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If we have been accustomed to deplore the spectacle […] of a workman 

occupied during his whole life in nothing else but the making of knife 

handles or pins’ heads, we may find something quite as lamentable in 

the intellectual class, in the exclusive employment of the human brain 

in resolving some equations, or in classifying insects. […] It occasions  

a miserable indifference about the general course of human affairs, as 

long as there are equations to solve and pins to manufacture. 

 

 Auguste Comte 

 

 
Comte, A. (1835/1853/2009). The Positive Philosophy of Auguste Comte, Vol. II 

(H. Martineau, Trans.). Cambridge University Press. (Original work published 

1835; English translation published 1853). 
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Preface 

Decision methodology, mainly in the form of decision theory and decision analysis, 

has been studied for quite some time. A number of Nobel Prize laureates in econom-

ics have contributed to the field, including Simon, winner in 1978; Allais in 1988; 

Kahneman in 2002; and Hurwicz in 2007. Most of these contributions belong to 

normative theory, that is, the study of how we should rightfully choose. However, 

such theories are usually presented in a highly idealised and theorised form which 

offer little guidance in actual decision-making situations. Neither in organisations, 

nor in everyday life.  

Hence, normative research is not such a great help to us when making real deci-

sions of any reasonable quality. Normative theories say “This is the outcome if you 

decide in an optimal way” but they say nothing about how to get there. It is about as 

helpful as a theoretical description of how to ride a bicycle. You cannot simply read 

the description and then pedal off. Or read a couple of books on swimming. Thrown 

into the deep end of the pool, those books will not help much. 

Kahneman, by contrast, belongs to a different school, the descriptive one, which 

explores what people really do when they make decisions. Not surprisingly, people 

underperform in many situations and the brain is easily fooled by all kinds of infor-

mation and disinformation. This can be both amusing and sobering to read about, 

and Kahneman’s book Thinking, Fast and Slow is recommended for both entertain-

ment as well as thought-provoking reading. Still, what we really need is perhaps not 

a catalogue of cognitive missteps, but rather a method that can guide us in a reason-

ably sound way from decision problems to decisions. Descriptive research, there-

fore, is unfortunately not much help to us either when we are going to make real 

decisions of good quality. Continuing the cycling analogy: reading about bicycle 

accidents and how riders fell off their bikes, or how large their grazes were, will not 

help us much either. We will still not be able to pedal off after reading about them. 

The same holds for stories of lifeguards and swimming incidents: hearing how oth-

ers sank or struggled in the water does not help us float. 

Fortunately, there is a third research direction, prescriptive decision analysis, 

which focuses on methods for analysing real-life decisions. That is the subject of 

this book. It is based on the kind of information people can actually provide with 

reasonably preserved quality. As such, the methods advocated for in this book do 
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not rely on unrealistic assumptions about the decision-makers’ abilities to supply 

precise information. Rather, they aim to provide useful and trustworthy support in 

actual real-world decision situations of various kinds. 

A prescriptive foundation necessarily emphasises applicability, which in turn im-

plies the use of computational tools. Today, there is a wide gap between normative 

and descriptive decision theories on one side and the practical needs of real-world 

decision making on the other. As a result, decision analysis is underused and under-

valued in society despite the growing complexity of the many complex decisions 

that must be made every day. However, writing and publishing more books on nor-

mative or descriptive aspects will not bridge this gap since much of their content 

remains inapplicable to practical real-life decision analysis. 

The origin of the book is a set of course notes for graduate courses at the Royal 

Institute of Technology and Stockholm University, partly based on the author’s PhD 

thesis. The text has been rewritten more than once but not published until now. It is 

hoped to serve as a foundation to rejuvenate research interests in real-world deci-

sion-analytic methods solidly based on sound and well-established theoretical re-

sults, both from within decision theory and outside from adjacent fields such as 

mathematics, statistics, microeconomics and computer science. Not least multi-cri-

teria decision analysis (MCDA), the main subject of Part II, seems to be in need of 

that. Note the difference between MCDA, making an analysis, and MCDM (where 

the last ‘M’ stands for decision making), the latter encompassing the wider process 

from data collection, over elicitation, analysis, presentation and possibly negotia-

tions, all the way through to making a decision. Thus, Part II of the book is con-

cerned with the core of MCDM, namely MCDA. 

Happy reading! 

The author, Stockholm, September 2018 

 

Preface to the Second Edition  

Decision analysis is, like almost any management or professional support method, 

dependent on computer power to be highly effective. But the users of most technol-

ogies need not do the modelling themselves – they just use the designed artefact or 

device. If you walk on a bridge, you need not be familiar with the design theories 

behind its construction. In many cases, neither do the architects since the theoretical 



4   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

knowledge is embedded in CAD software. The same goes for driving a car – de-

signed mostly by using CAD systems – or turning on a light switch, whereby elec-

tricity flows through a well-dimensioned power grid, again based on theoretical 

principles not explicitly considered by consumers and often not by design engineers 

either, instead using specialised design software.  

However, making decisions requires the modelling to take place in the end users’ 

minds. Therefore, the power embedded in decision-supporting software has to be 

different, opening up mechanisms through the user interface that other advanced 

software tools would have hidden away. Too much research in decision analysis has 

been directed to inventing new ad hoc formalisms and procedures, sometimes not 

even being in accordance with established theories, and too little to finding better 

interfaces between the decision-makers and their needs for modelling and interpre-

tation support on the one hand, and the computer algorithms on the other.  

This second edition is motivated by the book being bundled with an advanced 

decision-analytic software platform. The UNEDA (Universal Engine for Decision 

Analysis) software platform is released today as open source for all uses, research 

as well as commercial. The release day coincides with the expiry of US Patent 

7257566, which covers some of the algorithms used in UNEDA. While the first two 

parts of the book remain largely unchanged, the original Part III on current software 

tools has been replaced by a new Part III on the UNEDA platform in order to keep 

the book’s length below 150 pages, which was always a goal. After all, a book does 

not need to be very long to make a point  only long enough to be comprehensible 

and short enough to be read. 

The purpose of this second edition is to enable a broader range of open science 

research into, and applications of, real-life decision analysis, inevitably supported 

by computer tools. The UNEDA platform can enhance almost any decision-analytic 

method with interval representations, belief distributions and a variety of sensitivity 

analyses. Like this book, the software is also freely available as an open-access re-

source. Together, they are made available in an effort to promote and revitalise re-

search in decision analysis that is fundamental, well-founded and real-world rele-

vant at the same time. A narrow path to walk, but one well worth the effort.  

Happy reading and programming! 

The author, Stockholm, June 6, 2025 
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01. Introduction 

Classic decision analysis is a systematic, predominantly quantitative, and highly ef-

fective approach to making decisions under uncertainty, the term itself coined by 

Howard (1966). It provides a structured framework for evaluating complex choices 

by incorporating probabilities, outcomes, and preferences. The goal is to identify the 

best course of action given available information, risks, and trade-offs. It supports 

decision-makers in structuring problems, assessing risks, and optimising choices us-

ing probabilistic models and utility functions. The process typically involves defin-

ing objectives, identifying alternatives, evaluating possible outcomes, and selecting 

the most rational option based on well-founded decision rules. A common mistake 

many authors do is failing to distinguish between organisational and personal deci-

sion making, illustrating principles of the former with examples such as how to 

choose a car. While personal decisions rightly involve emotional factors, impersonal 

organisational decisions should not. The two contexts lead to different approaches. 

The formal study of decision analysis dates back to the mid-20th century, with 

contributions from pioneers such as von Neumann and Morgenstern, who intro-

duced utility theory, and Savage, who developed subjective expected utility. Bayes-

ian inference was introduced into decision theory, initially through the work of Sav-

age. In 1954, he laid out a subjective Bayesian framework for decision making under 

uncertainty. He built upon earlier ideas from Ramsey (who in the 1920s first pro-

posed subjective probabilities and utility-based decisions) and de Finetti (an early 

advocate of subjective probability). However, it was Savage who systematically in-

tegrated Bayesian inference with utility theory, forming the basis of what is now 

called Bayesian decision theory. Savage’s contributions included the axioms of ra-

tional choice under uncertainty, the use of subjective probabilities (based on per-

sonal belief, not objective frequency), and the concept of expected utility maximi-

sation. More on this in Chapters 2 and 3. 

Uncertainty is perhaps the most defining characteristic of classic decision analy-

sis. In virtually every decision, some elements cannot be known with certainty. 

These unknowns arise from a variety of sources, such as limited information, unpre-

dictability in the environment, and inherent variability in processes. For instance, a 

business decision might involve predicting future market conditions, which are in-

fluenced by numerous unpredictable factors like consumer behaviour, competitor 

actions, or macroeconomic events. Uncertainty in decision making can be classified 
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into two main types: aleatory (stochastic) uncertainty and epistemic (systematic) un-

certainty. Aleatory uncertainty refers to the inherent randomness or variability in the 

system being analysed. For example, the variability in weather patterns or stock 

market prices reflects aleatory uncertainty, as these events are governed by complex 

systems that are inherently unpredictable. On the other hand, epistemic uncertainty 

arises from a lack of knowledge or information about a particular system or process. 

Epistemic uncertainty is often reducible through further research or data collection, 

making it distinct from aleatory uncertainty, which is fundamentally irreducible. 

Risk, a specific form of uncertainty, is present when the likelihood of different 

outcomes can be reasonably estimated. This contrasts with ambiguity, where the 

probabilities of various outcomes are largely unknown. For instance, in investment 

decisions, risk can be quantified through historical data and probability distributions, 

whereas ambiguity arises when the future market conditions are highly uncertain, 

and no clear distribution of outcomes can be assigned. The distinction between risk 

and ambiguity is central in decision analysis, as it informs the strategies used to 

model uncertainty. In situations of risk, decision-makers can use probabilistic mod-

els to quantify the uncertainty and make rational choices. However, in the case of 

ambiguity, decision-makers may rely on methods that handle incomplete or uncer-

tain information, such as interval representation techniques or belief distributions. 

The implications of uncertainty are vast. Probabilistic (Bayesian) decision anal-

ysis provides a rigorous framework for understanding and mitigating the effects of 

uncertainty, allowing decision-makers to make more informed, defensible choices. 

By integrating probabilistic reasoning into decision models, it is possible to quantify 

risk, evaluate potential outcomes, and derive optimal strategies. Probabilistic deci-

sion models are central to decision analysis, offering a formalised way to incorporate 

uncertainty into the decision-making process. These models utilise probability the-

ory to evaluate the likelihood of different outcomes and help decision-makers 

choose the best alternative, given their preferences and the risks involved. The use 

of probability in decision analysis not only helps quantify uncertainty but also pro-

vides a way to compare alternative outcomes in terms of their expected utility. Ex-

pected utility is a measure of the satisfaction or value a decision-maker derives from 

a particular outcome, weighted by the probability of that outcome occurring. This 

concept is central when dealing with uncertain outcomes, as it allows decision-mak-

ers to make comparisons between alternatives with different risk profiles. 
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In a decision tree, for example, outcomes are represented as branches, with each 

branch corresponding to either a different decision or state of nature. Probabilities 

are assigned to each branch to represent the likelihood of each outcome. By calcu-

lating the expected utility for each branch, decision-makers can determine the best 

course of action. Decision trees are particularly useful for modelling sequential de-

cisions, where the outcome of one decision affects the subsequent decisions. 

Bayesian decision theory extends the principles of decision analysis by incorpo-

rating Bayesian probability, which allows decision-makers to update their beliefs 

about a situation as new information becomes available. This framework is particu-

larly useful in dynamic environments where decision-makers must adjust their strat-

egies based on evolving data. In Bayesian decision analysis, prior probabilities are 

combined with new data to form posterior probabilities, which then inform the de-

cision-making process. A comprehensive treatment of probability viewed as a form 

of extended logic can be found in Jaynes (2003). The power of probabilistic (Bayes-

ian) decision models lies in their ability to quantify uncertainty and enable decision-

makers to make informed choices. By incorporating probabilities into decision mod-

els, these methods allow for a more objective and systematic approach to decision 

making, even in highly uncertain environments. They provide decision-makers with 

tools to assess the risks associated with different alternatives, compare potential out-

comes, and select the course of action that maximises the expected utility. 

In probabilistic decision analysis, several frameworks are employed to guide de-

cision making under uncertainty. These frameworks are built around the principle 

of maximising expected utility (PMEU). PMEU is the most widely used framework 

in probabilistic decision analysis. It suggests that decision-makers should choose the 

alternative that maximises their expected utility, which is calculated by summing 

the utilities of all possible outcomes, weighted by their probabilities. This approach 

is grounded in the assumption that decision-makers act rationally and prefer out-

comes with higher utility. However, it also accounts for individual risk preferences, 

allowing for flexibility in decision making. A decision-maker who is risk-averse will 

assign a higher utility to certain outcomes and will prefer alternatives with less var-

iability in outcomes. 

A key aspect of decision making under uncertainty is the concept of sensitivity 

analysis. It involves examining how changes in the input parameters of a decision 

model affect the resulting outcomes. This is important for understanding the robust-

ness of decision analyses, particularly when there is uncertainty in the assumptions 
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or when future conditions are difficult to predict. Sensitivity analysis can be used to 

explore the impact of changes in probabilities, utilities, or other parameters on the 

optimal decision. It helps decision-makers identify critical factors that influence 

their choices and assess the stability of their decisions under varying conditions. 

The first part of the book consists of five chapters. Chapter 2 outlines key histor-

ical developments that led to the emergence of a theory for how decisions could be 

understood and made. Chapter 3 presents a formal foundation for decision analysis 

as a field of study and discusses alternative formulations. Thereafter, Chapter 4 ad-

dresses the evaluation of alternatives, i.e. how to derive ordinal or cardinal orderings 

of the alternatives within a decision-analytic model. Conceptually, Chapter 3 deals 

with the representational aspects of a decision situation model, the input side, while 

Chapter 4 mirrors this by discussing aspects of producing meaningful output through 

evaluations based on the model’s representation of the decision data. Finally, Chap-

ter 5 expands the scope to better meet the real-life demands for realistic data in the 

model, introducing methods for handling the various kinds of uncertainty and im-

precision that inevitably arise in real-life decision making.  

The second part of the book contains ten chapters. Six of these present wide-

spread multi-criteria decision analysis (MCDA) methods while the remaining four 

provide discussions related to those methods and to MCDA in general. Chapter 6 

opens Part II with an introduction to MCDA and to ways of assessing different meth-

ods. Chapter 7 presents the SMART family of methods for reference. Chapters 812 

cover the Big Five methods, those that have the strongest brand recognition and a 

remarkable dominance in published MCDA research. No unbranded method comes 

close to matching the visibility or citation footprint of the Big Five. However, in 

contrast, almost no papers scientifically assess and compare the Big Five or other 

similar methods in a systematic way, a gap addressed in Chapter 13. Chapter 14 

concludes part II with notes on four selected topics connected to MCDA.  

In the second edition, Part III contains two new chapters and an appendix. Chap-

ter 15 introduces a framework where probabilistic (Bayesian) models (Part I) and 

multi-criteria models (Part II) are unified, enabling decision-analytic models that 

contain event modelling under multiple criteria. Chapter 16 contains computational 

aspects of prescriptive decision analysis, especially of the model introduced in 

Chapter 15, and contains links to the open-source software platform that is bundled 

with the book. Finally, an appendix elaborates on the findings in Chapter 13.  
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02. Formation of a Theory for Decisions 

While elements of probabilistic reasoning can be found in ancient Greek, Indian, 

and Arabic texts, it was not until the 16th and 17th centuries that probability theory 

began to take shape as a formal mathematical discipline. This development was 

driven by practical problems, particularly in games of chance, and by the intellec-

tual climate of the early scientific revolution. Before that, Fibonacci’s Liber abaci 

(A book on calculation, 1202), which also introduced Hindu numerals (the current 

Western number system) including the concept of zero to Europe, and Pacioli’s 

Summa de arithmetic, geometria, proportioni et proportionalità (A summary of 

arithmetic, geometry, proportions and proportionality, 1494) constitute early writ-

ten work on such questions. Pacioli (1447–1517) raised the question of how the 

stakes should be divided between two players of balla, who have agreed to play 

until one of them wins six rounds, but are interrupted and cannot continue when 

one player has won five rounds and his counterpart has won three (David, 1962, 

p.37). More than half a century later, Cardano (1501–1571), an Italian mathemati-

cian, physician and gambler, tried to answer this question in Liber de ludo aleae (A 

book on games of chance, 1564 /1663), in which he formulated the fundamental 

concept of solving a probability problem by identifying a sample space with equally 

likely outcomes. However, his treatment lacked formal mathematical structure, and 

his ideas did not immediately influence contemporary thought (Hacking, 1975). de 

Montmort further stimulated the early work on probability theory in Essay d’analyse 

sur les jeux de hazard (Essay on the analysis of games of chance, 1708), where he 

wanted to show superstitious gamblers how to behave rationally at a time when 

gambling was a noble pastime. 

Other important early contributors to a general theory of probability include Pas-

cal (1623–1662) and de Fermat (1601–1665), who, after they encountered a gam-

bling question from the French nobleman Gombaud (a.k.a. Chevalier de Méré, 

1607–1684), initiated an exchange of letters in which fundamental principles of 

probability theory were formulated. Gombaud’s game consisted of throwing two 

six-sided dices 24 times, and the problem was to decide whether or not to bet even 

money on the occurrence of at least one pair of sixes among the 24 throws. A seem-

ingly well-established but deceiving gambling rule had led Gombaud to believe that 
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betting on a double six in 24 throws would be profitable; however, his calculations 

had indicated the opposite. Pascal and Fermat approached this issue using combi-

natorial methods, establishing foundational principles that would later define clas-

sical probability theory (David, 1962). Huygens (1629–1695) further advanced 

probability theory with De ratiociniis in ludo aleae (On the calculations in games 

of chance, 1657). Huygens generalised Pascal’s and Fermat’s ideas, introducing the 

concept of expected value as a formal definition. He formulated probability as a 

ratio of favourable outcomes to possible outcomes, a principle that would later be-

come central to probability theory and still is so to this day. Huygens’ work was 

influential in shaping later developments and cementing probability as a legitimate 

field of mathematical inquiry (Stigler, 1986). 

The importance of statistics grew in the 17th and 18th centuries with the introduc-

tion of life annuities and insurance. Mortality statistics and life annuities were re-

search areas of de Moivre (1667–1754), and in Doctrine of Chance (1718), he de-

fines statistical independence. Later, in Miscellanea analytica (Miscellany of anal-

ysis, 1730) the same de Moivre introduced the normal distribution as an approxi-

mation of the binomial distribution for use in the prediction of gambles. In the sec-

ond edition of Miscellanea analytica (1738), de Moivre improved the formula for 

the normal distribution with the support of Stirling (1692–1770). 

Furthermore, Bayes (1702–1761), an English Presbyterian minister, famous for 

the posthumously published An Essay Toward Solving a Problem in the Doctrine of 

Chances (1763), introduced the widely applied Bayes’ theorem and the concept of 

Bayesian updating. As a result, Bayes is credited with the introduction of subjective 

probability theory as well as the theory of information. Bayes’ conclusions were 

later accepted by Laplace (1749–1827) and published in the double volume Théorie 

analytique des probabilités (Analytic theory of probability, 1812). In this compre-

hensive work, Laplace investigated generating functions, approximations to various 

expressions occurring in probability theory, methods of finding probabilities of 

compound events when the probabilities of their simple components are known, 

and a discussion of the method of least squares. His work established probability as 

a fundamental tool for scientific reasoning and, later, decision theory. 

In the early 19th century, probability theory continued to evolve, influenced by 

both theoretical advancements and practical applications. Poisson (1781–1840) 
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contributed significantly with his study of probability distributions, particularly the 

Poisson distribution (sic!), which describes the probability of a given number of 

events occurring in a fixed interval of time or space (Poisson, 1837). His work had 

wide-ranging applications in areas such as physics, finance, and insurance. Gauss 

(1777–1855) also played a pivotal role in the development of probability theory 

through his work on the normal distribution, sometimes referred to as the Gaussian 

distribution. The normal distribution emerged as an important concept in statistics, 

describing the distribution of errors in measurements and forming the basis for sta-

tistical inference (Gauss, 1809). Gauss’ insights had profound implications for 

fields ranging from astronomy to social sciences. 

By the mid-19th century, probability theory had developed into a rather mature 

mathematical discipline with growing applications in science, engineering and eco-

nomics. Quetelet (1796–1874), a Belgian statistician and sociologist, applied prob-

ability theory to social statistics, pioneering the concept of the “average man” and 

using statistical methods to study human behaviour. His work demonstrated the ef-

ficacy of probability in analysing complex social phenomena and influenced the 

development of modern statistics (Quetelet, 1846). 

The early origins of probability theory were thus shaped by practical concerns, 

particularly in gambling, but quickly evolved into a formal mathematical discipline 

with broad applications that laid the groundwork for modern probability theory. By 

1850, probability had established itself as an essential tool for understanding uncer-

tainty, with applications ranging from the physical sciences to economics and soci-

ology. The later formalisation of probability in the 20th century by Kolmogorov 

(1903–1987) built upon these early foundations, leading to the rigorous axiomatic 

framework in use today. 

When a decision-maker has to act in situations where uncertainty prevails, and 

this uncertainty can be quantified in terms of a probability measure, it is said that 

the decision is made under risk. In Bayesian decision theory, probabilities are used 

to capture and model beliefs. Thus, they are considered to be measures of degrees 

of beliefs. Needless to say, performing statistical investigations to obtain these de-

grees of beliefs is recommended, but in many real-life situations historical data is 

not available and the probability assessment has to be made on subjective grounds. 

Although the theories of probability can be traced back to the 16th century, the 
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foundations of modern probability theory were laid by Kolmogorov. He rigorously 

constructed a probability theory from fundamental axioms, defining conditional ex-

pectation, and laid the foundations for Markov random processes in Grundbegriffe 

der Wahrscheinlichkeitsrechnung (Basic concepts of probability theory, 1933) and 

in Analytic Methods in Probability Theory (1938). 

Basic formulas for probability calculus usually take the form P(A) = pA, and are 

read as “the probability of the uncertain event A is pA”, where pA  [0, 1] is a real 

number. For example, A can be the statement “There will be no storm with fatal 

consequences in Sussex County during next month”. Every event is a subset of a 

sample space , capturing every possible event in the model. The Kolmogorov ax-

ioms are usually stated as follows: 

1. 0  P (A)  1, for all events A 

2. P () = 1 

3. If A and B are mutually exclusive events,  

then P (A  B) = P (A) + P (B) and P (A  B) = 0. 

The second axiom can be interpreted as it being certain that one of the events in the 

sample space will be the true outcome, i.e., a condition of exhaustiveness. Condi-

tional probability arises when additional information is obtained, and is formulated 

as P (A | B) which can be interpreted as: “the probability of A given that B has 

occurred”. Thus, the decision-maker knows that B is true and this might have an 

impact on the probability of A. For example in medical applications, a test yields a 

positive result, which in turn implies some probability of an actual disease. 

Conditional Probability: P (A | B) = P (A  B) / P (B). 

Independence: Event A with outcomes {A1, …, An} and B with outcomes  

{B1, …, Bm} are independent if and only if P (Ai | Bj) = P (Ai) for all Ai and Bj. 

Conditional Independence: Events A and B are conditionally independent given 

event C if and only if P (Ai | Bj, Ck) = P (Ai | Ck). 

Bayes’ Theorem: P (B | A) = P (A | B)∙P (B) / (P (A | B)∙P (B) + P (A | B)∙P (B)), 

where B means not B. 

It follows from these definitions that two mutually exclusive events cannot be 
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independent. The set of probabilities associated with all possible outcomes is a prob-

ability distribution. When the sample space  consists of a discrete set of outcomes, 

the probability distribution on it is discrete. 

Alongside the early development of a theory of probability, the Swiss physician 

and mathematician Daniel Bernoulli (1700–1782) wrote an article, Specimen theo-

riae novae de mensura sortis (Exposition of a new theory on the measurement of 

risk, 1738), in which a motivation for the concept of utility is given, commonly 

referred to as his solution to the famous St. Petersburg Paradox posed in 1713 by 

Daniel Bernoulli’s cousin, Nicolaus Bernoulli. The name St. Petersburg Paradox is 

due to the distinguished Bernoulli family’s multiple connections to the city of St. 

Petersburg. In this paradox, Nicolaus Bernoulli considered a fair coin (i.e., a coin 

with a ½ probability of landing heads). The coin is tossed repeatedly until it lands 

heads for the first time. The gambler receives 2n ducats if the first occurrence of 

heads is on the nth toss. The expected monetary value of this game is 

  (1/2
n
)·2

n
 = (1/2)·2 + (1/4)·22 + (1/8)·23 + ... = 1 + 1 + 1 + ... = ∞ 

It is difficult to believe that any gambler would be willing to pay an infinite amount 

of money to participate in such a game. Bernoulli therefore concluded that expected 

monetary value is an inappropriate decision rule. His resolution to this paradox in-

volved two ideas that would later have a great impact on economic theory. First, he 

argued that the utility of money is not linearly related to its amount, but instead 

increases at a decreasing rate. Bernoulli recognised that the value of an outcome to 

a decision-maker may differ from its objective monetary amount, a principle now 

known as diminishing marginal utility. His second key insight was that individuals 

evaluate risky prospects not according to their expected monetary value, but ac-

cording to their expected utility 

E(u | p, X) =  
x X

 p(x)∙u(x) 

where X is the set of possible outcomes, p(x) is the probability of a particular out-

come x  X, and u: X  ℝ is a utility function over the outcomes X on the real 

numbers. Thus, expected utility refers to the mathematically expected value when 

subjective utility is taken into account. In the St. Petersburg Paradox, the value of 
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the game becomes finite due to the principle of diminishing marginal utility. Orig-

inally, Bernoulli employed a logarithmic utility function, u(x) =  log x, where  

depends on the gambler’s wealth before the gamble and x is the outcome. Substi-

tuting this function into the expected monetary value formula yields a finite number. 

Consequently, people would only be willing to pay a finite amount to participate, 

even though the expected monetary value of the game is infinite. 

The term utility can be regarded as a measure of the degree of satisfaction asso-

ciated with an outcome, and a utility function is a mapping from outcomes such as 

losses or gains to real numbers representing this degree of satisfaction. The loga-

rithmic utility function suggested by Bernoulli was considered adequate on its own 

for almost two hundred years. However, Menger (1902–1985) showed in Das Un-

sicherheitsmoment in der Wertlehre (The element of uncertainty in value theory, 

1934) that the Bernoulli function was heuristic and ad hoc, while the function was 

unsatisfactory already on its formal grounds. Menger showed the existence of a 

game related to the game presented in the St. Petersburg Paradox, in which the sub-

jective expectation of the gambler based on this value function is infinite when 

evaluating additions to a fortune by any unbounded function (Menger, 1934, p.264). 

The implication of this is that it is always possible to provide a paradox, in the re-

spects equivalent to the St. Petersburg Paradox, which cannot be resolved only 

through the idea of diminishing marginal utility. Menger also showed the inade-

quacy of mathematical utility functions of the type suggested by Bernoulli’s con-

temporary Cramer (1704–1752). 

Utility functions are defined on an interval scale, i.e., they are unique up to a 

positive affine transformation; such transformations are the only admissible trans-

formations of utility functions. In formal terms: Let U be a utility function on a set 

C of consequences, then there exists  > 0 and  such that W(x) = ∙U(x) +  is a 

utility function representing the same preferences, i.e., two different interval scales 

count as equivalent if and only if they can be obtained from each other through 

positive affine transformations. Unlike ratio scales, interval scales do not have an 

absolute zero point, nor do they represent the ratio of some measured entity to some 

standard unit of measurement (e.g., meters or seconds). Thus, in an interval scale, 

the gap between two numbers has a meaning, while the gap between two ratios does 

not. 
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In general, people are willing to pay more for outcomes they consider more de-

sirable. In this sense, a monetary scale can at least be expected to function as an 

ordinal scale, meaning a scale that captures preference orderings without expressing 

the strength of those preferences. For many business decisions, the use of monetary 

scales is considered a reasonable and acceptable proxy for utility. However, it is not 

uncommon for monetary values to be used when scaling non-monetary outcomes, 

such as public health or environmental damage. In many cases, this results from a 

lack of suitable methods and practical tools for representing and evaluating intan-

gible or vague values. This becomes particularly problematic when aggregating or-

dinal information and can lead to seriously misleading conclusions. 

Decision analysis is often regarded as a conjunction of subjective probability and 

subjective utility. Ramsey (1903–1930), suggested a theory that integrated these ar-

eas in Truth and Probability (1926 /1931). In that article, Ramsey informally pre-

sented a general set of axioms for preference comparisons between acts with un-

certain outcomes. From this set of axioms, he could justify a procedure to measure 

a person’s degree of belief from preferences between acts of certain forms. 

Preceding Ramsey’s work, the concept of degree of belief as an approach to sub-

jective probability had been introduced by Keynes (1883–1946) in A Treatise on 

Probability (1921). Subjective probability, as opposed to objective probability, 

means that the different values reflect the decision-maker’s actual beliefs, thus they 

are a measure of the degree of belief in a statement. These beliefs are not necessarily 

logical or rational, and they should be interpreted in terms of the willingness to act 

in a certain way. In contrast, an objective or classic view on probabilities, as defined 

by Laplace, says that probabilities are exogenously given by nature. In Probability, 

Statistics and Truth (1928), von Mises (1883–1953) introduced the relative fre-

quency view, which argues that the probability of a specific event in a particular 

trial is the relative frequency of occurrence of that event in an infinite sequence of 

similar trials. 

The modern and formal approach to game theory is attributed to von Neumann 

(1903–1957), who in Zur Theorie der Gesellschaftsspiele (On the theory of parlor 

games, 1928) laid the foundation for a theory of games and conflicting interests. 

Later he wrote, together with Morgenstern (1902–1976) the book Theory of Games 

and Economic Behaviour (1944), in which they introduced a considerable amount of 
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important elements such as the axiomatisation of utility theory per se and a formal-

isation of the expected utility hypothesis. This axiomatisation is sometimes deemed 

reasonable to a rational decision-maker, and it is demonstrated that the decision-

maker is obliged to prefer the alternative with the highest expected utility to act 

rational, given that she acted in accordance with the axioms. Of further importance, 

through this work, von Neumann and Morgenstern bridged the gap between the 

mathematics of rationality and social science. However, von Neumann and Mor-

genstern did not take subjective probability into account since they regarded prob-

ability in an objective sense, and thus the decision-maker could not influence the 

probabilities. Savage (1917–1971) combined the ideas by Ramsey and the ideas by 

von Neumann and Morgenstern in The Theory of Statistical Decision (1951). 

Savage here gives a thorough treatment of a complete theory of subjective expected 

utility and associated utility functions. 

In Statistical Decision Functions (1950), Wald (1902–1950) makes use of loss 

functions and an expected loss criterion, as opposed to utility functions and the ex-

pected utility criteria. Loss functions and expected loss criteria later become stand-

ard basic elements in what is commonly referred to as Bayesian or statistical deci-

sion theory. The name Bayesian derives from that this theory utilises prior infor-

mation and non-experimental sources of information. However, in the general case, 

it is easy to adjust Wald’s statistical decision theory to include utilities (cf. Savage, 

1972, p.159). Further, Wald had an objective view of probabilities. His concern 

focused on characterising admissible acts and alternatives for experimentation, 

where an act or alternative is admissible if no other act is better. Hence, Wald’s 

decision analysis could result in a family of admissible alternatives, i.e., the non-

dominated set of alternatives. 

Gärdenfors and Sahlin (1982) give the following characterisation of decision 

theory and decision analysis: the main aims of a decision theory are, first, to provide 

models for how we handle our wants and our beliefs and, second, to account for 

how they combine into rational decisions. Such a point of view is typical of research 

in decision theory as it takes a descriptive view with a touch of normativity. Lacking 

a prescriptive perspective, such research does not aid in creating models and tools 

for real-life use. In previous decades, solving decision problems computationally 
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was often categorised as belonging to the area of optimisation, and in particular lin-

ear optimisation with goal functions subject to a set of linear constraints. Typically, 

questions asked were of the form “What is the maximum/minimum value of this 

variable expression subject to these constraints?” When discussing optimisation 

problems, such constraints typically include financial, time, or personnel aspects. 

Viewing decision analysis in this way made the field a disservice since mathemati-

cal programming cannot provide the tools required, even if both linear and non-

linear optimisation algorithms can be employed. 

The use of formal methods and mathematics for evaluating possible alternatives 

of action had an important upswing during World War II, and after the war, the 

terms operations analysis and operations research became closely related to deci-

sion analysis and optimisation techniques. Later, the militaristic area of operational 

research is often being studied together with topics such as management science, 

industrial engineering, and mathematical programming. At present time, the wide-

spread use of computers and the rise of the graphical user interface could have ren-

dered it possible to facilitate the use of decision-analytic techniques to a wider group 

of users. The growth of operational research since it began is, to a large extent, the 

result of the increasing computational power and widespread availability of desktop 

computers. But since this has not happened to any larger extent, this book is written 

to try to fill the gap. 

Taking a wider perspective, decision theory can be seen as serving different pur-

poses. As mentioned already in the preface, there are three different ways to utilise 

and effectuate decision theory. Since the mid-20th century, it has evolved into a 

widespread tool for economists, mainly for predicting how a population will react 

to changes in their environment (Friedman, 1953). From this perspective, the logi-

cal foundation of the theory is less important, while the ability to predict the behav-

iour of decision-makers is what matters. When using decision theory in such con-

texts, the decision theory is said to be descriptive, thus we speak in terms of de-

scriptive decision theory. A descriptive theory aims to explain how decisions are 

being made and why human decision-makers choose to act in a certain way. 

A central result is the bounded rationality theorem, which states that due to lim-

itations in the processing of information, people cannot act entirely rationally (Si-

mon, 1955; March and Simon, 1958). Further, there is a tendency that depending 
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on how the information is presented, people choose differently although according 

to the theory of expected utility, the alternatives are the same. This behaviour is 

referred to as the framing process in the descriptive theory (Tversky and Kahneman, 

1986). Another violation of the expected utility hypothesis occurs when gains are 

replaced by losses in choosing between alternatives with uncertain outcomes; peo-

ple tend to be less keen on risk-taking when there are gains involved rather than 

losses (Markowitz, 1952). 

Another perspective is that of the normative kind. The aim of normative decision 

theory is to mandate yardsticks and norms for various decision procedures and de-

cision rules, implying “rational” decision making when followed. In this case, the 

logical foundations and the validity of the model do matter. The proponents of such 

models often argue for them by constructing axiom systems (like the one of Savage 

presented below), and then deduce some decision rules, which induce a (normative) 

preference order on a set of alternatives. Naturally, this does not convince everyone, 

leading to inquiries regarding whether individuals accept the axioms upon which 

the model is based (Fischhoff et al., 1981). 

Prescriptive decision theory is a more recent perspective, developed in response 

to the limitations of the two earlier perspectives when applied to real-life decision 

situations. It focuses on identifying and bridging the discrepancies between how 

decisions are made in practice (descriptive) and how they should be made according 

to normative theory. One of its purposes is to bridge the gap between traditional 

decision analysis and actual decision making. This body of theory includes ap-

proaches that aim to mechanise, rather than automate, the structuring and analysis 

of decision situations. Assuming the decision-maker has a desire to act rationally, 

the prescriptive mechanical model assists in devising suitable courses of action 

based on the information elicited. A decision-analytic tool based on these principles 

handles a finite number of alternative courses of action and supports the decision-

maker in evaluating and selecting among them. In other words, such a tool assists 

decision-makers in identifying a preference order over a set of alternatives. The 

remainder of this book adopts a prescriptive perspective, aiming to provide a foun-

dation for procedures and tools that are applicable in real-life decision contexts, 

probabilistic (Bayesian) decisions (Part I) as well as multi-criteria decisions (Part 

II) and both combined (Part III).  
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03. Foundations of Decision Analysis 

Traditional decision theory deals with only one decision making part, one player. 

The environment is considered neutral, and the probabilities of events are not af-

fected by some conscious opponent. The only ‘opponent’ is often referred to as 

nature. Game theory introduces opponents to the decision situation. This means that 

the possibilities of consequences occurring depend on the acts of both the player 

and his opponent(s). Many complicated dependencies can arise, and only in special 

cases are there simple solutions to game problems. 

Many aspects of decision making are to a large extent qualitative, like the dis-

covery and formulation of the problem itself. Searching for and gathering infor-

mation also requires deliberate choices, as does the compilation of the information 

into a number of alternative courses of action. In other words, there is a soft side to 

the decision process. Despite its importance, many traditional decision tools are 

unable to handle qualitative statements. Later it will be discussed how modern 

methods handle qualitative information, both by allowing such statements to be en-

tered into the model and by allowing the decision-maker to work actively with the 

decision model parameters throughout the decision process, thereby gaining a better 

understanding of the entire decision situation. Quantitative facts and decisions 

abound in all types of organisations. Often when decision parameters are being val-

uated, the different alternatives are given monetary or other numeric values. Based 

on the given values, and perhaps on estimated probabilities for the events, decisions 

are made using some simple decision rule, often a rule of thumb or the repetition of 

an old decision. For reasons of computational tractability, many traditional decision 

methods require the user to make significant assumptions and also require artificial 

precision in the collected information. 

The possible outcomes of a decision can often be represented by a set of num-

bers, either as an interval (continuous) or as a countable number of cases (discrete). 

For models with continuous outcomes and a discrete number of actions, statistical 

methods, such as hypothesis testing, are suitable. If the alternatives are also contin-

uous, methods have been developed for many special cases, for example inventory 

control methods, portfolio theories, and network models. A characteristic of such 

models is that they first and foremost give analytical solutions or at least provide 
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closed expressions suitable for iterative solution methods which are often com-

puter-assisted. Decision-analytic methods work best with discrete outcomes, and if 

the decision situation has a continuous representation from the outset, it can often 

be made discrete by clustering.  

Most decision problems cannot be formulated in terms of some known special 

model, and then the decision-maker often has to use more primitive models. Interval 

methods have a computationally demanding user interaction, and ten years ago they 

would have been classified as impractical and not suitable for interactive use. As 

mentioned above, they belong to the area of decision tools and do not use any results 

particular to game theory. This means that the method only treats decision situations 

where one decision-maker is about to make a decision, the outcome of which is 

seemingly decided by nature. Many decision situations fit this description.  

The terminology used within decision theory does not correspond exactly to the 

mundane interpretations of some concepts. Within decision theory, strict uncer-

tainty refers to a situation where no information is available regarding the different 

probabilities of the states. In situations where some probability information is avail-

able, either as subjective probabilities or as frequencies, the term risk is used. An 

event is something discernible occurring at a certain moment and should not be 

confused with a state, which is something observable and constant over a period of 

time. A decision-maker chooses a course of action and this choice results in a con-

sequence which is an event occurring after a deliberate choice of course of action. 

The consequences of each alternative in the model are exhaustive and exclusive. 

Exhaustive means that the consequences together cover all possible cases, and ex-

clusive means that every outcome belongs to only one consequence. 

Various decision models exist for a number of different purposes. In this chapter, 

some model categories are studied more closely. The models can be divided into 

three categories. The categories described differ with respect to their assumptions 

of the predictability of the future. In the risk-free (deterministic) world, there is no 

doubt about future events and all decisions can be made with certainty. In the 

strictly uncertain world, there are a number of possible scenarios but their respective 

probabilities are not taken into account. Finally, in the risky world, both different 

outcomes and their probabilities are taken into account when a good course of ac-

tion is sought. 
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In management science, a decision problem is often defined as follows: To 

choose from a set of alternative courses of action a1,…,am the alternative ai that (in 

some sense) optimises the decision-maker’s return vik, where vik is the value of the 

consequence Cik corresponding to the pair (ai, si) and where {si} is the set of states 

of nature. Using this terminology, a hierarchy of decision problems has been sug-

gested. Luce and Raiffa (1957, p.13) provided a useful classification of decision 

situations, addressing that an important factor in every decision problem is the de-

cision-maker’s knowledge and beliefs about the situation. They distinguish between 

three types of (structured) decision situations. On top of that, there is a fourth cate-

gory that does not easily lend itself to a formal treatment. 

• Structured 

 • Decisions under certainty (risk-free) 

If all of ai, Cik, vik, and si are known with certainty, and there is a known 

deterministic relationship between the choice of an ai and the correspond-

ing Cik, then it is a problem under certainty. 

 • Decisions under strict uncertainty 

If the relationship is known and probabilistic but the probabilities them-

selves are unknown, the situation is called a problem under strict uncer-

tainty. 

 • Decisions under risk 

If the relationship is known but probabilistic and the probabilities them-

selves are known, the situation is called a problem under risk. 

• Unstructured 

If, on the other hand, one or more of the ai, Cik, vik, or si are unknown, the 

problem is called unstructured, even sometimes wicked. 

In decisions under certainty, the decision-maker knows the true state before she 

performs an act; or can predict the consequences with certainty. Thus, in this case, 

it is reasonable to demand of a rational decision-maker that she should choose the 

alternative whose one and only consequence has a value not less than the value of 

any other alternative. The value of a consequence may be expressed by an ordinal 

value function defined on an ordinal scale. 
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Definition: Given a set of consequences P and a relation p denoting the decision-

maker’s preferences over P, an ordinal value function (x), representing these pref-

erences, is a real-valued function with domain P such that (ci)  (cj) iff ci p cj. 

When the set P of consequences is finite, and a reasonable ordering relation is 

defined, then a numerical order-preserving function (x) can be constructed. In de-

cisions under certainty, such a function is all that is needed, since it is enough in this 

context only to treat the cases involving a finite number of consequences. Uncount-

able sets are treated in (Debreu, 1952), which demands that you are comfortable 

with topological arguments, as well as in (Krantz et al., 1971, Ch.4). The corre-

sponding result for countable sets can be found in (French, 1988, p.98), together 

with a straightforward induction argument. Because an ordinal value function can 

always be constructed, it makes sense to talk about the value of a consequence. This 

is valid also when P is an arbitrary set of objects over which a decision-maker can 

express preferences. 
 

In decisions under strict uncertainty, the decision-maker cannot quantify her un-

certainty in any way, thus no probability estimations are possible or they are mean-

ingless. Milnor (1954) provides an exposition of four proposals by four different 

authors: 

 The principle of insufficient reason (Laplace, 1825)

 The maximin principle (Wald, 1950)

 The pessimism-optimism index (Hurwicz, 1951)

 The minimax-regret principle (Savage, 1951)

Laplace’s rule is based on the assumption that if the probabilities of the different 

states are completely unknown, then they can be assumed to be equal. This idea is 

commonly referred to as the principle of insufficient reason. Choose the alternative 

ak such that the average value of the possible outcomes from this alternative is max-

imised: max (
jn vij) /n, where 1  k  n and vij denotes the value of cij. 

Wald’s rule can be expressed as follows: 

1. Set a security level by choosing an index pi = min{vij : j = 1, ..., n} 

2. Choose ak such that its index pk = max {pi}. 

As can be seen, Wald’s view on strict uncertainty was not an optimistic one since 
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according to him, you should always choose the alternative that gives the best result 

if the worst possible outcome will occur for each alternative. Hence the name the 

maximin utility criterion, which originated from Wald’s work within game theory. 

Hurwicz’s rule has a less pessimistic approach compared to Wald. Hurwicz rec-

ommends a mixture of an optimistic and a pessimistic attitude: 

1. Select a constant   [0, 1] as the pessimism-optimism index. 

2. Let oi = max {vij, j = 1, ...,  n} and pi = min {vij, j = 1, ..., n}. 

3. Choose ak such that ∙pk + (1 – )∙ok = max {∙pi + (1 – )∙oi}. 

Note that if  = 1 this is again the maximin utility criterion, whereas if  = 0, it is 

the so-called maximax utility criterion. Different ways of choosing appropriate pes-

simism-optimism indices have been presented, but we will not enter into that dis-

cussion here. 

In Savage’s rule, the decision-maker should choose the alternative giving the 

smallest possible “regret”. 

1. Let rij = max {vsj, s = 1, ..., m} – vij. 

2. Let pi = max {rij, j = 1, ..., n}. 

3. Choose ak such that pk = min {pi}. 

This minimax risk criterion was first suggested as an improvement over Wald’s max-

imin utility criterion. Regrets and security levels will return later. Table 1 shows a 

counter-example (Milnor, 1954, p.50) of a decision problem where all of the above 

decision rules yield different results. 

 s1 s2 s3 s4 Rule picks alternative 

a1 2 2 0 1 Laplace 

a2 1 1 1 1 Wald 

a3 0 4 0 0 Hurwicz ( > ¼) 

a4 1 3 0 0 Savage 

 

Table 1. Milnor’s counter-example 
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The question remains: to act rationally, which one of the above rules should be 

employed? Milnor showed that no decision criterion is compatible with ten seem-

ingly reasonable axioms that constituted his test set (Milnor, 1954, p.53). It turns 

out that it is relatively easy to show that it is impossible to find a decision rule that 

fulfils all desirable properties. Further, Ackhoff (1962) argues that any concept of 

strict uncertainty is inappropriate, i.e., strict uncertainty implies that there is always 

some information or some beliefs being disregarded.  

Bayesian Decision Analysis 

When the decision-maker is able to quantify her beliefs in terms of a probability dis-

tribution on the set of possible outcomes given a chosen course of action, it is said 

that the decision is made under risk. If all utilities and probabilities in a decision 

problem are subjectively assigned numerical values by the decision-maker, and then 

the problem is evaluated according to the principle of maximising the expected util-

ity, the decision-maker conforms to Bayesian decision analysis. This kind of deci-

sion problem is our main concern in Part I. 

The decision method is called Bayesian, named after an English clergyman 

named Bayes, due to the use of subjective probability assignments and the common 

procedure of updating the probabilities by employing Bayes’ theorem. In this re-

spect, the probabilities are treated subjectively as a statistical procedure that, in 

many cases, endeavours to estimate parameters of an underlying probability distri-

bution (posterior distribution) based on an observed probability distribution (prior 

distribution). 

Suppose that each alternative a can be represented by a set of consequences and 

a set of numbers {ci}, {pi}, where {ci} is the set of possible consequences of a, and 

pi is the probability that ci occurs given that a is implemented. (Note here that prob-

abilities are assigned to consequences instead of being assigned to states of the 

world. These two models are fully compatible when considering only a finite num-

ber of states and consequences.) Then, the meaning of accepting the utility principle 

and the principle of maximising the expected utility can now be formulated as fol-

lows (Malmnäs, 1994b): 

Definition: If a is {ci}, {pi}, and Va is a real-valued function on {ci}, then a has 

a value equal to piVa(ci), denoted by EV(a). 
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Definition: A decision-maker accepts the utility principle if and only if she assigns 

the value piVa(ci) to a, given that it has assigned the value Va(ci) to ci. 

Definition: An ordering p of the alternatives is compatible with the principle of 

maximising the expected utility if and only if a p b implies EV(a)  EV(b).  

Definition: A decision-maker accepts the principle of maximising the expected util-

ity if and only if its ordering of the values of the alternatives is compatible with that 

principle. 

A survey of different interpretations of the utility principle and PMEU, as well as 

a more general characterisation of the class of expected utility models, is given in 

(Schoemaker, 1982, p.530 ff). An expected utility model is one that predicts or pre-

scribes that people maximise the expression  

(p)U(x),  

where x is an outcome vector. The models differ in i) how utility U(x) is measured, 

ii) what kind of concept of probability (p) is allowed, and iii) how the outcomes 

are measured. Schoemaker examines some frequently used variants of models, in 

accordance with this structure. 

Utility theory was, even after taking Menger’s results into account, not a well-

founded subject until the late 1930s, when the works of Ramsey and von Neumann 

and Morgenstern appeared. They proposed reasonable principles governing deci-

sions, from which a set of axioms was formulated whose purpose was to justify their 

particular attitude towards the utility principle. Surveys over a wide variety of axi-

omatisations are given in, e.g., (Fishburn, 1981; Malmnäs, 1994b), of which this 

chapter follows the latter. 

The idea is to in a systematic way define the meaning of rationality. The point 

is, if a decision rule can be deduced from an indisputable axiomatisation, then this 

rule should be the natural and obvious rule for a rational entity, provided that the 

necessary information is available. Føllesdal (1984, p.268) suggests the following 

conditions for a decision rule: 

 A decision rule should recommend an alternative with valuable conse-

quences before an alternative with less valuable consequences. 

 A decision rule should recommend an alternative with a high probability of 
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valuable consequences before an alternative with a low probability of valua-

ble consequences. 

 A decision rule should recommend an alternative with a low probability of 

bad consequences before an alternative with a high probability of bad conse-

quences. 

This seems to be reasonable but is too vague to fill the needs of a prescriptive deci-

sion theory and has to be elaborated a bit. In this, we introduce some axiomatisa-

tions using the following notation: 

a >p b means that the decision-maker holds alternative a to be strictly preferred 

to alternative b. This binary relation is transitive and asymmetric, thus it is a 

strict order. 

a p b means that the decision-maker holds alternative a to be at least as good 

as alternative b, i.e., b is weakly preferred to a. This binary relation is complete 

and transitive, thus it is a weak order.

a p b means that the decision-maker is indifferent between alternative a and al-

ternative b. This binary relation is reflexive, transitive, and symmetric, thus it is 

an equivalence relation.

If the decision-maker can assign a number u(a) such that u(a)  u(b) if and only 

if a p b, then it is said that there exists a utility function over a and b. 

The axiom systems that will be presented consist of primitives and axioms con-

structed from the primitives. Typical primitives include states, sets of states, and or-

dering relations such as p. The axioms then imply a numerical representation of 

probabilities and preferences, i.e., the axioms imply the existence of a probability 

distribution and a utility function. Although Ramsey (1931) and von Neumann and 

Morgenstern (1944) are credited for the axiomatic foundation of utility theory, this 

book follows the axiom system of Luce and Raiffa (1957), very similar to the 

aforementioned, followed by the axiomatic justification of the utility principle ac-

cording to Savage (1972). At first glance, the two systems seem dissimilar, but the 

important implications boil down to the same central results. Starting with Luce and 

Raiffa, in which alternatives (or gambles) with uncertain outcomes are called 
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lotteries: An alternative is denoted p1v1, …, pivi, …, prvr, which can be consid-

ered as a lottery with the probability pi for the outcome vi. All the probabilities are 

supposed to sum up to one. For example, the alternative a with uncertain outcomes 

v1 and v2 associated with probabilities p1 and (1p1) respectively is represented as 

the lottery a = piv1, (1pi)vr. 

Axiom 1: Ordering of alternatives and transitivity: For any two alternatives a and 

b, either ap b or b p a, and if a p b and b p c then a p c. 

Axiom 2: Reduction of compound lotteries: Any compound lottery (which may be 

thought of as a mixture of lotteries, i.e., the prize of a lottery consists of another lot-

tery instead of a certain reward.) is indifferent to a simple lottery with v1, v2, …, vr 

as prizes, in which the probabilities for the prizes in the simple lottery is computed 

according to ordinary probability calculus. 

Axiom 3: Continuity: Each prize vi is indifferent to some lottery involving just v1 

and vr. Thus, there exists some number (or probability) pi[0,1] such that  

vi p piv1, 0v2, …, 0vr-1, (1pi)vr. 

Axiom 4: Substitutability (independence of irrelevant alternatives): In any lottery 

L, vi' is substitutable for vi, that is, p1v1, …, pivi, …, prvr p p1v1, …, pi vi', …, 

prvr when vi' p vi. 

Axiom 5: Monotonicity: piv1, (1pi)vr p pi'v1, (1pi')vr iff pi  pi'. 

Note that nothing is being explicitly said about the origin of the probability distri-

butions, they are just assumed to exist, and thus the view on probabilities is of the 

objective kind. From these axioms, the principle of maximising the expected utility 

as well as some other important results in utility theory are readily derived. 

Savage argues that if utility is regarded as affecting only consequences (rather 

than acts), then for a weakly ordered consequence set C, the following is valid: 

(x) and (x) are numerical order-preserving functions representing the ordering 

relation between the consequences if and only if there is a strictly increasing func-

tion r such that, for every ciC, (ci) = r(2(ci)). This shows that (ci) is just an 

ordinal scale: it cannot be interpreted as quantitatively measuring the strength of 

preferences in any meaningful way. Savage adopted this argument from Pareto 

(18481923). The primitives building up the axiom system of Savage slightly differ 
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from the ones of Luce and Raiffa. Savage proposes the following: i) the binary pref-

erence relation p, ii) a set S = {s1, s2, …} of states, iii) a set C = {c1, c2, …} of con-

sequences, and iv) a set F = {f: S  C} of all possible mappings from S to C where 

such a mapping is called an act. Now, Savage defines E as the power set of S, where 

the elements of E are called events denoted by A, B, C, … and further defines the 

following concepts: 

1. For f, g, f', g'F and B, B
cE, f p g given B if and only if f' p g' for every f' and 

g' that agree with f and g respectively, on B, and with each other on Bc and 

also g' p f' either for all such pairs or for no such pair (where Bc is the com-

plement of B). 

2. ci p cj if and only if f p f' when f (s) = ci and f' (s) = cj, for all sS. 

3. B is null (B = ) if and only if f p g given B, for all f, gF. 

4. A is not more probable than B (A  B) if and only if fA p fB or ci p cj, for 

every fA, fB, ci, cj such that fA(s) = ci for sA, fB(s) = cj for sAc, fB(s) = ci for 

sB, fB(s) = cj for sBc. 

5. f p ci given B (ci p f given B) if and only if f p h given B (h p f given B), 

when h(s) = ci, for all sS. 

In the first concept, when act f' agrees with act f on B, then performing f will yield 

the same consequence as performing f' given the event (set of states) B, thus f  (s) = 

f' (s) for all sB. The third concept says that if weak preference holds regardless of 

which pair of acts compared given the event B, implying that all acts are equal given 

B, then B is an empty set of states (and vice versa). The fourth concept: When an 

act fB given A is preferred to an act fA given not A, and fB given not B is preferred 

to fA given B, then if fB is preferred to fA this means that a decision-maker holds 

event B more probable than event A (and vice versa). Then Savage proposes the 

following seven axioms: 

Axiom 1: Transitivity: The relation p is a weak order. 

Axiom 2: Completeness: For every f, g, and B, f p g or g p f given B. 

Axiom 3: Resolution independence: If f (s) = ci, f' (s) = cj, for every sB, B, 

then f p f' given B if and only if ci p cj. 
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Axiom 4: Qualitative probability: For every A, BE, A  B or B  A.  

Axiom 5: Minimal strict preference: It is false that for every cj, cj, ci p cj. 

Axiom 6: Continuity: Suppose h p g, then for every ci there is a finite partition 

{Bi} of S such that, if g' = ci (Bi), and h' = ci (Bi), for some i, then h p g' or h' p g. 

Axiom 7: Dominance: If f p g (s) given B (g (s) p f given B) for every sB,  

then f p g given B (g p f given B). 

The second axiom says that when two acts have the same consequences, the relation 

between f and f ' must be independent of states. Furthermore, the third axiom says 

that the knowledge of an event cannot discard any preference between two conse-

quences. Together, axioms 2 and 3 constitute Savage’s debated sure-thing principle. 

Informally, if a decision-maker does not prefer f to g, either knowing that the event 

B occurred or knowing that B has not occurred, then the decision-maker does not 

prefer f to g (Savage, 1972, p.21). Further, from axiom 3 follows that preferences 

between acts depend only on realised consequences, and not possible ones. 

The fourth axiom says that  is a qualitative probability, thus  is a weak order, 

and B  C if and only if (B  D)  (C  D) when (B  D) = (C  D) = 0. Further-

more, 0  B, 0 < S (all events are at least as probable as the impossible event and 

the universal event S must not be regarded as impossible). Axiom 5 says that there 

is at least one pair of consequences such that one is strictly preferred to the other, 

and axiom 6 implies the existence of a unique probability measure P on E. This 

probability measure is consistent with the qualitative probability in that E is not 

more probable than E' if and only if P (E)  P (E'). The last axiom says that if f p 

g(s) for all consequences of f for a set of states B, then f p g, if one of those states 

occurs, of further importance this axiom implies that the utility function is bounded 

(nothing is infinitely bad or infinitely good). 

Given these assumptions, Savage proved the existence of a real-valued utility 

function on C with the following property: Let {Li} be a partition of S and let f be an 

act with consequences {f(si)} on {Li}, and let {Li'} be another partition of S and 

let g be an act with consequences {g(si)} on {Li'}. Then f p g if and only if 

piu(f(si))  qiu(g(si)) where pi = P (Li) and qi = P (Li'), i.e., the principle of max-

imising the expected utility (PMEU).  
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Looking back at the system of Luce and Raiffa, it has been proved by von Neu-

mann and Morgenstern (1944) that if a decision-maker has preferences between 

lotteries, i.e., given that the assumptions in the axiom system are fulfilled, then there 

is a real-valued utility function, unique up to a positive affine transformation, on 

the set of lotteries. Furthermore, let Lc = {L1, L2, …} be a set of lotteries on C (al-

ternatives with uncertain outcomes in the consequence set C), then they showed that 

the utility function u:LcR, has a representation u (Li) =  pi (ci) u (ci) and Li p Lj 

if and only if u (Li)  u (Lj). Thus, both axiom systems serve as attempts at a formal 

justification of the utility principle and the principle of maximising the expected 

utility. Due to the subjective nature of Savage’s approach, his theory is often re-

ferred to as subjective expected utility. 

Descriptive decision theory 

Human decision-makers tend to, under given circumstances, behave inconsistently 

with the utility principle. Famous so-called paradoxes include Allais’ paradox and 

Ellsberg’s paradox. Allais’ paradox shows that people tend to act in ways inconsistent 

with the sure-thing principle. This paradox derives from a common human behav-

iour of preferring a good outcome for certain to having a chance between something 

not as good and something even better. Ellsberg’s paradox is quite similar, while it 

shows people’s tendencies towards preferring known risks to unknown uncertain-

ties, and thereby violating the utility principle. 

Paradoxes of these kinds are often resolved by arguing that even intelligent be-

ings make mistakes, and after some explanation of the inconsistency in their 

choices, they change their minds. However, for instance, an empirical study by 

Slovic (1974) has shown that as much as about 30% refuse to change their opinion 

and conform to the utility principle even after having had their errors pointed out to 

them. Tversky (1981) tries to understand why this is the case, and he concludes that 

irrelevant contextual effects often influence people, making them act inconsistent 

with the utility principle, i.e., the framing process. Further, it can be argued that no 

normative theory of decision making can embrace all inherent peculiarities in a free 

world of heterogeneous decision-making inhabitants. 

However, this perspective has been critiqued. A common descriptive counter-

argument is the suggestion that the axioms of utility theory are inherently flawed. 
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For instance, it has been shown that people do not always behave according to cer-

tain independence axioms in the system proposed by (Savage, 1954 /1972; Allais, 

1953). A more serious issue with the formal justifications of the utility principle 

from a normative point of view is that even if the axioms in various systems are 

accepted, the principle itself does not necessarily follow; in other words, the axio-

matic systems are seemingly too weak to imply utility theory and PMEU. This is 

addressed in (Malmnäs, 1994) who demonstrates the weaknesses of the systems in 

(Herstein and Milnor, 1953; Oddie and Milne, 1990; Savage, 1972). A comprehen-

sive review of numerous such systems is provided in (Malmnäs, 1994), who argues 

that it is implausible for these systems to be extended in any reasonable way to 

imply PMEU. Therefore, from a purely normative viewpoint, the logical founda-

tions of utility theory appear to be quite weak. But without serious contenders, it is 

still a viable basis for prescriptive decision analysis, keeping this in mind. 

Another criticism is that utility theory is inadequate for modelling risk attitudes 

effectively. Proponents of utility theory often argue for the concept of a risk pre-

mium to demonstrate that utility theory captures varying risk attitudes (French, 

1986). However, the use of a utility function to model all possible risk attitudes is 

inherently limited. Critics argue that many decision-analytic models oversimplify 

the problem and ignore important factors (cf., e.g., (Schoemaker, 1982). For in-

stance, even if the evaluation of an alternative yields an acceptable expected utility, 

its consequences might be so undesirable that the alternative should be avoided en-

tirely, even if the probabilities of such consequences are very low. In such cases, 

PMEU would need to be extended with additional functionality. It has been sug-

gested that a viable decision theory should allow for a broader range of risk attitudes 

and provide decision-makers with means to express these attitudes in various ways 

plus offer procedures for managing both qualitative and quantitative aspects. 

Some researchers have in vain sought to modify the behaviour of PMEU by in-

corporating regret or disappointment into the evaluation, especially for cases where 

numerically identical outcomes are perceived differently depending on the deci-

sion-maker’s previous experiences. See Chapter 4 for a discussion on such attempts. 

However, Malmnäs has demonstrated that, at best, these modifications result in per-

formances nearly equivalent to that of expected utility, and at worst, being incon-



32   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

sistent with first-order stochastic dominance (Malmnäs, 1996). The apparent prob-

lem here is that the discussion emanates from a normative point of view, and in 

such a setting, the problem never ends. But from a prescriptive point of view, the 

focus is instead on finding guiding rules of the best kind, and Malmnäs’ observation 

paves the way for a solid prescriptive approach. 

Defenders of classical Bayesian decision theory instead argue that the concept of 

utility captures different risk attitudes. The assumption is that to each expected util-

ity, there corresponds a certainty monetary equivalent xce. The decision-maker is 

indifferent between having this monetary value with certainty and performing an 

alternative with uncertain outcomes, i.e., u(xce) =  pi u(xi), where u(xi) is the utility 

of gaining the monetary value xi. The risk premium, r, of an act is now defined as 

the demand that a decision-maker has for carrying out the act, instead of having the 

monetary equivalent xce for certain, i.e., r =  pixi – xce. With respect to the premium 

r, a classification of decision-makers into three classes can be made: a decision-

maker is risk-averse if r > 0; risk-prone if r < 0; and risk-neutral if r = 0. 

As an example, assume that a decision-maker is in desperate need of a certain 

amount of money, and any lesser amount than this amount would not be useful. For 

instance, a person may need money for medical treatment of a disease that, if not 

cured, will result in death. If this person should seize the opportunity of entering a 

bet with their last funds that will give them a chance of winning an amount sufficient 

enough for the treatment to be affordable, this person would probably not be labelled 

irrational. In this situation, the risk premium r is probably negative. 

With the foundations of Bayesian decision theory in place, we next explore meth-

ods for evaluating such expressions involving probabilities and utilities. The objec-

tive is to establish systematic and transparent approaches for ranking alternatives, 

thereby providing consistent and well-founded guidance to decision-makers. 

 

This chapter builds on (Danielson, 1997, Ch.1) 
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04. Decision-Analytic Evaluation 

In this chapter, situations where in addition the decision-maker has some estimates 

of the probabilities of the states involved are discussed. Usually, the probabilities 

are not the same for each alternative as in Laplace’s rule, traditionally called deci-

sion under risk. Any decision problem under risk can be transformed into a problem 

in normal form. Further, tree and matrix forms of presenting a decision problem are 

equivalent. Therefore, it is sufficient to handle decision problems in normal form. 

In this chapter, a decision problem will be modelled in a decision frame.  

Definition: Given a decision situation with m alternatives (A1,…,Am), each with 

mi consequences, and statements about the probabilities and values of those con-

sequences. A decision frame is a structure C,P,V = {{Cik}mi
}m,P,V containing 

the following representation of the situation: 

• For each alternative Ai the corresponding consequence set  

{Cik}kKi
 for Ki = {1,…,mi}. 

• A set P of inequalities representing all probability statements. 

• A set V of inequalities representing all value statements. 

A large set of evaluation functions is the family of all functions that assign a nu-

merical value to a consequence set for subsequent comparison, see for example 

(Schoemaker, 1982) for an overview. Such an evaluation function results in nu-

meric values ranking the alternatives (or, more precisely, the consequence sets). 

Definition: Given a decision frame {{Cik}mi
}m,P,V and a function f, the nu-

meric value N(Ci) of a consequence set {Cik}mi
 is f(pi1,…,pimi

,vi1,…,vimi
), a 

function over all consequences Cik in the consequence set. 

To be reasonable, the value of N(Ci) should range over the interval [0,1] since 

the values range over that interval. Of the numeric values, the expected value seems 

to be one of the most natural rules to apply to a decision problem on alternative-

consequence-form. This is partly because the expected value E(Ci) is established in 

mathematical statistics, where it is employed as the mean value to be assigned to a 

stochastic variable taking on various values with specific probabilities. E(Ci) is 

clearly an instance of N(Ci) above. In this book, only discrete probability distribu-

tions are considered, and thus the following definition of the expected value applies. 
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Definition: Given a decision frame {Ci}m,P,V, the expected value E(Ci) of a 

consequence set Ci = {Cik}mi
 is the sum ∑k pik·vik over all consequences Cik in 

the set. 

The use of the principle of maximising the expected value (PMEV) dates several 

hundred years back, preceding the formal area of mathematical statistics and instead 

originating from pure monetary gambling. Over the years, a number of problems 

have been discovered with the principle when applied to real-life decision situa-

tions. A serious paradox was first suggested by Allais (1953), and other paradoxes 

along the same line have subsequently been suggested. Many people tend to choose 

alternatives in a way that seems to violate the PMEV, no matter what utility values 

are assigned to the respective outcomes. See for example (Savage, 1972) for a math-

ematical argument regarding Allais’ paradox. In experiments where the violation 

was afterwards pointed out to subjects who understood the mathematical argument, 

up to 1/3 retained their choice despite this. 

Such problems with PMEV warrant further investigation, and several research-

ers, not least within economics, have proposed a number of alternative decision 

rules to replace (or sometimes supplement) the PMEV. Fishburn (1983) suggests an 

evaluation based on the quotient between two separate expected values, which has 

the form 

1

2

( , )

( , )

i

i

E C f

E C f
 

where f1 and f2 are two functions of the values involved. 

Loomes and Sudgen (1982) bring regret or disappointment into the evaluation to 

cover cases where numerically equal results are appreciated differently depending 

on what was once in someone’s possession. Their suggested formula has the form 
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
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where R is supposed to be a regret function related to the ordinary expected value. 

Quiggin (1982) tries to resolve the problem by requiring functions to modify the 

probabilities in the evaluation rule such as 
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( 1)
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where f is a strictly increasing function, the sij’s are in increasing vij order, and 
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 . Yaari has pointed out that under certain reasonable assumptions 

(Yaari, 1987), it must be the case that f(pij) = pij and then he made the following 

extended suggestion 
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where sij is as above.  

As noted in Chapter 3, Malmnäs (1996) shows for those above and for other 

proposals that their performances can at best be equal to that of the expected value 

and at worst are much poorer, for example not even being consistent with first order 

stochastic dominance. Since no rule performs consistently better than the expected 

value, it is the only possible rule from a prescriptive viewpoint. It has sometimes 

been argued that the prescriptive approach consists of selecting axioms to adhere 

to, rather than accepting and using the axiom systems of established theories 

(Keeney, 1992). Such a view would reduce prescriptive decision analysis to meta-

arguments on which axiomatic results to believe in and adhere to, and which to 

dismiss. However, that would constitute a road that does not lead to better tools for 

real-life decision support. 

In many decision contexts, the decision-maker may want to exclude particular 

alternative courses of action that are, in some sense, too risky. If the PMEU modi-

fications on the previous pages do not work, what does? The exclusion can be 

achieved by a class of supplementary decision rules called qualitative sorting or 

security levels. While an evaluation of a consequence set may result in an accepta-

ble expected value, the consequences of selecting it might be so dire that it should 

nevertheless be avoided. It might, for example, endanger the entire purpose of the 

decision context, and in that case, even a consequence with a low probability is too 

risky to neglect. Such exclusions can be dealt with by specifying a security level for 
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the probability and a threshold for the value. Then a consequence set would be un-

desirable if it violates both of these settings. Malmnäs’ proposal (1994a) is to sup-

plement the expected value with qualitative evaluations. An example is the qualita-

tive sorting function, which has the basic form 

( , , ) ( )
ij

i ij

v r

S C r s p s


   

where r is the minimally tolerable value threshold and s is the maximally acceptable 

probability for events below the threshold to occur. This is a boolean function sort-

ing out unwanted consequence sets. But to treat this and other supplements, a more 

general discussion on dominance is required. 

Delta Dominance 

In this section, a general dominance rule is suggested as a unifying concept. In its 

generic form, it describes the type of dominance to be considered and thus also the 

type and amount of computation involved in evaluating consequence sets in the 

framework. It includes all of the above-suggested evaluation functions, even though 

the expected value is by far the most common. For convenience, a shorthand nota-

tion for the difference in expected values is introduced. 

Definition: Given a decision frame {{Cik}mi
}m,P,V, ij denotes the expression 

E(Ci) – E(Cj) = ∑k pik·vik – ∑k pjk·vjk over all consequences in the consequence 

sets Ci and Cj. 

Terminology: Given a decision frame C,P,V, the functions f, g, and h are 

specified as f:ℝi[0,1], g: ℝj[0,1], and h: ℝk [0,1] with i,j,k  N+ as appro-

priate. The  and  parameters are real numbers in the range [0,1]. 

In order to describe the dominance, a couple of concepts are required. The index 

set pair captures the consequences within each of the consequence sets that possess 

some desired property, in this case their value being at least as great as a given 

parameter. 

Definition: Given a decision frame C,P,V and a real number d  [0,1], an index 

set pair (Ki,Kj)(d) is Ki = {k  vik ≥ d} and Kj = {k  vjk ≥ d}. 

When the parameter d varies over some range, the content of the index set may 
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vary as well. This represents a selection procedure for selecting all consequences 

within a pair of consequence sets with a desired property. The set of all such index 

sets is defined next. 

Definition: Given a decision frame C,P,V and real numbers a,b,d  [0,1], 

Mij[a,b] is the set {(Ki,Kj)(d)  d  [a,b]}. 

Mij[a,b] is the set of all different index set pairs in the range [a,b], i.e. all the com-

binations of index sets that satisfy any threshold condition in that range. Those two 

definitions enable the following compact definition of the ∆-dominance. The idea 

behind the dominance is a pairwise comparison of the consequence sets employing 

the desired numerical function. Note that the weak inequality must hold for all index 

set members, i.e. over the entire interval range I. 

Definition: Given a decision frame C,P,V, a function f, and two parameters 

(P0,V0) and (P0,V0), Ci ∆[I]-dominates Cj iff  

 (Ki,Kj)(d)  Mij[I] ( , , ) – ( , , ) 0
i j

ik ik jk jk

k K k K

f p v f p v 
 

   and 

 (Ki,Kj)(d)  Mij[I] ( , , ) – ( , , ) 0
i j

ik ik jk jk

k K k K

f p v f p v 
 

  . 

This is a very general definition based on traditional admissibility concepts, and 

many instantiations are possible. In this book, a few are given and it is shown that 

some well-known evaluation concepts are special cases of ∆-dominance. The first 

subdivision of the ∆-dominance is into dominance orders depending on the function 

employed in the evaluation. First and second orders are specifically addressed be-

low, while higher orders are not further discussed. 

The ∆-dominance is of the first order if the function used is a function of only 

probabilities. The values are not taken into account when evaluating the conse-

quence sets. 

Definition: Given a decision frame C,P,V and functions f and g, Ci 1[I]-domi-

nates Cj iff Ci ∆[I]-dominates Cj with f(pik,vik,) = g(pik) and f(pjk,vjk,) = g(pjk). 

Thus, first order specialisation turns dominance into a difference of sums of a func-

tion of probabilities. 
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Note: Ci 1[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] ( ) ( )
i j

ik jk

k K k K

g p g p
 

  . 

The note points out the resemblance with some familiar dominance concepts. One 

further specialisation of the first order ∆-dominance is the first order stochastic dom-

inance, a well-known concept. To reach there, the general first order ∆-dominance 

is considered. It consists of specifying the range for the index set pairs to be the full 

[0,1] range. 

Definition: Given a decision frame C,P,V, Ci 1S-dominates Cj iff Ci 1[0,1]-dom-

inates Cj. Ci 1SE-dominates Cj iff Ci 1S-dominates Cj with g(pik) = pik. 

When the function g employed is the simple g(pik) = pik the general stochastic dom-

inance turns into the commonly used first order stochastic dominance, which in the 

∆-dominance concept is a specialisation of function as well as of index set range. 

To see that this is indeed the ordinary first order stochastic dominance as claimed, 

it is convenient to make the following note, in which the form for 1SE-dominance 

coincides with the definition of first order stochastic dominance. 

Note: Ci 1SE-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

i j

ik jk

k K k K

p p
 

  . 

Earlier, a supplementary function was mentioned under the name of qualitative sort-

ing or security levels. This was a kind of threshold function separating wanted and 

unwanted outcomes (or desirable and undesirable consequence sets) according to a 

threshold rule applicable to the evaluation situation. This type of evaluation rule 

also turns out to be a special case of the ∆-dominance, viz. the dominance of a 

reference consequence set, i.e. the threshold. 

Definition: Given a decision frame C,P,V and two real numbers s,t  [0,1], Cj 

violates general security level s for threshold value t iff Ct 1[t,t]-dominates Cj, 

where Ct is a consequence set with two consequences, g(pt1) = 1–g(s), vt1 = 1, 

g(pt2) = g(s), vt2 = 0. 

When the function g is the simple g(pik) = pik, then the general security level turns 

into the ordinary security level concept, which again is a specialisation of both func-

tion and index set range. 
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Definition: Given a decision frame C,P,V and two real numbers s,t  [0,1], Cj 

violates security level s for threshold value t iff Cj violates general security level s 

for threshold value t with g(pjk) = pjk. 

To see that this is indeed the same concept as the security levels discussed above, 

the following observation can be helpful. Note that there can only be one index set 

pair since the range of the value interval only contains r. 

Note: Cj violates security level s for threshold value t iff for Kj = {k  vjk ≥ t} 

1
j

jk

k K

p s


  . 

It can be seen that the first-order stochastic dominance and qualitative sorting or 

security levels are both variants of the same concept of first-order ∆-dominance. 

The ∆-dominance is of the second order if the function used is a function of both 

the probabilities and the values. 

Definition: Given a decision frame C,P,V and functions f and h, Ci 2[I]-domi-

nates Cj iff Ci ∆[I]-dominates Cj with f(pik,vik,) = h(pik,vik) and 

f(pjk,vjk,) = h(pjk,vjk). 

Then the domination turns into a difference of sums of a function of probabilities 

and values. 

Note: Ci 2[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

( , ) ( , )
i j

ik ik jk jk

k K k K

h p v h p v
 

  . 

As for the first order, a further specialisation into second-order stochastic domi-

nance is possible. This is a well-known concept as well, and it turns out to be an-

other case of ∆-dominance. First, the general second-order stochastic dominance is 

defined. As in the first order case, it consists of specifying the range for the index 

set pairs to be the full [0,1] range. 

Definition: Given a decision frame C,P,V, Ci 2S-dominates Cj iff Ci 2[0,1]-dom-

inates Cj. Ci 2SE-dominates Cj iff Ci 2S-dominates Cj with h(pik,vik) = pik·vik. 
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If the function h employed is the most common h(pik,vik) = pik·vik, then the domi-

nance turns into the commonly used second-order stochastic dominance, which in 

the ∆-dominance concept is a specialisation both of function and of index set range. 

To see explicitly that we have arrived at the ordinary second-order stochastic dom-

inance, it is helpful to make the following note, in which the form for 2SE-domi-

nance can be seen to be almost equivalent to the textbook definition of second-order 

stochastic dominance. 

Note: Ci 2SE-dominates Cj iff  (Ki,Kj)(d)  Mij[0,1] 

i j

ik ik jk jk

k K k K

p v p v
 

    . 

Another second order ∆-dominance is the ordinary expected value and some of the 

suggested replacements. One of their characteristics is that they evaluate only by 

full index set pairs, i.e. pairs that contain all members of each consequence set. The 

general numerical dominance is a straightforward specialisation of 2∆-dominance. 

Definition: Given a decision frame C,P,V, Ci N-dominates Cj iff Ci 2[0,0]-dom-

inates Cj. Ci NE-dominates Cj iff Ci N-dominates Cj with h(pik,vik) = pik·vik. 

This corresponds to the evaluation rules that apply a probability and value formula 

to the consequence set in order to reach a numerical verdict on which one is prefer-

able. The last specialisation of the second order is the ordinary expected value, 

which is termed NE-dominance and is realised by letting f(pik,vik) = pik·vik in the 

N-dominance. This can be seen to be the expected value, since the only index set 

pair generated by the [0,0]-range is the pair of complete consequence sets. 

Note: Ci NE-dominates Cj iff for (Ki,Kj)(0) ij ≥ 0. 

Further, note that ij ≥ 0 does not apply to 2SE-dominance since it involves different 

index set pairs while NE-dominance always applies only to the full index sets of the 

consequence sets. It has been demonstrated that some well-known dominance rules 

and the ordinary expected value are special cases of ∆-dominance, which acts as a 

unifying concept in comparing and discussing evaluation rules. 

 

This chapter builds on (Danielson, 1997, Ch.5) 
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05. Realistic Input Information 

In a vast majority of real-life decision situations, the decision-maker does not have 

access to the significant amount of statistical data demanded to aggregate precise 

numerical values and probabilities, nor does the decision-maker have the ability to 

perform precise estimations of utilities. Furthermore, people find it hard to distin-

guish between probabilities ranging from approximately 30% to 70% (Slovic, 

1974). A great deal of attention has been given to problems of imprecise infor-

mation as a source of decision uncertainty, Morgan and Henrion (1990) identify 

two main types of uncertainty. The first type of uncertainty derives from a lack of 

historical data and takes its form from statistical variation, subjective judgements, 

linguistic imprecision, variability, inherent randomness, disagreement and approx-

imation. For example in experiments, errors in the measurements of quantities give 

rise to statistical variation. The second type of uncertainty arises from the model 

chosen. Furthermore, uncertainty due to biases in communication and value differ-

ences is unavoidable in the use of expertise in policy processes. Instead of address-

ing the sources of uncertainty, Funtowicz and Ravetz (1990) discuss different types 

of uncertainties, including inexactness (or technical uncertainty), unreliability (or 

methodological uncertainty), and border-with-ignorance (or epistemological uncer-

tainty). These authors consider ignorance to be endemic to scientific research. 

Even if a decision-maker is able to discriminate between different probability 

measures, very often adequate, reliable, and precise information is missing. Conse-

quently, there seem to be significant reasons for discriminating between measurable 

and immeasurable uncertainty. Measurable uncertainty is often referred to as risk 

and can be represented by precise probabilities. In contrast, immeasurable uncer-

tainty occurs frequently in high-consequence/low-frequency situations since the low 

frequency implies a lack of statistical data, and thereby the axiom systems given 

by, e.g., Savage and von Neumann and Morgenstern, are not satisfied. Ellsberg 

(1961) proposes a class of choice situations involving immeasurable uncertainty, in 

which the behaviour of people is inconsistent with the suggested axiomatic systems. 

He does not object to the use of the principle of maximising the expected utility 

(PMEU) but suggests that the underlying axiomatic systems should not be applied 

in situations where the available information is to some extent not precisely defined. 



42   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

Doyle and Thomason (1997) present an approach where imprecision is being mod-

elled by using only qualitative data. However, in many cases this restriction will 

yield a too narrow outlook of a decision problem, numerical estimates should still 

play a role.  

There is a wide variety of mathematical models for the representation of impre-

cise probability. Most research in imprecise probabilities has been concerned with 

different types of upper and lower probability (Walley, 1991). However, some com-

mon and useful kinds of uncertainty cannot be modelled through the use of upper 

and lower probability models, especially, commonly used comparative statements 

of the form “A is at least as probable as B” cannot be allowed for. Walley’s book 

Statistical Reasoning with Imprecise Probabilities introduces the concept of upper 

and lower previsions. Briefly speaking, the lower prevision of a gamble is defined 

by the amount a gambler is willing to pay for a lottery ticket, and the upper prevision 

is defined by how much he is willing to sell the same ticket for. 

Many attempts have been made to express imprecise probabilities in terms of 

intervals. In (Choquet, 1953), the concept of capacities is introduced. These capac-

ities can be used to define a framework for modelling imprecise probabilities as in-

tervals (Huber, 1973). The use of interval-valued probability functions, by means of 

classes of probability measures, has also been integrated into classical probability 

theory by e.g., Good (1962) and Smith (1961). A similar approach was taken by 

Dempster (1967), where a framework for modelling upper and lower probabilities is 

investigated. This was further developed by his PhD student in (Shafer, 1976), where 

the concept of basic probability assignments was also introduced. The Dempster-

Shafer theory for quantifying subjective judgements has received a lot of attention, 

but it seems to be unnecessarily strong with respect to interval representation 

(Weichselberger and Pöhlmann, 1990). Weichselberger’s theory of interval proba-

bility instead argues in favour of an axiom system for interval probabilities clearly 

related to the one of Kolmogorov, i.e. an already established theory. 

Imprecision in decision situations often prevails in both probability estimates and 

utility assessments. For example in business decisions when acting upon a forecast, 

the forecasted value often is subject to some forecast error encouraging the use of a 

prediction interval instead of a predicted fixed number which in almost every case 

will be more or less incorrect. Furthermore, many types of decisions involve utility 
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measures of non-monetary outcomes which then must be measured on some pre-

cisely defined interval scale, such measurements are often hard to motivate, e.g., 

due to underlying ethical responsibilities and democratic values. 

When more than one probability distribution defined on the same set of outcomes 

is reasonable given the information obtained, we speak in terms of sets of probabil-

ity distributions. The American philosopher Levi gives three conditions such sets 

of probability measures B must satisfy. These imply (among other things) that the 

probability distributions in B for a given state of nature form an interval, in literature 

such sets are commonly referred to as convex sets of probability measures. The sig-

nificance of Levi’s work is emphasised as Levi compares the different alternatives 

in decision situations. He gives an example in which two similar decision situations 

with different sets of probability measures yield results different from his theory, 

even if the generated intervals are the same (Levi, 1974, pp.416-418). He notices 

that some authors have presupposed such an interval in their theories, but concludes 

that his own theory “[…] recognises credal states as different even though they 

generate the identical valued function –provided they are different convex sets of 

Q-functions.” The significance is emphasised as Levi compares the different alter-

natives in decision situations. He gives an example in which two similar decision 

situations with different sets of probability measures yield results different from his 

theory, even if the generated intervals are the same.  

Levi also relaxes the Bayesian requirement on representing the utilities of the 

consequences. He introduces a set G of permissible utility functions, which do not 

obey the classical Bayesian requirement that all elements in G are linear transfor-

mations of each other. He then stipulates the following definitions: 

Definition: An alternative A is E-admissible if and only if there is a probability 

distribution p in B and a utility function u in G, such that E(A), defined relative to 

p and u, is optimal among all alternatives. 

Definition: An alternative A is S-admissible if and only if it is E-admissible and 

there is a function u in G such that the minimum u-value assigned to some possible 

consequence is at least as great as the u-values assigned to the consequences of any 

other of the remaining alternatives. These definitions seem reasonable, but they 

have some counter-intuitive implications. They clearly violate the reasonable con-

dition of independence of irrelevant alternatives, i.e. that the ordering between the 
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alternatives is not affected by the addition of a new alternative. The theory is also 

problematic in some respects when confronted with some empirical results.  

In (Danielson, 1997), another approach is suggested. Imprecise probabilities, as 

well as imprecise utilities, are handled by modelling a decision situation with nu-

merically imprecise sentences such as “the probability of consequence c11 is greater 

than 5%” and comparative sentences such as “consequence c11 is preferred to con-

sequence c12”. These kinds of sentences are represented by suitable intervals and 

comparisons. Sentences such as “the probability of cij lies between the numbers ak 

and bk” are translated to pij  [ak,bk]. Similarly, sentences such as “the probability 

of cij is greater than the probability of ckl”. are translated into inequalities such as 

pij  pkl. In this way, each statement is represented by one or more constraints. The 

conjunction of all constraints together with  pij = 1 for each alternative Ai is called 

the probability base (P). The utility base (V) consists of similar translations of utility 

estimates. The collection of probability and utility statements constitutes the deci-

sion frame. The following terminology and definitions are from (Danielson, 1997). 

Definition: A decision frame with m alternatives is a structure  

{{cij}j = 1,...,hi
}i = 1,...,m,P,V, where each cij denotes a consequence. P is a finite list 

of linear constraints in the probability variables and V is a finite list of linear con-

straints in the utility variables. 

Given such a structure, various decision rules can be applied. One such structure 

is a generalisation of the expected utility of an action. With respect to a decision 

frame, this can be expressed by the following definition. 

Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, the expected util-

ity E(Ai) of an action Ai is E(Ai) = khi
 pik· uik, where pik and uik are variables in 

P and V, respectively. uij denotes the utility of the consequence cij, and pij denotes 

the probability of cij occurring given that action Ai is taken. 

Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, let a and b be two 

vectors of real numbers (ai1,...,aihi
) and (bi1,...,bihi

) respectively. Then define 
abE(Ai) = khi

 aik· bik, where aik and bik are numbers substituted for pik and uik in 

E(Ai).  
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If the expected utility in the definition above seems to be very similar to the 

expected utility as defined in the previous chapter, it is important to bear in mind 

that this is evaluated with respect to the solution sets of the decision frames rather 

than to precise numbers. Using precise numbers, evaluating the expected utility is 

straightforward. However, when numerically imprecise information is involved, the 

situation is a bit more intricate, i.e., the expected utility has to be evaluated with 

respect to the solution sets to the probability and utility bases. The solution set to a 

set of linear constraints L consists of vectors consistent with L. 

Definition: Given a base expressed in the variables {p1,…, pk}. A list of numbers 

[n1,…,nk] is a solution vector to a base L if the substitution of ni for pi, for all 1 i 

k, in L does not yield a contradiction. The set of solution vectors to L constitutes 

the solution set for L. 

With respect to the solution sets to the probability and utility bases, substituting 

all possible vectors (ai1,...,aihi
) and (bi1,...,bihi

), consistent with the solution sets to 

the probability and utility bases, in the expected utility above, a range of possible 

values is received. Thus, by the introduction of interval in this way, the meaning of 

the expected utility is no longer clear, and a reasonable decision strategy must be 

defined. A quite uncontroversial strategy of evaluation is to never eliminate or dis-

qualify an action that might be the best one. The only option then becomes never to 

eliminate any alternative, which might be considered too weak a decision strategy. 

Another strategy is to investigate the differences between the various alternatives.  

Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, the difference in 

expected utility ij between two alternatives Ai and Aj are ij = E(Ai) – E(Aj). Sim-

ilarly, define abcdij = abE(Ai) – cdE(Aj). 

Using this notation, we can introduce a variety of rules to discriminate between 

different actions. For instance, the concept of admissibility (64) is expressed in the 

following way.  

Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, Ai is at least as 

good as Aj iff abcdij  0, for all a, b, c and d, where the expression {pi1 = ai1} & ... 

& {pihi
 = aihi

} & {pj1 = cj1} & ... & {pjhj
 = cjhj

} is consistent with P. Similarly, {ui1 

= bi1} & ... & {uihi
 = bihi

} & {uj1 = dj1} & ... & {ujhj
 = djhj

} is consistent with V. Ai 
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is better than Aj iff Ai is at least as good as Aj and abcdij > 0, for some a, b, c, d, 

that is consistent with P and V as above. Ai is admissible iff no other Aj is better 

than Ai. 

Intuitively, an action can be discarded if it is always worse than all other actions, 

i.e., an admissible alternative is in some sense a non-dominated alternative. The 

concept of admissibility is computationally meaningful in this framework. How-

ever, the imprecision represented in the decision frames, viz. most non-trivial situ-

ations, often results in the ranges of the expected utility of some actions overlap-

ping. The set of admissible alternatives will therefore often be too large. Conse-

quently, even if PMEU is employed, there is a need for further principles of discrim-

ination. One way to proceed is to determine the stability of the relation between the 

actions under consideration. Values near the boundaries of the intervals are proba-

bly less reliable than more central values due to interval statements being deliber-

ately imprecise. This can be taken into account by measuring the dominated regions 

indirectly with the use of the concept of contraction, which is motivated by the dif-

ficulties of performing sensitivity analyses in several dimensions simultaneously. It 

can be difficult to gain a real understanding of the solutions to large decision prob-

lems using only one-dimensional analyses since different combinations of dimen-

sions can be critical to the results of evaluation.  

In order to assess the overlap, sensitivity analyses of the admissibility are called 

for. The hull cut is a generalised sensitivity analysis for this purpose. It is reasonable 

to consider values near the boundaries of the intervals in a constraint set to be less 

reliable than more central values, due to interval constraints being deliberately im-

precise. The core, on the other hand, represents the most reliable estimates. It is 

therefore desirable to be able to study the bases with varying cut rates, i.e. studying 

smaller or larger decrements to the orthogonal hull. If the core itself is not enough 

to yield the desired evaluation results, it can be further cut towards the focal point 

with varying degrees of contraction. 

Definition: Given a base X in {xi}i, a set of real numbers {ai,bi}iI, a core 

[ci,di]n of {xi}iI, and a real number π  [0,1], a π-cut of X is to replace the core 

by [ci+π·(ai–ci), di+π·(bi–di)]n. If the set {ai,bi}iI is the hull ai,bin then it is 

called a π-expansion of X. If (r1,…,rn) is a focal point and ai = bi = ri, then it is 
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called a π-contraction of X. 

The π-cut is a linear procedure, but non-linear procedures are plausible as well. 

In addition, the procedure can work from either side ((L)π-cut and (R)π-cut) or with 

varying, even non-uniform rates of contraction. The cut structure is studied with 

respect to admissibility, i.e. at which cut rates admissibility is affected. If there is 

no verdict in the original core, it may be further cut towards the focal point in order 

to achieve a result. 

Various kinds of sensitivity analyses based on the concept of contraction are 

suggested in (Danielson, 1997). By co-varying the contractions of an arbitrary set 

of intervals, it is possible to gain much better insight into the influence of the struc-

ture of the decision frame on the solutions. Contrary to, e.g., volume estimates, 

contractions are not measures of the sizes of the solution sets but rather of the 

strength of statements when the original solution sets are modified in controlled 

ways. Both the set of intervals under investigation and the scale of individual con-

tractions can be controlled. The idea behind contractions is to investigate how much 

the intervals can be decreased before an expression such as E(Ai) – E(Aj) > 0 ceases 

to be consistent. At the same time, we must avoid the complexity inherent in com-

binatorial analyses, but still be able to study the stability of a result. 

It should be emphasised that the concept of admissibility is still based on PMEU, 

and thus the approach of considering only admissible actions cannot be entirely 

uncontroversial. Since the idea of dismissing a clearly inferior action seems to be 

reasonable, we must be careful about how to measure this inferiority. 

One major drawback of the classic Bayesian approach as well as Levi’s approach 

is that it does not account for variations of the epistemic reliability in different deci-

sion situations (Gärdenfors and Sahlin, 1982). Even if an outcome is associated with 

a set of probability measures and a set of utility measures, some of these measures 

are often regarded as more reliable than others, due to the nature of the obtained 

information. Thus, we have a second-order belief in the sense that we hold some of 

our beliefs to be more reliable.  

The interval model requires defining a set of all epistemologically possible prob-

ability distributions within a decision context. However, a decision-maker may not 

assign equal confidence to all these distributions, necessitating a model of belief 
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strength in different vectors. A further refinement of the interval model can be 

achieved using distribution theory. This approach allows for differentiation among 

various probability distributions and utility functions by defining a global distribu-

tion that expresses various beliefs over sets of intervals. For each vector of proba-

bility estimates, a belief value is assigned to reflect the decision-maker’s confidence 

in that particular distribution. This global distribution is defined over a polytope, a 

region of possible solutions described by linear inequalities. This model generalises 

the interval-based approaches discussed earlier, enabling a more flexible represen-

tation of beliefs in decision making. However, one major limitation is that decision-

makers can rarely envision such high-dimensional distributions, especially in com-

plex decision situations.  

Gärdenfors and Sahlin (1982, 1983) address these issues by considering global 

belief distributions, though they focus primarily on the probability case. A limita-

tion of this approach is its lack of exploration of the relationship between local and 

global distributions and the methods for ensuring the consistency of user-specified 

belief statements. For example, if a decision-maker considers a class of probability 

distributions, it is reasonable to assume that belief should be zero in vectors where 

the mapping does not sum to one. Hence, the belief in impossible outcomes should 

be zero, and this constraint must be consistent with the overall belief distribution.  

In general, interval decision analysis conforms to traditional statistical reasoning 

by being compatible with the concept of admissibility. The emphasis in prescriptive 

decision theory is not on describing another formalism for representing imprecision 

but rather on presenting a way of handling the imprecision inherent in many real-

life decision problems within standard decision theory.  

 

This chapter builds on (Danielson, 1997, Ch.4) 
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06. Multiple Criteria 

As discussed in detail in Part I, the roots of prescriptive decision theory can be 

traced to the mid-20th century with the development of utility theory and the axio-

matic foundations of rational choice, notably by the works of von Neumann and 

Morgenstern, Savage, and others. The classical expected utility theory, underpinned 

by axioms such as completeness, transitivity, independence, and continuity, repre-

sents the ideal of rational behaviour under uncertainty. Probabilistic (Bayesian) de-

cision analysis, which builds directly upon this foundation, involves the modelling 

of uncertainty through probability distributions and the quantification of prefer-

ences via utility functions. Decision trees, influence diagrams, and Bayesian updat-

ing are among the standard tools employed in this tradition. These methods are par-

ticularly powerful when uncertainty can be meaningfully represented probabilisti-

cally and when the decision-maker’s utility function can be elicited and incorpo-

rated into the analysis. 

However, the limitations of classical probabilistic approaches for real-life deci-

sion analysis have long been recognised. In practice, many decision situations in-

volve multiple objectives. Among the most significant developments to address 

these challenges is the emergence of multi-criteria decision analysis (MCDA). It 

encompasses a set of methods designed to support decision making in contexts 

where multiple, often conflicting criteria must be considered simultaneously. Un-

like classical probabilistic (Bayesian) methods, which assume a single objective 

function, MCDA explicitly acknowledges and structures the presence of multiple 

criteria, which may be qualitative, ordinal, or quantitative. 

MCDA methods are diverse in formulation, but they share certain methodologi-

cal features. First, they require the articulation of criteria relevant to the decision 

context, often through stakeholder engagement. Second, they typically involve the 

valuation or scoring of alternatives on each criterion, using performance scales that 

may be quantitative or qualitative. Third, they incorporate a mechanism for aggre-

gating these evaluations into a global preference or ranking of alternatives, which 

may be deterministic or incorporate uncertainty. However diverse they are, there is 

still an inescapable requirement to be aligned with classic decision theory. 

Well-known MCDA methods include value-based approaches such as SMART, 
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VIKOR and TOPSIS, and outranking methods such as ÉLECTRE and PRO-

MÉTHÉE, among others. Value-based methods often rely on compensatory aggre-

gation rules and require preference elicitation while outranking methods try to en-

compass non-compensatory reasoning to deal with what they see as incomparabili-

ties. Nevertheless, regardless of approach, they must by necessity stay within the 

scientific borders of classic decision theory which they build upon. 

Most present-day developments in computational decision analysis occur within 

MCDA rather than single-criterion probabilistic (Bayesian) methods. To recap the 

evolution discussed in Part I, the beginnings of MCDA can be traced back to the 

development of decision theory and operations research (OR) during World War II. 

OR itself emerged as a discipline in the early 1940s, driven by military needs for 

efficient resource allocation, optimal supply chain management, and strategic plan-

ning. Pioneering researchers, such as Dantzig, developed linear programming, a 

mathematical approach that provided optimal solutions to problems of allocation 

under constraints. Early decision models were primarily concerned with single-ob-

jective optimisation, seeking to identify the best solution according to a single cri-

terion, typically minimising costs or maximising profit (Dantzig, 1947). 

However, as noted above, decision-makers in the real world often face problems 

with multiple, often conflicting objectives. In these more complex scenarios, the 

concept of MCDA began to take shape as researchers sought to extend optimisation 

techniques to consider trade-offs between competing criteria. This led to the devel-

opment of early multi-objective optimisation methods in the 1950s and 1960s, 

which sought to find solutions that balanced competing objectives. One of the ear-

liest contributions to this field was the work of Kuhn and Tucker on the theory of 

optimality in decision making (Kuhn and Tucker, 1951), which set the groundwork 

for future developments in multi-criteria analysis by formalising the need to con-

sider multiple constraints in decision-making problems. 

In the 1950s and 1960s, as both OR and decision theory matured, the necessity 

of incorporating multiple objectives into decision making became more apparent. 

At this time, mathematical models for decision making began to account for various 

factors beyond simple profit or cost optimisation. Multi-attribute utility theory 

(MAUT) early became a cornerstone of MCDA. MAUT posits that individuals 
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make decisions based on the expected utility derived from each alternative, with 

each attribute (or criterion) contributing to the overall utility in a weighted manner. 

The classic concept of utility, however, assumes that preferences can be quanti-

fied and aggregated into a single utility function. For complex decision problems 

with multiple criteria, this assumption is often difficult to meet. In response, Keeney 

and Raiffa at IIASA developed methods to analyse trade-offs between criteria in 

their book Decisions with Multiple Objectives (1976 /1993). Their work introduced 

a more structured approach to multi-criteria decision making by emphasising the 

importance of defining and eliciting the decision-maker’s preferences over multiple 

criteria. They recognised that many real-world decision problems do not lend them-

selves easily to the construction of a single utility function and therefore suggested 

the use of non-aggregative methods, where each criterion is considered inde-

pendently but in relation to the others via scale alignments. 

The first applications of MCDA methods were primarily in the fields of manage-

ment science, engineering, and public policy, where decision-makers had to evalu-

ate alternatives based on multiple criteria. In the 1960s, ad hoc multi-criteria meth-

ods, based on optimisation models, were applied to a wide range of decision prob-

lems, from resource allocation and industrial engineering to urban planning and en-

vironmental management. In the 1970s, as the availability of computing power in-

creased, MCDA models became more computationally feasible for a wider range 

of applications. The development of decision support systems (DSS) during this 

period allowed for the systematic application of MCDA methods in interactive de-

cision making. These systems enabled decision-makers to model multiple criteria 

and evaluate the performance of different alternatives, taking into account not only 

quantitative but also qualitative data. The integration of MCDA into DSS marked a 

significant step forward in making complex decision making more accessible and 

analytically rigorous. It was not, however, until the 1990s that computational power 

was used for complex decision-analytic calculations in a way they had been used in 

OR for a long time. One of the first descriptions of computational decision analysis 

is (Danielson, 1997), however in a single-criterion setting. 

In parallel with the development of traditional MAUT, other methods were 

emerging in the 1970s that focused on the structuring and evaluation of complex, 

multi-criteria problems. Among the earliest was the Analytical Hierarchy Process 
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(AHP), developed by Saaty already in the late 1970s (Saaty, 1977). AHP introduced 

a method for structuring multi-criteria problems into a hierarchy of objectives, sub-

objectives, and alternatives, which could be compared pairwise in terms of relative 

importance. The pairwise comparison approach allowed for s seemingly precise 

evaluation of trade-offs and the calculation of a final score for each alternative by 

synthesising the results of comparisons. However, the approach also opened up se-

rious problems when applying it to real-world decision problems. 

The traditions in MCDA are a bit different from those in probabilistic (Bayesian) 

decision analysis (PDA). While PDA traditionally has a more theoretical and axio-

matic approach, focusing on well-foundedness, MCDA is more concerned with pro-

cesses, procedures and calculation schemes. There is nothing inherently wrong in 

any of the two sets of approaches, rather they simply stem from different traditions. 

PDA originates from mathematics, statistics and economics, and hence inherited 

methods and ways of thinking and expression from those disciplines. MCDA, on 

the other hand, has a more pluralistic background, with for example some of the 

more widespread methods coming from civil engineering (VIKOR) and industrial 

engineering (TOPSIS). While an engineering approach to a research problem is not 

per se better or worse than a mathematical/theoretical one, they often yield vastly 

different outcomes. For an insight into the epistemic fragmentation within the 

MCDA field, cf. Greco et al. (2016) for a 1350-page, 50+ author overview accom-

modating numerous divergent research directions and philosophies, presenting 

sometimes isolated and often disparate perspectives and methods without a com-

mon coherent foundation. In the overview, each method is presented by eager and 

invested advocates, emphasising the foundational divide within the field.  

In contrast, this book aims at unifying PDA and MCDA by mapping the results 

in Part I onto MCDA and adding computability as the third pillar in Part III. In 

(Danielson, 1997), only PDA is treated in detail. Since then, and characterising the 

21st century, multi-criteria decision problems have been much more in focus. Luck-

ily, many results from Bayesian PDA carry over to MCDA, albeit with some mod-

ifications. This second part of the book will deal with the similarities and differ-

ences between the two approaches and ends with a unified model (MPDA = multi-

criteria probabilistic decision analysis) where all three types of decision variables 

(probabilities, utilities and criteria weights) are modelled and evaluated together.  
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In early MCDA development, the question was raised of how decision-makers 

should compare the alternatives with respect to different types of objectives of the 

decision. Each objective is referred to as one attribute in the decision context, and the 

approach is to define one individual utility function for each attribute. These are 

then aggregated into a global utility function, in which weights express the relative 

importance of each attribute. Each consequence Ci may be thought of as a vector of 

achievement levels regarding the identified attributes, in the case of n attributes, the 

consequence set Ci = (c 1, …, c n). Some literature uses the terms criteria or perspec-

tive instead of attribute, however, from a theoretical point of view these terms may 

be used interchangeably. 

Several approaches to aggregate utility functions under a variety of attributes 

have been suggested, such as (Keeney and Raiffa, 1976/1993; Saaty, 1980; von 

Winterfeldt and Edwards, 1986). The most widely employed method is the additive 

utility function, sometimes referred to as the weighted sum. Some conditions must 

be fulfilled for the additive utility function to serve properly as an aggregated utility 

function. Firstly, the assumption of mutual preferential independence must hold, 

which states that when a subset of alternatives differs only on a subset Gi  G of 

the set of attributes G. Then the preferences between the alternatives must not depend 

on the common performance levels G \ Gi. Secondly, the condition of additive in-

dependence must hold, meaning that changes in the uncertain outcomes (its proba-

bility distribution) in one attribute will not affect preferences for lotteries in other 

attributes. The weights are restricted by a normalisation constraint wj = 1, 

wj  [0,1], where wj denotes the weight of attribute Gj. A global utility function U 

using the additive utility function is then expressed as 

U (x)  wiui (x) 

where wi is the weight representing the relative importance of attribute i. ui: Xi  

[0, 1] is the increasing individual utility function for attribute Gi, and Xi is the state 

space for attribute Gi. It is assumed that the functions ui map to zero for the worst 

possible state regarding the ith attribute, and map to one for the best. 

Another global utility function is the multiplicative utility function, introduced in 
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(Keeney and Raiffa, 1976/1993). The multiplicative model requires that every at-

tribute must be mutually utility-independent of all other attributes, saying that 

changes in certainty levels of one attribute do not affect preferences for lotteries in 

the other attributes. In contrast to additive independence, the condition of utility 

independence allows the decision-maker to consider two attributes to be substitutes 

or complements of each other. In this respect, it is a weaker preference condition 

than additive independence. Generally, the global utility function is usually ex-

pressed as 

1 KU (xi )  Kkiui (xi ) 1  

where ui: Xi  [0,1]. ui is the increasing individual utility function for attribute Gi, 

and Xi is the state space for attribute Gi. As for the additive function, the utility 

functions ui map to zero for the worst possible state regarding the ith attribute, and 

map to one for the best. The scaling constant K is the non-zero solution to 

1 K  1 Kki  

where the ki represent scaling constants, similar in their meaning to weights, but 

without the normalisation requirement. 

Other formal methods of decision evaluation under multiple objectives include 

the outranking approach (Benayoun et al., 1966; Brans, 1982), often referred to as 

the French school of decision analysis. This approach is based on a search for out-

ranking relations deduced from a set of binary preference relations. However, these 

approaches do not incorporate the modelling of uncertainty in the probabilistic 

sense and thus do not capture the risk associated with different courses of action.  

Two major theoretical systems of thought underpin the computational founda-

tions of decision analysis, viz. von Neumann-Morgenstern’s (vNM) expected utility 

theory and Keeney-Raiffa’s multi-attribute utility theory (KR), the latter developed 

at IIASA, the International Institute for Applied Systems Analysis, during Raiffa’s 

years as Director General 19721975, with Keeney employed as Research Scholar, 

and thus sometimes referred to as the IIASA theory of MCDA. While both theories 

originate from a similar rationalist tradition, they differ substantially in scope and 

structure. The vNM formulation is based on choices under uncertainty, where out-
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comes are lotteries over consequences. Preferences that satisfy completeness, tran-

sitivity, continuity, and independence axioms can be represented by a linear ex-

pected utility function: where is a lottery over outcomes with probabilities, and is a 

utility function defined over outcomes. The independence axiom is central: prefer-

ences over lotteries must not change if all options are mixed with a third lottery in 

the same proportions. 

KR generalises utility theory to deterministic multi-attribute decisions. It re-

places lotteries with multi-criteria score profiles and aims to construct utility func-

tions over combinations of attribute levels. The key axioms include i) Utility inde-

pendence of attributes, ii) Monotonicity in attributes, and iii) Decomposability (e.g., 

additive or multiplicative form) When these are satisfied, an additive utility func-

tion can represent preferences. Unlike vNM, KR treats the modelling of preferences 

without uncertainty. While vNM and KR are often treated as distinct, they are best 

understood as kin since their mathematical representations of utility differ mainly 

in context and notation. Both frameworks seek to represent preferences via utility 

functions that are linear in the appropriate domains. vNM handles linear expectation 

over probabilistic outcomes while KR handles linear aggregation over deterministic 

attributes. The similarity lies in the additivity: in both cases, preferences are con-

sistent with a sum of utilities, weighted by either probabilities or attribute weights. 

Thus, the vNM expected utility function can be interpreted as a variant of a multi-

attribute probabilistic utility function where the attributes are mutually exclusive 

outcomes governed by probability. 

In KR, this convergence becomes especially clear: the aggregate utility function 

in MAUT is the practical analogue of vNM’s expected utility formula, with proba-

bilities replaced by weights and outcomes replaced by criteria scores. This kinship 

underscores the deeper unity of decision theory: whether one is choosing under risk 

or across multiple attributes, the rational structure of preferences, grounded in util-

ity, independence, and monotonicity, remains the same. A key difference is whether 

uncertainty is external (vNM) or multi-dimensional (KR). 

To sum up, the main similarities are i) both systems rest on axiomatic represen-

tations of rational preference; ii) both aim to construct numerical representations 

that respect ordinal rankings; and iii) each incorporates separability and independ-
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ence in different forms. While the main differences are i) vNM requires probabilis-

tic lotteries; MAUT does not; ii) vNM utility is cardinal (up to affine transfor-

mations); MAUT utility is typically interval or ordinal depending on scale assump-

tions; and iii) MAUT has trade-offs between attributes; vNM captures risk attitude. 

In Part II, we will discuss some popular MCDA methods and check whether they 

comply with core fundamentals of mathematical statistics, decision theory and anal-

ysis. If not, they seem to be victims of over-engineering and ought to be either re-

formulated to be used as proper decision analysis frameworks or not considered 

theoretically motivated tools and methods. To properly discuss them, we introduce 

ten desiderata that are derived from vNM, KR, and multi-attribute utility in general. 

Desideratum 1 (Ordering): The preference relation is complete. For all A and B, 

either A ≻ B, B ≻ A, or A ∼ B. vNM takes completeness as axiomatic to ensure co-

herent preferences. KR carries it over to deterministic multi-attribute models. 

Desideratum 2 (Transitivity): The preference relation is transitive. If A ≻ B and 

B ≻ C, then A ≻ C. vNM assumes transitivity as axiomatic to ensure coherent pref-

erences. KR brings it over to deterministic multi-attribute models. 

Desideratum 3 (Dominance): If for all i, si (A) ≥ si (B) and for some j, sj (A) > sj (B) 

then A ≻ B. Strong dominance is compatible with both vNM and KR. It ensures 

that if one alternative is objectively better, it must be preferred. 

Desideratum 4 (Monotonicity): If A ≻ B, and A' is such that si (A) = si (A') for all 

i  j and si (A) = si (A')+ for some  > 0, then A' ⪰ B. This is a standard assump-

tion in both vNM and KR. 

Desideratum 5 (Independence of Irrelevant Alternatives, IIA): If A ≻ B in set X, 

and C ∉ {A, B}, then A ≻ B in X ∪ C, provided that criterion weights are automati-

cally adjusted to preserve the importance of one unit on the original scales if C 

caused scale renormalisations. Follows from vNM’s independence axiom (in its 

strong form). KR reinterprets it in terms of trade-off consistency: adding an irrele-

vant alternative should not affect preference ordering. 

Desideratum 6 (Rank Preservation): If A ≻ B in X, and C is a third alternative not 

affecting the scores of A or B, then removing C from X does not alter the ranking 

A ≻ B (allowing for automatic weight adjustment to preserve per-unit criterion 

meaning). Follows up on Desideratum 5 and stability assumptions. In additive 
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utility models, preferences among pairs are unaffected by alternatives with no im-

pact on the value functions of the focal options. 

Desideratum 7 (Criteria Transparency): For any preference A ≻ B, there exists a 

representable and decomposable justification based on the contribution of each 

criterion to the total evaluation. This follows from KR’s value function decompo-

sition principle. It ensures additive or multiplicative representations are intelligi-

ble and traceable to criterion-level contributions. 

Desideratum 8 (Weight Sensitivity): Let wi ∈ [0, 1] be weights summing to 1. A 

change in a wi  that increases the influence of criterion Ci in which si (A) ≥ si (B) 

should not reverse the preference A ≻ B. This follows from sensitivity analyses 

in MAUT (KR) and reflects the principle that weights encode preference intensi-

ties and must affect final utility accordingly. 

Desideratum 9 (Criteria Independence): If criteria Ci and Cj produce identical 

scores for all alternatives, the results should be cardinally invariant under merging 

them into one criterion with a combined weight 𝑤𝑖 + 𝑤𝑗. Related to the independ-

ence of attributes in MAUT (KR). A duplication of identical attributes without 

properly adjusting the weights violates utility independence. 

Desideratum 10 (Scale Invariance): For any criterion Ci, if a positive affine trans-

formation f : ℝ → ℝ is applied to all si (∙), then the preference relation A ≻ B 

should remain unchanged. In both vNM and MAUT (KR), utility functions are or-

dinal up to a monotonic transformation and cardinal under positive affine ones. 

These ten desiderata form a requirements system that will, for reference, be 

called DAMS (Decision-Analytic Methodological System) and which guarantees 

well-behaving and well-functioning MCDA methods if the ten are all adhered to. 

From the ten DAMS desiderata, some consequences follow. 

Proposition 1 (Utility Representability): If DAMS Desiderata 1–8 are accepted, 

then there exists a utility function U : X → ℝ, representable as an additive model 

𝑈(𝐴) =  ∑ 𝑤𝑖

𝑛

𝑖=1
∙ 𝑣𝑖(𝑠𝑖(𝐴)) 

where each vi  is a continuous, increasing value function and wi ≥ 0 with wi = 1. 



58   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

This follows from classical multi-attribute utility theory in the deterministic case. 

The axioms ensure the separability, monotonicity, and decomposability needed for 

an additive representation. 

Proposition 2 (Rank Reversal Exclusion): If DAMS Desiderata 5 and 6 are ac-

cepted, then the decision method is immune to rank reversal caused by irrelevant 

alternatives. 

Desideratum 5 ensures rankings are stable under expansion of the alternative set 

and Desideratum 6 maintains ranking under deletion. Together they exclude the 

structural basis for rank reversal which plagues some currently popular MCDA 

methods. 

Proposition 3 (Weight Responsiveness): If DAMS Desiderata 7 and 8 are accepted, 

then rankings will adjust appropriately under changes in criterion weights, without 

violating transitivity or dominance. 

These three propositions together define a class of prescriptively robust MCDA 

methods that are logically sound, preference-sensitive, and transparent. Violations 

of these desiderata entail logical or interpretive compromises of different kinds. 

There is an eleventh unofficial desideratum, concerning the decision-maker’s un-

derstanding of the underlying procedural elements. It places demands on the con-

sistent transparency of the logic used by the method and extends Desideratum 7.  

Desideratum 11 (Explanatory Transparency): It must be possible for the users to 

form and maintain a requisite mental model of the analytic process as a whole, in-

cluding but not limited to its computational steps. The method should provide a 

conceptually accessible and intelligible mapping from inputs (scores, weights, 

thresholds) to outputs (rankings and numerical scores), enabling both auditability 

and replicability. This includes the ability to trace how changes in inputs influence 

outcomes, without reliance on hidden mechanisms or opaque procedures. 

This last desideratum is sometimes not understood by designers of methods. 

They test their methods on decision problems, some real-life and some artificial, 

and observe the steps unfolding, Often, the process is facilitated by an intermediate 

or an expert, which makes the users not question the traceability of the output from 

the input, instead often relying on the perceived expertise of the facilitator. How-

ever, if MCDA methods are to become more widespread, there is a need for more 
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transparency in the processes to build trust in the output results. Desideratum 11 is 

different from 7 (Criteria Transparency) despite sharing the concept ‘transparent’.  

While the desiderata are formulated to be conceptually independent, some ex-

hibit logical or functional overlap under classic utility theory assumptions. DAMS 

Desiderata 1 (Ordering), 3 (Transitivity), 3 (Dominance) and 4 (Monotonicity) form 

a foundational core. These suffice to guarantee transitive, rational preferences that 

respect utility dominance and maintain independence from unrelated alternatives. 

Desideratum 6 (Rank Preservation) can be viewed as a corollary of Desideratum 5 

(IIA). If preferences are independent of irrelevant alternatives and based solely on 

score vectors, the deletion of an irrelevant third option should not affect the out-

come. Desideratum 9 (Criteria Independence) implicitly relies on Desiderata 7 (Cri-

teria Transparency) and 8 (Weight Sensitivity). If a method transparently reflects 

weight changes and scores, duplication or merging of criteria without correspond-

ing weight adjustments violates score attribution logic. Desiderata 7 (Transparency) 

and 8 (Weight Sensitivity) are not strictly necessary but conceptually desirable 

since they ensure interpretability. Desideratum 10 (Scale Invariance) stands some-

what independent from the others but supports robustness under unit changes. It is 

justified on theoretical rather than logical grounds. For pedagogical reasons as well 

as argument’s sake, all ten desiderata are kept in the DAMS system as guidelines 

and discussion points in the ensuing presentations of MCDA methods. These de-

siderata should not be confused with Howard’s 14 desiderata and five processing 

rules for a decision process as a whole (2009), which conflate higher-level proce-

dural steps with axiomatic and computational elements. 

As will be shown in the sequel, most MCDA methods depart in several ways 

from DAMS. Specifically, they fail to deliver decomposable, monotonic, and util-

ity-independent representations. They do not support consistent trade-off interpre-

tation at the attribute level. These methods seemingly offer practical tools but lack 

coherence. As a case in point, take rank reversal (see Proposition 2), the phenome-

non where the introduction or removal of irrelevant alternatives alters the ranking 

of existing ones. It serves as a powerful litmus test for compliance with DAMS. In 

line with the desiderata, preferences are supposed to be constructed to be invariant 

under irrelevant changes. This is encoded as independence of irrelevant alternatives 

(IIA), separability, and utility independence. Rank reversal directly violates these 
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principles. Thus, any method that admits rank reversal is, by definition, out of align-

ment with the desiderata as well as the core of classical utility theory. Moreover, 

rank reversal highlights violations of independence of irrelevant alternatives (IIA, 

Desideratum 5) and rank preservation (Desideratum 6), which are direct conse-

quences of utility separability. In practice, a method that allows rank reversal is one 

in which utility is not decomposable or context-stable, which is an immediate red 

flag for any hopes of a sound utility-theoretic grounding. 

The DAMS framework with ten desiderata will be employed to discuss six dif-

ferent well-known MCDA methods in separate chapters: SMART (representing the 

SAW class of methods evaluating the alternatives using a sum-of-weighted-values 

approach), and the Big Five: VIKOR, TOPSIS, ÉLECTRE, PROMÉTHÉE and 

AHP. All except ÉLECTRE were designed in 19771982, after Keeney and 

Raiffa’s IIASA work was published (1976). These methods were selected for this 

book because of their spread and reach  they are the most commonly used methods 

in decision analysis by a wide margin. Their usage and citation patterns suggest that 

method popularity often reflects branding success more than demonstrated method-

ological superiority. The prominence of certain methods appears to be driven less 

by performance or theoretical soundness and more by factors such as catchy acro-

nyms, compelling narratives, and academic network effects. This was noted already 

by Belton and Stewart (2002). Additionally, being early to the methods scene has 

afforded some approaches a lasting advantage, allowing them to establish a domi-

nant position before competing approaches emerged, further reinforced by cumula-

tive citation effects. In classic marketing theory, users are locked in to a product or 

a service by branding and narratives, creating a mental barrier to switching. The 

proliferation of some MCDA methods resembles a form of implicit marketing, 

where name recognition and earlier citations heavily influence uptake, often inde-

pendently of rigorous comparative validations or theoretical coherence, circum-

stances one could wish at least academia were largely devoid of. While these meth-

ods promote structured decision making, their branding leverage some of the very 

cognitive biases they aim to mitigate, such as the availability heuristic and affective 

association, both well-known from descriptive decision theory and ironically at play 

in the meta-selection of the methods themselves. 
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07. SMART 

The SMART family of methods originated in the context of problems with struc-

turing decision situations under multiple criteria, drawing inspiration from early 

multi-attribute utility theory and the desire to provide a structured yet relatively 

simple approach to decision making. The Simple Multi-Attribute Rating Technique 

(SMART) was developed by Edwards (1977) as a tool for decision-makers to eval-

uate alternatives based on multiple attributes or criteria. SMART was conceived as 

a practical method to facilitate decisions in complex environments without requir-

ing overly sophisticated modelling of preferences or trade-offs. Edwards’ motiva-

tion was to provide a method that was simple enough for non-experts to use while 

still retaining the essential elements and rigor of decision theory. 

The SMART (Simple Multi-Attribute Rating Technique) family of methods con-

stitutes a set of approaches developed within MCDA for the evaluation and ranking 

of alternatives characterised by multiple attributes. Originating in the early 1970s, 

SMART was introduced by Edwards as a response to the perceived complexity and 

limited practical usability of existing MCDA methods, particularly those requiring 

full elicitation of utility functions or cardinal preference structures. The core idea 

behind SMART was to provide a simpler, more intuitive framework for supporting 

decision making by relying on additive models and direct rating procedures. 

At its inception, SMART mandated that decision-makers assign a weight to each 

criterion, reflecting its relative importance, and then rate each alternative with re-

spect to each criterion on a typically numerical and bounded scale. These ratings 

are then aggregated via a weighted linear sum to yield an overall score for each 

alternative. The attractiveness of SMART lay in its procedural simplicity: it as-

sumed mutual preferential independence of criteria and linearity of value functions, 

which allowed for direct and transparent computations of aggregated scores. 

In subsequent decades, SMART evolved into a family of related methods, each 

designed to address specific theoretical or practical issues that emerged during its 

application. One such extension is SMARTS (SMART using Swings), which re-

fines the weight elicitation process. Instead of assigning importance weights di-

rectly, SMARTS asks decision-makers to assess the value difference between the 

worst and best levels of each criterion, given that all others are fixed at their worst 
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levels. This swing approach yields more correct relative weightings by anchoring 

them in the perceived impact of changes across the criteria range. 

A further extension is SMARTER (SMART Exploiting Ranks), which attempts 

to reduce the cognitive burden of precise weight elicitation. Instead of assigning 

numerical weights, SMARTER relies on ordinal rankings of criterion importance 

and employs a surrogate technique, rank-order centroid (ROC) weighting, to derive 

approximate cardinal weights from the rankings. This approach trades off some the-

oretical precision for increased ease of use and constitutes a practical compromise 

in setting weights with limited time or cognitive resources.  

Other variants and refinements include methods that relax the assumption of lin-

ear value functions or incorporate uncertainty in the weights and performance rat-

ings. For example, probabilistic versions of SMART have been proposed that model 

ratings or weights as distributions rather than fixed quantities, allowing sensitivity 

analyses and robustness assessments within the SMART framework. Its various 

forms share a common structure rooted in additive value models but diverge in their 

assumptions, elicitation procedures, and treatment of uncertainty. 

The SMART methods are built on a set of relatively simple computational rules 

that require the decision-maker to perform the following steps: first, the decision-

maker lists the criteria relevant to the decision problem. Then, each criterion is as-

signed a weight representing its relative importance in the decision-making process. 

The weights are typically normalised so that they sum to one. Next, each alternative 

is evaluated on each criterion, usually on a numerical scale, such as 1 to 10, with 

the scale representing the performance of the alternative relative to the others. 

The final step in SMART involves computing a weighted sum of the scores for 

each alternative. The alternative with the highest weighted sum is typically chosen 

as the preferred option. Mathematically, the decision rule in SMART can be ex-

pressed as follows: 

 

where 𝑆𝑖 is the overall score for alternative i, 𝑤𝑗 is the weight for criterion j, 𝑥𝑖𝑗 is 

the performance score of alternative i on criterion j, and m is the number of criteria. 
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This weighted sum approach ensures that the decision-maker’s preferences are re-

flected in the final decision and that the process is computationally efficient. 

To address the limitations inherent in the original SMART approach, Edwards 

and Barron (1994) proposed SMARTER (SMART Exploiting Ranks), an extension 

designed to accommodate greater complexity in decision modelling. The principal 

objective of SMARTER was to enhance methodological flexibility in representing 

nuanced preference structures. While preserving the additive architecture of 

SMART, SMARTER replaces direct numerical weighting with a rank-based ap-

proach, using the rank order centroid (ROC) method to derive criterion weights. 

This substitution introduces a non-linear mapping from rank to weight, better cap-

turing how decision-makers perceive importance differences among criteria. How-

ever, the aggregation of alternative scores remains strictly linear. By easing the cog-

nitive burden of weight elicitation while preserving structural simplicity, 

SMARTER is well-suited to situations in which full cardinal precision is unrealis-

tic, yet preference structures demand more than uniform weighting or arbitrary ap-

proximations. 

SMARTER also offers improved flexibility in eliciting preferences across mul-

tiple criteria. In complex decision problems, trade-offs between criteria often reflect 

underlying tensions, such as economic efficiency versus environmental sustainabil-

ity, where improving performance on one dimension may entail losses on another. 

While SMARTER does not explicitly model interdependencies, it enables decision-

makers to express the relative importance of criteria through complete ordinal rank-

ings. These rankings are then transformed into weights using the ROC surrogate 

method, implicitly capturing asymmetries in perceived importance. This increased 

flexibility, however, introduces additional complexity by requiring more structured 

input in the form of a full ranking of all criteria. 

SMART and its variants are, in fact, members of a broader methodological tradi-

tion commonly referred to as the SAW family, named after its foundational use of a 

sum-of-weighted-values approach. Also known as weighted linear combination or 

scoring models, the SAW family is built on the principle of linear additive aggrega-

tion, whereby the performance of an alternative is, as in SMART, expressed as a 

weighted sum of its evaluations across multiple criteria. At its core, the SAW family 

operationalises a special case of additive value models, in which the total value V(a) 
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of an alternative a is computed as a weighted sum of marginal value functions As 

noted earlier, this formulation presupposes interval-scale measurements. In its SAW 

formulation, the marginal value functions 𝑢𝑗(𝑥𝑗) are typically assumed to be identity 

mappings over normalised criteria scales, and the weights 𝑤𝑗 serve as pure scaling 

constants reflecting the decision-maker’s trade-offs among criteria. This corre-

sponds directly to additive independence and cardinal representation as laid out in 

MAUT. The SAW computational form is typically expressed as in the formula on 

page 62. It assumes that the attribute levels 𝑥𝑖𝑗 have been transformed into commen-

surate scales, typically via linear transformations. Once the transformations are ac-

cepted, aggregation proceeds under the expected value logic of utility theory, where 

alternatives are scored according to the weighted sum of marginal utilities. 

SMART in its basic form complies with most of the desiderata of DAMS, pri-

marily due to its additive structure, monotonicity, and transparency. Scores and 

weights are transparent, independence and dominance are preserved, and rank sta-

bility is assured. It is sometimes argued that the method does not align with Desid-

eratum 9 (Criteria Independence) in that duplicating a criterion inflates its influence. 

This is true for original SMART but not for SAW methods in general, though, since 

SAW methods should always adjust their weights when the criteria set changes, and 

that can be carried out by an automatic procedure. This reflects an inherent property 

of criteria weights, not of the SAW family itself. 

The SAW family gained influence during the 1960s and 1970s, driven by general 

developments in cost-benefit modelling, optimisation and systems analysis. It was 

during this period that Keeney and Raiffa (1976) formulated the axiomatic founda-

tions of additive preference models at IIASA, providing the formal justification for 

SAW as a special case of a broader utility-theoretic theory. In practice, however, the 

family’s intuitive arithmetic transparency made it popular well before its theoretical 

justifications. In Danielson and Ekenberg (2016), SMART representing numerical 

SAW is compared to the CAR method representing cardinal SAW ranking and to 

AHP. In the study, 100 decision-makers each made one significant decision over a 

three-week period using all three methods, after which they compared the methods 

across five performance indicators. The results showed that both SAW-based ap-

proaches were strongly preferred to the ratio-based AHP (presented in Chapter 12).  



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 65 

08. VIKOR 

VIKOR (a Serbian acronym; in English: multi-criteria optimisation and compro-

mise solution) is a method developed from the late 1970s onwards (David and 

Duckstein, 1976; Duckstein and Opricović, 1980), initially under the name IKOR. 

It was described as building on ideas from ÉLECTRE, favouring that method over 

MAUT. The method changed names in 1998 (Opricović, 1998, p.iii) and the new 

backronymed name VIKOR originally referred to a FORTRAN program, not the 

method. IKOR was designed for ranking and selecting alternatives in the presence 

of conflicting criteria, based on concepts of compromise programming and individ-

ual regret. The development of (V)IKOR emerged from work in multi-objective 

optimisation within water resource management. Its formulation is related to a met-

ric used in compromise programming, where the distance of each alternative to an 

ideal solution is computed. VIKOR uses two measures: the S measure (representing 

aggregated utility) and the R measure (representing maximum regret). They are then 

combined into a total ranking index Q, modulated by an external parameter v.  

The computational procedure of VIKOR involves the identification of the best 

values for each criterion among all alternatives (known as the ideal solution), nor-

malisation of the performance matrix to make criteria comparable, and the calcula-

tion of the S, R, and Q values for each alternative. The alternatives are then ranked 

according to these values. A compromise solution is proposed based on the ranking 

of the Q values, subject to two acceptability conditions (C1, C2) that involve both 

rank consistency and a threshold for closeness between top-ranked alternatives. 

The first computational step in VIKOR involves the construction of a decision 

matrix, where the rows represent the alternatives, the columns represent the criteria, 

and the entries in the matrix correspond to the performance of each alternative under 

each criterion. After that, the ideal- and regret-based solutions are determined. The 

ideal solution is obtained by selecting the best performance for each criterion across 

all alternatives, while the regret solution is obtained by selecting the worst compo-

nent for each criterion.  

The next step is the calculation of the distance of each alternative from the ideal 

and solution and the amount of regret selecting each alternative would incur. Once 

the distances from the ideal solution (S) and the regret (R) are calculated, the method 
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computes a compromise index (Q) for each alternative. This index represents the 

degree to which an alternative offers a balance between proximity to the ideal so-

lution and regret. The index is calculated by combining the distance from the ideal 

solution and the regret, weighted by the relative importance of each metric. The 

final step involves ranking the alternatives based on the three metrics. 

The calculation details are as follows. Assume there are n alternatives (denoted 

𝐴1, 𝐴2, … , 𝐴𝑛) and m criteria (denoted as 𝐶1, 𝐶2, … , 𝐶𝑚) used to evaluate each alter-

native. The values for each alternative and criterion are typically represented in a 

matrix X, where each element 𝑥𝑖𝑗 represents the performance of alternative 𝐴𝑖 with 

respect to criterion 𝐶𝑗. 

The values in matrix X are then normalised in order to transform them into a 

comparable scale. The normalisation function depends on whether the criterion is 

beneficial or non-beneficial. For beneficial criteria, the normalisation formula is 

 

while for non-beneficial criteria, it is 

  

where 𝑥𝑚𝑎𝑥,𝑗and 𝑥𝑚𝑖𝑛,𝑗are the maximum and minimum values in the jth criterion 

across all alternatives. Thus, this is a standard normalisation where the best alterna-

tive in each criterion receives the value 1 and the worst 0. This can be interpreted 

as the one-dimensional closeness to the best outcome. 

The ideal solution 𝐴+ is then defined as the best performance for all criteria: 

 
where 𝑦max,𝑗 are the maximum values for each normalised criterion j. For each al-

ternative 𝐴𝑖, the (L1) distance to the ideal solution is then calculated using the re-

versed formula 
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rather than a more traditional formula 

 

where 𝑤𝑗 in both cases represents the weight of the jth criterion. Thus, the normal-

ised scores are now reversed and reinterpreted as the multi-dimensional closeness 

to the best outcome instead. Next, the regret is computed by the (L∞) formula 

 
with the same meaning of its constituents as above. The regret for an alternative in 

this method is the worst weighted closeness of any of the constituent criteria.  

Finally, the compromise index 𝑄𝑖 combines the two measures 𝑆𝑖 and 𝑅𝑖 using an 

exogenous factor v. The formula for the index is 

 

where 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are the minimum and maximum values of 𝑆𝑖 across all alter-

natives, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are the minimum and maximum values of 𝑅𝑖 across all 

alternatives, and 𝑣 is an external factor that represents the relative importance of 

the majority of criteria. For v = 1, completely disregarding the ranking based on 𝑅𝑖, 

VIKOR is a reversed additive utility model since the 𝑆𝑖 and 𝑄𝑖 rankings coincide, 

but for any other value of v, it is not. Somewhat surprisingly, some descriptions of 

the method do not seem to require 0  v  1, which opens up for strange interpreta-

tions. This calculation procedure yields three ranking orders of the alternatives 

based on their performances 𝑆𝑖, 𝑅𝑖 and 𝑄𝑖. A set of rules (C1 and C2 plus if-then-

else rules) determines which of the rankings take precedence, with the 𝑄𝑖-ranking 

being the primary to consider first. C1 is called the acceptable advantage and is a 

threshold 𝑄1 − 𝑄2 𝐷𝑄 for the two top-ranked alternatives where DQ = 1 / (J  1) 

for J alternatives in total. In (Opricović, 1998, p.154), an upper limit of ¼ was in-

troduced on DQ, upheld in 2002 but strangely omitted in (Opricović and Tzeng, 

2004). From 2004 onwards, a decision situation with J = 2 alternatives results in 

DQ = 1, which can almost never be satisfied, rather of the more reasonable DQ = ¼.  
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The ideal solution is the best synthetic alternative, i.e. it does not exist in reality. 

Such alternatives are themselves, in swing-type methods, tools for elicitation rather 

than calculation devices. However, in VIKOR they are bases for distance calcula-

tions. For a simple example, consider the normalised values 𝑦𝑖𝑗, i.e. their ranges are 

[0, 1]. Then A+ becomes the vector (1, 1, 1, …) and all 𝑆𝑗 become 𝑖[𝑤𝑖 ∙ (1𝑦𝑖𝑗)], 

i.e. a reversed weighted sum, where lower values represent better alternatives. This 

is a linear operation on an additive scale. Next, three measures are calculated for 

each alternative, of which 𝑆𝑗 mostly resembles a standard DAMS measure. How-

ever, as pointed out, with a reversed scale where lower numbers are better, a meas-

ure of distance from the synthetic ideal (optimal) alternative. Still, this is in line 

with DAMS since all operators are linear and thus there exists a 11 relation. The 

other two measures involve a max operator, which is not linear and these measures 

lack the foundational validity of 𝑆𝑖. The S and R rankings, together with a linear 

combination Q of S and R, which does not add any information except an exogenous 

factor v, are a basis for a compromise procedure which may not produce a complete 

ranking or even a top-ranked alternative. It might be unclear why a compromise is 

required, how that need is expressed in any computable form, and how that form 

can be validated. While the calculations are easy to follow for the mathematically 

inclined, they lack the transparency of DAMS Desideratum 11.  

VIKOR fails Desideratum 8 (Weight Sensitivity) and 9 (Criteria Independence) 

due to the behaviour of the regret component. It also violates Desideratum 6 (Rank 

Preservation) by its post-decision rules (C1, C2, and thresholds) since these depend 

on score differences, full-set reference points and exogenous decision-maker input. 

Thus, while seemingly compliant at the numerical ranking stage, the full method 

sacrifices robustness. The use of compromise ranking regret measures similarly de-

viates from the desiderata. Its aggregation formula includes a balance parameter v, 

which lacks a clear grounding in utility theory. It fails decomposability and is sen-

sitive to dataset composition, violating utility independence, making it structurally 

prone to rank reversal when the ‘best’ or ‘worst’ alternatives change upon set mod-

ification. Already (Duckstein and Opricović, 1980) documented different ranking 

orders for VIKOR, ÉLECTRE and classic MAUT (SAW) for a small river basin 

problem (not even resulting in the same top-ranked alternative).  
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09. TOPSIS 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a 

method developed by Hwang and Yoon (1981), who admit that their method is 

clearly inspired by ÉLECTRE, which they consider to be “one of the best” and also 

“[most] refined” (ibid., p.127). TOPSIS was created to partly mimic ÉLECTRE and 

identify solutions that simultaneously have the shortest geometric distance from an 

ideal solution and the farthest distance from a nadir (anti-ideal) solution. The eval-

uation principle is that the optimal alternative should be the closest to the positive 

(ideal) solution (PIS) and the farthest from the negative (anti-ideal) solution (NIS). 

The process begins with the normalisation of the decision matrix to eliminate the 

differing scales across criteria. After normalisation, the values are multiplied by the 

corresponding criterion weights, which reflect the relative importance of each cri-

terion. Once the weighted normalised matrix is formed, the PIS and NIS are deter-

mined. The PIS consists of the best values for each criterion (maximum for benefit 

type, minimum for cost type), while the NIS consists of the worst. The Euclidean 

distance of each alternative from both the PIS and the NIS is then calculated. These 

distances are used to compute a closeness coefficient for each alternative, defined 

as the ratio of the distance to the NIS over the sum of distances to the PIS and NIS. 

The evaluation principle stems from the concept of distance measurement. Distance 

functions provide a way of comparing alternatives by quantifying the deviation of 

each alternative from an ideal solution representing the optimal choice across all 

criteria, and an anti-ideal solution represents the worst possible outcome. These two 

solutions form a bounded space within which the method operates, and all alterna-

tives are measured relative to these bounds. The choice of a vector-space (L2, Eu-

clidean distance) measure is, however, as doubtful as in ÉLECTRE. 

In more detail, the first step, after forming the traditional two-dimensional matrix 

of alternatives and criteria, is to transform the decision input so that the data for 

each criterion is dimensionless and can be compared. The transformed value 𝑟𝑖𝑗 for 

each utility is calculated as: 
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where 𝑥𝑖𝑗 is the original utility of alternative 𝐴𝑖 with respect to criterion 𝐶𝑗. By 

squaring (𝑟𝑖𝑗
2), it is easy to see that all 𝑥𝑖𝑗

2  /  𝑥𝑖𝑗
2  always fall within a [0, 1] scale but 

without spanning the scale as a standard normalisation does. Thus, this RMS-rescal-

ing (root-mean-square), which is a cornerstone operation in statistics but not in de-

cision analysis, is not the same as standard normalisation.  

Each criterion has an associated number 𝑤𝑗 representing the relative importance 

of criterion 𝐶𝑗. However, these numbers are not MCDA weights. Such weights are 

trade-off factors between spanned [0,1] scales. Since TOPSIS scales are not 

spanned, the numbers called 𝑤𝑗 are not pure weights but a mixture of weights and 

scaling factors. The fundamental requirement that the weights are trade-off factors 

between equal scales is not met. The transformed values 𝑣𝑖𝑗 are computed as 

 

The ideal and anti-ideal solutions are then determined by considering the best and 

worst values for each criterion. The ideal solution 𝐴+ is the set of values for which 

each criterion has the best value (for beneficial criteria) or the worst one (for non-

beneficial criteria). 

 

where 𝑣𝑚𝑎𝑥,𝑗 = max(𝑣𝑖𝑗) for beneficial criteria and min(𝑣𝑖𝑗) otherwise. Con-

versely for the anti-ideal solution 𝐴 

 

If the components of the 𝐴+ and 𝐴 vectors had been properly normalised, they 

would have been similar to anchor points in a standard swing process. The next step 

is to compute the Euclidean distance between each alternative and the ideal (𝑆𝑖
+) 

and anti-ideal (𝑆𝑖
) solutions. They are the RMS (root-mean-square, vector measure) 

distances to the vectors of the ideal 𝐴+ and anti-ideal 𝐴− solutions calculated by 

 

and 
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respectively. The larger the value of 𝑆𝑖
+ (𝑆𝑖

−), the farther the alternative is from the 

(anti-)ideal solution. Given these two opposite measures, another ranking of the 

alternatives is made using the combined measure 

 

The alternatives are ranked in decreasing order of 𝐶𝑖 with the alternative having the 

highest 𝐶𝑖 being the most preferred since it is closest to the ideal solution. 

As seen above, the transformation of the utilities 𝑣𝑖𝑗 into the calculation values 

𝑟𝑖𝑗 is an RMS (root-mean-square, i.e. non-linear) operation. Thus, a linear relation-

ship between 𝑣𝑖𝑗 and 𝑟𝑖𝑗 is lost even before weighing the values. The weighing 

comes next, which is a linear operator and does not distort the calculations further. 

After weighing the transformed values, each alternative’s distance to the best (ideal) 

and worst (anti-ideal) possible (but usually non-existent) values are calculated. Alt-

hough the criteria have weights that sum to one in a standard (linear) way, this dis-

tance is not the (linear) sum of each of the criteria’s distances. Instead, it is the L2-

metric (Euclidean) distance between the two points in a metric polytope. This is 

clearly not according to the DAMS desiderata and not in alignment with the nature 

of the input data. Consider an alternative that is α units away from the fictive opti-

mal solution 𝐴+ in criterion s and also α units away from 𝐴+ in criterion t. Since 

the criteria scales have been weighted (normalised), a unit in either criterion has the 

same influence on the end result – that is the meaning of scale normalisation by 

weights. Thus, the alternative would need an improvement of α + α = 2α units to 

become equal to 𝐴+. But TOPSIS would consider the required improvement to be 

√2α which is clearly wrong. The distance in a weight space should be measured by 

a city block (L1 or Manhattan) measure, not a Euclidean (L2) one. To realise the 

problem with the TOPSIS calculation method, assume wlog that the input data is 

on a [0, 1] format, i.e. the worst alternative for each criterion has the value 0 and 

the best has the value 1. Then 𝐴+ becomes {𝑤1,  𝑤2} and 𝐴− becomes {0, 0} given 

a weight vector (𝑤1,  𝑤2) where 𝑤1 + 𝑤2 =  1 as usual. For the scale space to be 
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invariant under traversal, every path from 𝐴− to 𝐴+ must have the same length and 

be equal to 1. This is not the case in TOPSIS which assigns the length √(𝑤1
2 + 𝑤2

2) 

to the traversal while a DAMS-compliant method, requiring a city block L1 metric, 

will have 1 for every conceivable traversal. For a given alternative, every path to 

the same final improvements in a set of criteria must be considered equal. 

To assess the real-world effects of TOPSIS’ deviation from the DAMS model, 

the author has performed a Monte Carlo simulation of 30∙106 rounds comparing the 

ranking order of a standard DAMS formulation and TOPSIS for a decision situation 

with 5 alternatives under 4 criteria. In about 7374% of the rounds, the ranking was 

the same. In more than 4% of the rounds, at least one alternative had a ranking that 

differed by two positions or more from SDA. Given the small decision situation 

with only 5 alternatives, that is a lot. Thus, in more than ¼ of the cases, TOPSIS’ 

results differ from the linear-based standard DAMS model.  

The method it violates criteria independence (D9), scale invariance (D10) and 

rank preservation (D6). These failures stem from its reliance on data-dependent ref-

erence points and Euclidean (L2) distance aggregation, which are sensitive to score 

distribution and structural redundancy. 

TOPSIS ranks alternatives by their relative proximity to an ideal and anti-ideal 

point, based on weighted Euclidean distances over vector-normalised criteria. The 

method is transparent and decomposable, allowing criterion-wise contributions to 

be traced via squared deviations, though not additively. While it aligns with DAMS 

in using compensatory aggregation and strict orderability, it departs in key ways: it 

violates strong dominance, lacks scale invariance, and depends on dataset-specific 

reference points. These context-sensitive anchors cause failures in criteria inde-

pendence and rank preservation, reducing its compliance. 

Let alternatives A and B be evaluated on two criteria. Suppose A is initially closer 

to the ideal point than B. Introducing a third alternative C with extreme values in 

one criterion can shift the ideal and anti-ideal reference points. This change may 

cause B to appear relatively closer than A, even though neither alternative's perfor-

mance has changed. This behaviour violates Desideratum 6 (Rank Preservation): 

preference orderings should not be affected by the removal or addition of irrelevant 

alternatives.   
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10. ÉLECTRE 

ÉLECTRE (ÉLimination Et Choix Traduisant la REalité) is a family of methods 

developed in France during the mid-1960s by Benayoun and colleagues at SEMA, 

Société d’Économie et de Mathématiques Appliquées (Benayoun et al., 1966; Be-

nayoun and Sussmann, 1966). Although Roy is often credited as the originator of 

the ÉLECTRE method, the foundational work was carried out within one of his 

teams at SEMA. The two initial SEMA papers, cited above, list Benayoun as first 

author, with Roy appearing on only one of them. Roy, serving as Directeur de la 

Direction Scientifique at SEMA, published the first academic article on ÉLECTRE 

as sole author, reflecting his position as the institution’s leader (Roy, 1968). Back 

then, ÉLECTRE was the name of a FORTRAN computer program running on a 

CDC computer, not of the method. Neither had it been backronymed yet. 

The method was originally designed to support decision making in complex sit-

uations where preferences may be non-compensatory and where full ranking of al-

ternatives is not always appropriate or feasible. A key idea of ÉLECTRE is to con-

struct an outranking relation based on concordance and discordance between pairs 

of alternatives evaluated over multiple criteria. The first version, ÉLECTRE I, was 

introduced in 1966. It was designed to solve the problem of choosing a subset of 

alternatives rather than producing a full ranking. The method operates by construct-

ing an outranking relation, denoted as “a outranks b,” when there is sufficient evi-

dence that alternative a is at least as good as alternative b. This is determined using 

two indices: the agreement (concordance) index and the disagreement (discordance) 

index. The concordance index measures the degree to which the majority of criteria 

support the statement that a is at least as good as b, taking the criteria weights into 

account. The discordance index captures the extent to which any criterion strongly 

contradicts this statement. An outranking is established if the concordance is high 

enough and discordance is not too strong. 

ÉLECTRE II, introduced shortly after ÉLECTRE I, was designed for ranking 

problems and introduced the concepts of strong and weak outranking relations to 

reflect varying levels of support for preference statements. It uses different thresh-

olds for concordance and discordance and introduces procedures for partial and 

complete pre-orders based on these relations. 
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ÉLECTRE III, developed in the 1970s and formalised in the early 1980s, intro-

duced pseudo-criteria and the use of indifference, preference, and veto thresholds. 

ÉLECTRE IV further developed the approach for cases where criteria weights are 

not available. It uses ordinal information only, relying on the ranking of criteria and 

performance without requiring numerical weights. ÉLECTRE IS is a later adapta-

tion of ÉLECTRE I for use in decision support software systems, integrating tech-

nical refinements and improved routines. ÉLECTRE TRI, introduced in the early 

1990s, shifts the focus from ranking or choosing among alternatives to sorting them 

into predefined categories. ÉLECTRE TRI has been further developed into ÉLEC-

TRE TRI-B and ÉLECTRE TRI-C, differing in the treatment of assignment rules 

and model structure. The set of methods is notably diverse, giving rise to a meta-

decision problem on which of the methods in the set to use and when. 

The ÉLECTRE family of methods follows a series of steps to derive the preferred 

alternatives. The first step in any ÉLECTRE application is the construction of a 

decision matrix. This matrix typically consists of rows corresponding to the alter-

natives and columns corresponding to the criteria. The decision-maker populates 

the matrix by providing performance values for each alternative with respect to each 

criterion. Once the matrix is established, ÉLECTRE proceeds by defining prefer-

ence thresholds for each criterion. These thresholds are critical to the method’s op-

eration as they determine how differences in performance between alternatives will 

be perceived. Typically, there are two thresholds for each criterion: 

1. Indifference threshold: This threshold specifies the range within which the 

difference in performance between two alternatives is so small that it does not 

affect the ranking. If the difference in performance between two alternatives 

on a given criterion is less than this threshold, the alternatives are considered 

indifferent to each other for that criterion. 

2. Preference threshold: This threshold defines the minimum performance dif-

ference required for one alternative to be considered preferred over another 

for a given criterion. If the difference in performance between two alterna-

tives exceeds this threshold, one alternative is considered preferred over the 

other for that criterion. 

In addition to these two thresholds, some versions of ÉLECTRE also use a veto 

threshold, which is applied when an alternative is deemed completely unacceptable 
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based on a critical criterion, regardless of its performance on other criteria. The veto 

threshold ensures that the decision-maker’s priorities are respected, preventing al-

ternatives that fall below a certain level of performance on essential criteria from 

being considered at all, even if they perform better on other criteria. 

Once the thresholds are established, ÉLECTRE proceeds with the pairwise com-

parison of alternatives. For each pair of alternatives, the method evaluates whether 

one alternative outranks the other. The outranking relationship is determined by 

comparing the alternatives for each criterion and assessing whether the difference 

in performance exceeds the appropriate preference or indifference thresholds. If the 

difference in performance is larger than the preference threshold, the alternative is 

considered preferred; if it is smaller than the indifference threshold, the alternatives 

are considered indifferent; and if the difference is larger than the veto threshold, the 

alternative is deemed outranked. 

The results of these pairwise comparisons are summarised in an outranking ma-

trix, where each entry reflects the degree to which one alternative outranks another 

across all criteria. The outranking matrix forms the basis for constructing the pref-

erence structure, which organises alternatives into groups or sets based on their rel-

ative performance. This ranking is partial rather than complete, as some alternatives 

may not be ranked in a strict order. 

The final decision-making step in ÉLECTRE involves applying a series of con-

cordance and discordance indices to further refine the rankings. The concordance 

index quantifies the degree of agreement between alternatives in terms of the num-

ber of criteria where one alternative is preferred over the other. In contrast, the dis-

cordance index measures the extent to which an alternative is disfavoured by a cri-

terion, representing the degree of disagreement between the two alternatives. These 

indices are then used to aggregate the pairwise comparisons and to generate an 

overall outranking relation between alternatives. 

To examine the computations in detail, six steps have to be scrutinised: 

1. Normalising the decision matrix. 

2. Calculating concordance and discordance for each pair of alternatives. 

3. Constructing the concordance and discordance matrices. 

4. Aggregating them into the dominance matrix. 
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5. Defining the outranking relation. 

6. Ranking the alternatives based on the outranking relation. 

The first step is the transformation of the input so that the data for each criterion is 

dimensionless and can be compared. The transformed value 𝑟𝑖𝑗 for each utility is 

calculated in the same way as for TOPSIS: 

 

where 𝑥𝑖𝑗 is the original utility of alternative 𝐴𝑖 with respect to criterion 𝐶𝑗. As for 

TOPSIS, it is easy to see that all 𝑥𝑖𝑗
2  /  𝑥𝑖𝑗

2  always fall within a [0, 1] scale but 

without spanning the scale as a standard normalisation does. Thus, this RMS (root-

mean-square) operation, which is a cornerstone in statistics but not in decision anal-

ysis, is not the same as standard normalisation. TOPSIS copied this RMS rescaling, 

which is a vector-space metric rather than a DAMS-compliant one, from ÉLECTRE 

without reflecting on the consequences of adopting it (Hwang and Yoon, 1981). 

However, after this step ÉLECTRE diverges from TOPSIS. The concept of con-

cordance compares each pair of alternatives based on the criteria, indicating the 

degree to which one alternative dominates another. For each pair of alternatives 𝐴𝑖 

and 𝐴𝑘, the concordance index 𝑐𝑘𝑙 is calculated as 

 

using the concordance set membership function (𝑣𝑖𝑗 is the same as 𝑟𝑖𝑗 above) 

 

In a different way, the discordance index is calculated as 

 

based on the discordance set membership function 

 

This concept of disagreement (or discordance) has inspired VIKOR’s subsequent 

regret ranking, which also leads to several overlapping or inconsistent rankings with 
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a number of rules of thumb devised to try to separate them into one final ranking. 

So while the ÉLECTRE family has been a trendsetter, it is no more DAMS compli-

ant because of that. On the contrary, the ideas copied by other methods are non-

compliant in nature. Next, define a threshold 𝑐∗ such that 

 

or some similar function, different versions of the method have different functions. 

Then construct a two-dimensional binary matrix F with elements 

 

which shows where alternative 𝑎𝑘 concordance-dominates 𝑎𝑗. Next, construct an-

other two-dimensional binary matrix G with elements 

 

indicating where 𝑎𝑘 is not too much worse than 𝑎𝑙 in the discordance sense. After 

a few more steps, a partial ranking is arrived at by ÉLECRTE I which is considered 

the end result. No total ranking can be promised with this method, this depends on 

lucky circumstances among the input data. The ÉLECTRE family contains many 

methods that differ in various respects. The final rankings in the methods are based 

on the outranking relationships between all pairs of alternatives. The alternatives 

are sorted based on how strongly they outrank others. The alternative that outranks 

the most others (with the highest dominance value) is considered the most preferred. 

ÉLECTRE violates most desiderata, for example, 15 and partially 6. Its thresh-

old logic undermines monotonicity and independence. Rank reversals are common, 

and preferences can be reversed by introducing or removing unrelated alternatives. 

Additionally, it does not produce a total ordering and partly fails to satisfy utility-

based decomposability (Desideratum 7). Further, the way of introducing arbitrary 

user-defined thresholds in the computations instead of imposing all such operations 

on the end result is not in alignment with DAMS. 
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ÉLECTRE relies on concordance and discordance indices and veto thresholds to 

establish outranking relations. Although it attempts to reflect dominance, it fails in 

decomposability and transparency. The method’s qualitative thresholds obscure 

continuous preference trade-offs and often produce incomparabilities. From a 

MAUT viewpoint, ÉLECTRE violates utility independence and introduces arbi-

trary cut-offs without functional justification. Adding a new alternative can alter 

concordance and discordance thresholds due to recalculated matrices. An alterna-

tive A previously considered non-dominated may now be outranked due to shifts in 

veto thresholds, partly violating Desideratum 6 by indicating that utility structure is 

not preserved. The methods use thresholds and concordance-discordance matrices 

that are recalculated for every new alternative. This context-sensitive process 

causes violations of both IIA and Rank Preservation. Moreover, incomparabilities 

may arise or disappear when the set changes, leading to rank inconsistencies. The 

transparency of ÉLECTRE is the least among the MCDA methods surveyed so far 

(but it will get worse). No real-life decision-maker the author has met (as opposed 

to mathematicians and decision theorists) comprehended the steps and how or why 

they lead to a suggested ranking of the alternatives. 

Further, the fact that ÉLECTRE only yields a partial ranking as output, with no 

reliable cardinal information (strengths between the ranked alternatives), reveals a 

naïve view on decision-analytic support, as if the MCDA method should make the 

decision (in line with the strongest formulation of the MCDM decision-making as-

sumption), a standpoint that is at odds with how modern MCDA is (and should be) 

used as a guiding tool. Not least in decision situations where large sums of money 

are involved, the desire to have a cost-benefit step as the last one in the decision 

process is common. In such a step, partial (or even complete) rankings will not do. 

It has to be cardinal, numeric output to be of any use. Besides, in all other decision 

situations, cardinal information is also always preferable, not least since a sensitiv-

ity analysis should follow the initial results. Such analyses are much harder (bor-

dering impossible) to perform with only ordinal output information available. 
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11. PROMÉTHÉE 

PROMÉTHÉE (originally called Préférence par Ordination selon la Méthode 

ÉLECTRE pour les Hiérarchiques Évaluations Enrichies, later anglicised to Prefer-

ence Ranking Organisation Method for Enrichment of Evaluations  both referring 

to the Greek god Prometheus, meaning forethought) is a family of methods devel-

oped by Brans in the early 1980s. PROMÉTHÉE belongs to the class of outranking 

methods (also known as the French school of MCDA) pioneered by the SEMA 

Group (ÉLECTRE). The initial formulations, PROMÉTHÉE I and II, which were 

counter-reactions to ÉLECTRE IIV, were presented in (Brans, 1982). There, it is 

pointed out that the ÉLECTRE methods contain difficulties that PROMÉTHÉE 

aims to overcome, such as handling the concordance and discordance thresholds. 

Those are complicated to set, and further, the results obtained do not provide a com-

plete ranking of alternatives. These difficulties are circumvented i.a. by introducing 

generalised preference functions and a unified ranking procedure (ibid., Section 3). 

A core concept in PROMÉTHÉE is the use of a preference function that trans-

lates the difference in performance between two alternatives on a single criterion 

into a degree of preference ranging from 0 (no preference) to 1 (strict preference). 

Decision-makers choose among several predefined preference functions, each cor-

responding to different assumptions about how preferences behave with respect to 

differences in criterion performance. As usual, each criterion also has a weight, re-

flecting its relative importance in the overall decision situation (Brans and Vincke, 

1985). 

PROMÉTHÉE I produces a partial ranking of alternatives based on the calcula-

tion of positive and negative preference flows. The positive flow measures how 

much an alternative is preferred over others, while the negative flow indicates how 

much it is outranked by others. These flows are used to identify incomparabilities 

when conflicting preferences occur. PROMÉTHÉE II, by contrast, derives a com-

plete ranking by computing the net flow (positive minus negative), thus eliminating 

incomparabilities but possibly reducing information about preference structures. 

Following the ÉLECTRE tradition, the initial formulations of PROMÉTHÉE 

were followed by several extensions to address specific methodological require-

ments. PROMÉTHÉE III was developed to deal with rankings that involve interval 
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data or require robustness in the presence of uncertainty. PROMÉTHÉE IV extends 

the method to handle continuous alternatives, particularly useful in problems where 

alternatives form a continuous set rather than a discrete list. This version involves 

the integration of preference functions over continuous domains, relying on integral 

calculus rather than discrete summation. PROMÉTHÉE V incorporates constraints, 

such as resource or budget limitations, and enables the selection of a subset of al-

ternatives that satisfy these constraints while preserving preference relations. This 

variant merges the outranking methodology with optimisation techniques to support 

constrained decision problems. PROMÉTHÉE VI was designed to accommodate 

multiple decision-makers by aggregating their individual preference flows through 

various consensus or voting procedures. 

A central idea of all PROMÉTHÉE versions, as well as all ÉLECTRE ones, is 

that alternatives are ranked based on their outranking relationships. An outranking 

relation expresses the degree to which one alternative is considered superior to an-

other, taking into account all relevant criteria. This is achieved by comparing the 

performance of each pair of alternatives with respect to each criterion and evaluat-

ing the intensity of preference for one over the other. This comparison is not always 

straightforward, as decision criteria may have different importance levels or even 

exhibit interdependencies. To handle these complexities, PROMÉTHÉE incorpo-

rates preference functions that model the intensity of preference for one alternative 

over another, based on the performance difference for each criterion. The method 

allows for non-linear preferences, meaning that a small difference in performance 

may be more or less significant depending on the criterion in question. 

PROMÉTHÉE operates in several stages, from the formulation of the decision 

matrix to the final ranking of alternatives. The first stage involves the construction 

of a decision matrix, where each row represents an alternative, and each column 

corresponds to a criterion. In this matrix, the values for each alternative-criterion 

pair represent the performance of the alternative with respect to that criterion. 

Next, the decision-maker is asked to provide preference functions for each crite-

rion. These functions are important to the method because they capture how the 

decision-maker perceives the trade-offs between alternatives. A preference function 

specifies how much better one alternative is preferred over another, given a certain 

difference in performance on a given criterion. For example, if the criterion is cost, 
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the decision-maker may consider a small reduction in cost as highly desirable, but 

a larger reduction as less significant. In this case, the preference function could be 

designed to reflect a diminishing marginal utility for cost savings. 

The preference function is typically a non-decreasing function that expresses the 

intensity of preference. Depending on the criterion, it can take different forms. For 

example, in the case of a benefit criterion (where higher values are preferred), the 

function could be linear or exponential, indicating that the higher the performance 

of an alternative, the greater the preference. For a cost criterion (where lower values 

are preferred), the function might be decreasing, reflecting the increasing prefer-

ence for alternatives that perform better (i.e., have lower costs). 

Once the preference functions are established, the method proceeds with the cal-

culation of preference indices for each alternative pair. These indices quantify the 

degree to which one alternative is preferred over another for each criterion, based 

on the difference in their performance. The total preference index for an alternative 

is obtained by summing these individual preference indices over all criteria. 

After calculating the preference indices, the method computes two global out-

ranking flows for each alternative: the positive outranking flow and the negative 

outranking flow. The positive flow reflects the degree to which an alternative is 

preferred to all other alternatives, while the negative flow reflects the degree to 

which it is outranked by other alternatives. These flows are calculated by consider-

ing all the pairwise comparisons and aggregating the preference indices for each 

alternative. 

Originating from political and social sciences, the methods are designed to facil-

itate negotiation and compromise rather than a definite result. In this, behavioural 

components get mixed with analytical ones. PROMÉTHÉE I calculates a partial 

ranking of alternatives. This version considers only the positive and negative flows 

of each alternative, and it ranks alternatives according to their outranking relation-

ships. However, the results of PROMÉTHÉE I do not necessarily provide a strict 

total order of all the alternatives, as some alternatives may be ranked equivalently 

in terms of their outranking relations. PROMÉTHÉE II, on the other hand, provides 

a complete ranking of alternatives by incorporating a net outranking flow, which is 

the difference between the positive and negative flows. This version of PRO-

MÉTHÉE is appropriate when a complete and unambiguous ranking of alternatives 
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is necessary. PROMÉTHÉE II produces a strict total order of the alternatives, with 

the alternative that has the highest net flow being the most preferred. 

Since PROMÉTHÉE ranks alternatives by calculating preference values be-

tween pairs of alternatives based on each criterion, the method considers both the 

magnitude of the preference and the relative importance of the criteria. This is done 

by the following calculation steps. As with almost every other method, it begins 

with normalising the input values. This time, it is a regular linear transformation of 

the input data where the scales are reversed for non-beneficial data (i.e. where lower 

numbers are preferred) to produce normalised utilities. For ordinary input values, 

this is 

 

while for reversed scales, it is instead 

 

where 𝑥𝑖𝑗
∗  is the normalised value for alternative 𝐴𝑖 under criterion 𝐶𝑗, and where 

max(𝑥𝑗) and min(𝑥𝑗) are the maximum and minimum values in criterion 𝐶𝑗 across 

all alternatives. The method uses a preference function to quantify the preference 

of one alternative over another with respect to each criterion. The preference func-

tion can take different forms, depending on how the decision-maker perceives the 

relative importance of differences between alternatives. Its general form is 

 

where  can be any of six prescribed transform functions, none of them being a 

simple linear function. The functions include a stepwise linear threshold function 

and a dichotomic threshold function that evaluates to 0 or 1 depending on whether 

a threshold number is met or not. 

Next, for each pair of alternatives 𝐴𝑖 and 𝐴𝑘, the net preference is calculated 

based on the individual preferences for each criterion. The net preference 𝜋𝑖 of al-

ternative 𝐴𝑖 over 𝐴𝑘 is computed as  
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where 𝑤𝑗 is the weight of criterion 𝐶𝑗 and 𝑃𝑖𝑗 is the preference function value for 

criterion 𝐶𝑗 for alternatives 𝐴𝑖 and 𝐴𝑘. 

Next, the outranking relation is established to compare two alternatives. The net 

preference values 𝜋𝑖𝑘 are used to determine whether one alternative dominates an-

other. The positive flow 𝛷𝑖
+ and negative flow 𝛷𝑖

− of each alternative 𝐴𝑖 are calcu-

lated to assess its overall preference relative to all other alternatives as follows: 

 

and 

 

The positive flow is said to represent how much each 𝐴𝑖 outranks the other alterna-

tives while the negative flow represents how much 𝐴𝑖 is outranked by other ones. 

The final ranking of the alternatives is in PROMÉTHÉE II determined by the net 

flow 𝛷𝑖 =  𝛷𝑖
+ − 𝛷𝑖

− while PROMÉTHÉE I relies only on the separate positive and 

negative flows. The alternative with the highest 𝛷𝑖 is the most preferred, and the 

one with the lowest 𝛷𝑖 is the least preferred. If two alternatives have very similar 

flows, an indifference threshold can be used to label them inseparable. 

PROMÉTHÉE fails to comply with Desiderata 5 and 6, as the net flow scores 

depend on the entire set of alternatives, not just pairwise comparisons. It also partly 

violates Desideratum 3 (Dominance) due to preference function tuning. Though 

relatively transparent and responsive to weight changes, it does not ensure scale 

invariance or rank preservation under deletion. It uses pairwise comparisons and 

preference functions to derive outranking flows. While these flows offer some in-

terpretability, they do not result from a decomposable utility function. The method’s 

dependence on the full alternative set undermines attribute-level separability. The 

flows also obscure individual criterion contributions, violating transparency. As 

such, it is definitively incompatible with DAMS. 
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In PROMÉTHÉE, the net preference flow of an alternative is calculated based 

on pairwise dominance across the entire set. If an alternative C is added, even one 

with no dominance over A or B, the net flows might change. This violates IIA (De-

sideratum 5) and undermines utility decomposability. Because the method relies on 

pairwise comparisons across the full set of alternatives, the net flow scores are sen-

sitive to the composition of the alternative set. This relational structure violates not 

only IIE but also IIA and can lead to rank reversals when alternatives are added or 

dropped. 

Being a follow-up method to ÉLECTRE, albeit conceived 1516 years later, it 

is not surprising that PROMÉTHÉE displays some of the same weaknesses in that 

it only yields ranking as output as well, and again with no reliable cardinal infor-

mation to supplement the output. It is not as naïve as ÉLECTRE since some variants 

(not PROMÉTHÉE I) at least result in complete rankings. However, almost the 

same arguments apply to PROMÉTHÉE as to ÉLECTRE since cardinal infor-

mation is always preferred, not least as a sensitivity analysis should follow the ini-

tial results. See the previous chapter on ÉLECTRE for a more thorough discussion 

of these shortcomings and how they relate to an outdated and monolithic MCDM 

view of decision-analytic support in general, rather than seeing MCDA as one use-

ful tool in a toolbox. 

Ending the chapter with a sidenote, Électre (Electra) is a tragic figure from Greek 

mythology, known for her relentless pursuit of vengeance, moral absolutism, and 

emotional isolation, traits often portrayed without a prospect of redemption. Électre 

brings conflict and harsh justice to the table, making uncompromising decisions 

without sentiment. In contrast, Prométhée (Prometheus), also from Greek mythol-

ogy, is a god who gave fire to humanity and stands as a symbol of enlightenment, 

rational defiance, and hope for human progress. He is portrayed as empowering 

rather than punishing, suffering so that others might see more clearly. Électre de-

mands justice in a broken world while Prométhée represents the hope for a better 

one. Why those names were chosen as backronyms for the respective methods is 

unclear. 
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12. AHP 

The Analytic Hierarchy Process (AHP) is a method developed by Saaty in the mid-

1970s, with its theoretical foundations first formally presented in (Saaty, 1977). 

AHP was introduced to support decision making by structuring problems into a 

hierarchical model and enabling the quantification of subjective preferences 

through pairwise comparisons. The method is based on the principles of ratio-scale 

measurement and relies on human judgement to derive priority scales (Saaty, 1980). 

AHP involves decomposing a decision problem into a hierarchy with at least 

three levels: the overall goal at the top, criteria (and possibly sub-criteria) at inter-

mediate levels, and the set of decision alternatives at the bottom. Decision-makers 

are required to make pairwise comparisons between elements at each level with 

respect to their parent node. These comparisons are captured using a 1-to-9 scale 

proposed by Saaty, where 1 indicates equal importance and 9 indicates an extreme 

preference for one element over another. 

From the pairwise comparison matrices, AHP derives a set of priority vectors 

using eigenvalue calculations. The principal right eigenvector of the matrix is nor-

malised to produce relative weights, reflecting the intensity of preferences among 

the compared elements. Consistency of the pairwise judgements is measured using 

a consistency index (CI) and a consistency ratio (CR). These measures compare the 

observed consistency of the matrix to a random matrix of the same order. A CR 

below a threshold, typically 0.1, is generally considered acceptable. 

There are also various methods for improving the efficiency and scalability of 

AHP, especially in high-dimensional problems. These include methods for incom-

plete pairwise comparisons, where not all element comparisons are required, and 

consistency-driven adjustments to reduce redundancy and cognitive load. 

Computational implementations of AHP and its variants have been developed 

extensively. These implementations often incorporate mechanisms for consistency 

checking, sensitivity analysis, and visualisation of results. AHP is susceptible to 

inconsistencies in pairwise comparisons. AHP uses the Consistency Ratio (CR) to 

assess the degree to which the pairwise comparisons are logically consistent. How-

ever, even when the consistency ratio is within acceptable limits (typically below 

0.1), inconsistencies can still affect the accuracy and reliability of the decision. The 
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requirement for pairwise comparisons can become overwhelming for decision-

makers, particularly in decision problems with a large number of alternatives and 

criteria. This can lead to inconsistencies that are difficult to detect or rectify, thereby 

affecting the quality of the final decision. AHP is more of a procedure-driven 

method than a formula-driven one. Thus, it is best described by the steps involved. 

An AHP evaluation involves the following steps: 

1. Performing pairwise comparisons. 

2. Normalising the pairwise comparison matrices. 

3. Calculating the priority vectors (weights). 

4. Conducting consistency checks. 

5. Calculating global weights and determining the final ranking of alternatives. 

In the first step, Pairwise Comparisons, decision-makers compare each pair of ele-

ments using a scale (usually from 1 to 9): 

o 1 means equal importance. 

o 3 means one element is slightly more important. 

o 5 means one element is significantly more important. 

o 7 means one element is very strongly more important. 

o 9 means one element is extremely much more important. 

The comparisons for the criteria would be represented as a pairwise comparison 

matrix. Next in the same step, construct the Pairwise Comparison Matrix. It is con-

structed from the elements that represent the relative importance of the elements 

compared. The matrix is reciprocal, meaning 𝑎{𝑖𝑗} =
1

𝑎{𝑗𝑖}
 . Next, normalise the pair-

wise comparison matrix. Normalise each column of the matrix by dividing each 

element by the sum of the elements in that column. This step ensures that the col-

umns represent the relative importance on a common scale. The resulting matrix is 

the normalised matrix. 

The next step is to calculate the eigenvector (priority vector), which represents 

the relative weights of the elements (either criteria or alternatives). This is done by 

calculating the dominant eigenvector of the pairwise comparison matrix. Such an 

operation might yield an inconstant matrix. Thus, the step that follows is to check 

the consistency of the comparisons. AHP assumes that the pairwise comparisons 
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should be consistent (if A ≻ B and B ≻ C then A ≻ C should hold, i.e. transitivity). 

The consistency ratio (CR) is computed to assess how consistent the pairwise com-

parisons are. The steps to check consistency are: 

1. Compute the consistency vector by multiplying the comparison matrix by 

the priority vector. 

2. Divide the resulting vector by the priority vector element-wise to get the 

lambda max (largest eigenvalue). 

3. Calculate the consistency index (CI) using  

 

4. Finally, compute the consistency ratio (CR) by dividing the CI by a random 

consistency index (RI) that depends on the size of the matrix. If CR is below 

an exogenous threshold (typically 0.1), the comparisons are considered con-

sistent enough. 

The finalising step is to calculate the global weights. Once the priority vector for 

the criteria is determined as well as the pairwise comparison matrices for the alter-

natives relative to each criterion, the global weights of the alternatives are computed 

by combining the local weights for each criterion with the global weights of the 

criteria. This is as complicated as it sounds from a user perspective, and the method 

is not transparent as seen by decision-makers. 

AHP fails or partially violates almost every desideratum: Desideratum 4 (mono-

tonicity not guaranteed), and Desiderata 510 (due to scale sensitivity, context de-

pendence, and rank reversal), plus conditionally Desideratum 2 (due to tolerated 

inconsistency) and Desideratum 3 (dominance ignored),. The eigenvector approach 

further obscures criteria transparency (Desideratum 11) and utility interpretability. 

Let alternatives A and B be evaluated in an AHP framework with pairwise com-

parisons indicating A ≻ B. Now introduce C, which is strictly worse than both A 

and B across all criteria, i.e. A ≻ C and B ≻ C. The pairwise comparison matrix 

must be expanded to accommodate C, and due to renormalisation, the original rel-

ative weights between A and B shift. The risk: B ≻ A might occur. This violates 

Desideratum 5 (IIA) and by extension the separability required in utility theory, a 

problem that has been known since long (Belton and Gear, 1983). AHP’s pairwise 
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comparison matrices are scale-dependent and inherently sensitive to the number 

and configuration of alternatives. A rank reversal might occur when a new, perhaps 

even dominated, alternative is added (Dyer, 1990). AHP is a preference elicitation 

method, not a dominance-checking procedure. It assumes the decision-makers are 

perfectly consistent in their judgements. Since this is almost impossible, dominance 

violations can occur. But that is a feature, not a bug, in the AHP worldview. Of the 

methods discussed, it is certainly the least compliant with DAMS and has been la-

belled as outright flawed (Abbas, 2018, Ch.3).  

Although the contributions of Belton and Gear (1983), Dyer (1990) and others 

have served as important red signals, they are in a sense unnecessary. An inspection 

of the internal mechanics of AHP reveals that only a few of the fundamental under-

lying principles from established theories, what we refer to as desiderata, are actu-

ally adhered to. Consequently, issues such as rank reversal unfortunately arise. The 

entire process is opaque, leading to results that are difficult to trace and interpret. It 

is hoped that future research will redirect its focus and resources towards the ad-

vancement of MCDA methods that are grounded in well-established scientific prin-

ciples, rather than engaging in efforts that contradict them. 

AHP has been criticised for using ratio scales, which from a measure-theoretic 

standpoint are not compatible with the interval scales foundational to classic deci-

sion-analytic theories and thus violate key desiderata. Ratio scales conflict with the 

linearity assumption underpinning expected utility theory, where utility functions 

must support additive operations over probabilities or weights. Next, ratio scales 

lack invariance under positive monotonic transformations, an important property 

for preserving preference orderings in both ordinal and interval-based MCDA mod-

els. Third, the use of ratio-based inputs may violate preferential independence, 

which is essential for constructing valid additive models. Further, ratio-derived 

weights challenge the assumption of commensurability across criteria, as the scale 

intensities lack a consistent unit of value, making cross-criteria comparisons am-

biguous. This is not to say that ratio scales are flawed per se. Rather, their assump-

tions and properties do not align well with the structure in the MCDA domain. 

However, they have been demonstrated to be very useful and of importance in other 

fields, such as representing perceptual and cognitive processes (Saaty, 2001). Dif-

ferent scale types are discussed further in Chapter 14. 
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13. Comparisons 

The DAMS desiderata framework for MCDA provides a principled foundation that 

integrates classical utility theory with the realities of multi-criteria environments. 

The axioms synthesise formal requirements such as transitivity, dominance, and 

independence with practical necessities like criteria weighting and score transpar-

ency. Table 2 summarises how the methods discussed in Part II comply with the 

DAMS desiderata. 
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General SAW OK OK OK OK OK OK OK OK  OK OK 

VIKOR OK OK NO OK OK NO NO NO NO OK 

TOPSIS OK OK OK OK OK NO OK OK NO NO 

ÉLECTRE NO NO NO NO NO NO NO OK NO NO 

PROMÉTHÉE NO NO NO NO NO NO NO OK OK NO 

AHP OK NO  NO  NO NO NO NO NO NO NO 

Table 2. SMART and the Big Five methods compared using the DAMS desiderata 

As demonstrated in this book through analyses, classifications, and sometimes 

counterexamples, many popular MCDA methods fall short of satisfying these de-

siderata. Regarding Desideratum 9, Criteria Independence, the outcome depends on 

how the criteria are handled in the outer-layer MCDM process, outside of the core 

MCDA calculations. Therefore, it is not possible to draw a definite conclusion re-

garding that desideratum based only on the discussions in the preceding chapters. 

But methods such as TOPSIS and ÉLECTRE, which confound trade-off weights by 

using fundamentally non-comparable scales, stand a far less chance of fulfilling the 

desideratum. See the Appendix for a more detailed discussion on each of the ten 

desiderata and the methods’ adherence to them (SAW is not discussed further). 
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The literature is replete with comparisons of MCDA methods in which the re-

sulting rankings diverge significantly. Rather than seeking to identify a single win-

ning method, which is often the goal, such outcomes should instead be viewed as 

troubling indicators of the epistemic standards within the field. For example, 

Opricović and Tzeng (2004) compare VIKOR and TOPSIS. The comparison clearly 

illustrates the ad hoc nature of both methods as well as the many differences when 

it comes to details. In their example, a total of 18 variants of the two methods are 

used to rank three alternatives, and they point out different alternatives as the best 

one, but the reasons for or against either result are hard to grasp for a reader. Re-

markably, the 18 variants together succeed in ranking the three alternatives in all 

eight (!) possible permutations of the ranking order. Imagine how impossible it 

would be for a non-expert to understand the pros and cons of each variant. Moreo-

ver, none of the methods offer any means of sensitivity analyses, instead presenting 

the results with three decimals. Further, in (Opricović and Tzeng, 2007), the four 

methods VIKOR, TOPSIS, ÉLECTRE and PROMÉTHÉE are compared. There are 

six sets of criteria weights, and for each set, the methods arrive at 12 rankings in 

total. The rankings manage to divide the six alternatives into two sets of three alter-

natives each, but within the top set, the best alternative changes frequently or re-

mains undetermined.  

In (Zlaugotne et al., 2020), five methods are compared of which three are VI-

KOR, TOPSIS, and PROMÉTHÉE. For the four alternatives in the article’s deci-

sion problem, the five methods (only one variant of each this time) manage to pro-

duce four different rankings among the five methods. In a subsequent meta-ranking, 

averaging the results of the five methods, a final ranking is arrived at. However, 

this is not how MCDA analyses should have to be conducted – exploring a large set 

of methods in an ensemble fashion and hoping that their average is a “better” indi-

cator than any single method by itself. The substantial efforts required notwith-

standing, there is no theoretical proof that such averaging should lead to a better 

analysis. If that were the case, one could in principle construct a single optimal the-

more-the-merrier method, an all-encompassing meta-method made up of every 

known MCDA method (and perhaps all their variants), each weighted according to 

some mysterious, all-purpose meta-weighing scheme. 

What all the methods (except SMART) fail to do is to separate the core calculus 
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in decision analysis from the psychological aspects of decision making. Given a set 

of input data, there should be one set of output data, computed according to the 

well-established theories that underlie DAMS. The output data should be amenable 

to different sensitivity analyses in order to study the stability of the results. At the 

next level up, the MCDM level, negotiation, bargaining, regret and similar consid-

erations should be processed in an orderly fashion. If that processing requires addi-

tional calculations, they could be performed on the output data, but only if they can 

be motivated by well-founded and verified principles rather than engineering-style 

patches that take some property from a handy mathematical concept such as ordi-

nary least squares or the max operator, without a solid theoretical motivation as to 

why and without subsequent suitability verifications by empirical studies.  

It stands to reason that MCDA methods should not behave like this. Rather, these 

articles are a testament to the sad state of affairs that the MCDA field is currently 

in. The possibility of a “smorgasbord” approach: picking methods, parameters and 

formulas of liking, and mixing in descriptive and psychological factors, in order to 

allow for a ranking with a preferred alternative on top is surely a contributing factor 

to the prevailing mistrust and underutilisation of MCDA in society today.  

This book provides both a prescriptive and diagnostic perspective: identifying 

logical weaknesses in existing methods, while also pointing at a route towards 

greater decision-theoretic coherence. This is not a plea for MCDM-level process 

conformity. The differences in philosophy and the different brandings of methods 

should influence the elicitation processes, the presentation formats, group decision 

mechanisms, and much more – as long as the methods stand on established scien-

tific ground. Substituting a since-long well-established and sound axiomatic com-

putational core for homemade calculi only leads to questionable results and opaque-

ness. As does mixing descriptive and psychological factors with an axiomatically 

grounded computational core; the former should belong only to an outer MCDM 

layer. The need to stand out by branding and perceived uniqueness should be satis-

fied in other ways than by a faulty core, ways less detrimental to the MCDA field.  

Despite the logical clarity and mathematical rigor of the unified utility frame-

work grounded in the axiom systems of von Neumann-Morgenstern and Keeney-

Raiffa (vNM/KR), a wide range of popular MCDA methods exist that violate these 
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principles. This prompts the question: are there any compelling mathematical or 

logical reasons to prefer such methods? The answer, in short, is a resounding no. 

None of the Big Five methods (VIKOR, TOPSIS, ÉLECTRE, PROMÉTHÉE 

and AHP), all of which violate vNM/KR axioms, are grounded in a rigorous theo-

retical foundation. These methods often make heuristic or procedural sense, or are 

generally appealing on the surface, but fail when held to standards of decomposa-

bility, independence and consistency. Some of their problems include: 

 No representation theorem supports the forms of aggregation used. 

 Non-decomposability in scoring means there is no underlying unifying utility 

function being optimised. 

 Rank reversal and reference dependence violate basic tenets of rational choice. 

Despite these shortcomings, the Big Five proliferate and are widely used in practice. 

There are several reasons for that: 

1. Software Tools: Embedded in decision-support systems or consulting tools. 

2. Visual Appeal: Techniques like outranking or ideal point comparisons offer 

intuitive geometric interpretations. 

3. Lack of Training: Decision analysts are often unfamiliar with the formal 

structure of vNM and KR, and thus default to admiring procedural heuristics 

instead of questioning the basis on which a particular method stands. 

There is no compelling mathematical justification for the widespread use of MCDA 

methods that violate the DAMS desiderata. Their popularity stems from practical, 

psychological, or institutional factors, not coherence. As such, their results should 

be viewed as suggestive, not rationally prescriptive. The proliferation of non-com-

pliant methods underscores the need for a shift towards foundationally sound, axi-

omatically justified decision analysis. 

DAMS draws a clear boundary between rational and pseudo-rational prescriptive 

decision analysis. These modes of reasoning differ fundamentally in objective, 

methodology, and evaluative standards. Rational prescriptive analysis is concerned 

with guiding decision-makers to make sound decisions given their limitations while 

adhering to coherent principles of preference and utility. The DAMS model devel-

oped in this book exemplifies rational prescriptive analysis: 

 It rests on internally consistent axioms. 
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 It supports additive utility representations and generalises both von Neu-

mann-Morgenstern’s (classic) and Keeney-Raiffa’s (IIASA) theories. 

 It yields decisions that are transparent, defensible, and logically justified. 

Pseudo-rational prescriptive analysis aims for the same goals but fails to deliver 

coherent and justifiable methods due to a lack of theoretical underpinnings. 

 It promotes heuristics and non-linearity over consistency. 

 It focuses on perceived soft factors over correctness. 

 It adopts procedures that fail DAMS but are good for branding. 

Part II of this book demonstrates that the Big Five methods, VIKOR, TOPSIS, 

ÉLECTRE, PROMÉTHÉE and AHP, are pseudo-rational tools. They aid decision 

making but do not meet the conditions of rationality defined in DAMS. Traditional 

and classic SAW methods, however, are by contrast rational tools, providing com-

prehensible outputs while satisfying utility-theoretic foundations. The proliferation 

of pseudo-rational prescriptive methods, despite their foundational shortcomings, 

highlights a gap between what is rational and what seems to be. The DAMS frame-

work offers a reconciliation path: preserve coherence while retaining formats fa-

miliar to prescriptive users. This convergence can elevate decision analysis from 

plausible heuristics to justifiable practice. 

It has been argued that a prescriptive analysis method can choose axioms “like 

dishes from a smorgasbord”, selecting whichever seem useful and discarding others 

(see, e.g., Keeney, 1992). While this pragmatic flexibility may appear liberating, it 

undermines the very essence of decision-theoretic integrity in the methods. DAMS 

offers an opposite position to that stance. As discussed in this book, axioms and 

desiderata are not decorative or optional, they are foundational constraints that pre-

serve coherence, comparability, and defensibility. Selectively picking them distorts 

the decision methods, making results opaque, less comprehensible and often logi-

cally wrong. Some problems with incoherent pick-and-choose methods include: 

1. Loss of Interpretability: Methods that violate decomposability, transitivity, 

or independence lose any possibility of being preference-preserving. Their 

rankings are artefacts of procedure, not reflections of rational preference. 

2. Context-Dependence: As discussed above, violations of key axioms pro-

duce rank reversals when irrelevant alternatives are added or removed. 
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3. Undermining Trust: Stakeholders rightly expect that decisions guided by 

formal models are consistent and principled. Violating axioms without justi-

fication breaks that trust. 

In this respect, it is important to draw a boundary between two distinct conceptual 

layers in decision analysis: 

 Mathematical-logical rigor consists of axioms, representation theorems, and 

their consequences. These define the structure of rational preference and the 

conditions under which a utility function exists. They should make up the 

basis for a coherent prescriptive decision-analytic calculus. 

 Procedures, such as outranking, voting mechanisms, or pairwise flows, are 

process strategies. While they may offer heuristic appeal and branding dif-

ferentiation, they are not substitutes for foundational coherence. 

Confusing these two levels leads to mistaken beliefs, for instance, that a narratively 

compelling ranking procedure is comparable to a DAMS-based decision-analytic 

method. It is not. Only when procedures are derivable from or consistent with rig-

orous formulations such as DAMS can they be said to reflect genuine preference 

orderings in a reasonable way.  

This does, of course, not entail that all methods should look the same or have the 

same procedures. On the contrary, different philosophical approaches call for vari-

ous user interactions, various elicitation processes, and various presentation for-

mats. That is where the variability and differences should lie, not in the computa-

tional core. Outputs can and should be post-processed in several ways for presenta-

tion at the end of the line, but only after the core results according to established 

theories have been calculated, and only if the post-processing can be shown still to 

comply with desiderata based on well-established scientific theoretical bodies in-

stead of arbitrary made-up procedures – arbitrary seen from a decision-theoretic 

soundness point of view.  

To move the MCDA field forward in a well-founded scientific direction, and to 

unify rigor with usability, a set of guiding principles are suggested. The principles 

acknowledge the dual demands of decision analysis: to be both prescriptively sound 

and practically appealing. The following is a suggestion of such a set: 
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Principle 1: Maintain the Hierarchy of Foundations Over Procedure  

Well-founded desiderata must form the backbone of any decision method. Proce-

dures must be tested against the desiderata, not the other way around. This ensures 

that decision outcomes are rational, interpretable, and stable. 

Principle 2: Preserve Formal Integrity, Even When Approximating  

In settings where full elicitation of utilities and probabilities is impractical, ap-

proximate methods may be used, but only if they preserve key properties such as 

transitivity, monotonicity, and independence.  

Principle 3: Ensure Representability  

Every decision method should correspond to a representable utility function, even 

if hidden or abstracted. Such a function should be recoverable and auditable to 

justify preference orderings. 

Principle 4: Separate Computation from Justification  

Computation is necessary, but not sufficient. A method that produces results must 

also justify them in terms of rational calculations. Algorithms and procedures 

must be interpretable through the lens of utility theory. 

Principle 5: Design for Transparency and Explainability  

MCDA methods should reveal their internal logic: how weights are applied, how 

preferences are inferred, and what axioms are assumed. Stakeholders must be able 

to trace conclusions back to their inputs. 

Principle 6: Protect Against Rank Reversal and Context Drift  

Methods should be validated against benchmark scenarios involving irrelevant al-

ternatives or added options. If a method produces rank reversal, it violates deci-

sion-theoretic hygiene and should be revised or rejected. 

Principle 7: Accept Well-Founded Minimalism, Not Arbitrary Pluralism  

While it may be tempting to mix and match axioms as preferences or contexts 

vary, a minimal coherent set such as DAMS could provide sufficient flexibility 

without compromising logical structure. Pluralism must be principled, not ad hoc. 

These principles do not restrict creativity in method design or formulation, they 

ensure its coherence. They invite prescriptive researchers to innovate within the 

bounds of rationality rather than outside of it. The future of MCDA lies not in 

choosing between rigor and usability, but in making them inseparable.  
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Among the foundational principles of sound reasoning stands Occam’s Razor. 

In decision analysis, it translates to a call for simplicity: if two methods yield equiv-

alent or even similar performance, the simpler one is to be preferred. This is a cor-

nerstone in the effort to have MCDA being used more in society. Yet this principle 

is routinely neglected in contemporary MCDA practice. Many modern methods 

feature complicated data transformations, scoring algorithms, or aggregation 

schemes without corresponding gains, rather the opposite. There are clear reasons 

why simplicity matters in this case: 

Transparency: Simpler models are easier to understand, explain, and audit. This 

improves stakeholder confidence and supports democratic decision processes. 

Axiomatic Tractability: Simple structures are more likely to satisfy foundational 

axioms such as transitivity, decomposability, and continuity. 

Error Robustness: Fewer moving parts reduce the risk of hidden inconsistencies, 

unintended rank reversals, or sensitivity to input noise. 

Theoretical Discipline: Simplicity forces clarity in assumptions. Complex meth-

ods often obscure which principles are being applied (or violated). 

However, the surveyed methods (and many others with them) violate simplicity in 

the following ways: 

 Methods that produce partial orderings through procedures that cannot be 

linked to any utility representation. 

 Outranking methods that require multiple thresholds and preference func-

tions across criteria. 

The desiderata proposed in DAMS are supposed to lead naturally to models that are 

both simple and prescriptively sound. Additive utility models, dominance-based 

comparisons, and weighted sums are not simplistic. They can be elegant, interpret-

able, and justifiable. Simplicity is not the enemy of sophistication, rather it is its 

friend. When methods are equally performant, the simpler model has both epistemic 

and explanatory advantages. Future MCDA development should not merely pursue 

feature richness, especially not in the number of steps and complexity of proce-

dures, but axiomatic parsimony. Simplicity is not an aesthetic, it is a logical imper-

ative. Branding and product differentiation should be realised by other means. 
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14. Frequently Raised Topics 

This chapter discusses some topics that came up repeatedly during the graduate 

classes. While they are important questions, they are not closely related to each 

other and are collected in the final chapter of Part II for reference.  

Scale Types 

The difference scale is a scale where the numbers are meaningful in terms of their 

differences but not necessarily in terms of their ratios. That is, you can measure 

relative differences between values, but ratios between values are not necessarily 

meaningful. For instance, you can say that alternative A is “3 units better” than 

alternative B, but saying alternative A is “3 times better” than B does not necessarily 

make sense. In the additive model of MCDA, you sum up the weighted differences 

in performance across various criteria. In other words, you are aggregating the dif-

ferences in scores or performance metrics, which is typically associated with the 

difference scale. 

 
where 𝑤𝑗 is the weight of criterion j and 𝑥𝑖𝑗 is the performance of alternative 𝐴𝑖 

under criterion j. This form of aggregation implies that you are combining the dif-

ferences between each alternative’s performance across criteria, not their ratios. 

AHP, on the other hand, explicitly requires the pairwise comparison scale to be 

ratio-based, because it is built on the idea that decision-makers can express prefer-

ences between pairs of alternatives or criteria in terms of relative importance. The 

standard pairwise comparison scale used in AHP typically ranges from 1 to 9 (and 

the reciprocals for inverse preferences), where these numbers reflect the ratio of 

importance between criteria or alternatives. For instance, if you compare two crite-

ria 𝐶1 and 𝐶2 and judge that 𝐶1 is 3 times as important as 𝐶2, the pairwise compar-

ison matrix will reflect that in the form of a ratio-based scale. In this case, a ratio 

scale assumption allows you to say that 𝐶1has a 3:1 importance over 𝐶2 and you 

carry this ratio into the calculation of the weight vector. AHP’s use of a ratio scale 

means that it assumes the pairwise comparison judgements correspond to a multi-

plicative relationship. When you aggregate the results of pairwise comparisons for 
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each criterion (which are ratio-based), the result is a weighted sum of alternatives. 

This sum reflects the global preference for each alternative in terms of the ratios of 

importance, rather than just the differences. 

To conclude: AHP’s ratio scale means that when comparing alternatives (or cri-

teria) pairwise, you are dealing with multiplicative relationships between alterna-

tives’ importance levels, which will then be aggregated in a weighted sum. The 

additive model, which typically works with a difference scale, involves linear com-

binations of values that do not require the ratios between them to be meaningful, 

but rather just their relative differences (additive increments). 

The Independence Assumption 

The standard assumption within MCDA is that of independence between criteria, 

and the likewise standard solution when that condition is not met between two cri-

teria is to jointly model them as a third, overarching criterion instead. This way, a 

decision situation with dependent criteria can be seamlessly mapped onto a DAMS-

compliant model that presupposes criteria independence. This remapping requires 

some skills on the part of the modeller, which is why method inventors have tried 

to come up with alternative ways of handling dependence.  

The first obvious candidate is the correlation concept from statistics, and it has 

been employed in PDA models with some success. PDA models already contain 

conditional probabilities (without signalling) since every chain of events is a calcu-

lation of conditional global probability (A | B). For more on conditional probabili-

ties, refer to any entry-level textbook on statistics. Updates of conditional probabil-

ities are, needless to say, a centrepiece within the area of probabilistic reasoning, 

where Bayesian updates constitute an important topic of research – a topic that is 

out of scope for this book, though. 

Some MCDA methods have approached the dependence issue by requiring pair-

wise comparisons of all criteria weights. This leads to a much heavier burden when 

assigning weights, essentially taking an O(n) task and turning it into an O(n2) one. 

The immediate effect of a pairwise procedure is inconsistency since it is very hard 

for humans to keep all pairs and their transitive implications in mind at the same 

time. Of course, computers can help by indicating such inconsistencies in the form 
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of, for example, the consistency index in AHP. However, any such artificial meas-

ure introduced tends to alienate the decision-maker from the original task and thus 

carries a mental cost that often overshadows the possible benefits. 

In cases where the criteria dependence/overlap is severe, a remodelling and map-

ping of criteria is the first step. As an example, Howard recounts a consulting ses-

sion with an oil company that had identified 30 overlapping criteria, which after a 

thorough analysis turned out to be only two fundamental criteria (Howard, 2009, 

p.52). While that is an extreme example, it is much more often the case that criteria 

overlap is a consequence of bad modelling than a real inherent property of the de-

cision problem. Thus, the resolution lies in the performance of the analysis process 

rather than in the method itself. 

Compensation 

A central distinction in MCDA lies between compensatory and non-compensatory 

approaches to modelling trade-offs among conflicting criteria. This distinction is not 

merely technical; it reflects deeper philosophical assumptions about how rationality, 

preferences, and decision constraints should be represented and processed. The com-

pensatory tradition, as in DAMS and many other additive value models, allows for 

trade-offs: strong performance in one area can offset weaknesses in another. In con-

trast, non-compensatory methods, such as outranking methods like ÉLECTRE and 

PROMÉTHÉE, are designed to integrate the handling of decision problems in which 

certain criteria represent thresholds or veto points that cannot be offset, regardless 

of performance elsewhere, into the core calculi. 

Outranking methods achieve this by embedding thresholds, calling them features 

such as concordance, discordance, and veto levels, into the core calculations of the 

methods. These mechanisms are intended to model realism: in many real-world de-

cisions, a minimum standard on certain criteria is essential, and failure to meet it 

could disqualify an alternative, even if it is otherwise highly rated. For instance, in 

supplier selection, an offer may be unacceptable regardless of cost or delivery speed 

if it fails to meet basic quality standards. From this perspective, outranking methods 

seem to respond to a real need: expressing incomparability. 

However, this modelling choice comes with several well-known challenges. 

First, embedding such logic directly in the calculations of the method, as opposed to 
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the modelling phase, makes the reasoning process opaque. Threshold values are of-

ten context-sensitive, difficult to justify empirically, and may lack a clear interpre-

tation to decision-makers. Moreover, the internal decision logic becomes more dif-

ficult to audit or explain, particularly when the result is not a complete ranking, but 

a partial order riddled with incomparabilities, violating Desideratum 11 (Explana-

tory Transparency). In attempting to mirror the complexity of real-world judgement 

inside the calculation core, outranking methods inadvertently produce black-box-

like behaviour. Rather, in DAMS, non-compensatory elements are handled up-

stream, during the modelling phase of a decision problem. That is, criteria deemed 

essential or even indispensable (must-have) are treated as filters or constraints: al-

ternatives that fail to meet them are excluded before any aggregation takes place. 

Criteria that are strongly correlated are remodelled together instead of standing 

alone. The core calculation then operates under a clean, compensatory logic, allow-

ing weights and scores to be meaningfully interpreted, compared, and audited. 

The conceptual clarity of this separation between structural constraints and pref-

erential trade-offs supports easier communication of the results, clearer justification 

of rankings, and easier integration with value-for-money assessments. While it may 

at first glance seem that compensatory models oversimplify certain judgemental 

subtleties, in reality they offer greater coherence and operational transparency by 

handling the issues at a higher level. In this light, the divide between compensatory 

and non-compensatory methods (at the calculation core) reflects a deeper philosoph-

ical divide: whether the complexities of real-world decision making should be inter-

nalised in the method’s inner logic or externalised and structured before calculations 

begin. As seen, outranking methods favour the former, often in response to misun-

derstood limitations of additive trade-off structures. DAMS-compliant models fa-

vour the latter, on the grounds that a good method should illuminate its calculations, 

not obscure them with embedded conditional logic. This is important, not least in 

real-world settings, where often a value-for-money approach is taken and hence, the 

MCDA analysis does not include monetary criteria  those are handled at a higher 

level in a subsequent cost-benefit (or cost-effectiveness) analysis. Not least procure-

ment is often handled this way, making an outranking-based process unsuitable for 

such analyses. So again, real-world process requirements are at odds with opaque 

calculation methods. 
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Weight/Scale Dualism 

One of the most persistent and under-examined conceptual pitfalls is what may be 

called the great illusion of multiple scales. This illusion arises from the implicit be-

lief that decision alternatives, evaluated on fundamentally different criteria (e.g., 

cost in dollars, safety in qualitative ranks, voltage in volts), can be meaningfully 

combined through a weighted aggregation without first aligning these criteria onto 

a truly comparable scale. At the heart of this issue lies a subtle but critical confusion 

between scaling and weighting, two distinct operations that are frequently conflated 

in MCDA methods. 

The fundamental requirement for any meaningful weighting scheme is that all 

criteria be expressed on comparable scales, not merely in a superficial or cosmetic 

sense, but in a rigorous, mathematical one. For weights to function as intended (that 

is, to represent the relative importance or trade-offs among criteria), the input scales 

must be dimensionless and span a common interval, typically the unit interval [0, 1]. 

This is not a matter of convention; it is a precondition for consistency. Only when 

all criteria are transformed to a shared domain such as [0, 1] and this domain is fully 

spanned by each criterion can the weights act solely as importance coefficients. If 

the scales are not aligned in this way, the weights inadvertently become scale trans-

formers as well, distorting their intended role. 

This phenomenon, formally known as weight/scale dualism, undermines the the-

oretical coherence of many MCDA methods. The clearest examples are found in 

TOPSIS and ÉLECTRE, which perform their own normalisation schemes (vector-

based or L2 norm), thus failing to span the full [0, 1] intervals. These normalisations 

yield dimensionless numbers but not truly comparable ones. As a result, the weights 

applied to such pseudo-normalised criteria (in the [0, 1] spanning sense) retain the 

burden of resolving both scale disparities and preference intensities, thereby con-

founding measurement with judgement. In such cases, the aggregated output, typi-

cally a composite score or ranking, rests on ambiguous foundations. It is unclear 

whether the ranking reflects actual preferences or is merely an artefact of hidden 

scale effects that have been absorbed (but not resolved) by the weighting process. 

The supposed clarity of trade-offs dissolves under scrutiny: Is criterion A preferred 

because it is more important or because its scale was narrower mapped and thus less 

amplified by the weighting vector, or both? The illusion is complete when decision-
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makers believe they have articulated their preferences clearly, when in fact they have 

merely masked a scale incoherence. 

This illusion is not only a technical flaw; it becomes a cognitive trap in a wider 

MCDM setting. It misleads decision-makers and analysts alike into believing that 

decision models reflect informed value judgements, when in fact they often reflect 

arbitrary or inconsistent scale manipulations. The only robust escape from this illu-

sion is to enforce rigorous scale alignment in the methods before weighting, typi-

cally through full-range (spanned) normalisations to [0, 1], and to preserve this in-

terpretability throughout the analysis. Anything less invites semantic ambiguity, 

mathematical confusion, and decision analyses built on misinterpretations. 

This great illusion of multiple scales, i.e. the weight/scale dualism, should not be 

confused with the illusion of absolute weights, another issue that emerges at the level 

of MCDM preference elicitation rather than MCDA method computation. It has 

nothing to do with the methods’ calculations, but is a testament to the mental com-

plexities involved in eliciting criteria weights. The latter illusion refers to the cogni-

tive error of assigning fixed importance values to criteria, without regard for the 

scales they inhabit. The illusion of absolute weights manifests in decision-makers 

insisting on assigning weights to criteria without considering the original scale 

spans. For instance, if criterion A is assigned weight wA based on a scale [a₁, a₂], 

and a new alternative extends this to [a₁, a3], the weight wA needs to be recalibrated 

so that one unit on A’s scale has the same importance as before. The illusion lies in 

treating weights as if they were anchored in absolute terms, which is impossible, 

when in fact they are inherently tied to the scales. Failing to understand and accom-

modate that is falling for the illusion of absolute weights. Thus, as discussed before, 

it is important to clearly differentiate between the outer MCDM layer where descrip-

tive behaviour, procedures and results can be taken into account, and the inner 

MCDA layer, which must conform to known objective scientific results. In the outer 

MCDM layer, compensation can be made for regrets and other human behaviours 

and biases, although it still has to be done in a traceable way. The transparency re-

quirement does not vanish at the MCDM level.  
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15. Probabilistic MCDA 

Part III of the first edition contained an overview of different software applications 

that employed the methods of Part II. In this second edition, it has been replaced 

with this chapter on combined probabilistic multi-criteria models and the next chap-

ter, which describes how UNEDA, the open-source universal decision-analytic soft-

ware platform, is implemented. 

The structural similarities between the von Neumann–Morgenstern (vNM) and 

Keeney-Raiffa’s (KR) IIASA utility models indicate that they are not competing 

frameworks, but rather special cases of more general probabilistic multi-criteria de-

cision analytic models (MPDA). This theory integrates both risk and multi-dimen-

sionality by considering preferences over uncertain, multi-attribute alternatives. 

In this unified framework, an alternative is characterised by a matrix of com-

pound outcomes, where each attribute has multiple probabilistic (Bayesian) out-

comes. This nested structure expresses vNM utility as the special case where there 

is only one attribute and only uncertainty exists, and KR as the case where uncer-

tainty is removed (i.e., all pij are degenerate, with probability 1 on a single state). 

Thus, MPDA generalises both. When attribute weights represent relative impor-

tance and probabilities represent uncertainty, the resulting model supports decisions 

under both value trade-offs and risk. The utility function applies consistently across 

the two cases, indicating that both models rely on the same fundamental valuation 

mechanism. Both vNM and KR build on core axioms: completeness, transitivity, 

continuity, independence, and decomposability. These remain valid in the general 

case and justify the functional form of as both additive and expected. 

There are several benefits of a unified view. It brings coherence to decision mak-

ing under hybrid conditions (e.g., strategic planning with uncertain costs and com-

peting objectives). Further, it supports more precise elicitation: decision-makers can 

assess trade-offs and risks in tandem. Lastly, it reinforces the idea that utility is the 

core construct, whether over lotteries, attributes, or both. This unified view vali-

dates the effort to develop MPDA methods that respect both probabilistic and multi-

criteria aspects. The desiderata serve as a scaffold for such synthesis, and their ex-

pansion into this domain may mark the next frontier in decision theory. 
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In complex real-world decision situations, alternatives often involve uncertainty 

in addition to, not instead of, multiple criteria. A natural extension of MCDA thus 

involves incorporating probability distributions over outcomes, leading to hybrid 

models where both criteria weighting and probabilistic beliefs play a role. This gen-

eralisation leads to expressions of the form  

𝑈(𝐴) =  ∑ 𝑤𝑖

𝑛

𝑖=1
∙ ∑ 𝑝𝑖𝑗𝑢(𝑥𝑖𝑗)

𝑗
 

where wi is the weight of criterion, representing its importance, pij is the probability 

of state j under criterion i, and 𝑢(𝑥𝑖𝑗) is the utility of outcome 𝑥𝑖𝑗  under that state 

and criterion. This formulation reflects an additive multi-attribute expected utility 

function. It is consistent with both vNM and KR formulations. The outer sum rep-

resents aggregation over attributes, as in MAUT. The inner sum represents expec-

tations over uncertain events within each attribute, as in vNM. Importantly, this 

model preserves the axiomatic commitments of both theories. i) additivity across 

independent criteria; ii) expected utility within each uncertain dimension, and iii) 

coherence in the joint treatment of trade-offs and risk. 

A generalised MCDA of this kind opens up doors to richer, securely grounded 

models. It allows method designers (and thus their customers, the decision-makers) 

to accommodate both subjective probabilities and value trade-offs in a unified 

model. It supports elicitation techniques familiar from both MAUT (e.g., swing 

weighting) and vNM (e.g., lottery comparisons). Although vNM utility theory and 

KR/MAUT align closely in structure and intent, their merger into a unified proba-

bilistic multi-criteria framework raises some questions that have to be addressed. 

This section examines whether any modifications are necessary to either theory to 

ensure consistency and whether they violate each other’s fundamental axioms. 

Compatibility of Axioms: At a high level, the core axioms shared by both frame-

works, such as completeness, transitivity, continuity, and a form of independence, 

are broadly consistent. However, the definition and application of the independence 

axiom differs in that vNM requires probabilistic independence while KR requires 

utility independence, i.e. preferences over one attribute remain unchanged regard-

less of fixed levels of other attributes. These are structurally distinct. Probabilistic 

independence governs mixtures of lotteries, while utility independence governs the 
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separability of trade-offs. In a unified model, one must accept both forms for it to 

function as intended. 

Decomposability: KR assumes additive decomposability under specific forms of 

independence. vNM requires linearity in probabilities but has no native treatment 

of attribute composition. Combining both requires assuming that utility is additively 

separable in attributes and linear in probabilities. This dual requirement imposes a 

stronger structure than either theory individually. 

Functional Form: To align vNM and KR under one expression, it must be assumed 

that the same utility function applies across both probabilistic and multi-attribute 

domains. This may require rescaling or transforming attribute-specific value func-

tions in MAUT to be consistent with cardinal utility in vNM. 

Weight Interpretation: vNM is typically used in contexts with measurable uncer-

tainty; KR often treats uncertainty implicitly through scoring. A unified theory im-

plies that attribute weights and probabilities should be formally equivalent in the 

role they play within the utility aggregation. This requires an interpretation of 

weights that is stronger than mere preference intensity, they must be utility-theo-

retic scalars. 

Thus, while no outright axiomatic contradiction exists, a unified model imposes 

stronger assumptions than either theory individually. In particular i) utility inde-

pendence and probabilistic independence must coexist, ii) additivity across both 

probabilities and attributes must be assumed, and iii) a common utility function 

must serve both. These are manageable but nontrivial requirements. Their adoption 

transforms both vNM and KR from context-specific models into components of a 

more general system. To reconcile and extend vNM and KR within a general prob-

abilistic multi-criteria decision framework, the following unifying desiderata are 

proposed. They are designed to support utility representations of the form 

𝑈(𝑎) = ∑ 𝑤𝑖  ∑ 𝑝𝑖𝑗  𝑢(𝑥𝑖𝑗)𝑗𝑖   

where wi are the weights of the criteria (attributes), pij are the probabilities over the 

outcomes under the criteria, and u(xij) is the utility of outcome xij. 

Desideratum MP1 (Completeness and Transitivity): For all alternatives A, B, and 

C, preferences are complete and transitive. For all A and B, either A ≻ B, B ≻ A, or 

A ∼ B. Further, if A ≻ B and B ≻ C then A ≻ C. 
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Desideratum MP2 (Continuity): For any alternatives A, B, and C, with A ≻ B ≻ C, 

there exists a   (0, 1) such that B ∼ ∙A + (1)∙C This applies both to probabil-

istic mixtures (as in vNM) and to attribute trade-offs (as in KR). 

Desideratum MP3 (Probabilistic Independence): For all alternatives A, B, and C, 

if A ≻ B, then for any   (0, 1): ∙A + (1)∙C ≻ ∙B + (1)∙C. This ensures 

linearity in probabilities. 

Desideratum MP4 (Utility Independence of Attributes): For any attribute i, pref-

erences over levels of i are independent of the fixed levels of other attributes, pro-

vided the preferences are conditional on those fixed levels. 

Desideratum MP5 (Additive Decomposability): If utility independence holds for 

all attributes, then the overall utility function U (a) is additive across attributes and 

linear in probabilities such that 𝑈(𝑎) = ∑ 𝑤𝑖  ∑ 𝑝𝑖𝑗  𝑢(𝑥𝑖𝑗)𝑗𝑖  .  

Desideratum MP6 (Monotonicity): If an outcome 𝑥𝑖𝑗 is replaced by 𝑥′𝑖𝑗 such 

that 𝑈(𝑥′
𝑖𝑗

) >  𝑈(𝑥′
𝑖𝑗

), and all other terms remain fixed, then the overall utility 

increases. 

Desideratum MP7 (Normalisation): For all weights 𝑤𝑖 0,  𝑤𝑖 =  1 and proba-

bilities 𝑝𝑖𝑗 0,  𝑝𝑖𝑗 =  1 respectively for each i and j. 

Desideratum MP8 (Common Utility Representation): There exists a single cardi-

nal utility function u defined over outcomes 𝑥𝑖𝑗 such that preferences over all 

combinations of attributes and uncertainties can be represented by U (A). 

These desiderata, DAMS-MP, unify the vNM and KR theories into a single co-

herent foundation for MPDA. They allow trade-offs across attributes and beliefs 

while preserving coherence and a clear interpretative structure. DAMS-MP forms 

the basis for the UNEDA platform, which can handle tri-linear MPDA decision 

problems of the form 

𝑚𝑎𝑥 [𝑈(𝑎) = ∑ 𝑤𝑖  ∑ 𝑝𝑖𝑗  𝑢(𝑥𝑖𝑗)
𝑗𝑖

] 

according to the generalised PMEU principle afforded by MPDA and with arbitrary 

depths in the event trees and criteria hierarchies. The open-source software library 

is described in the next chapter.  
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16. Computational Evaluation 

To make a decision analysis method computational, and thus making it a method 

for real-life decisions, two main ingredients are necessary. The first is a suitable 

representation and evaluation rules of the decision problems, such as those pre-

sented in Part I. The other is reasonably fast computational algorithms, which is the 

topic of this part. Most of the demanding computations required are optimisation-

related algorithms. 

This chapter is divided into three main sections. The first deals with calculating 

properties of decision frames using linear programming methods and the second 

deals with algorithms for computing evaluation rules by employing bilinear opti-

misation. The last section contains a discussion of the BEDA method for handling 

second-order information. The two first sections are built on (Danielson, 1997), 

which describes the DELTA method for interval decision analysis that was later gen-

eralised to multi-level trees (the original text handles only single-level trees, but the 

generalisation is straightforward and does not introduce any new concepts). Deci-

sions under risk (probabilistic decisions) are often given a tree representation. This 

is the reading of the tree as a sequence of events leading up to the final conse-

quences, the end nodes.  

A decision tree consists of a root node, representing a decision, a set of interme-

diary (event) nodes, representing some kind of uncertainty about which event will 

eventually occur, and consequence nodes, representing possible final outcomes. 

Usually, probability distributions are assigned in the form of weights in the proba-

bility nodes as measures of the uncertainties involved. The informal semantics are 

simply that given that an alternative Ai is chosen, there is a probability pij that an 

event will occur. This event can either be a consequence with a value vijk assigned 

to it or another event. Usually, the maximisation of the expected value is used as an 

evaluation rule. In the case of precise probability and utility assessments, this is 

straightforwardly evaluated. However, when the probabilities and utilities are im-

precise, several complications appear, including the non-uniqueness of the expected 

value of an alternative (leading to the need to find upper and lower bounds). The 

first step in obtaining a solution is generalising the decision tree structure. 
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Let a decision frame represent a tree decision problem. This is convenient for 

presentational purposes. The idea with such a frame is to collect all information 

necessary for the model in one structure. One of the building blocks of a decision 

frame is a graph. 

Definition: A graph is a structure I,N,E, where I is an index set, N is a set {ni}, 

iI, of nodes, and E is a set {(ni,nj)}, i,jI, ij, of edges (node pairs). A tree is a 

connected graph without cycles. 

Definition: An r-tree (rooted tree) is a tree I,N,E,r where exactly one node nr has 

the property  k : (nk,nr)E. nr is called the root of the tree. The set N is parti-

tioned into two subsets of leaf nodes (NL) and intermediate nodes (NI). ni  NI iff 

 k : (ni,nk)E. Since NL = N \ NI, niNL iff  k : (ni,nk)E. The index set I is 

partitioned accordingly: an index iII iff niNI and an index iIL iff niNL. An 

intermediate node niNI has children indices Ci = {j : (ni,nj)E}. 

Then all the rooted trees representing alternatives are joined together into a decision 

frame. In the sequel, the notation is used that the n children of a node xi are denoted, 

xi1, xi2,…,xin and the m children of the node xij are denoted xij1, xij2,…,xijm, etc.  

Decision-maker statements of probability and value are translated into con-

straints (inequalities) in order to be entered into the decision problem. Range state-

ments (i.e. intervals) translate into range constraints, inequalities involving a single 

variable. A reasonable interpretation of such statements is that the estimate is not 

outside of the given interval. For a value scale [a, b], there is a default range con-

straint vij[a, b] for each value variable. Likewise, there is a default range constraint 

pij[0, 1] for each probability variable (although, in practice, the normalisation 

takes care of this). Comparative statements compare the probabilities of two conse-

quences occurring with one another, such as “the events C1 and C2 are equally 

probable” or “the event C3 is more likely to occur than C4”. Those statements are 

translated into comparative constraints, inequalities involving more than one varia-

ble. The term interval constraints is used for the kinds of constraints above. A col-

lection of interval constraints concerning the same set of variables is called a con-

straint set, and it forms the basis for the representation of decision situation state-

ments. 
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Terminology: Given an index set I and a set of variables {xi}iI, a constraint set in 

{xi}iI is a set of interval constraints in {xi}iI. 

To begin with, it is important to determine whether the elements in a constraint 

set are at all compatible with each other. This is the question of whether a constraint 

set has a solution, i.e. if there exists any vector of real numbers that can be assigned 

to the variables. 

Definition: Given an index set I and a set of variables {xi}iI, a constraint set X in 

{xi}iI is consistent iff the system of weak inequalities in X has a solution. Other-

wise, the constraint set is inconsistent. A constraint Z is consistent with a con-

straint set X iff the constraint set {Z}  X is consistent. The collection of all con-

sistent instances of a constraint set X is called the solution set to X. 

Definition: Given an index set I and a consistent constraint set X in {xi}iI and a 

function f, the maximum is Xmax(f(x)) =def sup (a  {f(x) > a}  X is consistent). 

Similarly, the minimum is Xmin(f(x)) =def inf (a  {f(x) < a}  X is consistent). 

Definition: Given an index set I, a consistent constraint set X in {xi}iI and a 

function f, Xargmax(f(x)) is a solution vector that is a solution to Xmax(f(x)), and 
Xargmin(f(x)) is a solution vector that is a solution to Xmin(f(x)). 

Note that argmax and argmin need not be unique. The feasible box (i.e., the set 

of feasible variable assignments) can be calculated if the constraint set is consistent. 

The feasible box is a concept that in each dimension signals which parts are infea-

sible within the constraint set. Intuitively, the feasible box represents a conservative 

extension of the solution set of a set of constraints. 

Definition: Given an index set I and a consistent constraint set X in {xi}iI, the set 

of optimum pairs {Xmin(xi),
Xmax(xi)}iI is the feasible box (orthogonal hull) of 

the set and is denoted Xmin(xi),
Xmax(xi)I. 

This feasible box represents upper and lower probabilities if X consists of prob-

abilities and upper and lower values if X consists of values. For convexity rea-

sons, the entire interval between those extremal points is feasible. Using this con-

cept, an application program can display to the user which statements are incom-

patible or which parts of intervals are incompatible with the rest of the statement 
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set. Hence, at all times, an application program can maintain a consistent model of 

the user’s problem in collaboration with the user. 

There are two types of constraint sets (c-sets), probability c-sets and value c-sets. 

The smallest c-set unit is the event node c-set, which collects all probability state-

ments made regarding a specific event node in an r-tree. 

Definition: Given an r-tree T = I,N,E,rand an event node ni, consider the set Ci 

of disjoint and exhaustive consequences of the event (children nodes), user event 

statements in {pj}jCi, and a discrete, finite probability mass function :nj[0,1] 

over Ci. Let pj denote the function value (nj).  obeys the standard probability 

axioms, and thus pj[0,1] and j pj = 1 are default constraints. Then the event 

node c-set Pi is derived from the set of user range and comparative statements 

with the following content. 

 A feasible box ak,bk, kCi, which represents the user and default range 

constraints : [0,1]i kk C p   . 

 All user comparative constraints. 

 The normalisation constraint 1
i

k

k C

p


 . 

Thus, the c-set transforms statements into linear constraints while maintaining the 

same meaning. A c-set is more convenient to handle than a pure set of statements. 

An event node c-set characterises a set of discrete probability distributions. The 

next aggregation level is that of a probability c-set, which collects together all prob-

ability statements belonging to all nodes in the same tree. 

Definition: Given an r-tree T = I,N,E,r with all event nodes ni, iII. Then the 

probability c-set P is all event c-sets Pj combined, i.e. feasible boxes, normalisa-

tions, and user comparative statements.  

Requirements similar to those for probability variables are found for value vari-

ables. There are apparent similarities and differences between probability and value 

statements. The normalisation (k pik = 1) requires the probability variables of an 

intermediate node to sum to one. No such constraint exists for the value variables. 
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Further, the value scale endpoints can be arbitrarily selected and need not be [0,1] 

as in the probability case. 

Definition: Given an r-tree T = I,N,E,r, consider the set NL of leaf nodes. Then a 

value c-set is derived from the set of user range and comparative statements. The 

user statements, together with the default statements : [0,1]L

kk I v   , form the 

c-set constraints in the following way. 

 A hull ak,bk, kIL, which represents the user and default range constraints. 

 All user comparative constraints. 

Similar to probability c-sets, a value c-set characterises a set of value functions. The 

statements are transformed into a set of linear constraints. Using the above concepts 

of constraint and c-set, a decision situation is modelled by a decision frame. To 

begin with, each alternative is represented by a tree frame. 

Definition: Given a decision alternative, statements are made about the probabili-

ties of the events as well as the values of the consequences. A tree frame is a 

structure T,P,V containing the following representation of the alternative: 

 A rooted tree T = I,N,E,r with index set partitions II and IL, and, for each 

iII, the child index set Ci. 

 A probability c-set P in variables {pi}, iI\{r}, representing all probability 

statements in the form of a feasible box and constraints. 

 A value c-set V in variables {vi}, iIL, representing all value statements in 

the form of a feasible box and constraints. 

All alternatives are modelled in the same structure. This structure (the decision 

frame) fully represents the entire decision problem, and all evaluations are made 

relative to it. The probability and value c-sets, together with structural information, 

constitute the decision frame. 

Definition: Given a probabilistic decision situation with m alternatives, a decision 

frame is a structure m,F, F = {Fi} for i{1,...,m}, where Fi = Ti,Pi,Vi is a tree 
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frame for alternative Ai. Thus, the decision frame contains, for each alternative, a 

decision tree structure and a tree frame. 

Now that the representation structure is defined, the next item is algorithms for 

computing upper and lower bounds for the expected value in the tree, i.e. optimisa-

tion of sums of products derived from the tree structure. The primary evaluation 

rule is based on the expected value. Since neither probabilities nor values are fixed 

numbers, evaluating the expected value yields multi-linear objective functions 

(with bilinear functions as a special case for one-level trees). Evaluate the expected 

value of an alternative given a decision frame m, {Ti,Pi,Vi}, i.e. 

EV(Ai) = 
0 2 11

1 1 2 1 2 2 1 1 2 2 1 1 2 2 1

1 2 1

1

1 1 1 1

... ... ... ...
i i ii m m

m m m m m m m m

m m

n n nn

ii ii i ii i i i ii i i i i ii i i i i

i i i i

p p p p v
 

     

   

    ,  

where 
... ...jip , j{1,…,m} denote probabilities in Pi and

... ...1jiv  denote values in Vi. Op-

timisation of such non-linear expressions subject to linear constraints (the probabil-

ity and value constraint sets) are described in (Danielson, 1997).  

The contraction is a generalised sensitivity analysis to be carried out in an arbi-

trary number of dimensions. In non-trivial decision situations, when an information 

frame contains numerically imprecise information, the different principles sug-

gested above are often too weak to yield a conclusive result. Often, a far too 

crowded set of candidates is received. One way to proceed could be to determine 

the stability of the relation between the consequence sets under consideration. A 

natural way to investigate this is to consider values near the boundaries of the in-

tervals as being less reliable than more central values due to interval statements 

being deliberately imprecise. This is taken into account by measuring the dominated 

regions indirectly using the concept of contraction. 

The principle of contraction is motivated by the difficulties of performing sim-

ultaneous sensitivity analysis in several dimensions at the same time. It can be hard 

to gain a real understanding of the solutions to large decision problems using only 

one-dimensional analyses since different combinations of dimensions can be criti-

cal to the evaluation results. Investigating all possible such combinations would 

lead to a procedure of high complexity in the number of cases to investigate. Using 

contractions, this difficulty is circumvented. The contraction avoids the complexity 
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inherent in combinatorial analyses. However, it is still possible to study the stability 

of a result by gaining a better understanding of how important the interval boundary 

points are. By co-varying the contractions of an arbitrary set of intervals, it is pos-

sible to gain much better insight into the influence of the structure of the information 

frame on the solutions. Both the set of intervals under investigation and the scale of 

individual contractions can be controlled. Consequently, a contraction can be re-

garded as a focus parameter that zooms in on central sub-intervals of the full state-

ment intervals.  

Definition: X is a base with the variables x1,…,xn, π  [0,1] is a real number, 

and {πi  [0,1] : i = 1,…,n} is a set of real numbers. [ai, bi] is the interval cor-

responding to the variable xi in the solution set of the base, and k  = (k1,…,kn) 

is a consistent point in X. A π-contraction of X is to add the interval statements 

{xi  [ai+π·πi·(ki–ai), bi–π·πi·(bi–ki)] : i = 1,…,n} to the base X. k  is called the 

contraction point (or focal point). 

By varying π from 0 to 1, the intervals are decreased proportionally using the 

gain factors in the πi-set, thereby facilitating the study of co-variation among the 

variables. This is a form of sensitivity analysis, which is described in more detail in 

(Danielson, 1997). In order to assess the properties of a frame, computational meth-

ods are required that can determine whether a given base has a particular property 

or not. One of the most fundamental components is a way of determining con-

sistency in a base. Since the base consists of a linear system of inequalities, a natural 

candidate area for an algorithm is linear programming. 

The area of linear programming (LP) was formed in the 1940s and has been a 

large and lively area of research ever since. It deals with the maximising (or mini-

mising) of a linear function with a large number of likewise linear constraints in the 

form of weak inequalities. Research efforts in the field are partly focused on devel-

oping clever algorithms for fast numerical computations. This chapter assumes that 

the reader is familiar with the basics of LP in general and with the Simplex method 

in particular. Those unfamiliar with these subjects may refer to any standard text-

book on the subject. The LP problem is the following optimising problem: 
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max f(x) 

when Ax ≥ b 

and x ≥ 0 

where f(x) is a linear expression of the type k1x1 + k2x2 + … + knxn, Ax ≥ b is a 

matrix inequality with rows a11x1 + a12x2 + … + a1nxn ≥ b1 through am1x1 + 

am2x2 + … + amnxn ≥ bm, and x ≥ 0 are the non-negativity constraints xi ≥ 0 for 

each variable. Amongst all feasible points, the solution to f(x) is sought that has the 

highest numerical value, i.e. the best solution vector x, the components of which 

are all non-negative and satisfy all constraints. A minimum can be searched for by 

negating f(x). 

Consistency 

The first algorithm is a procedure for determining whether a base is consistent or 

not. A base is consistent if any solution whatsoever can be found to the set of inter-

val constraints. Note the similarities with the LP problem formulation. Let there be 

m interval constraints in the base. By introducing new variables y1,…,yk, with 

k = 2·m, to the consistency problem, it can be reformulated as 

min (y1 + … + yk) 

when Ax ≥ b 

and x ≥ 0, y ≥ 0 

where each of the interval constraints ai1x1 + ai2x2 + … + ainxn  [a, b] is trans-

formed into corresponding inequalities ai1x1 + ai2x2 + … + ainxn + y2i-1 ≥ a and 

ai1x1 + ai2x2 + … + ainxn – y2i ≤ b. If the obtained minimum of y1 + … + yk has 

the value zero, then a solution has been found that does not contain any yj. Remov-

ing the yj’s, the resulting solution vector x is indeed a feasible solution, i.e., the base 

is determined to be consistent. If the minimum of y1 + … + yk is positive, then the 

optimal values of the yj’s are larger than zero, i.e. at least one of the yj’s is necessary 

to keep the base consistent. Since the yj’s were added to the base, the problem itself 

has no solution. Hence, the base is inconsistent. This forms the algorithm for deter-

mining consistency in a decision frame by applying it to the probability and value 

bases. 
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Orthogonal Hull 

Another important property of a base is the orthogonal hull. According to the defini-

tion, in order to calculate the hull, find the pairs Xmin(xi),
Xmax(xi)n, i.e. finding 

minima and maxima for single variables in the base. First, a consistent point is de-

termined by employing the procedure above. A search then begins from that point 

for the minimum and maximum of each variable in turn by forming LP problems 

with that variable as the objective function. For convexity reasons, the entire inter-

val between those extremal points is feasible. If the base is consistent, the orthogo-

nal hull can be calculated. From the two properties consistency and orthogonal hull, 

most of the other ones follow from less demanding computations. 

Evaluation Algorithms 

The problem addressed in this section is how to compare the different consequence 

sets computationally using the methods of the previous chapter. The computational 

pattern that reoccurs several times in that chapter and needs to be solved fast in long 

sequences is PVmax(∆ij) and PVmin(∆ij). The optimisation of general ∆ij-type of 

expressions as they appear in Chapter 5 is a demanding computational task as soon 

as the problem to solve is above toy size. In most cases, however, the expected 

value rule is employed, making the task less demanding from a computational point 

of view. In this section, it is assumed that the expected value is being used. Then, 

the general PVmax(∆ij) turns into PVmax(∑k pik – ∑k pjk) for first order ∆-domi-

nance such as 1SE and security levels, and into PVmax(∑k pik·vik – ∑k pjk·vjk) for 

second order ones such as 2SE or NE.  

First Order Dominance 

For first order dominance, the evaluation expressions are of the form 

  

P
max pik

kKi










 or 

  

P
max pik

kK i

  p jk
kK j
















 (or corresponding 
P

min) 

for some index sets Ki or index set pairs (Ki,Kj)(d) respectively.  
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These maximisation problems map directly onto LP since it is possible to identify 

the linear f(x) with ∑k pik or ∑k pik – ∑k pjk and note that Ax ≥ b is the probability 

base P. The solution to the problem is thus obtained by running a suitable LP solver 

such as Simplex described later in the chapter. This is an efficient solution to first 

order problems. 

Second Order Dominance 

For second-order dominance, the expressions are more complicated. They involve 

non-linear elements in the form of bilinear terms pik·vik. The optimisation problems 

PVmax(∑k pik·vik) and PVmax(∑k pik·vik – ∑k pjk·vjk) cannot be solved by a simple 

application of an LP solver even if the P- and V-bases are independent and still 

consist of only linear expressions. The objective function is ∑k pik·vik – ∑k pjk·vjk 

= pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 – (pj1·vj1 + pj2·vj2 + … + pjmj
·vjmj

). This is a 

bilinear expression with all terms of the form pik·vik. There is one such expression 

together with many linear inequalities. Thus, it is an optimisation problem with a 

bilinear objective function and a system of linear inequalities as constraints. It will 

be called a bilinear programming problem with ±1 term constants (a BLP1 problem 

for short).  

Two alternative algorithms for use in an interactive environment are proposed. 

The bilinear objective function is an instance of quadratic objective functions, and 

thus the general BLP1 is solvable with quadratic programming (QP) methods. A 

QP-based one is the most general, able to solve all BLP1 problems, but it is not as 

fast as desired for interactive use for larger decision problems. The other algorithm 

is LP-based and is well-suited for user interaction. Since the bilinear objective func-

tion is quadratic, the first natural candidate area for a solver algorithm is quadratic 

programming. 

Quadratic Programming 

The theory of QP can be found in any standard textbook on non-linear optimisation. 

Here, only the top-level procedure for searching quadratic optima is considered. 

The general QP problem with both equalities and inequalities in the constraints is 
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(QPI) max (xTQx + cTx) 

  when Ax ≥ b 

where A is a m  n matrix with linearly independent rows, Q is a symmetric n  n 

matrix, and c is a vector in Rn. The expression xTQx is a quadratic form and can 

contain all possible quadratic terms. 

Since the objective function is quadratic, the theory of linear programming as 

discussed above does not apply. Even though a method similar to Simplex was orig-

inally devised by Dantzig and Wolfe to solve QP, most methods today use factor-

ised matrices. For any given solution the inequality problem QPI can be considered 

a problem with only equalities (QPE), namely all weak inequalities satisfied without 

slack. Since the other inequalities are not active at that solution point they need not 

be considered locally. This reasoning leads to the active set strategy, a well-known 

technique within non-linear programming. One of the problems with the active set 

is that its members at any given step are hard to determine in advance. This means 

resorting to a guessing strategy, where a choice is made without enough information 

and corrected later on should the choice be proven unsuitable. QPE problems can 

be solved using a number of standard methods such as Lagrange methods or null-

space methods, depending on matrix sparsity, stability requirements, and other cri-

teria. The BLP1 problem maps well onto QPI since there is one second-order non-

linear expression as the objective function and a larger number of linear constraints 

in the probability and value bases. The bilinear objective function is a special case 

of a quadratic function where most of the entries in the Q matrix are zero. This 

forms the basis for the general QB-Opt algorithm. 

Observation: Given a decision frame C,P3,V3, 
PVmax(ij) = max (xTQx + cTx) 

with ij as xTQx, 0 as cTx and PV as Ax ≥ b. 

The QPE is computationally fairly demanding, and QPI, being an iterative se-

quence of QPEs, is even more so. Since QPI often does not admit interactive re-

sponse times, it would be preferable to use an LP-based solver instead. This is pos-

sible in most cases using PB-Opt below. Together with QB-Opt, it forms a solver 

hierarchy from which the fastest is selected for each given optimisation problem.  
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Probability Bilinear Optimisation 

The LP-based algorithm described is the probability bilinear optimisation, PB-Opt. 

For PVmax(∑k pik·vik) it solves the general BLP1 problem for C,P3,V2-frames 

while for PVmax(∑k pik·vik – ∑k pjk·vjk) it solves all cases where there are no com-

parative constraints between the consequence sets involved in the calculation, either 

directly or indirectly. To begin with, expressions of maximal and minimal proba-

bilities are introduced. 

Definition: Given a decision frame C,P,V, 

VEi
max

 is 

  

p ik  bik
k1

mi

 , where bik = Vmax(vik). 

VEj
min

 is 

  

p jk  bjk
k1

mj

 , where bjk = Vmin(vjk). 

Vij is VEi
max

 – VEj
min

. 

The last difference was formed from two linear expressions in only probability var-

iables. The main proposition for PB-Opt is now stated as follows.  

Proposition: Given a decision frame C,P3,V2. If none of the comparative con-

straints in V involve variables from different Ci’s, then PVmax(ij) = Pmax(Vij) 

for any pair Ci and Cj. 

Proof: Let (bi1,…,bimi
) and (bj1,…,bjmj

) be as in the definitions of VEi
max

 and 
VEj

min
 above. For all feasible vectors (pi1,…,pimi

), (pj1,…,pjmj
), (vi1,…,vimi

), and 

(vj1,…,vjmj
) VEi

max
 ≥ ∑k pik·vik and VEj

min
 ≤ ∑k pjk·vjk. It follows from 

bik = Vmax(vik) and bjk = Vmin(vjk) and from pik ≥ 0  k  {1,…,mi} and pjk ≥ 0 

 k  {1,…,mj}. This implies Vij ≥ ∑k pik·vik – ∑k pjk·vjk. 

Ci contains mi consequences. Given two integers 1 ≤ k,l ≤ mi, assume 

bik = Vmax(vik). Then for vil, either i) there is no comparison vil – vik  [a,b] in 

V, in which case vil is independent of vik, or ii) there is a comparison vil – vik  

[a,b]. For case ii), the constraint can be written ii a) vil ≥ a + vik and ii b) vil ≤ b 

+ vik. In ii a) vik does not constrain the maximisation of vil, and in ii b) vik = bik 
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maximises vil. Thus vik and vil can be independently maximised and (bi1,…,bimi
) 

is a feasible vector as is (bj1,…,bjmj
) by a similar argument. Since there are no 

constraints vik – vjl  [c,d] in V for different Ci and Cj, each bik in (bi1,…,bimi
) 

and each bjk in (bj1,…,bjmj
) can be chosen within a consequence set independently 

of the other sets.  

This justifies the basis for the PB-Opt algorithm. The rest of the algorithm al-

most suggests itself. It searches for the optimum Pmax(Vij) by means of an LP 

algorithm such as Simplex. The proposition then guarantees that PVmax(ij) can 

be determined by calculating Pmax(Vij) instead provided the precondition is met. 

Similarly, PVmax(∑k pik·vik) can be found by searching for an LP solution in-

stead. 

Second-Order Computations 

The DELTA Method is a distribution-free decision analysis method for the handling 

and evaluation of decision and risk trees (Danielson, 1997). It has thereafter in 

20012002 been extended from probabilistic decision situations also to cover deci-

sions under multiple criteria. Decision alternatives are evaluated by so-called con-

tractions of the intervals combined with several complementary evaluation rules. 

The advantage of a distribution-free approach is the generality and freedom from 

assumptions that it allows. However, a disadvantage is the unintuitive interpretation 

of the results of a contraction. In order to alleviate that problem, an additional anal-

ysis method is introduced in this report, based on a belief mass interpretation of the 

output intervals from DELTA. Each input and output interval consists of a lower 

bound, an upper bound, and a focal point. These three points are interpreted as pa-

rameters for belief distributions (Dirichlet distributions for probabilities and criteria 

weights, triangle distributions for values). 

A key observation in the DELTA method is that the belief in points closer to the 

endpoints of the intervals is lower than the belief in more central points. This is the 

reason for the contraction procedure above. The same observation underlies the 

BEDA method, but it is effectuated differently – by assigning explicit distributions 

of belief on the intervals. The distributions used for expressing beliefs are well-

known distributions from statistics: the Dirichlet distribution for probabilities (since 
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they need to sum to one following Kolmogorov’s axiom system) and the triangle 

and uniform distributions for utilities/values, the choice depending on whether there 

are two or three points defining an interval. The properties of both Dirichlet and 

triangle distributions are well described in (Kotz and van Dorp, 2004). To see how 

it works, begin by revisiting the expression for the expected value: 

EV(Ai) = 
0 2 11

1 1 2 1 2 2 1 1 2 2 1 1 2 2 1

1 2 1

1

1 1 1 1

... ... ... ...
i i ii m m

m m m m m m m m

m m

n n nn

ii ii i ii i i i ii i i i i ii i i i i

i i i i

p p p p v
 

     

   

    ,  

To evaluate this expression, and thus arrive at an analysis of the decision situation, 

employ calculation methods for the two operators addition and multiplication. The 

addition operator is handled by ordinary convolution, i.e. if h is the distribution over 

a sum z = x + y whose components have distributions f(x) and g(y), then h(z) is 

ℎ(𝑧) =
𝑑

𝑑𝑧
∫ 𝑓(𝑥)𝑔(𝑧 − 𝑥)𝑑𝑥

𝑧

0

. 

The multiplication operator is treated analogously. Using the same assumptions as 

above, if h is the distribution over a product z = x ∙ y, h(z) is found by letting 

𝐻(𝑧) = ∬ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = ∫ 𝑓(𝑥)𝐺(𝑧 𝑥⁄ )𝑑𝑥
1

𝑧

𝑧 𝑥⁄

0

1

0
𝛤𝑥

 

where G is a primitive function to g, Γz = {(x,y) | x∙y ≤ z}, and 0 ≤ z ≤ 1. Then h(z) 

is the corresponding density function 

ℎ(𝑧) =
𝑑

𝑑𝑧
∫ 𝑓(𝑥)𝐺(𝑧 𝑥⁄ )𝑑𝑥

1

𝑧

= ∫
𝑓(𝑥)𝑔(𝑧 𝑥⁄ )

𝑥
𝑑𝑥

1

𝑧

. 

In theory, the products are calculated and the abovementioned convolution of two 

densities then effectuates the summations of the products. This combination of op-

erators computes the distribution over the expected utility. In practice, however, 

these calculations are very complicated for a decision-analytic tool to carry out, 

especially when additional requirements are added, such as asymmetry in the input 

distributions and truncated distributions due to the input intervals being narrower 

than the default [0, 1] range assumed in the standard theory. 

The evaluation method in BEDA is based on the principle of going concern 

(PGC). It is the same PGC observation that enables the use of probability theory as 
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a risk calculus. The probability of an event occurring is the proportion of times it 

occurs if the event is repeated an infinite number of times. In using probabilities for 

modelling real-life events, the approximation is used that the probability best rep-

resents the risk involved. For this approximation to be reasonable, several events 

need to take place for the real-world outcomes to cancel out in the sense that they, 

on average, tend to the probability. This is the assumption of going concern, and 

the approximation is viable in most decision situations, which is why probability 

calculus is accepted for use in this way. The same PGC reasoning applied to distri-

butions involves the central limit theorem and the law of large numbers in statistics. 

This leads to the well-founded approximation that the total distribution of expected 

value over a large number of decision situations will tend to the normal distribution. 

Using this approximation, the evaluation in the BEDA method amounts to finding 

parameters for a suitable approximately normal distribution. Two factors slightly 

complicate matters. i) The input distributions are seldom symmetric in the sense 

that their mean values are not midway between the lower and upper boundaries of 

the intervals. And even if they were, the multiplication operator’s non-linearity still 

yields an asymmetric result. ii) The lower and upper bounds themselves introduce 

truncations into the resulting distributions, leading to non-standard outcomes. This 

eventually turns the BEDA evaluation into a moment calculus using the NEMO (net 

moment) technique. NEMO includes all moments that have a noticeable impact on 

the end result and excludes those that have negligible impact to save computation 

time. For a detailed description of BEDA and NEMO, refer to the documentation 

on the UNEDA webpage.  

 

This chapter builds on (Danielson, 1997, Ch.6) 
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Universal Engine for Decision Analysis 

The software platform UNEDA (Universal Engine for Decision Analysis) has been 

developed in parallel with the book over a extended period of time. A substantial 

amount of material associated with UNEDA has never been published, except on 

the author’s university webpages. Those documents cover aspects of prescriptive 

decision analysis that have now been incorporated into the UNEDA computational 

engine. 

UNEDA is an open-source library for MPDA (probabilistic MCDA). It imple-

ments the DAMS-MP framework from Chapter 15 and thus integrates the two fields 

of probabilistic and multi-criteria decision analysis into a unified computational en-

vironment. The library is freely available to use for any purpose, academic and non-

profit as well as (from June 6, 2025) commercial. The software library can be ac-

cessed via the GitHub repository at 

github.com/uneda-cda/UNEDA 

and the documentation is found at a link in the same repository. The original release 

of the software platform can also be found via the DOI link 

doi.org/10.5281/zenodo.15114623. 

Background material for UNEDA is available via links in the GitHub repository. 

 

 

 

 

 

 

 
 

 
  

https://github.com/uneda-cda/UNEDA
https://doi.org/10.5281/zenodo.15114623
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Appendix 

Some graduate students found the discussion and Table 2 in Chapter 13 to be a little 

too condensed to follow with ease. As a consequence, the teaching material was 

supplemented with some explanatory notes. In the second edition of the book, these 

notes have been added as an appendix. It discusses the Big Five methods through 

the DAMS desiderata lens in a structured form and in more detail. In the following, 

all methods include both formula and thresholds and all alternative sets are finite. 

Desideratum 1 (Ordering): The preference relation is complete. For all A and B, 

either A ≻ B, B ≻ A, or A ∼ B. This requirement together with Desideratum 2 im-

plies that the decision-maker’s preferences can be modelled as a complete weak 

order (or total pre-order), i.e. an ordered partition into indifference classes. 

Method Fulfils D1 Comment 

VIKOR OK VIKOR ranks all alternatives using a compromise 

measure (Q) combining: (1) the utility (distance 

from the ideal) and (2) the regret (maximum devia-

tion for any criterion). The underlying preference 

relation induced by Qᵢ is a complete weak order. 

TOPSIS OK TOPSIS assigns each alternative a scalar closeness 

coefficient based on its distance to the ideal and 

anti-ideal points. Because these scalar scores are 

totally ordered, all alternatives are comparable.  

ÉLECTRE NO 

by design 

ÉLECTRE produces outranking relations (not full 

preference orders), with thresholds, veto rules, and 

incomparability. These design features include in-

completeness and non-transitivity to model non-

compensatory and threshold-based preferences. 

PROM I NO PROMÉTHÉE I allows for incomparability; thus, it 

does not satisfy completeness. 

PROM II OK PROMÉTHÉE II computes a scalar net flow for 

each alternative and imposes a complete ranking, 

ensuring that pairs of alternatives are comparable. 

AHP OK AHP has a matrix output allowing comparisons. 
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Desideratum 2 (Transitivity): The preference relation is transitive: If A ≻ B and 

B ≻ C, then A ≻ C. This requirement together with Desideratum 1 implies that 

the decision-maker’s preferences can be modelled as a complete weak order. 

Method Fulfils D2 Comment 

VIKOR OK VIKOR ranks all alternatives using a compromise 

measure (Q) combining: (1) the utility (distance 

from the ideal) and (2) the regret (maximum devia-

tion for any criterion). The underlying preference 

relation induced by Qᵢ is a complete and transitive 

weak order. 

TOPSIS OK TOPSIS assigns each alternative a scalar closeness 

coefficient based on its distance to the ideal and 

anti-ideal points. Because these scalar scores are 

totally ordered, every pair of alternatives is compa-

rable and the strict preference relation is transitive.  

ÉLECTRE NO 

by design 

ÉLECTRE produces outranking relations (not full 

preference orders), with thresholds, veto rules, and 

allowance for incomparability. These design fea-

tures include incompleteness and non-transitivity to 

try to model such preferences in the core. 

PROM I NO PROMÉTHÉE I allows for incomparability; thus, it 

does not satisfy completeness. Even when it asserts 

A ≻ B and B ≻ C, it may leave A and C incompa-

rable due to conflicting flow values, so transitivity 

is not guaranteed either. 

PROM II OK 

after ag-

gregation 

PROMÉTHÉE II computes a scalar net flow for 

each alternative and imposes a complete ranking, 

ensuring that every pair of alternatives is compara-

ble. Because these net flow values are real num-

bers, the induced strict preference relation is transi-

tive. 
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AHP Only under 

perfect 

consistency 

AHP assumes transitivity, but it only holds if the 

pairwise comparison matrix is consistent. In prac-

tice, inconsistency is common. The method has a 

consistency index to detect but not enforce it. 

VIKOR, TOPSIS and PROMÉTHÉE II satisfy both completeness and transitivity. 

They provide full rankings based on cardinal values (scores). PROMÉTHÉE I falls 

short because of two rankings as output which may differ, declaring the alternatives 

incomparable. ÉLECTRE is explicitly built to not require completeness or transitiv-

ity. It is more aligned with partial and ambiguous preferences. AHP is formally com-

plete and transitive if judgement matrices are consistent, but that is a big if in prac-

tice since a consistency index of zero is notoriously hard to obtain. 

Desideratum 3 (Dominance): If for all i, si (A) ≥ si (B) and for some j, sj(A) > sj(B) 

then A ≻ B. This is often referred to as Pareto dominance or the strong dominance 

rule. This desideratum demands that if alternative A is at least as good as B in 

every criterion, and strictly better in at least one, then A must be strictly preferred 

over B. It is a straightforward principle in spirit, better is better, and important for 

rational consistency. 

Method Fulfils D3 Comment 

VIKOR Partly 

 

The Q-index blends utility (S) and regret (R). Be-

cause 𝑄𝑖 is monotonically increasing in both 𝑆𝑖 

and 𝑅𝑖, it follows that 𝑄𝐴 > 𝑄𝐵 ⇒ B ≻ A if it had 

not been for the C1/C2 threshold rules. 

TOPSIS OK TOPSIS compares relative closeness to the ideal 

vs. anti-ideal. A dominant alternative will always 

have equal or better distance metrics, leading to a 

better closeness coefficient. 

ÉLECTRE NO ÉLECTRE is built on outranking, not dominance. 

It allows for thresholds, veto effects, and incompa-

rability. A dominated alternative (in the Pareto 

sense) might appear above a dominant one in the 

final ranking, due to indifference or thresholds. 
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PROM I NO PROMÉTHÉE I does not always respect domi-

nance due to thresholds. A dominating alternative 

might get the same preference flows. Further, in-

comparability is still possible, which can obscure 

strict dominance. 

PROM II Partly PROMÉTHÉE II does not have incomparability in 

its output but still suffers from thresholds. De-

pends on which stage you call “the relation”. Once 

reduced to a single real score, dominance is re-

spected (so the final ranking is consistent). 

AHP Only under 

perfect 

consistency 

AHP is vulnerable to dominance violations due to 

inconsistencies in pairwise comparisons. If the de-

cision-maker’s judgements do not reflect domi-

nance, the eigenvector weights may still assign a 

higher rank to a dominated alternative. Dominance 

is not structurally enforced. 

 

Only TOPSIS robustly preserves the dominance principle. That is, if one alternative 

is strictly better in at least one criterion and no worse in the others, it will be pre-

ferred. Others may violate this property due to compromise calculations or judge-

ment inconsistencies. ÉLECTRE, by design, allows outranking contradictions and 

veto thresholds to override dominance, reflecting its commitment to modelling par-

tial and conflicted preferences rather than idealised rational consistency. 

Desideratum 4 (Monotonicity): If A ≻ B, and A' is such that si (A) = si (A') for all 

i  j and si (A) = si (A')+ for some small  > 0, then A' ⪰ B. This says that if A is 

better than B, and an alternative A' is created that is worse than A in one criterion, 

then A' should not be worse than B (i.e., B should not leap ahead just because A' 

got slightly worse than A in a differential sense). This is a stability condition: 

weakening a better alternative should not reverse an established preference. 

 

Method Fulfils D4 Comment 

VIKOR OK VIKOR preserves monotonicity: worsening an al-

ternative increases both the utility loss (S) and po-
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tentially the regret (R), which raises the compro-

mise index (Q). Even if the worsening shifts the 

maximum-regret criterion from a low-weighted to 

a high-weighted one, the regret term cannot cause 

the ranking to flip. And C1/C2 can at worst make 

A and B equally preferred (incomplete ranking). 

TOPSIS OK When an alternative is worsened, its distance to 

the ideal increases and its closeness coefficient de-

creases. The method ensures that preference is 

preserved unless the worsening is large enough to 

fully reverse the closeness relation, making it con-

sistent with monotonicity. 

ÉLECTRE NO 

not neces-

sarily 

ÉLECTRE can violate this rule due to veto thresh-

olds and discordance. If A' is slightly worse than 

A in a vetoed criterion, it might lose the outrank-

ing status, even if B is globally worse. Also, in-

comparability may replace a previous strict prefer-

ence. 

PROM I NO PROMÉTHÉE I respects this property when A' 

and B are comparable because of monotonic pref-

erence functions. If A' is strictly worse than A, it 

will score slightly lower but still above B if A did. 

However, it can collapse the order into incompara-

bility due to how flows are separately compared. 

PROM II OK PROMÉTHÉE II assigns net flow scores via pair-

wise comparisons. A' being slightly worse than A 

reduces its score while still being comparable. 

AHP NO 

no guarantee 

AHP depends on subjective pairwise judgements, 

not direct performance scores. If A ≻ B because 

of a particular judgement and then A' worsens in 

objective terms, it does not automatically follow 

that A' ≻ B. The pairwise matrix might yield dif-

ferent eigenvalue-based rankings, especially if in-

consistencies are present. 
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The monotonicity property that worsening a preferred alternative should not reverse 

its dominance over a clearly inferior one is fully respected by three Big Five meth-

ods. ÉLECTRE and PROMÉTHÉE may switch preference status based on thresh-

olds or veto conditions. AHP, based on subjective judgements, has no structural 

mechanism to enforce this kind of ordinal stability. 

Desideratum 5 (Independence of Irrelevant Alternatives): If A ≻ B in set X, and 

C ∉ {A, B}, then A ≻ B in X ∪ C, provided that criteria weights are automatically 

adjusted to preserve the relative importances of one unit on each original scale if 

C caused any scale renormalisations. 

 

Method Fulfils D5 Comment 

VIKOR OK VIKOR normalises criterion values based on the 

best and worst in the current set, which can alter the 

loss profiles and rankings when a new alternative is 

introduced. If the weights are automatically re-

scaled, the relative preference between two un-

changed alternatives remains stable. 

TOPSIS OK TOPSIS defines ideal and anti-ideal reference points 

based on the full set of alternatives, making its nor-

malisation sensitive to the presence of new options. 

If weights are rescaled, the preference between any 

two unchanged alternatives remains stable. 

ÉLECTRE NO ÉLECTRE is based on pairwise outranking with 

thresholds, and adding a new alternative C can 

change the concordance/discordance matrices, espe-

cially if C introduces new veto situations or changes 

credibility scores. It satisfies IIA at the outranking 

level but violates it at the final ranking level.  

PROM I NO PROMÉTHÉE I uses pairwise preference flows, and 

adding C introduces new comparisons (A vs. C and 

B vs. C), which can affect overall flow values. Thus, 

the preference between A and B may change. 

PROM II NO Same as PROMÉTHÉE I: net flow scores are 

recomputed based on all pairwise comparisons. 
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Adding an irrelevant third option can redistribute 

outranking flows, which may alter A ≻ B. 

AHP NO AHP uses pairwise comparison matrices, so adding 

C creates new comparisons (A vs. C, B vs. C, etc.). 

The derived priority vector can shift even if A ≻ B 

held before.  

Two of the five benchmarked methods satisfy the condition of independence of ir-

relevant alternatives. Three of them define preferences in relation to the full set of 

alternatives, whether through outranking flows (PROMÉTHÉE), concordance ma-

trices (ÉLECTRE), or pairwise judgements (AHP). Consequently, adding or remov-

ing an option not directly involved in a preference relation (e.g. C ∉ {A, B}) can 

still cause a reversal of A ≻ B, making the methods context-dependent rather than 

strictly ordinal. 

Desideratum 6 (Rank Preservation): If A ≻ B in X, and C is a third alternative not 

affecting the scores of A or B, then removing C from X does not alter the ranking 

A ≻ B (allowing for automatic weight adjustment to preserve per-unit criterion 

meaning). This is an instance of the rank reversal property in its removal form. It is 

a consistency condition under contraction. If C is irrelevant to the comparison be-

tween A and B, then removing C should not disturb that comparison. Violation of 

this desideratum is a hallmark of context-dependent or relativistic MCDA methods 

where scores are based on entire sets of data. 

 

Method Fulfils D6 Comment 

VIKOR NO Even if alternative C does not affect the scores of 

A or B, its removal changes the threshold DQ, 

which increases and might obliterate A ≻ B. 

TOPSIS NO Its use of context-sensitive extreme artificial solu-

tions (ideal and anti-ideal) means that removing 

an irrelevant alternative can shift the reference 

points. Even with automatic weight adjustment, 

the non-linear geometry shifts and closeness can 

change. 
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ÉLECTRE Partly Although its pairwise outranking relations A ≿ B 

are computed independently, the final rankings 

depend on the entire set of alternatives. Removing 

a third alternative C can alter the structural domi-

nance relations or the set of outranked alterna-

tives. However, the many variants of the method 

have different sensitivity to rank reversal. 

PROM I/II NO In PROMÉTHÉE, the net flow scores are aggre-

gate constructs over the entire set. Removing an 

irrelevant alternative C can change the flow bal-

ance, and alter the ranking between A and B, de-

spite their pairwise scores being unchanged. 

AHP NO Its ranking outputs are based on eigenvectors or 

geometric means of a full matrix. Removing a 

third alternative changes the dimensional struc-

ture, and can shift relative priority values, leading 

to preference reversals between unchanged pairs. 

The desideratum of invariance under irrelevant removal asks whether removing a 

third alternative leaves the ranking A ≻ B intact. None of the five methods reviewed 

satisfy this condition. VIKOR trips on the finalising rules C1 and C2. TOPSIS de-

pends on reference points derived from the entire alternative set. Removing C can 

shift the ideal or anti-ideal positions, thereby altering A’s and B’s closeness or com-

promise scores. ÉLECTRE shows some resilience, thanks to its pairwise structure. 

But also here, changes in the concordance or veto dynamics can distort the ranking. 

PROMÉTHÉE, relying on net preference flows, also fails: any contraction of the 

alternative set alters the flow landscape, making outcomes sensitive to seemingly 

irrelevant options. AHP, built on global pairwise matrices, responds to removal with 

complete recalibration, often changing weights and ranks. It has no internal model 

of what a score means and only sees the ratios as directly meaningful.  

Desideratum 7 (Criteria Transparency): For any preference A ≻ B, there exists a 

representable and decomposable justification based on the contribution of each cri-

terion to the total evaluation. This is a prescriptive rationality requirement. It im-

plies three things: i) that the decision process should be transparent, i.e. not a black 
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box, ii) the contribution of each criterion to the ranking must be explicit and trace-

able, and iii) a decision-maker (or stakeholder) should be able to understand and 

explain why A ≻ B, broken down by criteria.  

Method Fulfils D7 Comment 

VIKOR Partial VIKOR produces scores S (utility) and R (regret), 

which are aggregated into the Q-index. While S is 

decomposable (weighted sum of distances to ideal 

per criterion), R is non-compensatory, taking the 

maximum deviation. This makes full decomposition 

asymmetric and harder to explain. Moreover, condi-

tional decision rules further obscure interpretability. 

TOPSIS OK Although the closeness coefficient is not additive, it 

is constructed entirely from per-criterion terms that 

are geometrically and algebraically interpretable. 

This allows preferences such as A ≻ B to be justi-

fied based on specific criteria that favour A in rela-

tion to the ideal solution. 

ÉLECTRE Partial ÉLECTRE builds an outranking relation using con-

cordance (supporting criteria) and discordance (op-

posing criteria). While it can be described why A 

outranks B, veto rules and thresholds make explana-

tions non-additive and discontinuous, and thus hard 

to justify in scalar terms. 

PROM I Partial PROMÉTHÉE uses criterion-wise preference func-

tions and produces positive/negative flow contribu-

tions. One can break down A ≻ B by examining 

how much each criterion contributes to A’s net flow. 

The final ranking is based on the net flow ϕ(A) 

which is traceable but blends information about A’s 

performance vs all others. 

PROM II Partial PROMÉTHÉE II extends this with a complete rank-

ing. Since it is still based on criterion-wise prefer-
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ence functions and weighted net flows, one can gen-

erate a step-by-step breakdown of why A ≻ B. Same 

reservation as I. 

AHP Partial AHP computes local priorities per criterion and ag-

gregates them into global weights. In theory, the 

preference A ≻ B can be decomposed. However, be-

cause it is based on subjective judgements, and due 

to eigenvalue-based weighting, explanations may 

lack clarity. Also, when inconsistencies exist in the 

matrix, the decomposability decreases. 

 

The desideratum is fully satisfied by VIKOR and partly satisfied by all others. 

ÉLECTRE, relying on thresholded outranking logic, produces qualitative preference 

relations that resist scalar decomposition, making justifications difficult to articulate 

in terms of continuous contribution. AHP, while decomposable in principle, lacks 

interpretive clarity due to reliance on subjective pairwise judgements and potential 

inconsistency.  

Desideratum 8 (Weight Sensitivity): Let wi ∈ [0, 1] be weights summing to 1. A 

change in wi  that increases the influence of criterion Ci in which si(A) ≥ si(B) 

should not alter the preference A ≻ B. This is a monotonicity property with respect 

to weights, an important consistency criterion in weight-sensitive MCDA methods. 

This expresses directional weight monotonicity. If A is already as good as or better 

than B under criterion Cᵢ and the weight of Cᵢ is increased, then A ≻ B should be 

preserved. It assumes that methods are sensitive to weights in a directionally con-

sistent way. 

 

Method Fulfils D8 Comment 

VIKOR NO VIKOR normalises each criterion into [0, 1], mak-

ing weights operate proportionally on commen-

surable scores. However, the regret term (R) uses a 

max function, which is sensitive to weight shifts if 

the criterion is the worst for an alternative. 

TOPSIS OK TOPSIS uses vector normalisation, but this does 

not guarantee that the transformed scores span the 
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full [0, 1] interval, often falling within a narrower 

subrange. Thus, increasing wᵢ may have a dampen-

ing or unpredictable effect. However, it preserves 

ranking in the ordinal sense as requested. 

ÉLECTRE OK ÉLECTRE’s concordance relations use weights, 

but because normalisation is not standardised to 

[0, 1], and thresholds/veto rules apply, weight mul-

tiplication is not cleanly interpretable. But at worst, 

the preference is not strengthened. 

PROM I/II OK  PROMÉTHÉE apply weightings to preference de-

grees derived from non-linear, threshold-based 

functions. These preference functions introduce re-

gions of flat sensitivity (indifference thresholds), 

where increasing the weight on a favourable crite-

rion has no impact, so at worst the preference is 

not strengthened. 

AHP NO AHP works on ratio-scale judgements, not normal-

ised performance data. The weights are derived, 

not applied, and the final ranking is influenced by 

the entire matrix, not marginal criterion values. In-

creasing wᵢ directly (e.g. through matrix adjust-

ments) does not reliably preserve A ≻ B, and this 

behaviour is not interpretable as scalar weight ap-

plication at all. 

 

When evaluating weight sensitivity, it is important to distinguish between the ag-

gregation logic and the normalisation method used by each technique. PRO-

MÉTHÉE maintains directional consistency under weight changes when preference 

functions are well-behaved and monotonic. TOPSIS, despite applying weights to 

vector-normalised scores, exhibits partial robustness in an ordinal sense. VIKOR, 

while based on [0,1] scaling, suffers from its max-regret term 𝑅𝑖, which is insensi-

tive to most weight shifts unless the criterion is dominant, failing to meet the desid-

eratum. ÉLECTRE further complicates weight interpretation through threshold and 

veto structures, making weight effects non-transparent and context-dependent. 

AHP, relying on eigenvector-derived weights from subjective matrices, provides no 
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direct or interpretable mechanism to adjust or monitor criterion impact, and fails the 

test of rational, directional weight response. 

 

Desideratum 9 (Criteria Independence): If criteria Ci and Cj produce identical 

scores for all alternatives, the results should be cardinally invariant under merging 

them into one criterion with a combined weight 𝑤𝑖 + 𝑤𝑗. This is a structural ration-

ality desideratum concerned with weight integrity and redundancy handling, test-

ing method invariance under model equivalence. The desideratum assumes that a 

method i) should not allow redundant criteria to artificially inflate influence, ii) en-

sures that merging two identical criteria into one does not distort the result, pro-

vided weights are added, and iii) reflects the additivity or sensitivity to criterion 

structure, essential for model parsimony and usability. 

Method Fulfils D9 Comment 

VIKOR NO VIKOR’s S and R scores are based on weighted L₁ 

(sum) and L∞ (max) distances from the ideal. If two 

criteria Cᵢ and Cj have identical scores across all al-

ternatives, they contribute twice the same deviation. 

Regret takes only the largest weighted shortfall, hav-

ing two identical columns means that the lesser of 

the two weights risk being ignored. 

TOPSIS NO  The method calculates weighted Euclidean distances 

to the ideal and anti-ideal points. If two criteria have 

identical scores across all alternatives, treating them 

separately introduces half their contributions twice. 

Treating them separately vs. merged produces dif-

ferent geometric (root-mean-square) L2 distances. 

ÉLECTRE NO ÉLECTRE’s concordance and discordance matrices 

rely on weights across all criteria. Redundant criteria 

each independently contributes to concordance, but 

the RMS distances ruin the calculus the same way it 

does for TOPSIS. 

PROM I/II OK PROMÉTHÉE’s preference flows are additive and 

criterion-wise. If two criteria are identical, their indi-

vidual preference functions will be identical as well. 
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Merging them with adjusted weights produces iden-

tical net flows. 

AHP NO The weights are not user-controlled, they are com-

puted from a pairwise comparison matrix of criteria. 

Merging two criteria is not a matter of adjusting 

weights. It means removing a row and column from 

the criteria matrix and recomputing the entire weight 

vector. This may change all other weights due to re-

normalisation and eigenvector sensitivity. 

 

The desideratum of redundancy sensitivity is important for avoiding hidden bias and 

ensuring model parsimony. Of the five methods reviewed, only PROMÉTHÉE reli-

ably supports this principle: if two identical criteria are merged and their weights 

recombined, the net flows remain unchanged. VIKOR is also compliant under sim-

ilar conditions, though its maximum-regret term (R) introduces asymmetry. In con-

trast, TOPSIS and ÉLECTRE rely on geometric RMS distances that do not repro-

duce under these conditions. AHP, structured around subjective pairwise compari-

sons, does not support criterion merging at all, and redundancy is treated as legiti-

mate additional information, a problematic stance in analytical modelling. 

Desideratum 10 (Scale Invariance): For any criterion Ci, if a positive affine trans-

formation f : ℝ → ℝ is applied to all si (∙), then the preference relation A ≻ B 

should remain unchanged. This means that any such transformation that does not 

change the direction of scores should not alter the ranking of alternatives. Methods 

that rely on non-linear magnitudes or ratios may violate this desideratum. 

Method Fulfils D10 Comment 

VIKOR OK VIKOR calculates deviations from the ideal 

point, using weighted L₁ (S) and L∞ (R) 

measures. It applies min-max normalisation to 

each criterion. This transformation is invari-

ant under strictly affine functions. 

TOPSIS NO Because it relies on vector normalisation and 

Euclidean L2 distances, it is sensitive to the 
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magnitude of scores. Even if a criterion’s rel-

ative distances are preserved, a transformation 

can change the final ranking. 

ÉLECTRE NO The method is purely ordinal and thus invari-

ant under affine transformations. But if veto 

thresholds are used, they rely on numerical 

gaps which can be distorted under scale 

changes. 

PROM I/II NO Relying on preference functions defined over 

numerical differences, affine transformations 

of a criterion’s scale might trigger thresholds 

and non-linear preference functions, thereby 

altering the overall ranking. 

AHP NO AHP uses subjective pairwise judgements, not 

score functions. An affine transformation of 

raw scores changes the subjective ratio, lead-

ing to different matrices and altered results. 

 

The desideratum of affine transformation invariance tests whether methods rely 

solely on the difference of criterion values. ÉLECTRE does not satisfy this condi-

tion, even though its outranking logic depends only on ordinal comparisons, due to 

veto thresholds. PROMÉTHÉE could have respected this property, but only if its 

preference functions had been truly affine to begin with. In contrast, VIKOR has 

such a truly affine-respecting construction. TOPSIS is sensitive to value transfor-

mations and violate the desideratum. AHP, grounded in subjective comparisons and 

eigenvector derivation, is scale-dependent and non-invariant by construction. 

This concludes the discussion of the Big Five methods. Most of them display 

some strengths and some weaknesses, while AHP does not do well regarding any 

desideratum. This is due to it being the farthest away from the well-established and 

validated axiom systems of von Neumann-Morgenstern and Keeney-Raiffa that the 

DAMS desiderata are built on and reflect. There is no other coherent set of axiom 

systems that could optionally be adhered to, thereby invalidating the “smorgasbord 

approach” sometimes advocated for as a replacement for rigorous foundations. 
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All desiderata are summarised in Table A1, which is structurally identical to Ta-

ble 2 but pivoted and more nuanced since desiderata can be partially fulfilled. The 

judgement in the new table is not always black and white. SAW methods such as 

SMART are not included in Table A1 since they are not discussed in the appendix 

due to their conformance with the DAMS desiderata set. 

 

Methods → 
 

Desiderata ↓ V
IK

O
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D1. Ordering OK OK NO PART OK 

D2. Transitivity OK OK NO PART COND 

D3. Dominance PART OK NO PART COND 

D4. Monotonicity OK OK NO PART NO 

D5. Indep. Irrelevant Alt. OK OK NO NO NO 

D6. Rank Preservation NO NO PART NO NO 

D7. Transparency PART OK PART PART PART 

D8. Weight Sensitivity NO OK OK OK NO 

D9. Criteria Independence NO NO NO OK NO 

D10. Scale Invariance OK NO NO NO NO 

Table A1. The Big Five methods reassessed using the DAMS desiderata 

The appendix ends with a summary in Table A2 of some major pros and cons of 

each of the five methods discussed. For more detailed strengths and weaknesses, 

refer to the discussions on each desideratum in this appendix and also the methods’ 

respective chapters in Part II. The last column indicates whether the methods can 

use the UNEDA open-source platform with some modifications. 
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Method Strengths Weaknesses UNEDA 

VIKOR Scale-robust, value-

sensitive, compro-

mise-aware, optimisa-

tion-style 

Violates context and 

transformation invari-

ance; R component 

obscures monotonicity 

YES 

TOPSIS Transparent, stable 

under scaling, geomet-

rically explainable 

Fails on IIA, context 

dependence, rank re-

versal 

YES 

ÉLECTRE Ordinal reasoning, 

soft appearance, par-

tial comparability 

Lacks transparency, 

threshold-sensitive, 

context-dependent, 

partial ranking 

YES 

PROM I/II Decomposable, mono-

tonic, stable under 

value transformation 

Fails rank reversal, 

IIA, version I has only 

partial ranking 

YES 

AHP Conceptual simplicity, 

consistent when 

judgements are 

Sensitive to incon-

sistency, scale, and 

context; non-additive, 

lacks interpretability  

NO 

Table A2. Some major pros and cons of the Big Five methods 

To conclude, there are essentially three major lines of development within the 

MCDA method spectrum. The first is the classical tradition, grounded in established 

theoretical frameworks. The second is the ÉLECTRE lineage, which four of the five 

methods in the appendix belong to, and which accepts additive utility but discards 

much of the rest. The third is AHP, the least compliant of the three lineages and 

consequently labelled as fundamentally flawed (Abbas, 2018, Ch.3). Unfortunately, 

the latter two categories have attracted the most attention in the last decades, divert-

ing focus and resources away from real progress in the field. Brand recognition, 

arguably one of the most important success factors, is not addressed in this appendix. 

A 2023 ranking of brand name visibility among the Big Five methods lists: (1) AHP, 

(2) TOPSIS, (3) PROMÉTHÉE, (4) ÉLECTRE and (5) VIKOR. No other methods 

came close to their levels of recognition. With AHP on top, the ranking closely re-

sembles an inverse of their DAMS compliance, highlighting both the importance 

and effectiveness of branding efforts.  
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Foundations of Computational Decision Analysis begins with the established basics 
of classic probabilistic decision theory and builds towards a critical assessment of 
multi-criteria decision analysis (MCDA) methods. The book is grounded in the con-
viction that decision-analytic methods must rest on solid scientific foundations, 
logical coherence and conceptual clarity to enable transparency. 

The first part revisits the roots of decision theory, examining subjective probabili-
ties, utility, and the fundamental role of value in rational choice. It disentangles 
common confusions, highlights core assumptions, and presents the theory with 
both philosophical care and real-world decision problem relevance. 

The second part turns to MCDA, the expanding family of methods designed to 
guide the analysis of complex decisions with multiple objectives. Rather than treat-
ing these as a set of tools, the book examines them as scientific constructs and 
potential guides, asking not just how they work, but also why, when and whether 
they should be trusted as support tools.  

The final part deals with computations and an open-source software platform for 
enabling applications of effective modern decision analysis, with special attention 
to real-world imprecision and the need for systematic sensitivity analyses. 

This is a book for readers who want more than procedural knowledge. It is for 
those who seek conceptual depth, methodological clarity, and logical reasoning in 
the design and evaluation of decision-analytic methods. A must-read for decision 
analysts, students, and anyone serious about the logic of choice. 
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