maintains directional consistency under weight changes when preference
functions are well-behaved and monotonic. TOPSIS, despite applying weights to
vector-normalised scores, exhibits partial robustness in an ordinal sense. VIKOR,
while based on [0,1] scaling, suffers from its max-regret term R;, which is insensi-
tive to most weight shifts unless the criterion is dominant, failing to meet the desid-
eratum. ELECTRE further complicates weight interpretation through threshold and
veto structures, making weight effects non-transparent and context-dependent.
AHP;, relying on eigenvector-derived weights from subjective matrices, provides no
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direct or interpretable mechanism to adjust or monitor criterion impact, and fails the
test of rational, directional weight response.

Desideratum 9 (Criteria Independence): If criteria Ci and C; produce identical
scores for all alternatives, the results should be cardinally invariant under merging
them into one criterion with a combined weight w; + w;. This is a structural ration-
ality desideratum concerned with weight integrity and redundancy handling, test-
ing method invariance under model equivalence. The desideratum assumes that a
method i) should not allow redundant criteria to artificially inflate influence, ii) en-
sures that merging two identical criteria into one does not distort the result, pro-
vided weights are added, and iii) reflects the additivity or sensitivity to criterion
structure, essential for model parsimony and usability.

Method Fulfils D9 Comment

VIKOR NO VIKOR’s S and R scores are based on weighted L,
(sum) and L., (max) distances from the ideal. If two
criteria C; and Cj have identical scores across all al-
ternatives, they contribute twice the same deviation.
Regret takes only the largest weighted shortfall, hav-
ing two identical columns means that the lesser of
the two weights risk being ignored.

TOPSIS NO The method calculates weighted Euclidean distances
to the ideal and anti-ideal points. If two criteria have
identical scores across all alternatives, treating them
separately introduces half their contributions twice.
Treating them separately vs. merged produces dif-
ferent geometric (root-mean-square) L distances.

ELECTRE NO ELECTRE’s concordance and discordance matrices
rely on weights across all criteria. Redundant criteria
each independently contributes to concordance, but
the RMS distances ruin the calculus the same way it
does for TOPSIS.

PROM I/Il  OK PROMETHEEs preference flows are additive and
criterion-wise. If two criteria are identical, their indi-
vidual preference functions will be identical as well.
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Merging them with adjusted weights produces iden-
tical net flows.

AHP NO The weights are not user-controlled, they are com-
puted from a pairwise comparison matrix of criteria.
Merging two criteria is not a matter of adjusting
weights. It means removing a row and column from
the criteria matrix and recomputing the entire weight
vector. This may change all other weights due to re-
normalisation and eigenvector sensitivity.

The desideratum of redundancy sensitivity is important for avoiding hidden bias and
ensuring model parsimony. Of the five methods reviewed, only PROMETHEE reli-
ably supports this principle: if two identical criteria are merged and their weights
recombined, the net flows remain unchanged. VIKOR is also compliant under sim-
ilar conditions, though its maximum-regret term (R) introduces asymmetry. In con-
trast, TOPSIS and ELECTRE rely on geometric RMS distances that do not repro-
duce under these conditions. AHP, structured around subjective pairwise compari-
sons, does not support criterion merging at all, and redundancy is treated as legiti-
mate additional information, a problematic stance in analytical modelling.

Desideratum 10 (Scale Invariance): For any criterion C;, if a positive affine trans-
formation f: R — R is applied to all si(-), then the preference relation A > B
should remain unchanged. This means that any such transformation that does not
change the direction of scores should not alter the ranking of alternatives. Methods
that rely on non-linear magnitudes or ratios may violate this desideratum.

Method Fulfils D10 Comment

VIKOR OK VIKOR calculates deviations from the ideal
point, using weighted L, (S) and L, (R)
measures. It applies min-max normalisation to
each criterion. This transformation is invari-
ant under strictly affine functions.

TOPSIS NO Because it relies on vector normalisation and
Euclidean L distances, it is sensitive to the
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magnitude of scores. Even if a criterion’s rel-
ative distances are preserved, a transformation
can change the final ranking.

ELECTRE NO The method is purely ordinal and thus invari-
ant under affine transformations. But if veto
thresholds are used, they rely on numerical
gaps which can be distorted under scale
changes.

PROM I/11 NO Relying on preference functions defined over
numerical differences, affine transformations
of a criterion’s scale might trigger thresholds
and non-linear preference functions, thereby
altering the overall ranking.

AHP NO AHP uses subjective pairwise judgements, not
score functions. An affine transformation of
raw scores changes the subjective ratio, lead-
ing to different matrices and altered results.

The desideratum of affine transformation invariance tests whether methods rely
solely on the difference of criterion values. ELECTRE does not satisfy this condi-
tion, even though its outranking logic depends only on ordinal comparisons, due to
veto thresholds. PROMETHEE could have respected this property, but only if its
preference functions had been truly affine to begin with. In contrast, VIKOR has
such a truly affine-respecting construction. TOPSIS is sensitive to value transfor-
mations and violate the desideratum. AHP, grounded in subjective comparisons and
eigenvector derivation, is scale-dependent and non-invariant by construction.

This concludes the discussion of the Big Five methods. Most of them display
some strengths and some weaknesses, while AHP does not do well regarding any
desideratum. This is due to it being the farthest away from the well-established and
validated axiom systems of von Neumann-Morgenstern and Keeney-Raiffa that the
DAMS desiderata are built on and reflect. There is no other coherent set of axiom
systems that could optionally be adhered to, thereby invalidating the “smorgasbord
approach” sometimes advocated for as a replacement for rigorous foundations.
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All desiderata are summarised in Table A1, which is structurally identical to Ta-
ble 2 but pivoted and more nuanced since desiderata can be partially fulfilled. The
judgement in the new table is not always black and white. SAW methods such as
SMART are not included in Table Al since they are not discussed in the appendix
due to their conformance with the DAMS desiderata set.

o=
Methods — Dé E E % N
Desiderata | S |9 d E‘E E
D1. Ordering OK OK NO PART OK
D2. Transitivity OK OK NO  PART COND
D3. Dominance PART OK NO ' PART COND
D4. Monotonicity OK OK NO PART NO
D5. Indep. Irrelevant Alt. OK OK NO NO NO
D6. Rank Preservation NO NO  PART NO NO
D7. Transparency PART OK | PART PART PART
D8. Weight Sensitivity NO OK OK OK NO
DO. Criteria Independence = NO NO NO OK NO
D10. Scale Invariance OK NO NO NO NO

Table Al. The Big Five methods reassessed using the DAMS desiderata

The appendix ends with a summary in Table A2 of some major pros and cons of
each of the five methods discussed. For more detailed strengths and weaknesses,
refer to the discussions on each desideratum in this appendix and also the methods’
respective chapters in Part Il. The last column indicates whether the methods can
use the UNEDA open-source platform with some modifications.
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Method Strengths Weaknesses UNEDA
VIKOR Scale-robust, value- Violates context and YES
sensitive, compro- transformation invari-
mise-aware, optimisa-  ance; R component
tion-style obscures monotonicity
TOPSIS Transparent, stable Fails on IlA, context YES
under scaling, geomet- dependence, rank re-
rically explainable versal
ELECTRE Ordinal reasoning, Lacks transparency, YES
soft appearance, par-  threshold-sensitive,
tial comparability context-dependent,
partial ranking
PROM I/l Decomposable, mono- = Fails rank reversal, YES
tonic, stable under [1A, version | has only
value transformation  partial ranking
AHP Conceptual simplicity, = Sensitive to incon- NO

consistent when
judgements are

sistency, scale, and
context; non-additive,

lacks interpretability
Table A2. Some major pros and cons of the Big Five methods

To conclude, there are essentially three major lines of development within the
MCDA method spectrum. The first is the classical tradition, grounded in established
theoretical frameworks. The second is the ELECTRE lineage, which four of the five
methods in the appendix belong to, and which accepts additive utility but discards
much of the rest. The third is AHP, the least compliant of the three lineages and
consequently labelled as fundamentally flawed (Abbas, 2018, Ch.3). Unfortunately,
the latter two categories have attracted the most attention in the last decades, divert-
ing focus and resources away from real progress in the field. Brand recognition,
arguably one of the most important success factors, is not addressed in this appendix.
A 2023 ranking of brand name visibility among the Big Five methods lists: (1) AHP,
(2) TOPSIS, (3) PROMETHEE, (4) ELECTRE and (5) VIKOR. No other methods
came close to their levels of recognition. With AHP on top, the ranking closely re-
sembles an inverse of their DAMS compliance, highlighting both the importance
and effectiveness of branding efforts.
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Foundations of Computational Decision Analysis begins with the established basics
of classic probabilistic decision theory and builds towards a critical assessment of
multi-criteria decision analysis (MCDA) methods. The book is grounded in the con-
viction that decision-analytic methods must rest on solid scientific foundations,
logical coherence and conceptual clarity to enable transparency.

The first part revisits the roots of decision theory, examining subjective probabili-
ties, utility, and the fundamental role of value in rational choice. It disentangles
common confusions, highlights core assumptions, and presents the theory with
both philosophical care and real-world decision problem relevance.

The second part turns to MCDA, the expanding family of methods designed to
guide the analysis of complex decisions with multiple objectives. Rather than treat-
ing these as a set of tools, the book examines them as scientific constructs and
potential guides, asking not just how they work, but also why, when and whether
they should be trusted as support tools.

The final part deals with computations and an open-source software platform for
enabling applications of effective modern decision analysis, with special attention
to real-world imprecision and the need for systematic sensitivity analyses.

This is a book for readers who want more than procedural knowledge. It is for
those who seek conceptual depth, methodological clarity, and logical reasoning in
the design and evaluation of decision-analytic methods. A must-read for decision
analysts, students, and anyone serious about the logic of choice.
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