

Computational

Decision Analysis

Mats Danielson

DECIDE Research Group
Dept. of Computer and Systems Sciences

Royal Institute of Technology

Electrum 230

SE-164 40 KISTA

SWEDEN

Phone: +46 8 16 1679

Fax: +46 8 703 9025

email: mad @ dsv.su.se

URL: http://www.dsv.su.se/~mad

Ph.D. Thesis

Dept. of Computer and Systems Sciences

Royal Institute of Technology (KTH)

Stockholm, Sweden

ISBN 91-7153-613-2

Printed by Akademitryck, Edsbruk, 1997

To Elin and Martin

iv

Acknowledgements
First of all, I would like to thank the three members of my thesis

committee, who have all been valuable mentors. My formal supervisor,

Prof. Carl Gustaf Jansson, has over the years shown great patience and

encouragement during my sometimes seemingly homeless graduate

studies, as I drifted between subjects. He finally guided me into a safe

haven. My thesis supervisor, Docent Per-Erik Malmnäs, Dept. of

Philosophy, Stockholm University, made this thesis possible by formu-

lating the original research problem which this work took as its starting

point. My thesis co-supervisor, Dr. Love Ekenberg, IIASA, Vienna, has

always been available for discussions and has been of great help with his

deep insights into both decision theory and life as a graduate student,

having wandered the same road a couple of years before me. Sharing an

office with him speeded up this work considerably. Dr. Magnus Boman

did a great deal of proofreading when the author became completely

blind to his writing mistakes. Johan Walter, M.Sc. student, also read

parts of the manuscript and co-developed a graphical interface to the

DELTA Decision Tool. I would also like to thank Eva Jansson and the

other administrative staff at DSV for keeping the project afloat.

 Stockholm, February 1997

v

Contents

Preface 1

PART I – INTRODUCTION

Chapter 1 Decision Methods 15*

Chapter 2 Working with DELTA 35

Chapter 3 The DELTA Decision Tool 47

PART II – THE DELTA METHOD

Chapter 4 Representation 67

Chapter 5 Evaluation 91

Chapter 6 Optimisation 121

PART III – CONCLUSION AND APPLICATIONS

Conclusion 155

Appendix A Multi-Agent Systems 167

Appendix B Risk Management 185

References 205

Lists 213*

Index 221*

* Chapters missing in the PDF reprint since the files could not be found.
 The short unnumbered part introductions could not be found either.

vi

If we have been accustomed to deplore the spectacle […] of a workman

occupied during his whole life in nothing else but the making of knife

handles or pins’ heads, we may find something quite as lamentable in

the intellectual class, in the exclusive employment of the human brain

in resolving some equations, or in classifying insects. […] It occasions

a miserable indifference about the general course of human affairs, as

long as there are equations to solve and pins to manufacture.

 Auguste Comte

Preface
Methods for decision-making are of prime concern to any enterprise,

even if the decision processes are not always explicitly or even

consciously formulated. All kinds of organisations must continuously

make decisions of the most varied nature in order to survive and attain

their objectives. A large part of the time spent in any organisation, not

least at management levels, is spent gathering, processing, and com-

piling information for the purpose of making decisions supported by

that information. Decision-making has many aspects and this thesis

focuses on one of them – modelling and evaluating possible courses of

action given imprecise information.

The idea of using computers to support decision-making has been

around for a long time, almost as long as computers have been available

in any usable form. Some of the more prominent ideas took the form of

research in artificial intelligence (AI) and operational research (OR).

From a fairly close relationship at the outset, that part of AI research

took the more symbolic path while OR stayed on the numerical side as a

branch of applied mathematics. Naturally, as computers became an

inseparable part of many modelling attempts, the areas of computer

science and information systems have also contributed indirectly to

numerous approaches. During many years of research, a number of

interdisciplinary sub-fields have emerged as responses to decision

needs, each addressing its particular class of problems. The distinction

is not sharp and ideas from more than one sub-field as well as from

other sources can be found in some approaches.

COMPUTATIONAL DECISION ANALYSIS

2

The area of decision tools contains approaches dealing with mecha-

nising the structuring and analysis of decision situations. One of the

ideas is to model the situations according to some normative model of

rational decision behaviour. Presuming the decision-maker to be

rational, the mechanical model can devise suitable courses of action

given the supplied information. This approach does not require the tool

to possess any degree of specialised expertise in the target area of the

decision. Tools can be analytic, in the sense that they handle a smaller

number of alternative courses of action and support the evaluation and

selection of those alternatives. Synthetic tools, on the other hand,

handle a larger number of alternative courses of action, and instead

support the design of problems by, for example, generating alternatives.

The two close areas of decision support systems and management

information systems partly deal with collecting large amounts of

information, predominantly in professional organisations. The collected

information is then subject to statistical and other quantitative analyses

in order to extract and compress information to aid management in

making better decisions. There is a focus on which information to

extract, how to extract it, and in which form to present it.

In later years, there has been a growing interest within the field of

artificial intelligence (AI) in the well-founded area of decision theory,

which has merged with other uncertainty techniques into the sub-field

of uncertain reasoning [SP89]. In the 1980s the area of knowledge-based

systems (KBSs) grew strong within AI. The idea with KBSs is to supply

the user with a package of specialist knowledge in a particular area that

can be consulted when facing problems that require expertise beyond

the decision-maker’s own level. Using AI techniques for knowledge

representation, search, and inference, a KBS is supposed to act as the

expert consultant in a decision situation and supply the decision-maker

with professional advice.

PREFACE

3

Another AI area, probabilistic reasoning, deals with automated

reasoning in domains represented by probabilistic networks.1 The

reasoning can be divided into an inference part and a decision part. The

inference part is the larger one in the sense that more research efforts

have gone into it so far. It deals with inferring probabilistic support for

conclusions drawn from collected evidence. The decision part, which is

most closely connected to the topic of this thesis, consists of value

nodes present in the network. The expected values of those nodes

should be maximised subject to the constraints of the network in the

form of arcs between chance and decision nodes. One of the most

popular methods is the influence diagram technique. The diagrams are

used for evaluating decision situations arising in inference networks.

They combine inference and decision into one formalism, and they

offer space-saving techniques for representing elaborate probabilistic

graphs. The evaluation can be performed in various ways, classical ones

being to convert the diagram to a decision tree [HM84] or to transform

the diagram while preserving the expected value [S86].

Other AI techniques employed in various decision systems include

machine learning techniques such as inductive decision trees, neural

networks and genetic algorithms. Those are all good candidates for

automated decision systems since they have strong predictive abilities.

As methods for general decision analysis tools, they are less promising

since they do not offer enough insight into or exploration of the

decision problem. This might change, however, as the cross-fertilisation

between different approaches to solving decision problems continues.

Mechanising Decision Analysis
Why does anyone want to have a mechanical method for decision

analysis? Should not all decisions, at least by humans but possibly also

by AI systems, be based on experience, intuition, and sound judgement?

1 For a general introduction to probabilistic reasoning, see for example [N90, P91].

COMPUTATIONAL DECISION ANALYSIS

4

Many human decision-makers will undoubtedly react negatively to the

idea of being replaced by a computer program, and not without reason.

Management information systems of previous decades have not fulfilled

their promises to any great extent [MM73]. In this thesis, a decision

method called DELTA and belonging to the area of analytic decision

tools is presented. The purpose of the method is not to replace human

decision-makers with machines, nor to replace any AI techniques. On

the contrary, the objective is to increase the decision-maker’s (or

module’s) ability to make sound decisions. A framework in which to

express the decision problem and a clearly defined process helps in

understanding the decision situation. It also provides a good overview

of the decision material.

Given a decision situation and some statements of probabilities and

values, the method will indicate preferred ways to act. Moreover, it may

point out weaknesses in the underlying information. The approach is

interdisciplinary and draws on ideas from AI and OR as well as from

statistical decision theory. It allows the decision-maker to be as

deliberately imprecise as he feels is necessary and provides him with the

means for expressing varying degrees of imprecision in the input

statements. This leads to a more natural relationship between the

decision-maker and the support tool.

In many attempts to find general methods for solving different

decision problems, one of the common denominators has been the

imprecise nature of the input data. Regardless of the method employed,

some kind of sensitivity analysis must be carried out in which the

proposed solution is exposed to various what-if tests. Traditionally,

these tests are done in a low-dimensional fashion, studying one or at

best a few of the input variables at a time. This yields only limited

insight into the problem since the full impact of imprecision on the

solution cannot be appreciated. A feature of the DELTA method is an

automated way of carrying out multi-dimensional analyses of the

obtained results.

PREFACE

5

In addition, it should be noted that the decision-maker is in control

of the flow of events. He can choose to say as much or as little as he

wishes about each particular piece of information. He can also make his

statements in any order since the method is not the controlling part of

the interaction process. The method acts instead as an aid, presenting

evaluations of alternatives and guiding the decision-maker in his search

for good courses of action. This contrasts with many KBSs, which often

control the flow of interaction and contain expert information the user

is not supposed to possess. A traditional KBS often draws conclusions

and makes decisions over which the user is not in full control and may

not even fully understand. The decision method proposed in the

following chapters encourages an exploratory style of working, which

seems to correspond well with the way decision-makers reason without

the aid of computer tools. One of the objectives is therefore to provide

a tool that supports rather than controls the intended user, and that

makes the greatest possible use of his own expertise in the target area.

For human decision-makers, the target is often complex. Such decisions

are made in the heads of the decision-makers, and the role of a tool is

more to present an analysis and offer simulations or sensitivity analysis

to aid the understanding of the problem and the decision situation.

Contributions
The seeds for the research problems in this thesis were originally dis-

cussed by Per-Erik Malmnäs in his Ph.D. thesis [M81] and further

elaborated by him during the 1980s. Most of the research for this thesis

has been carried out within the DECIDE Research Group. In the early

1990s, the µ decision method was suggested by Per-Erik Malmnäs

[M90], refined by Love Ekenberg in his Ph.D. thesis [E94], and imple-

mented as the µ decision solver by the author at around the same time

[D93]. Since then, another approach has been developed by the author

into the comprehensive and fully computational DELTA method pre-

sented in this thesis.

COMPUTATIONAL DECISION ANALYSIS

6

The research was carried out at the Department of Computer and

Systems Sciences (DSV), KTH, during a period of more than three and a

half years from April 1993 to November 1996. The work has been

partially supported by NUTEK. It started in an effort to increase the

speed of decision evaluation algorithms and ended up becoming a new

computational framework for decision analysis [D97b].

Main developments have taken place within the areas of represent-

ing knowledge, determining properties of bases (collections of con-

straints), evaluating consequence sets, and computing the results. The

thesis contributes to previous research, within and outside of the group,

in at least the following ways.2 Perhaps the major contribution lies in

presenting a framework and a complete, implemented method for

decision analysis using imprecise input data. Most other similar efforts

either concentrate more on representation than on evaluation or are

never fully implemented. Without implementations, only small

problems can be handled and studied, and it is not easy to assess such

attempts. In a recent survey of tools available from labs worldwide in a

closely related field, multiple criteria decision aids, Olson finds only a

few tools that handle imprecise statements at all [O96].

The DELTA method includes a number of established ideas and

concepts, but many are new or generalised. The following more detailed

account tries to highlight some of the advancements. The method has a

novel representation using the concept of interval statements, which

greatly simplifies the presentation. In representing such statements, the

introduction of core estimates in addition to constraints is new and

enables a much clearer usage of this kind of representation in allowing

the expression of imprecision in several ways. Using only constraints is

often not enough – they result in too wide, overlapping evaluation

results. Core estimates admit a more powerful representation by

allowing both positive and negative statements. Some other represent-

tation concepts have been reworked since [D95], such as the orthogonal

2 All contributions are discussed relative to terminology partly introduced later.

PREFACE

7

hull. The classification based according to their computational demands

is also new, enabling a hierarchy of solver algorithms to be set up. New

concepts for bases include their symmetry and skewness, and the

symmetric hull as well. This facilitates different views on the input data.

The concept of proportion [M90, E94] is replaced by the new concepts

of expansion and contraction [D97b], enabling sensitivity analyses of

many input statements at a time. Many statements made by decision-

makers are given new interpretations (translations).

The evaluation rules of collections of imprecise statements usually

concentrate on some notion of admissibility, the classical standpoint

being summarised in for example [L59]. The suggestions by some well-

known researchers are of this kind [L74, GS82], while others have taken

the concept further, for example by extending it with a parameter into t-

admissibility [M94a, E94]. This thesis takes a broader view in trying to

generalise and integrate many known numeric decision rules into the

computable concept of ∆-dominance. Further, a new set of selection

rules is made possible by the introduction of the concepts of strong,

marked, and weak dominance. Those concepts together with expan-

sions and contractions of the bases enable a family of evaluation

principles.

The evaluations would not be of much interest if they were not

efficiently computable, and one chapter is devoted to the optimisation

of linear and bilinear problems. The algorithms presented include the

solution of important classes of the bilinear programming problem by

reduction to linear programming problems. Problems of determining

properties of collections of decision-maker statements are mapped onto

the well-known mathematical theory of linear programming. In order to

evaluate the various properties, the Simplex method is employed. In

general, Simplex research is focused on solving very large systems of

inequalities, and not much research has gone into using it for solving

long sequences of smaller problems. This thesis focuses on this more

COMPUTATIONAL DECISION ANALYSIS

8

unusual problem setting and evaluates different techniques originally

proposed for solving standard linear programming problems.

Implementations of the algorithms for many versions of the DELTA

method were made and they were run on several machines. They

resulted in the DELTALIB library with a layered architecture, see Figure

3.1 in Chapter 3, where modules can be exchanged for the purpose of

testing new algorithms. Implementing algorithms for those modules led

to the completion of a solver package subsequently used in real-life

applications. Many insights into what to improve were gained from that

effort. For the current DELTA solver, an extensive series of experiments

was conducted with the aim of finding efficient algorithms for use on a

wide range of computers. Some of the measurements were reported in

[D95]. The current implementation, comprising some 15,000 lines of

source code, has been written in portable ANSI-style C using an object-

oriented design method to make a transfer to almost any operating

system possible. The Simplex method in particular required many

alternative implementations, as it is sensitive to the relative speed of

various elementary computer instructions.

Publications
In my licentiate thesis [D95], the research directions were stated but the

results were incomplete. Especially the properties of the representation

(Chapter 4) and the evaluation rules (Chapter 5) were partial at that

time, covering only some cases of the now much more complete

DELTA method. The licentiate thesis was written in late 1994 and early

1995, and the work with the completion of a version of the method was

carried out during the rest of 1995 and the first three quarters of 1996.

The core of the licentiate thesis and some of the 1995 results were

submitted to the European Journal of Operational Research. The article

is accepted for publication and will appear in 1997 [DE97c].

PREFACE

9

Implementations of the algorithms of DELTA are collected into

DELTALIB. A decision tool (Chapter 3) built on top of the library was

presented at the IIASA Workshop on Advances in Methodology and

Software for Decision Support Systems in Vienna in September 1996.3

The presentation is available as a DSV report [D96].

The applications to distributed AI (multi-agent systems) are covered

in a series of articles that mix older ideas from Ekenberg’s Ph.D. thesis

with the newer DELTA method. There are two journal articles, one in

International Journal of Cooperative Information Systems in 1996

[EDB96], and one in Decision Support Systems International Journal,

accepted and to appear in 1997 [EDB97]. Appendix A is a revised

version of both papers, updated to discuss the DELTA application in

more detail.

The applications to risk management have been published in an

earlier article on computer security [ED95] and a more recent journal

article on general risk analysis in Scandinavian Insurance Quarterly 1996

[DEE96]. The latter describes a comprehensive risk analysis method

with DELTA as the evaluation tool. Appendix B is a translation and

development of that article.

Finally, in the section on further research in the Conclusion, one

direction is extending DELTA into the multi-criteria area. The first

attempt was described at one of the largest multi-criteria conferences in

January 1997 [DE97a]. Those results are not included in this thesis. Here

a decision model and decision analysis refer to decisions under a single

criterion. The author was also the grant receiver and project leader of a

NUTEK project using multi-criteria decision analysis in evaluating the

alternatives in a procurement of railway equipment [DE97b]. Due to the

nature of the project, the detailed results is classified information. They

are not publicly available and thus not included in this thesis. However,

the project report describes the method used and outlines the results.

3 IIASA is the International Institute for Applied Systems Analysis in Vienna.

COMPUTATIONAL DECISION ANALYSIS

10

Applications
The DELTA method and its predecessors have been used in a number

of different real-world applications. The word application itself can mean

at least two things in this context. In one sense, it can be taken to mean

applying the evaluation framework to different subject areas. Apart

from traditional decision analysis, this has been done successfully in a

number of cases, notably in the areas of multi-agent systems [EBD95,

EDB96a, EDB96b, EDB97], risk management [ED95, DEE96], and lately

multi-criteria decision making [DE97a, DE97b]. In another sense, it can

mean applying the proposed decision method to situations where

decisions are to be made. This has also been done in a number of cases

including choosing computer software packages,4 selecting national

policies for health care,5 assessing risks in vehicle electronics,6 and

procuring railway equipment (5 billion SEK, mentioned above).7

Thesis Structure
The thesis is divided into three main parts: Introduction, The DELTA

Method, and Conclusion and Applications. The first part makes up an

informal introduction to decision analysis in general and to the DELTA

method. Chapter 1 discusses some common decision models and

research methods, so as to have something with which to compare the

proposed approach. Chapter 2 is a brief introduction to a work process

involving the DELTA method, in order to point at one plausible use for

the method. Chapter 3 presents DDT – the DELTA Decision Tool –

intended for aiding human decision-makers in understanding their

decision problems.

4 Trygg-Hansa (Swedish insurance company) [D93, E94].
5 Socialstyrelsen (National Board of Health and Welfare), unpublished.
6 Volvo Personvagnar (Swedish car manufacturer), NUTEK project [DE97b].
7 Banverket (Swedish National Rail Administration), NUTEK project [DE97b].

PREFACE

11

The second part presents the method in detail and starts in Chap-

ter 4 with the structure of a decision problem and the knowledge

representation for the decision statements. The chapter also presents

general properties of bases. Following that, it discusses properties par-

ticular to probability bases and then to value bases. Finally, it suggests

translations of imprecise statements into constraints. In Chapter 5,

evaluation rules are investigated. First, evaluation rules in general are

discussed, starting with the expected value rule and then continuing

with some alternative rules. The unifying concept of ∆-dominance is

suggested as the evaluation principle for the DELTA method. Then

follows a section on techniques specific to collections of imprecise

statements. Chapter 6 deals with optimisation algorithms for the

method. It starts with linear programming for determining properties of

bases and continues with bilinear programming necessary to calculate

the results of the evaluation rules of the preceding chapter. The last

section of the chapter describes Simplex as it applies to the DELTA

solver. The proofs given in Part II are intended to convey the meaning

of and aid in understanding the DELTA method.

The third and last part starts with a summary and some pointers to

future research. Next, examples of applications of the method to other

areas are included in two appendices. Appendix A brings up the topic

of multi-agent systems and the applicability of DELTA to that area. The

other application, Appendix B, concerns the area of risk analysis as the

concept is understood within insurance and security. Finally, the thesis

ends with references, lists of definitions, examples, figures and tables in

the thesis, and an index.8

8 Minor language adjustments and corrections from the thesis errata sheet and the

thesis defence have been incorporated into the reprint.

COMPUTATIONAL DECISION ANALYSIS

12

And then one day you find

Ten years have got behind you

No one told you when to run

You missed the starting gun

You run and you run

To catch up with the sun

But it’s sinking

Racing around

To come up behind you again

The sun is the same

In a relative way

But you’re older

Shorter of breath

And one day closer to death

 – R. Waters

Working with DELTA
This chapter is an introduction to a proposed human decision work

process in which the DELTA method plays a central role. It is intended

to serve only as an informal overview, introducing ideas and termi-

nology enlarged on in Part II. The purpose is not to describe the

mathematical or computational machinery necessary, but rather to give

an intuitive overview of how the method works and of its relevance to

organisational decision-making. Another objective is to demonstrate

that the suggested method is realistic to work with.

A feature of the method is that the decision-maker has to make his

problem statements more visible than he would otherwise. This brings

about a number of advantages. First, he must make the underlying

information clear, and second, the statements can be the subject of

discussions with (and criticism from) other participants in the decision

process. Third, it can also be seen more clearly which information is

required in order to “solve” the problem and within which areas some

more information must be gathered before a well-founded decision can

be made. Fourth, arguments for (and against) a specific selection can be

derived from the analysis material. Fifth, the decision can be better

documented, and the underlying information, as well as the reasoning

leading up to a decision, can be traced afterwards. The decision can

even be changed in a controlled way, should new information become

available at a later stage.

COMPUTATIONAL DECISION ANALYSIS

36

Professional decision-makers in corporations as well as in public

organisations today often use rather simple decision models to aid

decisions. In many cases, decisions are made without employing any

model at all. The decision might be based on rules of thumb or on

intuition, or even be a repetition of a similar decision made earlier.

Sometimes, decisions are made after listing the alternatives and

discussing their consequences in an unstructured manner. These

alternative–consequence lists may state the advantages and disadvan-

tages of each course of action. When the special case of one action

having all advantages and another all disadvantages does not prevail, it

is often necessary to make a complicated comparison between the

consequences of all alternatives. Other examples of well-known tradi-

tional decision aids include decision matrices and decision trees as

discussed in Chapter 1. Many of them have the common disadvantage

that they either do not handle probabilities at all, or else they require the

decision-maker to make probability statements with precise numeric

values, however unsure he is of his estimates.

Suppose a decision-maker wants to evaluate a specific decision

situation. In order to solve the problem in a reasonable way, given

available resources, a decision process such as the following could be

employed, not necessarily in the exact order given.

• Clarify the problem, divide it into sub-problems if necessary

• Decide which information is a prerequisite for the decision

• Collect and compile the information

• Define possible courses of action

• For each alternative:

 • Identify possible consequences

 • For each consequence:

 • If possible estimate how probable it is

 • If possible estimate the value of it occurring

• Disregard obviously bad courses of action

• Based on the above, evaluate the remaining alternatives

• Carry out a sensitivity analysis

• Choose a “reasonable” alternative

WORKING WITH DELTA

37

The model described in the following should be seen in the context of

such a decision process. The process is intuitively appealing, and

numerous decision-makers unconsciously use a similar approach.

The Work Cycle
The decision process is carried out in a number of steps presented here

in work-cycle form. A work cycle consists of six phases (Figure 2.1). The

first step of the first cycle is special since there is much information to

collect. The initial information is gathered from different sources. Then

it is formulated in statements as indicated later in the chapter and

entered into the DELTA Decision Tool (DDT, see Chapter 3).1

Following that, an iterative process commences where step by step the

decision-maker gains further insights and sometimes a conclusion.

During this process, the decision-maker receives help in realising which

information is missing, is too vague, or is too precise. He might also

change the problem structure by adding or removing consequences or

even entire alternatives as more decision information becomes available.

Information
Gathering

Statements

Evaluations

Sanity
Checks

Sensitivity
Analyses

Security
Levels

Figure 2.1 The DELTA work cycle

1 The current version of DDT accepts numeric input by rulers, while future versions
will accept linguistic input as well.

COMPUTATIONAL DECISION ANALYSIS

38

Information Gathering
In some cases, the first information collection phase can be a very long

and tedious step. In larger investigations, it might take many man-years

and result in documentation covering several meters of shelf space. In

other cases, it might only require a few half-day discussions with experts

and affected workers. It is impossible to describe any typical case

because the situations are too diverse.

After the data collection phase, a filtering task commences where the

decision-maker structures and orders the information. He tries to

compile a smaller number of reasonable courses of action and identify

the consequences belonging to each alternative. There is no requirement

for the alternatives to have the same number of consequences. How-

ever, within any given alternative, it is required that the consequences

are exclusive and exhaustive, i.e. whatever the result, it should be

covered by the description of exactly one consequence. This is un-

problematic, since a residual consequence can be added to take care of

unspecified events.

Statements
Once the information is structured, it is entered into DDT in the form

of statements such as the probability of consequence C occurring is less than

40%. For each new statement entered, the consistency of the infor-

mation is checked.

The decision-maker’s probability statements are represented by

interval constraints and core intervals as further described in Chapter 4

on representation. Intervals are a natural form in which to express such

imprecise statements. It is not required that the consequence sets are

fixed from the outset. A new consequence may be added at a later stage,

thus facilitating an incremental style of working. The collection of

probability statements in a decision situation is called the probability base.

Some elementary statements considered are the following.

WORKING WITH DELTA

39

• The event H1 is probable

• The event H1 is possible

• The event H1 is improbable

• The probability for event H1 is a

• The probability for event H1 is larger than a

• The probability for event H1 is between a and b

• The event H1 is as probable as H2

• The event H1 is more probable than H2

• The event H1 is much more probable than H2

A probability base is said to be consistent if it can be assigned at least one

real number to each variable so that all inequalities are simultaneously

satisfied.2 The idea is that no meaningful operations can take place on a

set of statements that have no variable assignments in common, since

there is no way to take all the requirements into account. Note that the

method deals with classes of functions of which there are infinitely

many instantiations, and insists on at least one of them yielding

consistent results.

Likewise, the values are expressed as interval statements. The trans-

lations of the value statements in a decision situation are called the value

base. Some elementary statements considered in this thesis are the

following.

• The event H1 is desirable

• The event H1 is acceptable

• The event H1 is undesirable

• The value of event H1 is a

• The value of event H1 is larger than a

• The value of event H1 is between a and b

• The events H1 and H2 are as desirable

• The event H1 is more desirable than H2

• The event H1 is much more desirable than H2

2 For example p(H1) = 0.22 and p(H2) = 0.39.

COMPUTATIONAL DECISION ANALYSIS

40

Consistency is defined in the same way as for a probability base, and is

also discussed in Chapter 4. The probability and value bases together

with structural information constitute the decision frame.

When all statements in the current cycle have been entered, the data

entry phase is over. As the insights into the decision problem

accumulate during all the following phases, it is possible to add new

information and alter or delete information already entered.

Sanity Checks
Thereafter, the work cycle goes into evaluating the alternatives. The first

cycle begins by comparing the alternatives as they are entered. As the

first evaluation step, the sanity of the decision frame is checked. Much

information collected, especially in large investigations, runs the risk of

being cluttered or misunderstood during the process. If some data in

the frame is problematic, the decision-maker could consider leaving it

out of the current cycle or recollecting it. Missing data is easily handled

for later inclusion. For example, a missing consequence can be added at

a later stage. If the set of consequences for some alternative is not

exhaustive, a residual consequence can be temporarily added. Missing

value constraints can be temporarily substituted with very wide intervals

or just left out. Such possibilities have certain advantages as the results

emerging at the outset of the evaluation may be viewed with greater

confidence than if erroneous data is entered.

Security Levels
Many decisions are one-off decisions or are important enough not to

allow a too undesirable outcome regardless of its having a very low

probability. The common aggregate decision rules will not rule out an

alternative with such a consequence provided it has a very low proba-

bility. If the probability for a very undesirable consequence is larger

than some security level, it seems reasonable to require that the alternative

WORKING WITH DELTA

41

should not be considered, regardless of whether the expected value

shows it to be a good course of action. If the security level is violated by

one or more consequences in an alternative and this persists beyond a

predetermined rate of contraction (described below), then the alterna-

tive is unsafe and should be disregarded. An example of security levelling

is an insurance company desiring not to enter into insurance agreements

where the profitability is high but there is a very small but not negligible

risk for the outcome to be a loss large enough to put the company’s

existence at stake. The security analysis requires some parameters to be

set. This can often be done at an organisational level, and it will then

have the effect of creating a policy within the organisation. Security

levels is an important supplement to the expected value. It is more

formally introduced in Chapter 5 and further discussed and exemplified

in Appendix A.

Evaluations
After having taken security levels into account, which value does a

particular decision have? In cases where the outcomes can be assigned

monetary values, it seems natural that the value of the decision should

be some kind of aggregation of the values of the individual

consequences. One suggestion is to assign different weights to the

consequences so that more probable ones are more influential than less

probable ones. This line of reasoning leads to the expected monetary

value (EMV), which is essentially the same construct as the general

expected value discussed below. EMV shows the monetary result that

would be obtained on average, should the decision situation reoccur a

large number of times. Since not all decisions reoccur that often, some

not at all, EMV should be interpreted as the average tendency prevailing

in every decision situation.

There are a number of possible evaluation rules within DELTA,

some of which are described in Chapter 5. Often, the final comparing

rule of an evaluation in the DELTA method as well as in many other

COMPUTATIONAL DECISION ANALYSIS

42

methods is the expected value (EV), sometimes instantiated as the

expected utility or the expected monetary value. Since neither proba-

bilities nor values are fixed numbers, the evaluation of the expected

value yields quadratic (bilinear) objective functions of the form

EV(Ai) = pi1vi1 + … + pinvin

where the pik’s and vik’s are variables. Maximisations of such expres-

sions are computationally demanding problems to solve in the general

case, using techniques from the area of quadratic programming [L89]. In

Chapter 6 there are discussions about and proofs of the existence of

computational procedures to reduce the problem to systems with linear

objective functions, solvable with ordinary linear programming

methods.

When a rule for calculating the EV for decision frames containing

interval statements is established, the next question is how to compare

the courses of action using this rule. It is not a trivial task, since usually

the possible EVs of several alternatives overlap. The most favourable

assignments of numbers to variables for each alternative usually render

that alternative the preferred one. The first step towards a usable

decision rule is to establish some concepts that tell when one alternative

is preferable to another. For simplicity, only two alternatives are

discussed, but the reasoning can easily be generalised to any number of

alternatives.

Alternative A1 is at least as good as A2 if EV(A1) ≥ EV(A2) for all

consistent assignments of the probability and value variables.

Alternative A1 is better than A2 if it is at least as good as A2 and

further EV(A1) > EV(A2) for some consistent assignments of the

probability and value variables.

Alternative A1 is admissible if no other alternative is better.3

If there is only one admissible alternative it is obviously the preferred

choice. Usually, there are more than one since apparently good or bad

3 This conforms to statistical decision theory [L59].

WORKING WITH DELTA

43

alternatives are normally dealt with on a manual basis long before

decision tools are brought into use. All non-admissible alternatives are

removed from the considered set and do not take further part in the

evaluation. The existence of more than one admissible alternative

means that for different consistent assignments of numbers to the

probability and value variables, different courses of action are prefer-

able. When this occurs, how is it possible to find out which alternative

is to prefer?

Let 12 = EV(A1) – EV(A2) be the differences in expected value

between the alternatives. The strength of A1 compared to A2, given as a

number max(12)  [–1,1], shows how the most favourable consistent

assignments of numbers to the probability and value variables lead to

the greatest difference in the expected value between A1 and A2. In the

same manner, A2 is compared to A1. These two strengths need not sum

to one or to any other constant – the first might for example be 0.2 and

the second 0.4. If there are more than two alternatives, pairwise

comparisons are carried out between all of them.

Furthermore, there is a strong element of comparison inherent in a

decision procedure. As the results are interesting only in comparison to

other alternatives, it is reasonable to consider the differences in strength

as well. Therefore, it makes sense to evaluate the relative strength of A1

compared to A2 in addition to the strengths themselves, since such

strength values would be compared to some other strengths anyway in

order to rank the alternatives. The relative strength between the two

alternatives A1 and A2 is calculated using the formula

mid(12)

max(12) min(12)

2


max(12) max(21)

2

which is explained in detail in Chapter 5. The concept of strength is

somewhat more complicated than discussed in this chapter. Alternative

A1 is said to strongly dominate alternative A2 if min(12) > 0, to

COMPUTATIONAL DECISION ANALYSIS

44

markedly dominate if mid(12) > 0, and finally to weakly dominate if

max(12) > 0.4 This is also explained in Chapter 5.

Only studying the differences in the expected value for the complete

bases often gives too little information about the mutual strengths of

the alternatives. Numbers close to any of the boundaries seem to be the

least reliable ones when making the original imprecise statements.

Hence, it would be advantageous to be able to study the strengths (or

dominances) between the alternatives on sub-parts of the bases. If a

dominance is evaluated on a sequence of ever smaller sub-bases, a good

appreciation of the strength’s dependency on boundary values can be

obtained. This is denoted contracting the bases, and the amount of

contraction is indicated as a percentage which can range from 0% to

100%. For a 100% contraction, the bases are contracted into single

points, and the evaluation becomes the calculation of the ordinary

expected value.5

The next chapter presents the DDT tool in some detail, complete

with evaluation graphs. The results of the comparisons can be displayed

either in a diagram for each pair of alternatives or as a summary for

each alternative.

Sensitivity Analyses
After the evaluation, a sensitivity analysis is the next step. The analysis

tries to show what parts of the given information are most critical for

the obtained results and must therefore be given extra careful

consideration. This is accomplished by varying a number of statements

in desired ways, increasing or decreasing intervals, modifying structural

information, etc. It also points to which information is too vague to be

4 To be more precise, the DELTA method uses the concept of ∆-dominance as
described in Chapter 5. It may colloquially be interpreted as the relative strength
between the alternatives.
5 The method uses the dual concepts of expansion and contraction as explained in
Chapters 4 and 5, but the idea is the same as only contracting the bases. Since the
core is not discussed in this chapter, neither is expansion.

WORKING WITH DELTA

45

of any assistance to the ongoing evaluation. Information identified in

this way is subject to reconsideration, thereby triggering a new work

cycle.

It is possible to regard the expansion and contraction procedures as

automated kinds of sensitivity analysis. In order to maintain consis-

tency, the expansion (contraction) increases (decreases) the bases in

predefined ways. The decision-maker might, however, have other ideas

of interesting modifications to make to the bases, like decreasing or

even increasing selected intervals. He might have structural or problem

specific information that leads him to manipulate certain intervals in

special ways. A common strategy is decreasing intervals until only one

alternative is admissible. This way further insights into the decision

problem can be gained. It is simple to allow for this in the DELTA

method and the procedures of expansion and contraction apply equally

well to bases altered for reasons of sensitivity analysis.

Before a new cycle starts, alternatives found to be undesirable or

obviously inferior by other information are removed from the decision

process. Likewise, a new alternative can be added, should the

information gathered indicate the need for it. Consequences in an

alternative can be added or removed as necessary to reflect changes in

the model. Often a number of cycles are necessary to produce an

interesting and reliable result.

Decision Process Results
After the appropriate number of work cycles has been completed, both

the decision problem and its proposed “solution(s)” in the form of

preferred courses of action will be fairly well documented. Anyone

interested and with access to the information can afterwards check,

verify (and criticise) the decision based on the output documentation,

which because all consequences are clearly presented shows how all the

alternative courses of action have been valued. Also, during the decision

COMPUTATIONAL DECISION ANALYSIS

46

process, the analysis is open for comments and can become the basis

for further discussions. Another effect is that the decisions are less

dependent on which employee handles a particular decision situation

since deviations from corporate policy can be detected in the

documentation after the process has been completed if not earlier.

This concludes the informal introduction to the DELTA method in a

work process. The next chapter presents the DDT tool suitable for

interactive use in a work cycle-based process. The chapters that follow

in Part II go into considerably more detail in trying to present the

representation and the evaluation procedures of the method.

The DELTA Decision Tool
This chapter is a demonstration of DDT – the DELTA Decision Tool.

DDT is built on top of DELTALIB, a set of library procedures that

together implement the DELTA method as described in Part II of the

thesis. The chapter is divided into three sections. The first section

describes the DDT software and its architecture. The functionality of

the software is most accessibly conveyed by an example. Thus, the

middle section introduces a decision problem on which the sample

session in the last section is built. The chapter is intended to continue

the informal overview from Chapter 2. As in that chapter, the purpose

is to provide an intuitive overview of how the method works and to

demonstrate that the suggested method is realistic to work with.

The DDT Software
The DELTALIB library is the core of DDT [D96]. It consists of several

modules collected into a library with a common published program-

ming interface in the form of callable C functions and procedures. The

layered architecture of the library is shown in Figure 3.1. The lowest

layer, the solver layer, consists of different optimising solvers for linear

and bilinear programming as described in Chapter 6. There is a solver

stack consisting of a number of solvers that solve progressively harder

COMPUTATIONAL DECISION ANALYSIS

48

problems of optimisation. Further, there resides other algorithms such

as graph algorithms for special purposes.

Figure 3.1 The DELTALIB layers

The next layer, the base layer, contains functions for the probability and

value bases. Among the functions are data structure access, consistency

maintenance, and tests for orderings. This layer calls the solver for tasks

that involve optimisation, for example calculating the orthogonal hull of

the probability base.

The frame layer is the library’s interface to the callers. It provides a

programming API1 to the library functions and capabilities. It contains a

scheduler, consistency and maintenance functions, and integrity checks

to protect the rest of the library from erroneous calls. Further, it

contains the evaluation modules for the DELTA and GAMMA rule sets

(explained in Chapter 5), and for the PSI and OMEGA rule sets not

explicitly covered in the thesis. Finally, it contains the procedures for

security levels. The layer may be extended with other functions in the

future, for example evaluations using other -dominance concepts or

numerical rules other than the expected value.

The user layer consists of different library users. The library is equally

well designed for use by a textual user interface, a graphical user inter-

face, an agent (a robot, for example), or an expert system. Of these,

THE DELTA DECISION TOOL

49

instances of the two leftmost exist today, and the third from the left is

underway as software agents using World Wide Web techniques. An

instance of the second one from the left (Graphic) is DDT, the topic of

the rest of this chapter [D97a].

The Decision Problem
This section presents an example of a decision problem suitable for

investigation using the DELTA method. A medium-sized Swedish

manufacturing company relied in one of its most important production

lines on an old machine, to which spare parts had become increasingly

hard to obtain. At a critical moment, the machine broke down in a more

serious way than previously. It became clear to management that the

machine was a potential danger to future operations unless it was either

thoroughly repaired or replaced by a new machine.

A DDT Session
Currently, DDT runs on Windows 95 PCs and Unix workstations, and it

is from the latter implementation that this session is taken. When the

program is launched without a pre-existing data file, a default decision

problem is created. Apart from the traditional File menu, the top level

menu in DDT consists of the following items:

Settings

 Show hull values

 Utility settings

 Zoom

 Security levels

Evaluations

 Absolute

 Relative set

 Alternative 1

 Alternative 2

 Security check

Table 3.1 Main pop-down menus

COMPUTATIONAL DECISION ANALYSIS

50

NOTE: Due to severe problems with editing and printing this chapter,

the PDF reprint will mostly contain the figures (screenshots) from the

presentation of the tool. If the chapter is allowed to be more extensive

than this reprint, it is not editable in either Word 5.1 or 6.0, neither

convertible to a PDF file. Originally, the chapter consisted of pages 47–

64 but it is not possible to recreate in its entirety. Only this chapter is

affected by these editing problems.

Figure 3.2

Figure 3.3

THE DELTA DECISION TOOL

51

Figure 3.4

Figure 3.5

COMPUTATIONAL DECISION ANALYSIS

52

User Statements
To begin with, it is assumed that the decision maker is content with the

tree and wants to move on to entering probabilities and values. This is

done either by dragging the interval endpoints using the mouse or by

entering the numbers manually. The interval is modified interactively,

and feedback is given if the base is becoming inconsistent as a result of

altering an interval. An important difference between probabilities and

values is the familiarity among decision makers with [0,1] variables. For

probabilities, numbers in the range [0,1] (in the form 0% to 100%) are

commonly accepted. For values, on the other hand, the range [0,1] is

not the most natural nor the most common. Therefore, as was shown in

Figure 3.1, DDT allows any range for the values, even such where

greater utility is derived from smaller values, as is the case with for

example pollution.

Figure 3.6

A default focal point is suggested by DDT when the decision problem is

entered. It can be modified by the decision maker at any time during the

evaluation, as long as it is kept consistent. The consistency of the infor-

mation is maintained by DDT. After the probabilities and values have

been entered for the other two alternatives as well, the DELTA decision

tree looks like Figure 3.7.

THE DELTA DECISION TOOL

53

Figure 3.7

Evaluation
Now that all initial information is stored properly in the tree, the

evaluation phase can begin. Each evaluation takes place in a separate

window, and there may be more than one window active at the same

time. In each window, there is a possibility to customise the appearance

of the evaluation graphs. The following three pop-down menus are

available in the DDT decision analysis tool:

COMPUTATIONAL DECISION ANALYSIS

54

Misc
(see Figure 3.8 below)
Add
(adds a graph to the display)
Delete
(removes a graph from the display)

Table 3.2 Evaluation pop-down menus

In the ‘Misc’ menu, it is possible to choose which of the maximal,

medium, and minimal values are to be shown for the current

comparison. In this sample session, it was chosen to compare the

alternatives pairwise and then to view the medium differences in the

graph. It can be seen in Figure 3.8 that only ‘Show mid’ is selected and

in Figure 3.9 an evaluation mid result for two alternatives is shown.

Figure 3.8

Figure 3.9

Representation
In the DELTA method, a decision problem is represented by a decision

frame. The idea with such a frame is to collect all information necessary

for the model in one structure. This structure is then filled in with

problem statements. All the probability statements in a decision

problem share a common structure because they are all made relative to

the same decision frame. They are translated and collected together in a

probability base. For value statements, the same is done in a value base.

The correspondence between the user model and the representation is

summarised in Table 4.1.

User model Representation

Decision problem Decision frame

Alternative Consequence set

Consequence, event Consequence

Collection of statements Base

Interval statement Core interval

 Interval constraint

Range statement Core interval

 Range constraint

Qualitative statement Range constraint

Comparative statement Comparative constraint

Compound statement Compound constraint

Difference statement Difference constraint

Table 4.1 Representation of user model

COMPUTATIONAL DECISION ANALYSIS

68

Decision Frames
Chapter 2 contained a discussion on how a decision problem with

imprecise data could be modelled. In this chapter, the representation

will be considered in more detail. A model in normal form of the

situation is created with relevant courses of action and their conse-

quences, should specific events occur. The model is represented by a

decision frame. The courses of action are called alternatives in the

model, and they are represented by consequence sets in the decision

frame. This can be depicted as in Figure 4.1, where the problem is seen

to be on alternative–consequence form (AC form), a form of one-level

decision tree [J83].

Alte rnative A1

Alte rnative A2

Alte rnative A3

De cision

situation

Consequence C11

Consequence C12

Consequence C13

Consequence C21

Consequence C22

Consequence C31

Consequence C32

Consequence C33

Consequence C34

Figure 4.1 A tree view of a decision frame

Following the establishment of a decision frame, the probabilities of the

events and the values of the consequences are filled in.1

1 In some presentations, an event is a disjunction of consequences. Here, it is used in

a more colloquial way. An event denotes the transition from one state of affairs to

REPRESENTATION

69

This chapter deals with representing the structure and handling

interval statements. Following that, some properties of collections of

statements are described.2 Finally, the translations of probability and

value statements are also investigated. The statements themselves and

their interpretations are discussed.

Frame Structure
To formalise a decision frame, it is necessary to consider what structure

information must be present in order to unambiguously describe a

decision problem on AC form. First, a decision frame must capture the

structure of the tree. A decision tree consists of sets of consequences.

Second, there are statements of probability and value collected in

structures called constraint sets and cores. In this chapter, the general

interval constraint set will be described first. It can be used both for

probability statements and value statements.

In order not to clutter up the definitions with particulars of all

components, the terminology clauses introduce generic items used

throughout the chapter without further qualification.

Terminology: Given a set X of variables {xi}iI, the index set

I is understood to be I = {1,…,n} where n is the number of

variables in X.3

another. For example, if a dog is run over by a commuter train, then the event is the

accident itself and the dog being dead is a consequence of the accident. Still, it will

be said that the consequence has a probability. This is unambiguous and should not

lead to any confusion.
2 Their computational requirements lead to algorithms for evaluating such

properties, one of the topics of Chapter 6.
3 This is a family {xi} in X, see e.g. [H60].

COMPUTATIONAL DECISION ANALYSIS

70

Constraints
A linear inequality involving a set of variables {xi}iI has the form

k1x1 + k2x2 +…+ knxn ¤ b

for some constants ki, iI, and b. The relational operator ¤ is any

strict or weak inequality such as > or ≤. For the purpose of this chapter

the ki’s are often ±1 and are then omitted for the sake of simplicity.4

Equalities correspond to precise constraints for the respective probabil-

ities and values. In this thesis, however, the interest lies in other kinds

of statements, for example interval statements, qualitative statements,

and comparative statements. For these statements, interval constraints

are used.

Definition 4.1: Given a set of variables S = {xi}iI, a continuous

function g:Sn
[0,1], and real numbers a,b  [0,1] with a ≤ b, an

interval constraint g(x1,…,xn)  [a,b] is a shorter form for a pair of

weak inequalities g(x1,…,xn) ≥ a and g(x1,…,xn) ≤ b.

In this manner, both equalities and inequalities can be handled in a

uniform way since equalities are represented by intervals [a,a]. There are

many types of constraints and they correspond to different types of

decision-maker statements as discussed at the end of the chapter.

Definition 4.2: Given a set of variables {xi}iI and real numbers

a, b  [0,1] with a ≤ b:

An equality constraint is an interval constraint of the form xi  [a,a]

where i  I.

A range constraint is an interval constraint of the form xi  [a,b]

where i  I.

A comparative constraint is an interval constraint of the form
xi – xj  [a,b] with i, j  I and i ≠ j.

4 In case of –1, a minus sign is placed directly in front of the ki’s. In the next

chapter, other situations are encountered where the ki’s are real numbers in the

interval [0,1].

REPRESENTATION

71

A difference constraint is an interval constraint of the form
(xi – xj) – (xk – xl)  [a,b] with i, j, k, l  I and i ≠ j ≠ k ≠ l.5

A compound constraint is an interval constraint of the form
xh1

 +…+ xhm
  [a,b] for h1, …, hm  I and hi = hj iff i = j.

A 1-constraint is an interval constraint of the form
kh1

xh1
 + kh2

xh2
 +…+ khm

xhm
  [a,b] where khi

 {–1,1}

for h1, …, hm  I and hi = hj iff i = j.

A linear constraint is an interval constraint of the form
kh1

xh1
 + kh2

xh2
 +…+ khm

xhm
  [a,b] where khi

 [0,1]

for h1, …, hm  I and hi = hj iff i = j.

This thesis does not explicitly treat non-linear constraints. Thus, in the

sequel all interval constraints are linear unless specifically noted. A

collection of interval constraints concerning the same set of variables is

called a constraint set, and it forms the basis for the representation of

decision situations.

Definition 4.3: Given a set of variables {xi}iI, a constraint set

in {xi}iI is a set of interval constraints in {xi}iI.

From the definition of an interval constraint, it follows that a constraint

set can be seen as a system of inequalities. For a system of inequalities

to be meaningful, there must be some vector of variable assignments

that satisfies each inequality in the system simultaneously.

Definition 4.4: Given a set of variables {xi}iI a solution to a

system X of inequalities in {xi}iI is a real vector a = (a1,…,an)

where each ai is substituted for xi such that every inequality in

the system is satisfied.6 The vector a is called a solution vector to

X. The solution set for X is {b  b is a solution to X}.

Constraint sets have many properties in common, whether they are

probability or value constraint sets. The first question is whether the

5 Note that this can be written (xi + xl) – (xj + xk)  [a,b].

6 There exists a solution if the substitution of ai for xi in X, for all 1 ≤ i ≤ n, does

not yield a contradiction.

COMPUTATIONAL DECISION ANALYSIS

72

elements in a constraint set are at all compatible with each other. The

translates to the problem of whether a constraint set has a solution, i.e.

if there exists any vector of real numbers that can be assigned to the

variables.

Definition 4.5: Given a set of variables {xi}iI, a constraint set

X in {xi}iI is consistent iff the system of weak inequalities in X

has a solution.7 Otherwise, the constraint set is inconsistent. A

constraint Z is consistent with a constraint set X iff the constraint

set {Z}  X is consistent.

In other words, a consistent constraint set is a set where the constraints

are at least not contradictory.

Example 4.1: Consider the following constraint set Y in {yi}i{1,2,3,4}:

y1  [0.30, 0.60] y1 – y2  [0.10, 0.30]

y2  [0.25, 0.55] y1 – y3  [0.10, 0.40]

y3  [0.10, 0.40] y3 – y4  [–0.10, 0.10]

y4  [0.05, 0.20] y1 + y2 + y3 + y4  [1.00, 1.00]

A solution vector to the system of inequalities that Y represents is

(0.40, 0.30, 0.20, 0.10) and thus the constraint set Y is consistent. n

In many of the evaluation algorithms, it is important to find optima for

given objective functions. The following definition is intended to

simplify the presentation.

Definition 4.6: Given a consistent constraint set X in {xi}iI

and a function f, Xmax(f(x)) =def sup(a  {f(x) > a}  X is

consistent). Similarly, Xmin(f(x)) =def inf(a  {f(x) < a}  X is

consistent)

Example 4.1 (cont’d): Consider the same constraint set Y as above.

Let f(y) be y1 + y3. Then Ymax(y1 + y3) = 0.70 and Ymin(y1 + y3) =

0.50. Those optima are reached in (0.55, 0.25, 0.15, 0.05) and

(0.40, 0.30, 0.10, 0.20) respectively. Next let f(y) be y1 – y2 + y4 instead.

Then Ymax(y1 – y2 + y4) = 0.40 and Ymin(y1 – y2 + y4) = 0.15. Those

7 Then there is a non-empty solution set for X.

REPRESENTATION

73

optima are reached in (0.45, 0.25, 0.10, 0.20) and

(0.475, 0.375, 0.10, 0.05) respectively. 

The orthogonal hull is a concept that in each dimension signals which

parts are definitely incompatible with the constraint set. The orthogonal

hull can be pictured as the result of wrapping the smallest orthogonal

hyper-cube around the constraint set.

Definition 4.7: Given a consistent constraint set X in {xi}iI,

the set of pairs {Xmin(xi),Xmax(xi)}iI is the orthogonal hull of

the set and is denoted Xmin(xi),Xmax(xi)n.

Example 4.1 (cont’d): Consider the same constraint set Y again. Let

f(y) be y1. Then Ymax(y1) = 0.55 and Ymin(y1) = 0.35. Carrying the

calculations out for the other three yi’s yields the following hull:

{0.35,0.55, 0.25,0.375, 0.10,0.25, 0.05,0.20}.

Compared to the range constraints in the base

y1  [0.30, 0.60] y3  [0.10, 0.40]

y2  [0.25, 0.55] y4  [0.05, 0.20]

there are some differences because the comparative constraints do

not allow the full ranges to contain consistent points in Y. For

example, the upper bound of y1 has been cut from 0.60 to 0.55. 

Other hull concepts are possible as well, and in this thesis the symmet-

ric hull is considered. First, a few help definitions are made.

Definition 4.8: Given a constraint set X in {xi}iI and the

orthogonal hull H = ai,bin of X, a focal point is a solution

vector (r1,…,rn) with ai ≤ ri ≤ bi, iI. The hull midpoint is

(m1,…,mn) with mi =

ai  bi

2
.

Focal points are chosen by the decision-maker according to his appreci-

ation of the decision situation. In DDT, a default focal point is sug-

gested by the tool, and it can be altered as desired as long as it is kept

consistent. Next, the standard concept of distance is introduced.

COMPUTATIONAL DECISION ANALYSIS

74

Definition 4.9: Given two vectors a and b, the distance function

d is a function that satisfies

 (i a) d(a,b) > 0 if a ≠ b

 (i b) d(a,a) = 0

 (ii) d(a,b) = d(b,a)

 (iii) d(a,b) ≤ d(a,c) + d(c,b) for all c.

For the definition to be meaningful in this context, the distance

function must be reasonable, even though this does not follow directly

from the definition. In many constraint sets, the focal point is not the

orthogonal hull midpoint. The hull midpoint need not even be

consistent. In those cases, the base is said to be skewed, and the

concept of skewness is introduced to describe this.

Definition 4.10: Given a constraint set X in {xi}iI, two real

vectors a = (a1,…,an) and b = (b1,…,bn) of the orthogonal hull

ai,bin of X, a distance function d, a constant k  [0,1], a hull

midpoint m, and a focal point r. The skewness of the base X

with respect to r is

k 

d(r,m)

d(a,b)
.

When a base is skewed, there exists a way of avoiding this asymmetry by

using the symmetric hull instead.

Definition 4.11: Given a constraint set X in {xi}iI, the

orthogonal hull ai,bin of X, and a focal point (r1,…,rn).

Let di = min(ri–ai, bi–ri), iI. The symmetric hull is

ri–di,ri+din.

Example 4.1 (cont’d): Consider the same constraint set Y again.

Let r = (0.42, 0.29, 0.17, 0.12) be a focal point. Carrying the

calculations out for the four yi’s yields the following hull:

{0.35,0.49, 0.25,0.33, 0.10,0.24, 0.05,0.19}.

Compared to the orthogonal hull of the base

{0.35,0.55, 0.25,0.375, 0.10,0.25, 0.05,0.20}

REPRESENTATION

75

there are some differences because the focal point is not the

midpoint of the orthogonal hull.8 n

Note: If the symmetric hull coincides with the orthogonal

hull, then the skewness is zero. This follows from d(r,m) = 0

if the midpoint m is equal to the focal point r.

The generic term hull will be used for the orthogonal hull or the

symmetric hull as appropriate.

Bases
A base consists of a constraint set for a set of variables together with a

core. Constraints and core intervals have different roles in specifying a

decision situation. The constraints represent “negative” information,

which vectors are not part of the solution sets. The contents of

constraints specify which ranges are infeasible by excluding them from

the solutions. This is in contrast to core intervals, which represent

“positive” information in the sense that the decision-maker enters

information about sub-intervals that are felt to be the most central ones

and that no further discrimination is possible within those ranges.

Definition 4.12: Given a constraint set X in {xi}iI and the

orthogonal hull ai,bin of X, a core interval of xi is an interval [ci,di]

such that ai ≤ ci ≤ di ≤ bi. A core [ci,di]n of {xi}iI is a set of core

intervals {[ci,di]}iI, one for each xi.

As for constraint sets, the core might not be meaningful in the sense

that it may contain no possible variable assignments able to satisfy all

the inequalities. This is quite similar to the concept of consistency for

constraint sets, but for core intervals, the requirement is slightly dif-

ferent. It is required that the focal point is contained within the core.

8 Note that the symmetric hull is always tighter since the upper hull value is

decreased or the lower increased. Also note that only one of the upper and lower

values is changed for each index.

COMPUTATIONAL DECISION ANALYSIS

76

Definition 4.13: Given a consistent constraint set X in {xi}iI

and a focal point r = (r1,…,rn), the core [ci,di]n of {xi}iI is

permitted with respect to r iff ci ≤ ri ≤ di, iI.

Example 4.1 (cont’d): Consider the same constraint set Y again.

Recall that the constraint set is

y1  [0.30, 0.60] y3  [0.10, 0.40]

y2  [0.25, 0.55] y4  [0.05, 0.20]

and that r = (r1,…,r4) = (0.42, 0.29, 0.17, 0.12) is the focal point.

Let the core be

y1  [0.40, 0.45] y3  [0.15, 0.20]

y2  [0.25, 0.35] y4  [0.10, 0.15].

Now r1 is contained in the core interval of y1, and the same is true

for the other three yi’s. Thus the core is permitted. The interpretation

of, for example, the information about y1 is that, according to the

decision-maker, the value of y1 is not below 0.30 and not above 0.60.

In addition, the most plausible values for y1 are between 0.40 and

0.45. The single most representative value is 0.42, but the DELTA

method tries not to exploit the latter fact if not necessary. 

A base is simply a collection of constraints and the core that belongs to

the variables in the set. The idea with a base is to represent a class of

functions over a finite, discrete set of consequences.

Definition 4.14: Given a set {xi}iI of variables and a focal

point r, a base X in {xi}iI consists of a constraint set XC in

{xi}iI and a core XK of {xi}iI. The base X is consistent if XC is

consistent and XK is permitted with respect to r.

It is natural to consider values near the boundaries of the intervals in a

constraint set as being less reliable than more central values, due to in-

terval constraints being deliberately imprecise. The core, on the other

hand, represents the most reliable estimates. It is therefore desirable to

be able to study the core with varying degrees of expansion, i.e. studying

smaller or larger extensions to the original core. The expansion can be

regarded as a focus parameter that zooms out from central sub-intervals

to the full constraint intervals. It is not a measure of volume but rather

REPRESENTATION

77

of the strength of statements as volume is added to the original core.

Conversely, if the core itself is not enough to yield the desired evalu-

ation results, it can be contracted towards the focal point with varying

degrees of contraction.

Definition 4.15: Given a base X in {xi}i, a set of real numbers

{ai,bi}iI, a core [ci,di]n of {xi}iI, and a real number π  [0,1], a

π-flation of X is to replace the core by [ci+π·(ai–ci), di+π·(bi–di)]n. If

the set {ai,bi}iI is the hull ai,bin then it is called a π-expansion of

X.9 If (r1,…,rn) is a focal point and ai = bi = ri, then it is called a π-

contraction of X.

The π-flation is a linear procedure, but non-linear procedures are

plausible as well. In addition, the procedure can work from either side

((L)π-flation and (R)π-flation) or with varying, even non-uniform rates

of expansion or contraction.10

Probability Bases
A probability base contains a collection of probability statements in the

form of constraints and a core.

Definition 4.16: Given a set {Cik}kK of disjoint and exhaustive

consequences, a base P in {pik}kK, K = {1,…,mi}, and a

discrete, finite probability mass function ∏:C[0,1] over {Cik}.

Let pik denote the function value ∏(Cik). ∏ obeys the standard

probability axioms, and thus pik  [0,1] and ∑k pik = 1 are default

constraints in the constraint set PC. Then P is a probability base.

Thus, a probability base can be seen as characterising a set of discrete

probability distributions.11 The core PK can be thought of as an attempt

to estimate a class of mass functions by estimating the individual

discrete function values.

9 Note that ai ≤ ci ≤ di ≤ bi.

10 For simplicity, especially in calculated examples, only the linear expansions and

contractions are employed in this thesis.
11 See for example [WP90] for a discussion of similar ideas.

COMPUTATIONAL DECISION ANALYSIS

78

The collection of (translated) probability constraints can be cate-

gorised into different types of bases progressively harder to evaluate

and differing more and more from the standard equality case. Using the

categories of constraints from earlier in the chapter, a hierarchy can be

defined.

Definition 4.17: A probability base is of type P0 (a P0-base for

short) if all constraints are equality constraints plus one com-

pound constraint (the normalisation) for each consequence set.

A probability base is of type P1 (a P1-base for short) if the

constraints are range constraints plus one compound constraint

(the normalisation) for each consequence set.

A probability base is of type P2 (a P2-base for short) if the

constraints are range or comparative constraints plus one com-

pound constraint (the normalisation) for each consequence set.

A probability base is of type P3 (a P3-base for short) if the

constraints are linear constraints.

A probability base is of type P4 (a P4-base for short) if the

constraints are non-linear constraints.

P0-bases correspond to the standard models discussed in Chapter 1. A

P1-base corresponds to the simplest case of generalised bases

containing only interval statements. This is the most common generali-

sation, encountered in for example [WP90]. Sometimes a P1-base is

called an interval base. A P2-base is an interval base extended with

comparisons between probabilities. A P3-base contains all constraints

plausible within this framework. P4-bases may contain non-linear

constraints and are beyond the scope of this thesis, but are included for

completeness.

Example 4.2: Consider a probability base P with a constraint set

p11  [0.15, 0.30] p13  [0.40, 0.55]

p12  [0.20, 0.30] p14  [0.10, 0.15]

p11 + p12 + p13 + p14  [1,1].

REPRESENTATION

79

This base is of type P1 because all constraints are range constraints

except for the normalisation. If the comparative constraint

p13 – p12  [0.15,0.35]

is added to the base, it will be of type P2.

Further, if the compound constraint

p12 + p14  [0.25,0.40]

is added to the base, it will become a base of type P3.

Value Bases
Requirements similar to those for probability variables can be found for

value variables. There are apparent similarities between probability and

value statements but there are differences as well. The normalisation

(∑k pik = 1) requires the probability variables of a set of exhaustive and

mutually exclusive consequences to sum to one. No such dimension-

reducing constraint exists for the value variables.

Definition 4.18: Given a set {Cik}kK of disjoint and exhaustive

consequences, a base V in {vik}kK, K = {1,…,mi}, and a

discrete, finite value function :C[0,1]. Let vik denote the

function value (Cik). Because of the range of , vik  [0,1] are

default constraints in the constraint set VC. Then V is a value base.

Similar to probability bases, a value base can be seen as characterising a

set of value functions. The value core VK can be seen as an attempt to

estimate a class of value functions. The collection of (translated) value

constraints can also be categorised into a hierarchy of bases.

Definition 4.19: A value base is of type V0 (a V0-base for

short) if all constraints are equality constraints.

A value base is of type V1 (a V1-base for short) if all constraints

are range constraints.

A value base is of type V2 (a V2-base for short) if the constraints

are range or comparative constraints.

A value base is of type V3 (a V3-base for short) if the constraints

are linear constraints.

COMPUTATIONAL DECISION ANALYSIS

80

A value base is of type V4 (a V4-base for short) if the constraints

are non-linear constraints.

V0-bases correspond to the standard models discussed in Chapter 1. A

V1-base corresponds to the simplest case of generalised bases

containing only interval statements. This is the most common

generalisation. A V2-base is an interval value base extended with

comparisons between values of any alternatives. The alternatives might

be dependent. A V3-base contains all constraints plausible within this

framework. In practice, this includes differences in particular, but not

compound value statements since they lack semantic content. A V4-base

may contain any interval constraints, even non-linear. Those are beyond

the scope of this thesis but are included for completeness and future

reference.

Example 4.3: Consider a value base V with a constraint set

v11  [0.40,0.55] v13  [0.05,0.15]

v12  [0.30,0.65] v14  [0.80,0.95]

This base is of type V1 because all constraints are range constraints.

If the comparative constraint v12 – v11  [0.00,0.15] is added to

the base, it will be of type V2. Further, if the difference constraint

(v14 – v12) – (v11 – v12)  [0.05,0.20] is added to the base, it will

become a base of type V3.

Frames
Using the above concepts of consequence, constraint, core, and base, it

is possible to model the decision-maker’s situation in a decision frame.

Definition 4.20: Given a decision situation with m alternatives

(A1,…,Am), each with mi consequences, and statements about

the probabilities and values of those consequences. A decision

frame is a structure C,P,V = {{Cik}mi
}m,P,V containing the

following representation of the situation:

• For each alternative Ai the corresponding consequence set

 {Cik}kKi
 for Ki = {1,…,mi}.

REPRESENTATION

81

• A probability base P containing all probability statements
 in the form of constraints and a core.

• A value base V containing all value statements in the form
 of constraints and a core.

Compare the decision frame to Table 4.1 at the beginning of the

chapter. The frame captures a decision problem in AC form, a one-level

tree problem in normal form. As problems on other forms can be

converted to this form, it is a general structure, highly applicable to a

wide range of problems. The frame is also the key data structure in the

DELTALIB implementation, holding references to other structure

information and to the bases containing most of the information. To

simplify the presentation in the following chapters, a shorthand nota-

tion for frames with bases of specific types is introduced.

Terminology: When a decision frame C,Pi,Vj is referred to

with indices on the bases, it should be interpreted as a decision

frame containing a probability base of type Pi and a value base

of type Vj.12

Translations
User statements can be translated into constraints and core intervals in

various ways. One technique is to present the decision-maker with a

numeric interface where the statements can be interactively entered. For

human decision-makers, this can be done as in the DDT tool presented

in Chapter 3. There, statements are entered by manipulating rulers

representing constraints, core intervals, and focal points. Another

technique is to translate linguistic statements by translation rules. While

the objective is to preserve as much as possible of the original meaning

of each statement, the nature of translation rules is necessarily

approximate because of the ambiguity inherent in linguistic statements.

12 For example, the DDT software currently handles C,P2,V2 frames because of

the availability of fast algorithms (see Chapter 6).

COMPUTATIONAL DECISION ANALYSIS

82

Still, it is an important way of entering information into a decision

frame. The last sections of this chapter consider the translation of

probability and value statements respectively.

Probability Translations
To handle linguistic probability statements computationally, they must

be translated into a suitable form. This means that they are translated

into inequalities, using the above suggested interval form. The following

translations are proposed, which are by no means the only ones

possible.

Range Statements

Range statements are of two types, those that translate into core

intervals and those that translate into range constraints. While both

types are statements about the probabilities of single consequences,

their semantical contents differ. Statements translated into core intervals

are of a “positive” type in the sense that they express an interval within

which the decision-maker is unable to further discriminate between

different numbers. On the other hand, statements translated into range

constraints are of a “negative” type in the sense that they originate from

estimates where the decision-maker has been deliberately imprecise and

included numbers that are less likely but not entirely unlikely. Thus, a

reasonable interpretation of such statements is that the estimated

number is not outside of the given interval but without any explicit hint

as to where it might be inside of it.

Statement: The probability of C11 is m.

Translation: The core interval p11  [m–11, m+11]

Comment: The constant 11 is some small number expressing the

uncertainty in seemingly categorical statements.

Statement: The probability of C12 is about m.

Translation: The core interval p12  [m–12, m+12]

REPRESENTATION

83

Comment: 12 is some rather small number, though considerably

larger than 11 above. It expresses greater uncertainty as

indicated by the choice of words.

Statement: The probability of C13 is definitely between a13 and b13.

Translation: The range constraint p13  [a13, b13]

Comment: The statement can be taken literally, as is done in the

proposed translation, or it can be modified with small

constants as suggested in the previous cases. The latter
way is more appropriate when a13 and b13 are close to

each other.

Statement: The probability of C14 is greater than m.

Translation: The range constraint p14  [m+14, m+14]

Comment: The more obvious and direct interpretation of p14 > m is

not advisable. If it were to be used, the translation would

be something like p14 > m  p14  [m+14, 1], which is

a misinterpretation of both limits. For the lower limit, it

is quite possible that the decision-maker does not mean
that p14 exceeds m by a very small, hardly noticeable

amount. Thus, 14 is some rather small number, though

considerably larger than 11 above. For the upper limit,

the expression “greater than” is often used to denote a
noticeable but not extremely large difference between p14

and m. If the difference is perceived to be gigantic,

words such as “much greater than” should be used.

Statement: The probability of C15 is much greater than m.

Translation: The range constraint p15  [m+15, m+15]

Comment: The direct translation p15 > m+15 for some reasonable

large 15 is again not advisable for much the same

reasons as above. The expression “much greater than” is

often used to denote a sizeable difference between p15

and m.

Statement: The probability of C16 is less than m.

Translation: The range constraint p16  [m–16, m–16]

COMPUTATIONAL DECISION ANALYSIS

84

Comment: The translation p16 < m is not recommended, since it

would mean p16 < m  p16  [0, m–16], which is a mis-

interpretation of both limits. For the lower limit, the

expression “less than” is often used to denote a notice-
able but not extremely large difference between p16 and

m. It is almost never meant that C16 is totally impossible,

i.e. that p16 could assume the value zero. For the upper

limit, the reasons are as above for m–16 ≥ 0.

Statement: The probability of C17 is much less than m.

Translation: The range constraint p17  [m–17, m–17]

Comment: The direct translation p17 < m–17 for some reasonable

large 17 is not advisable, for the same reasons as above.

17 is a suitable, larger constant such that m–17 ≥ 0.

Qualitative Statements

Qualitative statements are translated into range constraints (except for

compound statements, see below). They are of a “negative” type in the

same sense as above and are all translated into constraints.

Statement: The event C21 is probable.

Translation: The range constraint p21  [a21, b21]

Comment: a21 and b21 are constants suitable for the situation. Since

the statement expresses some confidence in the event,
a21 is a rather high value. b21 can be 1, but this is not

necessary, and often not even appropriate.

Statement: The event C22 is possible.

Translation: The range constraint p22  [a22, b22]

Comment: a22 and b22 are constants convenient for the situation. a22

is obviously lower than a21 above since the decision-

maker expresses considerably less confidence in the

event occurring than in the previous statement. In the
same manner, b22 is less than b21.

Statement: The event C23 is improbable.

Translation: The range constraint p23  [a23, b23]

REPRESENTATION

85

Comment: a23 is rather small but not zero, since that would mean

the event could be altogether impossible. The upper limit
b23 is lower than the other upper limits above, but need

not necessarily be very close to zero, since the word

improbable used in its colloquial meaning can imply

some fair probability of the event actually occurring.

Comparative Statements

A comparative statement compares the probabilities of two

consequences occurring with one another.

Statement: The probability of C31 is equal to the probability of C32.

Translation: The comparative constraint p31 – p32  [–31, +31]

Comment: 31 is some small number expressing the uncertainty in

categorical statements. Note that this interval contains

negative as well as positive values.

Statement: The probability of C33 is about equal to the probability of C34.

Translation: The comparative constraint p33 – p34  [–33, +33]

Comment: 33 is some rather small number, though considerably

larger than 31 above. It expresses the greater uncertainty

as indicated by the choice of words.

Statement: The event C35 is more probable than C36.

Translation: The comparative constraint p35 – p36  [35, 35]

Comment: The translation p35 > p36 is not advisable, because then,

the meaning would be p35 > p36  p35 – p36  [, 1],

which, as in the single statement above, is a misinter-

pretation of both limits. If the difference is perceived to

be very large, an expression such as “much more proba-

ble than” should be used.

Statement: The event C37 is much more probable than C38.

Translation: The comparative constraint p37 – p38  [37, 37]

Comment: Cf. similar translations above.

Statement: The event C39 is less probable than C40.

Translation: The comparative constraint p39 – p40  [–39, –39]

Comment: Cf. similar translations above.

COMPUTATIONAL DECISION ANALYSIS

86

Statement: The event C41 is much less probable than C42.

Translation: The comparative constraint p41 – p42  [–41, –41]

Comment: Cf. similar translations above.

Compound Statements

It is sometimes more flexible not to be forced to make probability

statements about each individual consequence, should that information

not be available, too expensive to collect, or too unreliable. It would be

more expressive to be able to use either information about a group of

consequences or about the individual components, or both. The

representation allows for compound statements of probability, i.e.

statements such as the probability of C51, C52, or C53 occurring is ___ for any

of the range or qualitative probability statements described above.

Instead of the full translations of all the possible compound probability

statements, only a few examples are given.

Statement: The probability of C51, C52, or C53 is about m.

Translation: The constraint p51+p52+p53  [m–123, m+123]

Statement: The probability of C54, C55, or C56 is between a456 and b456.

Translation: The constraint p54+p55+p56  [a456, b456]

In the case of compound probability statements, there is no

requirement for probabilities to be given for all single consequences in a

compound statement but there is often more information to gain from

actually specifying them. This is left to the decision-maker’s discretion.

Difference Statements

A difference statement compares the difference between the probabil-

ities of two consequences occurring with the difference between the

probabilities of two others.

Statement: The difference in probability between C61 and C62 is equal to the

difference in probability between C63 and C64.

Translation: The constraint (p61–p62) – (p63–p64)  [–61, 61]

Comment: 61 is again some small number expressing the uncer-

tainty in categorical statements.

REPRESENTATION

87

Statement: The difference in probability between C65 and C66 is about equal to

the difference in probability between C67 and C68.

Translation: The constraint (p65–p66) – (p67–p68)  [–65, 65]

Statement: The difference in probability between C69 and C70 is greater than

the difference in probability between C71 and C72.

Translation: The constraint (p69–p70) – (p71–p72)  [69, 69]

Statement: The difference in probability between C73 and C74 is much greater

than the difference in probability between C75 and C76.

Translation: The constraint (p73–p74) – (p75–p76)  [73, 73]

Value Translations
Value statements are considered in a manner similar to the probability

statements. The value statements need to be translated into interval

form in order to be entered into the decision frame. Again, one

objective is to preserve as much as possible of the original meaning of

each statement. The translations are only proposals and other ones are

equally possible for the DELTA method.13

Range Statements

Statement: The value of C11 is v.

Translation: The core interval v11  [v–11, v+11]

Statement: The value of C12 is about v.

Translation: The core interval v12  [v–12, v+12]

Statement: The value of C13 is definitely between a13 and b13.

Translation: The range constraint v13  [a13, b13]

Statement: The value of C14 is greater than v.

Translation: The range constraint v14  [v+14, v+14]

Statement: The value of C15 is much greater than v.

Translation: The range constraint v15  [v+15, v+15]

13 Comments on the translations are left out since they would be similar to those for

the probability translations above.

COMPUTATIONAL DECISION ANALYSIS

88

Statement: The value of C16 is less than v.

Translation: The range constraint v16  [v–16, v–16]

Statement: The value of C17 is much less than v.

Translation: The range constraint v17  [v–17, v–17]

Qualitative Statements

Statement: The event C21 is desirable.

Translation: The range constraint v21  [a21, b21]

Statement: The event C22 is acceptable.

Translation: The range constraint v22  [a22, b22]

Statement: The event C23 is undesirable.

Translation: The range constraint v23  [a23, b23]

Comparative Statements

Statement: The events C31 and C32 are as desirable.

Translation: The comparative constraint v31 – v32  [–31, 31]

Statement: The events C33 and C34 are about as desirable.

Translation: The comparative constraint v33 – v34  [–33, 33]

Statement: The event C35 is more desirable than C36.

Translation: The comparative constraint v35 – v36  [35, 35]

Statement: The event C37 is much more desirable than C38.

Translation: The comparative constraint v37 – v38  [37, 37]

Statement: The event C39 is less desirable than C40.

Translation: The comparative constraint v39 – v40  [–39, –39]

Statement: The event C41 is much less desirable than C42.

Translation: The comparative constraint v41 – v42  [–41, –41]

Compound Statements

There are no translations suggested for compound value statements.

The specification of values should be on a per-consequence basis. If it

is not possible to separate the outcomes of several events, they ought to

be modelled as a single event instead.

REPRESENTATION

89

Difference Statements

Statement: The difference in value between C61 and C62 is equal to the

difference in value between C63 and C64.

Translation: The constraint (v61–v62) – (v63–v64)  [–61, 61]

Statement: The difference in value between C65 and C66 is about equal to the

difference in value between C67 and C68.

Translation: The constraint (v65–v66)–(v67–v68)  [–65, 65]

Statement: The difference in value between C69 and C70 is greater than the

difference in value between C71 and C72.

Translation: The constraint (v69–v70) – (v71–v72)  [69, 69]

Statement: The difference in value between C73 and C74 is much greater than

the difference in value between C75 and C76.

Translation: The constraint (v73–v74) – (v75–v76)  [73, 73]

COMPUTATIONAL DECISION ANALYSIS

90

Child in a chair, Sunday night

Listens in the kitchen’s yellow light

Child in a chair, small and still

Elbow on the window’s dusty sill

Cheek on a window cool as glass

Waiting for the painted night to pass

Child in a chair, Sunday night

Listens in the kitchen’s yellow light

Faint and faded stars arrive

Moving like a movie on the sky

Child never dreams of what might have been

Believes the evening is meant for him

I was a child on a Sunday night

Hearing the wind, talking to the land

And letting the time slip through my hands

 – P. Ivers

Evaluation
This chapter on evaluation is divided into three sections. The first sec-

tion, Evaluation Rules, discusses the expected value rule and a number

of proposed rules to either replace or supplement it. The rules are

discussed from a choice rather than preference view. In the next

section, DELTA dominance is introduced as a unifying concept for

many of the dominance rules in current use. In both of these sections,

all rules are discussed relative to a special decision frame with only

equality constraints in order to simplify the presentation. The last

section, Frame Evaluation, again considers complete decision frames

with all kinds of interval constraints, making the selection procedures

more complicated as imprecision enters into the evaluation. The termi-

nology clauses introduce generic terms used throughout the chapter

without further qualification or explanation. The idea is to make the text

lighter in order to facilitate a read flow by concentrating some of the

introduction of terminology to the beginning and then using the terms

without needing to introduce them in every definition.

Terminology: Given a decision frame C,P,V, the functions

f, g, and h are specified as f:Ri[0,1], g:Rj[0,1], and

h:Rk[0,1] with i, j, k  N+ as appropriate. The  and 

parameters are real numbers in the range [0,1].

COMPUTATIONAL DECISION ANALYSIS

92

Evaluation Rules
The special kind of decision frame that will be used in this and the

following section is the e-frame, similar to the ordinary complete frame

but allowing only constraints of the equality type, thus postponing

problems of imprecision to the last section when appropriate evaluation

rules have been established.

Terminology: A decision frame C,P0,V0 is called an e-frame

(e for equality) since all interval constraints in P0 and V0 are

equality constraints (except the normalisations in P0).

The Expected Value Rule
A large group of evaluation functions is the family of all functions that

assign a numerical value to a consequence set for subsequent

comparison. Such an evaluation function results in numeric values

ranking the alternatives (or more precisely, the consequence sets).

Definition 5.1: Given a decision e-frame {{Cik}mi
}m,P0,V0

and a function f, the numeric value N(Ci) of a consequence set

{Cik}mi
 is a function f(pi1,…,pimi

,vi1,…,vimi
) over all conse-

quences Cik in the consequence set.

To be reasonable, the value of N(Ci) should range over the interval [0,1]

since the values range over that interval.

Example 5.1: Consider a decision situation involving a number of
consequence sets of which C1 has three consequences. The decision

e-frame contains the following data:

 p11 = 0.35

 p12 = 0.45

 p13 = 0.20

 v11 = 0.20

 v12 = 0.55

 v13 = 0.80

EVALUATION

93

Assume that the numeric value N(Ci) is given by the function

∑k (pik)
2·vik. Then the numeric value N(C1) becomes

(0.35)2·0.20 + (0.45)2·0.55 + (0.20)2·0.80 = 0.167875. 

As was indicated already in Chapter 1, the expected value seems to be

one of the more natural rules to apply to a decision problem on AC

form. This might partly be because the expected value E(Ci) is estab-

lished in the area of mathematical statistics, where it is employed as the

“mean” value to be assigned to a stochastic variable taking on various

values with specific probabilities. E(Ci) is an instance of N(Ci) above. In

this thesis, only discrete probability distributions are considered, and

thus the following definition of the expected value applies.

Definition 5.2: Given a decision e-frame {{Cik}mi
}m,P0,V0,

the expected value E(Ci) of a consequence set {Cik}mi
 is the sum

∑k pik·vik = pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 over all

consequences Cik in the set.1

Example 5.1 (cont’d): Consider the same decision situation as

above and the decision e-frame containing the same data. The

expected value E(C1) is 0.35·0.20 + 0.45·0.55 + 0.20·0.80 =

0.4775. 

The use of the principle of maximising the expected value (PMEV)

dates several hundred years back, preceding the formal area of

mathematical statistics and instead originating from pure monetary

gambling. Over the years, a number of problems have been discovered

with the principle. First, a well-known problem with PMEV is discussed,

and thereafter, some alternative decision rules are reviewed.

A serious paradox was suggested by Allais [A53].2 In this paradox,

there is a game to be played and a reliable source of money that will

guarantee that the game is carried through, regardless of its outcome.

1 The definition is a slight abuse of notation, since the expectation operator should

operate on a stochastic variable, but the stochastic variable represents exactly the

corresponding consequence set.
2 In this version, the actual numbers are adjusted for inflation since the 1950s.

COMPUTATIONAL DECISION ANALYSIS

94

Suppose that the following game is presented, perhaps being more like

an offer. There are no stakes, i.e. no chance of losing money. There is a

mandatory choice between the alternatives A and B, and all probabilities

are fair in the sense that they are exactly as stated.

Alternative A: The player will receive $10 million for sure.

Alternative B: The player will have a 10% chance of receiving

$50 million, an 89% chance of receiving $10 million, and a 1%

chance of receiving nothing at all.

Next, another similar game is offered. There is a mandatory choice

between C and D.

Alternative C: The player will have an 11% chance of receiving

$10 million and an 89% chance of receiving nothing at all.

Alternative D: The player will have a 10% chance of receiving

$50 million and a 90% chance of receiving nothing at all.

Many people tend to choose A over B and D over C. This violates the

PMEV, no matter what utility values are assigned to the respective

outcomes. In essence, the argument is that A and C are nearly the same,

as are B and D, the difference being the first 11% of the probability

mass, which differs in the same way for both of the pairs. See for

example [S72] for a mathematical argument. Regardless of this fact, in

experiments where it was subsequently pointed out to subjects who

understood the mathematical argument, up to 1/3 retained their choice

in spite of this.

Recently, Malmnäs suggested a way of avoiding the paradox by

considering the choices as pairs (A, C), (A, D), (B, C), and (B, D) [M96].

Then consistent utility functions can be found that describe the choice

of A over B and D over C. This requires, however, that the choice

situations are considered in parallel, which is the case at least in the

post-stage when the subjects are given an explanation on why they were

being inconsistent.

EVALUATION

95

Replacement Rules
Such problems with PMEV warrant further investigation, and several

researchers, not least within economics, have proposed a number of

alternative decision rules to replace (or sometimes supplement) the

PMEV. Fishburn [F83] suggests an evaluation based on the quotient

between two separate expected values, which has the following form

E(C i ,f1)

E(C i ,f2)

where f1 and f2 are two functions of the values involved.

Researchers such as Loomes and Sudgen [LS82] bring regret or

disappointment into the evaluation to cover cases where numerically

equal results are appreciated differently depending on what was once in

someone’s possession. Their suggested formula has the form

p ik  (vik R (v ik E(C i))
k1

n



where R is supposed to be a regret function related to the ordinary

expected value.

Some researchers, among them Quiggin [Q82], try to resolve the

problems by requiring functions to modify the probabilities in the

evaluation rule such as

(f(sik) f(si (k1))) v ik
k1

n



where f is a strictly increasing function, the pij’s are in increasing vij

order, and

sik  p ij
j1

k

 . Yaari [Y87] has pointed out that under certain

reasonable assumptions, it must be the case that f(pij) = pij, and then he

made the following extended suggestion

(f(1 si (k1)) f(1 sik)) vik
k1

n

  f(pimi
) vimi

where sij is as above.

COMPUTATIONAL DECISION ANALYSIS

96

None of these suggestions are without problems. Malmnäs shows

for those above and for some other proposals that their performance at

best almost equals that of the expected value and at worst is much

poorer, for example not even being consistent with first order stochas-

tic dominance [M96]. All evaluation rules are subject to counter-

examples similar to Allais’. Some of the simpler counter-examples that

are problematic for many other rules are not so for the expected value.

Still, the DELTA method allows for using numeric selection rules other

than the expected value.

Supplementary Rules
There seem to be no compelling reasons to altogether reject the use of

the PMEV, but since there exists no absolutely rational decision rule, a

reasonable decision method should provide possibilities for evaluating

decision situations in several respects. In many decision contexts, the

decision maker may want to exclude particular alternative courses of

action that are, in some way, too risky. This might be done by a class of

supplementary decision rules called qualitative sorting or security levels.

While an evaluation of a consequence set may result in an acceptable

expected value, the consequences of selecting it might be so dire that it

should nevertheless be avoided. It might, for example, endanger the

entire purpose of the decision context, and in that case even a

consequence with a low probability is too risky to neglect. In order to

attain a high level of security and to be able to trust evaluations based

on the information, it has been suggested that security levels should be

imposed.

Such exclusions can be dealt with by specifying a security level for

the probability and a threshold for the value. Then a consequence set

would be undesirable if it violates both of these settings. Malmnäs’

proposal is to supplement the expected value with qualitative evalua-

tions, as was first suggested in [M94a]. An example is the qualitative

EVALUATION

97

sorting function, further developed by Ekenberg in [E94]. It has the

following basic form

S(C i ,r,s) (pij  s)
vijr



where r is the minimally tolerable value threshold and s is the maximally

acceptable probability for events below the threshold to occur. This is a

boolean function sorting out unwanted consequence sets. An example

is given below under first order dominance, and an application of

security levels can be found in Appendix A.

To sum up, the key observation is that there seems to be no perfect

evaluation rule, although the expected value is found to be at least as

good as many of its contenders. To improve that rule (or any other

numeric rule), one way is to complement it with supplementary rules

rather than engaging in further modifications of replacement rules in

pursuit of the perfect rule.

DELTA Dominance
In this section, a general dominance rule is suggested as a unifying

concept. In its generic form, it describes the type of dominance to be

considered and thus the type and amount of computation involved in

evaluating consequence sets in the framework. It can make use of many

of the above suggested evaluation functions, even though the expected

value is by far the most common. For convenience, a shorthand

notation for the awkwardly long difference in expected values is

introduced.

Definition 5.3: Given a decision e-frame {{Cik}mi
}m,P0,V0,

ij denotes the expression ∑k pik·vik – ∑k pjk·vjk =

pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 – pj1·vj1 – pj2·vj2 – … – pjmj
·vjmj

over all consequences in the consequence sets Ci and Cj.

In order to describe the dominance, a couple of concepts are required.

The index set pair captures the consequences within each of the

COMPUTATIONAL DECISION ANALYSIS

98

consequence sets that possess some desired property, in this case their

value being at least as great as a given parameter.

Definition 5.4: Given a decision e-frame C,P0,V0 and a real

number d  [0,1], an index set pair (Ki,Kj)(d) is Ki = {k  vik ≥ d}

and Kj = {k  vjk ≥ d}.

When the parameter d varies over some range, the content of the index

set may vary as well. The set of all such index sets is defined next.

Definition 5.5: Given a decision e-frame C,P0,V0 and real

numbers a,b,d  [0,1], Mij[a,b] is the set {(Ki,Kj)(d)  d  [a,b]}.

Those two definitions enable the following compact definition of the ∆-

dominance, a key concept in this thesis from which the DELTA method

takes its name. The idea behind the dominance is a pairwise comparison

of the consequence sets employing the desired numerical function. The

function is the same for both consequence sets. Note that the weak

inequality must hold for all index set members, i.e. over the full interval

range I, as specified.

Definition 5.6: Given a decision e-frame C,P0,V0,

a function f, and two parameters (P0,V0) and (P0,V0),

Ci ∆[I]-dominates Cj iff

 (Ki,Kj)(d)  Mij[I]

f (pik ,vik ,)
kK i

 – f(pjk ,vjk ,)
kK j

  0 and

 (Ki,Kj)(d)  Mij[I]

f (pik ,vik ,)
kK i

 – f(pjk ,vjk ,)
kK j

  0 .3

This is a very general definition, and many instantiations are possible. In

this thesis, a few are given and it is shown that some well-known

evaluation concepts are special cases of ∆-dominance. The first subdivi-

sion of the ∆-dominance is into dominance orders depending on the

function employed in the evaluation. The first and second orders are

3 To simplify the presentation, the second condition is omitted in the sequel.

EVALUATION

99

specifically addressed below, while the higher orders possible from the

definition of ∆[I]-dominance are not further discussed.

First Order Dominance
The ∆-dominance is of the first order if the function used is a function

of the probabilities only.

Definition 5.7: Given a decision e-frame C,P0,V0 and

functions f and g, Ci 1[I]-dominates Cj iff Ci ∆[I]-dominates Cj

with f(pik,vik,) = g(pik) and f(pjk,vjk,) = g(pjk).

Thus, first order specialisation turns dominance into a difference of

sums of a function of probabilities.

Note: Ci 1[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I]

g(pik)
kK i

  g(pjk)
kK j

 .

The note shows some resemblance with a couple of familiar dominance

concepts. One further specialisation of the first order ∆-dominance is

the first order stochastic dominance, a well-known concept, not least in

economics. To reach there, the general first order ∆-dominance is

considered. It consists of specifying the range for the index set pairs to

be the full [0,1] range.

Definition 5.8: Given a decision e-frame C,P0,V0,

Ci 1S-dominates Cj iff Ci 1[0,1]-dominates Cj.

When the function g employed is the simple g(pik) = pik the general

stochastic dominance turns into the commonly used first order

stochastic dominance, which in the ∆-dominance concept is a speciali-

sation of function as well as of index set range.

Definition 5.9: Given a decision e-frame C,P0,V0,

Ci 1SE-dominates Cj iff Ci 1S-dominates Cj with g(pik) = pik.

To see that this is indeed the ordinary first order stochastic dominance

as claimed, it is convenient to make the following note, in which the

COMPUTATIONAL DECISION ANALYSIS

100

form for 1SE-dominance coincides with the definition of first order

stochastic dominance.

Note: Ci 1SE-dominates Cj iff  (Ki,Kj)(d)  Mij[I]

pik
kK i

  pjk
kK j

 .

Example 5.2: Consider a decision situation involving two conse-
quence sets C1 and C2 that have three consequences each. The

decision e-frame contains the following data.

 p11 = 0.35 p21 = 0.30

 p12 = 0.45 p22 = 0.45

 p13 = 0.20 p23 = 0.25

 v11 = 0.20 v21 = 0.30

 v12 = 0.55 v22 = 0.70

 v13 = 0.80 v23 = 0.85

For some calculation examples, take (K1,K2)(0.4) where ∑k p1k =

0.65 and ∑k p2k = 0.70, or (K1,K2)(0.6) where ∑k p1k = 0.20 and

∑k p2k = 0.70. In fact, for any legitimate index pair (K1,K2)(d),

∑k p2k – ∑k p1k ≥ 0, and thus C2 1SE-dominates C1. This can be

seen in the graph in Figure 5.1, where the values are plotted against
the cumulative mass function (cmf).4 For C2 to 1SE-dominate C1,

the curves may not cross, and the curve for C2 must be below or

on that of C1 for all index set pairs. 

cmf

value

1.0

1.0

0.0

0.0

C C1 2

Figure 5.1 1SE-dominance

4 Note that the probabilities pjk in the cmf within a consequence set must be

selected in increasing vjk order for the graph to be meaningful.

EVALUATION

101

Above, a supplementary function was mentioned under the name of

qualitative sorting or security levels. This was a kind of threshold

function separating wanted and unwanted outcomes (or desirable and

undesirable consequence sets) according to a threshold rule applicable

to the evaluation situation. This type of evaluation rule also turns out to

be a special case of the ∆-dominance, viz. the dominance of a reference

consequence set, i.e. the threshold.

Definition 5.10: Given a decision e-frame C,P0,V0 and two

real numbers s,t  [0,1], Cj violates general security level s for threshold

value t iff Ct 1[t,t]-dominates Cj, where Ct is a consequence set

with two consequences, g(pt1) = 1–g(s), vt1 = 1, g(pt2) = g(s),

vt2 = 0.

When the function g is the simple g(pik) = pik, then the general security

level turns into the ordinary security level concept, which again is a

specialisation of both function and index set range.

Definition 5.11: Given a decision e-frame C,P0,V0 and

two real numbers s,t  [0,1], Cj violates security level s for threshold

value t iff Cj violates general security level s for threshold value t

with g(pjk) = pjk.

To see that this is indeed the same concept as the security levels dis-

cussed above, the following note can be helpful. Note that there can

only be one index set pair since the range of the value interval only

contains r.

Note: Cj violates security level s for threshold value t iff

for Kj = {k  vjk ≥ t}

pjk
kK j

  1 s.

Example 5.3: Consider a decision situation involving two
consequence sets C1 and C3 having three and four consequences

respectively. The decision e-frame contains the following data.

 p11 = 0.35 p31 = 0.25

 p12 = 0.45 p32 = 0.40

COMPUTATIONAL DECISION ANALYSIS

102

 p13 = 0.20 p33 = 0.10

 p34 = 0.25

 v11 = 0.20 v31 = 0.15

 v12 = 0.55 v32 = 0.85

 v13 = 0.80 v33 = 0.05

 v34 = 0.60

The security level 5% for value 0.10 is violated by C3 since

consequence C33 has the value 0.05 (< 0.10) and occurs with

a probability of 10% (> 5%), but not violated by C1. 

Second Order Dominance
The ∆-dominance is of the second order if the function used is a func-

tion of the probabilities and values only.

Definition 5.12: Given a decision e-frame C,P0,V0 and

functions f and h, Ci 2[I]-dominates Cj iff Ci ∆[I]-dominates Cj

with f(pik,vik,) = h(pik,vik) and f(pjk,vjk,) = h(pjk,vjk).

Then the domination turns into a difference of sums of a function of

probabilities and values.

Note: Ci 2[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I]

h(pik ,vik)
kK i

  h(pjk ,vjk)
kK j

 .

As for the first order, a further specialisation into second-order

stochastic dominance is possible. This is a well-known concept as well,

and it turns out to be another case of ∆-dominance. First, the general

second-order stochastic dominance is defined. As in the first order case,

it consists of specifying the range for the index set pairs to be the full

[0,1] range.

Definition 5.13: Given a decision e-frame C,P0,V0,
Ci 2S-dominates Cj iff Ci 2[0,1]-dominates Cj.

If the function h employed is the most common h(pik,vik) = pik·vik, then

the dominance turns into the commonly used second-order stochastic

EVALUATION

103

dominance, which in the ∆-dominance concept is a specialisation both

of function and of index set range.

Definition 5.14: Given a decision e-frame C,P0,V0, Ci 2SE-

dominates Cj iff Ci 2S-dominates Cj with h(pik,vik) = pik·vik.

To see explicitly that the definition sequence has arrived at the ordinary

second-order stochastic dominance, it is helpful to make the following

note, in which the form for 2SE-dominance can be seen to be almost

equivalent to the textbook definition of second-order stochastic

dominance.5

Note: Ci 2SE-dominates Cj iff  (Ki,Kj)(d)  Mij[0,1]

pik
kK i

  v ik  p jk
kK j

  vjk .

Example 5.2 (cont’d): The decision situation is augmented by a
fourth consequence set C4, also having three consequences, to be

compared with C1. The decision e-frame contains the following data.

 p11 = 0.35 p41 = 0.40

 p12 = 0.45 p42 = 0.40

 p13 = 0.20 p43 = 0.20

 v11 = 0.20 v41 = 0.40

 v12 = 0.55 v42 = 0.65

 v13 = 0.70 v43 = 0.80

For some calculation examples, take (K1,K4)(0.5) where ∑k p1k =

0.65 and ∑k p4k = 0.60, or (K1,K4)(0.6) where ∑k p1k = 0.20 and

∑k p4k = 0.60. This time, for some legitimate index pairs (K1,K4)(d)

∑k p4k – ∑k p1k ≥ 0, and for others ∑k p1k – ∑k p4k ≥ 0. Thus C4

does not 1SE-dominate C1 or vice versa. For the same example

values, (K1,K4)(0.5) yields ∑k p1k·v1k = 0.3875 and ∑k p4k·v4k =

0.42, and (K1,K4)(0.6) yields ∑k p1k·v1k = 0.14 and ∑k p4k·v4k =

0.42. Now, for all legitimate index pairs (K1,K4)(d) ∑k p4k·v4k –

5 This is a slight simplification. Since p and v are multiplied, both sums should run
from the same d-value in (Ki,Kj)(d). For each index set pair, there might be one

compensation term in one of the two sums.

COMPUTATIONAL DECISION ANALYSIS

104

∑k p1k·v1k ≥ 0, and the conclusion is that C4 2SE-dominates C1. This

is illustrated in Figure 5.2, where the values are plotted against the
cumulative mass function (cmf). For C4 to 2SE-dominate C1, the

curves may cross, but the area under the curve for C4 must be less or

equal to that of C1 for all index set pairs. 

cmf

value

1.0

1.0

0.0

0.0

C 1 C 4

Figure 5.2 2SE-dominance

Another second order ∆-dominance is the ordinary expected value and

some of the suggested replacements.6 One of their characteristics is that

they evaluate only by full index set pairs, i.e. pairs that contain all

members of each consequence set. The general numerical dominance is

a straightforward specialisation of 2∆-dominance.

Definition 5.15: Given a decision e-frame C,P0,V0,

Ci N-dominates Cj iff Ci 2[0,0]-dominates Cj.

This corresponds to the evaluation rules that apply a probability and

value formula to the consequence set in order to reach a numerical

verdict on which one is preferable. The last specialisation of the second

order is the ordinary expected value, which is termed NE-dominance

and is realised by letting f(pik,vik) = pik·vik in the N-dominance.

6 Other replacements that, for example, use the sum of ordered probabilities, are

categorised as higher order, but reasoning similar to N-dominance is applicable to

them as well.

EVALUATION

105

Definition 5.16: Given a decision e-frame C,P0,V0, Ci NE-

dominates Cj iff Ci N-dominates Cj with h(pik,vik) = pik·vik.

This can be seen to be the expected value, since the only index set pair

generated by the [0,0]-range is the pair of complete consequence sets.

Note: Ci NE-dominates Cj iff for (Ki,Kj)(0) ij ≥ 0.7

Also, note that ij ≥ 0 is not applicable to 2SE-dominance since it

involves different index set pairs while NE-dominance always applies

only to the full index sets of the consequence sets.

Example 5.3 (cont’d): Consider again the decision situation
involving the consequence sets C1 and C3. To recapitulate, the

decision e-frame contains the following data.

 p11 = 0.35 p31 = 0.25

 p12 = 0.45 p32 = 0.40

 p13 = 0.20 p33 = 0.10

 p34 = 0.25

 v11 = 0.20 v31 = 0.15

 v12 = 0.55 v32 = 0.85

 v13 = 0.80 v33 = 0.05

 v34 = 0.60

C3 NE-dominates C1 since E(C3) = 0.5325 and E(C1) = 0.4775.

Above, the security level of 5% for value 0.10 was violated by C3

but not by C1. Thus, the two rules may recommend different

consequence sets. 

Any particular implementation of the ∆-dominance will use a selection

of dominance rules as appropriate. That is a prime reason for intro-

ducing a sequence of them here. For example, if the expected value is

preferred to other numerical rules, the selection of 1SE-, 2SE-, and NE-

dominance is a plausible one.

7 Actually ij > 0 if the complete definition of ∆-dominance is considered.

COMPUTATIONAL DECISION ANALYSIS

106

GAMMA Dominance
Sometimes, keeping the computational load to a minimum is of great

importance, even at the expense of obtaining exact results. The ∆-

dominance makes pairwise comparisons between the consequence sets,

leading to m·(m–1)/2 computations for m consequence sets. To reduce

the number of comparisons to m, the -dominance is introduced. The

idea of -dominance is to compare each consequence set to all others

(or a subset thereof) at the same time by forming a weighted average of

the remaining ones and studying their difference.

Terminology: Given a decision e-frame {Ci}m,P0,V0,

the polar index set for Ci is J = {1,…,m}\{i}.

In general, the indices in such a set could be any subset of the indices in

the frame excluding i. According to the terminology clause, in this thesis

J will always be all other indices (all other consequence sets) in the

frame.

Definition 5.17: Given a decision e-frame C,P0,V0 and

a real number d  [0,1], an index set tuple (Ki,{Kj}jJ)(d) is

Ki = {k  vik ≥ d} and Kj = {k  vjk ≥ d},  jJ.

Similar to the ∆ definitions, the set of all index set tuples is useful.

Definition 5.18: Given a decision e-frame C,P0,V0 and real num-

bers a,b,d  [0,1], Mi[a,b] is the set {(Ki,{Kj}jJ)(d)  d  [a,b]}.

The -dominance can now be introduced. It can be thought of as a

“setwise” comparison of one consequence set to many others, employ-

ing the desired numerical function. It is a straightforward generalisation

of ∆-dominance, and for decision frames with only two consequence

sets they coincide. The function f must be the same for both the

consequence set and the set of sets. The weak inequality must hold for

all index set members, i.e. over the full interval range I.

EVALUATION

107

Definition 5.19: Given a decision e-frame C,P0,V0,

a function f, and two parameters (P0,V0) and (P0,V0),

Ci [I]-dominates {Cj}jJ iff  (Ki,{Kj}jJ)  Mi[I]

f(pik ,vik ,)
kKi

 –
1

n –1
f(pjk ,vjk ,)

kKj
















jJ

  0 .

From the definition of -dominance, the same set of evaluation rules as

for ∆-dominance can be defined. The insights gained from explicitly

stating them in this thesis are minimal. Suffice it to mention that all the

resulting rules behave as expected and that for a problem with only two

consequence sets all  definitions coincide with their ∆ counterparts.

-dominance is an approximate concept, but still leads to the same

ranking as its ∆ counterpart. To realise this, consider a decision situa-

tion with three alternatives A1, A2, and A3 modelled as consequence sets

C1, C2, and C3 having expected values E(C1), E(C2), and E(C3)

respectively. Assume without loss of generality that E(C1) > E(C2) >

E(C3). Then an evaluation results in 12 > 0 and 23 > 0. Using the -

version of NE-dominance, use differences i = E(Ci) –

1

n –1
·∑k E(Ck).

Now 1 – 2 = E(C1) – 0.5·(E(C2)+E(C3)) –E(C2) + 0.5·(E(C1)+E(C3))

= 1.5·(E(C1) – E(C2)) > 0 by the assumption. Likewise, 2 – 3 =

E(C2) – 0.5·(E(C1)+E(C3))–E(C3) + 0.5·(E(C1)+E(C2)) = 1.5·(E(C2)–

E(C3)) > 0. Finally 1 – 3 > 0 by transitivity and thus the ranking is

preserved. It can be generalised to any number of consequence sets and

also to other rules.

This concludes the second section of the evaluation chapter. The

last section deals with evaluation of decision frames with imprecise

information.

Frame Evaluation
In the rest of the chapter, ordinary C,P,V decision frames with all

kinds of constraints are again considered. Various lines of thought have

COMPUTATIONAL DECISION ANALYSIS

108

emerged in response to the problem arising when the information given

is imprecise and overlaps in the sense that parts of the information

seem to favour one alternative (consequence set) while other parts

favour another one.

The first idea might be to try and develop concepts based on
PVmin(N(Ci)) and PVmax(N(Ci)). Those are absolute values and delimit

the values that N(Ci) may assume. They provide an overview of the

decision situation, but in most interesting cases, the ranges overlap for

different consequence sets. The idea could then be to compare the

differences in minima and maxima of the consequence sets respectively.

Definition 5.20: Given a decision frame C,P,V, Ci is

-better than Cj iff PVmin(N(Ci)) – PVmin(N(Cj)) > 0

and PVmax(N(Ci)) – PVmax(N(Cj)) > 0.

Now, the consequence sets can be ranked in a partial order according to

-better than, but only in some cases will the order be complete. In

other cases, some pair of consequence sets Ci and Cj will have

PVmin(N(Ci)) > PVmin(N(Cj)) and PVmax(N(Ci)) < PVmax(N(Cj)) or vice

versa. Which boundary should then take precedence? Ambiguities like

this have led to other approaches, in which comparing differences for

consequence sets and using concepts of dominance are important

elements.

Admissibility
The first attempt to compare the consequence sets using differences is

fetched from statistical decision theory. There, the decision rules are

based on the expected value E(Ci). Within statistical decision theory, the

following definitions, adapted from [L59], are common.8

Definition 5.21: Given a decision frame C,P,V, Ci is

at least as good as Cj iff ij < 0 is inconsistent with P  V.

8 Since the definitions originate from statistics they are based on the expected value,

but the reasoning can easily be applied to other numerical rules as well.

EVALUATION

109

Ci is better than Cj iff Ci is at least as good as Cj and

ij > 0 is consistent with P  V.

If there are more than two alternatives, some criterion is needed by

which to compare an alternative to any number of other alternatives at

the same time.

Definition 5.22: Ci is admissible iff no other Cj is better.

However, the following observation much clearer shows the computa-

tional meaning of admissibility.

Observation: Given a decision frame C,P,V,
Ci is admissible iff for each jJ:

 (i) {ij > 0}  P  V is consistent, or

 (ii) {ji > 0}  P  V is inconsistent.

Proof: According to Definition 5.22 Ci is admissible iff

no other Cj is better. For a specific Cj it is true that

Cj is better than Ci iff

 (ij > 0 inconsistent with P  V) 

 (ji > 0 consistent with P  V).

Thus the negation “Cj is not better than Ci” can be expressed as

 ¬[(ij > 0 inconsistent with P  V) 

 (ji > 0 consistent with P  V)].

The negation expands into the disjunction

 ¬(ij > 0 inconsistent with P  V) 

 ¬(ji > 0 consistent with P  V).

This can finally be written as

 (ij > 0 consistent with P  V) 

 (ji > 0 inconsistent with P  V).

All derivation steps are equivalencies and valid for any Cj, j≠i,

in the frame. Thus both directions of the iff are proven. 

This shows why it is necessary to take two different clauses into consid-

eration when determining admissibility. Evaluating the consequence sets

in a decision frame, one of two situations may occur. Either

 (i) only one consequence set is admissible, or

COMPUTATIONAL DECISION ANALYSIS

110

 (ii) more than one consequence set is admissible.

For case (i) the task is done, since the only remaining consequence set is

superior to all the others, i.e. it dominates them all. Case (ii) remains,

which is the usual and interesting case. There is some overlap in the

values that the expected value can take on for the different consequence

sets. It is not at all obvious how it should be handled. Different authors

have suggested various solutions. Levi, for example, considers situations

where both probabilities and values are represented by intervals

bounded by upper and lower limits [L74]. He then defines a hierarchy of

admissibility concepts still building on the idea of any single instance

being superior for a particular consequence set. Additional rules include

preservation of options, i.e. a consequence set is better if more optional

future actions are possible (cf. options theory and contingent claims

analysis [H89]), and less spread or less risk, i.e. a kind of security level.

Malmnäs criticises Levi and other researchers in [M94a] and proposes

the introduction of a slack parameter (t) into the admissibility concept,

yielding the t-admissibility. Ekenberg further develops it by employing

the concept of proportion to measure in how large parts of the bases

different values of t hold for the t-admissibility of the respective conse-

quence sets [E94], although that leads to some contradictions when such

a procedure is applied, which is shown in the required graduation posi-

tion paper preceding this thesis [D97b].

Strength Concepts
This thesis takes another approach to the problem of evaluating interval

decision problems. The strength of a consequence set Ci compared to

another set Cj, given as a number PVmax(∆ij)  [–1,1], shows how the

most favourable consistent assignments of numbers to the probability

and value variables lead to the largest difference between the conse-

quence sets.

EVALUATION

111

Terminology: Given a decision frame C,P,V and
an index set pair (Ki,Kj)(d), ∆ij denotes an instance of

f (pik ,vik ,)
kK i

 – f(pjk ,vjk ,)
kK j

 .

To begin with, three strength concepts are introduced, on which the

evaluation principles will be based.

Definition 5.23: Given a decision frame C,P,V,

the maximal difference ∆ij in the frame is PVmax(∆ij) and

the minimal difference ∆ij is
PVmin(∆ij).

Thus, the maximal and minimal differences are in a sense the most and

least favourable possibilities respectively. They are both extreme results

as they require every single probability and value variable to take on its

most or least desirable numerical value at the same time. Moreover,

there is an element of comparison inherent in a decision procedure. The

evaluation results are interesting in comparison to the results of the

other consequence sets. Hence, it is reasonable to consider the

differences in strength as well. Then it makes sense to evaluate the

relative strength of Ci compared to Cj in addition to the strengths

themselves, since such strength values are compared to some other

strengths anyway in order to rank the consequence sets. To accomplish

this, the medium difference is introduced.

Definition 5.24: Given a decision frame C,P,V, let   [0,1]

be real number. The -medium difference ∆ij in the frame is
PV[]mid(∆ij) = ·PVmax(∆ij) + (1–)·PVmin(∆ij). The medium

difference ∆ij in the frame is PVmid(∆ij) = PV[0.5]mid(∆ij).

 can be considered a precedence parameter that indicates if one

boundary should be given more weight than the other. The medium is

also the relative strength as discussed informally in Chapter 2, i.e. the

difference in maximal ∆-values when the frame is considered from the

viewpoint of each consequence set respectively. Thus, it is a measure of

COMPUTATIONAL DECISION ANALYSIS

112

difference in strength between the consequence sets.9 This duality view

is a key to understanding the selection process proposed later.

Note: The relative strength of Ci compared to Cj in a

decision frame is

PV
mid( ij)

PV
max( ij)

PV
max( ji)

2

For the expected value difference ij, the concept of strength is related

to statistical decisions in the following way.

Note: Ci is at least as good as Cj iff
PVmin(ij) ≥ 0. Ci is better than

Cj iff Ci is at least as good as Cj and PVmax(ij) > 0. Ci is

admissible iff no other Cj is better.

Strong, Marked, and Weak Dominance
The selection procedure suggested in this thesis is based on the expan-

sion and contraction principles as introduced in Chapter 4 and on the

concepts of strong, marked, and weak dominance as introduced below.

Dominance means that one consequence set is superior to another,

at least in a part of the solution space to the bases. The weakest relation

would be if “a part” refers to a single solution vector. A more

reasonable interpretation of “a part” is if it is superior in a substantial

fraction of the solutions. Dominance in the strongest sense would mean

requiring that the “part” consists of all solution vectors. This idea is

captured in the concepts of strong, marked, and weak dominances.10

They correspond to the minimal, medium, and maximal differences.

9 The definitions of PVmax(i),

PVmin(i), and PV[]mid(i) are similar.

10 For P3 or V3 bases and some ∆-dominance instances, Mij[I] might not be unique,

but rather form a set. In such cases, all members of the set are evaluated and the

minimal (maximal) result is used. For NE-dominance, the most important case, this

cannot occur.

EVALUATION

113

Definition 5.25: Given a decision frame C,P,V,

Ci strongly ∆[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I]
PVmin(∆ij) ≥ 0.

Ci markedly ∆[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I]
PVmid(∆ij) ≥ 0.

Ci weakly ∆[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I]
PVmax(∆ij) ≥ 0.

The selection procedure might proceed as follows. First, the various

first order rules that are included in the particular procedure are applied

in turn, for example (and most commonly) first order stochastic

dominance and security levels. Possibly some consequence sets are then

filtered out from the decision process. Next, the more general of the

second-order rules are applied in the same manner. In the end, often

the NE-domination remains, and usually a number of consequence sets

are still being considered. For NE-dominance, the computational

patterns are as follows.

Note: For the expected value rule,

Ci strongly NE-dominates Cj iff for (Ki,Kj)(0)

PV
min pik

kKi

  vik – pjk
kKj

  vjk









0.

and similarly for marked and weak NE-dominance.

An example shows the use of NE-dominance.

Example 5.4: The decision involves three consequence sets C1, C2

and C3. The sets C2 and C3 have one consequence each while C1 has

two. The corresponding decision frame contains the following

statements:

 p11  [0.00, 1.00] v11 = 1.00

 p12  [0.00, 1.00] v12 = 0.00

 p11 + p12 = 1.00

 p21 = 1.00 v21 = 0.89

 p31 = 1.00 v31 = 0.88

COMPUTATIONAL DECISION ANALYSIS

114

Since the example – for the sake of hand computability – involves

mostly equality constraints, the calculations can be simplified by first
considering the possible ranges for the ij’s.

 12  [–0.89, 0.11]

 13  [–0.88, 0.12]

 23  [0.01, 0.01]

From the ij ranges, the max, min, and mid are found to be as

follows.

 PVmax(12) = 0.11 PVmin(12) = –0.89

 PVmax(13) = 0.12 PVmin(13) = –0.88

 PVmax(21) = 0.89 PVmin(21) = –0.11

 PVmax(23) = 0.01 PVmin(23) = 0.01

 PVmax(31) = 0.88 PVmin(31) = –0.12

 PVmax(32) = –0.01 PVmin(32) = –0.01

 PVmid(12) = 0.5·(0.11 – 0.89)= –0.39

 PVmid (13) = 0.5·(0.12 – 0.88) = –0.38

 PVmid (21) = 0.5·(0.89 – 0.11) = 0.39

 PVmid (23) = 0.5·(0.01 – (–0.01)) = 0.01

 PVmid (31) = 0.5·(0.88 – 0.12) = 0.38

 PVmid (32) = 0.5·(–0.01 – 0.01) = –0.01 

Expansion and Contraction
The expansion and contraction are generalised sensitivity analyses to be

carried out in a large number of dimensions. In non-trivial decision

situations, when a decision frame contains numerically imprecise

information, the different principles suggested above are often too weak

to yield a conclusive result by themselves. Thus, after the elimination of

undesirable consequence sets, the decision maker could still find that no

conclusive decision has been made. One way to proceed could be to

determine the stability of the relation between the consequence sets

under consideration. A natural way to investigate this is to consider

values near the boundaries of the constraint intervals as being less

EVALUATION

115

reliable than the core due to the former being deliberately imprecise.

This is taken into account by measuring the dominated regions indi-

rectly using the concepts of expansion and contraction.

The principles can be motivated by the difficulties of performing

simultaneous sensitivity analysis in several dimensions at the same time.

It can be hard to gain a real understanding of the solutions to large

decision problems using only low-dimensional analyses, since different

combinations of dimensions can be critical to the evaluation results.

Investigating all possible such combinations would lead to a procedure

of high combinatorial complexity in the number of cases to investigate.

Using expansions (and contractions), such difficulties are circumvented.

The idea behind the expansion principle is to investigate how much the

core can be expanded before dominance disappears between the

consequence sets compared. If there is no dominance in the original

core, it may be contracted towards the focal point in order to achieve

dominance. The expansion and contraction avoid the complexity

inherent in combinatorial analyses, but it is still possible to study the

stability of a result by gaining a better understanding of how important

the constraint boundaries are. By co-varying the contractions of an

arbitrary set of intervals, it is possible to gain much better insight into

the influence of the structure of the decision frame on the solutions.11

Contrary to volume estimates, expansions (and contractions) are not

measures of the sizes of solution sets but rather of the strength of

statements when the original solution sets are modified in controlled

ways. Both the set of intervals under investigation and the scale of

individual contractions can be controlled. Consequently, an expansion

can be regarded as a focus parameter that zooms out from central sub-

intervals (the core) to the full statement intervals. The selection

procedure could then continue with:

11 For a 100% contraction, the volume of each base is reduced to a single point. For

this special case, the results coincide with the ordinary expected value.

COMPUTATIONAL DECISION ANALYSIS

116

(i) Remove all strongly NE-dominated consequence sets

(ii) If more than one consequence set remains

 (ii a) Contract the frame until only one consequence set remains

 (ii b) Remove the markedly NE-dominated consequence sets

 (ii c) A combination of (ii a) and (ii b)

(iii) If only one consequence set remains

 (iii a) Expand the frame until other consequence sets appear

 (iii b) Study the markedly NE-dominated consequence sets

 (iii c) A combination of (iii a) and (iii b)

This is not a very precise selection procedure, and it is not meant to be.

Its particular instantiation depends on the decision situation, whether

the decision maker is a human or a machine, and whether the goal is to

make an ultimate decision or (very common for humans) to gain a

better understanding of the decision problem.

For simplicity of presentation, the text and the examples in this

chapter do not involve the concepts of core or expansion. Rather, the

hull is contracted to the focal point, and in a sense, the core can be

considered to coincide with the hull for those examples. Otherwise, the

ideas to be pointed out with the examples might be lost in the

calculations. Also for presentation reasons, the examples are small and

contrived with unusually sized intervals. Some examples facilitate hand

calculations to convey some idea, while others are machine-generated.

Since no core is specified, the contraction goes from the hull inwards to

the degree of 100%. The following three examples are from sample

runs of the DDT text interface.

Example 5.5: Consider a decision situation involving two

consequence sets C1 and C2 that have three consequences each.

According to the DDT tool, the decision frame contains the

following data.

Frame 'ex55' in folder 'PhD' has 2 alternatives

A1 (no_name1) with 3 consequences

A2 (no_name2) with 3 consequences

The probability base contains 6 constraints

EVALUATION

117

 1: P1.1  [0.100,0.600]

 2: P1.2  [0.200,0.400]

 3: P1.3  [0.300,0.400]

 4: P2.1  [0.400,0.600]

 5: P2.2  [0.250,0.400]

 6: P2.3  [0.200,0.300]

Probability hull Symmetry hull

P1.1  [0.200,0.500] [0.200,0.500]

P1.2  [0.200,0.400] [0.200,0.400]

P1.3  [0.300,0.400] [0.300,0.400]

P2.1  [0.400,0.550] [0.400,0.513]

P2.2  [0.250,0.400] [0.250,0.363]

P2.3  [0.200,0.300] [0.200,0.275]

The value base contains 6 constraints

 1: V1.1  [0.860,0.880]

 2: V1.2  [0.470,0.520]

 3: V1.3  [0.040,0.100]

 4: V2.1  [0.660,0.680]

 5: V2.2  [0.570,0.620]

 6: V2.3  [0.410,0.450]

Value hull

V1.1  [0.860,0.880]

V1.2  [0.470,0.520]

V1.3  [0.040,0.100]

V2.1  [0.660,0.680]

V2.2  [0.570,0.620]

V2.3  [0.410,0.450]

Focal point

Cons. P V

C1.1: 0.350 0.870

C1.2: 0.300 0.495

C1.3: 0.350 0.070

C2.1: 0.456 0.670

C2.2: 0.306 0.595

C2.3: 0.238 0.430

Contraction 0% 20% 40% 60% 80% 100%

E1 - E2 min: -0.241 -0.215 -0.189 -0.163 -0.138 -0.113

 mid: -0.113 -0.113 -0.113 -0.113 -0.113 -0.113

 max: 0.012 -0.013 -0.037 -0.062 -0.087 -0.113

The decision frame is of type P1 and V1, thus containing only range

constraints. The evaluation reveals that consequence set C2 is to

prefer in almost all of the frame, even when hardly any contraction
is applied. C2 NE-dominates C1 strongly from about 10%

contraction and markedly for all contractions, a very stable result. 

Example 5.6: Consider a decision situation involving two conse-
quence sets C1 and C2 that have one consequence each. According

to the DDT tool, the decision frame contains the following data.

COMPUTATIONAL DECISION ANALYSIS

118

Frame 'ex56' in folder 'PhD' has 2 alternatives

A1 (no_name1) with 1 consequence

A2 (no_name2) with 1 consequence

The probability base contains 0 constraints

Probability hull Symmetry hull

P1.1  [1.000,1.000] [1.000,1.000]

P2.1  [1.000,1.000] [1.000,1.000]

The value base contains 3 constraints

 1: V1.1 - V2.1  [-0.100,0.100]

 2: V1.1  [0.400,0.800]

 3: V2.1  [0.100,0.500]

Value hull

V1.1  [0.400,0.600]

V2.1  [0.300,0.500]

Focal point

Cons. P V

C1.1: 1.000 0.500

C2.1: 1.000 0.400

Contraction 0% 20% 40% 60% 80% 100%

E1 - E2 min: -0.100 -0.060 -0.020 0.020 0.060 0.100

 mid: 0.000 0.020 0.040 0.060 0.080 0.100

 max: 0.100 0.100 0.100 0.100 0.100 0.100

The decision frame is of type P1 and V2, thus containing only range

constraints in the probability base but also comparative constraints

in the value base. This time, the evaluation shows that in the

uncontracted frame, the consequence sets seem to be equal, but
under contraction, C1 is to prefer more the further the contraction

continues. C1 never NE-dominates C2 strongly but dominates

markedly for all contractions beyond 0%. This indicates that con-

traction is an essential component of the analysis. 

Example 5.7: Consider almost the same decision situation as

in Example 5.6. According to the DDT tool, the decision frame

contains the following data.

Frame 'ex57' in folder 'PhD' has 2 alternatives

A1 (no_name1) with 1 consequence

A2 (no_name2) with 1 consequence

The probability base contains 0 constraints

Probability hull Symmetry hull

P1.1  [1.000,1.000] [1.000,1.000]

P2.1  [1.000,1.000] [1.000,1.000]

EVALUATION

119

The value base contains 3 constraints

 1: V1.1 - V2.1  [-0.100,0.050]

 2: V1.1  [0.400,0.800]

 3: V2.1  [0.100,0.500]

Value hull

V1.1  [0.400,0.550]

V2.1  [0.350,0.500]

Focal point

Cons. P V

C1.1: 1.000 0.475

C2.1: 1.000 0.425

Contraction 0% 20% 40% 60% 80% 100%

E1 - E2 min: -0.100 -0.070 -0.040 -0.010 0.020 0.050

 mid: -0.025 -0.010 0.005 0.020 0.035 0.050

 max: 0.050 0.050 0.050 0.050 0.050 0.050

This example illustrates that dominance may shift under contraction.
The evaluation shows that in the uncontracted frame, A2 is to prefer,

but under contraction A1 becomes stronger the longer the

contraction continues. Beyond about 67% contraction, A1 NE-

dominates A2 strongly but is itself dominated markedly for small

contractions less than 33%. 

This concludes the frame evaluation chapter, and thus the more

formal evaluation aspects, at least from a definition point of view. The

next chapter deals with trying to compute the numerical values of

some of those definitions in order to turn it into a truly computational

method.

COMPUTATIONAL DECISION ANALYSIS

120

All the roads jam up with credit

And there’s nothing you can do

It’s all just bits of paper

Flying away from you

Look out, world

Take a good look

What comes down here

You must learn this lesson fast

And learn it well

This ain’t no upwardly mobile freeway

This is the road to hell

 – C. Rea

Optimisation
To make a decision analysis method computational, and thus making it

a method for real-life decisions, two main ingredients are necessary. The

first is a suitable representation and evaluation rules of the decision

problems, such as the method presented in Chapters 4–5. The other is

reasonably fast computational algorithms, which is the topic of this

chapter. Most of the demanding computations required by DELTA are

optimisation-related algorithms.

The chapter is divided into three main sections. The first deals with

calculating properties of decision frames using linear programming

methods and the second deals with algorithms for computing

evaluation rules by employing bilinear optimisation. The last section

contains a discussion of the Simplex method and its implementation in

the DELTA solver.

Frame Properties
In order to assess the properties of a frame, computational methods are

required that can determine whether a given base has a particular

property or not. One of the most fundamental components is a way of

determining consistency in a base. Since the base consists of a linear

system of inequalities, a natural candidate area for an algorithm is linear

programming.

COMPUTATIONAL DECISION ANALYSIS

122

The area of linear programming (LP) was formed in the 1940s and

has been a large and lively area of research ever since.1 It deals with the

maximising (or minimising) of a linear function with a large number of

likewise linear constraints in the form of weak inequalities. Research

efforts in the field are partly focused on developing clever algorithms

for fast numerical computations. This chapter assumes that the reader is

familiar with the basics of LP in general and with the Simplex method in

particular. Those unfamiliar with these subjects may refer to any

standard textbook on the subject, e.g. [BHM77, C83]. The LP problem is

the following optimising problem:

max f(x)

when Ax ≥ b

and x ≥ 0

where f(x) is a linear expression of the type k1x1 + k2x2 + … + knxn,

Ax ≥ b is a matrix inequality with rows a11x1 + a12x2 + … + a1nxn ≥ b1

through am1x1 + am2x2 + … + amnxn ≥ bm, and x ≥ 0 are the non-nega-

tivity constraints xi ≥ 0 for each variable. Amongst all feasible points,

the solution to f(x) is sought that has the highest numerical value, i.e.

the best solution vector x, the components of which are all non-nega-

tive and satisfy all constraints. A minimum can be searched for by

negating f(x).

Consistency
The first algorithm is a procedure for determining whether a base is

consistent or not. A base is consistent if any solution whatsoever can be

found to the set of interval constraints. Note the similarities with the LP

problem formulation. Let there be m interval constraints in the base. By

1 Even though the ideas were around earlier, Danzig’s timing was better.

Mathematicians in the former Soviet Union formulated similar ideas already in the

late 1930s (even including rudimentary algorithms) but with no computers available,

their work was neglected, even domestically [GT89].

OPTIMISATION

123

introducing new variables y1,…,yk, with k = 2·m, to the consistency

problem, it can be reformulated as

min (y1 + … + yk)

when Ax ≥ b

and x ≥ 0, y ≥ 0

where each of the interval constraints ai1x1 + ai2x2 + … + ainxn  [a,b]

is transformed into the inequalities ai1x1 + ai2x2 + … + ainxn + y2i-1 ≥ a

and ai1x1 + ai2x2 + … + ainxn – y2i ≤ b. If the obtained minimum of

y1 + … + yk has the value zero,2 then a solution has been found that

does not contain any yj.3 Removing the yj’s, the resulting solution vector

x is indeed a feasible solution, i.e., the base is determined to be

consistent. If the minimum of y1 + … + yk is positive, then the optimal

values of the yj’s are larger than zero, i.e. at least one of the yj’s is

necessary to keep the base consistent. Since the yj’s were added to the

base, the problem itself has no solution. Hence, the base is inconsistent.

This forms the algorithm for determining consistency in a decision

frame by applying it to the probability and value bases.

Orthogonal Hull
Another important property of a base is the orthogonal hull.4 According

to the definition, in order to calculate the hull, it is necessary to find the

pairs Xmin(xi),Xmax(xi)n, i.e. finding minima and maxima for single

variables in the base. First, a consistent point is determined by

employing the procedure above.5 A search then begins from that point

for the minimum and maximum of each variable in turn by forming LP

problems with that variable as the objective function. For convexity

2 It cannot be negative since all yi’s are non-negative by the problem formulation.

3 Since they are all zero, they can be removed from the problem formulation without

altering the solution.
4 The symmetric hull can easily be subsequently calculated.
5 That any consistent point is feasible to start with follows from convexity properties

of a system of linear inequalities.

COMPUTATIONAL DECISION ANALYSIS

124

reasons, the entire interval between those extremal points is feasible.6 If

the base is consistent, the orthogonal hull can be calculated.

From the two properties consistency and orthogonal hull, most of

the other ones in Chapter 4 follow from less demanding computations.

Evaluation Algorithms
The problem addressed in this section is how to compare the different

consequence sets computationally using the methods of the previous

chapter. The computational pattern that reoccurs several times in that

chapter and needs to be solved fast in long sequences is PVmax(∆ij) and
PVmin(∆ij). The optimisation of general ∆ij-type of expressions as they

appear in Chapter 5 is a demanding computational task as soon as the

problem to solve is above toy size. In most cases, however, the

expected value rule is employed, making the task less demanding from a

computational point of view. In this section, it is assumed that the

expected value is being used. Then, the general PVmax(∆ij) turns into
PVmax(∑k pik – ∑k pjk) for first order ∆-dominance such as 1SE and

security levels, and into PVmax(∑k pik·vik – ∑k pjk·vjk) for second order

ones such as 2SE or NE.

First Order Dominance
For first order dominance, the evaluation expressions are of the form

P
max pik

kKi










 or

P
max pik

kK i

  p jk
kK j
















 (or corresponding Pmin)

for some index sets Ki or index set pairs (Ki,Kj)(d) respectively. These

maximisation problems map directly onto LP since it is possible to

identify the linear f(x) with ∑k pik or ∑k pik – ∑k pjk and note that

Ax ≥ b is the probability base P. The solution to the problem is thus

6 All convex combinations.

OPTIMISATION

125

obtained by running a suitable LP solver such as Simplex described later

in the chapter. This is an efficient solution to first order problems.

Second Order Dominance
For second-order dominance, the expressions are more complicated.

They involve non-linear elements in the form of bilinear terms pik·vik.

The optimisation problems PVmax(∑k pik·vik) and PVmax(∑k pik·vik –

∑k pjk·vjk) cannot be solved by a simple application of an LP solver

even if the P- and V-bases are independent and still consist of only

linear expressions. The objective function is ∑k pik·vik – ∑k pjk·vjk =

pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 – (pj1·vj1 + pj2·vj2 + … + pjmj
·vjmj

). This

is a bilinear expression with all terms of the form pik·vik. There is one

such expression together with many linear inequalities. Thus, it is an

optimisation problem with a bilinear objective function and a system of

linear inequalities as constraints. It will be called a bilinear programming

problem with ±1 term constants (a BLP1 problem for short).

Four alternative algorithms for use in an interactive environment are

proposed here. The bilinear objective function is an instance of

quadratic objective functions, and thus the general BLP1 is solvable with

quadratic programming methods. The first one, QB-Opt, is the most

general, able to solve all BLP1 problems, but being based on QP (see

below) it is not as fast as desired for interactive use. The other three are

LP-based or simpler and are well-suited for user interaction. The four

algorithms are collectively referred to as the B-Opt algorithms. The

algorithms are presented in reverse runtime order, i.e. starting with the

most general and then continuing with the more specialised ones. Since

the bilinear objective function is quadratic, the first natural candidate

area for a solver algorithm is quadratic programming.

COMPUTATIONAL DECISION ANALYSIS

126

Quadratic Programming
The theory of quadratic programming (QP) can be found in any stan-

dard textbook on non-linear optimisation. Here, only the top-level

procedure for searching quadratic optima is considered. The general QP

problem with both equalities and inequalities in the constraints is

(QPI) max (xTQx + cTx)

 when Ax ≥ b

where A is a m  n matrix with linearly independent rows, Q is a

symmetric n  n matrix, and c is a vector in Rn. The expression xTQx is

a quadratic form, and can contain all possible quadratic terms.

Since the objective function is quadratic, the theory of linear

programming as discussed above does not apply. Even though a

method similar to Simplex was originally devised by Danzig and Wolfe

to solve QP, most methods today use factorised matrices. For any given

solution the inequality problem QPI can be considered a problem with

only equalities (QPE), namely all weak inequalities satisfied without

slack.7 Since the other inequalities are not active at that solution point

they need not be considered locally. This reasoning leads to the active

set strategy, a well-known technique within non-linear programming.

One of the problems with the active set is that its members at any given

step are hard to determine in advance. This means resorting to a

guessing strategy, where a choice is made without enough information

and corrected later on should the choice be proven unsuitable. QPE

problems can be solved using a number of standard methods such as

Lagrange methods or null-space methods, depending on matrix sparsity,

stability requirements, and other criteria [L89]. The BLP1 problem maps

well onto QPI since there is one second-order non-linear expression as

the objective function and a larger number of linear constraints in the

probability and value bases. The bilinear objective function is a special

7 An inequality is satisfied without slack if inequalities such as ≥ can be replaced with

= and the statement still remains valid.

OPTIMISATION

127

case of a quadratic function where most of the entries in the Q matrix

are zero. This forms the basis for the general QB-Opt algorithm.

Observation: Given a decision frame C,P3,V3, PVmax(ij) =

max (xTQx + cTx) with ij as xTQx, 0 as cTx and PV as Ax ≥ b.

The QPE is computationally fairly demanding, and QPI, being an

iterative sequence of QPEs, is even more so. Since QPI often does not

admit interactive response times, it would be preferable to use an LP-

based solver instead. This is possible in a number of important cases,

and any of the below algorithms (PB-Opt, VB-Opt, NB-Opt) is pre-

ferred, should their preconditions apply, since they invoke LP zero or

one time for the solution of a BLP1. Together with QB-Opt, they form

a solver hierarchy.

Probability Bilinear Optimisation
The first LP-based algorithm described is the probability bilinear opti-

misation, PB-Opt. For PVmax(∑k pik·vik) it solves the general BLP1

problem for C,P3,V2-frames while for PVmax(∑k pik·vik – ∑k pjk·vjk) it

solves all cases where there are no comparative constraints between the

consequence sets involved in the calculation, either directly or indi-

rectly. To begin with, maximal and minimal expressions of probability

are introduced.

Definition 6.1: Given a decision frame C,P,V,

VEi
max is

p ik  bik
k1

mi

 , where bik = Vmax(vik).

VEj
min is

p jk  bjk
k1

mj

 , where bjk = Vmin(vjk).

Vij is VEi
max – VEj

min.

The last difference was formed from two linear expressions in only

probability variables. The main proposition for PB-Opt is now stated as

follows.

COMPUTATIONAL DECISION ANALYSIS

128

Proposition 6.1: Given a decision frame C,P3,V2. If none of the

comparative constraints in V involve variables from different Ci’s,

then PVmax(ij) = Pmax(Vij) for any pair Ci and Cj.8

Proof: Let (bi1,…,bimi
) and (bj1,…,bjmj

) be as in the definitions

of VEi
max and VEj

min above. For all feasible vectors9 (pi1,…,pimi
),

(pj1,…,pjmj
), (vi1,…,vimi

), and (vj1,…,vjmj
) VEi

max ≥ ∑k pik·vik and

VEj
min ≤ ∑k pjk·vjk.10 It follows from bik = Vmax(vik) and

bjk = Vmin(vjk) and from pik ≥ 0  k  {1,…,mi} and pjk ≥ 0

 k  {1,…,mj}. This implies Vij ≥ ∑k pik·vik – ∑k pjk·vjk.

Ci contains mi consequences. Given two integers 1 ≤ k,l ≤ mi,

assume bik = Vmax(vik). Then for vil, either (i) there is no com-

parison vil – vik  [a,b] in V, in which case vil is independent of

vik, or (ii) there is a comparison vil – vik  [a,b]. For case (ii), the

constraint can be written (ii a) vil ≥ a + vik and (ii b) vil ≤ b + vik.

In (ii a) vik does not constrain the maximisation of vil, and in

(ii b) vik = bik maximises vil. Thus vik and vil can be indepen-

dently maximised and (bi1,…,bimi
) is a feasible vector as is

(bj1,…,bjmj
) by a similar argument. Since there are no constraints

vik – vjl  [c,d] in V for different Ci and Cj, each bik in

(bi1,…,bimi
) and each bjk in (bj1,…,bjmj

) can be chosen within a

consequence set independently of the other sets. 

This justifies the basis for the PB-Opt algorithm. The rest of the algo-

rithm almost suggests itself. It searches for the optimum Pmax(Vij) by

means of an LP algorithm such as Simplex. The proposition then

guarantees that PVmax(ij) can be determined by calculating Pmax(Vij)

instead provided the precondition is met. Similarly, PVmax(∑k pik·vik)

8 If a graph is constructed with the value variables as nodes and the comparative

constraints as edges, then it suffices that there is no path between any variables
in Ci and Cj.

9 Feasible vectors refer to projections from actual solution vectors of the constraint

set PV to subspaces.
10 In order to convey the idea of the proof rather than to obscure it with details, no

distinction is made between linear expressions (such as VEi
max) and instantiations

(such as ∑k pik·vik).

OPTIMISATION

129

can be found by searching for an LP solution instead, and in this case

there is not even a precondition. Thus, it is a versatile algorithm in the

DELTA context.

Example 6.1: Suppose there is a probability base P and a value base
V with the following constraints for the consequence sets C1 and C2

having three and two consequences respectively.

p11  [0.10, 0.40]

p12  [0.25, 0.45]

p21  [0.20, 0.50]

v11 ≥ v12

v11  [0.40, 0.70]

v13  [0.75, 0.85]

v21  [0.30, 0.55]

v22  [0.65, 0.90]

Now, VE1
max = p11·0.70 + p12·0.70 + p13·0.85 and

VE2
min = p21·0.30 + p22·0.65.

Next, V12 = VE1
max – VE2

min =

p11·0.70 + p12·0.70 +p13·0.85 – p21·0.30 – p22·0.65 and
V21 = VE2

max – VE1
min =

p21·0.55 + p22·0.90 – p11·0.40 – p12·0.00 – p13·0.75.

Finally, Pmid(V12) = (Pmax(V12) – Pmax(V21))/2 =

(Pmax(p11·0.70 + p12·0.70 + p13·0.85 – p21·0.30 – p22·0.65) –
Pmax(p21·0.55 + p22·0.90 – p11·0.40 – p12·0.00 – p13·0.75))/2 =

((0.10·0.70 + 0.25·0.70 + 0.65·0.85 – 0.50·0.30 – 0.50·0.65) –

(0.20·0.55 + 0.80·0.90 – 0.40·0.40 – 0.45·0.00 – 0.15·0.75))/2 =

–0.1175. 

Value Bilinear Optimisation
To circumvent the problem with comparative value constraints between

consequence sets while still running an LP-based solver, the value

bilinear optimisation VB-Opt is suggested. It solves the BLP1 problem

COMPUTATIONAL DECISION ANALYSIS

130

for C,P1,V3-frames with the alt-order precondition (defined below)

for PVmax(∑k pik·vik) as well as for PVmax(∑k pik·vik – ∑k pjk·vjk).

Definition 6.2: Given a decision frame C,P,V,

PEi
max is

aik  vik
k1

mi

 , where aik = Pkmax(pik) and

 Pk is P  {pi(k-1) = ai(k-1)}  …  {pi1 = ai1}.

PEj
min is

a jk  vjk
k1

mj

 , where ajk = Pkmin(pjk) and

 Pk is P  {pj(k-1) = aj(k-1)}  …  {pj1 = aj1}.

Pij is PEi
max – PEj

min.

Assume that V is consistent. Then Ci is alt-ordered iff

for all vi1,…,vimi
, vik < vil is inconsistent with V when k < l.

V is alt-ordered if all Ci, i  {1,…,m}, are alt-ordered.

Being able to compare value constraints between consequence sets

while still relying on a straightforward LP solution is a fairly strong

algorithm property. This must be paid for by the introduction of a

restriction on the constraints allowed. For VB-Opt, the restriction

mandates that the value base V is alt-ordered.

Proposition 6.2: Given a decision frame C,P1,V3with

alt-ordered consequence sets Ci and Cj. Then PVmax(ij) =
Vmax(Pij).

Proof: Let (ai1,…,aimi
) and (aj1,…,ajmj

) be as in the defini-

tions of PEi
max and PEj

min above.11 For all feasible vectors

(pi1,…,pimi
), (pj1,…,pjmj

), (vi1,…,vimi
), and (vj1,…,vjmj

)

PEi
max ≥ ∑k pik·vik and PEj

min ≤ ∑k pjk·vjk. It follows from

vik ≥ 0  k  {1,…,mi} and vjk ≥ 0  k  {1,…,mj} and from

the following argument.

11 The footnotes in Proof 6.1 apply here as well.

OPTIMISATION

131

First, ai1 = Pmax(pi1) is constrained only by P. Next, for some

k  {2,…,mi}, assume aih (h=1,…,k–1) have been obtained by

aih = Phmax(pih) (Pn is P  {pi(n-1) = ai(n-1)}  …  {pi1 = ai1})

and that for some aik the statement pik = aik is consistent with Pk.

If pik = aik +  ( > 0) is consistent with Pk, then because of the

normalisation there are some pih1
,…,pihn

 (where h1,…,hn > k)

such that {pih1 = aih1
 – 1}  …  {pihn

 = aihn
 – n} is consistent

with Pk (where  = 1 + … + n, i ≥ 0). Since pik is restricted to

occurring in only one compound constraint (the normalisation),
the alt-ordering implies that ·vik ≥ 1·vih1

 + … + n·vihn
. Thus,

increasing aik by an amount  gives at least as large a contribution

to ∑k pik·vik as increasing aih1
,…,aihn

 by a total amount of . Thus,

PEi
max is an optimal way of choosing pik’s for maximisation. A

similar argument applies to PEj
min.

This implies Pij ≥ ∑k pik·vik – ∑k pjk·vjk.

In a P1-base, there are no dependencies between consequence

sets. Thus each aik in (ai1,…,aimi
) and each ajk in (aj1,…,ajmj

) can

be chosen within a consequence set independently of the other

sets. 

In the preconditions, a probability base of type P1 is required. This is

somewhat over-restrictive since certain P3-bases can be allowed as well.

It is sufficient to require that each probability variable occurs in at most

one compound constraint in addition to the normalisation constraint and

the range constraints.12 Then the alt-ordering implies that ·vik ≥ 1·vih1

+ … + n·vihn
 still holds as in the original proof. Increasing aik by 

gives at least as large a contribution as increasing aih1
, …, aihn

 by a total

amount of . This is the key, and the rest of the proof is unaltered.

Example 6.1 (cont’d): Reconsider the previous example. Vmid(P12)

is calculated in the same manner as Pmid(V12) above. The value base

is alt-ordered, since v11 ≥ v12 by an explicit expression, and v13 ≥ v11

by non-overlapping ranges. Similarly, v22 ≥ v21 by non-overlap. If, on

12 The compound constraint may only contain variables from the same consequence

set.

COMPUTATIONAL DECISION ANALYSIS

132

the other hand, v13  [0.65, 0.85] the consequence set C1 would not

be alt-ordered, since the ranges of v11 and v13 would then indeed

overlap. 

Example 6.2: Suppose there is a probability base P with the follow-
ing constraints for the consequence set C1.

 p11 + p12 = 0.30

 p13  [0.00, 1.00]

 p14  [0.00, 1.00]

Suppose there is also a value base V with the following constraints
for the consequence set C1.

 v11 = 0.90

 v12 = 0.80

 v13 = 0.70

 v14 = 0.10

Let 10 denote ∑k p1k·v1k. Since for the simplicity of hand calcula-

tions most constraints are equalities, PVmax(10) and Vmax(P10) can

easily be determined.

Using the definition of Pij the expression a11·v11 + … + a14·v14

becomes 0.30·v11 + 0.00·v12 + 0.70·v13 + 0.00·v14.

 PVmax(10) = PVmax(p11·v11 + … + p14·v14) =

 0.30·0.90 + 0.70·0.70 = 0.76

 Vmax(P10) = Vmax(a11·v11 + … + a14·v14) =

 0.30·0.90 + 0.70·0.70 = 0.76

As expected from the proposition, the two values are the same. 

The following example demonstrates that the proposition above does

not imply Vmax(Pij) = PVmax(ij) in general.

Example 6.3: Suppose there is almost the same probability base P
with the following larger set of constraints for consequence set C1.

 p11 + p12 = 0.30

 p11 + p13 = 0.40

 p13  [0.00, 1.00]

 p14  [0.00, 1.00]

OPTIMISATION

133

Suppose there is a value base V with the same constraints for conse-
quence set C1 as in the previous example.

 v11 = 0.90

 v12 = 0.80

 v13 = 0.70

 v14 = 0.10

To compare with the previous example, calculate PVmax(10) and
PVmax(10) for this base. Using the definition of Pij the expression

a11·v11 + … + a14·v14 becomes 0.30·v11 + 0.00·v12 + 0.10·v13 +

0.60·v14.

 PVmax(10) = PVmax(p11·v11 + … + p14·v14)

 = 0.30·0.80 + 0.40·0.70 + 0.30·0.10 = 0.61

 Vmax(P10) = Vmax(a11·v11 + … + a14·v14)

 = 0.30·0.90 + 0.10·0.70 + 0.60·0.10 = 0.40

Not surprisingly, since the precondition is violated, the two values

are not the same this time. 

The last example shows that if a probability variable is included in more

than one compound constraint except for the normalisation, the above

proposition might not produce the correct value. The bilinear

optimisation algorithm VB-Opt nearly suggests itself. It searches for the

optimum Vmax(Pij) by means of the Simplex algorithm described

below. The theorem then guarantees that PVmax(ij) can be determined

by calculating Vmax(Pij) instead, using only linear programming tech-

niques.

Restricted Bilinear Optimisation
Looking at the preconditions for PB-Opt and VB-Opt, they do their

task of eliminating the need for computational optimisation in one of

the bases by exploiting the structure inherent in the input material. The

two sets of preconditions do not intersect and they work on separate

parts of the frame, one base each. This implies that both preconditions

can be combined, forming their union, and then eliminate the need for

COMPUTATIONAL DECISION ANALYSIS

134

computational maximisation in either base, in effect abolishing LP from

the calculations. This is the key idea of the fourth and last algorithm in

the stack. The name, NB-Opt, comes from not needing to run any LP

solver at all.

Definition 6.3: Given a decision frame C,P,V,

let VEi
max be as in Definition 6.1.

Then PVEi
max is

aik  bik
k1

mi

 , where aik = Pkmax(pik) and

 Pk is P  {pi(k-1) = ai(k-1)}  …  {pi1 = ai1}.

Also let VEi
min be as in Definition 6.1.

PVEi
min is

ajk  bjk
k1

mj

 , where ajk = Pkmin(pjk) and

 Pk is P  {pj(k-1) = aj(k-1)}  …  {pj1 = aj1}.

Then PVij is PVEi
max – PVEj

min.

The proofs of PB-Opt and VB-Opt apply to one part each of the

proposition below. They are independent as are the preconditions, thus

they can be joined together. Their union justifies NB-Opt.

Proposition 6.3: Given a decision frame C,P1,V2, assume that

none of the comparative constraints in V involve variables from

different Ci’s. Further, suppose that the consequence sets Ci and

Cj are alt-ordered. Then PVmax(ij) = PVij for any pair Ci and Cj.

The algorithm based on this proposition is very fast since no pivoting

procedure needs to be invoked if the hull has been pre-determined. NB-

Opt is the ideal first algorithm to run in an anytime algorithm stack

since an approximate answer can be supplied almost instantaneously.

The Solver Stack
The four algorithms together make up the B-Opt solver stack. This

stack has the property that one of the faster algorithms can be selected

to run first in order to receive an approximation. The approximation

OPTIMISATION

135

error is then corrected as the appropriate solver is subsequently allowed

to run. Figure 6.1 shows the solver stack referral chain for approximate

or anytime computations.

QB-Opt

PB-Opt VB-Opt

NB-Opt

Figure 6.1 The B-Opt referral chain

Thus, the stack forms an anytime algorithm, with the property of

delivering a reasonable answer if being prematurely aborted [Z96]. This

is a convenient property in interactive applications.

The Simplex Method
The algorithm for finding the orthogonal hull relies on the ability to

solve a sequence of small LP (SSLP) problems rapidly. The frame

evaluation requires higher-level algorithms that generate long SSLP

sequences to an even greater extent. The most appropriate candidate for

an SSLP solver implementation is the Simplex method.

From the early 1950s onwards, the very general nature of the LP

problem formulation rapidly led to the solution of an increasing number

of ever larger problems in industry and government. With the growth of

computing in general, the area of LP soon gained momentum. The

Simplex algorithm, originally suggested by Danzig in 1947, is one of the

earliest solution methods. At first, it was not much more than a clever

COMPUTATIONAL DECISION ANALYSIS

136

way to manipulate matrices in order to manœuvre from one corner to

another of a feasible polytope in such a way that the objective function

never decreases. Today it has become an entire sub-field within applied

mathematics. The current research focus is on solving larger and larger

problems, involving thousands of inequalities and tens of thousands of

variables. The employed techniques are in some respects akin to

research in numerical methods [G92].

Problems still remain with the Simplex method. A theoretical

problem is that it belongs to the class of exponential algorithms in time.

Examples can be designed to reveal this deficiency, see for example

[C83].13 Because of this, other, non-linear approaches to LP problems

have been suggested, notably Khachian’s ellipsoid method14 and the

Karmarkar algorithm. The proposed advantages of these non-linear

approaches only reveal themselves in very large or contrived problems.

It is evident from recent research summaries that almost all research

focuses on solving large LP (LLP) problems within a reasonable time15

[G92, W91]. As was pointed out above, the task in DELTA is to find

solutions to a sequence of small problems in a short time to allow for

interactive use.16 None of the non-linear methods, nor much of the

current research in Simplex is therefore of any great use in this thesis.

Some extensions to the standard Simplex algorithm are examined to see

whether they can contribute to the development of a fast algorithm for

SSLP problems. Other Simplex techniques were discarded because they

apply to specially structured or very large problems, and many were

related to numerical properties of very large matrices. The descriptions

13 While the general LP problem is polynomial, the algorithms in this chapter are

based on the Simplex method. Thus, they will inevitably be classified as exponential

in time. In real-life applications, Simplex performs very well, and there is no reason

to expect any less from algorithms based on it.
14 Khachian did not invent the method but provided a proof that it is polynomial.
15 Which might mean hours or even days.
16 Typical Simplex execution times are less than a second for a 100  100 problem

and less than a minute for a 1000  1000 problem, scaling as O(n2).

OPTIMISATION

137

of the extensions given here are intended to be intuitive for the purpose

of arguing for and against their inclusion in DELTA solver algorithms.

Revised Simplex

In each Simplex step, one basic solution is replaced by another by

means of matrix operations on the coefficient matrix A and the right-

hand side b. If the size of A is m  n, then a Simplex solution to an LP

problem can most often be found in 3·m/2 steps, each step including a

pivot operation consisting of a large number of multiplications and

divisions [L89]. Most LLP problems have a structure where m << n and

only a minor fraction of the columns will ever be pivoted on. Because

of this, it seems to be a waste of processing time to update all columns

in every step. Using matrix algebra, it can easily be shown that the

column to pivot on in each step can be constructed from the original

data instead of from the data in the previous step. All potential trans-

formations are held in a matrix, and the total amount of processing of

columns is now proportional to m instead of n, but an overhead penalty

is incurred for keeping track of the dormant columns. If m << n, as in

the LLP problems of mainstream Simplex research, then this is a very

large improvement. However, in the SSLP case, m ≈ n. Both methods

iterate the same number of steps, but since a large fraction of the

columns will be used actively, the overhead introduced in the revised

method makes it less attractive than the standard method for SSLP

purposes. The revised formulation of the Simplex method is not applied

to the DELTA solvers.

Upper and Lower Bounds

In many LP problems, a considerable number of the constraints have

only one variable, reflecting a modelling situation where there are many

constraints on single variables, in some cases on most of the variables

involved. It means that if there were a formulation of Simplex where

these constraints could be handled in an efficient way, the computa-

tional effort for solving the problem could be greatly reduced. This is

COMPUTATIONAL DECISION ANALYSIS

138

due to the fact mentioned above that the effort expended on solving an

LP problem is roughly proportional to 3·m/2, where m is the number

of constraints.17 Since constraints on single variables are still matrix

rows18 they account for a fair amount of the computational processing

of such problems.

Suppose that the variable xi is subject to the constraints xi ≥ ai and

xi ≤ bi.19 In the standard formulation, this would be introduced into the

problem in the form of two constraint inequalities, i.e. two matrix rows,

increasing the m above by two. Instead, by the formulation of the LP

problem, all xi’s are automatically subject to the constraint xi ≥ 0. The

variable xi is then transformed into xi' = xi–ai and the coefficient matrix

and objective function are adjusted accordingly. The new variable xi' is

now subject to the constraints xi' ≥ 0 and xi' ≤ bi–ai, which eliminate the

need for an explicit lower bound.

For the upper bound, the reasoning is only slightly more involved.

By defining xi'' = xi'– (bi–ai), and substituting one for the other back and

forth during the Simplex execution, a variable at its upper bound can be

regarded as non-basic. When the variable xi' reaches its upper bound

during a Simplex iteration step, it is replaced by xi'' and vice versa. Then

the new variable is zero by definition and becomes non-basic.20 Thus

the implicit constraint xi' ≥ 0 (or xi'' ≥ 0) is again used to eliminate the

need for an explicit row entry in the coefficient matrix. This is highly

applicable for the DELTA solvers since there are upper and lower

bounds on almost every variable in a base.

17 Inequalities or rows in the coefficient matrix.
18 With only one non-zero coefficient.

19 xi  [ai,bi] in interval notation.

20 Do not confuse the Simplex concept of base, meaning non-zero variables, with

the DELTA concept of base, meaning a collection of interval constraints.

OPTIMISATION

139

Generalised Upper Bounds

There is a promising generalisation of the upper bound handling in the

previous paragraph. Some LLP problems have a structure where many

constraints are of the form ∑i xi = b for non-trivial index sets. There is

a close relationship with the probability base where the normalisation

equation is ∑k pik = 1 for each consequence set. The theory of

generalised upper bounds (GUBs) is a matrix method based on

factorising the base into parts with different properties. The new parts

are then less complicated to solve. Suppose the coefficient matrix has m

rows of which m2 are of the generalised form above. The GUB

technique is then reported to become faster than ordinary revised

Simplex when m2 ≈ 0.3·m and ten times faster when m2 ≈ 0.8·m [C83].

While this is a remarkable speed increase for real LLP GUB problems,

there is only one normalisation equation per consequence set in the

probability base,21 and that falls well below the trade-off point, making

this extension unimportant.

Implicit Identity Matrix

The implicit identity matrix technique is a simple observation of how

the Simplex algorithm works. In any matrix description of the standard

Simplex, it is readily seen that the basic variables (i.e. those with non-

zero values assigned) form an identity sub-matrix within the coefficient

matrix. Since this is an invariant fact during the entire Simplex

execution, that part of the matrix might as well be replaced with index

values in a vector. The problems considered here are not very large, and

so the trade-off should be balanced between program code for treating

special cases and savings in memory space and numerical operations. It

is also easy to combine with the sparse matrix encoding below. The

outcome depends on the architecture of the executing machine but the

gain or loss is not very substantial for the SSLPs. A longer discussion of

architectural impacts on implemented algorithms can be found below.

21 And none in the value base.

COMPUTATIONAL DECISION ANALYSIS

140

Sparse Matrix Encoding

For LLP problems, the matrices often become very large. An ordinary

LLP problem might have 1,000 rows and 10,000 variables and this

would result in 107 matrix elements, most of which contain zero values.

Obviously, this is unfeasible to handle. By observing that only a small

fraction of the elements in each row are non-zero, the Simplex

algorithm can be modified to work with a one-dimensional structure

representing only the non-zero elements of the coefficient matrix. All

elements not found in the structure are zero by definition. Extra

program code is required to handle this, but the processing overhead is

small compared to the savings in memory and increase in speed

achieved for LLP problems. SSLP problems do not gain as much from

sparse matrix techniques, since each matrix is rather small. They are not

as sparse as LLP matrices22 but the approach is still of importance.

There is one circumstance that is especially important. If the architec-

tural speed of floating point (FP) operations is much slower than testing

integer and pointer vectors, then sparse matrices are of extra interest,

but in that case this is a special case of the FP speed issue below and is

included in the hardware trade-off problem.

Sensitivity Tests

An important part of the Simplex method is the provision of conve-

nient means to do sensitivity analysis without reworking the problem,

but rather by reasoning about small differences in the input data. There

are standard reasoning patterns for carrying out sensitivity analysis of

the attained optimal solution. In this way it is possible to vary the

coefficients of the objective function or the right-hand side to see

within which ranges the respective coefficients can vary while still

keeping the same solution as optimal.23 Unfortunately, this does not

22 Remember that single variable constraints are handled by the upper and lower

bound technique.
23 Even though the optimal value may change.

OPTIMISATION

141

map very well onto either the consistency or the orthogonal hull

problems. To see this, suppose that the proposed algorithm arrives at a

solution to the problem

min (y1 + … + yk)

when Ax ≥ b

and x ≥ 0, y ≥ 0,

and inquire whether this minimal value is zero or not. Usually, there are

many combinations of basic variables that achieve this because there are

many possible feasible basic solutions. The Simplex sensitivity analyses

focus on properties of the obtained basic configuration, while here any

solution (of the often many) with the desired property is accepted.

Thus, Simplex sensitivity reasoning is of little value to the solver.

Instead, the DELTA sensitivity analyses take place on a higher level,

using the concepts of expansion and contraction.

The Dual Problem

An important theoretical as well as practical issue is the theory of

duality. For each optimisation problem, linear or not, there exists

another problem called the dual problem, which represents the

strongest possible relaxation of the primal problem. The details of this

theory are omitted here. One of its immediate LP applications is that in

order to solve an m  n LP maximisation problem, it is equally effective

to solve a dual n  m minimisation problem. While a minimisation and

a maximisation problem present the same computational load, the dual

problem is more interesting to solve if m > n, in which case the dual

problem contains fewer rows and, as mentioned earlier, rows account

for most of the processing time. The SSLP problems do not fit this

description well, so the duality techniques are left unexplored.

COMPUTATIONAL DECISION ANALYSIS

142

Implementation
Unfortunately, these Simplex calculation techniques are not enough. An

empirical investigation into Simplex performance revealed other

problems with using Simplex for SSLP tasks [D95]. The problems are

hardware instruction-set related and come from differences in the

architecture of different computers. It was necessary to develop tech-

niques for handling these problems; otherwise, DELTA would have

become less of an interactive method. The following contains a discus-

sion of some implementation issues.

Copy Speed

There are two main classes of operations to perform in a Simplex

execution, apart from controlling the program flow. These are copying

matrices and performing floating point (FP) arithmetic. Regardless of

the implications of theoretical investigations into preferred executing

techniques, the relative speed of copy and FP operations has a large

impact on the algorithm to be executed. If FP operations are slow

compared to copying memory contents, then saving partial results

becomes more important. Also, restoring phase one solutions becomes

meaningful, since an extra pivot takes longer time than to resume

processing on a copy of a previous state. If FP operations are fast

compared to copying, the opposite strategy is to prefer. What is meant

by fast or slow FP arithmetic is discussed in [D95].

Guarded Operations

For much the same reasons as in the discussion on copy versus FP

speed, it is important to guard FP operations on some architectures.24

This means that for certain FP operations (e.g. multiplication or

division) the guard should check for non-effective operations (e.g.

multiplying or dividing by one). For example, on a machine where FP

arithmetic is much slower than memory comparison, an FP division that

24 This often occurs on machines that lack FP operations in hardware.

OPTIMISATION

143

is executed frequently in an inner loop might be ten times slower than a

check for a numerical value in the denominator. Since dividing by one is

not uncommon in normalising matrix rows, speed improvements are

noticeable if the operation is not carried out (i.e. guarded) when the

denominator is one. For other architectures, guarding instructions can

at best be meaningless, and at worst slow down the Simplex execution.

Extra Cost Rows

In the formulation of LP for calculating the orthogonal hull, remember

that besides finding any solution at all (as for consistency), the

maximum and minimum points for each variable or constraint must be

determined.25 This amounts to solving bi = max(f(xi)) and ai = min(f(xi))

for all xi’s. Each max- and min-problem is an LP problem in its own

right, but the total speed can be increased substantially by observing

that each one of the problems is better off starting from the point

determined by the search for a consistent point than starting from

scratch. However, this requires that the cost rows for all max- and min-

problems are transformed to a consistent point. To achieve this, all cost

rows participate in the Simplex iteration steps. Since solving a min- or

max-problem modifies the consistent original solution, there are two

alternatives. One is to copy the consistent solution before solving each

problem, and the other is to continue with the next problem from the

point where the most recent solution found its optimal value.26 The

choice depends again on the relative speeds of copy and FP operations.

Empirical Results
In [D95] a number of development environments were measured with

respect to execution speed of some critical instructions, notably copying

25 In the discussion that follows it is assumed (without loss of generality) that all

constraints are range constraints. The reasoning applied is the same for compound

constraints.
26 Which probably is a point farther from the next optimum to search for.

COMPUTATIONAL DECISION ANALYSIS

144

memory and performing FP arithmetic. It is there clearly seen that three

broad classes of architectures are common, even though there are no

sharp, clear-cut speed ranges. Almost certainly, the ranges will change

over time. Also in [D95], a number of Simplex techniques were

evaluated in typical environments from the three identified different

architecture types. Further, measurements were undertaken to support

the conclusions in the Simplex discussion above. The concluding

observation after the series of experiments was that a configuration

program is needed to measure particular operations on the target

architecture and compiler in order to set compilation parameters for

configuring the source code for optimal execution in that environment.

The three identified classes of architectures were categorised

according to their FP hardware. The first category, mainly consisting of

workstations, has FP hardware units integrated into the CPU chip or

board. The next category, consisting of personal computers with FP

support, has hardware co-processors and can carry out FP arithmetic in

hardware. The last category contains low-end personal computers lack-

ing FP hardware, and they are thus forced to make all FP calculations in

software.

For the three classes, different subsets of the available options

proved to be optimal. This was mostly due to differences in the execu-

tion speeds of memory copying and FP arithmetic. As the machines

measured in the empirical studies are not the only ones available, now

or in the future, the best solution to the architectural problem seems to

be a configuration program. Such a program would measure the

interesting speeds of instructions and set source code parameters

accordingly. The source code would then automatically be recompiled

prior to execution on a new platform. In this way, the source code

becomes independent of the actual target machine. This independence

relies on the source code containing all appropriate techniques as

inclusion options for the configuration program to choose from. Some

complicated interdependencies might render the configured source code

OPTIMISATION

145

non-optimal, but the tailored solver would almost certainly be closer to

the optimum than a solver not being configurable.

This concludes the discussion on optimisation algorithms and ends

the presentation of the DELTA method in Part II. The last part is the

Supplement containing a summary, notes on further research,

appendices, references, and an index.

COMPUTATIONAL DECISION ANALYSIS

146

If you should go skating

On the thin ice of modern life

Dragging behind you the silent reproach

Of a million tear-stained eyes

Don't be surprised

When a crack in the ice

Appears under your feet

You slip out of your depth

And out of your mind

With your fear flowing out behind you

As you claw the thin ice

 – R. Waters

Conclusion
The thesis ends with this conclusion, two appendices, references and an

index. The conclusion contains a summary and some pointers to areas

of further research.

Summary
This thesis is about Computational Decision Analysis. Each of the three

words in the title is a keyword. “Decision” means that it deals with

selection problems, i.e. situations in which there are more than one

alternative course of action. “Analysis” means that there are no absolute

bits of advice given, no single best alternative pointed out by a mecha-

nised procedure, but rather an aid is provided for understanding the

decision problem and how the solutions relate to each other. “Compu-

tational” means that there exist efficiently computable algorithms that

perform the analysis in a reasonably short time in order to admit

interactive analysis.

The thesis presents the DELTA method for decision-making using

imprecise information. The objective is to describe a method for eval-

uating choices under uncertainty.1 The nature of most information

available to decision-makers is imprecise, be it information for human

managers in organisations or for process agents in a distributed com-

puter environment. In spite of this, most traditional models for deci-

sions disregard this state of affairs. Some more modern approaches, like

1 Choices under risk in classical decision analysis.

COMPUTATIONAL DECISION ANALYSIS

156

fuzzy decision analysis and Dempster-Shafer-based methods, address

the problem of vagueness. Many of these modern approaches

concentrate more on representation and less on evaluation. The

emphasis in this thesis is more on evaluation, and even though the

representation used is that of standard probability theory, the use of

other well-established formalisms is not ruled out.

Introduction

The first part introduces decision analysis in general and the DELTA

method in particular. Chapter 1 begins by surveying a number of tradi-

tional decision models and discussing some of their properties. The

models are divided into three categories: risk-free, strict uncertainty, and

risk models. For the latter, some more modern approaches to impreci-

sion in input data are discussed. Finally, appropriate research methods

are discussed.

Chapter 2 presents a suggested decision method for human decision-

makers in work cycle form based on the DELTA method. It attempts to

convey some feeling for how a decision maker can utilise the method in

analysing a decision situation. It also tries to demonstrate that the

suggested method is realistic to work with.

Chapter 3 presents the DELTA Decision Tool (DDT), an interactive

graphical software implementation of the DELTA method intended for

aiding human decision-makers in understanding and analysing real-life

decision situations. The chapter opens with a description of the DDT

software and its architecture. Most of the chapter is devoted to an

industrial example, which is used in presenting some of the features of

DDT and the user interaction.

Representation

The core of the thesis is the presentation of the DELTA method in

Part II. Chapter 4 starts with the structure of a decision problem and the

required representation of user statements. A model of the situation is

CONCLUSION

157

created with relevant courses of action and their consequences, should

specific events occur. The model is represented by a decision frame.

The courses of action are called alternatives in the model, and they are

represented by consequence sets in the decision frame. Following the

establishment of a frame, the probabilities of the events and the values

of the consequences can be filled in. All statements should have an

interval form to reflect the imprecise nature of the input data. Next, the

chapter also presents general properties of bases, i.e. collections of

constraints and core intervals. Further, properties particular to bases of

probability statements and then the value base counterparts are

discussed. Finally, the section on translations shows suggested repre-

sentations of numerical and qualitative statements of both probability

and value.

Evaluation

Chapter 5 presents evaluation methods in detail. The DELTA method is

presented step by step, beginning with the discussion of the expected

value rule for selection amongst a number of available courses of action.

Then a number of other evaluation rules to either replace or supple-

ment the expected value are presented. They are discussed from a

choice rather than preference view. One of the conclusions is that there

exists no perfect rule, although the expected value seems to be at least

as good as many of its contenders. To improve that rule (or any other

similar rule), it is suggested that it should be supplemented with other,

qualitative rules rather than engaging in further modifications in chase

of the perfect rule. A characteristic of qualitative rules is that they do

not rely on multiplying probabilities and values but treat them as

separate numeric entities. Once a rule has been agreed upon, it can be

applied to all the alternatives, provided there is a computational

procedure for evaluating the alternatives under that rule. The DELTA

dominance is introduced as a unifying concept for many of the

COMPUTATIONAL DECISION ANALYSIS

158

dominance rules in current use. Dominance and threshold methods are

discussed and the kinship between them is pointed out.

Dealing with imprecise statements means frequently encountering

decision situations where more than one alternative is to prefer in

different parts of the consistent solution space to the constraints.

Consequently, dominance selection rules are not enough to indicate

preferred choices. Many ideas have emerged in response to the problem

arising when the information given is imprecise and overlaps in the

sense that parts of the information seem to favour one alternative

(consequence set) while other parts favour another one. This thesis

conforms to statistical decision theory and introduces some new

concepts to aid the selections. The concepts of maximal and minimal

differences represent the most and least favourable possibilities respec-

tively. A new set of selection rules is introduced – the concepts of

strong, marked, and weak dominance. The selection procedures

suggested are based on those concepts and on the expansion and con-

traction principles from Chapter 4.

Optimisation

Chapter 6 deals with computations for DELTA, especially optimisation

algorithms since they are the most demanding ones. It starts with linear

programming (LP) for determining properties of bases. For solving

these LP problems computationally, the Simplex method is used. The

chapter continues with bilinear programming, necessary to calculate the

results of the evaluation rules. First quadratic programming is discussed

and then three algorithms are presented that under mild constraints

solve the required bilinear programming problem (BLP1) with Simplex

techniques instead. Due to the unusual problem structure (a long

sequence of smaller problems rather than the usual single large one),

each of the Simplex techniques must be carefully considered in order to

select which ones to apply. Furthermore, hardware architectural issues

are found to be important for the implementation of the DELTA solver.

CONCLUSION

159

The conclusion is that a configuration program is necessary, which will

measure the relative speeds of different operations and configure the

solver’s source code accordingly.

Appendices

There are two appendices, each addressing one application area of

computational decision analysis. Appendix A deals with problems of co-

ordinating multi-agent systems and the applicability of DELTA to that

area. In dealing with rational agents and their ability to make decisions,

it is again emphasised that there is no universal rule with which

rationality could be equated. Instead, the conclusion is that a successful

agent must be good at analysing results from a set of reasonable

decision rules. Such analyses should ideally exploit several decision rules

shown appropriate for the particular domain of interest. Agents using

the expected value and security levels are discussed in the appendix, but

it should be noted that these are not the only possible rules and the

method could use other decision rules as well.

Appendix B applies DELTA to the area of risk analysis by introducing

the DEEP (Damage Evaluation and Effective Prevention) method. A

risk analysis method is presented that substantially improves the

evaluative phases compared with other, earlier approaches. The

presentation is focused on the analysis and identification of threats and

on the evaluation of the suggested actions since those are the steps

where the DEEP method differs the most from other methods. The

idea behind DEEP is to offer an analytical framework for risk

management in the classic chain identification–valuation–action without

trying to replace it.

Further Research
The DELTA method should be seen as a framework. Even though the

method is in a sense complete, there are numerous plausible research

COMPUTATIONAL DECISION ANALYSIS

160

tasks to extend it in several directions. Two of the most important

directions are

 (i) augmenting the method with new features, and

 (ii) extending the method to handle multiple criteria.

There are other directions as well. One is extending DELTA to handle

multi-level trees in other ways than the obvious compound strategies

mentioned in Chapter 1. Another is generalising security levels to

account for other types of undesirable results.

New DELTA Features
The current DELTA method may be augmented by new features along a

number of different lines of development including representation,

evaluation, and computation. It is also desirable to conduct larger field

studies on the real-life use of tools based on DELTA.

Representation

Today DELTA uses probabilities in the form of numbers 0–100%.

Another type of input probability is the odds formulation. The odds of

an event E is p(E)/p(E) = p(E)/(1–p(E)) for some probability func-

tion p. Sometimes this is felt to be a more natural way of expressing

probabilities for decision makers. It has gained some popularity within

probabilistic reasoning in conjunction with using Bayes’ Rule, where

advantages can be found in not having to specify certain probabilities

[GN87]. The odds formulation could be of use for DELTA as well in

allowing the input probabilities to be in odds form, should that be

found to be more natural. This is an open question but warrants further

investigation.

Another input issue is the user interaction in tools for human

decision-makers. In DDT, the input is handled using rulers to enter

essentially numerical data, while in Chapter 4, there is a section on the

translation of linguistic input data. Those two forms may be combined

in various ways, for example by extending DDT to handle qualitative

CONCLUSION

161

statements as well. This poses questions about how to design such an

interface with regard to alternative interpretations of vague statements

and sensitivity analysis of non-numerical data.

This thesis only considers standard probability systems for repre-

senting decision-maker statements. Other approaches mentioned in

Chapter 1 include Dempster-Shafer theory and fuzzy decision analysis.

These other approaches also allow the decision maker to model and

evaluate a decision situation in vague terms, but using other means to

deal with vagueness or imprecision. It is plausible, for example, to view

the concepts of expansion and contraction as membership functions on

fuzzy sets corresponding to interval constraints. It would probably be

worthwhile to consider the DELTA evaluation framework for those

methods too. The cross-fertilisation would certainly be beneficial for

the DELTA evaluation method and possibly for the others as well.

Evaluation

The general ∆-dominance rule is introduced as a unifying concept. In its

generic form, it describes the type of dominances to be considered and

thus the type and amount of computation involved in evaluating

alternatives in the framework. It is very general and many instantiations

are possible, of which a few are given in Chapter 5. It would be

interesting to further explore the ∆-dominance concept with more rule

instances. The classification into dominance orders opens up questions

of higher order rules – are they necessary and what are their properties

and instances? Certainly, also first- and second-order classes have

interesting members not mentioned in the thesis. While general numeric

rules have been considered on paper, the only implementations so far

are based on the expected value. It is also interesting to study further

several different replacement rules and their use in a real-life tool.

The selection procedures are not very precise, partly due to the

nature of the decision problem, and partly because the dynamic inter-

connection between strong/marked/weak dominance and expan-

COMPUTATIONAL DECISION ANALYSIS

162

sion/contraction needs further study. It depends on the decision

situation, on whether the decision maker is a human or a machine, and

on whether the goal is to make a final decision or to gain a better

understanding of the decision problem.

Optimisation

For consistency and hull calculations, Simplex is the most versatile

method, but it is more general than required. An important task is to try

to develop more specialised algorithms. These algorithms would

probably not be pivoting matrix algorithms, but use some special

representations that exploit the structure of the problems better.

The general BLP1 problem is today covered by QP, usually solved

with factorised matrix techniques. There is another, perhaps more

promising technique to solve QP problems. The area of linear

complementarity problems (LCP) originates from the mid-1960s, and in

the beginning LP and QP were the main application areas of LCP.

Those are still important, and the search for first-order optimality

conditions in QP problems by means of LCP algorithms is one possible

direction for developing a general BLP1 algorithm. See [CPS92] for a

thorough discussion of LCP.

There are, however, two main reasons for preferring a different

solution to the BLP1 problem. The first has to do with execution times.

In larger problems, any algorithm for solving BLP1 will start running

too slow for interactive purposes. Then it is desirable to have an

anytime algorithm. This means that it can be prematurely asked for a

preliminary solution, and this solution should be a good approximation

of the exact result to be obtained in time due.

The second reason is connected to future developments of the

DELTA method. As indicated below, multiple criteria are a reasonable

extension to DELTA. Another extension is layers of credibility and trust

in the multi-agent application of Appendix A. In those cases, the

objective function will not be bilinear but multilinear, the terms having

CONCLUSION

163

the form wk∙pik∙vik if weights are included, ck∙pik∙vik if credibilities are

included, or even more terms if other situations are modelled. Thus, a

good BLP1 algorithm should be extendible to handle multi-linear

problems. This is not the case for QP algorithms since they solve only

quadratic problems, while multi-linear problems might be of higher

order. The B-Opt family should be possible to extend to the multi-

linear case.

The LP-based bilinear optimisation algorithms are efficient but

require certain kinds of decision-maker expressions to be left out, most

notably some comparisons between either probability or value variables.

While this is not a great problem, the solver stack would be more

complete if the range of algorithms available could cover all possible

decision frames without resorting to QP techniques, since the full power

of the QP formulation is not needed. Such an algorithm could be called

PVB-Opt. The bilinear objective function and the constraints are

separable into probability and value parts, and the first order differen-

tials have a certain structure that ought to be possible to exploit in a way

similar to how linear programming uses its constant differentials.

There are essentially two ways of approaching the design of PVB-

Opt. In the first, PB-Opt and VB-Opt are taken as starting points,

developing some more advanced but still LP-based algorithm that

executes in one of the probability (P) or value (V) bases at a time. This

seems promising at first. The constraints in P, V, and PV, being

systems of linear inequalities, form compact convex sets, but since the

objective z is non-linear, the gradient components

z

p ik

 and

z

v ik

 alter

their signs in ways that are hard to control and risk winding up in local

optima. The other way to design the PVB-Opt algorithm is to start with

a general QP algorithm and remove functionality not needed because of

the special structure of BLP1. Early QP algorithms, based on LP-style

ideas, have means of controlling that issue and ought to be investigated.

Which road will lead to the goal, and with what grade of success, is an

COMPUTATIONAL DECISION ANALYSIS

164

open question. Naturally, such an algorithm would run slower than the

LP-based PB-Opt and VB-Opt but hopefully considerably faster than

ordinary QP algorithms.

Empirical Studies

The DELTA method needs more exposure to real-life decision problems.

It would be interesting to apply the method to a number of real-life

situations and to compare the outcome with unaided decisions made in

parallel. This has been done in a NUTEK project together with Ban-

verket (The Swedish National Rail Administration) [DE97b]. Banverket

intended to procure railway equipment for around 5 billion SEK and

conducted a large evaluation of all prospective suppliers. The results

from this empirical study are encouraging but more studies are needed.

Preferably, such empirical studies could partly be made in co-operation

with researchers from the area of psychology.

Multiple Criteria
A decision can often be seen from different perspectives, usually called

criteria, and the expected (or numerical) values of the alternatives are

often different when seen from the different criteria. This is the

research area Multi-Criteria Decision Analysis (MCDA), see for example

[V92] or [B90]. Traditional criteria include finance, environment, policy,

public opinion, competence, and growth opportunities.

Example: A chemical industry is about to invest in a new purifying

plant for wastewater. This investment decision can be studied using

several criteria. The financial criterion is usually the first, where costs

incurred from the actual investments as well as losses in production

efficiency are considered. The environmental criterion might con-

cern the risk of being sued for polluting or causing other harm to the

environment, which could also lead to liabilities and badwill for the

company. A further criterion is that of personnel, where care must

be taken to prevent noise and chemical hazards, and thought must

also be given to changes in employee responsibilities. It is no easy

CONCLUSION

165

task to evaluate these different criteria manually and then make a

total evaluation. Normally, a company spends considerable time,

effort, and money on feasibility studies before making such a large

investment. n

In most cases, the preferred alternative is not the same for all criteria.

The alternative with the highest cash flow is seldom the best from an

environmental point of view, or seen from the perspective of the

employees. How can all these conflicting requirements be taken into

consideration?

If there is one criterion that can clearly be considered the most

important, then the simplest way would be to evaluate the alternatives

only with respect to that criterion. In that case, all the information from

other criteria would be disregarded, almost certainly leading to lower

quality of the decision. For example, if an alternative is marginally better

according to the financial criterion, but much worse from an

environmental point of view, then a decision in favour of that

alternative could be considered sub-optimal.

The aggregation of utility (or value) functions under a variety of

criteria is investigated in the area of Multi-Attribute Utility Theory

(MAUT), see for example [K92, KR76, F70]. A number of techniques used

in MAUT have been implemented as computer programs such as

SMART [E77] and EXPERT CHOICE, the latter being based on the

widely used AHP method [S80]. AHP has been criticised in a variety of

respects [WF82, BG83] and models using geometric mean value tech-

niques have been suggested instead [BCG87, K87]. Techniques based on

the geometric mean value have, for instance, been implemented in

REMBRANDT [L93]. All these approaches have their advantages, but as

for the probabilistic decision situations treated in this thesis, the

requirement to provide numerically precise information sometimes

seems to be unrealistic in real-life decision situations. Some multi-

criteria models with representations allowing imprecise statements have

been suggested. For instance, the system ARIADNE [SW84] allows the

COMPUTATIONAL DECISION ANALYSIS

166

decision maker to use imprecise estimates but does not discriminate

between alternatives when these are evaluated into overlapping

intervals. [SH95] extends the AHP method in this respect and makes use

of structural information when the alternatives are evaluated into

overlapping intervals.

One research direction is to extend the DELTA method with the

capability of handling multiple criteria. One idea would be to assign the

different criteria weight factors between 0 and 1 according to their

relative importance and require the weights to sum to one. The weights

would then not be given as absolute real numbers, but could be in the

form of interval statements such as criterion C has an importance weight

between 0.2 and 0.5 or criterion C is more important than criterion D. The value

base would then be extended with weights and sets of values for each

criterion and then evaluated using additive MAUT-type of rules or other

types. That is a natural extension of the DELTA method that warrants

further research [DE97a].

Multi-Agent Systems
This appendix deals with an application area of computational decision

analysis, the area of multi-agent systems. The content of the appendix is

joint work with Magnus Boman, DSV, and Love Ekenberg, IIASA. The

text is partly derived from [EDB96b] and [EDB97].

Distributed AI (DAI) emerged as a research field in its own right

around 1980 [BG88] and a partition is often made into distributed

problem-solving systems (DPSs) and multi-agent systems (MASs). Both

parts of DAI are important to software systems. The DPS part covers

the case when a coordinating agent controls a set of agents in order to

accomplish some task in a distributed way. The MAS part covers the

case when a set of agents must act on their own without immediate aid

from a coordinator. In the former, there is a global task that needs to be

solved and usually a global notion of utility that can constrain the

actions of the intelligent agents. In MASs, by contrast, there is no such

global notion of utility [R93].

Theories of intelligent agents offer means for dealing with the

complexity inherent in developing distributed systems, and the advances

in DAI over the last five years have affected the design methods of

distributed software in several ways. One main issue in DAI is how a

group of agents can cooperate in order to solve different tasks and how

such a system of agents can be coordinated. Some aspects of decision

theory have influenced the area of MASs [RS95], partly as a result of

COMPUTATIONAL DECISION ANALYSIS

168

philosophical aspects of agent rationality [D92], and partly because of

interest in extending the principle of maximising the expected value in

efficient real-life applications [B95].

The idea in this appendix is to demonstrate that a method for

evaluating reports from sets of autonomous agents from a decision

analytical viewpoint can be built around the DELTA concepts. A

decision-making agent (DMA) may make use of imprecise and possibly

incomplete reports made by different autonomous agents when co-

ordinating its activities and deciding which action strategy to adopt. In a

manner similar to the standard DELTA method, these reports are

translated into a suitable representation and the strategies are evaluated.

The set of non-dominated strategies is usually too large after a first

evaluation and the situation needs to be analysed with respect to further

discriminating principles. To allow the DMA to make a flexible analysis

of its decision situation, a method such as the one described here ought

to contain the possibility of analysing the situation in several respects.

Since DELTA includes efficient evaluation of non-trivial decision

problems, the method and implementations thereof are well suited for

use in the reasoning mechanisms of more sophisticated agent-based

information systems, and it is quite straightforward to include a

multitude of decision rules in this framework.

This particular application considers a decision problem with respect

to the contents and the credibilities of the received reports. These two

aspects are modelled in an agent decision frame consisting of two

systems of translated interval statements, similar to an ordinary decision

frame. Once it is decided that a set of agents should achieve some goal,

and some semantic mapping has been provided for any syntactically

heterogeneous subsets of information deemed to be of interest, then

the possibility of a disagreement must be considered. This is the

problem of coordinating incomplete and possibly conflicting reports

made by autonomous agents, with the purpose of reaching a decision

on which action to take.

MULTI-AGENT SYSTEMS

169

Rational decision-making is weakly defined in [S76b] as the process

of choosing among a finite number of acts by a series of steps that

 (i) lists the acts,

 (ii) determines all their consequences, and

 (iii) makes a comparative evaluation.

Although the definition is of little use as such, its weaknesses make it

suitable for use as a proviso for some points made in this appendix.

Note that the term act is loosely used, and the concept of strategy is used

here instead. A more detailed discussion can be found in [L92]. A

classical problem concerning (iii) is that there exists no absolute notion

of rational decision-making. Rather, rationality is usually interpreted as

meaning that any agent behaviour being sub-optimal with respect to the

goal is either accidental or unavoidable. To explicate this interpretation,

one may turn to the first presidential address of AAAI [N81] which has

been influential in spreading the agent metaphor. Drawing upon ideas

put forward by McCarthy in the late 1950s, Newell suggested his

principle of rationality: “If an agent has knowledge that one of its actions will lead to

one of its goals, then the agent will select that action […] The principle of rationality

provides, in effect, a general functional equation for knowledge. The problem for agents is to

find systems at the symbol level that are solutions to this functional equation, and hence can

serve as representations of knowledge […] The principle of rationality corresponds at the

symbol level to the processes (and associated data structures) that attempt to carry out

problem-solving to attain the agent’s goals.” [op. cit. pp.8–14].

The concept of rationality was initially treated in the MAS area as

merely another property that agents could have, along with, e.g.,

autonomy, mobility, and benevolence (cf. Chapter 2 of [G86]). This

development undoubtedly came about as a reaction to the view pro-

posed earlier by traditional AI that cognitive capabilities are more

important than an agent’s means to communicate, react, or adapt. In the

most extreme MAS frameworks, rationality is treated as an emergent

feature of an agent system [B86].

COMPUTATIONAL DECISION ANALYSIS

170

The prime evaluation principle suggested is based on the principle of

maximising the expected value (PMEV) since that principle is at the core

of rational agent behaviour.1 In the last few years, several researchers

within DAI have equated rationality with the use of PMEV as a decision

rule (see, e.g., [GD93]). However, this principle is not the only

reasonable candidate for a decision rule. There are many reasons not to

identify rationality with the PMEV, some of them well-known to game

theorists [BE95]. The unrealistic assumption that the perfectly rational

(or even hyper-rational, see [R92], p.107) players of the game have full

knowledge of the game structure, and of the rationality of their

opponents, is necessary to attain the desired equilibria [BC92]. Even if

one accepts that game-theoretical decision rules cannot always provide

useful advice to agents in non-ideal games, a view now seemingly

assumed in computer science [R93], there remain difficult problems to

face [M92].

As mentioned in Chapter 5, a number of other rules have been

suggested by various researchers. One conclusion from that chapter is

that it seems plausible to supplement a method based on PMEV with

other rules. The strategies might be evaluated relative to a set of security

levels considering how risky the strategies are. Moreover, it can be

investigated in which parts of the hull those conditions are met. This is

accomplished by using contractions for security levels as well.

Agent Modelling
In the agent model that underlies this approach, the DMA2 faces a

situation involving a choice between a finite set of strategies {Si} having

access to a finite set of autonomous agents {Ai} reporting their

1 To be more precise, it should be called the principle of maximising the reported

value. The credibilities represent importance weights given to individual reports. The

aggregation should therefore be considered a weighted report value rather than an

expectation.
2 A DMA may be a human coordinator as well as another agent process.

MULTI-AGENT SYSTEMS

171

opinions on the strategies to the DMA, see Figure A.1. Each of these

agents may itself play the role of decision making agent, and the theory

is independent of whether there is a specific coordinating agent or not.

In other words, the focus in this appendix on a particular DMA is a

matter of convenience. However, for the agents to carry out their tasks

and to acquire sufficient and reliable knowledge en route, it is

fundamental that they are able to evaluate information gathered from

different sources, some unreliable and some noisy. The dynamic

adaptation taking place over time as the agents interact with their

environment, and with other agents, is affected by the means available

to assess and evaluate imprecise information.

DMA

Strategy 1

Strategy m

Agent 1

Agent n

•••

•••

Agent 1

Agent n

•••

Figure A.1 A multi-agent decision model

In a situation modelled as in Figure A.1, some agents may be more

reliable than others when evaluating the strategies involved, since

different agents may have different capabilities to determine the values.

The DMA may also have access to assessments expressing how

trustworthy the different agents are. In the model, the DMA is set on

choosing the most preferred strategy given the agents’ individual reports

and their relative credibility. The statements are assumed to be assigned

and revised, typically with incomplete background information, and the

COMPUTATIONAL DECISION ANALYSIS

172

evaluation method allows for vague and numerically imprecise

information. Thus, the DMA may rank the credibilities of the different

autonomous agents as well as quantify them in imprecise terms. The

autonomous agents have a similar expressibility regarding their

respective opinions about the strategies under consideration.

Example A.1: Assume a simplified scenario where a set consisting
of the agents A1, A2, A3, and A4 report to a decision-making agent

DMA on their respective opinions concerning the strategies for

managing a system communications resource. The DMA has to

decide whether to keep all time slots open for negotiation, to allo-

cate some fixed bandwidth for high-volume users, or to lease out

some of the bandwidth to neighbouring systems. Call these strate-
gies S1, S2, and S3, respectively. Further, assume that the agents A1

through A4 have reported to the DMA the following value state-

ments.3 The values involved could, for example, be monetary.

In that case, they are linearly transformed to real values in the

interval [0,1].

Statements according to agent A1:

• The value of strategy S1 is between 0.50 and 0.70.

• The value of strategy S2 is between 0.10 and 0.70.

• The value of strategy S3 is at least 0.30.

Statements according to agent A2:

• The value of strategy S1 is between 0.10 and 0.50.

• The value of strategy S2 is between 0.40 and 0.70.

• I have no opinion about the value of strategy S3.

Statements according to agent A3:

• The value of strategy S1 is not less than that of S2.

• The value of strategy S3 is between 0.50 and 0.70.

Statements according to agent A4:

3 The agents may have evaluated the prospective strategies using any number of

well-established datacom traffic models. Here, only the evaluation of the total

throughput situation is considered.

MULTI-AGENT SYSTEMS

173

• The value of strategy S2 is not less than that of S3.

• The value of strategy S1 is between 0.50 and 0.70.

• The value of strategy S2 is at most 0.70.

Moreover, the DMA has estimated the credibility of A1 through A4

as numbers in the interval [0,1]. The number 0 denotes the lowest

possible credibility, and 1 the highest:

• The credibility of agent A1 is between 0.20 and 0.90.

• The credibility of agent A2 is between 0.10 and 0.30.

• The credibility of agent A3 is between 0.20 and 0.70.

• The credibility of agent A4 is at most 0.50. 

The rest of this appendix describes how the DMA may use the DELTA

method in evaluating multi-agent problems such as the one above. A

significant feature of the method is that it encourages the agents not to

present report statements with an unrealistic degree of precision.

Essentially, the model consists of a set of agents, a set of strategies, and

two systems of statements concerning the credibilities and values

involved. The sets of credibility statements and value reports are

transformed into bases of linear constraints. The properties of those

bases are discussed next.

Credibility Bases
A credibility base K with m agents is expressed in the credibility variables

{c1,…,cm}, stating the relative credibility of the different agents. The

term ck denotes the credibility assessment of agent Ak. A credibility base

contains expressions about the credibility of each agent. To make the

qualitative statements of credibility computable, they are translated in a

manner similar to the standard DELTA method. Here, four types of

possible credibility statements will be discussed. For a longer discussion

of the parameters involved in the translations, refer to the

corresponding treatment of probability statements in Chapter 4.

1. The credibility of Ak equals a number r, is at least r, is at most r.

Example: The credibility of Ak is greater than r.

COMPUTATIONAL DECISION ANALYSIS

174

Translation: ck  [r+1, r+1]

2. The credibility of Ak is between some real numbers.

Example: The credibility of Ak is between r1 and r2.

Translation: ck  [r1–1, r2+1]

3. The credibility of Ak is equal to the credibility of Aj, is approximately

equal to that of Aj, is not less than that of Aj, etc.

Example: The credibility of Ak is equal to the credibility of Aj.

Translation: ck – cj  [–2, 2]

4. Agent Ak is credible, the opinion of agent Ak is worth considering,

agent Ak is not credible, etc.

Example: Agent Ak is credible.

Translation: ck  [r3, r4]

In order for the credibility statements to be normalised, the constraint

∑k ck = 1 is added to the constraints above. The conjunction of con-

straints of the four types above, together with the normalisation, is the

credibility base.

Example A.1 (cont’d): The DMA has estimated the credibility of A1

through A4 as numbers in the interval [0,1]. The translation of the

statements into a credibility base results in the following expressions.

c1  [0.20, 0.90]

c2  [0.10, 0.30]

c3  [0.20, 0.70]

c4  [0.00, 0.50]

The credibilities are subject to the normalisation constraint
∑k ck = 1. Consequently, the greatest value that can consistently

be assigned to c1 is 0.7 (the minimum value that c2 + c3 + c4 can

have is 0.3, since c1 + c2 + c3 + c4 should be 1). Since no other

weight is affected, the hull of this base is {0.20, 0.70, 0.10, 0.30,

0.20, 0.70, 0.00, 0.50}. 

MULTI-AGENT SYSTEMS

175

Report Bases
A report base R contains statements about individual agents’ opinions

of the values of different strategies, i.e., it consists of a number of inter-

val constraints and core intervals that represent various strategy

statements. It is expressed in value variables {v11,…,v1n,…,vm1,…,vmn}

stating the values of the strategies according to the different agents. The

term vik denotes the value of strategy Si according to the report of agent

Ak. Five types of possible report statements are handled.

Given an autonomous agent Ak:

1. The value of the strategy Si equals r, is at least r, etc.

Example: The value of Si is greater than r.

Translation: vik  [r+1, r+1]

2. The value of strategy Si is between some real numbers.

Example: The value of Si is between r1 and r2.

Translation: vik  [r1–1, r2+1]

3. The strategy Si is as desirable (or undesirable) as strategy Sk, more

desirable than Sk, the value of Si is approximately equal to the value

of Sk.

Example: The strategy Si is as desirable as Sj.

Translation: vik – vjk  [–2, 2]

4. The difference in value between Si and Sj is not less than the

difference in value between Sm and Sn.4

Translation: (vik – vjk) – (vmk – vnk)  [1, 1]

5. The strategy Si is desirable, Si is fairly desirable, Si is undesirable, etc.

Example: The strategy Si is desirable.

Translation: vik  [r3, r4]

Example A.1 (cont’d): The reports provided by the agents are

translated into the following expressions.5

v11  [0.50, 0.70] v33  [0.50, 0.70]

4 For simplicity, it is assumed that the value of Si is greater than the value of Sj, and

that the value of Sm is greater than the value of Sn.

5 The constants in the translations are chosen to keep the presentation simple.

COMPUTATIONAL DECISION ANALYSIS

176

v21  [0.10, 0.70] v14  [0.50, 0.70]

v31 ≥ 0.30 v24 ≤ 0.70

v12  [0.10, 0.50] v13 ≥ v23

v22  [0.40, 0.70] v24 ≥ v34

This report base is then subject to evaluations using aggregate rules

or security levels. 

Agent Decision Frames
A credibility base K together with a report base R constitute an agent

decision frame S,K,R, where S is the set of strategies. This is in analogy

to the ordinary decision frame C,P,V in the standard DELTA method.

The mapping onto ordinary frames is straightforward. The strategies

correspond to consequence sets, and the report elements are analogous

to the consequences. Further, the credibilities have properties similar to

probabilities, and report values are almost the same as values in the

ordinary frame.

The mapping is not perfect, though. At first, it seems that credibil-

ities map directly onto probabilities in that they have a similar role,

distributing mass over the report values. But if credibilities are allowed

to be assigned per strategy for each agent, then a more credible report

about vik from the agent Ak might be forced to assume a lower credi-

bility than a less credible report about vjk from the same agent due to

other agents also being more credible when giving reports about strat-

egy Si and the credibilities being normalised to sum to one.6 Thus, only

one credibility assessment per agent ought to be allowed. Still, since it is

a normalised mass to be distributed, it might be more reasonable to

interpret credibilities as weights instead. If there are no credible reports,

the agents’ credibilities must sum to one, and conversely, if all reports

are very credible, they must still sum to one. This is not in accordance

with the common interpretation of credibility. Finally, if an agent Ai has

6 If there would be no normalisation, then the aggregated value would not make

sense.

MULTI-AGENT SYSTEMS

177

low credibility and another agent Aj has a much higher credibility, the

statement vik > vjk has the same effect regardless. These discrepancies

must be accounted for in an agent decision model. Such problems

notwithstanding, the DELTA method is well-suited for multi-agent

systems.

Comparing Strategies
Relative to a particular agent decision frame, which strategy should be

chosen? The problem formulation is mathematically almost equivalent

to the decision frame in Chapters 4–6, thus rendering the method and

computational machinery of those chapters suitable for this task as well.

As is the case for ordinary decision frames, for agent frames it is often

not enough to determine the set of non-dominated (admissible)

strategies, since in non-trivial decision situations this set is too large, i.e.

the admissible strategies are too numerous and the DMA cannot

adequately discriminate between them. Moreover, when approaching a

problem, the autonomous agents as well as the DMA are encouraged to

be deliberately imprecise, and thus values close to the boundaries of the

interval constraints seem to be the least reliable ones. This is a typical

case for applying the contraction principle as described in Chapters 4–5,

and in the example, the effects of contraction can be seen. Note that no

core is specified, and the contraction goes from the hull inwards to the

degree of 80%.

Example A.1 (cont’d): Entering the information into DELTA

results in the agent decision frame in Table A.1.

Frame 'ExA1' in folder 'PhD' has 3 strategies

S1 (Strategy 1)

S2 (Strategy 2)

S3 (Strategy 3)

Each strategy is valued by 4 agents

A1 (Agent 1)

A2 (Agent 2)

A3 (Agent 3)

A4 (Agent 4)

The credibility base contains 4 constraints

 1: C1  [0.200,0.900]

COMPUTATIONAL DECISION ANALYSIS

178

 2: C2  [0.100,0.300]

 3: C3  [0.200,0.700]

 4: C4  [0.000,0.500]

Credibility hull Symmetry hull

C1  [0.200,0.700] [0.200,0.494]

C2  [0.100,0.300] [0.100,0.218]

C3  [0.200,0.700] [0.200,0.494]

C4  [0.000,0.500] [0.000,0.294]

The report base contains 10 constraints

 1: V1.1  [0.500,0.700]

 2: V2.1  [0.100,0.700]

 3: V3.1  [0.300,1.000]

 4: V1.2  [0.100,0.500]

 5: V2.2  [0.400,0.700]

 6: V3.3  [0.500,0.700]

 7: V1.4  [0.500,0.700]

 8: V2.4  [0.000,0.700]

 9: V1.3 - V2.3  [0.000,1.000]

10: V2.4 - V3.4  [0.000,1.000]

Report hull

V1.1  [0.500,0.700]

V1.2  [0.100,0.500]

V1.3  [0.000,1.000]

V1.4  [0.500,0.700]

V2.1  [0.100,0.700]

V2.2  [0.400,0.700]

V2.3  [0.000,1.000]

V2.4  [0.000,0.700]

V3.1  [0.300,1.000]

V3.2  [0.000,1.000]

V3.3  [0.500,0.700]

V3.4  [0.000,0.700]

Focal point

Cred: 0.347 0.159 0.347 0.147

Agent A1 A2 A3 A4

S1: 0.600 0.300 0.500 0.600

S2: 0.400 0.550 0.500 0.350

S3: 0.650 0.500 0.600 0.350

Table A.1 The agent decision frame

Evaluating the frame above results in Tables A.2–A.4.7 Table A.2
shows the contraction of strategy S1.

Contraction 0% 20% 40% 60% 80%

S1 min: 0.166 0.247 0.322 0.392 0.458

7 The output from DELTALIB (see Chapter 3) is numeric. DMAs, especially software

agents, often desire to receive the evaluation results in the form of matrices or tables

instead of graphs in order to perform numerical computations on them.

MULTI-AGENT SYSTEMS

179

 mid: 0.518 0.518 0.518 0.518 0.518

 max: 0.828 0.758 0.691 0.629 0.572

Table A.2 The contraction of S1

Tables A.3–A.4 show the contractions of the strategies S2 and S3,

respectively. Hence, strategy S2 is inferior to both S1 and S3, but

strategy S3 is slightly better than S1. A further investigation is

recommended in order to identify critical variables.

Contraction 0% 20% 40% 60% 80%

S2 min: 0.060 0.143 0.223 0.300 0.375

 mid: 0.451 0.451 0.451 0.451 0.451

 max: 0.848 0.767 0.686 0.607 0.528

Table A.3 The contraction of S2

Contraction 0% 20% 40% 60% 80%

S3 min: 0.186 0.269 0.349 0.424 0.496

 mid: 0.565 0.565 0.565 0.565 0.565

 max: 0.914 0.840 0.768 0.699 0.631

Table A.4 The contraction of S3

It is natural to ask how sensitive the different contractions are to

changes in the agent frame. The DMA can simultaneously vary any

number of intervals to discover credibility or value variables that are

especially critical. Assume that the DMA wants to investigate
whether it is meaningful to allocate resources to agent A1 for

collecting additional information about strategy S3. Before doing

that, the DMA can investigate how influential the report from the

agent would be. For instance, the DMA can restrict the maximum
value of v31 to 0.6 instead of 1 and evaluate the modified decision

situation. Table A.5 shows the result for strategy S3. The strategy is

now slightly worse than S1. The new information does not change

the results in Tables A.2 or A.3.

Contraction 0% 20% 40% 60% 80%

S3 min: 0.186 0.257 0.324 0.386 0.443

 mid: 0.495 0.495 0.495 0.495 0.495

 max: 0.745 0.695 0.645 0.596 0.546

Table A.5 The result of modifying S3

COMPUTATIONAL DECISION ANALYSIS

180

Thus, it is reasonable to allocate resources to collect more informa-
tion about strategy S3 from agent A1. The DMA may now interac-

tively proceed in this way to investigate critical reports in order to

gain a better understanding of the decision problem and finally reach

a conclusion. 

Security Levels
The intuition behind security levels is that they provide limits beyond

which a strategy is undesirable. Thus, a DMA might regard a strategy as

undesirable if it has access to a report in which a credible agent assigns a

low value to the strategy.

Example A.2: Suppose that the DMA has stipulated that a strategy
Si is undesirable iff

• according to some agent Aj, the value of strategy Si is less than 0.45

• the credibility of that agent Aj is greater than 0.65.

Assume that v12 is in the interval [0.40, 0.60] and that c2 is in the

interval [0.20, 0.70]. Then S1 is below the threshold and is thus

undesirable. It is advisable to investigate how much the different

intervals can be decreased while the security levels are still violated.

In this manner, the stability of the result can be studied. For

example, it can be seen that strategy S1 ceases to be undesirable

when the left end-point of the interval of v12 is increased by 0.05.

Consequently, the result is quite unstable. 

The example contained a very simplistic approach to limiting unde-

sirable outcomes. To be more sophisticated and utilise the DELTA

method, the concept of security level as defined in Chapter 5 is applied.

There, an observation regarding security levels was made, which is here

turned into a definition of agent security levels and is put to use in

testing which strategies might be undesirable.

MULTI-AGENT SYSTEMS

181

Definition A.1: Given an agent decision frame S,K,R and two
real numbers r,s  [0,1], a strategy Sj violates agent security level s for

value threshold r iff for Kj = {k  vjk ≥ r}

ck
kK j

  1 s.

This is best illustrated by an example which evaluates the security levels

using weak first order dominance.8

Example A.1 (cont’d): Using the definitions above, it may now be

investigated to what extent the different strategies are undesirable.

Figure A.2 shows, for each strategy and a value threshold of 0.10,

the worst possible credibility assignments consistent with the frame

for different degrees of contraction, i.e. the security levels violated

by weak dominance. In the figure, the K- and R-bases are contracted

simultaneously, but this is not the only option. The K-base might be

left uncontracted, studying only the R-base under contraction, and

conversely, the R-base might be untouched while contracting K.

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

S1

S2

S30

0.2

0.4

0.6

0.8

Figure A.2 Value threshold 0.10

From the figure, it can be seen that the strategies S1 and S2 are not

undesirable in any part of the decision frame. Strategy S3 is unde-

sirable in the original frame and remains so until it is contracted

by more than 60%. For instance, when the decision frame is con-

8 See Chapter 5 for an explanation of weak dominance.

COMPUTATIONAL DECISION ANALYSIS

182

tracted by 40%, the greatest joint credibility for the bad reports of

this strategy is 0.58.

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

S1

S2

S30

0.5

1

Figure A.3 Value threshold 0.20

Figures A.3 and A.4 show the evaluations for the value thresholds

0.20 and 0.50 respectively. As can be seen in Figure A.3, the strate-

gies S1 and S2 are now undesirable in some parts of the decision

frame. However, they cease to be undesirable at contractions of at

least 20%.

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

S1

S2

S30

0.5

1

Figure A.4 Value threshold 0.50

MULTI-AGENT SYSTEMS

183

Figure A.4 shows that for very high value thresholds, S3 is undesir-

able regardless of the degree of contraction. Thus, it can be seen that

the results of the evaluation are strongly dependent on boundary

values, and consequently they should be further investigated in
sensitivity analyses. While S1 and S3 were preferable to S2 already in

the primary evaluation above, S3 seems to be too dangerous to adopt

as the main strategy for the time slot allocation. Thus, the agent
selects strategy S1 – keeping all the time slots open for negotiation. 

By using security levels, the decisions made by the DMA will be more

reliable and predictable than if such levels were not imposed on the

reports. The trust the DMA can put in the results will increase consid-

erably as it is able to set the levels and thresholds according to its

appreciation of the particular decision problem.

COMPUTATIONAL DECISION ANALYSIS

184

Long you live and high you fly

Smiles you give and tears you cry

All you touch and all you see

Is all your life will ever be

Run, rabbit run

Dig that hole, forget the sun

And when at last the work is done

Don't sit down, it's time to dig another one

For long you live and high you fly

But only if you ride the tide

And balance on the biggest wave

You race towards an early grave

 – R. Waters

Risk Management
This appendix deals with another application area of computational

decision analysis methods, the area of risk management. The content of

the appendix is joint work with Love Ekenberg, IIASA, and Anders

Elgemyr, ROA. The text is partly derived from [ED95] and [DEE96].

The risk analysis method DEEP (Damage Evaluation and Effective

Prevention) substantially extends the evaluative phases compared with

earlier approaches. The concept of risk analysis is used in a little wider

sense than usual. Often, only identification and valuation of damage

risks are included in the concept, but here selection of risk treatment,

risk financing, and analysis of the measures taken are also included. The

presentation is focused on the identification and analysis of threats and

on the evaluation of the suggested actions since those are the steps

where the DEEP method differs the most from other methods. The

other steps are fairly well covered in other texts.1 The idea behind

DEEP is to offer an analytical framework for enhancement of the chain

identification–valuation–action in risk management without aiming at

replacing it.

1 Risk analysis is less general in its first steps. In different industries, the values to be

protected and the threats are fairly industry specific. It is therefore not surprising

that, for example, the chemical industries in Sweden publish a text applicable

specifically to their own needs [K96]. But also the later evaluation steps are treated as

if they were industry specific. This might be due to the lack of general methods that

seem to fit in different industries, see for example [EM92].

COMPUTATIONAL DECISION ANALYSIS

186

To acquire a satisfactory understanding of the risk situation,

management often desires some kind of structured approach to the

analysis. Thus a risk analyst, conducting a risk analysis, frequently has

access to standard procedures for identifying and assessing threats and

for identifying and valuating assets. A tentative list of basic steps in risk

management could be the following:

• Identify the assets/objects that should be protected.

• Identify the threats that should be protected against.

• Estimate the probabilities for the threats to materialise.

• Estimate the values lost if the threats materialise.

• Assess the current protection.

• Decide which threats to rectify and which to leave unmanaged.

• Evaluate which protective measures are reasonable to take.

• Find financing for a reasonable part of the remaining risk.

• Execute the decided plans.

• Follow up on the effectiveness and efficiency of the plans.

In the analysis, different threats are compared to each other, and those

not found to be serious are filtered out. The others are ranked in order

of treatments necessary. Below, some risk models are criticised for not

being able to rank the seriousness of different threats. In the evaluation

step, the possible courses of action are specified. Although in real life

such analyses are often carried out, this step is left out in most existing

risk analysis models. This is a clear deficiency that may substantially

reduce the applicability of analysis results.

For insurance management problems, for example, different prob-

lems are encountered depending on the type of insurance. For high-

volume, high-frequency incidents, insurance companies have a well-

developed set of mathematical and statistical tools at their disposal

when calculating the cost of insurance. The risk management issue is to

keep such insurances or not, balancing the decision against the profit

margin for the insurance companies and assuming a reasonably well-

working insurance market with at least rudimentary competition

RISK MANAGEMENT

187

mechanisms. For low-frequency risks, the situation quite is different.

Insurance statistics is not as good a tool, but the need for risk analysts

to have tools at their disposal is perhaps even greater. This poses some

hard challenges to risk staff in general and to risk managers in

particular.

To make it easier to grasp the ideas behind the DEEP method, to

compare it with traditional approaches, and to indicate some of their

disadvantages, a brief survey of some approaches to risk analysis is

included. Ensuing this, an informal overview of the method is given,

followed by a description of its evaluation step incorporating DELTA.

Risk Evaluation Approaches
Different decision methods are used for assessment in risk analysis.

They are typically involved in several steps to identify and evaluate

assets, such as properties and information, and to identify and evaluate

threats, such as fire, burglary, and industrial espionage. Such analyses

are also carried out to verify the current protection, and to evaluate the

effects of modifying it.

Often, when evaluating the cost of an incident, the model requires

numerically precise data. A main problem is that in real-life analysis it is

often impossible for an analyst to explain the difference between closely

proximate probabilities, for example 23% and 25%. The problem is

emphasised by the inability to express varying reliabilities for different

pieces of information. Which data are based on long experience, and

which are mere guesses? In models using numerically precise

information, this kind of expressibility is severely limited.2 The

following three sub-sections focus on two common techniques used in

risk evaluations and a more powerful approach, the expected cost.

2 Methods for estimating the monetary cost of a simple incident by using numeri-

cally precise data in an expected cost model can be found in, e.g., [D90, pp.86 ff.].

COMPUTATIONAL DECISION ANALYSIS

188

Point Scale Models
One attempt to overcome the unrealistic and time-wasting assumption

of numerically precise information is to be more imprecise, even in

making the estimates. Broder writes: “[…] it is neither necessary nor desirable to

make precise statements of impact and probability. The time needed for the analysis will be

considerably reduced and its usefulness will not be decreased if impact (i) and frequency (f)

correlations are given in factors of 10.” [B84, p.22]. Then he proposes the

following scale:3

Loss valuation of an incident Estimated frequency to occur

 $10 i = 1 Once in 300 years f = 1

 $100 i = 2 Once in 30 years  f = 2

 $1,000 i = 3 Once in 3 years f = 3

 $10,000 i = 4 Once in 100 days f = 4

 $100,000 i = 5 Once in 10 days f = 5

 $1,000,000 i = 6 Once per day f = 6

 $10,000,000 i = 7 10 times per day f = 7

 $100,000,000 i = 8 100 times per day f = 8

Table B.1 Broder’s point scale

The annualised loss expectancy is then approximated by

10
3

(f+i-3)
.

A problem with this approach is that the possible values and fre-

quencies are spaced too far apart. This can be solved by using decimal

numbers for i and f, but then the reasoning is back where it began.

Furthermore, an important feature of a method allowing imprecise data

should be enabling the detection of critical variables and the study of

what effects modifications to the given data will have. This is not least

important when the possible values are spaced far apart. Also, a risk

analyst using point scales is still unable to express varying degrees of

reliability for the different pieces of information.

3 The method was originally suggested in [C77] and is recommended to prospective

U.S. government suppliers by NIST.

RISK MANAGEMENT

189

Risk Level Models
One way to partially overcome the problems with point scale models is

to allow the analyst to express the different values in non-monetary

terms. In Sweden, for instance, a relative three-level model has been

used for example by [H88, SAF86, W91b]. The probabilities and values

involved (somewhat misleadingly called consequences in this approach)

are expressed as shown in Figure B.1. Variants of the three-level model

are also frequently used. For example, [S89–91] uses a four-level model,

as does the Swedish SBA method [W84]. Not infrequently, even more

rudimentary models are proposed.4

Figure B.1 From [H88, p.76].

The risk level is a function of the sum (not product) PV = probability +

value. If PV  {2}, the risk level is 1, if PV  {3,4}, the risk level is 2,

and if PV  {5,6}, the risk level is 3. A major problem with this ap-

proach is that the categories are too wide, with no discrimination within

them. Therefore, most risks evaluate to risk level 2 with no indication of

4 Many practitioners have abandoned the concept of probability altogether. For

instance, insurance advisors often find it too hard to make estimates of the

frequencies of accidents because of low levels of repetition, and they sometimes

erroneously draw the conclusion that all kinds of probability based reasoning should

be avoided. For example, in [G92b] a five-level model without probabilities is

suggested and in [ESF91] probabilities are also ignored.

COMPUTATIONAL DECISION ANALYSIS

190

how to order the risks within that level. A competent risk analyst is

capable of differentiating between disastrous, unacceptable, and accept-

able risks without the aid of decision tools. The problem is to decide

the order and the extent of the reduction needs of different unac-

ceptable risks. Hence, when the risk situation is obvious, there is little

need for a model, and when it is not, the models offer little help.

Expected Cost Models
The choice of the formula above for evaluation seems peculiar, and it is

obvious that what results from it differs from evaluations using the

expected value, which can be formulated in risk analysis terms as

follows. The first definition covers the costs of actions, and below costs

of incidents are defined as well. They differ conceptually as in the

former the probabilities refer to possible incidents following actions,

while in the latter the probabilities refer to possible effects of an

incident. Example B.2 below uses expected cost in the first sense.

Definition B.1: An action Ai may result in a number of possible

incidents {Hi1,…,Hin}. The expected cost of an action Ai can be

expressed as pi1·ci1 +…+ pin·cin, where cik denotes the cost of

the incident Hik, and pik denotes the probability of Hik

occurring given that action Ai is taken.

In a corresponding way, the definitions can be expressed in terms of

incident costs instead and the expected cost should be minimised.

When analysing the consequences of an incident, not only monetary

costs are of interest. Thus, the concept of cost will be used in a more

general sense, including both quantitative and qualitative values. Utilities

could have been used instead, but in this context, cost is a more natural

concept than utility. Note that monetary cost is a special case of cost.

The first pure risk concept to be considered is simple incidents

(resulting in only direct consequences), which then will be extended to

incidents (resulting in both direct consequences and new incidents).

RISK MANAGEMENT

191

Definition B.2: A simple incident Hi has a number of possible

consequences {Ci1,…,Cin}. The expected cost of a simple incident Hi

can be expressed as pi1·ci1 +…+ pin·cin, where cik denotes the

cost of the consequence Cik, and pik denotes the probability of

Cik occurring given that the incident Hi occurs.

It is possible to generalise the description of a simple incident resulting

in a set of consequences. The new description allows an incident to

generate both new incidents and consequences, which in turn can

generate even more incidents and consequences, see Figure B.2. The

H’s in the figure denote incidents, and the C’s different consequences.

The P’s denote the probabilities involved.

Figure B.2 An extended consequence analysis

Now, the definition of expected cost is extended. Note that in the

following definitions, an incident is formally a set of consequences and

incidents.

Definition B.3: A set of incidents and simple incidents
{H1,…,Hr} is an incident. The expected cost of an incident {H1,…,Hr}

is expressed by the formula Ei = pi1·E1 +…+ pir·Er, where Ek

denotes the expected cost of the incident (or simple incident)
Hk, and pik denotes the probability of the incident Hk given Hi.

COMPUTATIONAL DECISION ANALYSIS

192

Example B.1: Consider Figure B.2.5 The incident H5 can result in

C8 and C9, and only these. Hence, H5 is a simple incident, and the

expected cost of it is equal to p8·E8 + p9·E9. The incident H2 gener-

ates a new incident H5 and can also result in C4. The expected cost

of the incident H2 is therefore equal to p4·E4 + p5·E5. E4 is the cost

of the simple incident consisting of the single consequence C4, and

E5 (= p8·E8 + p9·E9) is the expected cost of the simple incident

H5. 

The discussion about evaluation below is based on a one-level descrip-

tion, i.e., an incident does not generate new incidents. This does not

cause any real restriction, because as mentioned in Chapter 1, a multi-

level tree problem (where an incident generates new incidents) can

always be transformed into a one-level problem. Before the evaluation,

the next section presents the method in general.

The DEEP Method
This section describes the DEEP method and how it may be used to

evaluate the effects of different actions to prevent possible incidents. By

using the method, it is easier to realise which threats are the most

important to handle and what effects will follow from the treatments. It

is also important that the method can be adjusted to the risk policies of

the specific companies using it.

Nine Risk Analysis Steps
The DEEP method is a systematic model for risk analysis using sophis-

ticated methods for calculating in which order different threats should

be handled as well as comparing different actions to each other. The

analysis method is divided into nine steps.

An overview of the process is pictured in Figure B.3. The numbers

in the figure relate to the steps in DEEP.

5 For clarity, the indices have been simplified in the example.

RISK MANAGEMENT

193

2 3 4 5 6 71 8 9

Figure B.3 The DEEP steps

The nine steps follow naturally after each other and comprise every-

thing from investigating possible incidents to sensitivity analysis of the

risk analysis. In every step, the results are documented in order to be

able to easily return for a renewed analysis should the preconditions for

the original analysis have been partially changed. Steps 1–3 and 8–9 are

discussed only superficially, as this part of the thesis deals with

applications of computational decision analysis and not risk analysis per

se. The first three steps aim at providing a picture of the current risk

exposure of the organisation under analysis.

1. Scope Analysis

When a risk analysis is planned, it is important to state clear goals for

the analysis and delimit its scope. Seldom an entire corporation is to be

analysed at the same time, and Step 1 includes dividing the analysis into

suitable parts and risk areas. A decision is often made only to handle

pure losses, incidents that only generate costs since then it is easier to

apply rational decision processes.6

2. Possible Damage

The second step in DEEP is to closer examine those parts of the company

or organisation that are included in the analysis. Which incidents may

occur? Which other incidents may follow as a result of primary damage?

To what extent will the production process be interrupted? It is

important to systematically identify all potential objects in danger of

being damaged and all events that lead to damage to property,

6 The other option would be to include risks that could result in incomes as well, so

called business risks.

COMPUTATIONAL DECISION ANALYSIS

194

personnel, process interruption, liabilities, etc – not only the results of

an incident.

3. Current Protection

Ensuing that, it is natural to closely study the current protection. It

consists of both direct protection and indirect protection in the form of

insurance. Typical questions in Step 3 include: Is the protection level

sufficient? What happens if the protection devices do not work as

expected? Which is the appropriate balance between direct protection

and insurance? The third step is concluded by investigating possible

treatments. For every possible incident that has been identified, some

alternative protections are listed. They should be at least two – keeping

the current protection and improving it in some way. Often, there is

more than one way of reducing the risk, and those alternatives differ

with respect to costs and effects. For example, spreading the risk can be

done in several ways, physically by changing the flow of work and

goods or monetarily by increasing the level of insurance. Another

example is reducing the risk, either by pre-incident actions (which

decrease the probability of an incident occurring) or by post-incident

actions (which decrease the cost of an incident that has already

occurred).

4. Probabilities

The next two steps contain statements of probabilities and costs. For all

alternative actions, the probabilities for the possible incident and the

cost (or value) for the damage given that action are stated. This is done

relative to the list of possible actions from the previous step. Step 4

contains estimates of probability. To perform a reasonable risk analysis,

it is necessary to estimate the frequencies of possible incidents.

Sometimes, the frequency data available is sufficient, but in many cases

the analyst must rely on more or less well-founded estimates.

RISK MANAGEMENT

195

5. Costs

In the same manner, Step 5 contains the estimation of costs. This

includes protection costs as well as costs incurred from damages. The

costs can be expressed directly in monetary values or in some other

appropriate scale. In those two steps, it is not unusual to find that the

information available is insufficient and a supplementary investigation

has to be made in order to achieve reasonable results. In these steps, it

may even turn out that the problem has been structured in an unsuitable

way, and that the terms of reference for the analysis have to be revised.

6. Evaluation

When all incidents have been identified and valued, it is time in Step 6 to

evaluate the alternative actions. Such an evaluation can be made with

respect to different principles, for example minimising the expected

loss. An important feature of the evaluation step is the ability to exclude

acceptable risks from further evaluation with the aid of threshold

levels.7 If the potential cost for a specific risk is below the policy level of

top management, it may be classified as acceptable and no more resour-

ces need to be used for further analysis of the accompanying threats.

7. Sensitivity Analysis

Even a thorough analysis may have much to gain from being subject to

a sensitivity analysis, which is the purpose of Step 7. In this step, the

probabilities and costs are altered in order to study the stability of the

results. When the numbers are altered, the evaluation result will possibly

change as well. Exactly where this occurs is interesting, because it

indicates which input data is critical to the conclusions drawn. Those

should be studied more closely since they help indicate the better use of

the resources for analysis.

7 Security levels through thresholds are described in Chapter 5 and Appendix A.

Here, good alternatives are removed, but the reasoning involved is the same.

COMPUTATIONAL DECISION ANALYSIS

196

8. Implementation

When the evaluation process is concluded, the chosen actions are

implemented in Step 8. This step is specific to the particular organisation

and it also includes the financing of risks remaining after the actions

have been taken. This financing could be done by using insurances.

9. Follow-up

After some time has elapsed, it is important to verify the results of the

actions. Otherwise, the actions may have resulted in the problems being

transferred to other problem areas, and Step 9 is supposed to discover

such problems.

As was explained above, during the analysis it may turn out to be

necessary to collect further information or renew discussions made

earlier. This feedback is illustrated by backward pointing arrows in the

process in Figure B.3.

Evaluation in DEEP
When evaluating information from a consequence analysis, risk analysts

using DEEP may use a formula expressing the expected cost of an

incident, and this section demonstrates how the DELTA method can be

modified to evaluate the expected cost in the same manner as the

expected value is handled in Chapters 4–6.

A set of simple incidents is treated simultaneously since much can be

gained from studying several interrelated incidents at the same time.

The representation of probabilities is not considered here, since it is the

same as in the original DELTA method of Chapter 4. The representation

of costs is considered instead, the interpretations of admissible

statements are formalised, and this is described for four types of

possible cost statements.

1. The cost of the incident Hij equals m, is at least m.

Example: The cost of Hij is greater than m.

RISK MANAGEMENT

197

Translation: cij  [m+1, m+1]

2. The cost of the incident Hij is between some real numbers.

Example: The cost of Hij is between k1 and k2.

Translation: cij  [k1–1, k2+1]

3. The incident Hij is as expensive as incident Hik, more expensive than

incident Hik, the cost of incident Hij is approximately equal to the

cost of incident Hik.

Example: The incident Hij is as expensive as incident Hik.

Translation: cij – cik  [–2, +2]

4. The difference in cost between Hij and Hik is not less than the

difference in cost between Him and Hin.8

Translation: (cij – cik) – (cim – cin)  [m+1, m+1]

The important point is that statements as above are translated into a

system of linear inequalities that make them easy to handle in the

DELTA method. If a risk analyst still is averse to the use of qualitative

statements, he may use only interval statements instead.

The conjunction of expressions of the four types above is called the

cost base K. The probability base and the cost base are linear systems and

together constitute the risk frame C,P,K. Evaluating a risk frame is

mathematically equivalent to the evaluation of decision frames in

Chapters 5–6. Hence, this appendix will not discuss those procedures

but rather conclude with an example to illustrate the method.

Evaluation Example
The following example is supposed to show how the DEEP method

works in steps 4–7. The much simplified numerical example concerns

one burglary event during a given period and the estimates are

imprecise. The purpose is to illustrate that the method can facilitate an

8 For simplicity, assume that the cost of Hij is greater than the cost of Hik and that

the cost of Him is greater than the cost of Hin.

COMPUTATIONAL DECISION ANALYSIS

198

assessment as to which protective measures are reasonable even though

only imprecise information is available.

Example B.2: A company desires to decrease its exposure to risk

by installing more protective equipment and mechanisms at a certain

production facility. The tax deduction period for such equipment is

five years, and thus the analysis below is based on estimates of

probability for a five year period.

First, the possible damages for the period are assessed. The assess-

ment results in the following possible incident list.

H1 No burglary attempts

H2 All burglary attempts fail

H3 A burglary succeeds

Table B.2 Incident list

The existing protective equipment is assessed and possible actions

are listed. This list contains three possible alternative acts.

A1 Keep the current protection

A2 Add the improvements recommended by the insurance company

A3 Additionally install more functionality as recommended by an

independent security consultant

Table B.3 Action list

After that, an analysis commences which gives the following coarse

estimates for the probabilities and costs for possible damages with

respect to the different available courses of action. The costs listed

include purchase costs for the equipment and costs for events that

occurred.

Probabilities No attempts All attempts fail Burglary

A1 – Current protection 20–50% 10–20 % 30–60 %

A2 – Insurance company 30–50% 20–50 % 15–30 %

A3 – Ins.comp. + consultant 35–55% 30–60 % 10–20 %

Costs ($ million) No attempts All attempts fail Burglary

A1 – Current protection 0 0.1–0.3 2.5–6.5

A2 – Insurance company 0.6–0.8 0.8–1.2 3.3–7.5

A3 – Ins.comp. + consultant 2.2–2.6 2.4–3.1 5.2–9.1

RISK MANAGEMENT

199

Other statements

• The probability of ‘No attempts’ increases the more powerful

protection is installed.

• The difference in costs between ‘No attempts’ and ‘All attempts
fail’ is small if A2 is chosen. It is estimated to be about $0.2 to

0.4 million and is due to equipment only.

• Also the difference in costs between ‘No attempts’ and ‘All
attempts fail’ is small if A3 is chosen. It is estimated to be about

$0.2 to 0.5 million.

Table B.4 Estimated probabilities and costs

In this example, there are three incidents (H1–H3) to each of the

three courses of action – the two additional protections plus keep-

ing the current protection level during the period.

p11  [20%,50%] c11  [0.00,0.00] p11 < p21 < p31

p12  [10%,20%] c12  [0.01,0.03] p12 < p22 < p32

p13  [30%,60%] c13  [0.25,0.65] c22 -- c21  [0.02,0.04]

p21  [30%,50%] c21  [0.06,0.08] c32 -- c31  [0.02,0.05]

p22  [20%,50%] c22  [0.08,0.12]

p23  [15%,30%] c23  [0.33,0.75]

p31  [35%,55%] c31  [0.22,0.26]

p32  [30%,60%] c32  [0.24,0.31]

p33  [10%,20%] c33  [0.52,0.91]

Table B.5 Translated probabilities and costs

The costs have been transformed into the interval [0,1] by choosing

the cost scale to be $0–10 million. Now the evaluations can be

carried out, using the machinery of Chapters 5–6. It is done by

calculating the expected cost and expressing it as an interval. The

upper bound of the interval is the maximum expected cost, and the

lower bound of the interval is the minimum expected cost.

Probability hull Symmetry hull

P1.1 = [0.200,0.500] [0.243,0.500]

P1.2 = [0.100,0.200] [0.114,0.200]

P1.3 = [0.300,0.600] [0.343,0.600]

P2.1 = [0.300,0.500] [0.315,0.500]

P2.2 = [0.200,0.500] [0.223,0.500]

P2.3 = [0.150,0.300] [0.162,0.300]

P3.1 = [0.350,0.550] [0.350,0.532]

P3.2 = [0.300,0.550] [0.300,0.527]

P3.3 = [0.100,0.200] [0.100,0.191]

COMPUTATIONAL DECISION ANALYSIS

200

Value hull

V1.1 = [0.000,0.000]

V1.2 = [0.010,0.030]

V1.3 = [0.250,0.650]

V2.1 = [0.060,0.080]

V2.2 = [0.080,0.120]

V2.3 = [0.330,0.750]

V3.1 = [0.220,0.260]

V3.2 = [0.240,0.310]

V3.3 = [0.520,0.910]

Focal point

Cons. P V

C1.1: 0.371 0.000

C1.2: 0.157 0.020

C1.3: 0.471 0.450

C2.1: 0.408 0.070

C2.2: 0.362 0.100

C2.3: 0.231 0.540

C3.1: 0.441 0.240

C3.2: 0.414 0.275

C3.3: 0.145 0.715

For the actions A1, A2 and A3 above expressions for the expected

costs are obtained. These are denoted E1, E2, and E3 respectively.

For each action, both minimal and maximal expected costs have

been calculated.

min E1 = 0.087

min E2 = 0.110

min E3 = 0.257

max E1 = 0.395

max E2 = 0.296

max E3 = 0.407

Table B.6 Expected costs

This means that the expected cost if action A1 is chosen is in the

interval $870,000 to $3,950,000. In the same way, the expected costs

if actions A2 or A3 are chosen are in the intervals from $1,100,000 to

$2,960,000 and $2,570,000 to $4,070,000 respectively. Note that

these intervals are overlapping, and it seems hard to determine

which action to choose based on those numbers only. Further

analysis is required.

RISK MANAGEMENT

201

By contracting the estimates, the relationships among the three

courses of action can be studied. One way is to study how the max-

imal and minimal expected costs behave under contraction. For a

specific course of action to be better, it should have lower costs in

the columns of Table B.7. Therefore, from the table it can be seen
that action A3, adding extra equipment as suggested by the security

consultant, is more and more becoming the worst action the more
the intervals are contracted. The overlap between A1 and A2

remains, however, and further analysis is necessary.

 0% 20% 40% 60% 80%

min E1 0.087 0.109 0.132 0.158 0.186

min E2 0.110 0.124 0.139 0.154 0.171

min E3 0.257 0.269 0.282 0.295 0.309

max E1 0.395 0.355 0.317 0.281 0.247

max E2 0.296 0.273 0.250 0.229 0.208

max E3 0.407 0.389 0.372 0.355 0.339

Table B.7 Minimal and maximal expected costs

Figures B.4–B.6 are graphic representations of the table.

A1 min

A1 max

0

0.2

0.4

0.6

Cost

0
20

40
60

80
100

Contraction

0
20

40
60

80
100

A2 min

A2 max

0

0.2

0.4

0.6

Cost

Contraction
 Figure B.4 Action A1 Figure B.5 Action A2

A3 min

A3 max

0

0.2

0.4

0.6

Cost

0
20

40
60

80
100

Contraction
Figure B.6 Action A3

COMPUTATIONAL DECISION ANALYSIS

202

The first evaluation was based on independent evaluation of the

alternatives. The main evaluation using ∆-dominance is the next step

in the DEEP evaluation. To be able to study the differences more

clearly, pairwise comparisons are carried out. The results for string

and weak dominance are presented in Table B.8 and illustrated in

the three comparative graphs in Figures B.7–B.9. The table shows

the smallest and largest difference between the courses of action. It
can now more clearly be seen that action A3 is inferior in that it is

strongly NE-dominated because fairly early in the contraction

process it receives positive differences, meaning it is more expensive

than the others.

 0% 20% 40% 60% 80%

min (E1-E2) -0.201 -0.160 -0.115 -0.069 -0.023

min (E1-E3) -0.314 -0.276 -0.237 -0.197 -0.153

min (E2-E3) -0.274 -0.246 -0.220 -0.196 -0.168

max (E1-E2) 0.284 0.231 0.178 0.127 0.076

max (E1-E3) 0.137 0.085 0.035 -0.014 -0.062

max (E2-E3) 0.038 0.002 -0.033 -0.067 -0.101

Table B.8 Pairwise comparisons between the alternatives

E1 - E2

-0.4

-0.2

0

0.2

0.4

Cost

0
20

40
60

80
100

Contraction

E1 - E3

-0.4

-0.2

0

0.2

0.4

Cost

0
20

40
60

80
100

Contraction

 Figure B.7 Actions A1 and A2 Figure B.8 Actions A1 and A3

E2 - E3

-0.4

-0.2

0

0.2

Cost

0
20

40
60

80
100

Contraction

Figure B.9 Actions A2 and A3

RISK MANAGEMENT

203

To be able to discriminate between actions A1 and A2, further sensi-

tivity analysis is recommended, for example by contracting subsets of

intervals, not all at the same time. This will not be carried out here,

since the purpose of the example is to give an impression of how

DEEP can evaluate risk information. Possibly, more information is

needed about the two courses of action that remain. Especially the

estimates of the probabilities when burglary attempts fail are critical.

If, after further analysis, it is not possible to obtain more conclusive

indications, then it is an indication that the actions are indeed very

similar relative to the model data. Then other activities, like

contacting more equipment vendors or other insurance companies

might help.

This concludes the evaluation example and the description of the DEEP

method as well. A longer description can be found in [DEE96].

COMPUTATIONAL DECISION ANALYSIS

204

Every year is getting shorter

Never seem to find the time

Plans that either come to naught

Or half a page of scribbled lines

Far away across the field

The tolling of the iron bell

Calls the faithful to their knees

To hear the softly spoken magic spells

 – R. Waters

References
[A53] Allais, M.: “The Foundations of a Positive Theory of Choice involving

Risk and a Criticism of the Postulates and Axioms of the American
School” in Expected Utility Hypothesis and the Allais Paradox, D. Reidel
Publishing Company, 1979 (Originally in French 1953).

[B90] Bana e Costa, C.A.: Readings in Multiple Criteria Decision Aid, Springer-
Verlag, 1990.

[BCG87] Barzilai, J., Cook, W., and Golany, B.: “Consistent Weights for
Judgement Matrices of the Relative Importance of Alternatives”
in Operations Research Letters, vol.6, pp.131–134, 1987.

[BZ70] Bellman, R., and Zadeh, L.A.: “Decision Making in a Fuzzy
Environment” in Management Science, vol.17, pp.B-144–B-164, 1970.

[BG83] Belton, V., and Gear, A.E.: “On a Shortcoming of Saaty’s Method of
Analytical Hierarchies” in OMEGA, vol.11, pp.227–230, 1983.

[B54] Bernoulli, D.: “Exposition of a New Theory on the Measurement of
Risk” in Econometrica, vol.22, pp.23–36, 1954 (Originally from 1748).

[B91] Bertsekas, D.: Linear Network Optimization, MIT Press, 1991.

[BC92] Bicchieri, C., and Chiara, M.L.D.: “Preface” in Knowledge, Belief, and
Strategic Interaction, eds. Bicchieri and Chiara, pp.vii–xii, Cambridge
University Press, 1992.

[B95] Boman, M.: “Rational Decisions and Multi-Agent Systems” in Proc.
Working Notes for the AAAI Fall Symposium on Rational Agency,
ed. Fehling, MIT Technical Report, 1995.

[BE95] Boman, M., and Ekenberg, L.: “Decision Making Agents with Relatively
Unbounded Rationality” in Proc. DIMAS’95, pp.I/28–I/35, 1995.

[BG88] Bond, A.H., and Gasser, L.: Readings in Distributed Artificial Intelligence,
Morgan Kaufmann, 1988.

[BHM77] Bradley, S.P., Hax, A.C., and Magnanti, T.L.: Applied Mathematical
Programming, Addison-Wesley, 1977.

 [B84] Broder, J.F.: Risk Analysis and the Security Survey, Butterworth Publishers,
1984.

COMPUTATIONAL DECISION ANALYSIS

206

[B86] Brooks, R.A.: “A Robust, Layered Control System for a Mobile Robot”
in IEEE Journal of Robotics and Automation, vol.2, pp.14–23, 1986.

[BMM88] Budnick, F.S., McLeavey, D.W., and Mojena, R.: Principles of Operations
Research in Management, 2.ed., Irwin, 1988.

[CH92] Chen, S-J., and Hwang, C-L.: Fuzzy Multiple Attribute Decision Making,
Lecture Notes in Economics and Mathematical Systems, vol.375,
Springer-Verlag, 1992.

[C83] Chvátal, V.: Linear Programming, W.H. Freeman, 1983.

[CW88] Copeland, T.E., and Weston, J.F.: Financial Theory and Corporate Policy,
3.ed., Addison-Wesley, 1988.

[CPS92] Cottle, R.W., Pang, J-S., and Stone, R.E.: The Linear Complementarity
Problem, Academic Press, 1992.

[C77] Courtney, R.H.: “Security Risk Assessment in Electronic Data
Processing” in AFIPS NCC, vol.46, 1977.

[D93] Danielson, M.: Implementation av ett system för beslutsanalys,
WP-196, Dept. of Computer and Systems Sciences, Royal Institute
of Technology, 1993.

[D95] Danielson, M.: Computing Best Choices using Imprecise Information,
Licentiate Thesis, Dept. of Computer and Systems Sciences, Royal
Institute of Technology, 1995.

[D96] Danielson, M.: DDT – the DELTA Decision Tool, Research Report
96-026, Dept. of Computer and Systems Sciences, Royal Institute of
Technology, 1996. Proceedings of the IIASA workshop on Advances in
Methodology and Software for Decision Support Systems and Software,
Laxenburg, Austria, September 1996.

[D97a] Danielson, M.: DDT dwish Specification, version 2.4, Dept. of
Computer and Systems Sciences, Royal Institute of Technology, 1997.

[D97b] Danielson, M.: Different Research Directions and Approaches to
Interval Decision Analysis within the DECIDE Research Group, Dept.
of Computer and Systems Sciences, Royal Institute of Technology, 1997.

[DE97a] Danielson, M., and Ekenberg, L.: “Evaluating Decision Trees under
Different Criteria”, Proceedings of 13th Int. Conf. on Multiple Criteria
Decision Aids, Cape Town, 1997.

[DE97b] Danielson, M., and Ekenberg, L.: Riskbedömning i vaga domäner,
NUTEK Project Report P5873-1, 1997.

[DE97c] Danielson, M., and Ekenberg, L.: “A Framework for Analysing
Decisions under Risk” to appear in European Journal of Operational
Research, 1997.

[DEE96] Danielson, M., Ekenberg, L., and Elgemyr, A.: “Riskanalys med DEEP-
metoden” in Scandinavian Insurance Quarterly, vol.77, no.4, pp.311–324,
1996.

REFERENCES

207

[D67] Dempster, A.P.: “Upper and Lower Probabilities Induced by a
Multivalued Mapping” in Annals of Mathematical Statistics, vol.XXXVIII,
pp.325–339, 1967.

[D90] Dixon, G.: Riskanalys, SBF – Svenska Brandförsvarsföreningen, 1990.

[D92] Doyle, J.: “Rationality and its Roles in Reasoning” in Computational
Intelligence, vol.8, no.2, pp.376–409, 1992.

[E77] Edwards, W.: “How to Use Multi-Attribute Utility Measurement for
Social Decisionmaking” in IEEE Transactions on Systems, Man, and
Cybernetics, vol.7, no.5, pp.326–340, 1977.

[E94] Ekenberg, L.: Decision Support in Numerically Imprecise Domains,
Ph.D. Thesis, Dept. of Computer and Systems Sciences, Stockholm
University, 1994.

[EBD95] Ekenberg, L., Boman, M., and Danielson, M.: “A Tool for Co-ordina-
ting Autonomous Agents with Conflicting Goals” in Proceedings of the 1st
International Conference on Multi-Agent Systems ICMAS ’95, pp.89–93,
AAAI/MIT Press, 1995.

[ED94] Ekenberg, L., and Danielson, M.: “A Support System for Real-Life
Decisions in Numerically Imprecise Domains” in Operations Research
Proceedings 1994, Berlin, Germany, eds. Derigs, Bachem, and Drexl,
pp.500–505, Springer-Verlag, 1994.

[ED95] Ekenberg, L., and Danielson, M.: “Handling Imprecise Information
in Risk Management” in Information Security – the Next Decade, eds. Eloff
and von Solms, pp.357–368, Chapman & Hall, 1995.

[EDB96a] Ekenberg, L., Danielson, M., and Boman, M.: “A Tool for Handling
Uncertain Information in Multi-Agent Systems” in Distributed Software
Agents and Applications – Proceedings of the MAAMAW ’94, eds. Perram and
Müller, pp.54–62, Springer-Verlag, 1996.

[EDB96b] Ekenberg, L., Danielson, M., and Boman, M.: “From Local Assessments
to Global Rationality” in International Journal of Cooperative Information
Systems, vol.5, nos.2&3, pp.315–331, 1996.

[EDB97] Ekenberg, L., Danielson, M., and Boman, M.: “Imposing Security
Constraints on Agent-Based Decision Support” to appear in Decision
Support Systems International Journal, 1997.

[EM92] Elgemyr, A., and Mattsson, L.: Stora säkerhetsboken, Publica, 1992.

[ESF91] European Security Forum: A Risk Analysis Method which is Easy to
Understand and Simple to Apply, Draft Method, 1991.

[F70] Fishburn, P.C.: Utility Theory for Decision Making, John Wiley and Sons,
1970.

[F81] Fishburn, P.C.: “Subjective Expected Utility: A Review of Normative
Theories” in Theory and Decision, vol.13, pp.139–199, 1981.

COMPUTATIONAL DECISION ANALYSIS

208

[F83] Fishburn, P.C.: “Transitive Measurable Utility” in Journal of Economic
Theory, vol.31, pp.293–317, 1983.

[F80] Freeling, A.N.S.: “Fuzzy Sets and Decision Analysis” in IEEE
Transactions on Systems, Man, and Cybernetics, vol.10, no.7, pp.341–354,
1980.

[F88] French, S.: Decision Theory: An Introduction to the Mathematics of Rationality,
Ellis Horwood, 1988.

[FH84] Fuller, R.J., and Hsia, C-C.: “A Simplified Common Stock Valuation
Model” in Financial Analysts Journal, Sep.-Oct. 84, pp.49–56, 1984.

[G86] Galliers, J.R.: “A Theoretical Framework for Computer Models of
Cooperative Dialogue, Acknowledging Multi-Agent Conflict” in
IEEE Journal of Robotics and Automation, vol.2, pp.14–23, 1986.

[GN87] Genesereth, M.R., and Nilsson, N.J.: Logical Foundations of Artificial
Intelligence, Morgan Kaufmann, 1987.

[GD93] Gmytrasiewicz, P.J., and Durfee, E.H.: “Elements of a Utilitarian
Theory of Knowledge and Action” in Proceedings of 13th IJCAI, pp.396–
402, 1993.

[GT89] Goldfarb, D., and Todd, M.J.: “Linear Programming” in Optimization,
Handbooks in Operations Research and Management Science, vol.1,
eds. Nemhauser, Rinnooy Kan, and Todd, Elsevier, 1989.

[G62] Good, I.J.: “Subjective Probability as the Measure of a Non-measurable
Set” in Logic, Methodology, and the Philosophy of Science, eds. Suppes, Nagel,
and Tarski, pp.319–329, Stanford University Press, 1962.

[G92] Gonzaga, C.C.: “Path-Following Methods for Linear Programming” in
SIAM Review, vol.14, no.2, pp.167–224, Society for Industrial and
Applied Mathematics, 1992.

[G92b] Green, B.: “Vad kan bankerna lära sig av en entrepenör som utvecklas
till organisationsforskare” in Riskbedömning – kunskap om risker, NUTEK,
Stockholm, pp.121–126, 1992.

[GS82] Gärdenfors, P., and Sahlin, N-E.: “Unreliable Probabilities, Risk Taking,
and Decision Making” in Synthese, vol.53, pp.361–386, 1982.

[H60] Halmos, P.R.: Naive Set Theory, D. van Nostrand Co., 1960.

[H88] Hamilton, G.: This is Risk Management, Chartwell-Bratt, 1988.

[HM53] Hernstein, I.N., and Milnor, J.: “An Axiomatic Approach to Measurable
Utility” in Econometrica, vol.21, pp.291–297, 1953.

[HM84] Howard, R.A., and Matheson, J.E.: “Influence Diagrams” in Principles
and Applications of Decision Analysis, eds. Howard and Matheson, vol.II,
Strategic Decisions Group, Menlo Park, CA, USA, 1984.

[H89] Hull, J.: Options, Futures, and Other Derivative Securities, Prentice-Hall, 1989.

REFERENCES

209

[H51] Hurwicz, L.: Optimality Criteria for Decision Making under Ignorance, Cowles
Commission Discussion Paper no.370, 1951.

[J88] Jarrow, R.A.: Finance Theory, Prentice-Hall, 1988.

[J83] Jeffrey, R.: The Logic of decision, University of Chicago Press, 1983.

[K92] Keeney, R.L.: Value-Focused Thinking: A Path to Creative Decision Making,
Harvard University Press, 1992.

[KR76] Keeney, R.L., and Raiffa, H.: Decisions with Multiple Objectives: Preferences
and Value Trade-offs, John Wiley and Sons, 1976.

[K96] Kemikontoret: Riskhantering 1, Administrativ SHM-revision, 4.ed, 1996.

[K90] Kreps, D.M.: A Course in Microeconomic Theory, Harvester Wheatsheaf,
1990.

[K87] Krovak, J.: “Ranking Alternatives – Comparison of Different Methods
Based on Binary Comparison Matrices” in European Journal of Operational
Research, vol.32, pp.86–95, 1987.

[LH94] Lai, Y-J., and Hwang, C-L.: Fuzzy Multiple Objective Decision Making,
Lecture Notes in Economics and Mathematical Systems, vol.404,
Springer-Verlag, 1994.

[L25] Laplace, P.: Essai Philosophique sur les Probabilites, 5.ed., Paris, 1825.
(Translation published by Dover 1952.)

[LF90] Lee, C.F., and Finnerty, J.E.: Corporate Finance: Theory, Method, and
Applications, Harcourt Brace Jovanovich, 1990.

[L59] Lehmann, E.L.: Testing Statistical Hypothesis, John Wiley and Sons, 1959.

[L74] Levi, I.: “On Indeterminate Probabilities” in The Journal of Philosophy,
vol.71, pp.391–418, 1974.

[L92] Levi, I.: “Feasibility” in Knowledge, Belief, and Strategic Interaction, eds.
Bicchieri and Chiara, Cambridge University Press, pp.1–20, 1992.

[LS82] Loomes, G., and Sugden, R.: “Regret Theory: An Alternative Theory of
Rational Choice under Uncertainty” in The Economic Journal, vol.92,
pp.805–924, 1982.

[L93] Lootsma, F.A.: “Scale Sensitivity in the Multiplicative AHP and SMART”
in Journal of Multi-Criteria Decision Analysis, vol.2, pp.87–110, 1993.

[L89] Luenberger, D.G.: Linear and Nonlinear Programming, 2.ed., Addison-
Wesley, 1989.

[M81] Malmnäs, P-E.: From Qualitative to Quantitative Probability, Ph.D. Thesis,
Almqvist & Wiksell International, 1981.

[M90] Malmnäs, P-E.: Real-Life Decisions, Expected Utility, and Effective
Computability, Research Report HSFR no.677/87, 1990.

[M94a] Malmnäs, P-E.: “Towards a Mechanization of Real Life Decisions”
in Logic and Philosophy of Science in Uppsala, eds. Prawitz and Westerståhl,
Kluwer Academic Publishers, 1994.

COMPUTATIONAL DECISION ANALYSIS

210

[M94b] Malmnäs, P-E.: “Axiomatic Justifications of the Utility Principle”
in Synthese, vol.99, no.2, pp.233–249, 1994.

[M96] Malmnäs, P-E.: Evaluations, Preferences, and Choice Rules, Dept. of
Philosophy, Stockholm University, 1996.

[MM73] Mason, R.O., and Mitroff, I.I.: “A Program for Research on Manage-
ment Information Systems” in Management Science, vol.19, no.5, 1973.

[M92] McClennen, E.F.: “Rational Choice in the Context of Ideal Games”
in Knowledge, Belief, and Strategic Interaction, eds. Bicchieri and Chiara,
pp.47–60, Cambridge University Press, 1992.

[M34] Menger, K.: “Das Unsicherheitsmoment in der Wertlehre” in Zeitschrift
für Nationalökonomie, vol.5, pp.49–59, 1934.

[M54] Milnor, J.: “Games against Nature” in Decision Processes, eds. Thrall,
Coombs, and Davis, pp.49–59, John Wiley and Sons, 1954.

[N90] Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems: Theory and
Algorithms, John Wiley and Sons, 1990.

[NM47] von Neumann, J., and Morgenstern, O.: Theory of Games and Economic
Behavior, 2.ed., Princeton University Press, 1947.

[N81] Newell, A.: “The Knowledge Level” in AI Magazine, Summer Issue,
pp.1–20, 1981.

[N86] Nilsson, N.J.: “Probabilistic Logic” in Artificial Intelligence, vol.28,
pp.71–87, 1986.

[OM90] Oddie, G., and Milne, P.: “Act and Value” in Theoria, vol.LVII,
pp.42–76, 1990.

[O96] Olson, D.L.: Decision Aids for Selection Problems, Springer-Verlag, 1996.

[P91] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, revised 2nd printing, Morgan Kaufmann, 1991.

[Q82] Quiggin, J.: “A Theory of Anticipated Utility” in Journal of Economic
Behavior and Organisation, vol.3, pp.323–343, 1982.

[R92] Rabinowicz, W.: “Tortuous Labyrinth: Noncooperative Normal-Form
Games between Hyperrational Players” in Knowledge, Belief, and Strategic
Interaction, eds. Bicchieri and Chiara, Cambridge University Press,
pp.107–126, 1992.

[R68] Raiffa, H.: Decision Analysis: Introductory Lectures on Choices under Uncertainty,
Random House, 1968.

[R78] Ramsey, F.P.: “Truth and Probability” in Foundations: Essays in Philosophy,
Logics, Mathematics and Economics, ed. Mellor, pp.58–100, Routledge &
Kegan Paul, 1978.

[R93] Rosenschein, J.S.: “Consenting Agents: Negotiation Mechanisms for
Multi-Agent Systems” in Proceedings of 13th IJCAI, pp.792–799, 1993.

REFERENCES

211

[RS95] Russell, S.J., and Subramanian, D.: “Provably Bounded-Optimal
Agents” in Journal of Artificial Intelligence Research, vol.2, pp.575–609, 1995.

[S80] Saaty, T.L.: The Analytical Hierarchy Process, McGraw-Hill, 1980.

[SAF86] SAF: Riskanalys, Näringslivets Beredskapsbyrå, 1986.

[SW84] Sage, A.P., and White, C.C.: “ARIADNE: A Knowledge-Based
Interactive System for Planning and Decision Support” in IEEE
Transactions on Systems, Man, and Cybernetics, vol.14, no.1, 1984.

[SH95] Salo, A.A., and Hämäläinen, R.P.: “Preference Programming through
Approximate Ratio Comparisons” in European Journal of Operational
Research, vol.82, pp.458–475, 1995.

[S51] Savage, L.: “The Theory of Statistical Decision” in Journal of the American
Statistical Association, vol.46, pp.55–67, 1951.

[S72] Savage, L.: The Foundations of Statistics, 2.ed, Dover, 1972.

[S82] Schoemaker, P.: “The Expected Utility Model: Its Variants, Purposes,
Evidence, and Limitations” in Journal of Economic Literature, vol.XX,
pp.529–563, 1982.

[S86] Shachter, R.D.: “Evaluating Inference Diagrams” in Operations Research,
vol.34, no.6, 1986.

[S76] Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press,
1976.

[SP89] Shafer, G., and Pearl, J., eds.: Readings in Uncertain Reasoning, Morgan
Kaufmann, 1989.

[S76b] Simon, H.A.: Administrative Behaviour, 3.ed. The Free Press, New York,
1976.

[S61] Smith, C.A.B.: “Consistency in Statistical Inference and Decision” in
Journal of the Royal Statistic Society, Series B, vol.XXIII, pp.1–25, 1961.

[S89–91] Statskontoret: Vägledning i ADB-säkerhet 1–8, 1989–91.

[V92] Vincke, P.: Multicriteria Decision Aid, John Wiley and Sons, 1992.

[W50] Wald, A.: Statistical Decision Functions, John Wiley and Sons, 1950.

[W97] Walter, J.: A Decision Tool for Uncertain Decision Making, Master’s
Thesis, Dept. of Numerical Analysis and Computing Science,
Stockholm University, 1997.

[WF82] Watson, S.R., and Freeling, A.N.S.: “Assessing Attribute Weights”
in OMEGA, vol.10, pp.582–583, 1982.

[WP90] Weichselberger, K., and Pöhlman, S.: A Methodology for Uncertainty in
Knowledge-Based Systems, Springer-Verlag, 1990.

[W91b] Wermdalen, H.: Securitas – Säkerhetsboken 1992, Studentlitteratur, 1991.

[W84] Wrede, R.: “The SBA Method: A Method for Testing Vulnerability”
in Proc. IFIP/SEC '84, pp.313–320, 1984.

COMPUTATIONAL DECISION ANALYSIS

212

[W91] Wright, M.H.: “Interior Methods for Constrained Optimization”
in Acta Numerica, pp.341–407, 1991.

[Y87] Yaari, M.: “The Dual Theory of Choice under Risk” in Econometrica,
vol.55, pp.95–115, 1987.

[Z96] Zilberstein, S.: “Using Anytime Algorithms in Intelligent Systems”
in AI Magazine, Fall 1996, pp.73–83, 1996.

[ZZG84] Zimmermann, H.J., Zadeh, L.A., and Gaines, B.R.: Fuzzy Sets and
Decision Analysis, TIMS Studies in the Management Sciences, vol.20,
North-Holland, 1984.

