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If we have been accustomed to deplore the spectacle […] of a workman 

occupied during his whole life in nothing else but the making of knife 

handles or pins’ heads, we may find something quite as lamentable in 

the intellectual class, in the exclusive employment of the human brain 

in resolving some equations, or in classifying insects. […] It occasions  

a miserable indifference about the general course of human affairs, as 

long as there are equations to solve and pins to manufacture. 

 

 Auguste Comte 

  

 
Comte, A. (1853/2009). The Positive Philosophy of Auguste Comte, Vol. II, 

(H. Martineau, Transl.). Cambridge University Press, Cambridge, MA. 
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Preface 

Decision methodology, mainly in the form of decision theory and decision analysis, 

has been studied for quite some time. Not least a number of Nobel Prize winners in 

economics have worked in the field, including Simon (1978), Allais (1988), Kahne-

man (2002) and Hurwicz (2007). Most of them have contributed to normative the-

ory, that is, the study of how we should rightfully choose. This is usually in an ide-

alised and theorised form that can’t be used in decision-making situations, neither 

in organisations, nor in everyday life.  

Hence, normative research is not such a great help to us when making real deci-

sions of any reasonable quality. Normative theories say “this is the outcome if you’re 

deciding in an optimal way” but they say nothing about how to get there. It’s as 

unhelpful as a theoretical description of how to ride a bicycle. You can’t just read 

the description and then peddle off. Or reading a couple of books on how to swim. 

Thrown in at the deep end of the pool, those books will not help much. 

Kahneman, by contrast, belongs to a different school, the descriptive one, which 

explores what people really do when they make decisions. Not surprisingly, people 

underperform in many situations and the brain is fooled by all sorts of information 

and disinformation. This can be very amusing to read about and Kahneman’s book, 

Thinking, fast and slow, is recommended for both entertainment as well as thought-

provoking reading. But what we really need is perhaps not a catalogue of cognitive 

missteps, but rather a method that carries us in a reasonably safe way from decision 

problems to decisions. Descriptive research, therefore, is unfortunately not much 

help to us either when we’re going to make real decisions of good quality. Continu-

ing the cycling analogy: reading about bicycle accidents and how riders fell off their 

bikes, and how large their grazes were, will not help us much either. We will still 

not be able to peddle off after reading about them. The same holds for stories of life 

guards and swimming incidents. 

Fortunately, there’s a third research direction, prescriptive decision analysis, 

which focuses on procedures for analysing real-life decisions. That is the subject of 

this book. It is based on the kind of information people can actually provide with 

reasonably preserved quality. As such, the methods advocated for in the book do not 

rely on unrealistic assumptions about the decision-makers’ abilities to present pre-

cise information and achieve flawless decisions. Rather, they aim at providing useful 

support in real-world decision situations of various kinds. 
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Thus, a focus on the foundations of prescriptive decision analysis means studying 

real-life applicability, which by necessity implies computer software. There is today 

a wide gap between decision theory and real-world needs, which unfortunately leads 

to decision analysis not being used and leveraged in society to the extent it could 

and ought to, given the many hard decisions that have to be made every day. Writing 

more large theoretical books will not help – there are already good ones available 

and most of the stuff in them is unfortunately not applicable to practical decision 

analysis. 

Originally based on the author’s Ph.D. thesis from 1997 (Part I), the text has been 

extended, rewritten, and pruned more than once but not published until now. It is 

hoped to serve as a basis for rejuvenated research interests in decision-analytic meth-

ods solidly based on sound and well-established theoretical research results, both 

from within decision theory and outside from adjacent theories such as mathematics, 

statistics and microeconomics. Not least multi-criteria decision analysis (MCDA), 

the main subject of Part II, seems to be in need of that. Note the difference between 

MCDA, making an analysis, and MCDM (where the last ‘M’ stands for decision 

making), the latter also encompassing the larger process from data collection, over 

elicitation, analysis, presentation and possibly negotiations, all the way through to 

making a decision. Thus, Part II is concerned with the core of MCDM, namely 

MCDA. 

Happy reading! 

The author, Stockholm, September 2023 

 

Preface to the Second Edition  

Decision analysis is, as almost any management or professional support technology, 

dependent on computer power to be effective. But the users of most technologies 

need not do the modelling themselves – they just use the designed artefact or device. 

If you walk on a bridge, you need not be familiar with the design theories behind its 

construction. In many cases, neither do the architects since the theoretical 

knowledge is embedded in CAD software. The same goes for driving a car – de-

signed mostly by using CAD systems – or turning on a light switch, whereby elec-

tricity flows through a well-dimensioned power grid, again based on theoretical 

principles not explicitly considered by consumers and often not by design engineers 

either, instead using specialised design software.  
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However, making decisions requires the modelling to take place in the end users’ 

minds. Therefore, the power embedded in decision-supporting software has to be 

different, opening up mechanisms through the user interface that other advanced 

software tools would have hidden away. Too much research in decision analysis has 

been directed to inventing new procedures and ad hoc formalisms, sometimes not 

even being in accordance with established theories, and too little to finding better 

interfaces between the decision-makers and their needs for modelling and interpre-

tation support on the one hand, and the computer algorithms on the other.  

This second edition is motivated by the book being bundled with an advanced 

decision-analytic software platform. The UNEDA (Universal Engine for Decision 

Analysis) software platform is released today as open source for all uses, research 

as well as commercial. The release day coincides with the expiry of US Patent 

7257566, which covers some of the algorithms used in UNEDA. While the first two 

parts of the book remain largely unchanged, the original Part III on current software 

tools has been replaced by a new Part III on the UNEDA platform in order to keep 

the book’s length below 150 pages, which was always a goal. After all, a book does 

not need to be very long to make a point  only long enough to be comprehensible 

and short enough to be read. 

The mission of this second edition is to enable a broader range of open science 

research into, and applications of, real-life decision analysis, inevitably supported 

by computer tools. The UNEDA platform can enhance almost any decision-analytic 

method with interval representations, belief distributions and a variety of sensitivity 

analyses. Like the software, this book is also freely available as an open-access re-

source. Together, they are made available in an effort to promote and revitalise re-

search in decision analysis that is fundamental, well-founded and real-world rele-

vant at the same time – a narrow path to walk, but one well worth the effort.  

Happy reading and programming! 

The author, Stockholm, June 6, 2025 
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01. Introduction 

Classic decision analysis is a systematic, quantitative, and effective approach to 

making decisions under uncertainty. It provides a structured framework for evaluat-

ing complex choices by incorporating probabilities, outcomes, and preferences. The 

goal is to identify the best course of action given available information, risks, and 

trade-offs. It supports decision-makers in structuring problems, assessing risks, and 

optimising choices using probabilistic models and utility functions. The process typ-

ically involves defining objectives, identifying alternatives, evaluating possible out-

comes, and selecting the most rational option based on well-founded decision rules. 

The formal study of decision analysis dates back to the mid-20th century, with 

contributions from pioneers such as von Neumann and Morgenstern, who intro-

duced utility theory, and Savage, who developed subjective expected utility. These 

foundational ideas have since evolved into various probabilistic and deterministic 

methods used in fields such as economics, operations research, artificial intelligence, 

and policy-making. 

Bayesian inference was introduced into decision theory, initially through the 

work of Savage in the mid-20th century. In 1954, he laid out a subjective Bayesian 

framework for decision making under uncertainty. He built upon earlier ideas from 

Ramsey (who in the 1920s first proposed subjective probabilities and utility-based 

decisions) and de Finetti (a key advocate of subjective probability). However, it was 

Savage who systematically integrated Bayesian inference with utility theory, form-

ing the basis of what is now called Bayesian decision theory. Savage’s key contri-

butions included the axioms of rational choice under uncertainty, the use of subjec-

tive probabilities (based on personal belief, not objective frequency), and the con-

cept of expected utility maximisation. 

Uncertainty is perhaps the most defining characteristic of classic decision analy-

sis. In virtually every decision, there are elements that cannot be known with cer-

tainty. These unknowns arise from a variety of sources, such as limited information, 

unpredictability in the environment, and inherent variability in processes. For in-

stance, a business decision might involve predicting future market conditions, which 

are influenced by numerous unpredictable factors like consumer behaviour, compet-

itor actions, or macroeconomic events. 

Uncertainty in decision making can be classified into two main types: aleatory 

(stochastic) uncertainty and epistemic (systematic) uncertainty. Aleatory uncertainty 
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refers to the inherent randomness or variability in the system being analysed. For 

example, the variability in weather patterns or stock market prices reflects aleatory 

uncertainty, as these events are governed by complex systems that are inherently 

unpredictable. On the other hand, epistemic uncertainty arises from a lack of 

knowledge or information about a particular system or process. Epistemic uncer-

tainty is often reducible through further research or data collection, making it distinct 

from aleatory uncertainty, which is fundamentally irreducible. 

Risk, a specific form of uncertainty, is present when the likelihood of different 

outcomes is either known or can be reasonably estimated. This contrasts with ambi-

guity, where the probabilities of various outcomes are largely unknown. For in-

stance, in investment decisions, risk can be quantified through historical data and 

probability distributions, whereas ambiguity arises when the future market condi-

tions are highly uncertain, and no clear distribution of outcomes can be assigned. 

The distinction between risk and ambiguity is central in decision analysis, as it in-

forms the strategies used to model uncertainty. In situations of risk, decision-makers 

can use probabilistic models to quantify the uncertainty and make rational choices. 

However, in the case of ambiguity, decision-makers may rely on methods that han-

dle incomplete or uncertain information, such as interval representation techniques. 

The implications of uncertainty are vast. In high-stakes decisions, such as those 

faced by healthcare providers, financial institutions, or government policymakers, 

the ability to manage uncertainty can be the difference between success and failure. 

Probabilistic decision analysis provides a rigorous framework for understanding and 

mitigating the effects of uncertainty, allowing decision-makers to make more in-

formed, defensible choices. By integrating probabilistic reasoning into decision 

models, it is possible to quantify risk, evaluate potential outcomes, and derive opti-

mal strategies. 

Probabilistic decision models are central to decision analysis, offering a formal-

ised way to incorporate uncertainty into the decision-making process. These models 

utilise probability theory to evaluate the likelihood of different outcomes and help 

decision-makers choose the best alternative, given their preferences and the risks 

involved. The use of probability in decision analysis not only helps quantify uncer-

tainty but also provides a way to compare alternative outcomes in terms of their 

expected utility. 
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At the core of most probabilistic decision models is the concept of expected util-

ity, a foundational idea in decision theory. Expected utility is a measure of the sat-

isfaction or value a decision-maker derives from a particular outcome, weighted by 

the probability of that outcome occurring. This concept is vital when dealing with 

uncertain outcomes, as it allows decision-makers to make comparisons between al-

ternatives with different risk profiles. 

In a decision tree, for example, outcomes are represented as branches, with each 

branch corresponding to a different decision or state of nature. Probabilities are as-

signed to each branch to represent the likelihood of each outcome. By calculating 

the expected utility for each branch, decision-makers can determine the best course 

of action. Decision trees are particularly useful for modelling sequential decisions, 

where the outcome of one decision affects the subsequent decisions. 

Bayesian decision theory extends the principles of decision analysis by incorpo-

rating Bayesian probability, which allows decision-makers to update their beliefs 

about a situation as new information becomes available. This framework is particu-

larly useful in dynamic environments where decision-makers must adjust their strat-

egies based on evolving data. In Bayesian decision analysis, prior probabilities are 

combined with new data to form posterior probabilities, which then inform the de-

cision-making process. 

The power of probabilistic decision models lies in their ability to quantify uncer-

tainty and enable decision-makers to make informed choices. By incorporating prob-

abilities into decision models, these methods allow for a more objective and system-

atic approach to decision making, even in highly uncertain environments. They pro-

vide decision-makers with tools to assess the risks associated with different alterna-

tives, compare potential outcomes, and select the course of action that maximises 

expected utility. 

In probabilistic decision analysis, several frameworks are employed to guide de-

cision making under uncertainty. These frameworks are built around the principle 

of maximising expected utility (PMEU). Expected utility theory is the most widely 

used framework in probabilistic decision analysis. Expected utility theory suggests 

that decision-makers should choose the alternative that maximises their expected 

utility, which is calculated by summing the utilities of all possible outcomes, 

weighted by their probabilities. This approach is grounded in the assumption that 

decision-makers act rationally and prefer outcomes with higher utility. However, it 

also accounts for individual risk preferences, allowing for flexibility in decision 
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making. A decision-maker who is risk-averse will assign a higher utility to certain 

outcomes and will prefer alternatives with less variability in outcomes. Conversely, 

a risk-seeking individual may prefer alternatives that offer the potential for higher 

rewards, even if those alternatives come with higher levels of uncertainty. 

A key aspect of decision making under uncertainty is the concept of sensitivity 

analysis. It involves examining how changes in the input parameters of a decision 

model affect the resulting outcomes. This process is crucial for understanding the 

robustness of decisions, particularly when there is uncertainty in the underlying as-

sumptions or when future conditions are difficult to predict. Sensitivity analysis can 

be used to explore the impact of changes in probabilities, utilities, or other parame-

ters on the optimal decision. It helps decision-makers identify critical factors that 

influence their choices and assess the stability of their decisions under varying con-

ditions. 
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02. Formation of a Theory for Decisions 

While elements of probabilistic reasoning can be found in ancient Greek, Indian, 

and Arabic texts, it was not until the 16th and 17th centuries that probability theory 

began to take shape as a formal mathematical discipline. This development was 

driven by practical problems, particularly in games of chance, and by the intellec-

tual climate of the early scientific revolution. Before that, Fibonacci’s Liber Abaci 

(1202) and Pacioli’s Summa de arithmetic, geometria, proportioni et proportional-

ità (A summary of arithmetic, geometry, proportions and proportionality, 1494) 

constitute early written work on such questions. Pacioli (1447–1517) raises the 

question of how the stakes should be divided between two players of balla, who 

have agreed to play until one of them wins six rounds, but they are interrupted and 

cannot continue when one player has won five rounds and his counterpart has won 

three (David, 1962, p. 37).  

Later, Cardano (1501–1571), an Italian mathematician, physician, and gambler, 

tried to answer the question in Liber de ludo aleae (A book about gambling, 

1564 /1663), in which he formulated the fundamental concept of solving a proba-

bility problem by identifying a sample space with equally likely outcomes. How-

ever, his treatment lacked formal mathematical structure, and his ideas did not im-

mediately influence contemporary thought (Hacking, 1975). de Montmort further 

stimulated the early work on probability theory in Essay d’analyse sur les jeux de 

hazard (Essay on the analysis of games of chance, 1708), where he wanted to show 

superstitious gamblers how to behave rationally. 

Other important early contributors to a general theory of probability include Pas-

cal (1623–1662) and de Fermat (1601–1665), who, after they encountered a gam-

bling question from the French nobleman Gombaud (a.k.a. Chevalier de Méré, 

1607–1684), initiated an exchange of letters in which fundamental principles of 

probability theory were formulated. Gombaud’s game consisted of throwing two 

six-sided dices 24 times, and the problem was to decide whether or not to bet even 

money on the occurrence of at least one pair of sixes among the 24 throws. A seem-

ingly well-established but deceiving gambling rule had led Gombaud to believe that 

betting on a double six in 24 throws would be profitable; however, his calculations 
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had indicated the opposite. Pascal and Fermat approached this issue using combi-

natorial methods, establishing foundational principles that would later define clas-

sical probability theory (David, 1962). Huygens (1629–1695) further advanced 

probability theory with De Ratiociniis in Ludo Aleae (On the calculations in games 

of chance, 1657). Huygens generalised Pascal’s and Fermat’s ideas, introducing the 

concept of expected value as a formal definition. He formulated probability as a 

ratio of favourable outcomes to possible outcomes, a principle that would later be-

come central to probability theory and still is so to this day. Huygens’ work was 

influential in shaping later developments and cementing probability as a legitimate 

field of mathematical inquiry (Stigler, 1986). 

The importance of statistics grew in the 17th and 18th centuries with the introduc-

tion of life annuities and insurance. Mortality statistics and life annuities were re-

search areas of de Moivre (1667–1754), and in Doctrine of Chance (1718), he de-

fines statistical independence. Later, in Miscellanea Analytica (Miscellany of anal-

ysis, 1730) the same de Moivre introduced the normal distribution as an approxi-

mation of the binomial distribution for use in the prediction of gambles. In the sec-

ond edition of Miscellanea Analytica (1738), de Moivre improved the formula for 

the normal distribution with the support of Stirling (1692–1770). 

Furthermore, Bayes (1702–1761), an English Presbyterian minister, famous for 

the posthumously published An Essay Toward Solving a Problem in the Doctrine of 

Chances (1763), introduced the widely applied Bayes’ theorem and the concept of 

Bayesian updating. As a result, Bayes is credited with the introduction of subjective 

probability theory as well as the theory of information. Bayes’ conclusions were 

later accepted by Laplace (1749–1827) and published in the double volume Théorie 

Analytique des Probabilités (Analytic theory of probability, 1812). In this compre-

hensive work, Laplace investigated generating functions, approximations to various 

expressions occurring in probability theory, methods of finding probabilities of 

compound events when the probabilities of their simple components are known, 

and a discussion of the method of least squares. His work established probability as 

a fundamental tool for scientific reasoning and, later, decision theory. 

In the early 19th century, probability theory continued to evolve, influenced by 

both theoretical advancements and practical applications. Poisson (1781–1840) 

contributed significantly with his study of probability distributions, particularly the 
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Poisson distribution, which describes the probability of a given number of events 

occurring in a fixed interval of time or space. His work had wide-ranging applica-

tions in areas such as physics, finance, and insurance (Poisson, 1837). Gauss (1777–

1855) also played a pivotal role in the development of probability theory through 

his work on the normal distribution, sometimes referred to as the Gaussian distri-

bution. The normal distribution emerged as a crucial concept in statistics, describing 

the distribution of errors in measurements and forming the basis for statistical in-

ference (Gauss, 1809). Gauss’ insights had profound implications for fields ranging 

from astronomy to social sciences. 

By the mid-19th century, probability theory had developed into a mature mathe-

matical discipline with growing applications in science, economics, and industry. 

Quetelet (1796–1874), a Belgian statistician and sociologist, applied probability 

theory to social statistics, pioneering the concept of the "average man" and using 

statistical methods to study human behaviour. His work demonstrated the power of 

probability in analysing complex social phenomena and influenced the develop-

ment of modern statistics (Quetelet, 1846). 

The early origins of probability theory were thus shaped by practical concerns, 

particularly in gambling, but quickly evolved into a formal mathematical discipline 

with broad applications that laid the groundwork for modern probability theory. By 

1850, probability had established itself as an essential tool for understanding uncer-

tainty, with applications ranging from the physical sciences to economics and soci-

ology. The later formalisation of probability in the 20th century by Kolmogorov 

(1903–1987) built upon these early foundations, leading to the rigorous axiomatic 

framework in use today. 

When a decision-maker has to act in situations where uncertainty prevails, and 

this uncertainty can be quantified in terms of a probability measure, it is said that 

the decision is made under risk. In Bayesian decision theory, probabilities are used 

to capture and model beliefs. Thus, they are considered to be measures of degrees 

of beliefs. Needless to say, performing statistical investigations to obtain these de-

grees of beliefs is recommended, but in many real-life situations historical data is 

not available and the probability assessment has to be made on subjective grounds. 

Although the theories of probability can be traced back to the 16th century, the 

foundations of modern probability theory were laid by Kolmogorov. He rigorously 
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constructed a probability theory from fundamental axioms, defining conditional ex-

pectation, and laid the foundations for Markov random processes in Grundbegriffe 

der Wahrscheinlichkeitsrechnung (Basic concepts of probability theory, 1933) and 

in Analytic Methods in Probability Theory (1938). 

Basic formulas for probability calculus usually take the form P(A) = pA, and are 

read as “the probability of the uncertain event A is pA”, where pA[0, 1] is a real 

number. For example, A can be the statement “there will be no storm with fatal 

consequences in Sussex County during next month”. Every event is a subset of a 

sample space , capturing every possible event in the model. The Kolmogorov ax-

ioms are usually stated as follows: 

1. 0  P(A)  1, for all events A 

2. P() = 1 

3. If A and B are mutually exclusive events,  

then P(A  B) = P(A) + P(B) and P(A  B) = 0. 

The second axiom can be interpreted as it being certain that one of the events in the 

sample space will be the true outcome, i.e., a condition of exhaustiveness. Condi-

tional probability arises when additional information is obtained, and is formulated 

as P(A | B) which can be interpreted as: “the probability of A given that B has 

occurred”. Thus, the decision-maker knows that B is true and this might have an 

impact on the probability of A. For example in medical applications, a test yields a 

positive result, which in turn implies some probability of an actual disease. 

Conditional probability: P(A | B) = P(A  B) / P(B). 

Independence: Event A with outcomes {A1, …, An} and B with outcomes  

{B1, …, Bm} are independent if and only if P(Ai | Bj) = P(Ai) for all Ai and Bj. 

Conditional independence: Events A and B are conditionally independent given 

event C if and only if P(Ai | Bj, Ck) = P(Ai | Ck). 

Bayes Theorem: P(B | A) = P(A | B)∙P(B) / (P(A | B)∙P(B) + P(A | B)∙P(B)), 

where B means not B. 

It follows from these definitions that two mutually exclusive events cannot be 

independent. The set of probabilities associated with all possible outcomes is a prob-

ability distribution. When the sample space  consist of a discrete set of outcomes, 
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the probability distribution on it is discrete. 

Alongside the early development of a theory of probability, the Swiss physician 

and mathematician Daniel Bernoulli (1700–1782) wrote an article, Specimen The-

oriae Novae de Mensura Sortis (Exposition of a new theory on the measurement of 

risk, 1738), in which motivation for the concept of utility is given, commonly re-

ferred to as his solution to the famous St. Petersburg Paradox posed in 1713 by 

Daniel Bernoulli’s cousin, Nicolaus Bernoulli. The name St. Petersburg Paradox is 

due to the fact that the distinguished Bernoulli family was in many ways connected 

to St. Petersburg. In this paradox, Nicolaus Bernoulli considered a fair coin, defined 

by the property that the probability of heads is ½. This coin is tossed until head 

appears. The gambler is rewarded with 2n ducats if the first head appears on the n:th 

trial. The expected monetary value of this game is 

  (1/2
n
)·2

n
 = (1/2)·2 + (1/4)·22 + (1/8)·23 + ... = 1 + 1 + 1 + ... =  

It is a bit hard to believe that any gambler would be willing to pay an infinite amount 

of money to participate in such a game. Bernoulli concluded therefore that the ex-

pected monetary value is inappropriate as a decision rule. Bernoulli’s solution to this 

paradox involved two ideas that have had a great impact on economic theory. 

Firstly, he stated that the utility of money cannot be linearly related to the amount 

of money; it rather increases at a decreasing rate. 

Bernoulli identified the value of the consequences of a choice as being different 

from the objective economic outcome, commonly referred to as the idea of dimin-

ishing marginal utility. Bernoulli’s second idea is that a person’s valuation of a risky 

prospect is not the expected return of that prospect, but rather the prospect’s ex-

pected utility 

E(u | p, X) =  
x X

 p(x)∙u(x) 

where X is the set of possible outcomes, p(x) is the probability of a particular out-

come x  X, and u: X  ℝ is a utility function over the outcomes X on the real 

numbers. Thus, expected utility is the mathematically expected value, when subjec-

tive utility is taken into account. In the St. Petersburg Paradox, the value of the 

game is finite due to the principle of diminishing marginal utility. Originally Ber-

noulli employed a logarithmic utility function, u(x) =  log x, where the  is de-

pendent on the gambler’s wealth prior to the gamble itself, and x is the outcome. 
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Substituting this value for x in (EMV) yields a finite number. Consequently, people 

would only be willing to pay a finite amount of money to participate, even though 

the expected monetary value of the game is infinite. 

The term utility can be regarded as a measure of some degree of satisfaction, and 

a utility function is a mapping from outcomes, i.e., losses or gains, to real numbers 

representing this degree of satisfaction. The logarithmic utility function defined by 

Bernoulli was in itself considered adequate for almost two hundred years. However, 

Menger (1902–1985) showed in Das Unsicherheitsmoment in der Wertlehre (The 

element of uncertainty in value theory, 1934) that the Bernoulli function was heu-

ristic and ad hoc, while the function was unsatisfactory already on its formal 

grounds. Menger showed the existence of a game related to the game presented in 

the St. Petersburg Paradox, in which the subjective expectation of the gambler on 

the basis of this value function is infinite when evaluating additions to a fortune by 

any unbounded function (Menger, 1934, p.264). The implication of this is that it is 

always possible to provide a paradox, in the important respects equivalent to the St. 

Petersburg Paradox, which cannot be resolved only through the idea of diminishing 

marginal utility. Menger also showed the inadequacy of mathematical utility func-

tions of the type suggested by Bernoulli’s contemporary Cramer (1704–1752). 

Utility functions are defined on an interval scale, i.e., they are unique up to a 

positive affine transformation; such transformations are the only admissible trans-

formations of utility functions. In formal terms: Let U be a utility function on a set 

C of consequences, then there exists  > 0 and  such that W(x) = ∙U(x) +  is a 

utility function representing the same preferences, i.e., two different interval scales 

count as equivalent if and only if they can be obtained from each other by means of 

positive affine transformations. Apart from ratio scales, interval scales do not have 

an absolute zero (e.g., zero length); nor do they represent the ratio of some measured 

entity to some standard unit of measurement (e.g., meters or seconds). Thus, in an 

interval scale, the gap between two degrees has a meaning, while the gap between 

two ratios does not. 

In general, people are willing to pay more money for what they consider to be 

more desirable. In this respect, a monetary scale can at least be expected to be an 

ordinal scale, i.e., a scale measuring preference ordering without the possibility of 
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stating the strengths of desires. For a majority of business decisions, the use of mon-

etary scales is considered a reasonable and acceptable measure of utility. However, 

it is not uncommon that monetary values are used to scale non-monetary outcomes, 

such as public health and environmental damage. In many cases, this problem is 

due to a lack of means and usable tools for representing and evaluating intangibles 

and vague valuations. This is particularly troublesome when aggregating ordinal 

information and can be severely misleading. 

Decision analysis is often regarded as a conjunction of subjective probability and 

subjective utility. Ramsey (1903–1930), suggested a theory that integrated these ar-

eas in Truth and Probability (1926 /1931). In that article, Ramsey informally pre-

sented a general set of axioms for preference comparisons between acts with un-

certain outcomes. From this set of axioms, he could justify a procedure to measure 

a person’s degree of belief from preferences between acts of certain forms. 

Preceding Ramsey’s work, the concept of degree of belief as an approach to sub-

jective probability had been introduced by Keynes (1883–1946) in A Treatise on 

Probability (1921). Subjective probability, as opposed to objective probability, 

means that the different values reflect the decision-maker’s actual beliefs, thus they 

are a measure of the degree of belief in a statement. These beliefs are not necessarily 

logical or rational, and they should be interpreted in terms of the willingness to act 

in a certain way. 

In contrast, an objective or classic view on probabilities, as defined by Laplace, 

says that probabilities are exogenously given by nature. In Probability, Statistics 

and Truth (1928), von Mises (1883–1953) introduced the relative frequency view, 

which argues that the probability of a specific event in a particular trial is the relative 

frequency of occurrence of that event in an infinite sequence of similar trials. 

The modern and formal approach to game theory is attributed to von Neumann 

(1903–1957), who in Zur Theorie der Gesellschaftsspiele (On the theory of parlor 

games, 1928) laid the foundation for a theory of games and conflicting interests. 

Later he wrote, together with Morgenstern (1902–1976) the book Theory of Games 

and Economic Behaviour (1944), in which they introduced a considerable amount of 

important elements such as the axiomatisation of utility theory per se and a formal-

isation of the expected utility hypothesis. This axiomatisation is sometimes deemed 

reasonable to a rational decision-maker, and it is demonstrated that the decision-
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maker is obliged to prefer the alternative with the highest expected utility to act 

rational, given that she acted in accordance with the axioms. Of further importance, 

through this work, von Neumann and Morgenstern bridged the gap between the 

mathematics of rationality and social science. However, von Neumann and Mor-

genstern did not take subjective probability into account since they regarded prob-

ability in an objective sense, and thus the decision-maker could not influence the 

probabilities. Savage (1917–1971) combined the ideas by Ramsey and the ideas by 

von Neumann and Morgenstern in The Theory of Statistical Decision (1951). 

Savage here gives a thorough treatment of a complete theory of subjective expected 

utility and associated utility functions. 

In Statistical Decision Functions (1950), Wald (1902–1950) takes use of loss 

functions and an expected loss criterion, as opposed to utility functions and the ex-

pected utility criteria. Loss functions and expected loss criteria later become stand-

ard basic elements in what is commonly referred to as Bayesian or statistical deci-

sion theory. The name Bayesian derives from that this theory utilises prior infor-

mation and non-experimental sources of information. However, in the general case, 

it is easy to adjust Wald’s statistical decision theory to include utilities (cf. Savage, 

1972, p.159). Further, Wald had an objective view of probabilities. His concern 

focused on characterising admissible acts and alternatives for experimentation, 

where an act or alternative is admissible if no other act is better. Hence, Wald’s 

decision analysis could result in a family of admissible alternatives, i.e., the non-

dominated set of alternatives. 

Gärdenfors and Sahlin (1982) give the following characterisation of decision 

theory and decision analysis: the main aims of a decision theory are, first, to provide 

models for how we handle our wants and our beliefs and, second, to account for 

how they combine into rational decisions. Such a point of view is typical of research 

in decision theory as it takes a descriptive view with a touch of normativity. Lacking 

a prescriptive perspective, such research does not aid in creating models and tools 

for real-life use. In previous decades, solving decision problems computationally 

was often categorised as belonging to the area of optimisation, and in particular lin-

ear optimisation with goal functions subject to a set of linear constraints. Typically, 

questions asked were of the form “what is the maximum/minimum value of this var-
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iable expression subject to these constraints?” When discussing optimisation prob-

lems, such constraints typically include financial, time, or personnel aspects. View-

ing decision analysis in this way made the field a disservice since mathematical 

programming cannot provide the tools required, even if both linear and non-linear 

optimisation algorithms can be employed. 

The use of formal methods and mathematics for evaluating possible alternatives 

of action had an important upswing during World War II, and after the war, the 

terms operations analysis and operations research became closely related to deci-

sion analysis and optimisation techniques. Later, the militaristic area of operational 

research is often being studied together with topics such as management science, 

industrial engineering, and mathematical programming. At present time, the wide-

spread use of computers and the rise of the graphical user interface could have ren-

dered it possible to facilitate the use of decision analytic techniques to a wider group 

of users. The growth of operational research since it began is, to a large extent, the 

result of the increasing computational power and widespread availability of desktop 

computers. But since this has not happened to any larger extent, this book is written 

to try to fill the gap. 

Taking a wider perspective for a short while, decision theory can be seen as serv-

ing different purposes. As mentioned already in the preface, there are three different 

ways to utilise and effectuate decision theory. Since the mid-20th century, it has 

evolved into a widespread tool for economists, mainly for predicting how a popu-

lation will react to changes in their environment (Friedman, 1953). From this per-

spective, the logical foundation of the theory is less important, while the ability to 

predict the behaviour of decision-makers is what matters. When using decision the-

ory in such contexts, the decision theory is said to be descriptive, thus we speak in 

terms of descriptive decision theory. A descriptive decision theory aims to explain 

how decisions are being made and why human decision-makers choose to act in a 

certain way. 

A central result is the bounded rationality theorem, which states that due to lim-

itations in the processing of information, people cannot act entirely rationally (Si-

mon, 1955; March and Simon, 1958). Further, there is a tendency that depending 

on how the information is presented, people choose differently although according 

to the theory of expected utility, the alternatives are the same. This behaviour is 
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referred to as the framing process in the descriptive theory (Tversky and Kahneman, 

1986). Another violation of the expected utility hypothesis occurs when gains are 

replaced by losses in choosing between alternatives with uncertain outcomes; peo-

ple tend to be less keen on risk-taking when there are gains involved rather than 

losses (Markowitz, 1952). 

Another perspective is that of the normative kind. The aim of normative decision 

theory is to mandate yardsticks and norms for various decision procedures and de-

cision rules, implying “rational” decision making when followed. In this case, the 

logical foundations and the validity of the model do matter. The proponents of such 

models often argue for them by constructing axiom systems (like the one of Savage 

presented below), and then deduce some decision rules, which induce a (normative) 

preference order on a set of alternatives. Naturally, this does not convince everyone, 

leading to inquiries regarding whether individuals accept the axioms upon which 

the model is based (Fischhoff et al., 1983). 

Prescriptive decision theory is a more recent perspective, brought about by the 

inadequacies of the two earlier perspectives in real-life decision situations. It fo-

cuses on identifying the discrepancies between how decisions are made (descrip-

tive) and how the normative theory claims they should be made. One purpose of this 

prescriptive theory is to bridge the apparent gap between older decision analysis 

and actual decision making. 

This body of theory contains approaches that deal with mechanising (rather than 

automating) the structuring and analysis of decision situations. Presuming the deci-

sion-maker has a desire to be rational, the mechanical model can aid by devising 

suitable courses of action given supplied (elicited) information. A decision-analytic 

tool handles a finite number of alternative courses of action and supports the deci-

sion-maker in the evaluation of and selection among those alternatives. Stated dif-

ferently, such a tool aids decision-makers in their search for a preference order of a 

set of alternatives and in their strive for rationality. The remainder of this book will 

have a prescriptive process perspective, aiming at a foundation for tools and proce-

dures usable in real-life decision situations. 
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03. A Thorough Foundation of Decision Analysis 

Traditional decision theory deals with only one decision making part, one player. 

The environment is considered neutral, and the probabilities of events are not af-

fected by some conscious opponent. The only ‘opponent’ is often referred to as 

nature. Game theory introduces opponents to the decision situation. This means that 

the possibilities of consequences occurring depend on the acts of both the player 

and his opponent(s). Many complicated dependencies can arise, and only in special 

cases are there simple solutions to game problems. 

Many aspects of decision making are to a large extent qualitative, like the dis-

covery and formulation of the problem itself. Searching for and gathering infor-

mation also requires deliberate choices, as does the compilation of the information 

into a number of alternative courses of action. In other words, there is a soft side to 

the decision process. Despite its importance, many traditional decision tools are 

unable to handle qualitative statements. Later it will be discussed how modern 

methods handle qualitative information, both by allowing such statements to be en-

tered into the model and by allowing the decision-maker to work actively with the 

decision model parameters throughout the decision process, thereby gaining a better 

understanding of the entire decision situation. Quantitative facts and decisions 

abound in all types of organisations. Often when something is being valuated, the 

different alternatives are given monetary or other numeric values. Based on the 

given values, and perhaps on estimated probabilities for the events, decisions are 

made using some simple decision rule, often a rule of thumb or the repetition of an 

old decision. For reasons of computational tractability, many traditional decision 

methods require the user to make significant assumptions and also require artificial 

precision in the collected information. 

The possible outcomes of a decision can often be represented by a set of num-

bers, either as an interval (continuous) or as a countable number of cases (discrete). 

For models with continuous outcomes and a discrete number of actions, statistical 

methods, such as hypothesis testing, are suitable. If the alternatives are also contin-

uous, methods have been developed for many special cases, for example inventory 

control methods, portfolio theories, and network models. A characteristic of such 

models is that they first and foremost give analytical solutions or at least provide 
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closed expressions suitable for iterative solution methods which are often com-

puter-assisted. Decision analytic methods work best with discrete outcomes, and if 

the decision situation has a continuous representation from the outset, it can often 

be made discrete by clustering.  

Most decision problems cannot be formulated in terms of some known special 

model, and then the decision-maker often has to use more primitive models. Interval 

methods have a computationally demanding user interaction, and ten years ago they 

would have been classified as impractical and not suitable for interactive use. As 

mentioned above, they belong to the area of decision tools and do not use any results 

particular to game theory. This means that the method only treats decision situations 

where one decision-maker is about to make a decision, the outcome of which is 

seemingly decided by nature. Many decision situations fit this description.  

The terminology used within decision theory does not correspond exactly to the 

mundane interpretations of some concepts. Within decision theory, strict uncer-

tainty refers to a situation where no information is available regarding the different 

probabilities of the states. In situations where some probability information is avail-

able, either as subjective probabilities or as frequencies, the term risk is used. An 

event is something discernible occurring at a certain moment and should not be 

confused with a state, which is something observable and constant over a period of 

time. A decision-maker chooses a course of action and this choice results in a con-

sequence which is an event occurring after a deliberate choice of course of action. 

The consequences of each alternative in the model are exhaustive and exclusive. 

Exhaustive means that the consequences together cover all possible cases, and ex-

clusive means that every outcome belongs to only one consequence. 

Various decision models exist for a number of different purposes. In this chapter, 

some model categories are studied more closely. The models can be divided into 

three categories. The categories described differ with respect to their assumptions 

of the predictability of the future. In the risk-free (deterministic) world, there is no 

doubt about future events and all decisions can be made with certainty. In the 

strictly uncertain world, there are a number of possible scenarios but their respective 

probabilities are not taken into account. Finally, in the risky world, both different 

outcomes and their probabilities are taken into account when a good course of ac-

tion is sought. From each category, some common models are presented. 
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In management science, a decision problem is often defined as follows: To 

choose from a set of alternative courses of action a1,…,am the alternative ai that (in 

some sense) optimises the decision-maker’s return vik, where vik is the value of the 

consequence Cik corresponding to the pair (ai, si) and where {si} is the set of states 

of nature. Using this terminology, a hierarchy of decision problems has been sug-

gested. Luce and Raiffa (1957, p.13) provided a useful classification of decision 

situations, addressing that an important factor in every decision problem is the de-

cision-maker’s knowledge and beliefs about the situation. They distinguish between 

three types of (structured) decision situations. On top of that, there is a fourth cate-

gory that does not easily lend itself to a formal treatment. 

• Structured 

 • Decisions under certainty (risk-free) 

If all of ai, Cik, vik, and si are known with certainty, and there is a known 

deterministic relationship between the choice of an ai and the correspond-

ing Cik, then it is a problem under certainty. 

 • Decisions under strict uncertainty 

If the relationship is known and probabilistic but the probabilities them-

selves are unknown, the situation is called a problem under strict uncer-

tainty. 

 • Decisions under risk 

If the relationship is known but probabilistic and the probabilities them-

selves are known, the situation is called a problem under risk. 

• Unstructured (wicked) 

If, on the other hand, one or more of the ai, Cik, vik, or si are unknown, the 

problem is called unstructured, even wicked. 

In decisions under certainty, the decision-maker knows the true state before she 

performs an act; or can predict the consequences with certainty. Thus, in this case, 

it is reasonable to demand of a rational decision-maker that she should choose the 

alternative whose one and only consequence has a value not less than the value of 

any other alternative. The value of a consequence may be expressed by an ordinal 

value function defined on an ordinal scale. 
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Definition: Given a set of consequences P and a relation p denoting the decision-

maker’s preferences over P, an ordinal value function (x), representing these pref-

erences, is a real-valued function with domain P such that (ci)  (cj) iff ci p cj. 

When the set P of consequences is finite, and a reasonable ordering relation is 

defined, then a numerical order-preserving function (x) can be constructed. In de-

cisions under certainty, such a function is all that is needed, since it is enough in this 

context only to treat the cases involving a finite number of consequences. Uncount-

able sets are treated in (Debreu, 1952), which demands that you are comfortable 

with topological arguments, as well as in (Krantz et al., 1971, Ch.4). The corre-

sponding result for countable sets can be found in (French, 1988, p.98), together 

with a straightforward induction argument. Because an ordinal value function can 

always be constructed, it makes sense to talk about the value of a consequence. This 

is valid also when P is an arbitrary set of objects that a decision-maker can have 

preferences on. 
 

In decisions under strict uncertainty, the decision-maker cannot quantify her un-

certainty in any way, thus no probability estimations are possible or they are mean-

ingless. Milnor (1954) provides an exposition of four proposals by four different 

authors: 

 The principle of insufficient reason (Laplace, 1825)

 The maximin principle (Wald, 1950)

 The pessimism-optimism index (Hurwicz, 1951)

 The minimax-regret principle (Savage, 1951)

Laplace’s rule is based on the assumption that if the probabilities of the different 

states are completely unknown, then they can be assumed to be equal. This idea is 

commonly referred to as the principle of insufficient reason. Choose the alternative 

ak such that the average value of the possible outcomes from this alternative is max-

imised: max (
jn vij) /n, where 1  k  n, and where vij denotes the value of cij. 

Wald’s rule can be expressed as follows: 

1. Set a security level by choosing an index pi = min{vij : j = 1,...,n} 

2. Choose ak such that its index pk = max{pi}. 

As can be seen, Wald’s view on strict uncertainty was not an optimistic one since 
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according to him, you should always choose the alternative that gives the best result 

if the worst possible outcome will occur for each alternative. Hence the name the 

maximin utility criterion, which originated from Wald’s work within game theory. 

Hurwicz’s rule has a less pessimistic approach compared to Wald. Hurwicz rec-

ommends a mixture of an optimistic and a pessimistic attitude: 

1. Select a constant   [0, 1] as the pessimism-optimism index. 

2. Let oi = max {vij, j = 1, ..., n} and pi = min {vij, j = 1,...,n}. 

3. Choose ak such that ∙pk + (1 – )∙ok = max {∙pi + (1 – )∙oi}. 

Note that if  = 1 this is again the maximin utility criterion, whereas if  = 0, it is 

the so-called maximax utility criterion. Different ways of choosing appropriate pes-

simism-optimism indices have been presented, but we will not enter into that dis-

cussion here. 

In Savage’s rule, the decision-maker should choose the alternative giving the 

smallest possible “regret”. 

1. Let rij = max {vsj, s = 1, ..., m} – vij. 

2. Let pi = max {rij, j = 1, ..., n} 

3. Choose ak such that pk = min {pi} 

This minimax risk criterion was first suggested as an improvement over Wald’s max-

imin utility criterion. Regrets and security levels will return later. Table 1 shows a 

counter-example (Milnor, 1954, p.50) of a decision problem where all of the above 

decision rules yield different results. 

 s1 s2 s3 s4 Rule picks alternative 

a1 2 2 0 1 Laplace 

a2 1 1 1 1 Wald 

a3 0 4 0 0 Hurwicz ( > ¼) 

a4 1 3 0 0 Savage 

 

Table 1. Milnor’s example 
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The question remains: to act rationally, which one of the above rules should be 

employed? Milnor showed that no decision criterion is compatible with ten seem-

ingly reasonable axioms that constituted his test set (Milnor, 1954, p.53). It turns 

out that it is relatively easy to show that it is impossible to find a decision rule that 

fulfils all desirable properties. Further, Ackhoff (1962) argues that any concept of 

strict uncertainty is inappropriate, i.e., strict uncertainty implies that there is always 

some information or some beliefs being disregarded.  

Bayesian Decision Analysis 

When the decision-maker is able to quantify her beliefs in terms of a probability dis-

tribution on the set of possible outcomes given a chosen course of action, it is said 

that the decision is made under risk. If all utilities and probabilities in a decision 

problem are subjectively assigned numerical values by the decision-maker, and then 

the problem is evaluated according to the principle of maximising the expected util-

ity, the decision-maker conforms to Bayesian decision analysis. This kind of deci-

sion problem is our main concern in this book. 

The decision method is called Bayesian, named after an English clergyman 

named Bayes, due to the use of subjective probability assignments and the common 

procedure of updating the probabilities by employing Bayes’ theorem. In this re-

spect, the probabilities are treated subjectively as a statistical procedure that, in 

many cases, endeavours to estimate parameters of an underlying probability distri-

bution (posterior distribution) based on an observed probability distribution (prior 

distribution). 

Suppose that each alternative a can be represented by a set of consequences and 

a set of numbers {ci}, {pi}, where {ci} is the set of possible consequences of a, and 

pi is the probability that ci occurs given that a is implemented. (Note here that prob-

abilities are assigned to consequences instead of being assigned to states of the 

world. These two models are fully compatible when considering only a finite num-

ber of states and consequences.) Then, the meaning of accepting the utility principle 

and the principle of maximising the expected utility can now be formulated as fol-

lows (Malmnäs, 1990): 

Definition: If a is {ci}, {pi}, and Va is a real-valued function on {ci}, then a has 

a value equal to piVa(ci), denoted by EV(a). 
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Definition: A decision-maker accepts the utility principle if and only if she assigns 

the value piVa(ci) to a, given that it has assigned the value Va(ci) to ci. 

Definition: An ordering p of the alternatives is compatible with the principle of 

maximising the expected utility if and only if a p b implies EV(a)  EV(b).  

Definition: A decision-maker accepts the principle of maximising the expected util-

ity if and only if its ordering of the values of the alternatives is compatible with that 

principle. 

A survey of different interpretations of the utility principle and PMEU, as well as 

a more general characterisation of the class of expected utility models, is given in 

(Schoemaker, 1982, p.530 ff). An expected utility model is one that predicts or pre-

scribes that people maximise the expression  

(p)U(x),  

where x is an outcome vector. The models differ in i) how utility U(x) is measured, 

ii) what kind of concept of probability (p) is allowed, and iii) how the outcomes 

are measured. Schoemaker examines some frequently used variants of models, in 

accordance with this structure. 

Utility theory was, even after taking Menger’s results into account, not a well-

founded subject until the late 1930s, when the works of Ramsey and von Neumann 

and Morgenstern appeared. They proposed reasonable principles governing deci-

sions, from which a set of axioms was formulated whose purpose was to justify their 

particular attitude towards the utility principle. Surveys over a wide variety of axi-

omatisation are given in (Fishburn, 1981). 

The idea is to in a systematic way define the meaning of rationality. The point 

is, if a decision rule can be deduced from an indisputable axiomatisation, then this 

rule should be the natural and obvious rule for a rational entity, provided that the 

necessary information is available. Føllesdal (1984, p.268) suggests the following 

conditions for a decision rule: 

 A decision rule should recommend an alternative with valuable conse-

quences before an alternative with less valuable consequences. 

 A decision rule should recommend an alternative with a high probability of 
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valuable consequences before an alternative with a low probability of valua-

ble consequences. 

 A decision rule should recommend an alternative with a low probability of 

bad consequences before an alternative with a high probability of bad conse-

quences. 

This seems to be reasonable but is too vague to fill the needs of a normative decision 

theory and has to be elaborated a bit. In this, we introduce some axiomatisations 

using the following notation: 

a >p b means that the decision-maker holds alternative a to be strictly preferred 

to alternative b. This binary relation is transitive and asymmetric, thus it is a 

strict order. 

a p b means that the decision-maker holds alternative a to be at least as good 

as alternative b, i.e., b is weakly preferred to a. This binary relation is complete 

and transitive, thus it is a weak order.

a p b means that the decision-maker is indifferent between alternative a and al-

ternative b. This binary relation is reflexive, transitive, and symmetric, thus it is 

an equivalence relation.

If the decision-maker can assign a number u(a) such that u(a)  u(b) if and only 

if a p b, then it is said that there exists a utility function over a and b. 

The axiom systems that will be presented consist of primitives and axioms con-

structed from the primitives. Typical primitives include states, sets of states, and or-

dering relations such as p. The axioms then imply a numerical representation of 

probabilities and preferences, i.e., the axioms imply the existence of a probability 

distribution and a utility function. Although Ramsey (1931) and von Neumann and 

Morgenstern (1944) are credited for the axiomatic foundation of utility theory, this 

book follows the axiom system of Luce and Raiffa (1957), very similar to the 

aforementioned, followed by the axiomatic justification of the utility principle ac-

cording to Savage (1972). At first glance, the two systems seem dissimilar, but the 

important implications boil down to the same central results. Starting with Luce and 

Raiffa, in which alternatives (or gambles) with uncertain outcomes are called 
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lotteries. An alternative is denoted p1v1, …, pivi, …, prvr, which can be consid-

ered as a lottery with the probability pi for the outcome vi. All the probabilities are 

supposed to sum up to one. For example, the alternative a with uncertain outcomes 

v1 and v2 associated with probabilities p1 and (1- p1) respectively is represented as 

the lottery a = piv1, (1- pi) vr. 

Axiom 1: Ordering of alternatives and transitivity: For any two alternatives a and 

b, either ap b or b p a, and if a p b and b p c then a p c. 

Axiom 2: Reduction of compound lotteries: Any compound lottery (which may be 

thought of as a mixture of lotteries, i.e., the prize of a lottery consists of another lot-

tery instead of a certain reward.) is indifferent to a simple lottery with v1, v2, …, vr 

as prizes, in which the probabilities for the prizes in the simple lottery is computed 

according to ordinary probability calculus. 

Axiom 3: Continuity: Each prize vi is indifferent to some lottery involving just v1 

and vr. Thus, there exists some number (or probability) pi[0,1] such that vi p 

piv1, 0v2, …, 0vr-1, (1- pi) vr. 

Axiom 4: Substitutability (independence of irrelevant alternatives): In any lottery 

L, vi' is substitutable for vi, that is, p1v1, …, pivi, …, prvr p p1v1, …, pi vi', …, 

prvr when vi' p vi. 

Axiom 5: Monotonicity: piv1, (1- pi) vr p pi'v1, (1- pi') vr iff pi  pi'. 

Note that nothing is being explicitly said about the origin of the probability dis-

tributions, they are just assumed to exist, and thus the view on probabilities is of the 

objective kind. From these axioms, the principle of maximising the expected utility 

as well as some other important results in utility theory are readily derived. 

Shifting our attention to the system of Savage, he argues that if utility is regarded 

as affecting only consequences (rather than acts), then for a weakly ordered conse-

quence set C, the following is valid: (x) and (x) are numerical order-preserv-

ing functions representing the ordering relation between the consequences if and 

only if there is a strictly increasing function r such that, for every ciC, (ci) = 

r(2(ci)). This shows that (ci) is just an ordinal scale: it cannot be interpreted as 

quantitatively measuring the strength of preferences in any meaningful way. Savage 

adopted this argument from Pareto (18481923). The primitives building up the 
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axiom system of Savage slightly differ from the ones of Luce and Raiffa. Savage 

proposes the following primitives: i) the binary preference relation p, ii) a set 

S = {s1, s2, …} of states, iii) a set C = {c1, c2, …} of consequences, and iv) a set 

F = {f: S  C} of all possible mappings from S to C where such a mapping is called 

an act. Now, Savage defines E as the power set of S, where the elements of E are 

called events denoted by A, B, C,… and further defines the following concepts: 

1. For f,g,f',g'F and B,BcE, f p g given B if and only if f’ p g' for every f' and 

g' that agree with f and g respectively, on B, and with each other on Bc and 

also g' p f' either for all such pairs or for no such pair (where Bc is the com-

plement of B). 

2. ci p cj if and only if f p f’ when f(s) = ci and f’(s) = cj, for all sS. 

3. B is null (B = ) if and only if f p g given B, for all f,gF. 

4. A is not more probable than B (A  B) if and only if fA p fB or ci p cj, for 

every fA,fB,ci,cj such that fA(s) = ci for sA, fB(s) = cj for sAc, fB(s) = ci for 

sB, fB(s) = cj for sBc. 

5. f p ci given B (ci p f given B) if and only if f p h given B (h p f given B), 

when h(s) = ci, for all sS. 

To clarify some of the concepts: In the first concept, when act f' agrees with act f on 

B, then performing f will yield the same consequence as performing f' given the 

event (set of states) B, thus f(s) = f' (s) for all sB. The third concept says that if 

weak preference holds regardless of which pair of acts compared given the event 

B, implying that all acts are equal given B, then B is an empty set of states (and vice 

versa). The fourth concept: When an act fB given A is preferred to an act fA given 

not A, and fB given not B is preferred to fA given B, then if fB is preferred to fA this 

means that a decision-maker holds event B more probable than event A (and vice 

versa). Then Savage proposes the following seven axioms: 

Axiom 1: Transitivity: The relation p is a weak order. 

Axiom 2: Completeness: For every f,g, and B, f p g or g p f given B. 

Axiom 3: Resolution independence: If f(s) = ci, f’(s) = cj, for every sB, B, 

then f p f’ given B if and only if ci p cj. 
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Axiom 4: Qualitative probability: For every A,BE, A  B or B  A.  

Axiom 5: Minimal strict preference: It is false that for every cj, cj, ci p cj. 

Axiom 6: Continuity: Suppose h p g, then for every ci there is a finite partition 

{Bi} of S such that, if g' = ci(Bi), and h' = ci(Bi), for some i, then h p g' or h' p g. 

Axiom 7: Dominance: If f p g(s) given B (g(s) p f given B) for every sB,  

then f p g given B (g p f given B). 

The second axiom says that when two acts have the same consequences, the relation 

between f and f ' must be independent of states. Furthermore, the third axiom says 

that the knowledge of an event cannot discard any preference between two conse-

quences. Together, axioms 2 and 3 constitute Savage’s debated “sure-thing princi-

ple”. Informally, if a decision-maker does not prefer f to g, either knowing that the 

event B occurred or knowing that B has not occurred, then the decision-maker does 

not prefer f to g (Savage, 1972, p.21). Further, from axiom 3 follows that prefer-

ences between acts depend only on realised consequences, and not possible ones. 

The fourth axiom says that  is a qualitative probability, thus  is a weak order, 

and B  C if and only if (B  D)  (C  D) when (B  D) = (C  D) = 0. Further-

more, 0  B, 0 < S (all events are at least as probable as the impossible event and 

the universal event S must not be regarded as impossible). Axiom 5 says that there 

is at least one pair of consequences such that one is strictly preferred to the other, 

and axiom 6 implies the existence of a unique probability measure P on E. This 

probability measure is consistent with the qualitative probability in that E is not 

more probable than E' if and only if P(E)  P(E'). The last axiom says that if f p 

g(s) for all consequences of f for a set of states B, then f p g, if one of those states 

occurs, of further importance this axiom implies that the utility function is bounded 

(nothing is infinitely bad or infinitely good). 

Given these assumptions, Savage proved the existence of a real-valued utility 

function on C with the following property: Let {Li} be a partition of S and let f be an 

act with consequences {f(si)} on {Li}, and let {Li
'} be another partition of S and 

let g be an act with consequences {g(si)} on {Li'}. Then f p g if and only if 

piu(f(si))  qiu(g(si)) where pi = P(Li) and qi = P(Li'), i.e., the principle of max-

imising the expected utility (PMEU).  
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Looking back at the system of Luce and Raiffa, it has been proved by von Neu-

mann and Morgenstern (1944) that if a decision-maker has preferences between 

lotteries, i.e., given that the assumptions in the axiom system are fulfilled, then there 

is a real-valued utility function, unique up to a positive affine transformation, on 

the set of lotteries. Furthermore, let Lc = {L1, L2, …} be a set of lotteries on C (al-

ternatives with uncertain outcomes in the consequence set C), then they showed that 

the utility function u:LcR, has a representation u(Li) = pi(ci)u(ci) and Li p Lj if 

and only if u(Li)  u(Lj). Thus, both axiom systems serve as attempts at a formal 

justification of the utility principle and the principle of maximising the expected 

utility. Due to the subjective vein in the approach of Savage, his theory is often 

referred to as subjective expected utility. 

Descriptive decision theory 

Human decision-makers tend to, under given circumstances, behave inconsistent 

with the utility principle. Famous so-called paradoxes include Allais’ paradox and 

Ellsberg’s paradox. Allais’ paradox shows that people tend to act in ways inconsistent 

with the sure-thing principle. This paradox derives from a common human behav-

iour of preferring a good outcome for certain to having a chance between something 

not as good and something even better. Ellsberg’s paradox is quite similar, while it 

shows people’s tendencies towards preferring known risks to unknown uncertain-

ties, and thereby violating the utility principle. 

Paradoxes of these kinds are often resolved by arguing that even intelligent be-

ings make mistakes, and after some explanation of the inconsistency in their 

choices, they change their minds. However, for instance, an empirical study by 

Slovic (1974) has shown that as much as about 30% refuse to change their opinion 

and conform to the utility principle even after having had their errors pointed out to 

them. Tversky (1981) tries to understand why this is the case, and his conclusion is 

that irrelevant contextual effects often influence people, making them act incon-

sistent with the utility principle, i.e., the framing process. Further, it can be argued 

that it is impossible for any normative theory of decision making to embrace all 

inherent peculiarities in a free world of heterogeneous decision-making inhabitants. 

However, this perspective has been heavily critiqued. A common counter-argu-

ment is that the axioms of utility theory are flawed. For instance, it has been shown 



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 31 

that people do not always behave according to certain independence axioms in the 

system proposed by (Savage, 1954 /1972; Allais, 1953). A more serious issue with 

the formal justifications of the utility principle from a normative point of view is 

that even if the axioms in various systems are accepted, the principle itself does not 

necessarily follow; in other words, the axiomatic systems are seemingly too weak 

to imply utility theory and PMEU. This is addressed in (Malmnäs, 1994) who 

demonstrates the weaknesses of the systems in (Herstein and Milnor, 1953; Oddie 

and Milne, 1990; Savage, 1972). A comprehensive review of numerous such sys-

tems is provided in (Malmnäs, 1994), who argues that it is implausible for these 

systems to be extended in any reasonable way to imply PMEU. Therefore, from a 

purely normative viewpoint, the logical foundations of utility theory appear to be 

quite weak. But without contenders, it is still a viable basis for prescriptive decision 

analysis, keeping this in mind. 

Another criticism is that utility theory is inadequate for modelling risk attitudes 

effectively. Proponents of utility theory often argue for the concept of a risk pre-

mium to demonstrate that utility theory captures varying risk attitudes (French, 

1988). However, the use of a utility function to model all possible risk attitudes is 

inherently limited. Critics argue that many decision-analytic models oversimplify 

the problem and ignore crucial factors (cf., e.g., (Schoemaker, 1982). For instance, 

even if the evaluation of an alternative yields an acceptable expected utility, its con-

sequences might be so undesirable that the alternative should be avoided entirely, 

even if the probabilities of such consequences are very low. In such cases, PMEU 

would need to be extended with additional functionality. It has been suggested that 

a viable decision theory should allow for a broader range of risk attitudes and pro-

vide decision-makers with means to express these attitudes in various ways plus 

offer procedures for managing both qualitative and quantitative aspects. 

Some researchers have in vain sought to modify the behaviour of PMEU by in-

corporating regret or disappointment into the evaluation, especially for cases where 

numerically identical outcomes are perceived differently depending on the deci-

sion-maker’s previous experiences. See Chapter 4 for a discussion on such attempts. 

However, Malmnäs has demonstrated that, at best, these modifications result in per-

formances nearly equivalent to that of expected utility, and at worst, being incon-



32   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

sistent with first-order stochastic dominance (Malmnäs, 1996). The apparent prob-

lem here is that the discussion emanates from a normative point of view, and in 

such a setting, the problem never ends. But from a prescriptive point of view, the 

focus is instead on finding guiding rules of the best kind, and Malmnäs’ observation 

paves the way for a solid prescriptive approach. 

Defenders of classical Bayesian decision theory instead argue that the concept of 

utility captures different risk attitudes. The assumption is that to each expected util-

ity, there corresponds a certainty monetary equivalent xce. The decision-maker is 

indifferent between having this monetary value with certainty and performing an 

alternative with uncertain outcomes, i.e., u(xce) =  pi u(xi), where u(xi) is the utility 

of gaining the monetary value xi. The risk premium, p, of an act is now defined as 

the demand that a decision-maker has for carrying out the act, instead of having the 

monetary equivalent xce for certain, i.e., p =  pixi – xce. With respect to the risk 

premium p, a classification of decision-makers into three classes can be made: a 

decision-maker is risk-averse if p > 0; risk-prone if p < 0; and risk-neutral if p = 0. 

As an example, assume that a decision-maker is in desperate need of a certain 

amount of money, and any lesser amount than this amount would not be useful. For 

instance, a person may be in need of money for medical treatment of a disease that, 

if not cured, will result in death. If this person should seize the opportunity of en-

tering a bet with her last funds that will give her a chance of winning an amount 

sufficient enough for the treatment to be affordable, this person would probably not 

be labelled irrational. In this situation, the risk premium p is probably negative. 

However, some argue that it will never be possible to formalise the decision pro-

cess with all reasonable risk attitudes by a utility function and an associated risk 

premium. Many critics emphasise that a majority of the mathematical models of 

decision analysis are oversimplified. Consider, for example, the reasons for gam-

bling. Most people would agree that there is a pleasure involved in the pure act 

of participating in a game with uncertain outcomes. If mathematical expectation 

were the only criterion for gambling, no games would ever be arranged by rational 

beings, since when the rules of the game would make it rational for the gambler to 

bet, then the arranger should be irrational to offer the bet. However, people do still 

arrange and participate in games, although either the gambler or the bookmaker will 

be on the irrational side. Furthermore, it has also been argued that humans tend to 



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 33 

disregard very small probabilities, even in games with finite mathematical expecta-

tions (like nation-wide lotteries), and that, in the case of very high probabilities, a 

gambler is not willing to risk arbitrary amounts (Menger, 1934). Such arguments 

cross the border to descriptive decision theory, and while both important and inter-

esting, they do not aid in the formulation of viable prescriptive decision-analytic the-

ories, models or procedures. 

 

This chapter builds on (Danielson, 1997, Ch.1) 
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04. Decision-Analytic Evaluations 

As seen in the previous chapter, much thought has been given to which rules cor-

rectly rank alternatives under strict uncertainty. Among the first suggestions were 

maximin and minimax. Both are in some sense extreme strategies. A generalisation 

using the weighted average is the Hurwicz rule (Hurwicz, 1951). Another evalua-

tion rule, the minimax-regret (Savage, 1951), is the same rule as minimax but ap-

plied to alternative losses instead. 

As noted in that chapter, Milnor suggested some reasonable criteria by which 

evaluation rules could be judged and demonstrated that no rule could comply with 

all of the requirements (Milnor, 1954). Hence, none of the rules can be universally 

agreed on as being the rule. However, Milnor’s requirement of invariance under the 

addition of a new state by column duplication is too strong. If the decision matrix 

changes, the entire decision problem has changed into a new one. Then it is not 

surprising that decision rules run into trouble. Excluding that requirement, La-

place’s rule does indeed satisfy all the other requirements. The rule is based on the 

implicit assumption that uncertainty is the same as assigning equal probabilities to 

all states. This assumption constitutes a link between methods for making decisions 

under strict uncertainty and methods for making decisions under risk. Laplace’s rule 

is similar to maximising the expected value and when all probabilities are assigned 

the same number, the expectation turns into a simple sum. 

Consider instead a situation where in addition the decision-maker has some esti-

mates of the probabilities of the states involved. Usually, the probabilities are not 

the same for each alternative as in Laplace’s rule, traditionally called decision under 

risk. Any decision problem under risk can be transformed into a problem in normal 

form. Further, tree and matrix forms of presenting a decision problem are equiva-

lent. Therefore, it is sufficient to handle decision problems in normal form. In this 

chapter, a decision problem will be modelled in a decision frame.  

Definition: Given a decision situation with m alternatives (A1,…,Am), each with 

mi consequences, and statements about the probabilities and values of those con-

sequences. A decision frame is a structure C,P,V = {{Cik}mi
}m,P,V containing 

the following representation of the situation: 
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• For each alternative Ai the corresponding consequence set  

{Cik}kKi
 for Ki = {1,…,mi}. 

• A set P of inequalities representing all probability statements. 

• A set V of inequalities representing all value statements. 

A large group of evaluation functions is the family of all functions that assign a 

numerical value to a consequence set for subsequent comparison, see for example 

(Schoemaker, 1982) for an overview. Such an evaluation function results in nu-

meric values ranking the alternatives (or, more precisely, the consequence sets). 

Definition: Given a decision frame {{Cik}mi
}m,P,V and a function f, the nu-

meric value N(Ci) of a consequence set {Cik}mi
 is f(pi1,…,pimi

,vi1,…,vimi
), a 

function over all consequences Cik in the consequence set. 

To be reasonable, the value of N(Ci) should range over the interval [0,1] since 

the values range over that interval. Of the numeric values, the expected value seems 

to be one of the most natural rules to apply to a decision problem on alternative-

consequence-form. This is partly because the expected value E(Ci) is established in 

mathematical statistics, where it is employed as the mean value to be assigned to a 

stochastic variable taking on various values with specific probabilities. E(Ci) is 

clearly an instance of N(Ci) above. In this book, only discrete probability distribu-

tions are considered, and thus the following definition of the expected value applies. 

Definition: Given a decision frame {Ci}m,P,V, the expected value E(Ci) of a 

consequence set Ci = {Cik}mi
 is the sum ∑k pik·vik over all consequences Cik in 

the set. 

The use of the principle of maximising the expected value (PMEV) dates several 

hundred years back, preceding the formal area of mathematical statistics and instead 

originating from pure monetary gambling. Over the years, a number of problems 

have been discovered with the principle when applied to real-life decision situa-

tions. A serious paradox was first suggested by Allais (1953), and other paradoxes 

along the same line have subsequently been suggested. Many people tend to choose 

alternatives in a way that seems to violate the PMEV, no matter what utility values 

are assigned to the respective outcomes. See for example (Savage, 1972) for a math-

ematical argument regarding Allais’ paradox. In experiments where the violation 
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was afterwards pointed out to subjects who understood the mathematical argument, 

up to 1/3 retained their choice in spite of this. 

Such problems with PMEV warrant further investigation, and several research-

ers, not least within economics, have proposed a number of alternative decision 

rules to replace (or sometimes supplement) the PMEV. Fishburn (1983) suggests an 

evaluation based on the quotient between two separate expected values, which has 

the form 

1
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where f1 and f2 are two functions of the values involved. 

Loomes and Sudgen (1982) bring regret or disappointment into the evaluation to 

cover cases where numerically equal results are appreciated differently depending 

on what was once in someone’s possession. Their suggested formula has the form 
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where R is supposed to be a regret function related to the ordinary expected value. 

Quiggin (1982) tries to resolve the problem by requiring functions to modify the 

probabilities in the evaluation rule such as 
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where f is a strictly increasing function, the sij’s are in increasing vij order, and 
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 . Yaari has pointed out that under certain reasonable assumptions (Yaari, 

1987), it must be the case that f(pij) = pij and then he made the following extended 

suggestion 
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where sij is as above. 
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These suggestions come from a normative standpoint. As noted in Chapter 3, 

Malmnäs (1996) shows for those above and for other proposals that their perfor-

mances can at best be equal that of the expected value and at worst are much poorer, 

for example not even being consistent with first order stochastic dominance. Since 

no rule performs consistently better than the expected value, it is the only possible 

rule from a prescriptive viewpoint. It has sometimes been argued that the prescrip-

tive approach consists of selecting axioms to adhere to, rather than accepting and 

using the axiom systems of established theories (Keeney, 1992). Such a view would 

reduce prescriptive decision analysis to meta-arguments on which axiomatic results 

to believe in and adhere to, and which to dismiss. That would constitute a road that 

does not lead to better tools for real-life decision support. 

In many decision contexts, the decision-maker may want to exclude particular 

alternative courses of action that are, in some sense, too risky. If the PMEU modi-

fications on the previous pages do not work, what does? The exclusion can be 

achieved by a class of supplementary decision rules called qualitative sorting or 

security levels. While an evaluation of a consequence set may result in an accepta-

ble expected value, the consequences of selecting it might be so dire that it should 

nevertheless be avoided. It might, for example, endanger the entire purpose of the 

decision context, and in that case, even a consequence with a low probability is too 

risky to neglect. Such exclusions can be dealt with by specifying a security level for 

the probability and a threshold for the value. Then a consequence set would be un-

desirable if it violates both of these settings. Malmnäs’ proposal (1994) is to sup-

plement the expected value with qualitative evaluations. An example is the qualita-

tive sorting function, which has the basic form 

( , , ) ( )
ij

i ij
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
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where r is the minimally tolerable value threshold and s is the maximally acceptable 

probability for events below the threshold to occur. This is a boolean function sort-

ing out unwanted consequence sets. But to treat this and other supplements, a more 

general discussion on dominance is required. 
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Delta Dominance 

In this section, a general dominance rule is suggested as a unifying concept. In its 

generic form, it describes the type of dominance to be considered and thus also the 

type and amount of computation involved in evaluating consequence sets in the 

framework. It includes all of the above-suggested evaluation functions, even though 

the expected value is by far the most common. For convenience, a shorthand nota-

tion for the difference in expected values is introduced. 

Definition: Given a decision frame {{Cik}mi
}m,P,V, ij denotes the expression 

E(Ci) – E(Cj) = ∑k pik·vik – ∑k pjk·vjk over all consequences in the consequence 

sets Ci and Cj. 

Terminology: Given a decision frame C,P,V, the functions f, g, and h are 

specified as f:ℝi[0,1], g: ℝj[0,1], and h: ℝk [0,1] with i,j,k  N+ as appro-

priate. The  and  parameters are real numbers in the range [0,1]. 

In order to describe the dominance, a couple of concepts are required. The index 

set pair captures the consequences within each of the consequence sets that possess 

some desired property, in this case their value being at least as great as a given 

parameter. 

Definition: Given a decision frame C,P,V and a real number d  [0,1], an index 

set pair (Ki,Kj)(d) is Ki = {k  vik ≥ d} and Kj = {k  vjk ≥ d}. 

When the parameter d varies over some range, the content of the index set may 

vary as well. This represents a selection procedure for selecting all consequences 

within a pair of consequence sets with a desired property. The set of all such index 

sets is defined next. 

Definition: Given a decision frame C,P,V and real numbers a,b,d  [0,1], 

Mij[a,b] is the set {(Ki,Kj)(d)  d  [a,b]}. 

Mij[a,b] is the set of all different index set pairs in the range [a,b], i.e. all the com-

binations of index sets that satisfy any threshold condition in that range. Those two 

definitions enable the following compact definition of the ∆-dominance. The idea 

behind the dominance is a pairwise comparison of the consequence sets employing 
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the desired numerical function. Note that the weak inequality must hold for all index 

set members, i.e. over the entire interval range I. 

Definition: Given a decision frame C,P,V, a function f, and two parameters 

(P0,V0) and (P0,V0), Ci ∆[I]-dominates Cj iff  

 (Ki,Kj)(d)  Mij[I] ( , , ) – ( , , ) 0
i j

ik ik jk jk

k K k K

f p v f p v 
 

   and 

 (Ki,Kj)(d)  Mij[I] ( , , ) – ( , , ) 0
i j

ik ik jk jk

k K k K

f p v f p v 
 

  . 

This is a very general definition based on traditional admissibility concepts, and 

many instantiations are possible. In this book, a few are given and it is shown that 

some well-known evaluation concepts are special cases of ∆-dominance. The first 

subdivision of the ∆-dominance is into dominance orders depending on the function 

employed in the evaluation. First and second orders are specifically addressed be-

low, while higher orders are not further discussed. 

The ∆-dominance is of the first order if the function used is a function of only 

probabilities. The values are not taken into account when evaluating the conse-

quence sets. 

Definition: Given a decision frame C,P,V and functions f and g, Ci 1[I]-domi-

nates Cj iff Ci ∆[I]-dominates Cj with f(pik,vik,) = g(pik) and f(pjk,vjk,) = g(pjk). 

Thus, first order specialisation turns dominance into a difference of sums of a func-

tion of probabilities. 

Note: Ci 1[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] ( ) ( )
i j

ik jk

k K k K

g p g p
 

  . 

The note points out the resemblance with some familiar dominance concepts. One 

further specialisation of the first order ∆-dominance is the first order stochastic dom-

inance, a well-known concept. To reach there, the general first order ∆-dominance 

is considered. It consists of specifying the range for the index set pairs to be the full 

[0,1] range. 

Definition: Given a decision frame C,P,V, Ci 1S-dominates Cj iff Ci 1[0,1]-dom-

inates Cj. Ci 1SE-dominates Cj iff Ci 1S-dominates Cj with g(pik) = pik. 
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When the function g employed is the simple g(pik) = pik the general stochastic dom-

inance turns into the commonly used first order stochastic dominance, which in the 

∆-dominance concept is a specialisation of function as well as of index set range. 

To see that this is indeed the ordinary first order stochastic dominance as claimed, 

it is convenient to make the following note, in which the form for 1SE-dominance 

coincides with the definition of first order stochastic dominance. 

Note: Ci 1SE-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

i j

ik jk

k K k K

p p
 

  . 

Earlier, a supplementary function was mentioned under the name of qualitative sort-

ing or security levels. This was a kind of threshold function separating wanted and 

unwanted outcomes (or desirable and undesirable consequence sets) according to a 

threshold rule applicable to the evaluation situation. This type of evaluation rule 

also turns out to be a special case of the ∆-dominance, viz. the dominance of a 

reference consequence set, i.e. the threshold. 

Definition: Given a decision frame C,P,V and two real numbers s,t  [0,1], Cj 

violates general security level s for threshold value t iff Ct 1[t,t]-dominates Cj, 

where Ct is a consequence set with two consequences, g(pt1) = 1–g(s), vt1 = 1, 

g(pt2) = g(s), vt2 = 0. 

When the function g is the simple g(pik) = pik, then the general security level turns 

into the ordinary security level concept, which again is a specialisation of both func-

tion and index set range. 

Definition: Given a decision frame C,P,V and two real numbers s,t  [0,1], Cj 

violates security level s for threshold value t iff Cj violates general security level s 

for threshold value t with g(pjk) = pjk. 

To see that this is indeed the same concept as the security levels discussed above, 

the following observation can be helpful. Note that there can only be one index set 

pair since the range of the value interval only contains r. 

Note: Cj violates security level s for threshold value t iff for Kj = {k  vjk ≥ t} 

1
j

jk

k K

p s


  . 
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It can be seen that the first-order stochastic dominance and qualitative sorting or 

security levels are both variants of the same concept of first-order ∆-dominance. 

The ∆-dominance is of the second order if the function used is a function of both 

the probabilities and the values. 

Definition: Given a decision frame C,P,V and functions f and h, Ci 2[I]-domi-

nates Cj iff Ci ∆[I]-dominates Cj with f(pik,vik,) = h(pik,vik) and 

f(pjk,vjk,) = h(pjk,vjk). 

Then the domination turns into a difference of sums of a function of probabilities 

and values. 

Note: Ci 2[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

( , ) ( , )
i j

ik ik jk jk

k K k K

h p v h p v
 

  . 

As for the first order, a further specialisation into second-order stochastic domi-

nance is possible. This is a well-known concept as well, and it turns out to be an-

other case of ∆-dominance. First, the general second-order stochastic dominance is 

defined. As in the first order case, it consists of specifying the range for the index 

set pairs to be the full [0,1] range. 

Definition: Given a decision frame C,P,V, Ci 2S-dominates Cj iff Ci 2[0,1]-dom-

inates Cj. Ci 2SE-dominates Cj iff Ci 2S-dominates Cj with h(pik,vik) = pik·vik. 

If the function h employed is the most common h(pik,vik) = pik·vik, then the domi-

nance turns into the commonly used second-order stochastic dominance, which in 

the ∆-dominance concept is a specialisation both of function and of index set range. 

To see explicitly that we have arrived at the ordinary second-order stochastic dom-

inance, it is helpful to make the following note, in which the form for 2SE-domi-

nance can be seen to be almost equivalent to the textbook definition of second-order 

stochastic dominance. 

Note: Ci 2SE-dominates Cj iff  (Ki,Kj)(d)  Mij[0,1] 

i j

ik ik jk jk

k K k K

p v p v
 

    . 

Another second order ∆-dominance is the ordinary expected value and some of the 

suggested replacements. One of their characteristics is that they evaluate only by 



42   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

full index set pairs, i.e. pairs that contain all members of each consequence set. The 

general numerical dominance is a straightforward specialisation of 2∆-dominance. 

Definition: Given a decision frame C,P,V, Ci N-dominates Cj iff Ci 2[0,0]-dom-

inates Cj. Ci NE-dominates Cj iff Ci N-dominates Cj with h(pik,vik) = pik·vik. 

This corresponds to the evaluation rules that apply a probability and value formula 

to the consequence set in order to reach a numerical verdict on which one is prefer-

able. The last specialisation of the second order is the ordinary expected value, 

which is termed NE-dominance and is realised by letting f(pik,vik) = pik·vik in the 

N-dominance. This can be seen to be the expected value, since the only index set 

pair generated by the [0,0]-range is the pair of complete consequence sets. 

Note: Ci NE-dominates Cj iff for (Ki,Kj)(0) ij ≥ 0. 

Also note that ij ≥ 0 is not applicable to 2SE-dominance since it involves different 

index set pairs while NE-dominance always applies only to the full index sets of the 

consequence sets. It has been demonstrated that some well-known dominance rules 

and the ordinary expected value are special cases of ∆-dominance, which acts as a 

unifying concept in comparing and discussing evaluation rules. 

 

This chapter builds on (Danielson, 1997, Ch.5) 
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05. Realistic Input Information 

In a vast majority of real-life decision situations, the decision-maker does not have 

access to the significant amount of statistical data demanded to aggregate precise 

numerical values and probabilities, nor does the decision-maker have the ability to 

perform precise estimations of utilities. Furthermore, people find it hard to distin-

guish between probabilities ranging from approximately 0.3 to 0.7 (Shapira 1995). 

A great deal of attention has been given to problems of imprecise information as a 

source of decision uncertainty, Morgan and Henrion (1990) identify two main types 

of uncertainty. The first type of uncertainty derives from a lack of historical data 

and takes its form from statistical variation, subjective judgments, linguistic impre-

cision, variability, inherent randomness, disagreement and approximation. For ex-

ample in experiments, errors in the measurements of quantities give rise to statisti-

cal variation. The second type of uncertainty arises from the model chosen, for ex-

ample a utility function. For instance, (Rowe, 1994) incorporates more qualitative 

sources of uncertainty, acknowledging that uncertainty due to communication dif-

ficulties and divergent values is an unavoidable aspect of policy decision making. 

Furthermore, uncertainty due to biases in communication and value differences is 

unavoidable in the use of expertise in policy processes. Instead of addressing the 

sources of uncertainty, Funtowicz and Ravetz (1990) discuss different types of un-

certainties, including inexactness (or technical uncertainty), unreliability (or meth-

odological uncertainty), and “border with ignorance” (or epistemological uncer-

tainty). These authors consider ignorance to be endemic to scientific research. Fi-

nally, Wynne (1992) addresses uncertainty in the foundations of information and 

knowledge, as well as in processing information. 

Even if a decision-maker is able to discriminate between different probability 

measures, very often adequate, reliable, and precise information is missing. Conse-

quently, there seem to be significant reasons for discriminating between measurable 

and immeasurable uncertainty. Measurable uncertainty is often referred to as risk 

and can be represented by precise probabilities. In contrast, immeasurable uncer-

tainty occurs frequently in high-consequence/low-frequency situations since the low 

frequency implies a lack of statistical data, and thereby the axiom systems given 

by, e.g., Savage and von Neumann and Morgenstern, are not satisfied. Ellsberg 
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(1961) proposes a class of choice situations involving immeasurable uncertainty, in 

which the behaviour of people is inconsistent with the suggested axiomatic systems. 

He does not object to the use of the principle of maximising the expected utility 

(PMEU) but suggests that the underlying axiomatic systems should not be applied 

in situations where the available information is to some extent not precisely defined. 

Doyle and Thomason (1997) present an approach where imprecision is being mod-

elled by using only qualitative data. However, in many cases this restriction will 

yield a too narrow outlook of a decision problem, numerical estimates should still 

play a role.  

There is a wide variety of mathematical models for the representation of impre-

cise probability. Most research in imprecise probabilities has been concerned with 

different types of upper and lower probability (Walley, 1997). However, some com-

mon and useful kinds of uncertainty cannot be modelled through the use of upper 

and lower probability models, especially, commonly used comparative statements 

of the form “A is at least as probable as B” cannot be allowed for. Walley’s book 

Statistical Reasoning with Imprecise Probabilities introduces the concept of upper 

and lower previsions. Briefly speaking, the lower prevision of a gamble is defined 

by the amount a gambler is willing to pay for a lottery ticket, and the upper prevision 

is defined by how much he is willing to sell the same ticket for. 

Many attempts have been made to express imprecise probabilities in terms of 

intervals. In (Choquet 1953), the concept of capacities is introduced. These capaci-

ties can be used to define a framework for modelling imprecise probabilities as in-

tervals (Huber, 1973). The use of interval-valued probability functions, by means of 

classes of probability measures, has also been integrated into classical probability 

theory by e.g., (Good, 1962) and (Smith, 1961). A similar approach was taken by 

Dempster (1967), where a framework for modelling upper and lower probabilities is 

investigated. This was further developed by his PhD student in (Shafer, 1976), where 

the concept of basic probability assignments was also introduced. The Dempster-

Shafer theory for quantifying subjective judgments has received a lot of attention, 

but it seems to be unnecessarily strong with respect to interval representation 

(Weichselberger and Pöhlmann, 1990). Weichselberger’s theory of interval-proba-

bility instead argues in favour of an axiom system for interval probabilities clearly 

related to the one of Kolmogorov, i.e. an already established theory. 
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Imprecision in decision situations often prevails in both probability estimates and 

utility assessments. For example in business decisions when acting upon a forecast, 

the forecasted value often is subject to some forecast error encouraging the use of a 

prediction interval instead of a predicted fixed number which in almost every case 

will be more or less incorrect. Furthermore, many types of decisions involve utility 

measures of non-monetary outcomes which then must be measured on some pre-

cisely defined interval scale, such measurements are often hard to motivate, e.g., 

due to underlying ethical responsibilities and democratic values. 

When more than one probability distribution defined on the same set of outcomes 

is reasonable given the information obtained, we speak in terms of sets of probabil-

ity distributions. The American philosopher Levi gives three conditions such sets 

of probability measures B must satisfy. These imply (among other things) that the 

probability distributions in B for a given state of nature form an interval, in literature 

such sets are commonly referred to as convex sets of probability measures. The sig-

nificance of Levi’s work is emphasised as Levi compares the different alternatives 

in decision situations. He gives an example in which two similar decision situations 

with different sets of probability measures yield results different from his theory, 

even if the generated intervals are the same (Levi, 1974, pp. 416-418). He notices 

that some authors have presupposed such an interval in their theories, but concludes 

that his own theory “[…] recognises credal states as different even though they 

generate the identical valued function –provided they are different convex sets of 

Q-functions.” The significance is emphasised as Levi compares the different alter-

natives in decision situations. He gives an example in which two similar decision 

situations with different sets of probability measures yield results different from his 

theory, even if the generated intervals are the same.  

Levi also relaxes the Bayesian requirement on representing the utilities of the 

consequences. He introduces a set G of permissible utility functions, which do not 

obey the classical Bayesian requirement that all elements in G are linear transfor-

mations of each other. He then stipulates the following definitions: 

Definition: An alternative A is E-admissible if and only if there is a probability 

distribution p in B and a utility function u in G, such that E(A), defined relative to 

p and u, is optimal among all alternatives. 

Definition: An alternative A is S-admissible if and only if it is E-admissible and 
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there is a function u in G such that the minimum u-value assigned to some possible 

consequence is at least as great as the u-values assigned to the consequences of any 

other of the remaining alternatives. These definitions seem reasonable, but they 

have some counter-intuitive implications. They clearly violate the reasonable con-

dition of independence of irrelevant alternatives, i.e. that the ordering between the 

alternatives is not affected by the addition of a new alternative. The theory is also 

problematic in some respects when confronted with some empirical results.  

In (Danielson, 1997), another approach is suggested. Imprecise probabilities, as 

well as imprecise utilities, are handled by modelling a decision situation with nu-

merically imprecise sentences such as “the probability of consequence c11 is greater 

than 5%” and comparative sentences such as “consequence c11 is preferred to con-

sequence c12”. These kinds of sentences are represented by suitable intervals and 

comparisons. Sentences such as “the probability of cij lies between the numbers ak 

and bk” are translated to pij  [ak,bk]. Similarly, sentences such as “the probability 

of cij is greater than the probability of ckl”. are translated into inequalities such as 

pij  pkl. In this way, each statement is represented by one or more constraints. The 

conjunction of all constraints together with  pij = 1 for each alternative Ai is called 

the probability base (P). The utility base (V) consists of similar translations of utility 

estimates. The collection of probability and utility statements constitutes the deci-

sion frame. The following terminology and definitions are from (Danielson, 1997). 

Definition: A decision frame with m alternatives is a structure  

{{cij}j = 1,...,hi
}i = 1,...,m,P,V, where each cij denotes a consequence. P is a finite list 

of linear constraints in the probability variables and V is a finite list of linear con-

straints in the utility variables. 

Given such a structure, various decision rules can be applied. One such structure 

is a generalisation of the expected utility of an action. With respect to a decision 

frame, this can be expressed by the following definition. 

Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, the expected util-

ity E(Ai) of an action Ai is E(Ai) = khi
 pik· uik, where pik and uik are variables in 

P and V, respectively. uij denotes the utility of the consequence cij, and pij denotes 

the probability of cij occurring given that action Ai is taken. 
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Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, let a and b be two 

vectors of real numbers (ai1,...,aihi
) and (bi1,...,bihi

) respectively. Then define 
abE(Ai) = khi

 aik· bik, where aik and bik are numbers substituted for pik and uik in 

E(Ai).  

If the expected utility in the definition above seems to be very similar to the 

expected utility as defined in the previous chapter, it is important to bear in mind 

that this is evaluated with respect to the solution sets of the decision frames rather 

than to precise numbers. Using precise numbers, evaluating the expected utility is 

straightforward. However, when numerically imprecise information is involved, the 

situation is a bit more intricate, i.e., the expected utility has to be evaluated with 

respect to the solution sets to the probability and utility bases. The solution set to a 

set of linear constraints L consists of vectors consistent with L. 

Definition: Given a base expressed in the variables {p1,…, pk}. A list of numbers 

[n1,…,nk] is a solution vector to a base L if the substitution of ni for pi, for all 1 i 

k, in L does not yield a contradiction. The set of solution vectors to L constitutes 

the solution set for L. 

With respect to the solution sets to the probability and utility bases, substituting 

all possible vectors (ai1,...,aihi
) and (bi1,...,bihi

), consistent with the solution sets to 

the probability and utility bases, in the expected utility above, a range of possible 

values is received. Thus, by the introduction of interval in this way, the meaning of 

the expected utility is no longer clear, and a reasonable decision strategy must be 

defined. A quite uncontroversial strategy of evaluation is “never eliminate or dis-

qualify an action that might be the best one”. The only option then becomes “never 

eliminate any alternative”, which might be considered too weak a decision strategy. 

Another strategy is to investigate the differences between the various alternatives.  

Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, the difference in 

expected utility ij between two alternatives Ai and Aj are ij = E(Ai) – E(Aj). Sim-

ilarly, define abcdij = abE(Ai) – cdE(Aj). 

Using this notation, we can introduce a variety of rules to discriminate between 

different actions. For instance, the concept of admissibility (64) is expressed in the 

following way.  
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Definition: Given a decision frame {{cij}j = 1,...,hi
}i = 1,...,m,P,V, Ai is at least as 

good as Aj iff abcdij  0, for all a, b, c and d, where the expression {pi1 = ai1} & ... 

& {pihi
 = aihi

} & {pj1 = cj1} & ... & {pjhj
 = cjhj

} is consistent with P. Similarly, {ui1 

= bi1} & ... & {uihi
 = bihi

} & {uj1 = dj1} & ... & {ujhj
 = djhj

} is consistent with V. Ai 

is better than Aj iff Ai is at least as good as Aj and abcdij > 0, for some a, b, c, d, 

that is consistent with P and V as above. Ai is admissible iff no other Aj is better 

than Ai. 

Intuitively, an action can be discarded if it is always worse than all other actions, 

i.e., an admissible alternative is in some sense a non-dominated alternative. The 

concept of admissibility is computationally meaningful in this framework. How-

ever, the imprecision represented in the decision frames, viz. most non-trivial situ-

ations, often results in the ranges of the expected utility of some actions overlap-

ping. The set of admissible alternatives will therefore often be too large. Conse-

quently, even if PMEU is employed, there is a need for further principles of discrim-

ination. One way to proceed is to determine the stability of the relation between the 

actions under consideration. Values near the boundaries of the intervals are proba-

bly less reliable than more central values due to interval statements being deliber-

ately imprecise. This can be taken into account by measuring the dominated regions 

indirectly with the use of the concept of contraction, which is motivated by the dif-

ficulties of performing sensitivity analyses in several dimensions simultaneously. It 

can be difficult to gain a real understanding of the solutions to large decision prob-

lems using only one-dimensional analyses since different combinations of dimen-

sions can be critical to the results of evaluation.  

In order to assess the overlap, sensitivity analyses of the admissibility are called 

for. The hull cut is a generalised sensitivity analysis for this purpose. It is reasonable 

to consider values near the boundaries of the intervals in a constraint set to be less 

reliable than more central values, due to interval constraints being deliberately im-

precise. The core, on the other hand, represents the most reliable estimates. It is 

therefore desirable to be able to study the bases with varying cut rates, i.e. studying 

smaller or larger decrements to the orthogonal hull. If the core itself is not enough 

to yield the desired evaluation results, it can be further cut towards the focal point 

with varying degrees of contraction. 
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Definition: Given a base X in {xi}i, a set of real numbers {ai,bi}iI, a core 

[ci,di]n of {xi}iI, and a real number π  [0,1], a π-cut of X is to replace the core 

by [ci+π·(ai–ci), di+π·(bi–di)]n. If the set {ai,bi}iI is the hull ai,bin then it is 

called a π-expansion of X. If (r1,…,rn) is a focal point and ai = bi = ri, then it is 

called a π-contraction of X. 

The π-cut is a linear procedure, but non-linear procedures are plausible as well. 

In addition, the procedure can work from either side ((L)π-cut and (R)π-cut) or with 

varying, even non-uniform rates of contraction. The cut structure is studied with 

respect to admissibility, i.e. at which cut rates admissibility is affected. If there is 

no verdict in the original core, it may be further cut towards the focal point in order 

to achieve a result. 

Various kinds of sensitivity analyses based on the concept of contraction are 

suggested in (Danielson, 1997). By co-varying the contractions of an arbitrary set 

of intervals, it is possible to gain much better insight into the influence of the struc-

ture of the decision frame on the solutions. Contrary to, e.g., volume estimates, 

contractions are not measures of the sizes of the solution sets but rather of the 

strength of statements when the original solution sets are modified in controlled 

ways. Both the set of intervals under investigation and the scale of individual con-

tractions can be controlled. The idea behind contractions is to investigate how much 

the intervals can be decreased before an expression such as E(Ai) – E(Aj) > 0 ceases 

to be consistent. At the same time, we must avoid the complexity inherent in com-

binatorial analyses, but still be able to study the stability of a result. 

It should be emphasised that the concept of admissibility is still based on PMEU, 

and thus the approach of considering only admissible actions cannot be entirely 

uncontroversial. Since the idea of dismissing a clearly inferior action seems to be 

reasonable, we must be careful about how to measure this inferiority. 

One major drawback of the classic Bayesian approach as well as in Levi’s ap-

proach is that it does not account for variations of the epistemic reliability in differ-

ent decision situations (Gärdenfors and Sahlin, 1982). Even if an outcome is asso-

ciated with a set of probability measures and a set of utility measures, some of these 

measures are often regarded as more reliable than others, due to the nature of the 

obtained information. Thus, we have a second-order belief in the sense that we hold 
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some of our beliefs to be more reliable.  

The interval model requires defining a set of all epistemologically possible prob-

ability distributions within a decision context. However, a decision-maker may not 

assign equal confidence to all these distributions, necessitating a model of belief 

strength in different vectors. A further refinement of the interval model can be 

achieved using distribution theory. This approach allows for differentiation among 

various probability distributions and utility functions by defining a global distribu-

tion that expresses various beliefs over sets of intervals. For each vector of proba-

bility estimates, a belief value is assigned to reflect the decision-maker’s confidence 

in that particular distribution. This global distribution is defined over a polytope, a 

region of possible solutions described by linear inequalities. This model generalises 

the interval-based approaches discussed earlier, enabling a more flexible represen-

tation of beliefs in decision making. However, one major limitation is that decision-

makers can rarely envision such high-dimensional distributions, especially in com-

plex decision situations, where only local, simpler intervals may be available.  

Gärdenfors and Sahlin (1982, 1983) address these issues by considering global 

belief distributions, though they focus primarily on the probability case. A limita-

tion of this approach is its lack of exploration of the relationship between local and 

global distributions and the methods for ensuring the consistency of user-specified 

belief statements. For example, if a decision-maker considers a class of probability 

distributions, it is reasonable to assume that belief should be zero in vectors where 

the mapping does not sum to one. Hence, the belief in impossible outcomes should 

be zero, and this constraint must be consistent with the overall belief distribution.  

In evaluating imprecise decision situations, several approaches have been pro-

posed, each with its own strengths and limitations. While interval-based models 

have been extended to represent imprecise probabilities and utilities, the challenge 

remains to effectively incorporate belief strength and handle qualitative aspects of 

decision making. Another suggestion that extends the classical analysis is the ap-

plication of fuzzy set theory, which also relaxes the requirements for numerically 

precise data and purports to provide a fairly realistic model of the vagueness in 

subjective estimates. These approaches also allow the modelling of problems in 

vague linguistic terms, and membership functions can be defined in accordance 

with the statements involved. Fuzzy set theory is quite a widespread approach to 
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relaxing the requirement of numerically precise data and providing a more realistic 

model of the vagueness in subjective estimates of probabilities and values, however 

with known problems in the evaluation of the set membership. One major disad-

vantage of such formalisms is the problem of communication between analysts and 

stakeholders. While sometimes possessing attractive mathematical properties, the 

basic concepts are most often not known to the decision-makers, creating a 

knowledge gap hard to bridge. 

By contrast, the aforementioned interval decision analysis conforms to tradi-

tional statistical reasoning by being compatible with the concept of admissibility. 

The emphasis in prescriptive decision theory is not on describing another formalism 

for representing imprecision but rather on presenting a way of handling the impre-

cision inherent in many real-life decision problems within standard decision analy-

sis. Moreover, the possibility to state, for example, that one consequence is inferior 

to another is useful, particularly when handling qualitative information. Therefore, 

in addition to allowing interval statements, some modern decision methods allow 

statements containing comparisons between probabilities or between values, or 

even between differences between them, a feature lacking in older approaches. 

 

This chapter builds on (Danielson, 1997, Ch.4) 
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06. Multiple Criteria 

As discussed in detail in Part I, the roots of prescriptive decision theory can be 

traced to the mid-20th century with the development of utility theory and the axio-

matic foundations of rational choice, most notably embodied in the works of von 

Neumann and Morgenstern, Savage, and others. The classical expected utility the-

ory, underpinned by axioms such as completeness, transitivity, independence, and 

continuity, represents the normative ideal of rational behaviour under uncertainty. 

Probabilistic decision analysis, which builds directly upon this foundation, involves 

the modelling of uncertainty through probability distributions and the quantification 

of preferences via utility functions. Decision trees, influence diagrams, and Bayes-

ian updating are among the standard tools employed in this tradition. These methods 

are particularly powerful when uncertainty can be meaningfully represented prob-

abilistically and when the decision-maker’s utility function can be elicited and in-

corporated into the analysis. Methods and tools built on this tradition have been 

useful whenever the problem specifications fit the framework. 

However, the limitations of classical probabilistic approaches have long been 

recognised. In practice, many decision situations involve multiple and often con-

flicting objectives. Among the most significant developments to address these chal-

lenges is the emergence of multi-criteria decision analysis (MCDA). MCDA en-

compasses a set of methods designed to support decision making in contexts where 

multiple, often incommensurable criteria must be considered simultaneously. Un-

like classical probabilistic methods, which typically assume a single objective func-

tion, MCDA explicitly acknowledges and structures the presence of multiple crite-

ria, which may be qualitative, ordinal, or uncertain. 

MCDA methods are diverse in formulation, but they share certain methodologi-

cal features. First, they require the articulation of criteria relevant to the decision 

context, often through stakeholder engagement. Second, they typically involve the 

evaluation or scoring of alternatives on each criterion, using performance scales 

that may be quantitative or qualitative. Third, they incorporate a mechanism for 

aggregating these evaluations into a global preference or ranking of alternatives, 

which may be deterministic or incorporate uncertainty. However diverse they are, 

there is still an unescapable requirement to be aligned with classic decision theory. 
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Well-known MCDA methods include value-based approaches such as SMART, 

VIKOR and TOPSIS, and outranking methods such as ÉLECTRE and PRO-

MÉTHÉE, among others. Each class of method carries its own assumptions, 

strengths and weaknesses. Value-based methods often rely on compensatory aggre-

gation rules and require strong preference elicitation while outranking methods try 

to encompass non-compensatory reasoning to deal with what they see as incompa-

rabilities. Nevertheless, regardless of approach, they must by necessity stay within 

the scientific borders of classic decision theory which they build upon. 

As a consequence, most present-day developments in computational decision 

analysis occur within MCDA rather than single-criterion probabilistic methods. To 

recap the evolution discussed in Part I, the beginnings of MCDA can be traced back 

to the development of decision theory and operations research (OR) during World 

War II. OR itself emerged as a discipline in the early 1940s, driven by military 

needs for efficient resource allocation, optimal supply chain management, and stra-

tegic planning. Pioneering researches, such as Dantzig, developed linear program-

ming, a mathematical approach that provided optimal solutions to problems of al-

location under constraints. Early decision models were primarily concerned with 

single-objective optimisation, seeking to identify the best solution according to a 

single criterion, typically minimising costs or maximising profit (Dantzig, 1947). 

However, as noted above, decision-makers in the real world often face problems 

with multiple, conflicting objectives. In these complex scenarios, the concept of 

MCDA began to take shape as researchers sought to extend optimisation techniques 

to consider trade-offs between competing criteria. This led to the development of 

early multi-objective optimisation (MOO) methods in the 1950s and 1960s, which 

sought to find solutions that balanced competing objectives. One of the earliest con-

tributions to this field was the work of Harold Kuhn and Albert Tucker on the theory 

of optimality in decision making (Kuhn and Tucker, 1951), which set the ground-

work for future developments in multi-criteria analysis by formalising the need to 

consider multiple constraints in decision-making problems. 

In the 1950s and 1960s, as both OR and decision theory matured, the necessity 

of incorporating multiple objectives into decision making became more apparent. 

At this time, mathematical models for decision making began to account for various 

factors beyond simple profit or cost optimisation. Multi-attribute utility theory early 



54   FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 

became a cornerstone of MCDA. MAUT posits that individuals make decisions 

based on the expected utility derived from each alternative, with each attribute (or 

criterion) contributing to the overall utility in a weighted manner. 

The concept of utility, however, assumes that preferences can be quantified and 

aggregated into a single utility function. For complex decision problems with mul-

tiple criteria, this assumption is often difficult to meet. In response, Keeney and 

Raiffa developed methods to analyse trade-offs between criteria in the book Deci-

sions with Multiple Objectives (1976/1993). Their work introduced a more struc-

tured approach to multi-criteria decision making by emphasising the importance of 

defining and eliciting the decision-maker’s preferences over multiple criteria. They 

recognised that many real-world decision problems do not lend themselves easily 

to the construction of a single utility function and therefore suggested the use of 

non-aggregative methods, where each criterion is considered independently but in 

relation to the others. 

The first applications of MCDA methods were primarily in the fields of manage-

ment science, engineering, and public policy, where decision-makers had to evalu-

ate alternatives based on multiple criteria. In the 1960s, ad hoc multi-criteria meth-

ods, based on optimisation models, were applied to a wide range of decision prob-

lems, from resource allocation and industrial engineering to urban planning and en-

vironmental management. In the 1970s, as the availability of computing power in-

creased, MCDA models became more computationally feasible for a wider range 

of applications. The development of decision support systems (DSS) during this 

period allowed for the systematic application of MCDA methods in interactive de-

cision making. These systems enabled decision-makers to model multiple criteria 

and evaluate the performance of different alternatives, taking into account not only 

quantitative but also qualitative data. The integration of MCDA into DSS marked a 

significant step forward in making complex decision making more transparent and 

analytically rigorous. It was not, however, until the 1990s that computational power 

was used for complex decision-analytic calculations in a way they had been used in 

OR for a long time. One of the first descriptions of computational decision analysis 

is (Danielson, 1997). 

In parallel with the development of traditional MAUT, other methods were 

emerging in the 1970s that focused on the structuring and evaluation of complex, 
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multi-criteria problems. Among the earliest was the Analytical Hierarchy Process 

(AHP), developed by Saaty already in the late 1970s (Saaty, 1980). AHP introduced 

a method for structuring multi-criteria problems into a hierarchy of objectives, sub-

objectives, and alternatives, which could be compared pairwise in terms of relative 

importance. The pairwise comparison approach allowed for the systematic evalua-

tion of trade-offs and the calculation of a final score for each alternative by synthe-

sising the results of comparisons. However, the approach also opened up serious 

problems in applying it to real-world decision problems. 

The traditions in multi-criteria decision analysis (MCDA) are quite different 

from those in “traditional” probabilistic decision analysis (PDA). While PDA tra-

ditionally has a more theoretical and axiomatic approach, focusing on well-found-

edness, MCDA has been more concerned with processes, procedures and calcula-

tion schemes. There is nothing inherently wrong in any of the two sets of ap-

proaches, rather they stem from different traditions. PDA originates from mathe-

matics, statistics and economics, and hence inherited methods and ways of thinking 

and expression from those disciplines. MCDA, on the other hand, has a more plu-

ralistic background, with for example some of the more widespread methods com-

ing from industrial engineering (TOPSIS) and civil engineering (VIKOR). While 

an engineering approach to a research problem is not per se better or worse than a 

mathematical/theoretical one, they yield vastly different outcomes. This book aims 

at unifying both views by first presenting the important theoretical results of PDA 

and then trying to map them onto MCDA while keeping the engineering perspective 

of such methods intact and adding computability as a third pillar of a modern, real-

world view of decision analysis. See, e.g., (Greco et al., 2016) for an overview of 

the current state-of-the-art in the field. 

In (Danielson, 1997), only PDA is treated in detail, due to the general research 

focus back then being on probabilistic models. Since then, and characterising the 

21st century, multi-criteria decision problems have been much more in focus. Luck-

ily, most results from PDA carry over to MCDA, albeit with some modifications 

and exceptions. This second part of the book will deal with the similarities and 

differences between the two approaches and ends with a unified model (MPDA = 

multi-criteria probabilistic decision analysis) where all three types of decision var-
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iables (probabilities, utilities and criteria weights) are modelled and evaluated to-

gether.  

In early MCDA development, the question was raised of how decision-makers 

should compare the alternatives with respect to different types of objectives of the 

decision. Keeney and Raiffa (1976/1993) present four adequate examples of deci-

sion situations where the decision-maker cannot hide from the fact that there are 

multiple objectives in conflict with each other. Each objective is referred to as one 

attribute in the decision context, and the approach is to define one individual utility 

function for each attribute. These are then aggregated into a global utility function, 

in which weights express the relative importance of each attribute. Each conse-

quence Ci may be thought of as a vector of achievement levels regarding the iden-

tified attributes, in the case of n attributes, the consequence set Ci = (c 1, …, c n). 

Some literature uses the terms criteria or perspective instead of attribute, however, 

from a theoretical point of view these terms may be used interchangeably. 

A number of approaches to aggregate utility functions under a variety of attrib-

utes have been suggested, such as (Keeney and Raiffa, 1976/1993; Keeney, 1980; 

Saaty, 1980; von Winterfeldt and Edwards, 1986). The most widely employed 

method is the additive utility function, sometimes referred to as the weighted sum. 

Some conditions must be fulfilled in order for the additive utility function to serve 

properly as an aggregated utility function. Firstly, the assumption of mutual prefer-

ential independence must hold, which states that when a subset of alternatives dif-

fers only on a subset Gi  G of the set of attributes G. Then the preferences between 

the alternatives must not depend on the common performance levels G \ Gi. Sec-

ondly, the condition of additive independence must hold, meaning that changes in 

the uncertain outcomes (its probability distribution) in one attribute will not affect 

preferences for lotteries in other attributes. 

The weights are restricted by a normalisation constraint wj = 1, wj  [0,1], 

where wj denotes the weight of attribute Gj. A global utility function U using the 

additive utility function is then expressed as 

U (x)  wiui (x) 

where wi is the weight representing the relative importance of attribute i. ui: Xi  
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[0,1] is the increasing individual utility function for attribute Gi, and Xi is the state 

space for attribute Gi. It is assumed that the ui:s map to zero for the worst possible 

state regarding the i:th attribute, and map to one for the best. 

Another global utility function is the multiplicative utility function, introduced in 

(Keeney and Raiffa, 1976/1993). The multiplicative model requires that every at-

tribute must be mutually utility-independent of all other attributes, saying that 

changes in certainty levels of one attribute do not affect preferences for lotteries in 

the other attributes. In contrast to additive independence, the condition of utility 

independence allows the decision-maker to consider two attributes to be substitutes 

or complements of each other. In this respect, it is a weaker preference condition 

than additive independence. Generally, the global utility function is usually ex-

pressed as 

1 KU (xi )  Kkiui (xi ) 1  

where ui: Xi  [0,1]. ui is the increasing individual utility function for attribute Gi, 

and Xi is the state space for attribute Gi. As for the additive function, the ui:s map to 

zero for the worst possible state regarding the i:th attribute, and map to one for the 

best. The scaling constant K is the non-zero solution to 

1 K  1 Kki  

where the ki represent scaling constants, similar in their meaning to weights, but 

without the normalisation requirement. 

Other formal methods of decision evaluation under multiple objectives include 

the outranking approach (Benayoun et al., 1966; Brans, 1982), often referred to as 

the French school of decision analysis. This approach is based on a search for out-

ranking relations deduced from a set of binary preference relations. However, these 

approaches do not incorporate the modelling of uncertainty in the probabilistic 

sense and thus do not capture the risk associated with different courses of action.  

Two major theoretical systems of thought underpin the computational founda-

tions of decision analysis, viz. von Neumann–Morgenstern’s (vNM) expected util-

ity theory and Keeney-Raiffa’s multi-attribute utility theory (KR), the latter devel-

oped at IIASA, the International Institute for Applied Systems Analysis, during 

Raiffa’s years as Director General 19721975. While both theories originate from 
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a similar rationalist tradition, they differ substantially in scope and structure. The 

vNM formulation is based on choices under uncertainty, where outcomes are lot-

teries over consequences. Preferences that satisfy completeness, transitivity, conti-

nuity, and independence axioms can be represented by a linear expected utility 

function: where is a lottery over outcomes with probabilities, and is a utility func-

tion defined over outcomes. The independence axiom is central: preferences over 

lotteries must not change if all options are mixed with a third lottery in the same 

proportions. 

KR generalises utility theory to deterministic multi-attribute decisions. It re-

places lotteries with multi-criteria score profiles and aims to construct utility func-

tions over combinations of attribute levels. The key axioms include: 

 Utility independence of attributes 

 Monotonicity in attributes 

 Decomposability (e.g., additive or multiplicative form) 

When these are satisfied, an additive utility function of the form can represent pref-

erences. Unlike vNM, KR allows the modelling of preferences without uncertainty, 

making it foundational for MCDA. While vNM and KR are often treated as distinct, 

they are best understood as kin since their mathematical representations of utility 

differ mainly in context and notation. Both frameworks seek to represent prefer-

ences via a utility function that is linear in the appropriate domain. vNM handles 

linear expectation over probabilistic outcomes while KR handles linear aggregation 

over deterministic attributes. The similarity lies in the additivity: in both cases, pref-

erences are consistent with a sum of utilities, weighted by either probabilities or 

attribute weights. Thus, the vNM expected utility function can be interpreted as a 

special case of a multi-attribute probabilistic utility function where the attributes 

are mutually exclusive outcomes governed by probability. 

In KR, this convergence becomes especially clear: the aggregate utility function 

in MAUT is the practical analogue of vNM’s expected utility formula, with proba-

bilities replaced by weights and outcomes replaced by criteria scores. This kinship 

underscores the deeper unity of decision theory: whether one is choosing under risk 
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or across multiple attributes, the rational structure of preferences, grounded in util-

ity, independence, and monotonicity, remains the same. The difference is whether 

uncertainty is external (vNM) or multi-dimensional (KR). 

To sum up, the main similarities are i) both systems rest on axiomatic represen-

tations of rational preference; ii) both aim to construct numerical representations 

that respect ordinal rankings; and iii) each incorporates separability and independ-

ence in different forms. While the main differences are i) vNM requires probabilis-

tic lotteries; MAUT does not; ii) vNM utility is cardinal (up to affine transfor-

mations); MAUT utility is typically interval or ordinal depending on scale assump-

tions; and iii) MAUT accommodates trade-offs between attributes; vNM captures 

risk attitude. 

In Part II, we will discuss some popular MCDA methods and check whether they 

comply with core fundamentals of mathematical statistics, decision theory and anal-

ysis. If not, they are unfortunately over-engineered and must be either reformulated 

to be used as proper decision analysis frameworks or disregarded as theoretically 

motivated tools and methods. To properly discuss them, we introduce ten desiderata 

that are derived from vNM, KR, and the general theory of multi-attribute utility. 

Desideratum 1 (Ordering): The preference relation is complete and transitive. For 

all A and B, either A ≻ B, B ≻ A, or A ∼ B. If A ≻ B and B ≻ C, then B ≻ C. vNM 

assumes completeness and transitivity as axiomatic to ensure coherent prefer-

ences. KR carries these over to deterministic multi-attribute models. 

Desideratum 2 (Dominance): If for all i, si(A) ≥ si(B) and for some i, si(A) > si(B) 

then A ≻ B. Strong dominance is compatible with both vNM and KR. It ensures 

that if one alternative is objectively better, it must be preferred. 

Desideratum 3 (Monotonicity): If A ≻ B, and A' is such that si(A) ≥ si(A') for all i 

(with strict inequality for at least one i), then A' ≻ B. A standard assumption in 

both vNM and general MAUT. In KR, this corresponds to increasing value func-

tions: improving an attribute must not worsen utility. 

Desideratum 4 (Independence of Irrelevant Alternatives, IIA): If A ≻ B in set X, 

and C ∉ {A, B}, then A ≻ B in X ∪ C. Follows from vNM’s independence axiom 

(in its strong form). KR reinterprets it in terms of trade-off consistency: adding an 

irrelevant alternative should not affect preference ordering. 
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Desideratum 5 (Score Independence): The preference between A and B depends 

only on the vector of scores {s1(A) , …, sn(A)} and {s1(B) , …, sn(B)}. It does not 

depend on the scores of other alternatives in X \ {A, B}. This follows directly 

from utility independence and separability in KR. It ensures that preferences are 

not context-sensitive to unrelated alternatives. 

Desideratum 6 (Criteria Transparency): For any preference A ≻ B, there exists a 

representable and decomposable justification based on the contribution of each 

criterion to the total evaluation. This follows from KR’s value function decompo-

sition principle. It ensures additive or multiplicative representations are intelligi-

ble and traceable to criterion-level contributions. 

Desideratum 7 (Weight Sensitivity): Let wi ∈ [0, 1] be weights summing to 1. A 

change in wi that increases the influence of criterion Ci in which si(A) ≥ si(B) 

should not reduce A’s preference over B. This follows from sensitivity analyses in 

MAUT and reflects the principle that weights encode preference intensities and 

must affect final utility accordingly. 

Desideratum 8 (Criteria Independence): If criteria Ci and Cj produce identical 

scores for all alternatives, then swapping or merging them is permissible only if 

the weight structure is adjusted accordingly. Related to the independence of attrib-

utes in MAUT: duplication of identical attributes without adjusting weights vio-

lates utility independence and will overstate their importance. 

Desideratum 9 (Scale Invariance): For any criterion Ci, if a monotonic transfor-

mation f : ℝ → ℝ is applied to all si(∙), then preferences remain unchanged. In 

both vNM and MAUT, utility functions are ordinal up to a monotonic transfor-

mation. As long as the transformation preserves order, preferences must remain 

stable. 

Desideratum 10 (Rank Preservation under Deletion): If A ≻ B in X, and C is a 

third alternative not affecting the scores of A or B, then removing C does not alter 

the ranking A ≻ B. Follows up on Desideratum 4 and stability assumptions. In ad-

ditive utility models, preferences among pairs are unaffected by alternatives with 

no impact on the value functions of the focal options. 

These ten desiderata form a requirements system called DAMS (Decision-Ana-

lytic Methodologic System) which guarantees well-behaving and well-functioning 
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MCDA methods if the ten are all adhered to. From these ten desiderata, some con-

sequences follow: 

Proposition 1 (Utility Representability): If DAMS Desiderata 1–7 are accepted, 

then there exists a utility function U : X → ℝ, representable as a weighted additive 

model 

𝑈(𝐴) =  ∑ 𝑤𝑖

𝑛

𝑖=1
∙ 𝑣𝑖(𝑠𝑖(𝐴)) 

where each vi  is a continuous, increasing value function and wi ≥ 0 with wi = 1. 

This follows from classical multi-attribute utility theory in the deterministic case. 

The axioms ensure the separability, monotonicity, and decomposability needed for 

an additive representation. 

Proposition 2 (Rank Reversal Exclusion): If DAMS Desiderata 4, 5, and 10 are 

accepted, then the decision method is immune to rank reversal caused by irrelevant 

alternatives. 

Desideratum 4 ensures rankings are stable under expansion of the alternative set, 

Desideratum 5 ensures no dependence on unrelated scores, and Desideratum 10 

maintains ranking under deletion. Together they exclude the structural basis for 

rank reversal which plagues some currently popular MCDA methods. 

Proposition 3 (Weight Responsiveness): If DAMS Desiderata 6 and 7 are accepted, 

then rankings will adjust appropriately under changes in criterion weights, without 

violating transitivity or dominance. 

These three propositions together define a class of prescriptively robust MCDA 

methods that are logically sound, preference-sensitive, and transparent. Violations 

of these desiderata entail logical or interpretive compromises of different kinds. 

There is an eleventh desideratum as well. However, it is concerned with the un-

derstanding of the underlying process elements rather than the internal consistency 

of the calculation steps.  

Desideratum 11 (Explanatory transparency): It must be possible for the users to 

make and maintain a requisite mental model of the analytic process as a whole, in-

cluding but not limited to the calculation steps. In this book, however, the concern 

is with the computational steps of the process, which should be possible to under-

stand on a conceptual level, yielding auditability and replicability. 
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This last desideratum is sometimes not understood by designers of methods. 

They test their methods on decision problems, some real-life and some artificial, 

and observe the steps unfolding, Usually, the process is facilitated by a designer or 

an expert, which makes the users not question the traceability of the output from 

the input, often relying on the expertise of the facilitator. If MCDA methods are to 

become widespread, however, there is a need for transparency in unguided sessions 

to build trust in the output results. Desideratum 11 is different from 6 despite shar-

ing the word ‘transparent’.  

While the desiderata are formulated to be conceptually independent, some ex-

hibit logical or functional overlap under classic utility theory assumptions. The fol-

lowing discussion considers potential overlaps and candidates for a possible re-

duced minimalist core. 

DAMS Desiderata 1 (Ordering), 2 (Dominance), 3 (Monotonicity), and 5 (Score 

Independence) form a foundational core. These suffice to guarantee transitive, ra-

tional preferences that respect utility dominance and maintain independence from 

unrelated alternatives. 

Desideratum 10 (Rank Preservation under Deletion) can be viewed as a corollary 

of Desiderata 4 (IIA) and 5 (Score Independence). If preferences are independent 

of irrelevant alternatives and based solely on score vectors, the deletion of an irrel-

evant third option should not affect pairwise comparisons. Desideratum 8 (Criteria 

Independence) implicitly relies on Desideratum 6 (Criteria Transparency) and De-

sideratum 7 (Weight Sensitivity). If a method transparently reflects weight changes 

and scores, duplication or merging of criteria without corresponding weight adjust-

ments violates score attribution logic. 

Desiderata 6 (Transparency) and 7 (Weight Sensitivity) are not strictly necessary 

but conceptually desirable since they ensure interpretability. Desideratum 9 (Scale 

Invariance) stands largely independent from the others but supports robustness un-

der unit changes. It is justified on theoretical rather than logical grounds and could 

be omitted if all inputs are pre-normalised or internally transformed. However, they 

aid in the understanding of what should be required from a modern MCDA method. 
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To sum up, a minimal core could consist of Desiderata 1–3 and 5. The remaining 

ones either reinforce practical robustness (4, 6, 7, 9) or follow logically under stand-

ard assumptions (8, 10). However, for pedagogical reasons as well as argument’s 

sake, all ten are kept in the DAMS system as beacons in the ensuing discussions of 

MCDA methods. 

As will be shown in the sequel, most MCDA methods depart in several ways 

from DAMS. Specifically, they fail to deliver decomposable, monotonic, and util-

ity-independent representations. They do not support consistent trade-off interpre-

tation at the attribute level. These methods offer practical tools but lack coherence. 

As a case in point, take rank reversal, the phenomenon where the introduction or 

removal of irrelevant alternatives alters the ranking of existing ones. It serves as a 

powerful litmus test for compliance with the desiderata. 

In line with the desiderata, preferences are supposed to be constructed to be in-

variant under irrelevant changes. This is encoded in Independence of Irrelevant Al-

ternatives (IIA), separability, and utility independence. Rank reversal directly vio-

lates these principles. Thus, any method that admits rank reversal is, by definition, 

out of alignment with the desiderata as well as the core of classical utility theory. 

Moreover, rank reversal highlights violations of Score Independence (Desidera-

tum 5) and Rank Preservation (Desideratum 10), which are direct consequences of 

utility separability. In practice, a method that allows rank reversal is one in which 

utility is not decomposable or context-stable, which is an immediate red flag for 

any utility-theoretic foundation. 

This makes rank reversal more than a nuisance. It is a diagnostic signal of repre-

sentational failure. It flags methods that do not preserve rationality across varying 

contexts and undermines the claim that such methods are decision-theoretically 

grounded. Accordingly, testing for rank reversal should be a litmus test in evaluat-

ing any MCDA method’s compliance with sound decision-theoretic principles. 

Rank reversal is not a minor technical flaw – it is a symptom of a deeper incompat-

ibility with core desiderata. As such, it remains an accessible and informative indi-

cator of a method’s performative adequacy since methods exhibiting such reversals 

fail to satisfy decomposability, independence, and context-invariance, making rank 

reversal not only observable but also diagnostic. 
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The DAMS framework with ten desiderata will be employed to evaluate six dif-

ferent well-known MCDA methods: SMART (representing the SAW class of meth-

ods evaluating the alternatives using a sum-of-weighted-values approach), VIKOR, 

TOPSIS, ÉLECTRE, PROMÉTHÉE and AHP. These methods were selected be-

cause of their spread and reach. The observed patterns of usage and citations sug-

gest that method popularity often reflects branding success rather than demonstra-

ble methodological superiority. The prominence of certain techniques appears to be 

driven less by empirical performance and more by factors such as catchy acronyms, 

compelling narratives, and academic network effects. Additionally, being early to 

the methods scene has played a significant role, allowing some methods to establish 

a dominant position before competing approaches emerged, further reinforced by 

snowballing citation effects. In classic marketing theory, users are locked in to a 

product or a service by branding and terminology, creating a mental barrier to 

switching contexts. The proliferation of MCDA methods resembles a form of im-

plicit marketing, where name recognition and institutional affiliation influence up-

take, often independently of rigorous comparative validations or theoretical coher-

ence, circumstances one could wish academia were mainly devoid of. 
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07. SMART 

The SMART family of methods originated in the context of decision making under 

multiple criteria, drawing inspiration from early multi-attribute utility theory and 

the desire to provide a structured yet relatively simple approach to decision making. 

The Simple Multi-Attribute Rating Technique (SMART) was developed by Ed-

wards (1977) as a tool for decision-makers to evaluate alternatives based on multi-

ple attributes or criteria. SMART was conceived as a practical method to facilitate 

decisions in complex environments without requiring overly sophisticated model-

ling of preferences or trade-offs. Edwards’ motivation was to provide a method that 

was simple enough for non-experts to use while still retaining the essential elements 

of decision theory. 

The SMART (Simple Multi-Attribute Rating Technique) family of methods con-

stitutes a group of approaches developed within the field of multi-criteria decision 

analysis (MCDA) for the evaluation and ranking of alternatives characterised by 

multiple attributes. Originating in the early 1970s, SMART was introduced by Ed-

wards as a response to the perceived complexity and limited practical usability of 

existing MCDA methods, particularly those requiring full elicitation of utility func-

tions or cardinal preference structures. The core idea behind SMART was to pro-

vide a simpler, more intuitive framework for supporting decision making by relying 

on additive models and direct rating procedures. 

At its inception, SMART proposed that decision-makers assign a weight to each 

criterion, reflecting its relative importance, and then rate each alternative with re-

spect to each criterion on a typically numerical and bounded scale. These ratings 

are then aggregated via a weighted linear sum to yield an overall score for each 

alternative. The attractiveness of SMART lay in its procedural simplicity: it as-

sumed mutual preferential independence of criteria and linearity of value functions, 

which allowed for direct and transparent computations of aggregated scores. 

In subsequent decades, SMART evolved into a family of related methods, each 

designed to address specific theoretical or practical issues that emerged during its 

application. One such extension is SMARTS (SMART with Swing weights), which 

refines the weight elicitation process. Instead of assigning importance weights di-

rectly, SMARTS asks decision-makers to assess the value difference between the 
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worst and best levels of each criterion, given that all others are fixed at their worst 

levels. This “swing” approach provides more meaningful relative weightings by 

anchoring them in the perceived impact of changes across the criteria range. 

A further extension is SMARTER (SMART Exploiting Ranks), which attempts 

to reduce the cognitive burden of precise weight elicitation. Instead of assigning 

numerical weights, SMARTER relies on ordinal rankings of criteria importance and 

employs statistical techniques, most notably rank-order centroid (ROC) weighting, 

to derive approximate cardinal weights from the rankings. This approach trades off 

some theoretical rigour for increased ease of use and has been studied as a practical 

compromise in settings with limited time or cognitive resources. 

Other variants and refinements include methods that relax the assumption of lin-

ear value functions or incorporate uncertainty in the weights and performance rat-

ings. For example, probabilistic versions of SMART have been proposed that model 

ratings or weights as distributions rather than fixed quantities, allowing sensitivity 

analyses and robustness assessments within the SMART framework. Hybridisa-

tions with other MCDA techniques, such as the Analytic Hierarchy Process (AHP), 

have also been developed, particularly in contexts where qualitative criteria are pre-

sent or when pairwise comparison techniques are deemed preferable for elicitation. 

Overall, the SMART family of methods reflects an ongoing trajectory within 

MCDA to balance normative soundness with practical applicability. Its various 

forms (SMART, SMARTS, SMARTER, and others) share a common structure 

rooted in additive value models but diverge in their assumptions, elicitation proce-

dures, and treatment of uncertainty. The evolution of SMART methods has been 

closely tied to developments in decision analysis, cognitive psychology, and ap-

plied statistics, reflecting broader methodological trends in decision support system 

design. 

The SMART methods are built on a set of relatively simple computational rules 

that require the decision-maker to perform the following steps: first, the decision-

maker lists the criteria relevant to the decision problem. Then, each criterion is as-

signed a weight representing its relative importance in the decision-making process. 

The weights are typically normalised so that they sum to one. Next, each alternative 

is evaluated on each criterion, usually on a numerical scale, such as 1 to 10, with 

the scale representing the performance of the alternative relative to the others. 
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The final step in SMART involves computing a weighted sum of the scores for 

each alternative. The alternative with the highest weighted sum is typically chosen 

as the preferred option. Mathematically, the decision rule in SMART can be ex-

pressed as follows: 

 

where 𝑆𝑖 is the overall score for alternative i, 𝑤𝑗 is the weight for criterion j, 𝑥𝑖𝑗 is 

the performance score of alternative i on criterion j, and m is the number of criteria. 

This weighted sum approach ensures that the decision-maker’s preferences for each 

criterion are reflected in the final decision, and the process is computationally effi-

cient. 

In response to the limitations of the original SMART method, the SMARTER 

(SMART Extended) method was developed by von Neumann et al. (1981) to handle 

more complex decision making scenarios. The primary aim of SMARTER was to 

provide a more flexible framework that could accommodate interactions between 

criteria and handle more sophisticated preferences. 

The SMARTER method retains the basic structure of SMART while it allows 

for the inclusion of non-linear relationships between criteria and their respective 

weights. While SMART relies on a linear aggregation of scores, SMARTER in-

cludes the possibility of applying non-linear functions to the scores of alternatives, 

which allows the method to better reflect the diminishing returns that might be en-

countered in real-world decision making situations. This extension of the SMART 

framework makes it better suited to situations where the decision-maker’s prefer-

ences are not perfectly linear and where the marginal utility of improving perfor-

mance on a criterion may decrease as performance improves. 

SMARTER also allows for greater flexibility in handling interdependencies be-

tween criteria. In complex decision problems, it is often the case that the perfor-

mance of an alternative on one criterion can affect its performance on another. For 

example, in an environmental decision making context, improving the economic 

efficiency of a project may negatively impact its environmental sustainability. 

SMARTER provides a mechanism for modelling such trade-offs between criteria, 
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often through the use of more sophisticated utility functions or through pairwise 

comparisons of criteria that capture their relative importance and interdependen-

cies. The increased flexibility of SMARTER also introduces additional complexity. 

The method requires more detailed input from decision-makers, including the spec-

ification of non-linear functions and interdependencies between criteria. This can 

increase the time and effort required to implement SMARTER and may limit its 

accessibility to decision-makers without strong analytical backgrounds. 

SMART in its basic form complies with the desiderata of DAMS, not least by its 

additive structure, monotonicity, and transparency. Scores and weights are trans-

parent, independence and dominance are preserved, and rank stability is guaranteed. 

It is sometimes argued that it struggles with Desideratum 8 (Criteria Independence) 

in that duplicating a criterion inflates its influence. This is a misunderstanding, 

though, since additive methods must always adjust their weights when the criteria 

set changes. As for the rank reversal litmus test, methods like SMART never display 

such behaviour. 
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08. VIKOR 

VIKOR is a method developed in the late 1970s by Duckstein and Opricovic (1980) 

and further disseminated in academic literature during the 1980s and 1990s. It was 

designed as a method for ranking and selecting alternatives in the presence of con-

flicting criteria, based on the concept of compromise programming and the use of 

an aggregating function that incorporates individual regret and group utility. 

The development of VIKOR emerged from earlier work in multi-objective opti-

misation and compromise solutions. Its formulation is mathematically related to a 

metric used in compromise programming, where the distance of each alternative to 

an ideal solution is computed. However, unlike traditional compromise program-

ming which uses a parametric family of distance functions, VIKOR applies a dis-

crete compromise approach involving a specific form of aggregating function that 

balances the majority utility (group benefit) and the individual regret (worst perfor-

mance). The basic VIKOR method uses two measures: the S measure (representing 

the aggregated group utility) and the R measure (representing the maximum indi-

vidual regret). These are then combined into a single ranking index Q using an ex-

ternal parameter v. 

The computational procedure of VIKOR involves the identification of the best 

and worst values for each criterion among all alternatives (known as the ideal and 

anti-ideal solutions), normalisation of the performance matrix to make criteria com-

parable, and the calculation of the S, R, and Q values for each alternative. The al-

ternatives are then ranked according to these values. A compromise solution is pro-

posed based on the ranking of the Q values, subject to certain acceptability condi-

tions that involve both rank consistency and a threshold for closeness between top-

ranked alternatives. 

The first step in VIKOR is the identification of the decision criteria and alterna-

tives. The decision-maker must define the relevant criteria for evaluation, which 

can be both quantitative and qualitative, and select the set of alternatives that will 

be assessed. The next step involves the construction of a decision matrix, where the 

rows represent the alternatives, the columns represent the criteria, and the entries in 

the matrix correspond to the performance of each alternative under each criterion. 
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After that, the actual MCDA process begins, and ideal and regret solutions are de-

termined. The ideal solution is obtained by selecting the best performance for each 

criterion across all alternatives, while the regret solution is obtained by selecting 

the worst component for each criterion. These solutions serve as benchmarks for 

evaluating the alternatives. 

The next step is the calculation of the distance of each alternative from the ideal 

and solution and the amount of regret selecting each alternative would incur. 

Once the distances from the ideal solution (S) and the regret (R) are calculated, 

the method computes a compromise index (Q) for each alternative. This index rep-

resents the degree to which an alternative offers a balance between proximity to the 

ideal solution and regret. The index is calculated by combining the distance from 

the ideal solution and the regret, weighted by the relative importance of each metric. 

The final step involves ranking the alternatives based on the three metrics. 

The calculation details are as follows. Assume there are n alternatives (denoted 

𝐴1, 𝐴2, … , 𝐴𝑛) and m criteria (denoted as 𝐶1, 𝐶2, … , 𝐶𝑚) used to evaluate each alter-

native. The values for each alternative and criterion are typically represented in a 

matrix X, where each element 𝑥𝑖𝑗 represents the performance of alternative 𝐴𝑖 with 

respect to criterion 𝐶𝑗. 

The values in matrix X are then normalised in order to transform them into a 

comparable scale. The normalisation function depends on whether the criterion is 

beneficial or non-beneficial. For beneficial criteria, the normalisation formula is 

 

while for non-beneficial criteria, it is 

  

where 𝑥𝑚𝑎𝑥,𝑗and 𝑥𝑚𝑖𝑛,𝑗are the maximum and minimum values in the j-th criterion 

across all alternatives. Thus, this is a standard normalisation where the best alterna-

tive in each criterion receives the value 1 and the worst 0. This can be interpreted 

as the one-dimensional closeness to the best outcome. 

The ideal solution 𝐴+ is then defined as the best performance for all criteria: 
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where 𝑦max,𝑗 are the maximum values for each normalised criterion j. For each al-

ternative 𝐴𝑖, the total distance to the ideal solution is then calculated using the fol-

lowing reversed formula: 

 

rather than a more traditional standard formula 

 

where 𝑤𝑗 represents the weight of the j-th criterion. Thus, the normalised scores are 

now reversed and reinterpreted as the multi-dimensional closeness to the worst out-

come instead. Next, the regret is computed by the formula 

 
with the same meaning of its constituents as above. The regret for an alternative in 

this method is the worst weighted value of any of the constituent criteria.  

Finally, the compromise index 𝑄𝑖 combines the two measures 𝑆𝑖 and 𝑅𝑖 using an 

external factor v. The formula for the index is 

 

where 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are the minimum and maximum values of 𝑆𝑖 across all alter-

natives, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are the minimum and maximum values of 𝑅𝑖 across all 

alternatives, and 𝑣 is an external factor that represents the relative importance of 

the majority of criteria. For v = 1 and also completely disregarding the ranking 

based on 𝑅𝑖, VIKOR is a reversed additive utility model since the 𝑆𝑖 and 𝑄𝑖 rankings 

coincide, but for any other value of v, it is not. Somewhat surprisingly, the standard 

accounts of the method do not seem to require 0  v  1, which opens up even 

stranger possibilities. This calculation procedure yields three ranking orders of the 
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alternatives based on their performances 𝑆𝑖, 𝑅𝑖 and 𝑄𝑖. A complex set of rules de-

termine which of the rankings take precedence, with the 𝑄𝑖-ranking being the pri-

mary to consider first.  

To sum up, the calculations of the VIKOR method involves normalisation, de-

termination of ideal and regret solutions, distance measures, and the final calcula-

tion of closeness coefficients to rank the alternatives. The beneficial and adverse 

criteria scales are just standard and reversed scales, respectively. The ideal solution 

is the best synthetic alternative, i.e. it does not exist in reality. Such alternatives are 

themselves, in swing-type methods, tools for elicitation rather than calculation de-

vices. However, in VIKOR they are bases for distance calculations. 

For a simple example, consider pre-normalised values 𝑦𝑖𝑗, i.e. their ranges are 

[0, 1]. Then A+ becomes the vector (1, 1, 1, …) and all 𝑆𝑗 become 𝑖[𝑤𝑖 ∙ (1𝑦𝑖𝑗)], 

i.e. a reversed weighted sum, where lower values represent better alternatives. This 

is a linear operation on an additive scale. Next, three measures are calculated for 

each alternative, of which 𝑆𝑗 mostly resembles a standard MCDA measure. How-

ever, as pointed out, with a reversed scale where lower numbers are better, a meas-

ure of distance from the synthetic optimal alternative. Still, this is in line with 

DAMS since all operators are linear and thus there exists a 11 transformation. The 

other two measures involve a max operator, which is not linear and these measures 

lack the foundational validity of 𝑆𝑖.  

The S and R rankings, together with a linear combination Q of S and R, which 

does not add any information except an exogenous factor v, are a basis for a com-

promise procedure, although it can be unclear why a compromise is required, how 

that need is expressed in any computable form, and how that form can be validated. 

While the calculations are easy to follow for the mathematically inclined, they lack 

the transparency of Desideratum 11.  

Further, VIKOR departs from DAMS Desiderata 2, 3, 4, and 5. It ranks alterna-

tives based on regret measures in addition to strict dominance or monotonic utility. 

Its results depend on the full set of alternatives and the definition of ideal/worst 

points, violating independence. The method lacks decomposability and transpar-

ency (Desideratum 6), further undermining its normative robustness. 
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The use of compromise ranking regret measures similarly deviates from standard 

MAUT. Its aggregation formula includes a balance parameter, which lacks a clear 

normative grounding in utility theory. It fails decomposability and is sensitive to 

dataset composition, violating utility independence. While it introduces trade-off 

modelling in spirit, it lacks the mathematical axioms needed for rational trade-off 

representation. The use of compromise programming makes it structurally prone to 

rank reversal when the ‘best’ or ‘worst’ alternatives change upon set modification. 

It violates IIA, Score Independence, and Rank Preservation (Desideratum 10) by 

design. 
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09. TOPSIS 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a 

method developed by Hwang and Yoon (1981). It was introduced in the book Mul-

tiple Attribute Decision Making: Methods and Applications and was intended to 

identify solutions that simultaneously have the shortest geometric distance from an 

ideal solution and the farthest distance from a nadir (anti-ideal) solution. The eval-

uation principle of TOPSIS is that the optimal alternative should be the closest to 

the positive (ideal) solution (PIS) and the farthest from the negative (anti-ideal) 

solution (NIS) in a multi-dimensional attribute space. 

The method operates, as is common, on a decision matrix consisting of a finite 

set of alternatives and a set of evaluation criteria, which are assumed to be of either 

benefit-type (where higher values are preferred) or cost-type (where lower values 

are preferred). The process begins with the normalisation of the decision matrix to 

eliminate the differing scales across criteria. After normalisation, the values are 

multiplied by the corresponding criterion weights, which reflect the relative im-

portance of each criterion. 

Once the weighted normalised matrix is formed, the PIS and NIS are determined. 

The PIS comprises the best values for each criterion (maximum for benefit-type, 

minimum for cost-type), and the NIS comprises the worst values. The Euclidean 

distance of each alternative from both the PIS and the NIS is then calculated. These 

distances are used to compute a closeness coefficient for each alternative, defined 

as the ratio of the distance to the NIS over the sum of distances to the PIS and NIS. 

The alternatives are ranked based on these coefficients, with higher values indicat-

ing greater proximity to the ideal solution.  

The evaluation principle of TOPSIS stems from the concept of distance meas-

urement. Distance functions provide a way of comparing alternatives by quantify-

ing the deviation of each alternative from an ideal solution. In decision analysis, 

this type of approach is not uncommon in some MCDA methods, where the ideal 

solution represents the optimal choice across all criteria, and the anti-ideal solution 

represents the worst possible outcome. These two solutions form a bounded space 

within which the method operates, and all alternatives are measured relative to these 

bounds. The choice of a Euclidean distance is, however, controversial. 
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In more detail, the first step, after forming the traditional two-dimensional matric 

of alternatives and criteria, is to transform the decision input so that the data for 

each criterion is dimensionless and can be compared. The transformed value 𝑟𝑖𝑗 for 

each utility is calculated as: 

 

where 𝑥𝑖𝑗 is the original utility of alternative 𝐴𝑖 with respect to criterion 𝐶𝑗. By 

squaring (𝑟𝑖𝑗
2), it is easy to see that all 𝑥𝑖𝑗

2  /  𝑥𝑖𝑗
2  always fall within a [0, 1] scale but 

without spanning the scale as a standard normalisation does. Thus, this RMS-rescal-

ing (root-mean-square), which is a cornerstone operation in statistics but not in de-

cision analysis, is not the same as standard normalisation.  

Each criterion has an associated number 𝑤𝑗 representing the relative importance 

of criterion 𝐶𝑗. However, these numbers are not MCDA weights. Such weights are 

trade-off factors between spanned [0,1] scales. Since TOPSIS scales are not 

spanned, the numbers called 𝑤𝑗 are not pure weights but a mixture of weights and 

scaling factors. The fundamental requirement that the weights are trade-off factors 

between equal scales is not met. The transformed values 𝑣𝑖𝑗 are computed as 

 

The ideal and anti-ideal solutions are then determined by considering the best and 

worst values for each criterion. The ideal solution 𝐴+ is the set of values for which 

each criterion has the best value (for beneficial criteria) or the worst one (for non-

beneficial criteria). 

 

where 𝑣𝑚𝑎𝑥,𝑗 = max(𝑣𝑖𝑗) for beneficial criteria and min(𝑣𝑖𝑗) else. Conversely for 

the anti-ideal solution 𝐴 

 

If the components of the 𝐴+ and 𝐴 vectors had been properly normalised, they 

would have been similar to anchor points in a standard swing process. The next step 

is to compute the Euclidean distance between each alternative and the ideal (𝑆𝑖
+) 
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and anti-ideal (𝑆𝑖
) solutions. They are the RMS (root-mean-square) distances to the 

vectors of the best and worst solutions calculated by 

 

and 

 

respectively. The larger the value of 𝑆𝑖
+ (𝑆𝑖

−), the farther the alternative is from the 

(anti-)ideal solution. Given these two opposite measures, another ranking of the 

alternatives is made using the combined measure 

 

The alternatives are ranked in decreasing order of 𝐶𝑖 with the alternative having the 

highest 𝐶𝑖 being the most preferred since it is closest to the ideal solution. 

As seen above, the transformation of the utilities 𝑣𝑖𝑗 into the calculation values 

𝑟𝑖𝑗 is an RMS (root-mean-square, i.e. non-linear) operation. Thus, a linear relation-

ship between 𝑣𝑖𝑗 and 𝑟𝑖𝑗 is lost even before weighing the values. The weighing 

comes next, which is a linear operator and does not distort the calculations further. 

After weighing the transformed values, each alternative’s distance to the best (ideal) 

and worst (anti-ideal) possible (but usually non-existent) values are calculated. Alt-

hough the criteria have weights that sum to one in a standard (linear) way, this dis-

tance is not the (linear) sum of each of the criteria’s distances. Instead, it is the 

metric (Euclidean) distance between the two points in a metric polytope. This is 

clearly not according to the DAMS desiderata and not in alignment with the nature 

of the input data. Consider an alternative that is α units away from the fictive opti-

mal solution 𝐴+ in criterion s and also α units away from 𝐴+ in criterion t. Since 

the criteria scales have been weighted (normalised), a unit in either criterion has the 

same influence on the end result – that is the meaning of scale normalisation by 

weights. Thus, the alternative would need an improvement of α + α = 2α units to 
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become equal to 𝐴+. But TOPSIS would consider the required improvement to be 

√2 which is clearly wrong. The distance in a weight space is measured by a city 

block (or Manhattan) measure, not a Euclidean one. To realise the problem with the 

TOPSIS calculation method, assume wlog that the input data is on a [0, 1] format, 

i.e. the worst alternative for each criterion has the value 0 and the best has the value 

1. Then 𝐴+ becomes {𝑤1,  𝑤2} and 𝐴− becomes {0, 0} given a weight vector 

(𝑤1,  𝑤2) where 𝑤1 + 𝑤2 =  1 as usual. For the scale space to be invariant under 

traversal, every path from 𝐴− to 𝐴+ must have the same length and be equal to 1. 

This is clearly not the case in TOPSIS which assigns the length √(𝑤1
2 + 𝑤2

2) to the 

traversal while DAMS, requiring a city block metric, will have 1 for every conceiv-

able traversal. 

To assess the real-world effects of TOPSIS’ deviation from the DAMS model, 

the author has performed a Monte Carlo simulation of 30∙106 rounds comparing the 

ranking order of a standard DAMS formulation and TOPSIS for a decision situation 

with 5 alternatives under 4 criteria. In about 7374% of the rounds, the ranking was 

the same. In more than 4% of the rounds, at least one alternative had a ranking that 

differed by two positions or more from SDA. Given the small decision situation 

with only 5 alternatives, that is a lot. Thus, in more than ¼ of the cases, TOPSIS’ 

results differ from the linearity-based standard DAMS model.  

To continue, TOPSIS violates several of the desiderata in DAMS. It fails Desid-

eratum 2 (Dominance) since alternatives closer to the ideal can be outranked. It 

violates Desiderata 4 and 10 due to reliance on dataset-dependent reference points, 

causing rank reversal. It also violates Desideratum 5 (Score Independence), as rank-

ings depend on the presence of other alternatives. While transparent in its formula-

tion, its foundation lacks utility representability. 

TOPSIS ranks alternatives by their distance from an ideal and anti-ideal solution. 

While intuitive, this method violates utility decomposability since the reference 

points are dataset-dependent rather than criterion-level constructs. The presence of 

context-sensitive anchors introduces violations of utility independence. Moreover, 

score transformation is not monotonic in all cases, especially under min-max nor-

malisation. These features depart from MAUT’s normative framework. 
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Let alternatives A and B be evaluated based on two criteria. A is closer to the 

ideal solution than B. Introducing a third alternative C, with extreme values in one 

criterion, shifts the position of the ideal point. Now, A appears farther and B closer 

to the new reference, potentially reversing their ranks. This clearly breaks Desider-

ata 4 and 10 (Rank Preservation), showing that preferences depend on context rather 

than intrinsic performance. 

To sum up, adding or removing alternatives shifts the reference points, violating 

IIA (Desideratum 4) and Score Independence (Desideratum 5). Rankings can 

change even if the added alternative is irrelevant, manifesting classic rank reversal. 
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10. ÉLECTRE 

ÉLECTRE (ÉLimination Et Choix Traduisant la REalité) is a family of methods 

developed in France during the mid-1960s by Benayoun and colleagues at Société 

d’Économie et de Mathématiques Appliquées (Benayoun et al., 1966; Benayoun 

and Sussmann, 1966). The method was originally designed to support decision 

making in complex situations where preferences may be non-compensatory and 

where full ranking of alternatives is not always appropriate or feasible. An idea of 

ÉLECTRE is to construct an outranking relation based on concordance and discord-

ance between pairs of alternatives evaluated over multiple criteria. 

The first version, ÉLECTRE I, was introduced in 1966. It was designed for the 

problem of choosing a subset of alternatives rather than producing a full ranking. 

The method operates by constructing an outranking relation, denoted as “a outranks 

b,” when there is sufficient evidence that alternative a is at least as good as alterna-

tive b. This is determined using two indices: the agreement (concordance) index 

and the disagreement (discordance) index. The concordance index measures the de-

gree to which the majority of criteria support the statement that a is at least as good 

as b, taking into account criteria weights. The discordance index captures the extent 

to which any criterion strongly contradicts this statement. An outranking is estab-

lished if the concordance is high enough and discordance is not too strong. 

ÉLECTRE II, introduced shortly after ÉLECTRE I, was designed for ranking 

problems and introduced the concepts of strong and weak outranking relations to 

reflect varying levels of support for preference statements. It uses different thresh-

olds for concordance and discordance and introduces procedures for partial and 

complete pre-orders based on these relations (Roy, 1991). 

ÉLECTRE III, developed in the 1970s and formalised in the early 1980s, intro-

duced pseudo-criteria and the use of indifference, preference, and veto thresholds. 

ÉLECTRE IV further developed the approach for cases where criteria weights are 

not available. It uses ordinal information only, relying on the ranking of criteria and 

performance without requiring numerical weights. ÉLECTRE IS is a later adapta-

tion of ÉLECTRE I for use in decision support software systems, integrating tech-

nical refinements and improved routines. ÉLECTRE TRI, introduced in the early 

1990s, shifts the focus from ranking or choosing among alternatives to sorting them 
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into predefined categories. ÉLECTRE TRI has been further developed into ÉLEC-

TRE TRI-B and ÉLECTRE TRI-C, each differing in the treatment of assignment 

rules and model structure. 

The ÉLECTRE family of methods follows a systematic series of steps to derive 

the preferred alternatives. The first step in any ÉLECTRE application is the con-

struction of a decision matrix. This matrix typically consists of rows corresponding 

to the alternatives and columns corresponding to the criteria. The decision-maker 

populates the matrix by providing performance values for each alternative with re-

spect to each criterion. Once the matrix is established, ÉLECTRE proceeds by de-

fining preference thresholds for each criterion. These thresholds are critical to the 

method’s operation as they help to determine how differences in performance be-

tween alternatives will be perceived. Typically, there are two thresholds for each 

criterion: 

1. Indifference Threshold: This threshold specifies the range within which the 

difference in performance between two alternatives is so small that it does not 

affect the ranking. If the difference in performance between two alternatives 

on a given criterion is less than this threshold, the alternatives are considered 

indifferent to each other for that criterion. 

2. Preference Threshold: This threshold defines the minimum performance dif-

ference required for one alternative to be considered preferred over another 

for a given criterion. If the difference in performance between two alterna-

tives exceeds this threshold, one alternative is considered preferred over the 

other for that criterion. 

In addition to these two thresholds, ÉLECTRE also uses a veto threshold, which is 

applied when an alternative is deemed completely unacceptable based on a critical 

criterion, regardless of its performance on other criteria. The veto threshold ensures 

that the decision-maker’s priorities are respected, preventing alternatives that fall 

below a certain level of performance on essential criteria from being considered at 

all, even if they perform better on other criteria. 

Once the thresholds are established, ÉLECTRE proceeds with the pairwise com-

parison of alternatives. For each pair of alternatives, the method evaluates whether 

one alternative outranks the other. The outranking relationship is determined by 
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comparing the alternatives with respect to each criterion and assessing whether the 

difference in performance exceeds the appropriate preference or indifference 

thresholds. If the difference in performance is larger than the preference threshold, 

the alternative is considered preferred; if it is smaller than the indifference thresh-

old, the alternatives are considered indifferent; and if the difference is larger than 

the veto threshold, the alternative is deemed outranked. 

The results of these pairwise comparisons are summarised in an outranking ma-

trix, where each entry reflects the degree to which one alternative outranks another 

across all criteria. The outranking matrix forms the basis for constructing the pref-

erence structure, which organises alternatives into groups or sets based on their rel-

ative performance. This ranking is partial rather than complete, as some alternatives 

may not be ranked in a strict order. 

The final decision making step in ÉLECTRE involves applying a series of con-

cordance and discordance indices to further refine the rankings. The concordance 

index quantifies the degree of agreement between alternatives in terms of the num-

ber of criteria where one alternative is preferred over the other. In contrast, the dis-

cordance index measures the extent to which an alternative is disfavoured by a cri-

terion, representing the degree of disagreement between the two alternatives. These 

indices are then used to aggregate the pairwise comparisons and to generate an 

overall outranking relation between alternatives. 

To examine the computations in detail, six steps have to be scrutinised: 

1. Normalising the decision matrix. 

2. Calculating concordance and discordance for each pair of alternatives. 

3. Constructing the concordance and discordance matrices. 

4. Aggregating them into the dominance matrix. 

5. Defining the outranking relation. 

6. Ranking the alternatives based on the outranking relation. 

The first step is the transformation of the input so that the data for each criterion is 

dimensionless and can be compared. The transformed value 𝑟𝑖𝑗 for each utility is 

calculated in the same way as for TOPSIS: 
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where 𝑥𝑖𝑗 is the original utility of alternative 𝐴𝑖 with respect to criterion 𝐶𝑗. As for 

TOPSIS, it is easy to see that all 𝑥𝑖𝑗
2  /  𝑥𝑖𝑗

2  always fall within a [0, 1] scale but 

without spanning the scale as a standard normalisation does. Thus, this RMS-rescal-

ing (root-mean-square), which is a cornerstone operation in statistics but not in de-

cision analysis, is not the same as standard normalisation. The TOPSIS method 

copied this RMS rescaling, which is a vector space metric rather than a DAMS-

compliant metric, from ÉLECTRE without reflecting on the consequences of adopt-

ing it. 

But after this step, ÉLECTRE diverges from TOPSIS. The concept of concord-

ance compares each pair of alternatives based on the criteria, indicating the degree 

to which one alternative dominates another. For each pair of alternatives 𝐴𝑖 and 𝐴𝑘, 

the concordance index 𝑑𝑖𝑘 is calculated as 

 

using the concordance set membership function 

 

In a similar but not mirrored way, calculate the discordance index 

 

based on the discordance set membership function 

 

This concept of disagreement (or discordance) has inspired VIKOR’s subsequent 

regret ranking, which also leads to several overlapping or inconsistent rankings with 

a number of rules of thumb devised to try to separate them, yielding one final rank-

ing. So while the ÈLECTRE family has been a trendsetter, it is no more DAMS 

compliant because of that. On the contrary, the ideas copied by other methods are 

non-compliant in nature. Next, define a threshold 𝑐∗ such that 
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or some similar function, different accounts of the method have various functions. 

Then construct a two-dimensional binary matrix F with elements 

 

which shows where alternative 𝑎𝑘 concordance-dominates 𝑎𝑗. Next, construct an-

other two-dimensional binary matrix G with elements 

 

indicating where 𝑎𝑘 is not too much worse than 𝑎𝑙 in the discordance sense. After 

a few more steps, a partial ranking is arrived at by ÉLECRTE I which is considered 

the end result. No total ranking can be promised with this method, this depends on 

lucky circumstances among the input data. The ÈLECTRE family contains many 

methods that differ in various respects. All those modifications take the ÈLECTRE 

set of methods even further from the DAMS model. The final ranking is based on 

the outranking relationships between all pairs of alternatives. The alternatives are 

sorted based on how strongly they outrank others. The alternative that outranks the 

most others (with the highest dominance value) is considered the most preferable. 

ÉLECTRE violates Desiderata 35 and 10. Its threshold logic undermines mon-

otonicity and independence. Rank reversals are common, and preferences can be 

reversed by introducing or removing unrelated alternatives. Additionally, it does 

not produce a total ordering and fails to satisfy utility-based decomposability (De-

sideratum 7). Further, the way of introducing arbitrary user-defined thresholds in 

the computations instead of imposing all such operations on the end result is not in 

alignment with DAMS. 

ÉLECTRE relies on concordance and discordance indices and veto thresholds to 

establish outranking relations. Although it attempts to reflect dominance, it fails in 

decomposability and transparency. The method’s qualitative thresholds obscure 

continuous preference trade-offs and often produce incomparabilities. From a 
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MAUT viewpoint, ÉLECTRE violates utility independence and introduces arbi-

trary cut-offs without functional justification. Adding a new alternative can alter 

concordance and discordance thresholds due to recalculated matrices. An alterna-

tive A previously considered non-dominated may now be outranked due to shifts in 

veto thresholds, violating Desideratum 10 and indicating that utility structure is not 

preserved. The methods use thresholds and concordance-discordance matrices that 

are recalculated for every new alternative. This context-sensitive process causes 

violations of both IIA and Rank Preservation. Moreover, incomparabilities may 

arise or disappear when the set changes, leading to rank inconsistencies. The trans-

parency of ÉLECTRE is the least among the MCDA methods surveyed so far (but 

it will get worse). No real-life decision-maker the author has met (as opposed to 

mathematicians and decision theorists) comprehended the steps and how or why 

they lead to a suggested ranking of the alternatives. 
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11. PROMÉTHÉE 

PROMÉTHÉE (originally called Préférence par Ordination selon la Méthode 

ÉLECTRE pour les Hiérarchiques Évaluations Enrichies, later anglicised to Prefer-

ence Ranking Organisation Method for Enrichment of Evaluations  both referring 

to the Greek god Prometheus, meaning forethought) is a family of methods devel-

oped by Brans in the early 1980s. PROMÉTHÉE belongs to the class of outranking 

methods (also known as the French school of MCDA) founded by the SEMA Group 

(ÉLECTRE). The initial formulations, PROMÉTHÉE I and II, which were counter-

reactions to ÉLECTRE IIV, were presented in (Brans, 1982). There, it is pointed 

out that the ÉLECTRE methods contain difficulties that PROMÉTHÉE aims to 

overcome, such as handling the concordance and discordance thresholds. Those are 

complicated to set, and further, the results obtained do not provide a complete rank-

ing of alternatives. These difficulties are circumvented i.a. by introducing general-

ised preference functions and a unified ranking procedure (ibid, Section 3). 

A core concept in PROMÉTHÉE is the use of a preference function that trans-

lates the difference in performance between two alternatives on a single criterion 

into a degree of preference ranging from 0 (no preference) to 1 (strict preference). 

Decision-makers choose among several predefined preference functions, each cor-

responding to different assumptions about how preferences behave with respect to 

differences in criterion performance. As usual, each criterion also has a weight, re-

flecting its relative importance in the overall decision situation (Brans and Vincke, 

1985). 

PROMÉTHÉE I produces a partial ranking of alternatives based on the calcula-

tion of positive and negative preference flows. The positive flow measures how 

much an alternative is preferred over others, while the negative flow indicates how 

much it is outranked by others. These flows are used to identify incomparabilities 

when conflicting preferences occur. PROMÉTHÉE II, by contrast, derives a com-

plete ranking by computing the net flow (positive minus negative), thus eliminating 

incomparabilities but possibly reducing information about preference structures. 

Following the ÉLECTRE tradition, the initial formulations of PROMÉTHÉE 

were followed by several extensions to address specific methodological require-

ments. PROMÉTHÉE III was developed to deal with rankings that involve interval 
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data or require robustness in the presence of uncertainty. PROMÉTHÉE IV extends 

the method to handle continuous alternatives, particularly useful in problems where 

alternatives form a continuous set rather than a discrete list. This version involves 

the integration of preference functions over continuous domains, relying on integral 

calculus rather than discrete summation. PROMÉTHÉE V incorporates constraints, 

such as resource or budget limitations, and enables the selection of a subset of al-

ternatives that satisfy these constraints while preserving preference relations. This 

variant merges the outranking methodology with optimisation techniques to support 

constrained decision problems. PROMÉTHÉE VI was designed for group decision 

making, accommodating multiple decision-makers by aggregating their individual 

preference flows through various consensus or voting procedures. 

A central idea of all PROMÉTHÉE versions, as well as all ÈLECTRE ones, is 

that alternatives are ranked based on their outranking relationships. An outranking 

relation expresses the degree to which one alternative is considered superior to an-

other, taking into account all relevant criteria. This is achieved by comparing the 

performance of each pair of alternatives with respect to each criterion and evaluat-

ing the intensity of preference for one over the other. This comparison is not always 

straightforward, as decision criteria may have different importance levels or even 

exhibit interdependencies. To handle these complexities, PROMÉTHÉE incorpo-

rates preference functions that model the intensity of preference for one alternative 

over another, based on the performance difference for each criterion. The method 

allows for non-linear preferences, meaning that a small difference in performance 

may be more or less significant depending on the criterion in question. 

PROMÉTHÉE operates in several stages, from the formulation of the decision 

matrix to the final ranking of alternatives. The first stage involves the construction 

of a decision matrix, where each row represents an alternative, and each column 

corresponds to a criterion. In this matrix, the values for each alternative-criterion 

pair represent the performance of the alternative with respect to that criterion. 

Next, the decision-maker is asked to provide preference functions for each crite-

rion. These functions are crucial to the method because they capture how the deci-

sion-maker perceives the trade-offs between alternatives. A preference function 

specifies how much better one alternative is preferred over another, given a certain 

difference in performance on a given criterion. For example, if the criterion is cost, 
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the decision-maker may consider a small reduction in cost as highly desirable, but 

a larger reduction as less significant. In this case, the preference function could be 

designed to reflect a diminishing marginal utility for cost savings. 

The preference function is typically a non-decreasing function that expresses the 

intensity of preference. Depending on the criterion, it can take different forms. For 

example, in the case of a benefit criterion (where higher values are preferred), the 

function could be linear or exponential, indicating that the higher the performance 

of an alternative, the greater the preference. For a cost criterion (where lower values 

are preferred), the function might be decreasing, reflecting the increasing prefer-

ence for alternatives that perform better (i.e., have lower costs). 

Once the preference functions are established, the method proceeds with the cal-

culation of preference indices for each alternative pair. These indices quantify the 

degree to which one alternative is preferred over another for each criterion, based 

on the difference in their performance. The total preference index for an alternative 

is obtained by summing these individual preference indices over all criteria. 

After calculating the preference indices, the method computes two global out-

ranking flows for each alternative: the positive outranking flow and the negative 

outranking flow. The positive flow reflects the degree to which an alternative is 

preferred to all other alternatives, while the negative flow reflects the degree to 

which it is outranked by other alternatives. These flows are calculated by consider-

ing all the pairwise comparisons and aggregating the preference indices for each 

alternative. 

Originating from political and social sciences, the methods are designed to facil-

itate negotiation and compromise rather than a definite result. In this, behavioural 

components get mixed with analytical ones. PROMÉTHÉE I calculates a partial 

ranking of alternatives. This version considers only the positive and negative flows 

of each alternative, and it ranks alternatives according to their outranking relation-

ships. However, the results of PROMÉTHÉE I do not necessarily provide a strict 

total order of all the alternatives, as some alternatives may be ranked equivalently 

in terms of their outranking relations. PROMÉTHÉE II, on the other hand, provides 

a complete ranking of alternatives by incorporating a net outranking flow, which is 

the difference between the positive and negative flows. This version of PRO-

MÉTHÉE is appropriate when a complete and unambiguous ranking of alternatives 
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is necessary. PROMÉTHÉE II produces a strict total order of the alternatives, with 

the alternative that has the highest net flow being the most preferred. 

Since PROMÉTHÉE ranks alternatives by calculating preference values be-

tween pairs of alternatives based on each criterion, the method considers both the 

magnitude of the preference and the relative importance of the criteria. This is done 

by the following calculation steps. As with almost every other method, it begins 

with normalising the input values. This time, it is a regular linear transformation of 

the input data where the scales are reversed for non-beneficial data (i.e. where lower 

numbers are preferred) to produce normalised utilities. For ordinary input values, 

this is 

 

while for reversed scales, it is instead 

 

where, as usual, 𝑥𝑖𝑗
∗  is the normalised value for alternative 𝐴𝑖 under criterion 𝐶𝑗, and 

where max(𝑥𝑗) and min(𝑥𝑗) are the maximum and minimum values in criterion 𝐶𝑗 

across all alternatives. The method uses a preference function to quantify the pref-

erence of one alternative over another with respect to each criterion. The preference 

function can take different forms, depending on how the decision-maker perceives 

the relative importance of differences between alternatives. Its general form is 

 

where  can be any of six prescribed transform functions, none of them being a 

simple linear function. The functions include a stepwise linear threshold function 

and a dichotomic threshold function that evaluates to 0 or 1 depending on whether 

a threshold number is met or not. 

Next, for each pair of alternatives 𝐴𝑖 and 𝐴𝑘, the net preference is calculated 

based on the individual preferences for each criterion. The net preference 𝜋𝑖 of al-

ternative 𝐴𝑖 over 𝐴𝑘 is computed as  
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where 𝑤𝑗 is the weight of criterion 𝐶𝑗 and 𝑃𝑖𝑗 is the preference function value for 

criterion 𝐶𝑗 for alternatives 𝐴𝑖 and 𝐴𝑘. 

Next, the outranking relation is established to compare two alternatives. The net 

preference values 𝜋𝑖𝑘 are used to determine whether one alternative dominates an-

other. The positive flow 𝛷𝑖
+ and negative flow 𝛷𝑖

− of each alternative 𝐴𝑖 are calcu-

lated to assess its overall preference relative to all other alternatives as follows.  

 

and 

 

The positive flow is said to represent how much each 𝐴𝑖 “outranks” the other alter-

natives while the negative flow represents how much 𝐴𝑖 is “outranked” by other 

ones. The final ranking of the alternatives is in PROMÉTHÉE II determined by the 

net flow 𝛷𝑖 =  𝛷𝑖
+ − 𝛷𝑖

− while PROMÉTHÉE I relies on the separate positive and 

negative flows. The alternative with the highest 𝛷𝑖 is the most preferred, and the 

one with the lowest 𝛷𝑖 is the least preferred. If two alternatives have very similar 

flows, an indifference threshold can be used to label them inseparable. 

PROMÉTHÉE fails to comply with Desiderata 4 and 5, as the net flow scores 

depend on the entire set of alternatives, not just pairwise comparisons. It also vio-

lates Desideratum 2 (Dominance) due to preference function tuning. Though rela-

tively transparent and responsive to weight changes, it does not ensure scale invar-

iance or rank preservation under deletion. 

PROMÉTHÉE uses pairwise comparisons and preference functions to derive 

outranking flows. While these flows offer some interpretability, they do not result 

from a decomposable utility function. The method’s dependence on the full alter-

native set undermines attribute-level separability. The flows also obscure individual 
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criterion contributions, violating transparency. As such, it is incompatible with 

DAMS. 

In PROMÉTHÉE, the net preference flow of an alternative is calculated based 

on pairwise dominance across the entire set. If an alternative C is added, even one 

with no dominance over A or B, the net flows change. This violates Score Inde-

pendence (Desideratum 5) and undermines utility decomposability. 

Because the method relies on pairwise comparisons across the full set of alterna-

tives, the net flow scores are sensitive to the composition of the alternative set. This 

relational structure undermines IIA and Score Independence and leads to frequent 

rank reversals when alternatives are added or dropped. 
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12. AHP 

The Analytic Hierarchy Process (AHP) is a method developed by Saaty in the 

1970s, with its theoretical foundations first formally presented in 1980. AHP was 

introduced to support complex decision making by structuring problems into a hi-

erarchical model and enabling the quantification of subjective preferences through 

pairwise comparisons. The method is based on the principles of ratio-scale meas-

urement and relies on human judgment to derive priority scales (Saaty, 1980). 

AHP involves decomposing a decision problem into a hierarchy with at least 

three levels: the overall goal at the top, criteria (and possibly sub-criteria) at inter-

mediate levels, and the set of decision alternatives at the bottom. Decision-makers 

are required to make pairwise comparisons between elements at each level with 

respect to their parent node. These comparisons are captured using a 1-to-9 scale 

proposed by Saaty, where 1 indicates equal importance and 9 indicates an extreme 

preference for one element over another. 

From the pairwise comparison matrices, AHP derives a set of priority vectors 

using eigenvalue calculations. The principal right eigenvector of the matrix is nor-

malised to produce relative weights, reflecting the intensity of preferences among 

the compared elements. Consistency of the pairwise judgments is measured using a 

consistency index (CI) and a consistency ratio (CR). These measures compare the 

observed consistency of the matrix to a random matrix of the same order. A CR 

below a threshold, typically 0.1, is generally considered “acceptable”. 

There are also various methods for improving the efficiency and scalability of 

AHP, especially in high-dimensional problems. These include methods for incom-

plete pairwise comparisons, where not all element comparisons are required, and 

consistency-driven adjustments to reduce redundancy and cognitive load. 

Computational implementations of AHP and its variants have been developed 

extensively. These implementations often incorporate mechanisms for consistency 

checking, sensitivity analysis, and visualisation of results. AHP is susceptibility to 

inconsistencies in pairwise comparisons. AHP uses the Consistency Ratio (CR) to 

assess the degree to which the pairwise comparisons are logically consistent. How-

ever, even when the consistency ratio is within acceptable limits (typically below 

0.1), inconsistencies can still affect the accuracy and reliability of the decision. The 
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requirement for pairwise comparisons can become overwhelming for decision-

makers, particularly in decision problems with a large number of alternatives and 

criteria. This can lead to inconsistencies that are difficult to detect or rectify, thereby 

affecting the quality of the final decision. AHP is more of a procedure-driven 

method than a formula-driven one. Thus, it is best described by the steps involved. 

An AHP evaluation involves the following steps: 

1. Performing pairwise comparisons. 

2. Normalising the pairwise comparison matrices. 

3. Calculating the priority vectors (weights). 

4. Conducting consistency checks. 

5. Calculating global weights and determining the final ranking of alternatives. 

In the first step, Pairwise Comparisons, decision-makers compare each pair of ele-

ments using a scale (usually from 1 to 9): 

o 1 means equal importance. 

o 3 means one element is slightly more important. 

o 5 means one element is significantly more important. 

o 7 means one element is very strongly more important. 

o 9 means one element is extremely much more important. 

The comparisons for the criteria would be represented as a pairwise comparison 

matrix. Next in the same step, construct the Pairwise Comparison Matrix. It is con-

structed from the elements that represent the relative importance of the elements 

compared. The matrix is reciprocal, meaning 𝑎{𝑖𝑗} =
1

𝑎{𝑗𝑖}
 . Next, normalise the pair-

wise comparison matrix. Normalise each column of the matrix by dividing each 

element by the sum of the elements in that column. This step ensures that the col-

umns represent the relative importance on a common scale. The resulting matrix is 

the normalised matrix. 

The next step is to calculate the eigenvector (priority vector), which represents 

the relative weights of the elements (either criteria or alternatives). This is done by 

calculating the dominant eigenvector of the pairwise comparison matrix. Such an 

operation might yield an inconstant matrix. Thus, the step that follows is to check 

the consistency of the comparisons. AHP assumes that the pairwise comparisons 
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should be consistent (i.e., if A > B and B > C, then A > C should hold, also called 

transitivity). The consistency ratio (CR) is computed to assess how consistent the 

pairwise comparisons are. The steps to check consistency are: 

1. Compute the consistency vector by multiplying the comparison matrix by 

the priority vector. 

2. Divide the resulting vector by the priority vector element-wise to get the 

lambda max (largest eigenvalue). 

3. Calculate the consistency index (CI) using:  

 

4. Finally, compute the consistency ratio (CR) by dividing the CI by a random 

consistency index (RI) that depends on the size of the matrix. If CRCRCR 

is below a threshold (typically 0.1), the comparisons are considered con-

sistent enough. 

The finalising step is to calculate the global weights. Once the priority vector for 

the criteria is determined as well as the pairwise comparison matrices for the alter-

natives relative to each criterion, the global weights of the alternatives are computed 

by combining the local weights for each criterion with the global weights of the 

criteria. This is as complicated as it sounds from a user perspective, and the method 

is not transparent as seen by decision-makers. 

AHP is the most non-compliant of the methods discussed in this book. It fails or 

partially violates nearly every desideratum: Desideratum 1 (due to tolerated incon-

sistency), Desideratum 2 (dominance ignored), Desideratum 3 (monotonicity not 

guaranteed), and Desiderata 45 and 810 (due to scale sensitivity, context depend-

ence, and rank reversal). The eigenvector approach further obscures criteria trans-

parency (11) and utility interpretability. 

Let alternatives A and B be evaluated in an AHP framework with pairwise com-

parisons indicating A ≻ B. Now introduce C, which is strictly worse than both A 

and B across all criteria, i.e. A ≻ C and B ≻ C. The pairwise comparison matrix 

must be expanded to accommodate C, and due to renormalisation, the original rel-

ative weights between A and B shift. The risk: B ≻ A might occur. This violates 

Desideratum 4 (IIA), Desideratum 5 (Score Independence), and by extension, the 
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separability required in utility theory, and has been known since long (Belton and 

Gear, 1983). 

AHP’s pairwise comparison matrices are scale-dependent and inherently sensi-

tive to the number and configuration of alternatives. A rank reversal occurs when a 

new, even dominated, alternative is added. AHP violates IIA, Score Independence, 

and Criteria Independence due to its normalisation and weighting procedures being 

context-sensitive. It is perhaps somewhat of a stretch to call AHP flawed, as in (Ab-

bas, 2018, Ch.3), but it is certainly the least compliant with DAMS.  
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13. Comparisons 

The DAMS desiderata framework for MCDA provides a principled foundation that 

integrates classical utility theory with the realities of multi-criteria environments. 

The axioms synthesise normative ideals such as transitivity, dominance, and inde-

pendence with practical necessities like criteria weighting and score transparency. 

Table 2 summarises how the methods discussed in Part II comply with the DAMS 

desiderata. 
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SAW OK OK OK OK OK OK OK OK  OK OK 

TOPSIS OK NO OK NO NO OK OK NO OK NO 

VIKOR OK NO NO NO NO NO OK NO OK NO 

PROMÉTHÉE OK NO OK NO NO OK OK NO OK NO 

ÉLECTRE OK OK NO NO NO NO OK NO NO NO 

AHP OK NO  NO  NO NO NO OK NO NO NO 

Table 2. Five MCDA methods compared using the DAMS desiderata 

As demonstrated in this book through analysis, classification, and counterexamples, 

many popular MCDA methods fall short of satisfying these desiderata  especially 

where rank reversal is concerned. Such failure points reveal deeper inconsistencies 

with utility-analytic rationality. The literature is plagued with comparisons of 

MCDA methods where all the compared methods point in different directions. Ra-

ther than trying to appoint a “winning” method, which is most often the aim, they 

should be taken as signs of the overall health of the research field as a whole.  

As an example, in (Opricovic and Tzeng, 2004) VIKOR and TOPSIS are com-

pared. The comparison illustrates clearly the ad-hoc nature of both methods and 

also the many differences when it comes to details. In their example, a total of 18 
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variants of the two methods are used to rank three alternatives and point out differ-

ent alternatives as the “best” one, but the reasons for or against either variant are 

hard to grasp for a reader. In fact, the 18 variants together succeed in ranking the 

three alternatives in all eight (!) possible permutations of the ranking order. Imagine 

how impossible it is for a layman user to understand the pros and cons of each 

method. None of the methods contain any means of sensitivity analyses, but rather 

present the results with three decimals. In (Opricovic and Tzeng, 2007), the four 

methods VIKOR, TOPSIS, ÉLECTRE and PROMÉTHÉE are compared. There are 

six sets of weights, and for each set, the methods arrive at 12 rankings in total. The 

rankings manage to divide the six alternatives into two sets of three alternatives 

each. Within the top set, the best alternative changes frequently or is undetermined.  

Further, in (Zlaugotne et al., 2020), five methods are compared of which three 

are VIKOR, TOPSIS, and PROMÉTHÉE. For the four alternatives in the article, 

the five methods, only one variant of each this time, manage to produce four differ-

ent rankings among the five methods. In a subsequent meta-ranking, averaging the 

results of the four methods, a final ranking is arrived at. However, this is not how 

MCDA analyses should have to be conducted – exploring a large set of methods in 

an ensemble fashion and hoping that their average is “better” than any single 

method. The substantial efforts required notwithstanding, there is no theoretical 

proof that such averaging should lead to a better analysis. If that were the case, it 

would be possible to construct one optimal giant “the-more-the-merrier method” 

consisting of all the world’s known MCDA methods (or perhaps all variants of all 

methods), weighted by some mysterious all-encompassing meta-weighing scheme.  

What all the methods (except SMART) fail to do is to separate the calculus of 

decision analysis from the psychological aspects of decision making. Given a set of 

input data, there should be one set of output data, computed according to the well-

established theories that underlie DAMS. The output data should be amenable to 

different sensitivity analyses in order to study the stability of the results. At the next 

level up, processes dealing with negotiation, bargaining, regret, etc. should be kept 

and handled in an orderly fashion. If that handling requires additional calculations, 

they can be performed on the output data, but only if they can be motivated by well-

founded and verified principles rather than engineering-style patches that take some 

property from a handy mathematical concept such as ordinary least squares or the 
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max operator without a solid theoretical motivation why and subsequently suitabil-

ity verified by empirical studies.  

It stands to reason that MCDA methods should not behave like this. Rather, these 

articles are a testament to the sad state of affairs that the MCDA field is currently 

in. The possibility of a “smorgasbord” approach – picking methods, parameters and 

formulas of liking, and mixing in descriptive and psychological factors, in order to 

obtain a ranking with a favourite alternative on top – is surely a contributing factor 

to the prevailing mistrust and underutilisation of MCDA in society.  

This book provides both a diagnostic and prescriptive perspective: identifying 

logical weaknesses in existing methods, while also pointing at a route toward 

greater decision-theoretic coherence. This is not a plea for process conformity. The 

differences in philosophy and the different brandings of “schools” of thought are 

invigorating and should influence the elicitation processes, the presentation for-

mats, the group decision mechanisms, and much more – as long as the methods 

stand on established scientific mathematical ground. Substituting a since-long well-

established and sound axiomatic computational core for homemade calculi is not a 

way to gain trust, it is a way to opaqueness. Neither is mixing descriptive and psy-

chological factors with an axiomatically grounded computational core. The need to 

stand out by branding and uniqueness should be satisfied in other ways and by other 

means, less detrimental to the MCDA field.  

Despite the logical clarity and mathematical rigor of the unified utility frame-

work grounded in von Neumann–Morgenstern and Keeney-Raiffa (vNM/KR) axi-

oms, a wide range of popular MCDA methods persist that violate these principles. 

This raises the question: are there any compelling mathematical or logical reasons 

to prefer these methods? The answer, in short, appears to be a resounding no. 

None of the well-established MCDA methods that violate vNM/KR axioms, 

such as VIKOR, TOPSIS, ÉLECTRE or PROMÉTHÉE, are grounded in a rigorous 

theoretical foundation. These methods often make heuristic or procedural sense but 

fail when held to standards of decomposability, independence, and consistency. 

Some of the problems are: 

 No representation theorem supports the forms of aggregation used in these 

methods. 
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 Rank reversal and reference dependence violate basic tenets of rational choice. 

 Non-decomposability in scoring means there is no underlying utility function 

being maximised. 

Despite these shortcomings, the abovementioned methods proliferate and are 

widely used in practice. There are several reasons for that: 

1. Software Availability: Many are embedded in decision-support systems or 

consulting tools. 

2. Visual Appeal: Techniques like outranking or ideal point comparisons offer 

intuitive geometric interpretations. 

3. Lack of Training: Decision analysts are often unfamiliar with the formal 

structure of vNM or KR and thus default to procedural heuristics instead of 

questioning the basis on which a particular method stands. 

There is no compelling mathematical justification for the widespread use of MCDA 

methods that violate the DAMS desiderata. Their popularity stems from practical, 

psychological, or institutional factors, not coherence. As such, their results should 

be viewed as suggestive, not rationally prescriptive. The proliferation of non-com-

pliant methods underscores the need for a shift toward foundationally sound, axio-

matically justified decision analysis. 

DAMS draws a clear boundary between rational and pseudo-rational prescriptive 

decision analysis. These modes of reasoning differ fundamentally in objective, 

methodology, and evaluative standards. Rational prescriptive analysis is concerned 

with guiding decision-makers to make sound decisions given their limitations while 

adhering to coherent principles of preference and utility. The DAMS model devel-

oped in this book exemplifies rational prescriptive analysis: 

 It rests on internally consistent axioms (e.g. completeness, independence, 

decomposability). 

 It supports additive utility representations and generalises both von Neu-

mann-Morgenstern’s and Keeney-Raiffa’s theories. 

 It yields decisions that are transparent, defensible, and logically justified. 

Pseudo-rational prescriptive analyses aim for the same goals but fails to deliver 

coherent and justifiable methods due to a lack of theoretical underpinnings. 
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 It promotes heuristics and approximations over consistency. 

 It focuses on cognitive ease, group dynamics, and stakeholder inclusion 

over correctness. 

 It most often adopts methods that fail DAMS but are thought to be easier to 

explain. 

Part II of this book demonstrates that methods like VIKOR, TOPSIS, ÉLECTRE, 

PROMÉTHÉE and AHP are pseudo-rational tools. They aid decision making but 

do not meet the conditions of rationality defined in DAMS. Traditional and classic 

SAW methods, however, are by contrast rational tools, providing comprehensible 

outputs while satisfying utility-theoretic foundations. 

The proliferation of pseudo-rational prescriptive methods, despite their founda-

tional shortcomings, highlights a gap between what is rational and what seems to 

be. The DAMS framework offers a reconciliation path: preserve normative coher-

ence while retaining formats familiar to prescriptive users. This convergence is es-

sential for elevating decision analysis from plausible heuristics to justifiable prac-

tice. 

It has been argued that prescriptive analysis can choose axioms “like dishes from 

a smorgasbord”, selecting whichever are useful and discarding others (Keeney, 

1992). While this pragmatic flexibility may appear liberating, it undermines the 

very essence of decision-theoretic integrity. DAMS offers an opposite position to 

that stance. As discussed in the book, axioms and desiderata are not decorative or 

optional, they are foundational constraints that preserve coherence, comparability, 

and defensibility. Selectively applying them distorts the decision structure, making 

results less meaningful and often logically indefensible. Some problems with inco-

herent methods include 

1. Loss of Interpretability: Methods that violate decomposability, transitivity, 

or independence lose any claim to be preference-preserving. Their rankings 

are artefacts of procedure, not reflections of rational preference. 

2. Rank Reversal and Context-Dependence: As discussed above, violations 

of key axioms produce arbitrary reversals when irrelevant alternatives are 

added or removed. 
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3. Undermining Trust: Stakeholders rightly expect that decisions guided by 

formal models are consistent and principled. Violating axioms without justi-

fication breaks that trust. 

In this respect, it is critical to draw a boundary between two distinct layers in deci-

sion analysis: 

 Mathematical-logical rigor consists of axioms, representation theorems, and 

their consequences. These define the structure of rational preference and the 

conditions under which a utility function exists. They should make up the 

basis for a coherent prescriptive decision-analytic calculus. 

 Procedural methods, such as outranking, voting mechanisms, or pairwise 

flows, are implementation strategies. While they may offer heuristic appeal 

or operational ease, they are not substitutes for foundational coherence. 

Confusing these two levels leads to mistaken beliefs, for instance, that a visually 

compelling ranking procedure is comparable to a DAMS-based decision analysis. 

It is not. Only when procedures are derivable from or consistent with rigorous for-

mulations such as DAMS can they be said to reflect genuine preference orderings 

in a reasonable way.  

This does, of course, not entail that all methods should look the same or have the 

same procedures. On the contrary, different approaches call for various user inter-

actions, various elicitation processes, and various presentation formats. That is 

where the variability and differences should lie, not in the computational core. Out-

puts can and should be post-processed and modified in countless ways – at the end 

of the line, but only after the core results according to established theories have 

been calculated, and the post-processing can be shown still to comply with the axi-

oms and desiderata of well-established scientific theoretical bodies instead of arbi-

trary made-up formulas – arbitrary seen from a decision-theoretic point of view.  

To move the MCDA field forward in a scientific direction, and to unify rigor 

with usability, a set of guiding principles is necessary. Such principles acknowledge 

the dual demands of decision analysis: to be both prescriptively sound and practi-

cally appealing. The following is a suggestion of such a set: 
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Principle 1: Maintain the Hierarchy of Foundations Over Procedure  

Well-founded desiderata must form the backbone of any decision method. Proce-

dures must be tested against the desiderata, not the other way around. This ensures 

that decision outcomes are rational, interpretable, and stable. 

Principle 2: Preserve Formal Integrity, Even When Approximating  

In settings where full elicitation of utilities and probabilities is impractical, ap-

proximate methods may be used, but only if they preserve key properties such as 

transitivity, monotonicity, and independence.  

Principle 3: Ensure Representability  

Every decision method should correspond to a representable utility function, even 

if hidden or abstracted. Such a function should be recoverable and auditable to 

justify preference orderings. 

Principle 4: Separate Computation from Justification  

Computation is necessary, but not sufficient. A method that produces results must 

also justify them in terms of rational calculations. Algorithms and procedures 

must be interpretable through the lens of utility theory. 

Principle 5: Design for Transparency and Explainability  

MCDA methods should reveal their internal logic: how weights are applied, how 

preferences are inferred, and what axioms are assumed. Stakeholders must be able 

to trace conclusions to their inputs. 

Principle 6: Protect Against Rank Reversal and Context Drift  

Methods should be validated against benchmark scenarios involving irrelevant al-

ternatives or added options. If a method produces rank reversal, it violates deci-

sion-theoretic hygiene and should be revised or rejected. 

Principle 7: Accept Well-Founded Minimalism, Not Arbitrary Pluralism  

While it may be tempting to mix and match axioms as preferences or contexts 

vary, a minimal coherent set such as DAMS could provide sufficient flexibility 

without compromising logical structure. Pluralism must be principled, not ad hoc. 

These principles do not restrict creativity in method design or formulation, they 

ensure its coherence. They invite prescriptive researchers to innovate within the 

bounds of rationality rather than outside of it. The future of MCDA lies not in 

choosing between rigor and usability, but in making them inseparable.  
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Among the foundational principles of sound reasoning stands Occam’s Razor. 

In decision analysis, it translates to a call for simplicity: if two methods yield equiv-

alent or even similar performance, the simpler one is to be preferred. This is a cor-

nerstone in the effort to have MCDA being used more in society. Yet this principle 

is routinely neglected in contemporary MCDA practice. Many modern methods 

feature complicated data transformations, scoring algorithms, or aggregation 

schemes without corresponding gains in rational defensibility or practical clarity. 

There are clear reasons why simplicity matters in this case: 

Transparency: Simpler models are easier to understand, explain, and audit. This 

improves stakeholder confidence and supports democratic decision processes. 

Axiomatic Tractability: Simple structures are more likely to satisfy foundational 

axioms such as transitivity, decomposability, and continuity. 

Error Robustness: Fewer moving parts reduce the risk of hidden inconsistencies, 

unintended rank reversals, or sensitivity to input noise. 

Theoretical Discipline: Simplicity forces clarity in assumptions. Complex meth-

ods often obscure which principles are being applied (or violated). 

However, the surveyed methods (any many others with them) violate simplicity. 

 Outranking methods that require multiple thresholds and preference func-

tions across criteria. 

 Multi-phase methods where the output of one arbitrary step becomes the in-

put to another, often without clear justification. 

 Methods that produce partial orderings through procedures that cannot be 

linked to any utility representation. 

The desiderata proposed in DAMS are supposed to lead naturally to models that are 

both simple and normatively sound. Additive utility models, dominance-based 

comparisons, and weighted sums need not be simplistic. They can be elegant, inter-

pretable, and justifiable. 

Simplicity is not the enemy of sophistication, rather it is its friend. When meth-

ods are equally performant, the simpler model has both epistemic and explanatory 

advantages. Future MCDA development should not merely pursue feature richness, 

especially not in the number of steps and complexity of procedures, but axiomatic 

parsimony. Simplicity is not an aesthetic, it is a logical imperative. 
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14. Three Notes 

A Note on Scale Types 

The difference scale is a scale where the numbers are meaningful in terms of their 

differences but not necessarily in terms of their ratios. That is, you can measure 

relative differences between values, but ratios between values are not necessarily 

meaningful. For instance, you can say that alternative A is "3 units better" than 

alternative B, but saying alternative A is "3 times better" than B doesn’t necessarily 

make sense. 

In the additive model of MCDA, you sum up the weighted differences in perfor-

mance across various criteria. In other words, you’re aggregating the differences in 

scores or performance metrics, which is typically associated with the difference 

scale. 

 
where 𝑤𝑗 is the weight of criterion j and 𝑥𝑖𝑗 is the performance of alternative 𝐴𝑖 

under criterion j. This form of aggregation implies that you’re combining the dif-

ferences between each alternative’s performance across criteria, not their ratios. 

AHP, on the other hand, explicitly requires that the pairwise comparison scale 

be ratio-based, because it is built on the idea that decision-makers can express pref-

erences between pairs of alternatives or criteria in terms of relative importance. The 

standard pairwise comparison scale used in AHP typically ranges from 1 to 9 (and 

the reciprocals for inverse preferences), where these numbers reflect the ratio of 

importance between criteria or alternatives. 

For instance, if you compare two criteria 𝐶1 and 𝐶2and judge that 𝐶1 is 3 times 

as important as 𝐶2, the pairwise comparison matrix will reflect that in the form of a 

ratio-based scale. In this case, a ratio scale assumption allows you to say that 𝐶1has 

a 3:1 importance over 𝐶2and you carry this ratio into the calculation of the weight 

vector. 

AHP’s use of a ratio scale means that it assumes the pairwise comparison judg-

ments correspond to a multiplicative relationship. When you aggregate the results 
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of pairwise comparisons for each criterion (which are ratio-based), the result is a 

weighted sum of alternatives. This sum reflects the global preference for each al-

ternative in terms of the ratios of importance, rather than just the differences. 

To sum it up: AHP’s ratio scale means that when you compare alternatives (or 

criteria) pairwise, you’re dealing with multiplicative relationships between alterna-

tives’ importance levels, which will then be aggregated in a weighted sum. The 

additive model, which typically works with a difference scale, involves linear com-

binations of values that don’t require the ratios between them to be meaningful, but 

rather just their relative differences (additive increments). 

A Note on the Independence Assumption 

The standard assumption within MCDA is that of independence between criteria, 

and the likewise standard solution when that condition is not met between two cri-

teria is to jointly model them as a third, synthetic criterion. This way, a decision 

situation with dependent criteria can be seamlessly mapped onto a DAMS-compli-

ant model that presupposes criteria independence. This remapping requires some 

skills on the part of the modeller, which is why method inventors have tried to come 

up with alternative ways of handling dependence.  

The first obvious candidate is the correlation concept from statistics, and it has 

been employed in PDA models with some success. PDA models already contain 

conditional probabilities (without signalling) since every chain of events is a calcu-

lation of conditional global probability (A | B). For more on conditional probabili-

ties, refer to any entry-level textbook on statistics. Updates of conditional probabil-

ities are, needless to say, a centrepiece within the area of probabilistic reasoning, 

where Bayesian updates constitute an important topic of research – a topic that is 

out of scope for this book, though. 

Some DA methods have approached the dependence issue by requiring pairwise 

comparisons of all criteria weights. This leads to a much heavier burden when as-

signing weights, essentially taking an O(n) task and turning it into an O(n2) one. 

The immediate effect of a pairwise procedure is inconsistency since it is very hard 

for humans to keep all pairs and their transitive implications in mind at the same 

time. Of course, computers can help by indicating such inconsistencies in the form 
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of, for example, the consistency index in AHP. However, any such artificial meas-

ure introduced tends to alienate the decision-maker from the original task and thus 

carries a cost that often overshadows the possible benefits. 

In cases where the criteria dependence/overlap is severe, a remodelling and map-

ping of criteria is the first step. As an example, Howard recounts a consulting ses-

sion with an oil company that had identified 30 overlapping criteria, which after a 

thorough analysis turned out to be only two criteria (Howard, 2009, p.52). While 

that is an extreme case, it is much more often the case that criteria overlap is a 

consequence of bad modelling than a real inherent property of the decision problem. 

Thus, the resolution lies in the performance of the analysis process rather than in 

the method itself. 

A Note on Compensation 

A central distinction in MCDA lies between compensatory and non-compensatory 

approaches to modelling trade-offs among conflicting criteria. This distinction is not 

merely technical; it reflects deeper assumptions about how rationality, preferences, 

and decision constraints should be represented and processed. The compensatory 

tradition, as in DAMS and many other additive value models, allows for trade-offs: 

strong performance in one area can offset weaknesses in another. In contrast, non-

compensatory methods, such as outranking methods like ÉLECTRE and PRO-

MÉTHÉE, are designed to separately handle decision problems in which certain cri-

teria represent thresholds or veto points that cannot be offset, regardless of perfor-

mance elsewhere. 

Outranking methods achieve this by embedding thresholds, calling them names 

such as concordance, discordance, and veto levels, into the core calculations of the 

methods. These mechanisms are intended to model realism: in many real-world de-

cisions, a minimum standard on certain criteria is essential, and failure to meet it 

should disqualify an alternative, even if it is otherwise highly rated. For instance, in 

supplier selection, an offer may be unacceptable regardless of cost or delivery speed 

if it fails to meet basic quality standards. From this perspective, outranking methods 

seem to respond to a real need: expressing incomparability. 

However, this modelling choice comes with several well-known challenges. 

First, embedding such logic directly in the calculations of the method, as opposed to 
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the modelling phase, makes the reasoning process opaque. Threshold values are of-

ten context-sensitive, difficult to justify empirically, and may lack a clear interpre-

tation to decision-makers. Moreover, the internal decision logic becomes more dif-

ficult to audit or explain, particularly when the result is not a complete ranking, but 

a partial order riddled with incomparabilities, violating Desideratum 11 (Explana-

tory transparency). In attempting to mirror the complexity of real-world judgment 

inside the calculation core, outranking methods inadvertently produce black-box-

like outcomes. Rather, in DAMS, non-compensatory elements are handled up-

stream, during the modelling phase of a decision problem. That is, criteria deemed 

essential or even indispensable (“must-have”) are treated as filters or constraints: 

alternatives that fail to meet them are excluded before any aggregation takes place. 

Criteria that are strongly correlated are remodelled together instead of standing 

alone. The core calculation then operates under a clean, compensatory logic, allow-

ing weights and scores to be meaningfully interpreted, compared, and audited. 

The conceptual clarity of this separation between structural constraints and pref-

erential trade-offs supports easier communication of the results, clearer justification 

of rankings, and easier integration with value-for-money assessments. While it may 

at first glance seem that compensatory models oversimplify certain judgmental sub-

tleties, in reality they offer greater normative coherence and operational transpar-

ency by handling the issues at a higher level. In this light, the divide between com-

pensatory and non-compensatory methods (at the calculation core) reflects a deeper 

methodological tension: whether the complexities of real-world decision-making 

should be internalised in the method’s inner logic or externalised and structured be-

fore calculations begin. As seen, outranking methods favour the former, often in 

response to the perceived limitations of additive trade-off structures. DAMS-com-

pliant models favour the latter, on the grounds that a good method should illuminate 

its calculations, not obscure them with embedded conditional logic. This is im-

portant, not least in large real-world settings, where often a value-for-money ap-

proach is taken and hence, the MCDA analysis does not include monetary criteria - 

those are handled at a higher level in a subsequent cost-benefit (or cost-effective-

ness) analysis. Not least procurement is often handled this way, turning an outrank-

ing-based process into a less rational exercise. So the real-world process require-

ments turn the tables against opaque calculation methods. 



FOUNDATIONS OF COMPUTATIONAL DECISION ANALYSIS 107 

15. Probabilistic MCDA 

The structural similarities between the von Neumann–Morgenstern (vNM) and 

Keeney-Raiffa (KR) utility models suggest that they are not competing frameworks, 

but rather special cases of a more general probabilistic multi-criteria decision anal-

ysis (MPDA). This theory integrates both risk and multi-dimensionality by consid-

ering preferences over uncertain, multi-attribute alternatives. 

In this unified framework, an alternative is characterised by a matrix of out-

comes, where each attribute has multiple probabilistic outcomes. The general utility 

of an alternative is: This nested structure expresses vNM utility as the special case 

where there is only one attribute and only uncertainty exists, and KR (and MAUT) 

as the case where uncertainty is removed (i.e., all pij are degenerate, with probability 

1 on a single state). 

Thus, MPDA generalises both. When attribute weights represent relative im-

portance and probabilities represent uncertainty, the resulting model supports deci-

sions under both value trade-offs and risk. The utility function applies consistently 

across the two cases, indicating that both models rely on the same fundamental val-

uation mechanism. Both vNM and KR build on core axioms: completeness, transi-

tivity, continuity, independence, and decomposability. These remain valid in the 

general case and justify the functional form of as both additive and expected. 

There are several benefits of a unified view. It brings coherence to decision mak-

ing under hybrid conditions (e.g., strategic planning with uncertain costs and com-

peting objectives). Further, it supports more precise elicitation: decision-makers can 

assess trade-offs and risks in tandem. Lastly, it reinforces the idea that utility is the 

core construct, whether over lotteries, attributes, or both. This unified view vali-

dates the effort to develop MPDA methods that respect both probabilistic and multi-

criteria models. The desiderata serve as a scaffold for such synthesis, and their ex-

pansion into this domain may mark the next frontier in normative decision theory. 

In real-world decisions, alternatives often involve uncertainty in addition to mul-

tiple criteria. A natural extension of MCDA involves incorporating probability dis-

tributions over outcomes, leading to hybrid models where both criteria weighting 

and probabilistic beliefs play a role. This generalisation leads to expressions of the 

form  
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𝑈(𝐴) =  ∑ 𝑤𝑖

𝑛

𝑖=1
∙ ∑ 𝑝𝑖𝑗𝑢(𝑥𝑖𝑗)

𝑗
 

where wi is the weight of criterion, representing its importance, pij is the probability 

of state j under criterion i, and 𝑢(𝑥𝑖𝑗) is the utility of outcome 𝑥𝑖𝑗  under that state 

and criterion. This formulation reflects an additive multi-attribute expected utility 

function. It is consistent with both vNM and KR formulations. The outer sum rep-

resents aggregation over attributes, as in MAUT. The inner sum represents expec-

tations over uncertain events within each attribute, as in vNM. Importantly, this 

model preserves the axiomatic commitments of both classical theories. i) additivity 

across independent criteria; ii) expected utility within each uncertain dimension, 

and iii) coherence in the joint treatment of trade-offs and risk. 

A generalised MCDA of this sort opens the door to richer, securely grounded 

models. It allows decision-makers to accommodate both subjective probabilities 

and value trade-offs. It also supports elicitation techniques familiar from both 

MAUT (e.g., swing weighting) and vNM (e.g., lottery comparisons). Although 

vNM utility theory and KR/MAUT align closely in structure and intent, their mer-

ger into a unified probabilistic multi-criteria framework raises subtle tensions that 

have to be addressed. This section examines whether any modifications are neces-

sary to either theory to ensure consistency and whether they violate each other’s 

fundamental axioms. 

Compatibility of Axioms At a high level, the core axioms shared by both frame-

works, such as completeness, transitivity, continuity, and a form of independence, 

are broadly consistent. However, the definition and application of the independ-

ence axiom differs in that vNM requires probabilistic independence while KR re-

quires utility independence, i..e preferences over one attribute remain unchanged 

regardless of fixed levels of other attributes. These are structurally distinct. Proba-

bilistic independence governs mixtures of lotteries, while utility independence 

governs the separability of trade-offs. In a unified model, one must accept both 

forms or define a stronger axiom that encompasses both. 

Decomposability Tensions KR assumes additive or multiplicative decomposabil-

ity under specific forms of independence. vNM requires linearity in probabilities 
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but has no native treatment of attribute composition. Combining both requires as-

suming that utility is additively separable in attributes and linear in probabilities. 

This dual requirement imposes a stronger structure than either theory individually. 

Functional Form Adjustments To align vNM and KR under the expression: one 

must assume that the same utility function applies across both probabilistic and 

multi-attribute domains. This may require rescaling or transforming attribute-spe-

cific value functions in MAUT to be consistent with cardinal utility in vNM. 

Implicit Normative Shifts vNM is typically used in contexts with measurable un-

certainty; KR often treats uncertainty implicitly through scoring. A unified theory 

implies that attribute weights and probabilities are formally equivalent in the role 

they play within the utility aggregation. This requires a commitment to an inter-

pretation of weights that is stronger than mere preference intensity, they must be 

utility-theoretic scalars. 

Thus, while no outright axiomatic contradiction exists, a unified model imposes 

stronger assumptions than either theory individually. In particular i) utility inde-

pendence and probabilistic independence must coexist, ii) additivity across both 

probabilities and attributes must be assumed, and iii) a common utility function 

must serve both. These are manageable but nontrivial requirements. Their adoption 

transforms both vNM and KR from context-specific models into fragments of a 

more general system. 

To reconcile and extend vNM and KR within a general probabilistic multi-crite-

ria decision framework, we propose the following unifying desiderata. They are 

designed to support utility representations of the form 

𝑈(𝑎) = ∑ 𝑤𝑖  ∑ 𝑝𝑖𝑗  𝑢(𝑥𝑖𝑗)𝑗𝑖   

where wi are the weights of the criteria (attributes), pij are the probabilities over the 

outcomes under the criteria, and u(xij) is the utility of outcome xij. 

Desideratum 1 (Completeness and Transitivity): For all alternatives A, B, and C, 

preferences are complete and transitive. For all A and B, either A ≻ B, B ≻ A, or A 

∼ B. Further, if A ≻ B and B ≻ C then B ≻ C. 

Desideratum 2 (Continuity): For any alternatives A, B, and C, with A ≻ B ≻ C, 

there exists a   (0, 1) such that B ∼ A + (1)C This applies both to probabil-

istic mixtures (as in vNM) and to attribute trade-offs (as in KR). 
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Desideratum 3 (Probabilistic Independence): For all alternatives A, B, and C, if A 

≻ B, then for any   (0, 1): A + (1)C ≻ B + (1)C. This ensures linearity 

in probabilities. 

Desideratum 4 (Utility Independence of Attributes): For any attribute i, prefer-

ences over levels of i are independent of the fixed levels of other attributes, pro-

vided the preferences are conditional on those fixed levels. 

Desideratum 5 (Additive Decomposability): If utility independence holds for all 

attributes, then the overall utility function is additive across attributes and linear in 

probabilities: 𝑈(𝑎) = ∑ 𝑤𝑖  ∑ 𝑝𝑖𝑗 𝑢(𝑥𝑖𝑗)𝑗𝑖  .  

Desideratum 6 (Monotonicity): If an outcome 𝑥𝑖𝑗 is replaced by 𝑥′𝑖𝑗  such 

that 𝑈(𝑥′
𝑖𝑗

) >  𝑈(𝑥′
𝑖𝑗

), and all other terms remain fixed, then the overall utility 

increases. 

Desideratum 7 (Weight Normalisation): For all weights and probabilities, 𝑤𝑖 0, 

 𝑤𝑖 =  1 and 𝑝𝑖𝑗 0,  𝑝𝑖𝑗 =  1 respectively for each i. 

Desideratum 8 (Common Utility Representation): There exists a single cardinal 

utility function u defined over outcomes 𝑥𝑖𝑗 such that preferences over all combi-

nations of attributes and uncertainties can be represented by U (A). 

These desiderata successfully unify the vNM and KR theories into a single co-

herent foundation for probabilistic MCDA. They allow trade-offs across attributes 

and beliefs while preserving normative coherence and a clear interpretative struc-

ture. They form the basis for the UNEDA software platform which handles tri-linear 

MPDA decision problems of the form 

𝑚𝑎𝑥 [𝑈(𝑎) = ∑ 𝑤𝑖  ∑ 𝑝𝑖𝑗  𝑢(𝑥𝑖𝑗)
𝑗𝑖

] 

according to the generalised PMEU principle afforded by MPDA. The open-source 

software platform is described next in Part III (Chapter 16). 
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16. Computational Evaluation 

Part III of the first edition contained an overview of different software applications 

that employed the methods of Part II. In the second edition, this has been replaced 

with this chapter on computational evaluation, which describes how UNEDA, the 

open-source universal decision-analytic software platform, is implemented. 

To make a decision analysis method computational, and thus making it a method 

for real-life decisions, two main ingredients are necessary. The first is a suitable 

representation and evaluation rules of the decision problems, such as those pre-

sented in Part I. The other is reasonably fast computational algorithms, which is the 

topic of this part. Most of the demanding computations required are optimisation-

related algorithms. 

The chapter is divided into three main sections. The first deals with calculating 

properties of decision frames using linear programming methods and the second 

deals with algorithms for computing evaluation rules by employing bilinear opti-

misation. The last section contains a discussion of the BEDA method for handling 

second-order information. The two first sections are built on (Danielson, 1997), 

which describes the DELTA Method for interval decision analysis that was later gen-

eralised to multi-level trees (the original text handles only single-level trees, but the 

generalisation is straightforward and does not introduce any new concepts). Deci-

sions under risk (probabilistic decisions) are often given a tree representation. This 

is the reading of the tree as a sequence of events leading up to the final conse-

quences, the end nodes.  

A decision tree consists of a root node, representing a decision, a set of interme-

diary (event) nodes, representing some kind of uncertainty about which event will 

eventually occur, and consequence nodes, representing possible final outcomes. 

Usually, probability distributions are assigned in the form of weights in the proba-

bility nodes as measures of the uncertainties involved. The informal semantics are 

simply that given that an alternative Ai is chosen, there is a probability pij that an 

event will occur. This event can either be a consequence with a value vijk assigned 

to it or another event. Usually, the maximisation of the expected value is used as an 

evaluation rule. In case of precise probability and utility assessments, this is 
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straightforwardly evaluated. However, when the probabilities and utilities are im-

precise, several complications appear, including the non-uniqueness of the expected 

value of an alternative (leading to the need to find upper and lower bounds). The 

first step in obtaining a solution is generalising the decision tree structure. 

Let a decision frame represent a tree decision problem. This is convenient for 

presentational purposes. The idea with such a frame is to collect all information 

necessary for the model in one structure. One of the building blocks of a decision 

frame is a graph. 

Definition: A graph is a structure I,N,E, where I is an index set, N is a set {ni}, 

iI, of nodes, and E is a set {(ni,nj)}, i,jI, ij, of edges (node pairs). A tree is a 

connected graph without cycles. 

Definition: An r-tree (rooted tree) is a tree I,N,E,r where exactly one node nr has 

the property  k : (nk,nr)E. nr is called the root of the tree. The set N is parti-

tioned into two subsets of leaf nodes (NL) and intermediate nodes (NI). ni  NI iff 

 k : (ni,nk)E. Since NL = N \ NI, niNL iff  k : (ni,nk)E. The index set I is 

partitioned accordingly: an index iII iff niNI and an index iIL iff niNL. An 

intermediate node niNI has children indices Ci = {j : (ni,nj)E}. 

Then, all the rooted trees representing alternatives are joined together into a de-

cision frame. In the sequel, the notation is used that the n children of a node xi are 

denoted, xi1, xi2,…,xin and the m children of the node xij are denoted xij1, xij2,…,xijm, 

etc.  

Decision-maker statements of probability and value are translated into con-

straints (inequalities) in order to be entered into the decision problem. Range state-

ments (i.e. intervals) translate into range constraints, inequalities involving a single 

variable. A reasonable interpretation of such statements is that the estimate is not 

outside of the given interval. For a value scale [a, b], there is a default range con-

straint vij[a, b] for each value variable. Likewise, there is a default range constraint 

pij[0, 1] for each probability variable (although, in practice, the normalisation 

takes care of this). Comparative statements compare the probabilities of two conse-

quences occurring with one another, such as “the events C1 and C2 are equally 

probable” or “the event C3 is more likely to occur than C4”. Those statements are 
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translated into comparative constraints, inequalities involving more than one varia-

ble. The term interval constraints is used for the kinds of constraints above. A col-

lection of interval constraints concerning the same set of variables is called a con-

straint set, and it forms the basis for the representation of decision situation state-

ments. 

Terminology: Given an index set I and a set of variables {xi}iI, a constraint set in 

{xi}iI is a set of interval constraints in {xi}iI. 

To begin with, it is important to determine whether the elements in a constraint 

set are at all compatible with each other. This is the question of whether a constraint 

set has a solution, i.e. if there exists any vector of real numbers that can be assigned 

to the variables. 

Definition: Given an index set I and a set of variables {xi}iI, a constraint set X in 

{xi}iI is consistent iff the system of weak inequalities in X has a solution. Other-

wise, the constraint set is inconsistent. A constraint Z is consistent with a con-

straint set X iff the constraint set {Z}  X is consistent. The collection of all con-

sistent instances of a constraint set X is called the solution set to X. 

Definition: Given an index set I and a consistent constraint set X in {xi}iI and a 

function f, the maximum is Xmax(f(x)) =def sup (a  {f(x) > a}  X is consistent). 

In a similar way, the minimum is Xmin(f(x)) =def inf (a  {f(x) < a}  X is con-

sistent). 

Definition: Given an index set I, a consistent constraint set X in {xi}iI and a 

function f, Xargmax(f(x)) is a solution vector that is a solution to Xmax(f(x)), and 
Xargmin(f(x)) is a solution vector that is a solution to Xmin(f(x)). 

Note that argmax and argmin need not be unique. The feasible box (i.e., the set 

of feasible variable assignments) can be calculated if the constraint set is consistent. 

The feasible box is a concept that in each dimension signals which parts are infea-

sible within the constraint set. Intuitively, the feasible box represents a conservative 

extension of the solution set of a set of constraints. 
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Definition: Given an index set I and a consistent constraint set X in {xi}iI, the set 

of optimum pairs {Xmin(xi),
Xmax(xi)}iI is the feasible box (orthogonal hull) of 

the set and is denoted Xmin(xi),
Xmax(xi)I. 

This feasible box represents upper and lower probabilities if X consists of prob-

abilities and upper and lower values if X consists of values. For convexity rea-

sons, the entire interval between those extremal points is feasible. Using this con-

cept, an application program can display to the user which statements are incom-

patible or which parts of intervals are incompatible with the rest of the statement 

set. Hence, at all times, an application program can maintain a consistent model of 

the user’s problem in collaboration with the user. 

There are two types of constraint sets (c-sets), probability c-sets and value c-sets. 

The smallest c-set unit is the event node c-set, which collects all probability state-

ments made regarding a specific event node in an r-tree. 

Definition: Given an r-tree T = I,N,E,rand an event node ni, consider the set Ci 

of disjoint and exhaustive consequences of the event (children nodes), user event 

statements in {pj}jCi, and a discrete, finite probability mass function :nj[0,1] 

over Ci. Let pj denote the function value (nj).  obeys the standard probability 

axioms, and thus pj[0,1] and j pj = 1 are default constraints. Then the event 

node c-set Pi is derived from the set of user range and comparative statements 

with the following content. 

 A feasible box ak,bk, kCi, which represents the user and default range 

constraints : [0,1]i kk C p   . 

 All user comparative constraints. 

 The normalisation constraint 1
i

k

k C

p


 . 

Thus, the c-set transforms statements into linear constraints while maintaining the 

same meaning. A c-set is more convenient to handle than a pure set of statements. 

An event node c-set characterises a set of discrete probability distributions. The 

next aggregation level is that of a probability c-set, which collects together all prob-

ability statements belonging to all nodes in the same tree. 
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Definition: Given an r-tree T = I,N,E,r with all event nodes ni, iII. Then the 

probability c-set P is all event c-sets Pj combined, i.e. feasible boxes, normalisa-

tions, and user comparative statements.  

Requirements similar to those for probability variables are found for value vari-

ables. There are apparent similarities and differences between probability and value 

statements. The normalisation (k pik = 1) requires the probability variables of an 

intermediate node to sum to one. No such constraint exists for the value variables. 

Further, the value scale endpoints can be arbitrarily selected and need not be [0,1] 

as in the probability case. 

Definition: Given an r-tree T = I,N,E,r, consider the set NL of leaf nodes. Then a 

value c-set is derived from the set of user range and comparative statements. The 

user statements, together with the default statements : [0,1]L

kk I v   , form the 

c-set constraints in the following way. 

 A hull ak,bk, kIL, which represents the user and default range constraints. 

 All user comparative constraints. 

Similar to probability c-sets, a value c-set characterises a set of value functions. The 

statements are transformed into a set of linear constraints. Using the above concepts 

of constraint and c-set, a decision situation is modelled by a decision frame. To 

begin with, each alternative is represented by a tree frame. 

Definition: Given a decision alternative, statements are made about the probabili-

ties of the events as well as the values of the consequences. A tree frame is a 

structure T,P,V containing the following representation of the alternative: 

 A rooted tree T = I,N,E,r with index set partitions II and IL, and, for each 

iII, the child index set Ci. 

 A probability c-set P in variables {pi}, iI\{r}, representing all probability 

statements in the form of a feasible box and constraints. 

 A value c-set V in variables {vi}, iIL, representing all value statements in 

the form of a feasible box and constraints. 

All alternatives are modelled in the same structure. This structure (the decision 

frame) fully represents the entire decision problem, and all evaluations are made 
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relative to it. The probability and value c-sets, together with structural information, 

constitute the decision frame. 

Definition: Given a probabilistic decision situation with m alternatives, a decision 

frame is a structure m,F, F = {Fi} for i{1,...,m}, where Fi = Ti,Pi,Vi is a tree 

frame for alternative Ai. Thus, the decision frame contains, for each alternative, a 

decision tree structure and a tree frame. 

Now that the representation structure is defined, the next item is algorithms for 

computing upper and lower bounds for the expected value in the tree, i.e. optimisa-

tion of sums of products derived from the tree structure. The primary evaluation 

rule is based on the expected value. Since neither probabilities nor values are fixed 

numbers, evaluating the expected value yields multi-linear objective functions 

(with bilinear functions as a special case for one-level trees). Evaluate the expected 

value of an alternative given a decision frame m, {Ti,Pi,Vi}, i.e. 

EV(Ai) = 
0 2 11

1 1 2 1 2 2 1 1 2 2 1 1 2 2 1

1 2 1

1

1 1 1 1

... ... ... ...
i i ii m m

m m m m m m m m

m m
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ii ii i ii i i i ii i i i i ii i i i i

i i i i

p p p p v
 

     

   

    ,  

where ... ...jip , j{1,…,m} denote probabilities in Pi and ... ...1jiv  denote values in Vi. 

Optimisation of such non-linear expressions subject to linear constraints (the prob-

ability and value constraint sets) are described in (Danielson, 1997).  

The contraction is a generalised sensitivity analysis to be carried out in an arbi-

trary number of dimensions. In non-trivial decision situations, when an information 

frame contains numerically imprecise information, the different principles sug-

gested above are often too weak to yield a conclusive result. Often, a far too 

crowded set of candidates is received. One way to proceed could be to determine 

the stability of the relation between the consequence sets under consideration. A 

natural way to investigate this is to consider values near the boundaries of the in-

tervals as being less reliable than more central values due to interval statements 

being deliberately imprecise. This is taken into account by measuring the dominated 

regions indirectly using the concept of contraction. 

The principle of contraction is motivated by the difficulties of performing sim-

ultaneous sensitivity analysis in several dimensions at the same time. It can be hard 

to gain a real understanding of the solutions to large decision problems using only 
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one-dimensional analyses since different combinations of dimensions can be criti-

cal to the evaluation results. Investigating all possible such combinations would 

lead to a procedure of high complexity in the number of cases to investigate. Using 

contractions, this difficulty is circumvented. The contraction avoids the complexity 

inherent in combinatorial analyses. However, it is still possible to study the stability 

of a result by gaining a better understanding of how important the interval boundary 

points are. By co-varying the contractions of an arbitrary set of intervals, it is pos-

sible to gain much better insight into the influence of the structure of the information 

frame on the solutions. Both the set of intervals under investigation and the scale of 

individual contractions can be controlled. Consequently, a contraction can be re-

garded as a focus parameter that zooms in on central sub-intervals of the full state-

ment intervals.  

Definition: X is a base with the variables x1,…,xn, π  [0,1] is a real number, and 

{πi  [0,1] : i = 1,…,n} is a set of real numbers. [ai, bi] is the interval correspond-

ing to the variable xi in the solution set of the base, and k  = (k1,…,kn) is a con-

sistent point in X. A π-contraction of X is to add the interval statements {xi  

[ai+π·πi·(ki–ai), bi–π·πi·(bi–ki)] : i = 1,…,n} to the base X. k  is called the contrac-

tion point (or focal point). 

By varying π from 0 to 1, the intervals are decreased proportionally using the 

gain factors in the πi-set, thereby facilitating the study of co-variation among the 

variables. This is a form of sensitivity analysis, which is described in more detail in 

(Danielson, 1997). In order to assess the properties of a frame, computational meth-

ods are required that can determine whether a given base has a particular property 

or not. One of the most fundamental components is a way of determining con-

sistency in a base. Since the base consists of a linear system of inequalities, a natural 

candidate area for an algorithm is linear programming. 

The area of linear programming (LP) was formed in the 1940s and has been a 

large and lively area of research ever since. It deals with the maximising (or mini-

mising) of a linear function with a large number of likewise linear constraints in the 

form of weak inequalities. Research efforts in the field are partly focused on devel-

oping clever algorithms for fast numerical computations. This chapter assumes that 

the reader is familiar with the basics of LP in general and with the Simplex method 
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in particular. Those unfamiliar with these subjects may refer to any standard text-

book on the subject, e.g. [BHM77, C83]. The LP problem is the following optimis-

ing problem: 

max f(x) 

when Ax ≥ b 

and x ≥ 0 

where f(x) is a linear expression of the type k1x1 + k2x2 + … + knxn, Ax ≥ b is a 

matrix inequality with rows a11x1 + a12x2 + … + a1nxn ≥ b1 through am1x1 + 

am2x2 + … + amnxn ≥ bm, and x ≥ 0 are the non-negativity constraints xi ≥ 0 for 

each variable. Amongst all feasible points, the solution to f(x) is sought that has the 

highest numerical value, i.e. the best solution vector x, the components of which 

are all non-negative and satisfy all constraints. A minimum can be searched for by 

negating f(x). 

Consistency 

The first algorithm is a procedure for determining whether a base is consistent or 

not. A base is consistent if any solution whatsoever can be found to the set of inter-

val constraints. Note the similarities with the LP problem formulation. Let there be 

m interval constraints in the base. By introducing new variables y1,…,yk, with 

k = 2·m, to the consistency problem, it can be reformulated as 

min (y1 + … + yk) 

when Ax ≥ b 

and x ≥ 0, y ≥ 0 

where each of the interval constraints ai1x1 + ai2x2 + … + ainxn  [a, b] is trans-

formed into corresponding inequalities ai1x1 + ai2x2 + … + ainxn + y2i-1 ≥ a and 

ai1x1 + ai2x2 + … + ainxn – y2i ≤ b. If the obtained minimum of y1 + … + yk has 

the value zero, then a solution has been found that does not contain any yj. Remov-

ing the yj’s, the resulting solution vector x is indeed a feasible solution, i.e., the base 

is determined to be consistent. If the minimum of y1 + … + yk is positive, then the 

optimal values of the yj’s are larger than zero, i.e. at least one of the yj’s is necessary 

to keep the base consistent. Since the yj’s were added to the base, the problem itself 
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has no solution. Hence, the base is inconsistent. This forms the algorithm for deter-

mining consistency in a decision frame by applying it to the probability and value 

bases. 

Orthogonal Hull 

Another important property of a base is the orthogonal hull. According to the defini-

tion, in order to calculate the hull, find the pairs Xmin(xi),
Xmax(xi)n, i.e. finding 

minima and maxima for single variables in the base. First, a consistent point is de-

termined by employing the procedure above. A search then begins from that point 

for the minimum and maximum of each variable in turn by forming LP problems 

with that variable as the objective function. For convexity reasons, the entire inter-

val between those extremal points is feasible. If the base is consistent, the orthogo-

nal hull can be calculated. From the two properties consistency and orthogonal hull, 

most of the other ones follow from less demanding computations. 

Evaluation Algorithms 

The problem addressed in this section is how to compare the different consequence 

sets computationally using the methods of the previous chapter. The computational 

pattern that reoccurs several times in that chapter and needs to be solved fast in long 

sequences is PVmax(∆ij) and PVmin(∆ij). The optimisation of general ∆ij-type of 

expressions as they appear in Chapter 5 is a demanding computational task as soon 

as the problem to solve is above toy size. In most cases, however, the expected 

value rule is employed, making the task less demanding from a computational point 

of view. In this section, it is assumed that the expected value is being used. Then, 

the general PVmax(∆ij) turns into PVmax(∑k pik – ∑k pjk) for first order ∆-domi-

nance such as 1SE and security levels, and into PVmax(∑k pik·vik – ∑k pjk·vjk) for 

second order ones such as 2SE or NE.  

First Order Dominance 

For first order dominance, the evaluation expressions are of the form 
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P
max pik

kKi










 or 

  

P
max pik

kK i

  p jk
kK j
















 (or corresponding 
P

min) 

for some index sets Ki or index set pairs (Ki,Kj)(d) respectively. These maximisa-

tion problems map directly onto LP since it is possible to identify the linear f(x) 

with ∑k pik or ∑k pik – ∑k pjk and note that Ax ≥ b is the probability base P. The 

solution to the problem is thus obtained by running a suitable LP solver such as 

Simplex described later in the chapter. This is an efficient solution to first order 

problems. 

Second Order Dominance 

For second-order dominance, the expressions are more complicated. They involve 

non-linear elements in the form of bilinear terms pik·vik. The optimisation problems 

PVmax(∑k pik·vik) and PVmax(∑k pik·vik – ∑k pjk·vjk) cannot be solved by a simple 

application of an LP solver even if the P- and V-bases are independent and still 

consist of only linear expressions. The objective function is ∑k pik·vik – ∑k pjk·vjk 

= pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 – (pj1·vj1 + pj2·vj2 + … + pjmj
·vjmj

). This is a 

bilinear expression with all terms of the form pik·vik. There is one such expression 

together with many linear inequalities. Thus, it is an optimisation problem with a 

bilinear objective function and a system of linear inequalities as constraints. It will 

be called a bilinear programming problem with ±1 term constants (a BLP1 problem 

for short).  

Two alternative algorithms for use in an interactive environment are proposed. 

The bilinear objective function is an instance of quadratic objective functions, and 

thus the general BLP1 is solvable with quadratic programming (QP) methods. A 

QP-based one is the most general, able to solve all BLP1 problems, but it is not as 

fast as desired for interactive use for larger decision problems. The other algorithm 

is LP-based and is well-suited for user interaction. Since the bilinear objective func-

tion is quadratic, the first natural candidate area for a solver algorithm is quadratic 

programming. 
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Quadratic Programming 

The theory of QP can be found in any standard textbook on non-linear optimisation. 

Here, only the top-level procedure for searching quadratic optima is considered. 

The general QP problem with both equalities and inequalities in the constraints is 

(QPI) max (xTQx + cTx) 

  when Ax ≥ b 

where A is a m  n matrix with linearly independent rows, Q is a symmetric n  n 

matrix, and c is a vector in Rn. The expression xTQx is a quadratic form and can 

contain all possible quadratic terms. 

Since the objective function is quadratic, the theory of linear programming as 

discussed above does not apply. Even though a method similar to Simplex was orig-

inally devised by Danzig and Wolfe to solve QP, most methods today use factorised 

matrices. For any given solution the inequality problem QPI can be considered a 

problem with only equalities (QPE), namely all weak inequalities satisfied without 

slack. Since the other inequalities are not active at that solution point they need not 

be considered locally. This reasoning leads to the active set strategy, a well-known 

technique within non-linear programming. One of the problems with the active set 

is that its members at any given step are hard to determine in advance. This means 

resorting to a guessing strategy, where a choice is made without enough information 

and corrected later on should the choice be proven unsuitable. QPE problems can 

be solved using a number of standard methods such as Lagrange methods or null-

space methods, depending on matrix sparsity, stability requirements, and other cri-

teria. The BLP1 problem maps well onto QPI since there is one second-order non-

linear expression as the objective function and a larger number of linear constraints 

in the probability and value bases. The bilinear objective function is a special case 

of a quadratic function where most of the entries in the Q matrix are zero. This 

forms the basis for the general QB-Opt algorithm. 

Observation: Given a decision frame C,P3,V3, 
PVmax(ij) = max (xTQx + cTx) 

with ij as xTQx, 0 as cTx and PV as Ax ≥ b. 
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The QPE is computationally fairly demanding, and QPI, being an iterative se-

quence of QPEs, is even more so. Since QPI often does not admit interactive re-

sponse times, it would be preferable to use an LP-based solver instead. This is pos-

sible in most cases using PB-Opt below. Together with QB-Opt, it forms a solver 

stack.  

Probability Bilinear Optimisation 

The LP-based algorithm described is the probability bilinear optimisation, PB-Opt. 

For PVmax(∑k pik·vik) it solves the general BLP1 problem for C,P3,V2-frames 

while for PVmax(∑k pik·vik – ∑k pjk·vjk) it solves all cases where there are no com-

parative constraints between the consequence sets involved in the calculation, either 

directly or indirectly. To begin with, expressions of maximal and minimal proba-

bilities are introduced. 

Definition: Given a decision frame C,P,V, 

VEi
max

 is 

  

p ik  bik
k1

mi

 , where bik = Vmax(vik). 

VEj
min

 is 

  

p jk  bjk
k1

mj

 , where bjk = Vmin(vjk). 

Vij is VEi
max

 – VEj
min

. 

The last difference was formed from two linear expressions in only probability var-

iables. The main proposition for PB-Opt is now stated as follows.  

Proposition: Given a decision frame C,P3,V2. If none of the comparative con-

straints in V involve variables from different Ci’s, then PVmax(ij) = Pmax(Vij) 

for any pair Ci and Cj. 

Proof: Let (bi1,…,bimi
) and (bj1,…,bjmj

) be as in the definitions of VEi
max

 and 
VEj

min
 above. For all feasible vectors (pi1,…,pimi

), (pj1,…,pjmj
), (vi1,…,vimi

), and 

(vj1,…,vjmj
) VEi

max
 ≥ ∑k pik·vik and VEj

min
 ≤ ∑k pjk·vjk. It follows from 

bik = Vmax(vik) and bjk = Vmin(vjk) and from pik ≥ 0  k  {1,…,mi} and pjk ≥ 0 

 k  {1,…,mj}. This implies Vij ≥ ∑k pik·vik – ∑k pjk·vjk. 
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Ci contains mi consequences. Given two integers 1 ≤ k,l ≤ mi, assume 

bik = Vmax(vik). Then for vil, either i) there is no comparison vil – vik  [a,b] in 

V, in which case vil is independent of vik, or ii) there is a comparison vil – vik  

[a,b]. For case ii), the constraint can be written ii a) vil ≥ a + vik and ii b) vil ≤ b 

+ vik. In ii a) vik does not constrain the maximisation of vil, and in  

ii b) vik = bik maximises vil. Thus vik and vil can be independently maximised and 

(bi1,…,bimi
) is a feasible vector as is (bj1,…,bjmj

) by a similar argument. Since 

there are no constraints vik – vjl  [c,d] in V for different Ci and Cj, each bik in 

(bi1,…,bimi
) and each bjk in (bj1,…,bjmj

) can be chosen within a consequence set 

independently of the other sets.  

This justifies the basis for the PB-Opt algorithm. The rest of the algorithm al-

most suggests itself. It searches for the optimum Pmax(Vij) by means of an LP 

algorithm such as Simplex. The proposition then guarantees that PVmax(ij) can 

be determined by calculating Pmax(Vij) instead provided the precondition is met. 

Similarly, PVmax(∑k pik·vik) can be found by searching for an LP solution in-

stead. 

Second-Order Computations 

The DELTA Method is a distribution-free decision analysis method for the handling 

and evaluation of decision and risk trees (Danielson, 1997). It has thereafter in 

20012002 been extended from probabilistic decision situations also to cover deci-

sions under multiple criteria. Decision alternatives are evaluated by so-called con-

tractions of the intervals combined with several complementary evaluation rules. 

The advantage of a distribution-free approach is the generality and freedom from 

assumptions that it allows. However, a disadvantage is the unintuitive interpretation 

of the results of a contraction. In order to alleviate that problem, an additional anal-

ysis method is introduced in this report, based on a belief mass interpretation of the 

output intervals from DELTA. Each input and output interval consists of a lower 

bound, an upper bound, and a focal point. These three points are interpreted as pa-

rameters for belief distributions (Dirichlet distributions for probabilities and criteria 

weights, triangle distributions for values). 
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A key observation in the DELTA method is that the belief in points closer to the 

endpoints of the intervals is lower than the belief in more central points. This is the 

reason for the contraction procedure above. The same observation underlies the 

BEDA method, but it is effectuated differently – by assigning explicit distributions 

of belief on the intervals. The distributions used for expressing beliefs are well-

known distributions from statistics: the Dirichlet distribution for probabilities (since 

they need to sum to one following Kolmogorov’s axiom system) and the triangle 

and uniform distributions for utilities/values, the choice depending on whether there 

are two or three points defining an interval. The properties of both Dirichlet and 

triangle distributions are well described in (Kotz and van Dorp, 2004). To see how 

it works, begin by revisiting the expression for the expected value: 

EV(Ai) = 
0 2 11
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To evaluate this expression, and thus arrive at an analysis of the decision situation, 

employ calculation methods for the two operators addition and multiplication. The 

addition operator is handled by ordinary convolution, i.e. if h is the distribution over 

a sum z = x + y whose components have distributions f(x) and g(y), then h(z) is 

ℎ(𝑧) =
𝑑

𝑑𝑧
∫ 𝑓(𝑥)𝑔(𝑧 − 𝑥)𝑑𝑥

𝑧

0

. 

The multiplication operator is treated analogously. Using the same assumptions as 

above, if h is the distribution over a product z = x ∙ y, h(z) is found by letting 

𝐻(𝑧) = ∬ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = ∫ 𝑓(𝑥)𝐺(𝑧 𝑥⁄ )𝑑𝑥
1

𝑧

𝑧 𝑥⁄

0

1

0
𝛤𝑥

 

where G is a primitive function to g, Γz = {(x,y) | x∙y ≤ z}, and 0 ≤ z ≤ 1. Then h(z) 

is the corresponding density function 

ℎ(𝑧) =
𝑑

𝑑𝑧
∫ 𝑓(𝑥)𝐺(𝑧 𝑥⁄ )𝑑𝑥

1

𝑧

= ∫
𝑓(𝑥)𝑔(𝑧 𝑥⁄ )

𝑥
𝑑𝑥

1

𝑧

. 

In theory, the products are calculated and the abovementioned convolution of two 

densities then effectuates the summations of the products. This combination of op-

erators computes the distribution over the expected utility. In practice, however, 
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these calculations are very complicated for a decision-analytic tool to carry out, 

especially when additional requirements are added, such as asymmetry in the input 

distributions and truncated distributions due to the input intervals being narrower 

than the default [0, 1] range assumed in the standard theory. 

The evaluation method in BEDA is based on the principle of going concern 

(PGC). It is the same PGC observation that enables the use of probability theory as 

a risk calculus. The probability of an event occurring is the proportion of times it 

occurs if the event is repeated an infinite number of times. In using probabilities for 

modelling real-life events, the approximation is used that the probability best rep-

resents the risk involved. For this approximation to be reasonable, several events 

need to take place for the real-world outcomes to cancel out in the sense that they, 

on average, tend to the probability. This is the assumption of going concern, and 

the approximation is viable in most decision situations, which is why probability 

calculus is accepted for use in this way. The same PGC reasoning applied to distri-

butions involves the central limit theorem and the law of large numbers in statistics. 

This leads to the well-founded approximation that the total distribution of expected 

value over a large number of decision situations will tend to the normal distribution. 

Using this approximation, the evaluation in the BEDA method amounts to finding 

parameters for a suitable approximately normal distribution. Two factors slightly 

complicate matters. i) The input distributions are seldom symmetric in the sense 

that their mean values are not midway between the lower and upper boundaries of 

the intervals. And even if they were, the multiplication operator’s non-linearity still 

yields an asymmetric result. ii) The lower and upper bounds themselves introduce 

truncations into the resulting distributions, leading to non-standard outcomes. This 

eventually turns the BEDA evaluation into a moment calculus using the NEMO (net 

moment) technique. NEMO includes all moments that have a noticeable impact on 

the end result and excludes those that have negligible impact to save computation 

time. For a detailed description of BEDA and NEMO, refer to the documentation 

on the UNEDA webpage.  

 

This chapter builds on (Danielson, 1997, Ch.6) 
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Universal Engine for Decision Analysis 

The book has been developed in parallel with the software platform UNEDA (Uni-

versal Engine for Decision Analysis) over a long period of time. A fair amount of 

material connected to UNEDA has never been published other than on the author’s 

university webpages. Those documents describe aspects of prescriptive decision 

analysis that have been incorporated into the UNEDA computational engine library. 

The UNEDA software platform is an open-source library, free to use for any pur-

pose, academic and non-profit as well as (from June 6, 2025) commercial. The soft-

ware library is found at the GitHub repository 

github.com/uneda-cda/UNEDA 

and the documentation is found at a link in that repository. The latest release of the 

software platform can also be found at the DOI link 

doi.org/10.5281/zenodo.15114623. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
  

https://github.com/uneda-cda/UNEDA
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Foundations of Computational Decision Analysis begins with the established ba-
sics of classic probabilistic decision theory and builds toward a critical assessment 
of multi-criteria decision analysis (MCDA). This book is grounded in the conviction 
that decision-analytic methods must rest on solid scientific foundations, logical 
coherence, empirical testability, and conceptual clarity to enable transparency. 

The first part revisits the roots of decision theory, examining subjective probabil-
ities, utility, and the fundamental role of value in rational choice. It disentangles 
common confusions, highlights core assumptions, and reconstructs the theory 
with both philosophical care and real-world decision problem relevance. 

The second part turns to MCDA, the rapidly expanding family of methods de-
signed to guide the analysis of complex decisions with multiple objectives. Rather 
than treating these as a neutral set of tools, the book examines them as scientific 
constructs and potential guides, asking not just how they work, but also why, 
when and whether they should be trusted as support in the face of uncertainty.  

The final part deals with computations and a software platform for enabling ap-
plications for modern decision analysis, with special attention to real-world im-
precision and the need for systematic sensitivity analyses. 

This is a book for readers who want more than procedural knowledge. It is for 
those who seek conceptual depth, methodological clarity, and logical reasoning 
in the design and evaluation of decision-analytic methods. A must-read for deci-
sion scientists, analysts, and anyone serious about the logic of choice. 
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