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If we have been accustomed to deplore the spectacle […] of a workman 

occupied during his whole life in nothing else but the making of knife 

handles or pins’ heads, we may find something quite as lamentable in 

the intellectual class, in the exclusive employment of the human brain 

in resolving some equations, or in classifying insects. […] It occasions  

a miserable indifference about the general course of human affairs, as 

long as there are equations to solve and pins to manufacture. 

 Auguste Comte 



 

Preface 
Methods for decision-making are of prime concern to any enterprise, 

even if the decision processes are not always explicitly or even 

consciously formulated. All kinds of organisations must continuously 

make decisions of the most varied nature in order to survive and attain 

their objectives. A large part of the time spent in any organisation, not 

least at management levels, is spent gathering, processing, and com-

piling information for the purpose of making decisions supported by 

that information. Decision-making has many aspects and this thesis 

focuses on one of them – modelling and evaluating possible courses of 

action given imprecise information. 

The idea of using computers to support decision-making has been 

around for a long time, almost as long as computers have been available 

in any usable form. Some of the more prominent ideas took the form of 

research in artificial intelligence (AI) and operational research (OR). 

From a fairly close relationship at the outset, that part of AI research 

took the more symbolic path while OR stayed on the numerical side as a 

branch of applied mathematics. Naturally, as computers became an 

inseparable part of many modelling attempts, the areas of computer 

science and information systems have also contributed indirectly to 

numerous approaches. During many years of research, a number of 

interdisciplinary sub-fields have emerged as responses to decision 

needs, each addressing its particular class of problems. The distinction 

is not sharp and ideas from more than one sub-field as well as from 

other sources can be found in some approaches. 
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The area of decision tools contains approaches dealing with mecha-

nising the structuring and analysis of decision situations. One of the 

ideas is to model the situations according to some normative model of 

rational decision behaviour. Presuming the decision-maker to be 

rational, the mechanical model can devise suitable courses of action 

given the supplied information. This approach does not require the tool 

to possess any degree of specialised expertise in the target area of the 

decision. Tools can be analytic, in the sense that they handle a smaller 

number of alternative courses of action and support the evaluation and 

selection of those alternatives. Synthetic tools, on the other hand, 

handle a larger number of alternative courses of action, and instead 

support the design of problems by, for example, generating alternatives. 

The two close areas of decision support systems and management 

information systems partly deal with collecting large amounts of 

information, predominantly in professional organisations. The collected 

information is then subject to statistical and other quantitative analyses 

in order to extract and compress information to aid management in 

making better decisions. There is a focus on which information to 

extract, how to extract it, and in which form to present it. 

In later years, there has been a growing interest within the field of 

artificial intelligence (AI) in the well-founded area of decision theory, 

which has merged with other uncertainty techniques into the sub-field 

of uncertain reasoning [SP89]. In the 1980s the area of knowledge-based 

systems (KBSs) grew strong within AI. The idea with KBSs is to supply 

the user with a package of specialist knowledge in a particular area that 

can be consulted when facing problems that require expertise beyond 

the decision-maker’s own level. Using AI techniques for knowledge 

representation, search, and inference, a KBS is supposed to act as the 

expert consultant in a decision situation and supply the decision-maker 

with professional advice. 
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Another AI area, probabilistic reasoning, deals with automated 

reasoning in domains represented by probabilistic networks.1 The 

reasoning can be divided into an inference part and a decision part. The 

inference part is the larger one in the sense that more research efforts 

have gone into it so far. It deals with inferring probabilistic support for 

conclusions drawn from collected evidence. The decision part, which is 

most closely connected to the topic of this thesis, consists of value 

nodes present in the network. The expected values of those nodes 

should be maximised subject to the constraints of the network in the 

form of arcs between chance and decision nodes. One of the most 

popular methods is the influence diagram technique. The diagrams are 

used for evaluating decision situations arising in inference networks. 

They combine inference and decision into one formalism, and they 

offer space-saving techniques for representing elaborate probabilistic 

graphs. The evaluation can be performed in various ways, classical ones 

being to convert the diagram to a decision tree [HM84] or to transform 

the diagram while preserving the expected value [S86]. 

Other AI techniques employed in various decision systems include 

machine learning techniques such as inductive decision trees, neural 

networks and genetic algorithms. Those are all good candidates for 

automated decision systems since they have strong predictive abilities. 

As methods for general decision analysis tools, they are less promising 

since they do not offer enough insight into or exploration of the 

decision problem. This might change, however, as the cross-fertilisation 

between different approaches to solving decision problems continues. 

Mechanising Decision Analysis 
Why does anyone want to have a mechanical method for decision 

analysis? Should not all decisions, at least by humans but possibly also 

by AI systems, be based on experience, intuition, and sound judgement? 

                                           
1 For a general introduction to probabilistic reasoning, see for example [N90, P91]. 
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Many human decision-makers will undoubtedly react negatively to the 

idea of being replaced by a computer program, and not without reason. 

Management information systems of previous decades have not fulfilled 

their promises to any great extent [MM73]. In this thesis, a decision 

method called DELTA and belonging to the area of analytic decision 

tools is presented. The purpose of the method is not to replace human 

decision-makers with machines, nor to replace any AI techniques. On 

the contrary, the objective is to increase the decision-maker’s (or 

module’s) ability to make sound decisions. A framework in which to 

express the decision problem and a clearly defined process helps in 

understanding the decision situation. It also provides a good overview 

of the decision material.  

Given a decision situation and some statements of probabilities and 

values, the method will indicate preferred ways to act. Moreover, it may 

point out weaknesses in the underlying information. The approach is 

interdisciplinary and draws on ideas from AI and OR as well as from 

statistical decision theory. It allows the decision-maker to be as 

deliberately imprecise as he feels is necessary and provides him with the 

means for expressing varying degrees of imprecision in the input 

statements. This leads to a more natural relationship between the 

decision-maker and the support tool. 

In many attempts to find general methods for solving different 

decision problems, one of the common denominators has been the 

imprecise nature of the input data. Regardless of the method employed, 

some kind of sensitivity analysis must be carried out in which the 

proposed solution is exposed to various what-if tests. Traditionally, 

these tests are done in a low-dimensional fashion, studying one or at 

best a few of the input variables at a time. This yields only limited 

insight into the problem since the full impact of imprecision on the 

solution cannot be appreciated. A feature of the DELTA method is an 

automated way of carrying out multi-dimensional analyses of the 

obtained results. 
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In addition, it should be noted that the decision-maker is in control 

of the flow of events. He can choose to say as much or as little as he 

wishes about each particular piece of information. He can also make his 

statements in any order since the method is not the controlling part of 

the interaction process. The method acts instead as an aid, presenting 

evaluations of alternatives and guiding the decision-maker in his search 

for good courses of action. This contrasts with many KBSs, which often 

control the flow of interaction and contain expert information the user 

is not supposed to possess. A traditional KBS often draws conclusions 

and makes decisions over which the user is not in full control and may 

not even fully understand. The decision method proposed in the 

following chapters encourages an exploratory style of working, which 

seems to correspond well with the way decision-makers reason without 

the aid of computer tools. One of the objectives is therefore to provide 

a tool that supports rather than controls the intended user, and that 

makes the greatest possible use of his own expertise in the target area. 

For human decision-makers, the target is often complex. Such decisions 

are made in the heads of the decision-makers, and the role of a tool is 

more to present an analysis and offer simulations or sensitivity analysis 

to aid the understanding of the problem and the decision situation. 

Contributions 
The seeds for the research problems in this thesis were originally dis-

cussed by Per-Erik Malmnäs in his Ph.D. thesis [M81] and further 

elaborated by him during the 1980s. Most of the research for this thesis 

has been carried out within the DECIDE Research Group. In the early 

1990s, the µ decision method was suggested by Per-Erik Malmnäs 

[M90], refined by Love Ekenberg in his Ph.D. thesis [E94], and imple-

mented as the µ decision solver by the author at around the same time 

[D93]. Since then, another approach has been developed by the author 

into the comprehensive and fully computational DELTA method pre-

sented in this thesis. 



COMPUTATIONAL DECISION ANALYSIS 

 

6 

The research was carried out at the Department of Computer and 

Systems Sciences (DSV), KTH, during a period of more than three and a 

half years from April 1993 to November 1996. The work has been 

partially supported by NUTEK. It started in an effort to increase the 

speed of decision evaluation algorithms and ended up becoming a new 

computational framework for decision analysis [D97b]. 

Main developments have taken place within the areas of represent-

ing knowledge, determining properties of bases (collections of con-

straints), evaluating consequence sets, and computing the results. The 

thesis contributes to previous research, within and outside of the group, 

in at least the following ways.2 Perhaps the major contribution lies in 

presenting a framework and a complete, implemented method for 

decision analysis using imprecise input data. Most other similar efforts 

either concentrate more on representation than on evaluation or are 

never fully implemented. Without implementations, only small 

problems can be handled and studied, and it is not easy to assess such 

attempts. In a recent survey of tools available from labs worldwide in a 

closely related field, multiple criteria decision aids, Olson finds only a 

few tools that handle imprecise statements at all [O96]. 

The DELTA method includes a number of established ideas and 

concepts, but many are new or generalised. The following more detailed 

account tries to highlight some of the advancements. The method has a 

novel representation using the concept of interval statements, which 

greatly simplifies the presentation. In representing such statements, the 

introduction of core estimates in addition to constraints is new and 

enables a much clearer usage of this kind of representation in allowing 

the expression of imprecision in several ways. Using only constraints is 

often not enough – they result in too wide, overlapping evaluation 

results. Core estimates admit a more powerful representation by 

allowing both positive and negative statements. Some other represent-

tation concepts have been reworked since [D95], such as the orthogonal 

                                           
2 All contributions are discussed relative to terminology partly introduced later. 
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hull. The classification based according to their computational demands 

is also new, enabling a hierarchy of solver algorithms to be set up. New 

concepts for bases include their symmetry and skewness, and the 

symmetric hull as well. This facilitates different views on the input data. 

The concept of proportion [M90, E94] is replaced by the new concepts 

of expansion and contraction [D97b], enabling sensitivity analyses of 

many input statements at a time. Many statements made by decision-

makers are given new interpretations (translations). 

The evaluation rules of collections of imprecise statements usually 

concentrate on some notion of admissibility, the classical standpoint 

being summarised in for example [L59]. The suggestions by some well-

known researchers are of this kind [L74, GS82], while others have taken 

the concept further, for example by extending it with a parameter into t-

admissibility [M94a, E94]. This thesis takes a broader view in trying to 

generalise and integrate many known numeric decision rules into the 

computable concept of ∆-dominance. Further, a new set of selection 

rules is made possible by the introduction of the concepts of strong, 

marked, and weak dominance. Those concepts together with expan-

sions and contractions of the bases enable a family of evaluation 

principles. 

The evaluations would not be of much interest if they were not 

efficiently computable, and one chapter is devoted to the optimisation 

of linear and bilinear problems. The algorithms presented include the 

solution of important classes of the bilinear programming problem by 

reduction to linear programming problems. Problems of determining 

properties of collections of decision-maker statements are mapped onto 

the well-known mathematical theory of linear programming. In order to 

evaluate the various properties, the Simplex method is employed. In 

general, Simplex research is focused on solving very large systems of 

inequalities, and not much research has gone into using it for solving 

long sequences of smaller problems. This thesis focuses on this more 
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unusual problem setting and evaluates different techniques originally 

proposed for solving standard linear programming problems. 

Implementations of the algorithms for many versions of the DELTA 

method were made and they were run on several machines. They 

resulted in the DELTALIB library with a layered architecture, see Figure 

3.1 in Chapter 3, where modules can be exchanged for the purpose of 

testing new algorithms. Implementing algorithms for those modules led 

to the completion of a solver package subsequently used in real-life 

applications. Many insights into what to improve were gained from that 

effort. For the current DELTA solver, an extensive series of experiments 

was conducted with the aim of finding efficient algorithms for use on a 

wide range of computers. Some of the measurements were reported in 

[D95]. The current implementation, comprising some 15,000 lines of 

source code, has been written in portable ANSI-style C using an object-

oriented design method to make a transfer to almost any operating 

system possible. The Simplex method in particular required many 

alternative implementations, as it is sensitive to the relative speed of 

various elementary computer instructions. 

Publications 
In my licentiate thesis [D95], the research directions were stated but the 

results were incomplete. Especially the properties of the representation 

(Chapter 4) and the evaluation rules (Chapter 5) were partial at that 

time, covering only some cases of the now much more complete 

DELTA method. The licentiate thesis was written in late 1994 and early 

1995, and the work with the completion of a version of the method was 

carried out during the rest of 1995 and the first three quarters of 1996. 

The core of the licentiate thesis and some of the 1995 results were 

submitted to the European Journal of Operational Research. The article 

is accepted for publication and will appear in 1997 [DE97c]. 
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Implementations of the algorithms of DELTA are collected into 

DELTALIB. A decision tool (Chapter 3) built on top of the library was 

presented at the IIASA Workshop on Advances in Methodology and 

Software for Decision Support Systems in Vienna in September 1996.3 

The presentation is available as a DSV report [D96]. 

The applications to distributed AI (multi-agent systems) are covered 

in a series of articles that mix older ideas from Ekenberg’s Ph.D. thesis 

with the newer DELTA method. There are two journal articles, one in 

International Journal of Cooperative Information Systems in 1996 

[EDB96], and one in Decision Support Systems International Journal, 

accepted and to appear in 1997 [EDB97]. Appendix A is a revised 

version of both papers, updated to discuss the DELTA application in 

more detail. 

The applications to risk management have been published in an 

earlier article on computer security [ED95] and a more recent journal 

article on general risk analysis in Scandinavian Insurance Quarterly 1996 

[DEE96]. The latter describes a comprehensive risk analysis method 

with DELTA as the evaluation tool. Appendix B is a translation and 

development of that article. 

Finally, in the section on further research in the Conclusion, one 

direction is extending DELTA into the multi-criteria area. The first 

attempt was described at one of the largest multi-criteria conferences in 

January 1997 [DE97a]. Those results are not included in this thesis. Here 

a decision model and decision analysis refer to decisions under a single 

criterion. The author was also the grant receiver and project leader of a 

NUTEK project using multi-criteria decision analysis in evaluating the 

alternatives in a procurement of railway equipment [DE97b]. Due to the 

nature of the project, the detailed results is classified information. They 

are not publicly available and thus not included in this thesis. However, 

the project report describes the method used and outlines the results. 

                                           
3 IIASA is the International Institute for Applied Systems Analysis in Vienna.  
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Applications 
The DELTA method and its predecessors have been used in a number 

of different real-world applications. The word application itself can mean 

at least two things in this context. In one sense, it can be taken to mean 

applying the evaluation framework to different subject areas. Apart 

from traditional decision analysis, this has been done successfully in a 

number of cases, notably in the areas of multi-agent systems [EBD95, 

EDB96a, EDB96b, EDB97], risk management [ED95, DEE96], and lately 

multi-criteria decision making [DE97a, DE97b]. In another sense, it can 

mean applying the proposed decision method to situations where 

decisions are to be made. This has also been done in a number of cases 

including choosing computer software packages,4 selecting national 

policies for health care,5 assessing risks in vehicle electronics,6 and 

procuring railway equipment (5 billion SEK, mentioned above).7 

Thesis Structure 
The thesis is divided into three main parts: Introduction, The DELTA 

Method, and Conclusion and Applications. The first part makes up an 

informal introduction to decision analysis in general and to the DELTA 

method. Chapter 1 discusses some common decision models and 

research methods, so as to have something with which to compare the 

proposed approach. Chapter 2 is a brief introduction to a work process 

involving the DELTA method, in order to point at one plausible use for 

the method. Chapter 3 presents DDT – the DELTA Decision Tool – 

intended for aiding human decision-makers in understanding their 

decision problems. 

                                           
4 Trygg-Hansa (Swedish insurance company) [D93, E94]. 
5 Socialstyrelsen (National Board of Health and Welfare), unpublished. 
6 Volvo Personvagnar (Swedish car manufacturer), NUTEK project [DE97b]. 
7 Banverket (Swedish National Rail Administration), NUTEK project [DE97b]. 
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The second part presents the method in detail and starts in Chap-

ter 4 with the structure of a decision problem and the knowledge 

representation for the decision statements. The chapter also presents 

general properties of bases. Following that, it discusses properties par-

ticular to probability bases and then to value bases. Finally, it suggests 

translations of imprecise statements into constraints. In Chapter 5, 

evaluation rules are investigated. First, evaluation rules in general are 

discussed, starting with the expected value rule and then continuing 

with some alternative rules. The unifying concept of ∆-dominance is 

suggested as the evaluation principle for the DELTA method. Then 

follows a section on techniques specific to collections of imprecise 

statements. Chapter 6 deals with optimisation algorithms for the 

method. It starts with linear programming for determining properties of 

bases and continues with bilinear programming necessary to calculate 

the results of the evaluation rules of the preceding chapter. The last 

section of the chapter describes Simplex as it applies to the DELTA 

solver. The proofs given in Part II are intended to convey the meaning 

of and aid in understanding the DELTA method. 

The third and last part starts with a summary and some pointers to 

future research. Next, examples of applications of the method to other 

areas are included in two appendices. Appendix A brings up the topic 

of multi-agent systems and the applicability of DELTA to that area. The 

other application, Appendix B, concerns the area of risk analysis as the 

concept is understood within insurance and security. Finally, the thesis 

ends with references, lists of definitions, examples, figures and tables in 

the thesis, and an index.8 

                                           
8 Minor language adjustments and corrections from the thesis errata sheet and the 

thesis defence have been incorporated into the reprint. 
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And then one day you find 

Ten years have got behind you 

No one told you when to run 

You missed the starting gun 

You run and you run 

To catch up with the sun 

But it’s sinking 

Racing around 

To come up behind you again 

The sun is the same 

In a relative way 

But you’re older 

Shorter of breath 

And one day closer to death 

 – R. Waters 

 



Working with DELTA 
This chapter is an introduction to a proposed human decision work 

process in which the DELTA method plays a central role. It is intended 

to serve only as an informal overview, introducing ideas and termi-

nology enlarged on in Part II. The purpose is not to describe the 

mathematical or computational machinery necessary, but rather to give 

an intuitive overview of how the method works and of its relevance to 

organisational decision-making. Another objective is to demonstrate 

that the suggested method is realistic to work with. 

A feature of the method is that the decision-maker has to make his 

problem statements more visible than he would otherwise. This brings 

about a number of advantages. First, he must make the underlying 

information clear, and second, the statements can be the subject of 

discussions with (and criticism from) other participants in the decision 

process. Third, it can also be seen more clearly which information is 

required in order to “solve” the problem and within which areas some 

more information must be gathered before a well-founded decision can 

be made. Fourth, arguments for (and against) a specific selection can be 

derived from the analysis material. Fifth, the decision can be better 

documented, and the underlying information, as well as the reasoning 

leading up to a decision, can be traced afterwards. The decision can 

even be changed in a controlled way, should new information become 

available at a later stage. 
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Professional decision-makers in corporations as well as in public 

organisations today often use rather simple decision models to aid 

decisions. In many cases, decisions are made without employing any 

model at all. The decision might be based on rules of thumb or on 

intuition, or even be a repetition of a similar decision made earlier. 

Sometimes, decisions are made after listing the alternatives and 

discussing their consequences in an unstructured manner. These 

alternative–consequence lists may state the advantages and disadvan-

tages of each course of action. When the special case of one action 

having all advantages and another all disadvantages does not prevail, it 

is often necessary to make a complicated comparison between the 

consequences of all alternatives. Other examples of well-known tradi-

tional decision aids include decision matrices and decision trees as 

discussed in Chapter 1. Many of them have the common disadvantage 

that they either do not handle probabilities at all, or else they require the 

decision-maker to make probability statements with precise numeric 

values, however unsure he is of his estimates. 

Suppose a decision-maker wants to evaluate a specific decision 

situation. In order to solve the problem in a reasonable way, given 

available resources, a decision process such as the following could be 

employed, not necessarily in the exact order given. 

• Clarify the problem, divide it into sub-problems if necessary 

• Decide which information is a prerequisite for the decision 

• Collect and compile the information 

• Define possible courses of action 

• For each alternative: 

 • Identify possible consequences 

 • For each consequence: 

  • If possible estimate how probable it is 

  • If possible estimate the value of it occurring 

• Disregard obviously bad courses of action 

• Based on the above, evaluate the remaining alternatives 

• Carry out a sensitivity analysis 

• Choose a “reasonable” alternative 
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The model described in the following should be seen in the context of 

such a decision process. The process is intuitively appealing, and 

numerous decision-makers unconsciously use a similar approach. 

The Work Cycle 
The decision process is carried out in a number of steps presented here 

in work-cycle form. A work cycle consists of six phases (Figure 2.1). The 

first step of the first cycle is special since there is much information to 

collect. The initial information is gathered from different sources. Then 

it is formulated in statements as indicated later in the chapter and 

entered into the DELTA Decision Tool (DDT, see Chapter 3).1 

Following that, an iterative process commences where step by step the 

decision-maker gains further insights and sometimes a conclusion. 

During this process, the decision-maker receives help in realising which 

information is missing, is too vague, or is too precise. He might also 

change the problem structure by adding or removing consequences or 

even entire alternatives as more decision information becomes available. 

Information 
Gathering

Statements 

Evaluations 

Sanity 
Checks

Sensitivity 
Analyses

Security 
Levels

 

Figure 2.1  The DELTA work cycle 

                                           
1 The current version of DDT accepts numeric input by rulers, while future versions 
will accept linguistic input as well. 
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Information Gathering 
In some cases, the first information collection phase can be a very long 

and tedious step. In larger investigations, it might take many man-years 

and result in documentation covering several meters of shelf space. In 

other cases, it might only require a few half-day discussions with experts 

and affected workers. It is impossible to describe any typical case 

because the situations are too diverse. 

After the data collection phase, a filtering task commences where the 

decision-maker structures and orders the information. He tries to 

compile a smaller number of reasonable courses of action and identify 

the consequences belonging to each alternative. There is no requirement 

for the alternatives to have the same number of consequences. How-

ever, within any given alternative, it is required that the consequences 

are exclusive and exhaustive, i.e. whatever the result, it should be 

covered by the description of exactly one consequence. This is un-

problematic, since a residual consequence can be added to take care of 

unspecified events. 

Statements 
Once the information is structured, it is entered into DDT in the form 

of statements such as the probability of consequence C occurring is less than 

40%. For each new statement entered, the consistency of the infor-

mation is checked. 

The decision-maker’s probability statements are represented by 

interval constraints and core intervals as further described in Chapter 4 

on representation. Intervals are a natural form in which to express such 

imprecise statements. It is not required that the consequence sets are 

fixed from the outset. A new consequence may be added at a later stage, 

thus facilitating an incremental style of working. The collection of 

probability statements in a decision situation is called the probability base. 

Some elementary statements considered are the following. 
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• The event H1 is probable 

• The event H1 is possible 

• The event H1 is improbable 

• The probability for event H1 is a 

• The probability for event H1 is larger than a 

• The probability for event H1 is between a and b 

• The event H1 is as probable as H2 

• The event H1 is more probable than H2 

• The event H1 is much more probable than H2 

A probability base is said to be consistent if it can be assigned at least one 

real number to each variable so that all inequalities are simultaneously 

satisfied.2 The idea is that no meaningful operations can take place on a 

set of statements that have no variable assignments in common, since 

there is no way to take all the requirements into account. Note that the 

method deals with classes of functions of which there are infinitely 

many instantiations, and insists on at least one of them yielding 

consistent results. 

Likewise, the values are expressed as interval statements. The trans-

lations of the value statements in a decision situation are called the value 

base. Some elementary statements considered in this thesis are the 

following. 

• The event H1 is desirable 

• The event H1 is acceptable 

• The event H1 is undesirable 

• The value of event H1 is a 

• The value of event H1 is larger than a 

• The value of event H1 is between a and b 

• The events H1 and H2 are as desirable 

• The event H1 is more desirable than H2 

• The event H1 is much more desirable than H2 

                                           
2 For example p(H1) = 0.22 and p(H2) = 0.39. 
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Consistency is defined in the same way as for a probability base, and is 

also discussed in Chapter 4. The probability and value bases together 

with structural information constitute the decision frame. 

When all statements in the current cycle have been entered, the data 

entry phase is over. As the insights into the decision problem 

accumulate during all the following phases, it is possible to add new 

information and alter or delete information already entered. 

Sanity Checks 
Thereafter, the work cycle goes into evaluating the alternatives. The first 

cycle begins by comparing the alternatives as they are entered. As the 

first evaluation step, the sanity of the decision frame is checked. Much 

information collected, especially in large investigations, runs the risk of 

being cluttered or misunderstood during the process. If some data in 

the frame is problematic, the decision-maker could consider leaving it 

out of the current cycle or recollecting it. Missing data is easily handled 

for later inclusion. For example, a missing consequence can be added at 

a later stage. If the set of consequences for some alternative is not 

exhaustive, a residual consequence can be temporarily added. Missing 

value constraints can be temporarily substituted with very wide intervals 

or just left out. Such possibilities have certain advantages as the results 

emerging at the outset of the evaluation may be viewed with greater 

confidence than if erroneous data is entered. 

Security Levels 
Many decisions are one-off decisions or are important enough not to 

allow a too undesirable outcome regardless of its having a very low 

probability. The common aggregate decision rules will not rule out an 

alternative with such a consequence provided it has a very low proba-

bility. If the probability for a very undesirable consequence is larger 

than some security level, it seems reasonable to require that the alternative 
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should not be considered, regardless of whether the expected value 

shows it to be a good course of action. If the security level is violated by 

one or more consequences in an alternative and this persists beyond a 

predetermined rate of contraction (described below), then the alterna-

tive is unsafe and should be disregarded. An example of security levelling 

is an insurance company desiring not to enter into insurance agreements 

where the profitability is high but there is a very small but not negligible 

risk for the outcome to be a loss large enough to put the company’s 

existence at stake. The security analysis requires some parameters to be 

set. This can often be done at an organisational level, and it will then 

have the effect of creating a policy within the organisation. Security 

levels is an important supplement to the expected value. It is more 

formally introduced in Chapter 5 and further discussed and exemplified 

in Appendix A. 

Evaluations 
After having taken security levels into account, which value does a 

particular decision have? In cases where the outcomes can be assigned 

monetary values, it seems natural that the value of the decision should 

be some kind of aggregation of the values of the individual 

consequences. One suggestion is to assign different weights to the 

consequences so that more probable ones are more influential than less 

probable ones. This line of reasoning leads to the expected monetary 

value (EMV), which is essentially the same construct as the general 

expected value discussed below. EMV shows the monetary result that 

would be obtained on average, should the decision situation reoccur a 

large number of times. Since not all decisions reoccur that often, some 

not at all, EMV should be interpreted as the average tendency prevailing 

in every decision situation. 

There are a number of possible evaluation rules within DELTA, 

some of which are described in Chapter 5. Often, the final comparing 

rule of an evaluation in the DELTA method as well as in many other 
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methods is the expected value (EV), sometimes instantiated as the 

expected utility or the expected monetary value. Since neither proba-

bilities nor values are fixed numbers, the evaluation of the expected 

value yields quadratic (bilinear) objective functions of the form 

EV(Ai) = pi1vi1 + … + pinvin 

where the pik’s and vik’s are variables. Maximisations of such expres-

sions are computationally demanding problems to solve in the general 

case, using techniques from the area of quadratic programming [L89]. In 

Chapter 6 there are discussions about and proofs of the existence of 

computational procedures to reduce the problem to systems with linear 

objective functions, solvable with ordinary linear programming 

methods. 

When a rule for calculating the EV for decision frames containing 

interval statements is established, the next question is how to compare 

the courses of action using this rule. It is not a trivial task, since usually 

the possible EVs of several alternatives overlap. The most favourable 

assignments of numbers to variables for each alternative usually render 

that alternative the preferred one. The first step towards a usable 

decision rule is to establish some concepts that tell when one alternative 

is preferable to another. For simplicity, only two alternatives are 

discussed, but the reasoning can easily be generalised to any number of 

alternatives. 

Alternative A1 is at least as good as A2 if EV(A1) ≥ EV(A2) for all 

consistent assignments of the probability and value variables. 

Alternative A1 is better than A2 if it is at least as good as A2 and 

further EV(A1) > EV(A2) for some consistent assignments of the 

probability and value variables. 

Alternative A1 is admissible if no other alternative is better.3 

If there is only one admissible alternative it is obviously the preferred 

choice. Usually, there are more than one since apparently good or bad 

                                           
3 This conforms to statistical decision theory [L59]. 
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alternatives are normally dealt with on a manual basis long before 

decision tools are brought into use. All non-admissible alternatives are 

removed from the considered set and do not take further part in the 

evaluation. The existence of more than one admissible alternative 

means that for different consistent assignments of numbers to the 

probability and value variables, different courses of action are prefer-

able. When this occurs, how is it possible to find out which alternative 

is to prefer? 

Let 12 = EV(A1) – EV(A2) be the differences in expected value 

between the alternatives. The strength of A1 compared to A2, given as a 

number max(12)  [–1,1], shows how the most favourable consistent 

assignments of numbers to the probability and value variables lead to 

the greatest difference in the expected value between A1 and A2. In the 

same manner, A2 is compared to A1. These two strengths need not sum 

to one or to any other constant – the first might for example be 0.2 and 

the second 0.4. If there are more than two alternatives, pairwise 

comparisons are carried out between all of them. 

Furthermore, there is a strong element of comparison inherent in a 

decision procedure. As the results are interesting only in comparison to 

other alternatives, it is reasonable to consider the differences in strength 

as well. Therefore, it makes sense to evaluate the relative strength of A1 

compared to A2 in addition to the strengths themselves, since such 

strength values would be compared to some other strengths anyway in 

order to rank the alternatives. The relative strength between the two 

alternatives A1 and A2 is calculated using the formula 

  
mid(12 )

max(12) min(12 )

2


max(12) max(21 )

2
 

which is explained in detail in Chapter 5. The concept of strength is 

somewhat more complicated than discussed in this chapter. Alternative 

A1 is said to strongly dominate alternative A2 if min(12) > 0, to 
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markedly dominate if mid(12) > 0, and finally to weakly dominate if 

max(12) > 0.4 This is also explained in Chapter 5. 

Only studying the differences in the expected value for the complete 

bases often gives too little information about the mutual strengths of 

the alternatives. Numbers close to any of the boundaries seem to be the 

least reliable ones when making the original imprecise statements. 

Hence, it would be advantageous to be able to study the strengths (or 

dominances) between the alternatives on sub-parts of the bases. If a 

dominance is evaluated on a sequence of ever smaller sub-bases, a good 

appreciation of the strength’s dependency on boundary values can be 

obtained. This is denoted contracting the bases, and the amount of 

contraction is indicated as a percentage which can range from 0% to 

100%. For a 100% contraction, the bases are contracted into single 

points, and the evaluation becomes the calculation of the ordinary 

expected value.5 

The next chapter presents the DDT tool in some detail, complete 

with evaluation graphs. The results of the comparisons can be displayed 

either in a diagram for each pair of alternatives or as a summary for 

each alternative. 

Sensitivity Analyses 
After the evaluation, a sensitivity analysis is the next step. The analysis 

tries to show what parts of the given information are most critical for 

the obtained results and must therefore be given extra careful 

consideration. This is accomplished by varying a number of statements 

in desired ways, increasing or decreasing intervals, modifying structural 

information, etc. It also points to which information is too vague to be 

                                           
4 To be more precise, the DELTA method uses the concept of ∆-dominance as 
described in Chapter 5. It may colloquially be interpreted as the relative strength 
between the alternatives. 
5 The method uses the dual concepts of expansion and contraction as explained in 
Chapters 4 and 5, but the idea is the same as only contracting the bases. Since the 
core is not discussed in this chapter, neither is expansion. 
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of any assistance to the ongoing evaluation. Information identified in 

this way is subject to reconsideration, thereby triggering a new work 

cycle. 

It is possible to regard the expansion and contraction procedures as 

automated kinds of sensitivity analysis. In order to maintain consis-

tency, the expansion (contraction) increases (decreases) the bases in 

predefined ways. The decision-maker might, however, have other ideas 

of interesting modifications to make to the bases, like decreasing or 

even increasing selected intervals. He might have structural or problem 

specific information that leads him to manipulate certain intervals in 

special ways. A common strategy is decreasing intervals until only one 

alternative is admissible. This way further insights into the decision 

problem can be gained. It is simple to allow for this in the DELTA 

method and the procedures of expansion and contraction apply equally 

well to bases altered for reasons of sensitivity analysis.  

Before a new cycle starts, alternatives found to be undesirable or 

obviously inferior by other information are removed from the decision 

process. Likewise, a new alternative can be added, should the 

information gathered indicate the need for it. Consequences in an 

alternative can be added or removed as necessary to reflect changes in 

the model. Often a number of cycles are necessary to produce an 

interesting and reliable result.  

Decision Process Results 
After the appropriate number of work cycles has been completed, both 

the decision problem and its proposed “solution(s)” in the form of 

preferred courses of action will be fairly well documented. Anyone 

interested and with access to the information can afterwards check, 

verify (and criticise) the decision based on the output documentation, 

which because all consequences are clearly presented shows how all the 

alternative courses of action have been valued. Also, during the decision 
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process, the analysis is open for comments and can become the basis 

for further discussions. Another effect is that the decisions are less 

dependent on which employee handles a particular decision situation 

since deviations from corporate policy can be detected in the 

documentation after the process has been completed if not earlier. 

This concludes the informal introduction to the DELTA method in a 

work process. The next chapter presents the DDT tool suitable for 

interactive use in a work cycle-based process. The chapters that follow 

in Part II go into considerably more detail in trying to present the 

representation and the evaluation procedures of the method. 



The DELTA Decision Tool 
This chapter is a demonstration of DDT – the DELTA Decision Tool. 

DDT is built on top of DELTALIB, a set of library procedures that 

together implement the DELTA method as described in Part II of the 

thesis. The chapter is divided into three sections. The first section 

describes the DDT software and its architecture. The functionality of 

the software is most accessibly conveyed by an example. Thus, the 

middle section introduces a decision problem on which the sample 

session in the last section is built. The chapter is intended to continue 

the informal overview from Chapter 2. As in that chapter, the purpose 

is to provide an intuitive overview of how the method works and to 

demonstrate that the suggested method is realistic to work with. 

The DDT Software 
The DELTALIB library is the core of DDT [D96]. It consists of several 

modules collected into a library with a common published program-

ming interface in the form of callable C functions and procedures. The 

layered architecture of the library is shown in Figure 3.1. The lowest 

layer, the solver layer, consists of different optimising solvers for linear 

and bilinear programming as described in Chapter 6. There is a solver 

stack consisting of a number of solvers that solve progressively harder 
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problems of optimisation. Further, there resides other algorithms such 

as graph algorithms for special purposes. 

 

Figure 3.1  The DELTALIB layers 

The next layer, the base layer, contains functions for the probability and 

value bases. Among the functions are data structure access, consistency 

maintenance, and tests for orderings. This layer calls the solver for tasks 

that involve optimisation, for example calculating the orthogonal hull of 

the probability base. 

The frame layer is the library’s interface to the callers. It provides a 

programming API1 to the library functions and capabilities. It contains a 

scheduler, consistency and maintenance functions, and integrity checks 

to protect the rest of the library from erroneous calls. Further, it 

contains the evaluation modules for the DELTA and GAMMA rule sets 

(explained in Chapter 5), and for the PSI and OMEGA rule sets not 

explicitly covered in the thesis. Finally, it contains the procedures for 

security levels. The layer may be extended with other functions in the 

future, for example evaluations using other -dominance concepts or 

numerical rules other than the expected value. 

The user layer consists of different library users. The library is equally 

well designed for use by a textual user interface, a graphical user inter-

face, an agent (a robot, for example), or an expert system. Of these, 
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instances of the two leftmost exist today, and the third from the left is 

underway as software agents using World Wide Web techniques. An 

instance of the second one from the left (Graphic) is DDT, the topic of 

the rest of this chapter [D97a]. 

The Decision Problem 
This section presents an example of a decision problem suitable for 

investigation using the DELTA method. A medium-sized Swedish 

manufacturing company relied in one of its most important production 

lines on an old machine, to which spare parts had become increasingly 

hard to obtain. At a critical moment, the machine broke down in a more 

serious way than previously. It became clear to management that the 

machine was a potential danger to future operations unless it was either 

thoroughly repaired or replaced by a new machine. 

A DDT Session 
Currently, DDT runs on Windows 95 PCs and Unix workstations, and it 

is from the latter implementation that this session is taken. When the 

program is launched without a pre-existing data file, a default decision 

problem is created. Apart from the traditional File menu, the top level 

menu in DDT consists of the following items: 
 

Settings 

 Show hull values 

 Utility settings 

 Zoom 

 Security levels 
 

Evaluations 

 Absolute 

 Relative set 

 Alternative 1 

 Alternative 2 

 Security check 

Table 3.1  Main pop-down menus 
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NOTE: Due to severe problems with editing and printing this chapter, 

the PDF reprint will mostly contain the figures (screenshots) from the 

presentation of the tool. If the chapter is allowed to be more extensive 

than this reprint, it is not editable in either Word 5.1 or 6.0, neither 

convertible to a PDF file. Originally, the chapter consisted of pages 47–

64 but it is not possible to recreate in its entirety. Only this chapter is 

affected by these editing problems. 

 

 

Figure 3.2 

 

 

Figure 3.3 
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Figure 3.4 

 

Figure 3.5 
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User Statements 
To begin with, it is assumed that the decision maker is content with the 

tree and wants to move on to entering probabilities and values. This is 

done either by dragging the interval endpoints using the mouse or by 

entering the numbers manually. The interval is modified interactively, 

and feedback is given if the base is becoming inconsistent as a result of 

altering an interval. An important difference between probabilities and 

values is the familiarity among decision makers with [0,1] variables. For 

probabilities, numbers in the range [0,1] (in the form 0% to 100%) are 

commonly accepted. For values, on the other hand, the range [0,1] is 

not the most natural nor the most common. Therefore, as was shown in 

Figure 3.1, DDT allows any range for the values, even such where 

greater utility is derived from smaller values, as is the case with for 

example pollution. 

 

 

Figure 3.6 

A default focal point is suggested by DDT when the decision problem is 

entered. It can be modified by the decision maker at any time during the 

evaluation, as long as it is kept consistent. The consistency of the infor-

mation is maintained by DDT. After the probabilities and values have 

been entered for the other two alternatives as well, the DELTA decision 

tree looks like Figure 3.7. 
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Figure 3.7 

Evaluation 
Now that all initial information is stored properly in the tree, the 

evaluation phase can begin. Each evaluation takes place in a separate 

window, and there may be more than one window active at the same 

time. In each window, there is a possibility to customise the appearance 

of the evaluation graphs. The following three pop-down menus are 

available in the DDT decision analysis tool: 
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Misc 
(see Figure 3.8 below) 
Add 
(adds a graph to the display) 
Delete 
(removes a graph from the display) 

Table 3.2  Evaluation pop-down menus 

In the ‘Misc’ menu, it is possible to choose which of the maximal, 

medium, and minimal values are to be shown for the current 

comparison. In this sample session, it was chosen to compare the 

alternatives pairwise and then to view the medium differences in the 

graph. It can be seen in Figure 3.8 that only ‘Show mid’ is selected and 

in Figure 3.9 an evaluation mid result for two alternatives is shown. 

 

 

Figure 3.8 

 

 

Figure 3.9 



Representation 
In the DELTA method, a decision problem is represented by a decision 

frame. The idea with such a frame is to collect all information necessary 

for the model in one structure. This structure is then filled in with 

problem statements. All the probability statements in a decision 

problem share a common structure because they are all made relative to 

the same decision frame. They are translated and collected together in a 

probability base. For value statements, the same is done in a value base. 

The correspondence between the user model and the representation is 

summarised in Table 4.1. 

User model Representation 

Decision problem Decision frame 

Alternative Consequence set 

Consequence, event Consequence 

Collection of statements Base 

Interval statement Core interval 

 Interval constraint 

Range statement Core interval 

 Range constraint 

Qualitative statement Range constraint 

Comparative statement Comparative constraint 

Compound statement Compound constraint 

Difference statement Difference constraint 

Table 4.1  Representation of user model 
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Decision Frames 
Chapter 2 contained a discussion on how a decision problem with 

imprecise data could be modelled. In this chapter, the representation 

will be considered in more detail. A model in normal form of the 

situation is created with relevant courses of action and their conse-

quences, should specific events occur. The model is represented by a 

decision frame. The courses of action are called alternatives in the 

model, and they are represented by consequence sets in the decision 

frame. This can be depicted as in Figure 4.1, where the problem is seen 

to be on alternative–consequence form (AC form), a form of one-level 

decision tree [J83]. 

Alte rnative  A1

Alte rnative  A2

Alte rnative  A3

De cision

situation

Consequence  C11

Consequence  C12

Consequence  C13

Consequence  C21

Consequence  C22

Consequence  C31

Consequence  C32

Consequence  C33

Consequence  C34 

Figure 4.1  A tree view of a decision frame 

Following the establishment of a decision frame, the probabilities of the 

events and the values of the consequences are filled in.1 

                                           
1 In some presentations, an event is a disjunction of consequences. Here, it is used in 

a more colloquial way. An event denotes the transition from one state of affairs to 



REPRESENTATION 

69 

This chapter deals with representing the structure and handling 

interval statements. Following that, some properties of collections of 

statements are described.2 Finally, the translations of probability and 

value statements are also investigated. The statements themselves and 

their interpretations are discussed. 

Frame Structure 
To formalise a decision frame, it is necessary to consider what structure 

information must be present in order to unambiguously describe a 

decision problem on AC form. First, a decision frame must capture the 

structure of the tree. A decision tree consists of sets of consequences. 

Second, there are statements of probability and value collected in 

structures called constraint sets and cores. In this chapter, the general 

interval constraint set will be described first. It can be used both for 

probability statements and value statements. 

In order not to clutter up the definitions with particulars of all 

components, the terminology clauses introduce generic items used 

throughout the chapter without further qualification. 

Terminology: Given a set X of variables {xi}iI, the index set 

I is understood to be I = {1,…,n} where n is the number of 

variables in X.3 

                                                                                                                   
another. For example, if a dog is run over by a commuter train, then the event is the 

accident itself and the dog being dead is a consequence of the accident. Still, it will 

be said that the consequence has a probability. This is unambiguous and should not 

lead to any confusion. 
2 Their computational requirements lead to algorithms for evaluating such 

properties, one of the topics of Chapter 6.  
3 This is a family {xi} in X, see e.g. [H60]. 
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Constraints 
A linear inequality involving a set of variables {xi}iI has the form 

k1x1 + k2x2 +…+ knxn ¤ b 

for some constants ki, iI, and b. The relational operator ¤ is any 

strict or weak inequality such as > or ≤. For the purpose of this chapter 

the ki’s are often ±1 and are then omitted for the sake of simplicity.4 

Equalities correspond to precise constraints for the respective probabil-

ities and values. In this thesis, however, the interest lies in other kinds 

of statements, for example interval statements, qualitative statements, 

and comparative statements. For these statements, interval constraints 

are used. 

Definition 4.1:  Given a set of variables S = {xi}iI, a continuous 

function g:Sn
[0,1], and real numbers a,b  [0,1] with a ≤ b, an 

interval constraint g(x1,…,xn)  [a,b] is a shorter form for a pair of 

weak inequalities g(x1,…,xn) ≥ a and g(x1,…,xn) ≤ b. 

In this manner, both equalities and inequalities can be handled in a 

uniform way since equalities are represented by intervals [a,a]. There are 

many types of constraints and they correspond to different types of 

decision-maker statements as discussed at the end of the chapter. 

Definition 4.2:  Given a set of variables {xi}iI and real numbers 

a, b  [0,1] with a ≤ b: 

An equality constraint is an interval constraint of the form xi  [a,a] 

where i  I. 

A range constraint is an interval constraint of the form xi  [a,b] 

where i  I. 

A comparative constraint is an interval constraint of the form 
xi – xj  [a,b] with i, j  I and i ≠ j. 

                                           
4 In case of –1, a minus sign is placed directly in front of the ki’s. In the next 

chapter, other situations are encountered where the ki’s are real numbers in the 

interval [0,1]. 



REPRESENTATION 

71 

A difference constraint is an interval constraint of the form 
(xi – xj) – (xk – xl)  [a,b] with i, j, k, l  I and i ≠ j ≠ k ≠ l.5 

A compound constraint is an interval constraint of the form 
xh1

 +…+ xhm
  [a,b] for h1, …, hm  I and hi = hj iff i = j. 

A 1-constraint is an interval constraint of the form 
kh1

xh1
 + kh2

xh2
 +…+ khm

xhm
  [a,b] where khi 

 {–1,1} 

for h1, …, hm  I and hi = hj iff i = j. 

A linear constraint is an interval constraint of the form 
kh1

xh1
 + kh2

xh2
 +…+ khm

xhm
  [a,b] where khi 

 [0,1]  

for h1, …, hm  I and hi = hj iff i = j. 

This thesis does not explicitly treat non-linear constraints. Thus, in the 

sequel all interval constraints are linear unless specifically noted. A 

collection of interval constraints concerning the same set of variables is 

called a constraint set, and it forms the basis for the representation of 

decision situations. 

Definition 4.3:  Given a set of variables {xi}iI, a constraint set 

in {xi}iI is a set of interval constraints in {xi}iI. 

From the definition of an interval constraint, it follows that a constraint 

set can be seen as a system of inequalities. For a system of inequalities 

to be meaningful, there must be some vector of variable assignments 

that satisfies each inequality in the system simultaneously. 

Definition 4.4:  Given a set of variables {xi}iI a solution to a 

system X of inequalities in {xi}iI is a real vector a = (a1,…,an) 

where each ai is substituted for xi such that every inequality in 

the system is satisfied.6 The vector a is called a solution vector to 

X. The solution set for X is {b  b is a solution to X}. 

Constraint sets have many properties in common, whether they are 

probability or value constraint sets. The first question is whether the 

                                           
5 Note that this can be written (xi + xl) – (xj + xk)  [a,b]. 

6 There exists a solution if the substitution of ai for xi in X, for all 1 ≤ i ≤ n, does 

not yield a contradiction.  
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elements in a constraint set are at all compatible with each other. The 

translates to the problem of whether a constraint set has a solution, i.e. 

if there exists any vector of real numbers that can be assigned to the 

variables. 

Definition 4.5:  Given a set of variables {xi}iI, a constraint set 

X in {xi}iI is consistent iff the system of weak inequalities in X 

has a solution.7 Otherwise, the constraint set is inconsistent. A 

constraint Z is consistent with a constraint set X iff the constraint 

set {Z}  X is consistent. 

In other words, a consistent constraint set is a set where the constraints 

are at least not contradictory. 

Example 4.1: Consider the following constraint set Y in {yi}i{1,2,3,4}: 

y1  [0.30, 0.60] y1 – y2  [0.10, 0.30] 

y2  [0.25, 0.55] y1 – y3  [0.10, 0.40] 

y3  [0.10, 0.40] y3 – y4  [–0.10, 0.10] 

y4  [0.05, 0.20] y1 + y2 + y3 + y4  [1.00, 1.00] 

A solution vector to the system of inequalities that Y represents is 

(0.40, 0.30, 0.20, 0.10) and thus the constraint set Y is consistent. n 

In many of the evaluation algorithms, it is important to find optima for 

given objective functions. The following definition is intended to 

simplify the presentation. 

Definition 4.6:  Given a consistent constraint set X in {xi}iI 

and a function f, Xmax(f(x)) =def  sup(a  {f(x) > a}  X is 

consistent). Similarly, Xmin(f(x)) =def  inf(a  {f(x) < a}  X is 

consistent) 

Example 4.1 (cont’d): Consider the same constraint set Y as above. 

Let f(y) be y1 + y3. Then Ymax(y1 + y3) = 0.70 and Ymin(y1 + y3) = 

0.50. Those optima are reached in (0.55, 0.25, 0.15, 0.05) and 

(0.40, 0.30, 0.10, 0.20) respectively. Next let f(y) be y1 – y2 + y4 instead. 

Then Ymax(y1 – y2 + y4) = 0.40 and Ymin(y1 – y2 + y4) = 0.15. Those 

                                           
7 Then there is a non-empty solution set for X. 
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optima are reached in (0.45, 0.25, 0.10, 0.20) and 

(0.475, 0.375, 0.10, 0.05) respectively.  

The orthogonal hull is a concept that in each dimension signals which 

parts are definitely incompatible with the constraint set. The orthogonal 

hull can be pictured as the result of wrapping the smallest orthogonal 

hyper-cube around the constraint set. 

Definition 4.7:  Given a consistent constraint set X in {xi}iI, 

the set of pairs {Xmin(xi),Xmax(xi)}iI is the orthogonal hull of 

the set and is denoted Xmin(xi),Xmax(xi)n. 

Example 4.1 (cont’d): Consider the same constraint set Y again. Let 

f(y) be y1. Then Ymax(y1) = 0.55 and Ymin(y1) = 0.35. Carrying the 

calculations out for the other three yi’s yields the following hull: 

{0.35,0.55, 0.25,0.375, 0.10,0.25, 0.05,0.20}. 

Compared to the range constraints in the base 

y1  [0.30, 0.60] y3  [0.10, 0.40] 

y2  [0.25, 0.55] y4  [0.05, 0.20] 

there are some differences because the comparative constraints do 

not allow the full ranges to contain consistent points in Y. For 

example, the upper bound of y1 has been cut from 0.60 to 0.55.  

Other hull concepts are possible as well, and in this thesis the symmet-

ric hull is considered. First, a few help definitions are made. 

Definition 4.8:  Given a constraint set X in {xi}iI and the 

orthogonal hull H = ai,bin of X, a focal point is a solution 

vector (r1,…,rn) with ai ≤ ri ≤ bi, iI. The hull midpoint is 

(m1,…,mn) with mi = 
  

ai  bi

2
.

Focal points are chosen by the decision-maker according to his appreci-

ation of the decision situation. In DDT, a default focal point is sug-

gested by the tool, and it can be altered as desired as long as it is kept 

consistent. Next, the standard concept of distance is introduced. 
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Definition 4.9:  Given two vectors a and b, the distance function 

d is a function that satisfies 

 (i a) d(a,b) > 0 if a ≠ b 

 (i b) d(a,a) = 0 

 (ii) d(a,b) = d(b,a) 

 (iii) d(a,b) ≤ d(a,c) + d(c,b) for all c.

For the definition to be meaningful in this context, the distance 

function must be reasonable, even though this does not follow directly 

from the definition. In many constraint sets, the focal point is not the 

orthogonal hull midpoint. The hull midpoint need not even be 

consistent. In those cases, the base is said to be skewed, and the 

concept of skewness is introduced to describe this. 

Definition 4.10:  Given a constraint set X in {xi}iI, two real 

vectors a = (a1,…,an) and b = (b1,…,bn) of the orthogonal hull 

ai,bin of X, a distance function d, a constant k  [0,1], a hull 

midpoint m, and a focal point r. The skewness of the base X 

with respect to r is 
    
k 

d(r,m)

d(a,b)
. 

When a base is skewed, there exists a way of avoiding this asymmetry by 

using the symmetric hull instead.

Definition 4.11:  Given a constraint set X in {xi}iI, the 

orthogonal hull ai,bin of X, and a focal point (r1,…,rn). 

Let di = min(ri–ai, bi–ri), iI. The symmetric hull is  

ri–di,ri+din. 

Example 4.1 (cont’d): Consider the same constraint set Y again.  

Let r = (0.42, 0.29, 0.17, 0.12) be a focal point. Carrying the 

calculations out for the four yi’s yields the following hull: 

{0.35,0.49, 0.25,0.33, 0.10,0.24, 0.05,0.19}. 

Compared to the orthogonal hull of the base 

{0.35,0.55, 0.25,0.375, 0.10,0.25, 0.05,0.20} 
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there are some differences because the focal point is not the 

midpoint of the orthogonal hull.8 n 

Note:  If the symmetric hull coincides with the orthogonal 

hull, then the skewness is zero. This follows from d(r,m) = 0  

if the midpoint m is equal to the focal point r. 

The generic term hull will be used for the orthogonal hull or the 

symmetric hull as appropriate. 

Bases 
A base consists of a constraint set for a set of variables together with a 

core. Constraints and core intervals have different roles in specifying a 

decision situation. The constraints represent “negative” information, 

which vectors are not part of the solution sets. The contents of 

constraints specify which ranges are infeasible by excluding them from 

the solutions. This is in contrast to core intervals, which represent 

“positive” information in the sense that the decision-maker enters 

information about sub-intervals that are felt to be the most central ones 

and that no further discrimination is possible within those ranges.  

Definition 4.12:  Given a constraint set X in {xi}iI and the 

orthogonal hull ai,bin of X, a core interval of xi is an interval [ci,di] 

such that ai ≤ ci ≤ di ≤ bi. A core [ci,di]n of {xi}iI is a set of core 

intervals {[ci,di]}iI, one for each xi. 

As for constraint sets, the core might not be meaningful in the sense 

that it may contain no possible variable assignments able to satisfy all 

the inequalities. This is quite similar to the concept of consistency for 

constraint sets, but for core intervals, the requirement is slightly dif-

ferent. It is required that the focal point is contained within the core. 

                                           
8 Note that the symmetric hull is always tighter since the upper hull value is 

decreased or the lower increased. Also note that only one of the upper and lower 

values is changed for each index. 
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Definition 4.13:  Given a consistent constraint set X in {xi}iI 

and a focal point r = (r1,…,rn), the core [ci,di]n of {xi}iI is 

permitted with respect to r iff ci ≤ ri ≤ di, iI. 

Example 4.1 (cont’d): Consider the same constraint set Y again. 

Recall that the constraint set is 

y1  [0.30, 0.60] y3  [0.10, 0.40] 

y2  [0.25, 0.55] y4  [0.05, 0.20] 

and that r = (r1,…,r4) = (0.42, 0.29, 0.17, 0.12) is the focal point. 

Let the core be 

y1  [0.40, 0.45] y3  [0.15, 0.20] 

y2  [0.25, 0.35] y4  [0.10, 0.15]. 

Now r1 is contained in the core interval of y1, and the same is true 

for the other three yi’s. Thus the core is permitted. The interpretation 

of, for example, the information about y1 is that, according to the 

decision-maker, the value of y1 is not below 0.30 and not above 0.60. 

In addition, the most plausible values for y1 are between 0.40 and 

0.45. The single most representative value is 0.42, but the DELTA 

method tries not to exploit the latter fact if not necessary.  

A base is simply a collection of constraints and the core that belongs to 

the variables in the set. The idea with a base is to represent a class of 

functions over a finite, discrete set of consequences. 

Definition 4.14:  Given a set {xi}iI of variables and a focal 

point r, a base X in {xi}iI consists of a constraint set XC in 

{xi}iI and a core XK of {xi}iI. The base X is consistent if XC is 

consistent and XK is permitted with respect to r. 

It is natural to consider values near the boundaries of the intervals in a 

constraint set as being less reliable than more central values, due to in-

terval constraints being deliberately imprecise. The core, on the other 

hand, represents the most reliable estimates. It is therefore desirable to 

be able to study the core with varying degrees of expansion, i.e. studying 

smaller or larger extensions to the original core. The expansion can be 

regarded as a focus parameter that zooms out from central sub-intervals 

to the full constraint intervals. It is not a measure of volume but rather 
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of the strength of statements as volume is added to the original core. 

Conversely, if the core itself is not enough to yield the desired evalu-

ation results, it can be contracted towards the focal point with varying 

degrees of contraction. 

Definition 4.15:  Given a base X in {xi}i, a set of real numbers 

{ai,bi}iI, a core [ci,di]n of {xi}iI, and a real number π  [0,1], a  

π-flation of X is to replace the core by [ci+π·(ai–ci), di+π·(bi–di)]n. If 

the set {ai,bi}iI is the hull ai,bin then it is called a π-expansion of 

X.9 If (r1,…,rn) is a focal point and ai = bi = ri, then it is called a π-

contraction of X. 

The π-flation is a linear procedure, but non-linear procedures are 

plausible as well. In addition, the procedure can work from either side 

((L)π-flation and (R)π-flation) or with varying, even non-uniform rates 

of expansion or contraction.10 

Probability Bases 
A probability base contains a collection of probability statements in the 

form of constraints and a core. 

Definition 4.16:  Given a set {Cik}kK of disjoint and exhaustive 

consequences, a base P in {pik}kK, K = {1,…,mi}, and a 

discrete, finite probability mass function ∏:C[0,1] over {Cik}. 

Let pik denote the function value ∏(Cik). ∏ obeys the standard 

probability axioms, and thus pik  [0,1] and ∑k pik = 1 are default 

constraints in the constraint set PC. Then P is a probability base. 

Thus, a probability base can be seen as characterising a set of discrete 

probability distributions.11 The core PK can be thought of as an attempt 

to estimate a class of mass functions by estimating the individual 

discrete function values. 

                                           
9 Note that ai ≤ ci ≤ di ≤ bi. 

10 For simplicity, especially in calculated examples, only the linear expansions and 

contractions are employed in this thesis. 
11 See for example [WP90] for a discussion of similar ideas. 
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The collection of (translated) probability constraints can be cate-

gorised into different types of bases progressively harder to evaluate 

and differing more and more from the standard equality case. Using the 

categories of constraints from earlier in the chapter, a hierarchy can be 

defined. 

Definition 4.17:  A probability base is of type P0 (a P0-base for 

short) if all constraints are equality constraints plus one com-

pound constraint (the normalisation) for each consequence set. 

A probability base is of type P1 (a P1-base for short) if the 

constraints are range constraints plus one compound constraint 

(the normalisation) for each consequence set. 

A probability base is of type P2 (a P2-base for short) if the  

constraints are range or comparative constraints plus one com-

pound constraint (the normalisation) for each consequence set. 

A probability base is of type P3 (a P3-base for short) if the 

constraints are linear constraints.  

A probability base is of type P4 (a P4-base for short) if the 

constraints are non-linear constraints. 

P0-bases correspond to the standard models discussed in Chapter 1. A 

P1-base corresponds to the simplest case of generalised bases 

containing only interval statements. This is the most common generali-

sation, encountered in for example [WP90]. Sometimes a P1-base is 

called an interval base. A P2-base is an interval base extended with 

comparisons between probabilities. A P3-base contains all constraints 

plausible within this framework. P4-bases may contain non-linear 

constraints and are beyond the scope of this thesis, but are included for 

completeness. 

Example 4.2: Consider a probability base P with a constraint set 

p11  [0.15, 0.30] p13  [0.40, 0.55] 

p12  [0.20, 0.30] p14  [0.10, 0.15] 

p11 + p12 + p13 + p14  [1,1]. 
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This base is of type P1 because all constraints are range constraints 

except for the normalisation. If the comparative constraint 

p13 – p12  [0.15,0.35] 

is added to the base, it will be of type P2. 

Further, if the compound constraint 

p12 + p14  [0.25,0.40] 

is added to the base, it will become a base of type P3. 

Value Bases 
Requirements similar to those for probability variables can be found for 

value variables. There are apparent similarities between probability and 

value statements but there are differences as well. The normalisation 

(∑k pik = 1) requires the probability variables of a set of exhaustive and 

mutually exclusive consequences to sum to one. No such dimension-

reducing constraint exists for the value variables.  

Definition 4.18:  Given a set {Cik}kK of disjoint and exhaustive 

consequences, a base V in {vik}kK, K = {1,…,mi}, and a 

discrete, finite value function :C[0,1]. Let vik denote the 

function value (Cik). Because of the range of , vik  [0,1] are 

default constraints in the constraint set VC. Then V is a value base. 

Similar to probability bases, a value base can be seen as characterising a 

set of value functions. The value core VK can be seen as an attempt to 

estimate a class of value functions. The collection of (translated) value 

constraints can also be categorised into a hierarchy of bases. 

Definition 4.19:  A value base is of type V0 (a V0-base for 

short) if all constraints are equality constraints. 

A value base is of type V1 (a V1-base for short) if all constraints 

are range constraints. 

A value base is of type V2 (a V2-base for short) if the constraints 

are range or comparative constraints. 

A value base is of type V3 (a V3-base for short) if the constraints 

are linear constraints.  
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A value base is of type V4 (a V4-base for short) if the constraints 

are non-linear constraints. 

V0-bases correspond to the standard models discussed in Chapter 1. A 

V1-base corresponds to the simplest case of generalised bases 

containing only interval statements. This is the most common 

generalisation. A V2-base is an interval value base extended with 

comparisons between values of any alternatives. The alternatives might 

be dependent. A V3-base contains all constraints plausible within this 

framework. In practice, this includes differences in particular, but not 

compound value statements since they lack semantic content. A V4-base 

may contain any interval constraints, even non-linear. Those are beyond 

the scope of this thesis but are included for completeness and future 

reference. 

Example 4.3: Consider a value base V with a constraint set 

v11  [0.40,0.55] v13  [0.05,0.15] 

v12  [0.30,0.65] v14  [0.80,0.95] 

This base is of type V1 because all constraints are range constraints.  

If the comparative constraint v12 – v11  [0.00,0.15] is added to  

the base, it will be of type V2. Further, if the difference constraint 

(v14 – v12) – (v11 – v12)  [0.05,0.20] is added to the base, it will 

become a base of type V3. 

Frames 
Using the above concepts of consequence, constraint, core, and base, it 

is possible to model the decision-maker’s situation in a decision frame.  

Definition 4.20:  Given a decision situation with m alternatives 

(A1,…,Am), each with mi consequences, and statements about 

the probabilities and values of those consequences. A decision 

frame is a structure C,P,V = {{Cik}mi
}m,P,V containing the 

following representation of the situation: 

• For each alternative Ai the corresponding consequence set 

 {Cik}kKi
 for Ki = {1,…,mi}. 
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• A probability base P containing all probability statements 
 in the form of constraints and a core. 

• A value base V containing all value statements in the form 
 of constraints and a core. 

Compare the decision frame to Table 4.1 at the beginning of the 

chapter. The frame captures a decision problem in AC form, a one-level 

tree problem in normal form. As problems on other forms can be 

converted to this form, it is a general structure, highly applicable to a 

wide range of problems. The frame is also the key data structure in the 

DELTALIB implementation, holding references to other structure 

information and to the bases containing most of the information. To 

simplify the presentation in the following chapters, a shorthand nota-

tion for frames with bases of specific types is introduced. 

Terminology: When a decision frame C,Pi,Vj is referred to 

with indices on the bases, it should be interpreted as a decision 

frame containing a probability base of type Pi and a value base 

of type Vj.12 

Translations 
User statements can be translated into constraints and core intervals in 

various ways. One technique is to present the decision-maker with a 

numeric interface where the statements can be interactively entered. For 

human decision-makers, this can be done as in the DDT tool presented 

in Chapter 3. There, statements are entered by manipulating rulers 

representing constraints, core intervals, and focal points. Another 

technique is to translate linguistic statements by translation rules. While 

the objective is to preserve as much as possible of the original meaning 

of each statement, the nature of translation rules is necessarily 

approximate because of the ambiguity inherent in linguistic statements. 

                                           
12 For example, the DDT software currently handles C,P2,V2 frames because of 

the availability of fast algorithms (see Chapter 6). 
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Still, it is an important way of entering information into a decision 

frame. The last sections of this chapter consider the translation of 

probability and value statements respectively. 

Probability Translations 
To handle linguistic probability statements computationally, they must 

be translated into a suitable form. This means that they are translated 

into inequalities, using the above suggested interval form. The following 

translations are proposed, which are by no means the only ones 

possible. 

Range Statements 

Range statements are of two types, those that translate into core 

intervals and those that translate into range constraints. While both 

types are statements about the probabilities of single consequences, 

their semantical contents differ. Statements translated into core intervals 

are of a “positive” type in the sense that they express an interval within 

which the decision-maker is unable to further discriminate between 

different numbers. On the other hand, statements translated into range 

constraints are of a “negative” type in the sense that they originate from 

estimates where the decision-maker has been deliberately imprecise and 

included numbers that are less likely but not entirely unlikely. Thus, a 

reasonable interpretation of such statements is that the estimated 

number is not outside of the given interval but without any explicit hint 

as to where it might be inside of it. 

Statement: The probability of C11 is m. 

Translation: The core interval p11  [m–11, m+11] 

Comment: The constant 11 is some small number expressing the 

uncertainty in seemingly categorical statements. 

Statement: The probability of C12 is about m. 

Translation: The core interval p12  [m–12, m+12] 
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Comment: 12 is some rather small number, though considerably 

larger than 11 above. It expresses greater uncertainty as 

indicated by the choice of words. 

Statement: The probability of C13 is definitely between a13 and b13. 

Translation: The range constraint p13  [a13, b13] 

Comment: The statement can be taken literally, as is done in the 

proposed translation, or it can be modified with small 

constants as suggested in the previous cases. The latter 
way is more appropriate when a13 and b13 are close to 

each other. 

Statement: The probability of C14 is greater than m. 

Translation: The range constraint p14  [m+14, m+14] 

Comment: The more obvious and direct interpretation of p14 > m is 

not advisable. If it were to be used, the translation would 

be something like p14 > m  p14  [m+14, 1], which is 

a misinterpretation of both limits. For the lower limit, it 

is quite possible that the decision-maker does not mean 
that p14 exceeds m by a very small, hardly noticeable 

amount. Thus, 14 is some rather small number, though 

considerably larger than 11 above. For the upper limit, 

the expression “greater than” is often used to denote a 
noticeable but not extremely large difference between p14 

and m. If the difference is perceived to be gigantic, 

words such as “much greater than” should be used. 

Statement: The probability of C15 is much greater than m. 

Translation: The range constraint p15  [m+15, m+15] 

Comment: The direct translation p15 > m+15 for some reasonable 

large 15 is again not advisable for much the same 

reasons as above. The expression “much greater than” is 

often used to denote a sizeable difference between p15 

and m. 

Statement: The probability of C16 is less than m. 

Translation: The range constraint p16  [m–16, m–16] 
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Comment: The translation p16 < m is not recommended, since it 

would mean p16 < m  p16  [0, m–16], which is a mis-

interpretation of both limits. For the lower limit, the 

expression “less than” is often used to denote a notice-
able but not extremely large difference between p16 and 

m. It is almost never meant that C16 is totally impossible, 

i.e. that p16 could assume the value zero. For the upper 

limit, the reasons are as above for m–16 ≥ 0. 

Statement: The probability of C17 is much less than m. 

Translation: The range constraint p17  [m–17, m–17] 

Comment: The direct translation p17 < m–17 for some reasonable 

large 17 is not advisable, for the same reasons as above. 

17 is a suitable, larger constant such that m–17 ≥ 0. 

Qualitative Statements 

Qualitative statements are translated into range constraints (except for 

compound statements, see below). They are of a “negative” type in the 

same sense as above and are all translated into constraints. 

Statement: The event C21 is probable. 

Translation: The range constraint p21  [a21, b21] 

Comment: a21 and b21 are constants suitable for the situation. Since 

the statement expresses some confidence in the event, 
a21 is a rather high value. b21 can be 1, but this is not 

necessary, and often not even appropriate.  

Statement: The event C22 is possible. 

Translation: The range constraint p22  [a22, b22] 

Comment: a22 and b22 are constants convenient for the situation. a22 

is obviously lower than a21 above since the decision-

maker expresses considerably less confidence in the 

event occurring than in the previous statement. In the 
same manner, b22 is less than b21. 

Statement: The event C23 is improbable. 

Translation: The range constraint p23  [a23, b23] 
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Comment: a23 is rather small but not zero, since that would mean 

the event could be altogether impossible. The upper limit 
b23 is lower than the other upper limits above, but need 

not necessarily be very close to zero, since the word 

improbable used in its colloquial meaning can imply 

some fair probability of the event actually occurring. 

Comparative Statements 

A comparative statement compares the probabilities of two 

consequences occurring with one another. 

Statement: The probability of C31 is equal to the probability of C32. 

Translation: The comparative constraint p31 – p32  [–31, +31] 

Comment: 31 is some small number expressing the uncertainty in 

categorical statements. Note that this interval contains 

negative as well as positive values. 

Statement: The probability of C33 is about equal to the probability of C34. 

Translation: The comparative constraint p33 – p34  [–33, +33] 

Comment: 33 is some rather small number, though considerably 

larger than 31 above. It expresses the greater uncertainty 

as indicated by the choice of words. 

Statement: The event C35 is more probable than C36. 

Translation: The comparative constraint p35 – p36  [35, 35] 

Comment: The translation p35 > p36 is not advisable, because then, 

the meaning would be p35 > p36  p35 – p36  [, 1], 

which, as in the single statement above, is a misinter-

pretation of both limits. If the difference is perceived to 

be very large, an expression such as “much more proba-

ble than” should be used. 

Statement: The event C37 is much more probable than C38. 

Translation: The comparative constraint p37 – p38  [37, 37] 

Comment: Cf. similar translations above. 

Statement: The event C39 is less probable than C40. 

Translation: The comparative constraint p39 – p40  [–39, –39] 

Comment: Cf. similar translations above. 
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Statement: The event C41 is much less probable than C42. 

Translation: The comparative constraint p41 – p42  [–41, –41] 

Comment: Cf. similar translations above. 

Compound Statements 

It is sometimes more flexible not to be forced to make probability 

statements about each individual consequence, should that information 

not be available, too expensive to collect, or too unreliable. It would be 

more expressive to be able to use either information about a group of 

consequences or about the individual components, or both. The 

representation allows for compound statements of probability, i.e. 

statements such as the probability of C51, C52, or C53 occurring is ___ for any 

of the range or qualitative probability statements described above. 

Instead of the full translations of all the possible compound probability 

statements, only a few examples are given. 

Statement: The probability of C51, C52, or C53 is about m. 

Translation: The constraint p51+p52+p53  [m–123, m+123] 

Statement: The probability of C54, C55, or C56 is between a456 and b456. 

Translation: The constraint p54+p55+p56  [a456, b456] 

In the case of compound probability statements, there is no 

requirement for probabilities to be given for all single consequences in a 

compound statement but there is often more information to gain from 

actually specifying them. This is left to the decision-maker’s discretion. 

Difference Statements 

A difference statement compares the difference between the probabil-

ities of two consequences occurring with the difference between the 

probabilities of two others. 

Statement: The difference in probability between C61 and C62 is equal to the 

difference in probability between C63 and C64. 

Translation: The constraint (p61–p62) – (p63–p64)  [–61, 61] 

Comment: 61 is again some small number expressing the uncer-

tainty in categorical statements. 
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Statement: The difference in probability between C65 and C66 is about equal to 

the difference in probability between C67 and C68. 

Translation: The constraint (p65–p66) – (p67–p68)  [–65, 65] 

Statement: The difference in probability between C69 and C70 is greater than 

the difference in probability between C71 and C72. 

Translation: The constraint (p69–p70) – (p71–p72)  [69, 69] 

Statement: The difference in probability between C73 and C74 is much greater 

than the difference in probability between C75 and C76. 

Translation: The constraint (p73–p74) – (p75–p76)  [73, 73] 

Value Translations 
Value statements are considered in a manner similar to the probability 

statements. The value statements need to be translated into interval 

form in order to be entered into the decision frame. Again, one 

objective is to preserve as much as possible of the original meaning of 

each statement. The translations are only proposals and other ones are 

equally possible for the DELTA method.13 

Range Statements 

Statement: The value of C11 is v. 

Translation: The core interval v11  [v–11, v+11] 

Statement: The value of C12 is about v. 

Translation: The core interval v12  [v–12, v+12] 

Statement: The value of C13 is definitely between a13 and b13. 

Translation: The range constraint v13  [a13, b13] 

Statement: The value of C14 is greater than v. 

Translation: The range constraint v14  [v+14, v+14] 

Statement: The value of C15 is much greater than v. 

Translation: The range constraint v15  [v+15, v+15] 

                                           
13 Comments on the translations are left out since they would be similar to those for 

the probability translations above. 
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Statement: The value of C16 is less than v. 

Translation: The range constraint v16  [v–16, v–16] 

Statement: The value of C17 is much less than v. 

Translation: The range constraint v17  [v–17, v–17] 

Qualitative Statements 

Statement: The event C21 is desirable. 

Translation: The range constraint v21  [a21, b21] 

Statement: The event C22 is acceptable. 

Translation: The range constraint v22  [a22, b22] 

Statement: The event C23 is undesirable. 

Translation: The range constraint v23  [a23, b23] 

Comparative Statements 

Statement: The events C31 and C32 are as desirable. 

Translation: The comparative constraint v31 – v32  [–31, 31] 

Statement: The events C33 and C34 are about as desirable. 

Translation: The comparative constraint v33 – v34  [–33, 33] 

Statement: The event C35 is more desirable than C36. 

Translation: The comparative constraint v35 – v36  [35, 35] 

Statement: The event C37 is much more desirable than C38. 

Translation: The comparative constraint v37 – v38  [37, 37] 

Statement: The event C39 is less desirable than C40. 

Translation: The comparative constraint v39 – v40  [–39, –39] 

Statement: The event C41 is much less desirable than C42. 

Translation: The comparative constraint v41 – v42  [–41, –41] 

Compound Statements 

There are no translations suggested for compound value statements. 

The specification of values should be on a per-consequence basis. If it 

is not possible to separate the outcomes of several events, they ought to 

be modelled as a single event instead.  
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Difference Statements 

Statement: The difference in value between C61 and C62 is equal to the 

difference in value between C63 and C64. 

Translation: The constraint (v61–v62) – (v63–v64)  [–61, 61] 

Statement: The difference in value between C65 and C66 is about equal to the 

difference in value between C67 and C68. 

Translation: The constraint (v65–v66)–(v67–v68)  [–65, 65] 

Statement: The difference in value between C69 and C70 is greater than the 

difference in value between C71 and C72. 

Translation: The constraint (v69–v70) – (v71–v72)  [69, 69] 

Statement: The difference in value between C73 and C74 is much greater than 

the difference in value between C75 and C76. 

Translation: The constraint (v73–v74) – (v75–v76)  [73, 73] 
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Child in a chair, Sunday night 

Listens in the kitchen’s yellow light 

Child in a chair, small and still 

Elbow on the window’s dusty sill 

Cheek on a window cool as glass 

Waiting for the painted night to pass 

Child in a chair, Sunday night 

Listens in the kitchen’s yellow light 

Faint and faded stars arrive 

Moving like a movie on the sky 

Child never dreams of what might have been 

Believes the evening is meant for him 

I was a child on a Sunday night 

Hearing the wind, talking to the land 

And letting the time slip through my hands 

 – P. Ivers 



Evaluation 
This chapter on evaluation is divided into three sections. The first sec-

tion, Evaluation Rules, discusses the expected value rule and a number 

of proposed rules to either replace or supplement it. The rules are 

discussed from a choice rather than preference view. In the next 

section, DELTA dominance is introduced as a unifying concept for 

many of the dominance rules in current use. In both of these sections, 

all rules are discussed relative to a special decision frame with only 

equality constraints in order to simplify the presentation. The last 

section, Frame Evaluation, again considers complete decision frames 

with all kinds of interval constraints, making the selection procedures 

more complicated as imprecision enters into the evaluation. The termi-

nology clauses introduce generic terms used throughout the chapter 

without further qualification or explanation. The idea is to make the text 

lighter in order to facilitate a read flow by concentrating some of the 

introduction of terminology to the beginning and then using the terms 

without needing to introduce them in every definition. 

Terminology:  Given a decision frame C,P,V, the functions 

f, g, and h are specified as f:Ri[0,1], g:Rj[0,1], and 

h:Rk[0,1] with i, j, k  N+ as appropriate. The  and  

parameters are real numbers in the range [0,1].  
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Evaluation Rules 
The special kind of decision frame that will be used in this and the 

following section is the e-frame, similar to the ordinary complete frame 

but allowing only constraints of the equality type, thus postponing 

problems of imprecision to the last section when appropriate evaluation 

rules have been established. 

Terminology:  A decision frame C,P0,V0 is called an e-frame 

(e for equality) since all interval constraints in P0 and V0 are 

equality constraints (except the normalisations in P0). 

The Expected Value Rule 
A large group of evaluation functions is the family of all functions that 

assign a numerical value to a consequence set for subsequent 

comparison. Such an evaluation function results in numeric values 

ranking the alternatives (or more precisely, the consequence sets). 

Definition 5.1:  Given a decision e-frame {{Cik}mi
}m,P0,V0 

and a function f, the numeric value N(Ci) of a consequence set 

{Cik}mi
 is a function f(pi1,…,pimi

,vi1,…,vimi
) over all conse-

quences Cik in the consequence set. 

To be reasonable, the value of N(Ci) should range over the interval [0,1] 

since the values range over that interval. 

Example 5.1:  Consider a decision situation involving a number of 
consequence sets of which C1 has three consequences. The decision 

e-frame contains the following data: 

 p11 = 0.35 

 p12 = 0.45 

 p13 = 0.20 

 v11 = 0.20 

 v12 = 0.55 

 v13 = 0.80 
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Assume that the numeric value N(Ci) is given by the function  

∑k (pik)
2·vik. Then the numeric value N(C1) becomes 

(0.35)2·0.20 + (0.45)2·0.55 + (0.20)2·0.80 = 0.167875.  

As was indicated already in Chapter 1, the expected value seems to be 

one of the more natural rules to apply to a decision problem on AC 

form. This might partly be because the expected value E(Ci) is estab-

lished in the area of mathematical statistics, where it is employed as the 

“mean” value to be assigned to a stochastic variable taking on various 

values with specific probabilities. E(Ci) is an instance of N(Ci) above. In 

this thesis, only discrete probability distributions are considered, and 

thus the following definition of the expected value applies. 

Definition 5.2:  Given a decision e-frame {{Cik}mi
}m,P0,V0, 

the expected value E(Ci) of a consequence set {Cik}mi
 is the sum 

∑k pik·vik = pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 over all 

consequences Cik in the set.1 

Example 5.1 (cont’d):  Consider the same decision situation as 

above and the decision e-frame containing the same data. The 

expected value E(C1) is 0.35·0.20 + 0.45·0.55 + 0.20·0.80 = 

0.4775.  

The use of the principle of maximising the expected value (PMEV) 

dates several hundred years back, preceding the formal area of 

mathematical statistics and instead originating from pure monetary 

gambling. Over the years, a number of problems have been discovered 

with the principle. First, a well-known problem with PMEV is discussed, 

and thereafter, some alternative decision rules are reviewed. 

A serious paradox was suggested by Allais [A53].2 In this paradox, 

there is a game to be played and a reliable source of money that will 

guarantee that the game is carried through, regardless of its outcome. 

                                           
1 The definition is a slight abuse of notation, since the expectation operator should 

operate on a stochastic variable, but the stochastic variable represents exactly the 

corresponding consequence set. 
2 In this version, the actual numbers are adjusted for inflation since the 1950s. 
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Suppose that the following game is presented, perhaps being more like 

an offer. There are no stakes, i.e. no chance of losing money. There is a 

mandatory choice between the alternatives A and B, and all probabilities 

are fair in the sense that they are exactly as stated. 

Alternative A: The player will receive $10 million for sure. 

Alternative B: The player will have a 10% chance of receiving 

$50 million, an 89% chance of receiving $10 million, and a 1% 

chance of receiving nothing at all. 

Next, another similar game is offered. There is a mandatory choice 

between C and D. 

Alternative C: The player will have an 11% chance of receiving 

$10 million and an 89% chance of receiving nothing at all. 

Alternative D: The player will have a 10% chance of receiving 

$50 million and a 90% chance of receiving nothing at all. 

Many people tend to choose A over B and D over C. This violates the 

PMEV, no matter what utility values are assigned to the respective 

outcomes. In essence, the argument is that A and C are nearly the same, 

as are B and D, the difference being the first 11% of the probability 

mass, which differs in the same way for both of the pairs. See for 

example [S72] for a mathematical argument. Regardless of this fact, in 

experiments where it was subsequently pointed out to subjects who 

understood the mathematical argument, up to 1/3 retained their choice 

in spite of this. 

Recently, Malmnäs suggested a way of avoiding the paradox by 

considering the choices as pairs (A, C), (A, D), (B, C), and (B, D) [M96]. 

Then consistent utility functions can be found that describe the choice 

of A over B and D over C. This requires, however, that the choice 

situations are considered in parallel, which is the case at least in the 

post-stage when the subjects are given an explanation on why they were 

being inconsistent. 
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Replacement Rules 
Such problems with PMEV warrant further investigation, and several 

researchers, not least within economics, have proposed a number of 

alternative decision rules to replace (or sometimes supplement) the 

PMEV. Fishburn [F83] suggests an evaluation based on the quotient 

between two separate expected values, which has the following form 

  

E(C i ,f1)

E(C i ,f2 )
 

where f1 and f2 are two functions of the values involved. 

Researchers such as Loomes and Sudgen [LS82] bring regret or 

disappointment into the evaluation to cover cases where numerically 

equal results are appreciated differently depending on what was once in 

someone’s possession. Their suggested formula has the form 

  

p ik  (vik R (v ik E(C i ))
k1

n

  

where R is supposed to be a regret function related to the ordinary 

expected value. 

Some researchers, among them Quiggin [Q82], try to resolve the 

problems by requiring functions to modify the probabilities in the 

evaluation rule such as 

  

(f(sik ) f(si ( k1) )) v ik
k1

n

  

where f is a strictly increasing function, the pij’s are in increasing vij 

order, and 

  

sik  p ij
j1

k

 . Yaari [Y87] has pointed out that under certain 

reasonable assumptions, it must be the case that f(pij) = pij, and then he 

made the following extended suggestion 

  

(f(1 si ( k1) ) f(1 sik )) vik
k1

n

  f(pimi
) vimi

 

where sij is as above. 
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None of these suggestions are without problems. Malmnäs shows 

for those above and for some other proposals that their performance at 

best almost equals that of the expected value and at worst is much 

poorer, for example not even being consistent with first order stochas-

tic dominance [M96]. All evaluation rules are subject to counter-

examples similar to Allais’. Some of the simpler counter-examples that 

are problematic for many other rules are not so for the expected value. 

Still, the DELTA method allows for using numeric selection rules other 

than the expected value. 

Supplementary Rules 
There seem to be no compelling reasons to altogether reject the use of 

the PMEV, but since there exists no absolutely rational decision rule, a 

reasonable decision method should provide possibilities for evaluating 

decision situations in several respects. In many decision contexts, the 

decision maker may want to exclude particular alternative courses of 

action that are, in some way, too risky. This might be done by a class of 

supplementary decision rules called qualitative sorting or security levels. 

While an evaluation of a consequence set may result in an acceptable 

expected value, the consequences of selecting it might be so dire that it 

should nevertheless be avoided. It might, for example, endanger the 

entire purpose of the decision context, and in that case even a 

consequence with a low probability is too risky to neglect. In order to 

attain a high level of security and to be able to trust evaluations based 

on the information, it has been suggested that security levels should be 

imposed. 

Such exclusions can be dealt with by specifying a security level for 

the probability and a threshold for the value. Then a consequence set 

would be undesirable if it violates both of these settings. Malmnäs’ 

proposal is to supplement the expected value with qualitative evalua-

tions, as was first suggested in [M94a]. An example is the qualitative 
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sorting function, further developed by Ekenberg in [E94]. It has the 

following basic form 

  

S(C i ,r,s) ( pij  s)
vijr

  

where r is the minimally tolerable value threshold and s is the maximally 

acceptable probability for events below the threshold to occur. This is a 

boolean function sorting out unwanted consequence sets. An example 

is given below under first order dominance, and an application of 

security levels can be found in Appendix A. 

To sum up, the key observation is that there seems to be no perfect 

evaluation rule, although the expected value is found to be at least as 

good as many of its contenders. To improve that rule (or any other 

numeric rule), one way is to complement it with supplementary rules 

rather than engaging in further modifications of replacement rules in 

pursuit of the perfect rule. 

DELTA Dominance 
In this section, a general dominance rule is suggested as a unifying 

concept. In its generic form, it describes the type of dominance to be 

considered and thus the type and amount of computation involved in 

evaluating consequence sets in the framework. It can make use of many 

of the above suggested evaluation functions, even though the expected 

value is by far the most common. For convenience, a shorthand 

notation for the awkwardly long difference in expected values is 

introduced. 

Definition 5.3:  Given a decision e-frame {{Cik}mi
}m,P0,V0, 

ij denotes the expression ∑k pik·vik – ∑k pjk·vjk = 

pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 – pj1·vj1 – pj2·vj2 – … – pjmj
·vjmj

 

over all consequences in the consequence sets Ci and Cj. 

In order to describe the dominance, a couple of concepts are required. 

The index set pair captures the consequences within each of the 
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consequence sets that possess some desired property, in this case their 

value being at least as great as a given parameter. 

Definition 5.4:  Given a decision e-frame C,P0,V0 and a real 

number d  [0,1], an index set pair (Ki,Kj)(d) is Ki = {k  vik ≥ d} 

and Kj = {k  vjk ≥ d}. 

When the parameter d varies over some range, the content of the index 

set may vary as well. The set of all such index sets is defined next. 

Definition 5.5:  Given a decision e-frame C,P0,V0 and real 

numbers a,b,d  [0,1], Mij[a,b] is the set {(Ki,Kj)(d)  d  [a,b]}. 

Those two definitions enable the following compact definition of the ∆-

dominance, a key concept in this thesis from which the DELTA method 

takes its name. The idea behind the dominance is a pairwise comparison 

of the consequence sets employing the desired numerical function. The 

function is the same for both consequence sets. Note that the weak 

inequality must hold for all index set members, i.e. over the full interval 

range I, as specified. 

Definition 5.6:  Given a decision e-frame C,P0,V0,  

a function f, and two parameters (P0,V0) and (P0,V0),  

Ci ∆[I]-dominates Cj iff  

 (Ki,Kj)(d)  Mij[I] 

  

f (pik ,vik ,)
kK i

 – f(pjk ,vjk ,)
kK j

  0  and 

 (Ki,Kj)(d)  Mij[I] 

  

f (pik ,vik ,)
kK i

 – f(pjk ,vjk ,)
kK j

  0 .3 

This is a very general definition, and many instantiations are possible. In 

this thesis, a few are given and it is shown that some well-known 

evaluation concepts are special cases of ∆-dominance. The first subdivi-

sion of the ∆-dominance is into dominance orders depending on the 

function employed in the evaluation. The first and second orders are 

                                           
3 To simplify the presentation, the second condition is omitted in the sequel. 
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specifically addressed below, while the higher orders possible from the 

definition of ∆[I]-dominance are not further discussed. 

First Order Dominance 
The ∆-dominance is of the first order if the function used is a function 

of the probabilities only. 

Definition 5.7:  Given a decision e-frame C,P0,V0 and 

functions f and g, Ci 1[I]-dominates Cj iff Ci ∆[I]-dominates Cj 

with f(pik,vik,) = g(pik) and f(pjk,vjk,) = g(pjk). 

Thus, first order specialisation turns dominance into a difference of 

sums of a function of probabilities. 

Note:  Ci 1[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

  

g(pik )
kK i

  g(pjk )
kK j

 . 

The note shows some resemblance with a couple of familiar dominance 

concepts. One further specialisation of the first order ∆-dominance is 

the first order stochastic dominance, a well-known concept, not least in 

economics. To reach there, the general first order ∆-dominance is 

considered. It consists of specifying the range for the index set pairs to 

be the full [0,1] range. 

Definition 5.8:  Given a decision e-frame C,P0,V0,  

Ci 1S-dominates Cj iff Ci 1[0,1]-dominates Cj. 

When the function g employed is the simple g(pik) = pik the general 

stochastic dominance turns into the commonly used first order 

stochastic dominance, which in the ∆-dominance concept is a speciali-

sation of function as well as of index set range. 

Definition 5.9:  Given a decision e-frame C,P0,V0,  

Ci 1SE-dominates Cj iff Ci 1S-dominates Cj with g(pik) = pik. 

To see that this is indeed the ordinary first order stochastic dominance 

as claimed, it is convenient to make the following note, in which the 
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form for 1SE-dominance coincides with the definition of first order 

stochastic dominance. 

Note:  Ci 1SE-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

  

pik
kK i

  pjk
kK j

 . 

Example 5.2:  Consider a decision situation involving two conse-
quence sets C1 and C2 that have three consequences each. The 

decision e-frame contains the following data. 

 p11 = 0.35 p21 = 0.30 

 p12 = 0.45 p22 = 0.45 

 p13 = 0.20 p23 = 0.25 

 v11 = 0.20 v21 = 0.30 

 v12 = 0.55 v22 = 0.70 

 v13 = 0.80 v23 = 0.85 

For some calculation examples, take (K1,K2)(0.4) where ∑k p1k = 

0.65 and ∑k p2k = 0.70, or (K1,K2)(0.6) where ∑k p1k = 0.20 and 

∑k p2k = 0.70. In fact, for any legitimate index pair (K1,K2)(d), 

∑k p2k – ∑k p1k ≥ 0, and thus C2 1SE-dominates C1. This can be 

seen in the graph in Figure 5.1, where the values are plotted against 
the cumulative mass function (cmf).4 For C2 to 1SE-dominate C1, 

the curves may not cross, and the curve for C2 must be below or 

on that of C1 for all index set pairs.  

cmf

value

1.0

1.0

0.0

0.0

C C1 2

 

Figure 5.1  1SE-dominance 

                                           
4 Note that the probabilities pjk in the cmf within a consequence set must be 

selected in increasing vjk order for the graph to be meaningful. 
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Above, a supplementary function was mentioned under the name of 

qualitative sorting or security levels. This was a kind of threshold 

function separating wanted and unwanted outcomes (or desirable and 

undesirable consequence sets) according to a threshold rule applicable 

to the evaluation situation. This type of evaluation rule also turns out to 

be a special case of the ∆-dominance, viz. the dominance of a reference 

consequence set, i.e. the threshold. 

Definition 5.10:  Given a decision e-frame C,P0,V0 and two 

real numbers s,t  [0,1], Cj violates general security level s for threshold 

value t iff Ct 1[t,t]-dominates Cj, where Ct is a consequence set 

with two consequences, g(pt1) = 1–g(s), vt1 = 1, g(pt2) = g(s), 

vt2 = 0. 

When the function g is the simple g(pik) = pik, then the general security 

level turns into the ordinary security level concept, which again is a 

specialisation of both function and index set range. 

Definition 5.11:  Given a decision e-frame C,P0,V0 and  

two real numbers s,t  [0,1], Cj violates security level s for threshold 

value t iff Cj violates general security level s for threshold value t 

with g(pjk) = pjk. 

To see that this is indeed the same concept as the security levels dis-

cussed above, the following note can be helpful. Note that there can 

only be one index set pair since the range of the value interval only 

contains r. 

Note:  Cj violates security level s for threshold value t iff 

for Kj = {k  vjk ≥ t} 

  

pjk
kK j

  1 s. 

Example 5.3:  Consider a decision situation involving two 
consequence sets C1 and C3 having three and four consequences 

respectively. The decision e-frame contains the following data. 

 p11 = 0.35 p31 = 0.25 

 p12 = 0.45 p32 = 0.40 
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 p13 = 0.20 p33 = 0.10 

  p34 = 0.25 

 v11 = 0.20 v31 = 0.15 

 v12 = 0.55 v32 = 0.85 

 v13 = 0.80 v33 = 0.05 

  v34 = 0.60 

The security level 5% for value 0.10 is violated by C3 since 

consequence C33 has the value 0.05 (< 0.10) and occurs with  

a probability of 10% (> 5%), but not violated by C1.  

Second Order Dominance 
The ∆-dominance is of the second order if the function used is a func-

tion of the probabilities and values only. 

Definition 5.12:  Given a decision e-frame C,P0,V0 and 

functions f and h, Ci 2[I]-dominates Cj iff Ci ∆[I]-dominates Cj 

with f(pik,vik,) = h(pik,vik) and f(pjk,vjk,) = h(pjk,vjk). 

Then the domination turns into a difference of sums of a function of 

probabilities and values. 

Note:  Ci 2[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 

  

h(pik ,vik )
kK i

  h(pjk ,vjk )
kK j

 . 

As for the first order, a further specialisation into second-order 

stochastic dominance is possible. This is a well-known concept as well, 

and it turns out to be another case of ∆-dominance. First, the general 

second-order stochastic dominance is defined. As in the first order case, 

it consists of specifying the range for the index set pairs to be the full 

[0,1] range. 

Definition 5.13:  Given a decision e-frame C,P0,V0,  
Ci 2S-dominates Cj iff Ci 2[0,1]-dominates Cj. 

If the function h employed is the most common h(pik,vik) = pik·vik, then 

the dominance turns into the commonly used second-order stochastic 
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dominance, which in the ∆-dominance concept is a specialisation both 

of function and of index set range. 

Definition 5.14:  Given a decision e-frame C,P0,V0, Ci 2SE-

dominates Cj iff Ci 2S-dominates Cj with h(pik,vik) = pik·vik. 

To see explicitly that the definition sequence has arrived at the ordinary 

second-order stochastic dominance, it is helpful to make the following 

note, in which the form for 2SE-dominance can be seen to be almost 

equivalent to the textbook definition of second-order stochastic 

dominance.5 

Note:  Ci 2SE-dominates Cj iff  (Ki,Kj)(d)  Mij[0,1] 

  

pik
kK i

  v ik  p jk
kK j

  vjk . 

Example 5.2 (cont’d):  The decision situation is augmented by a 
fourth consequence set C4, also having three consequences, to be 

compared with C1. The decision e-frame contains the following data. 

 p11 = 0.35 p41 = 0.40 

 p12 = 0.45 p42 = 0.40 

 p13 = 0.20 p43 = 0.20 

 v11 = 0.20 v41 = 0.40 

 v12 = 0.55 v42 = 0.65 

 v13 = 0.70 v43 = 0.80 

For some calculation examples, take (K1,K4)(0.5) where ∑k p1k = 

0.65 and ∑k p4k = 0.60, or (K1,K4)(0.6) where ∑k p1k = 0.20 and 

∑k p4k = 0.60. This time, for some legitimate index pairs (K1,K4)(d) 

∑k p4k – ∑k p1k ≥ 0, and for others ∑k p1k – ∑k p4k ≥ 0. Thus C4 

does not 1SE-dominate C1 or vice versa. For the same example 

values, (K1,K4)(0.5) yields ∑k p1k·v1k = 0.3875 and ∑k p4k·v4k = 

0.42, and (K1,K4)(0.6) yields ∑k p1k·v1k = 0.14 and ∑k p4k·v4k = 

0.42. Now, for all legitimate index pairs (K1,K4)(d) ∑k p4k·v4k – 

                                           
5 This is a slight simplification. Since p and v are multiplied, both sums should run 
from the same d-value in (Ki,Kj)(d). For each index set pair, there might be one 

compensation term in one of the two sums. 
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∑k p1k·v1k ≥ 0, and the conclusion is that C4 2SE-dominates C1. This 

is illustrated in Figure 5.2, where the values are plotted against the 
cumulative mass function (cmf). For C4 to 2SE-dominate C1, the 

curves may cross, but the area under the curve for C4 must be less or 

equal to that of C1 for all index set pairs.  

cmf

value

1.0

1.0

0.0

0.0

C 1 C 4

 

Figure 5.2  2SE-dominance 

Another second order ∆-dominance is the ordinary expected value and 

some of the suggested replacements.6 One of their characteristics is that 

they evaluate only by full index set pairs, i.e. pairs that contain all 

members of each consequence set. The general numerical dominance is 

a straightforward specialisation of 2∆-dominance. 

Definition 5.15:  Given a decision e-frame C,P0,V0,  

Ci N-dominates Cj iff Ci 2[0,0]-dominates Cj. 

This corresponds to the evaluation rules that apply a probability and 

value formula to the consequence set in order to reach a numerical 

verdict on which one is preferable. The last specialisation of the second 

order is the ordinary expected value, which is termed NE-dominance 

and is realised by letting f(pik,vik) = pik·vik in the N-dominance.  

                                           
6 Other replacements that, for example, use the sum of ordered probabilities, are 

categorised as higher order, but reasoning similar to N-dominance is applicable to 

them as well. 
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Definition 5.16:  Given a decision e-frame C,P0,V0, Ci NE-

dominates Cj iff Ci N-dominates Cj with h(pik,vik) = pik·vik. 

This can be seen to be the expected value, since the only index set pair 

generated by the [0,0]-range is the pair of complete consequence sets. 

Note:  Ci NE-dominates Cj iff for (Ki,Kj)(0) ij ≥ 0.7 

Also, note that ij ≥ 0 is not applicable to 2SE-dominance since it 

involves different index set pairs while NE-dominance always applies 

only to the full index sets of the consequence sets. 

Example 5.3 (cont’d):  Consider again the decision situation 
involving the consequence sets C1 and C3. To recapitulate, the 

decision e-frame contains the following data. 

 p11 = 0.35 p31 = 0.25 

 p12 = 0.45 p32 = 0.40 

 p13 = 0.20 p33 = 0.10 

  p34 = 0.25 

 v11 = 0.20 v31 = 0.15 

 v12 = 0.55 v32 = 0.85 

 v13 = 0.80 v33 = 0.05 

  v34 = 0.60 

C3 NE-dominates C1 since E(C3) = 0.5325 and E(C1) = 0.4775. 

Above, the security level of 5% for value 0.10 was violated by C3 

but not by C1. Thus, the two rules may recommend different 

consequence sets.  

Any particular implementation of the ∆-dominance will use a selection 

of dominance rules as appropriate. That is a prime reason for intro-

ducing a sequence of them here. For example, if the expected value is 

preferred to other numerical rules, the selection of 1SE-, 2SE-, and NE-

dominance is a plausible one. 

                                           
7 Actually ij > 0 if the complete definition of ∆-dominance is considered. 
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GAMMA Dominance 
Sometimes, keeping the computational load to a minimum is of great 

importance, even at the expense of obtaining exact results. The ∆-

dominance makes pairwise comparisons between the consequence sets, 

leading to m·(m–1)/2 computations for m consequence sets. To reduce 

the number of comparisons to m, the -dominance is introduced. The 

idea of -dominance is to compare each consequence set to all others 

(or a subset thereof) at the same time by forming a weighted average of 

the remaining ones and studying their difference. 

Terminology:  Given a decision e-frame {Ci}m,P0,V0,  

the polar index set for Ci is J = {1,…,m}\{i}. 

In general, the indices in such a set could be any subset of the indices in 

the frame excluding i. According to the terminology clause, in this thesis 

J will always be all other indices (all other consequence sets) in the 

frame.  

Definition 5.17:  Given a decision e-frame C,P0,V0 and 

a real number d  [0,1], an index set tuple (Ki,{Kj}jJ)(d) is 

Ki = {k  vik ≥ d} and Kj = {k  vjk ≥ d},  jJ. 

Similar to the ∆ definitions, the set of all index set tuples is useful. 

Definition 5.18:  Given a decision e-frame C,P0,V0 and real num-

bers a,b,d  [0,1], Mi[a,b] is the set {(Ki,{Kj}jJ)(d)  d  [a,b]}. 

The -dominance can now be introduced. It can be thought of as a 

“setwise” comparison of one consequence set to many others, employ-

ing the desired numerical function. It is a straightforward generalisation 

of ∆-dominance, and for decision frames with only two consequence 

sets they coincide. The function f must be the same for both the 

consequence set and the set of sets. The weak inequality must hold for 

all index set members, i.e. over the full interval range I. 
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Definition 5.19:  Given a decision e-frame C,P0,V0,  

a function f, and two parameters (P0,V0) and (P0,V0), 

Ci [I]-dominates {Cj}jJ iff  (Ki,{Kj}jJ)  Mi[I] 

  

f(pik ,vik ,)
kKi

 –
1

n –1
f(pjk ,vjk ,)

kKj
















jJ

  0 . 

From the definition of -dominance, the same set of evaluation rules as 

for ∆-dominance can be defined. The insights gained from explicitly 

stating them in this thesis are minimal. Suffice it to mention that all the 

resulting rules behave as expected and that for a problem with only two 

consequence sets all  definitions coincide with their ∆ counterparts. 

-dominance is an approximate concept, but still leads to the same 

ranking as its ∆ counterpart. To realise this, consider a decision situa-

tion with three alternatives A1, A2, and A3 modelled as consequence sets 

C1, C2, and C3 having expected values E(C1), E(C2), and E(C3) 

respectively. Assume without loss of generality that E(C1) > E(C2) > 

E(C3). Then an evaluation results in 12 > 0 and 23 > 0. Using the -

version of NE-dominance, use differences i = E(Ci) – 
  

1

n –1
·∑k E(Ck). 

Now 1 – 2 = E(C1) – 0.5·(E(C2)+E(C3)) –E(C2) + 0.5·(E(C1)+E(C3)) 

= 1.5·(E(C1) – E(C2)) > 0 by the assumption. Likewise, 2 – 3 = 

E(C2) – 0.5·(E(C1)+E(C3))–E(C3) + 0.5·(E(C1)+E(C2)) = 1.5·(E(C2)–

E(C3)) > 0. Finally 1 – 3 > 0 by transitivity and thus the ranking is 

preserved. It can be generalised to any number of consequence sets and 

also to other rules. 

This concludes the second section of the evaluation chapter. The 

last section deals with evaluation of decision frames with imprecise 

information. 

Frame Evaluation 
In the rest of the chapter, ordinary C,P,V decision frames with all 

kinds of constraints are again considered. Various lines of thought have 
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emerged in response to the problem arising when the information given 

is imprecise and overlaps in the sense that parts of the information 

seem to favour one alternative (consequence set) while other parts 

favour another one. 

The first idea might be to try and develop concepts based on 
PVmin(N(Ci)) and PVmax(N(Ci)). Those are absolute values and delimit 

the values that N(Ci) may assume. They provide an overview of the 

decision situation, but in most interesting cases, the ranges overlap for 

different consequence sets. The idea could then be to compare the 

differences in minima and maxima of the consequence sets respectively. 

Definition 5.20:  Given a decision frame C,P,V, Ci is  

-better than Cj iff PVmin(N(Ci)) – PVmin(N(Cj)) > 0  

and PVmax(N(Ci)) – PVmax(N(Cj)) > 0. 

Now, the consequence sets can be ranked in a partial order according to 

-better than, but only in some cases will the order be complete. In 

other cases, some pair of consequence sets Ci and Cj will have 

PVmin(N(Ci)) > PVmin(N(Cj)) and PVmax(N(Ci)) < PVmax(N(Cj)) or vice 

versa. Which boundary should then take precedence? Ambiguities like 

this have led to other approaches, in which comparing differences for 

consequence sets and using concepts of dominance are important 

elements. 

Admissibility 
The first attempt to compare the consequence sets using differences is 

fetched from statistical decision theory. There, the decision rules are 

based on the expected value E(Ci). Within statistical decision theory, the 

following definitions, adapted from [L59], are common.8 

Definition 5.21:  Given a decision frame C,P,V, Ci is  

at least as good as Cj iff ij < 0 is inconsistent with P  V. 

                                           
8 Since the definitions originate from statistics they are based on the expected value, 

but the reasoning can easily be applied to other numerical rules as well. 
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Ci is better than Cj iff Ci is at least as good as Cj and  

ij > 0 is consistent with P  V. 

If there are more than two alternatives, some criterion is needed by 

which to compare an alternative to any number of other alternatives at 

the same time. 

Definition 5.22:  Ci is admissible iff no other Cj is better. 

However, the following observation much clearer shows the computa-

tional meaning of admissibility. 

Observation: Given a decision frame C,P,V,  
Ci is admissible iff for each jJ: 

 (i) {ij > 0}  P  V is consistent, or  

 (ii) {ji > 0}  P  V is inconsistent. 

Proof:  According to Definition 5.22 Ci is admissible iff  

no other Cj is better. For a specific Cj it is true that 

Cj is better than Ci iff 

 (ij > 0 inconsistent with P  V)   

 (ji > 0 consistent with P  V). 

Thus the negation “Cj is not better than Ci” can be expressed as 

 ¬[(ij > 0 inconsistent with P  V)   

 (ji > 0 consistent with P  V)]. 

The negation expands into the disjunction 

 ¬(ij > 0 inconsistent with P  V)   

 ¬(ji > 0 consistent with P  V). 

This can finally be written as 

 (ij > 0 consistent with P  V)   

 (ji > 0 inconsistent with P  V). 

All derivation steps are equivalencies and valid for any Cj, j≠i, 

in the frame. Thus both directions of the iff are proven.  

This shows why it is necessary to take two different clauses into consid-

eration when determining admissibility. Evaluating the consequence sets 

in a decision frame, one of two situations may occur. Either 

 (i) only one consequence set is admissible, or 
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 (ii) more than one consequence set is admissible. 

For case (i) the task is done, since the only remaining consequence set is 

superior to all the others, i.e. it dominates them all. Case (ii) remains, 

which is the usual and interesting case. There is some overlap in the 

values that the expected value can take on for the different consequence 

sets. It is not at all obvious how it should be handled. Different authors 

have suggested various solutions. Levi, for example, considers situations 

where both probabilities and values are represented by intervals 

bounded by upper and lower limits [L74]. He then defines a hierarchy of 

admissibility concepts still building on the idea of any single instance 

being superior for a particular consequence set. Additional rules include 

preservation of options, i.e. a consequence set is better if more optional 

future actions are possible (cf. options theory and contingent claims 

analysis [H89]), and less spread or less risk, i.e. a kind of security level. 

Malmnäs criticises Levi and other researchers in [M94a] and proposes 

the introduction of a slack parameter (t) into the admissibility concept, 

yielding the t-admissibility. Ekenberg further develops it by employing 

the concept of proportion to measure in how large parts of the bases 

different values of t hold for the t-admissibility of the respective conse-

quence sets [E94], although that leads to some contradictions when such 

a procedure is applied, which is shown in the required graduation posi-

tion paper preceding this thesis [D97b]. 

Strength Concepts 
This thesis takes another approach to the problem of evaluating interval 

decision problems. The strength of a consequence set Ci compared to 

another set Cj, given as a number PVmax(∆ij)  [–1,1], shows how the 

most favourable consistent assignments of numbers to the probability 

and value variables lead to the largest difference between the conse-

quence sets. 
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Terminology:  Given a decision frame C,P,V and  
an index set pair (Ki,Kj)(d), ∆ij denotes an instance of 

  

f (pik ,vik ,)
kK i

 – f(pjk ,vjk ,)
kK j

 . 

To begin with, three strength concepts are introduced, on which the 

evaluation principles will be based.  

Definition 5.23:  Given a decision frame C,P,V,  

the maximal difference ∆ij in the frame is PVmax(∆ij) and  

the minimal difference ∆ij is 
PVmin(∆ij). 

Thus, the maximal and minimal differences are in a sense the most and 

least favourable possibilities respectively. They are both extreme results 

as they require every single probability and value variable to take on its 

most or least desirable numerical value at the same time. Moreover, 

there is an element of comparison inherent in a decision procedure. The 

evaluation results are interesting in comparison to the results of the 

other consequence sets. Hence, it is reasonable to consider the 

differences in strength as well. Then it makes sense to evaluate the 

relative strength of Ci compared to Cj in addition to the strengths 

themselves, since such strength values are compared to some other 

strengths anyway in order to rank the consequence sets. To accomplish 

this, the medium difference is introduced.  

Definition 5.24:  Given a decision frame C,P,V, let   [0,1] 

be real number. The -medium difference ∆ij in the frame is 
PV[]mid(∆ij) = ·PVmax(∆ij) + (1–)·PVmin(∆ij). The medium 

difference ∆ij in the frame is PVmid(∆ij) = PV[0.5]mid(∆ij). 

 can be considered a precedence parameter that indicates if one 

boundary should be given more weight than the other. The medium is 

also the relative strength as discussed informally in Chapter 2, i.e. the 

difference in maximal ∆-values when the frame is considered from the 

viewpoint of each consequence set respectively. Thus, it is a measure of 
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difference in strength between the consequence sets.9 This duality view 

is a key to understanding the selection process proposed later. 

Note:  The relative strength of Ci compared to Cj in a  

decision frame is 
  

PV
mid( ij )

PV
max( ij )

PV
max( ji )

2
 

For the expected value difference ij, the concept of strength is related 

to statistical decisions in the following way. 

Note:  Ci is at least as good as Cj iff 
PVmin(ij) ≥ 0. Ci is better than 

Cj iff Ci is at least as good as Cj and PVmax(ij) > 0. Ci is 

admissible iff no other Cj is better. 

Strong, Marked, and Weak Dominance 
The selection procedure suggested in this thesis is based on the expan-

sion and contraction principles as introduced in Chapter 4 and on the 

concepts of strong, marked, and weak dominance as introduced below. 

Dominance means that one consequence set is superior to another, 

at least in a part of the solution space to the bases. The weakest relation 

would be if “a part” refers to a single solution vector. A more 

reasonable interpretation of “a part” is if it is superior in a substantial 

fraction of the solutions. Dominance in the strongest sense would mean 

requiring that the “part” consists of all solution vectors. This idea is 

captured in the concepts of strong, marked, and weak dominances.10 

They correspond to the minimal, medium, and maximal differences. 

                                           
9 The definitions of PVmax(i), 

PVmin(i), and PV[]mid(i) are similar. 

10 For P3 or V3 bases and some ∆-dominance instances, Mij[I] might not be unique, 

but rather form a set. In such cases, all members of the set are evaluated and the 

minimal (maximal) result is used. For NE-dominance, the most important case, this 

cannot occur. 
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Definition 5.25:  Given a decision frame C,P,V, 

Ci strongly ∆[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 
PVmin(∆ij) ≥ 0.  

Ci markedly ∆[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 
PVmid(∆ij) ≥ 0.  

Ci weakly ∆[I]-dominates Cj iff  (Ki,Kj)(d)  Mij[I] 
PVmax(∆ij) ≥ 0. 

The selection procedure might proceed as follows. First, the various 

first order rules that are included in the particular procedure are applied 

in turn, for example (and most commonly) first order stochastic 

dominance and security levels. Possibly some consequence sets are then 

filtered out from the decision process. Next, the more general of the 

second-order rules are applied in the same manner. In the end, often 

the NE-domination remains, and usually a number of consequence sets 

are still being considered. For NE-dominance, the computational 

patterns are as follows. 

Note:  For the expected value rule,  

Ci strongly NE-dominates Cj iff for (Ki,Kj)(0) 

  

PV
min pik

kKi

  vik – pjk
kKj

  vjk









0. 

and similarly for marked and weak NE-dominance. 

An example shows the use of NE-dominance. 

Example 5.4:  The decision involves three consequence sets C1, C2 

and C3. The sets C2 and C3 have one consequence each while C1 has 

two. The corresponding decision frame contains the following 

statements: 

 p11  [0.00, 1.00] v11 = 1.00 

 p12  [0.00, 1.00] v12 = 0.00 

 p11 + p12 = 1.00 

 p21 = 1.00 v21 = 0.89 

 p31 = 1.00 v31 = 0.88 
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Since the example – for the sake of hand computability – involves 

mostly equality constraints, the calculations can be simplified by first 
considering the possible ranges for the ij’s. 

 12  [–0.89, 0.11] 

 13  [–0.88, 0.12] 

 23  [0.01, 0.01] 

From the ij ranges, the max, min, and mid are found to be as 

follows. 

 PVmax(12) = 0.11 PVmin(12) = –0.89 

 PVmax(13) = 0.12 PVmin(13) = –0.88 

 PVmax(21) = 0.89 PVmin(21) = –0.11 

 PVmax(23) = 0.01 PVmin(23) = 0.01 

 PVmax(31) = 0.88 PVmin(31) = –0.12 

 PVmax(32) = –0.01 PVmin(32) = –0.01 

 PVmid(12) = 0.5·(0.11 – 0.89)= –0.39 

 PVmid (13) = 0.5·(0.12 – 0.88) = –0.38 

 PVmid (21) = 0.5·(0.89 – 0.11) = 0.39 

 PVmid (23) = 0.5·(0.01 – (–0.01)) = 0.01 

 PVmid (31) = 0.5·(0.88 – 0.12) = 0.38 

 PVmid (32) = 0.5·(–0.01 – 0.01) = –0.01  

Expansion and Contraction 
The expansion and contraction are generalised sensitivity analyses to be 

carried out in a large number of dimensions. In non-trivial decision 

situations, when a decision frame contains numerically imprecise 

information, the different principles suggested above are often too weak 

to yield a conclusive result by themselves. Thus, after the elimination of 

undesirable consequence sets, the decision maker could still find that no 

conclusive decision has been made. One way to proceed could be to 

determine the stability of the relation between the consequence sets 

under consideration. A natural way to investigate this is to consider 

values near the boundaries of the constraint intervals as being less 
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reliable than the core due to the former being deliberately imprecise. 

This is taken into account by measuring the dominated regions indi-

rectly using the concepts of expansion and contraction. 

The principles can be motivated by the difficulties of performing 

simultaneous sensitivity analysis in several dimensions at the same time. 

It can be hard to gain a real understanding of the solutions to large 

decision problems using only low-dimensional analyses, since different 

combinations of dimensions can be critical to the evaluation results. 

Investigating all possible such combinations would lead to a procedure 

of high combinatorial complexity in the number of cases to investigate. 

Using expansions (and contractions), such difficulties are circumvented. 

The idea behind the expansion principle is to investigate how much the 

core can be expanded before dominance disappears between the 

consequence sets compared. If there is no dominance in the original 

core, it may be contracted towards the focal point in order to achieve 

dominance. The expansion and contraction avoid the complexity 

inherent in combinatorial analyses, but it is still possible to study the 

stability of a result by gaining a better understanding of how important 

the constraint boundaries are. By co-varying the contractions of an 

arbitrary set of intervals, it is possible to gain much better insight into 

the influence of the structure of the decision frame on the solutions.11 

Contrary to volume estimates, expansions (and contractions) are not 

measures of the sizes of solution sets but rather of the strength of 

statements when the original solution sets are modified in controlled 

ways. Both the set of intervals under investigation and the scale of 

individual contractions can be controlled. Consequently, an expansion 

can be regarded as a focus parameter that zooms out from central sub-

intervals (the core) to the full statement intervals. The selection 

procedure could then continue with: 

                                           
11 For a 100% contraction, the volume of each base is reduced to a single point. For 

this special case, the results coincide with the ordinary expected value. 
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(i) Remove all strongly NE-dominated consequence sets 

(ii) If more than one consequence set remains 

 (ii a) Contract the frame until only one consequence set remains 

 (ii b) Remove the markedly NE-dominated consequence sets 

 (ii c) A combination of (ii a) and (ii b) 

(iii) If only one consequence set remains 

 (iii a) Expand the frame until other consequence sets appear 

 (iii b) Study the markedly NE-dominated consequence sets 

 (iii c) A combination of (iii a) and (iii b) 

This is not a very precise selection procedure, and it is not meant to be. 

Its particular instantiation depends on the decision situation, whether 

the decision maker is a human or a machine, and whether the goal is to 

make an ultimate decision or (very common for humans) to gain a 

better understanding of the decision problem. 

For simplicity of presentation, the text and the examples in this 

chapter do not involve the concepts of core or expansion. Rather, the 

hull is contracted to the focal point, and in a sense, the core can be 

considered to coincide with the hull for those examples. Otherwise, the 

ideas to be pointed out with the examples might be lost in the 

calculations. Also for presentation reasons, the examples are small and 

contrived with unusually sized intervals. Some examples facilitate hand 

calculations to convey some idea, while others are machine-generated. 

Since no core is specified, the contraction goes from the hull inwards to 

the degree of 100%. The following three examples are from sample 

runs of the DDT text interface. 

Example 5.5:  Consider a decision situation involving two 

consequence sets C1 and C2 that have three consequences each. 

According to the DDT tool, the decision frame contains the 

following data. 
 

Frame 'ex55' in folder 'PhD' has 2 alternatives 

A1 (no_name1) with 3 consequences 

A2 (no_name2) with 3 consequences 

 

The probability base contains 6 constraints 
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 1: P1.1  [0.100,0.600] 

 2: P1.2  [0.200,0.400] 

 3: P1.3  [0.300,0.400] 

 4: P2.1  [0.400,0.600] 

 5: P2.2  [0.250,0.400] 

 6: P2.3  [0.200,0.300] 
 

Probability hull      Symmetry hull 

P1.1  [0.200,0.500]  [0.200,0.500] 

P1.2  [0.200,0.400]  [0.200,0.400] 

P1.3  [0.300,0.400]  [0.300,0.400] 

P2.1  [0.400,0.550]  [0.400,0.513] 

P2.2  [0.250,0.400]  [0.250,0.363] 

P2.3  [0.200,0.300]  [0.200,0.275] 
 

The value base contains 6 constraints 

 1: V1.1  [0.860,0.880] 

 2: V1.2  [0.470,0.520] 

 3: V1.3  [0.040,0.100] 

 4: V2.1  [0.660,0.680] 

 5: V2.2  [0.570,0.620] 

 6: V2.3  [0.410,0.450] 
 

Value hull 

V1.1  [0.860,0.880] 

V1.2  [0.470,0.520] 

V1.3  [0.040,0.100] 

V2.1  [0.660,0.680] 

V2.2  [0.570,0.620] 

V2.3  [0.410,0.450] 
 

Focal point 

Cons.    P      V 

C1.1:  0.350  0.870 

C1.2:  0.300  0.495 

C1.3:  0.350  0.070 

C2.1:  0.456  0.670 

C2.2:  0.306  0.595 

C2.3:  0.238  0.430 

 

Contraction      0%     20%     40%     60%     80%    100%   

E1 - E2 min: -0.241  -0.215  -0.189  -0.163  -0.138  -0.113   

        mid: -0.113  -0.113  -0.113  -0.113  -0.113  -0.113   

        max:  0.012  -0.013  -0.037  -0.062  -0.087  -0.113   

The decision frame is of type P1 and V1, thus containing only range 

constraints. The evaluation reveals that consequence set C2 is to 

prefer in almost all of the frame, even when hardly any contraction 
is applied. C2 NE-dominates C1 strongly from about 10% 

contraction and markedly for all contractions, a very stable result.  

Example 5.6:  Consider a decision situation involving two conse-
quence sets C1 and C2 that have one consequence each. According 

to the DDT tool, the decision frame contains the following data. 
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Frame 'ex56' in folder 'PhD' has 2 alternatives 

A1 (no_name1) with 1 consequence 

A2 (no_name2) with 1 consequence 

 

The probability base contains 0 constraints 

 

Probability hull      Symmetry hull 

P1.1  [1.000,1.000]  [1.000,1.000] 

P2.1  [1.000,1.000]  [1.000,1.000] 
 

The value base contains 3 constraints 

 1: V1.1 - V2.1  [-0.100,0.100] 

 2: V1.1  [0.400,0.800] 

 3: V2.1  [0.100,0.500] 
 

Value hull 

V1.1  [0.400,0.600] 

V2.1  [0.300,0.500] 
 

Focal point 

Cons.    P      V 

C1.1:  1.000  0.500 

C2.1:  1.000  0.400 

 

Contraction      0%     20%     40%     60%     80%    100% 

E1 - E2 min: -0.100  -0.060  -0.020   0.020   0.060   0.100 

        mid:  0.000   0.020   0.040   0.060   0.080   0.100 

        max:  0.100   0.100   0.100   0.100   0.100   0.100 

The decision frame is of type P1 and V2, thus containing only range 

constraints in the probability base but also comparative constraints 

in the value base. This time, the evaluation shows that in the 

uncontracted frame, the consequence sets seem to be equal, but 
under contraction, C1 is to prefer more the further the contraction 

continues. C1 never NE-dominates C2 strongly but dominates 

markedly for all contractions beyond 0%. This indicates that con-

traction is an essential component of the analysis.  

Example 5.7:  Consider almost the same decision situation as 

in Example 5.6. According to the DDT tool, the decision frame 

contains the following data. 
 

Frame 'ex57' in folder 'PhD' has 2 alternatives 

A1 (no_name1) with 1 consequence 

A2 (no_name2) with 1 consequence 

 

The probability base contains 0 constraints 

 

Probability hull      Symmetry hull 

P1.1  [1.000,1.000]  [1.000,1.000] 

P2.1  [1.000,1.000]  [1.000,1.000] 
 



EVALUATION 

119 

The value base contains 3 constraints 

 1: V1.1 - V2.1  [-0.100,0.050] 

 2: V1.1  [0.400,0.800] 

 3: V2.1  [0.100,0.500] 
 

Value hull 

V1.1  [0.400,0.550] 

V2.1  [0.350,0.500] 
 

Focal point 

Cons.    P      V 

C1.1:  1.000  0.475 

C2.1:  1.000  0.425 

 

Contraction      0%     20%     40%     60%     80%    100%   

E1 - E2 min: -0.100  -0.070  -0.040  -0.010   0.020   0.050   

        mid: -0.025  -0.010   0.005   0.020   0.035   0.050   

        max:  0.050   0.050   0.050   0.050   0.050   0.050   

This example illustrates that dominance may shift under contraction. 
The evaluation shows that in the uncontracted frame, A2 is to prefer, 

but under contraction A1 becomes stronger the longer the 

contraction continues. Beyond about 67% contraction, A1 NE-

dominates A2 strongly but is itself dominated markedly for small 

contractions less than 33%.  

This concludes the frame evaluation chapter, and thus the more 

formal evaluation aspects, at least from a definition point of view. The 

next chapter deals with trying to compute the numerical values of 

some of those definitions in order to turn it into a truly computational 

method. 
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All the roads jam up with credit 

And there’s nothing you can do 

It’s all just bits of paper 

Flying away from you 

Look out, world 

Take a good look 

What comes down here 

You must learn this lesson fast 

And learn it well 

This ain’t no upwardly mobile freeway 

This is the road to hell 

 – C. Rea 



Optimisation 
To make a decision analysis method computational, and thus making it 

a method for real-life decisions, two main ingredients are necessary. The 

first is a suitable representation and evaluation rules of the decision 

problems, such as the method presented in Chapters 4–5. The other is 

reasonably fast computational algorithms, which is the topic of this 

chapter. Most of the demanding computations required by DELTA are 

optimisation-related algorithms. 

The chapter is divided into three main sections. The first deals with 

calculating properties of decision frames using linear programming 

methods and the second deals with algorithms for computing 

evaluation rules by employing bilinear optimisation. The last section 

contains a discussion of the Simplex method and its implementation in 

the DELTA solver. 

Frame Properties 
In order to assess the properties of a frame, computational methods are 

required that can determine whether a given base has a particular 

property or not. One of the most fundamental components is a way of 

determining consistency in a base. Since the base consists of a linear 

system of inequalities, a natural candidate area for an algorithm is linear 

programming. 
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The area of linear programming (LP) was formed in the 1940s and 

has been a large and lively area of research ever since.1 It deals with the 

maximising (or minimising) of a linear function with a large number of 

likewise linear constraints in the form of weak inequalities. Research 

efforts in the field are partly focused on developing clever algorithms 

for fast numerical computations. This chapter assumes that the reader is 

familiar with the basics of LP in general and with the Simplex method in 

particular. Those unfamiliar with these subjects may refer to any 

standard textbook on the subject, e.g. [BHM77, C83]. The LP problem is 

the following optimising problem: 

max f(x) 

when Ax ≥ b 

and x ≥ 0 

where f(x) is a linear expression of the type k1x1 + k2x2 + … + knxn, 

Ax ≥ b is a matrix inequality with rows a11x1 + a12x2 + … + a1nxn ≥ b1 

through am1x1 + am2x2 + … + amnxn ≥ bm, and x ≥ 0 are the non-nega-

tivity constraints xi ≥ 0 for each variable. Amongst all feasible points, 

the solution to f(x) is sought that has the highest numerical value, i.e. 

the best solution vector x, the components of which are all non-nega-

tive and satisfy all constraints. A minimum can be searched for by 

negating f(x). 

Consistency 
The first algorithm is a procedure for determining whether a base is 

consistent or not. A base is consistent if any solution whatsoever can be 

found to the set of interval constraints. Note the similarities with the LP 

problem formulation. Let there be m interval constraints in the base. By 

                                           
1 Even though the ideas were around earlier, Danzig’s timing was better. 

Mathematicians in the former Soviet Union formulated similar ideas already in the 

late 1930s (even including rudimentary algorithms) but with no computers available, 

their work was neglected, even domestically [GT89]. 
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introducing new variables y1,…,yk, with k = 2·m, to the consistency 

problem, it can be reformulated as 

min (y1 + … + yk) 

when Ax ≥ b 

and x ≥ 0, y ≥ 0 

where each of the interval constraints ai1x1 + ai2x2 + … + ainxn  [a,b] 

is transformed into the inequalities ai1x1 + ai2x2 + … + ainxn + y2i-1 ≥ a 

and ai1x1 + ai2x2 + … + ainxn – y2i ≤ b. If the obtained minimum of 

y1 + … + yk has the value zero,2 then a solution has been found that 

does not contain any yj.3 Removing the yj’s, the resulting solution vector 

x is indeed a feasible solution, i.e., the base is determined to be 

consistent. If the minimum of y1 + … + yk is positive, then the optimal 

values of the yj’s are larger than zero, i.e. at least one of the yj’s is 

necessary to keep the base consistent. Since the yj’s were added to the 

base, the problem itself has no solution. Hence, the base is inconsistent. 

This forms the algorithm for determining consistency in a decision 

frame by applying it to the probability and value bases. 

Orthogonal Hull 
Another important property of a base is the orthogonal hull.4 According 

to the definition, in order to calculate the hull, it is necessary to find the 

pairs Xmin(xi),Xmax(xi)n, i.e. finding minima and maxima for single 

variables in the base. First, a consistent point is determined by 

employing the procedure above.5 A search then begins from that point 

for the minimum and maximum of each variable in turn by forming LP 

problems with that variable as the objective function. For convexity 

                                           
2 It cannot be negative since all yi’s are non-negative by the problem formulation. 

3 Since they are all zero, they can be removed from the problem formulation without 

altering the solution. 
4 The symmetric hull can easily be subsequently calculated. 
5 That any consistent point is feasible to start with follows from convexity properties 

of a system of linear inequalities. 
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reasons, the entire interval between those extremal points is feasible.6 If 

the base is consistent, the orthogonal hull can be calculated. 

From the two properties consistency and orthogonal hull, most of 

the other ones in Chapter 4 follow from less demanding computations. 

Evaluation Algorithms 
The problem addressed in this section is how to compare the different 

consequence sets computationally using the methods of the previous 

chapter. The computational pattern that reoccurs several times in that 

chapter and needs to be solved fast in long sequences is PVmax(∆ij) and 
PVmin(∆ij). The optimisation of general ∆ij-type of expressions as they 

appear in Chapter 5 is a demanding computational task as soon as the 

problem to solve is above toy size. In most cases, however, the 

expected value rule is employed, making the task less demanding from a 

computational point of view. In this section, it is assumed that the 

expected value is being used. Then, the general PVmax(∆ij) turns into 
PVmax(∑k pik – ∑k pjk) for first order ∆-dominance such as 1SE and 

security levels, and into PVmax(∑k pik·vik – ∑k pjk·vjk) for second order 

ones such as 2SE or NE.  

First Order Dominance 
For first order dominance, the evaluation expressions are of the form 

  

P
max pik

kKi










 or 

  

P
max pik

kK i

  p jk
kK j
















 (or corresponding Pmin) 

for some index sets Ki or index set pairs (Ki,Kj)(d) respectively. These 

maximisation problems map directly onto LP since it is possible to 

identify the linear f(x) with ∑k pik or ∑k pik – ∑k pjk and note that 

Ax ≥ b is the probability base P. The solution to the problem is thus 

                                           
6 All convex combinations. 
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obtained by running a suitable LP solver such as Simplex described later 

in the chapter. This is an efficient solution to first order problems. 

Second Order Dominance 
For second-order dominance, the expressions are more complicated. 

They involve non-linear elements in the form of bilinear terms pik·vik. 

The optimisation problems PVmax(∑k pik·vik) and PVmax(∑k pik·vik – 

∑k pjk·vjk) cannot be solved by a simple application of an LP solver 

even if the P- and V-bases are independent and still consist of only 

linear expressions. The objective function is ∑k pik·vik – ∑k pjk·vjk = 

pi1·vi1 + pi2·vi2 + … + pimi
·vimi

 – (pj1·vj1 + pj2·vj2 + … + pjmj
·vjmj

). This 

is a bilinear expression with all terms of the form pik·vik. There is one 

such expression together with many linear inequalities. Thus, it is an 

optimisation problem with a bilinear objective function and a system of 

linear inequalities as constraints. It will be called a bilinear programming 

problem with ±1 term constants (a BLP1 problem for short).  

Four alternative algorithms for use in an interactive environment are 

proposed here. The bilinear objective function is an instance of 

quadratic objective functions, and thus the general BLP1 is solvable with 

quadratic programming methods. The first one, QB-Opt, is the most 

general, able to solve all BLP1 problems, but being based on QP (see 

below) it is not as fast as desired for interactive use. The other three are 

LP-based or simpler and are well-suited for user interaction. The four 

algorithms are collectively referred to as the B-Opt algorithms. The 

algorithms are presented in reverse runtime order, i.e. starting with the 

most general and then continuing with the more specialised ones. Since 

the bilinear objective function is quadratic, the first natural candidate 

area for a solver algorithm is quadratic programming. 
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Quadratic Programming 
The theory of quadratic programming (QP) can be found in any stan-

dard textbook on non-linear optimisation. Here, only the top-level 

procedure for searching quadratic optima is considered. The general QP 

problem with both equalities and inequalities in the constraints is 

(QPI) max (xTQx + cTx) 

  when Ax ≥ b 

where A is a m  n matrix with linearly independent rows, Q is a 

symmetric n  n matrix, and c is a vector in Rn. The expression xTQx is 

a quadratic form, and can contain all possible quadratic terms. 

Since the objective function is quadratic, the theory of linear 

programming as discussed above does not apply. Even though a 

method similar to Simplex was originally devised by Danzig and Wolfe 

to solve QP, most methods today use factorised matrices. For any given 

solution the inequality problem QPI can be considered a problem with 

only equalities (QPE), namely all weak inequalities satisfied without 

slack.7 Since the other inequalities are not active at that solution point 

they need not be considered locally. This reasoning leads to the active 

set strategy, a well-known technique within non-linear programming. 

One of the problems with the active set is that its members at any given 

step are hard to determine in advance. This means resorting to a 

guessing strategy, where a choice is made without enough information 

and corrected later on should the choice be proven unsuitable. QPE 

problems can be solved using a number of standard methods such as 

Lagrange methods or null-space methods, depending on matrix sparsity, 

stability requirements, and other criteria [L89]. The BLP1 problem maps 

well onto QPI since there is one second-order non-linear expression as 

the objective function and a larger number of linear constraints in the 

probability and value bases. The bilinear objective function is a special 

                                           
7 An inequality is satisfied without slack if inequalities such as ≥ can be replaced with 

= and the statement still remains valid. 
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case of a quadratic function where most of the entries in the Q matrix 

are zero. This forms the basis for the general QB-Opt algorithm. 

Observation:  Given a decision frame C,P3,V3, PVmax(ij) = 

max (xTQx + cTx) with ij as xTQx, 0 as cTx and PV as Ax ≥ b. 

The QPE is computationally fairly demanding, and QPI, being an 

iterative sequence of QPEs, is even more so. Since QPI often does not 

admit interactive response times, it would be preferable to use an LP-

based solver instead. This is possible in a number of important cases, 

and any of the below algorithms (PB-Opt, VB-Opt, NB-Opt) is pre-

ferred, should their preconditions apply, since they invoke LP zero or 

one time for the solution of a BLP1. Together with QB-Opt, they form 

a solver hierarchy.  

Probability Bilinear Optimisation 
The first LP-based algorithm described is the probability bilinear opti-

misation, PB-Opt. For PVmax(∑k pik·vik) it solves the general BLP1 

problem for C,P3,V2-frames while for PVmax(∑k pik·vik – ∑k pjk·vjk) it 

solves all cases where there are no comparative constraints between the 

consequence sets involved in the calculation, either directly or indi-

rectly. To begin with, maximal and minimal expressions of probability 

are introduced. 

Definition 6.1:  Given a decision frame C,P,V, 

VEi
max is 

  

p ik  bik
k1

mi

 , where bik = Vmax(vik). 

VEj
min is 

  

p jk  bjk
k1

mj

 , where bjk = Vmin(vjk). 

Vij is VEi
max – VEj

min. 

The last difference was formed from two linear expressions in only 

probability variables. The main proposition for PB-Opt is now stated as 

follows.  
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Proposition 6.1:  Given a decision frame C,P3,V2. If none of the 

comparative constraints in V involve variables from different Ci’s, 

then PVmax(ij) = Pmax(Vij) for any pair Ci and Cj.8 

Proof:  Let (bi1,…,bimi
) and (bj1,…,bjmj

) be as in the definitions 

of VEi
max and VEj

min above. For all feasible vectors9 (pi1,…,pimi
), 

(pj1,…,pjmj
), (vi1,…,vimi

), and (vj1,…,vjmj
) VEi

max ≥ ∑k pik·vik and 

VEj
min ≤ ∑k pjk·vjk.10 It follows from bik = Vmax(vik) and 

bjk = Vmin(vjk) and from pik ≥ 0  k  {1,…,mi} and pjk ≥ 0 

 k  {1,…,mj}. This implies Vij ≥ ∑k pik·vik – ∑k pjk·vjk. 

Ci contains mi consequences. Given two integers 1 ≤ k,l ≤ mi, 

assume bik = Vmax(vik). Then for vil, either (i) there is no com-

parison vil – vik  [a,b] in V, in which case vil is independent of 

vik, or (ii) there is a comparison vil – vik  [a,b]. For case (ii), the 

constraint can be written (ii a) vil ≥ a + vik and (ii b) vil ≤ b + vik. 

In (ii a) vik does not constrain the maximisation of vil, and in  

(ii b) vik = bik maximises vil. Thus vik and vil can be indepen-

dently maximised and (bi1,…,bimi
) is a feasible vector as is 

(bj1,…,bjmj
) by a similar argument. Since there are no constraints 

vik – vjl  [c,d] in V for different Ci and Cj, each bik in 

(bi1,…,bimi
) and each bjk in (bj1,…,bjmj

) can be chosen within a 

consequence set independently of the other sets.  

This justifies the basis for the PB-Opt algorithm. The rest of the algo-

rithm almost suggests itself. It searches for the optimum Pmax(Vij) by 

means of an LP algorithm such as Simplex. The proposition then 

guarantees that PVmax(ij) can be determined by calculating Pmax(Vij) 

instead provided the precondition is met. Similarly, PVmax(∑k pik·vik) 

                                           
8 If a graph is constructed with the value variables as nodes and the comparative 

constraints as edges, then it suffices that there is no path between any variables 
in Ci and Cj. 

9 Feasible vectors refer to projections from actual solution vectors of the constraint 

set PV to subspaces.  
10 In order to convey the idea of the proof rather than to obscure it with details, no 

distinction is made between linear expressions (such as VEi
max) and instantiations 

(such as ∑k pik·vik). 
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can be found by searching for an LP solution instead, and in this case 

there is not even a precondition. Thus, it is a versatile algorithm in the 

DELTA context. 

Example 6.1: Suppose there is a probability base P and a value base 
V with the following constraints for the consequence sets C1 and C2 

having three and two consequences respectively. 

p11  [0.10, 0.40] 

p12  [0.25, 0.45] 

p21  [0.20, 0.50] 

v11 ≥ v12 

v11  [0.40, 0.70] 

v13  [0.75, 0.85] 

v21  [0.30, 0.55] 

v22  [0.65, 0.90] 

Now, VE1
max = p11·0.70 + p12·0.70 + p13·0.85 and  

VE2
min = p21·0.30 + p22·0.65. 

Next, V12 = VE1
max – VE2

min =  

p11·0.70 + p12·0.70 +p13·0.85 – p21·0.30 – p22·0.65 and  
V21 = VE2

max – VE1
min =  

p21·0.55 + p22·0.90 – p11·0.40 – p12·0.00 – p13·0.75. 

Finally, Pmid(V12) = (Pmax(V12) – Pmax(V21))/2 = 

(Pmax(p11·0.70 + p12·0.70 + p13·0.85 – p21·0.30 – p22·0.65) – 
Pmax(p21·0.55 + p22·0.90 – p11·0.40 – p12·0.00 – p13·0.75))/2 = 

((0.10·0.70 + 0.25·0.70 + 0.65·0.85 – 0.50·0.30 – 0.50·0.65) – 

(0.20·0.55 + 0.80·0.90 – 0.40·0.40 – 0.45·0.00 – 0.15·0.75))/2 =  

–0.1175.  

Value Bilinear Optimisation 
To circumvent the problem with comparative value constraints between 

consequence sets while still running an LP-based solver, the value 

bilinear optimisation VB-Opt is suggested. It solves the BLP1 problem 
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for C,P1,V3-frames with the alt-order precondition (defined below) 

for PVmax(∑k pik·vik) as well as for PVmax(∑k pik·vik – ∑k pjk·vjk). 

Definition 6.2:  Given a decision frame C,P,V, 

PEi
max is 

  

aik  vik
k1

mi

 , where aik = Pkmax(pik) and 

 Pk is P  {pi(k-1) = ai(k-1)}  …  {pi1 = ai1}. 

PEj
min is 

  

a jk  vjk
k1

mj

 , where ajk = Pkmin(pjk) and 

 Pk is P  {pj(k-1) = aj(k-1)}  …  {pj1 = aj1}. 

Pij is PEi
max – PEj

min. 

Assume that V is consistent. Then Ci is alt-ordered iff  

for all vi1,…,vimi
, vik < vil is inconsistent with V when k < l.  

V is alt-ordered if all Ci, i  {1,…,m}, are alt-ordered. 

Being able to compare value constraints between consequence sets 

while still relying on a straightforward LP solution is a fairly strong 

algorithm property. This must be paid for by the introduction of a 

restriction on the constraints allowed. For VB-Opt, the restriction 

mandates that the value base V is alt-ordered. 

Proposition 6.2:  Given a decision frame C,P1,V3with  

alt-ordered consequence sets Ci and Cj. Then PVmax(ij) = 
Vmax(Pij). 

Proof:  Let (ai1,…,aimi
) and (aj1,…,ajmj

) be as in the defini- 

tions of PEi
max and PEj

min above.11 For all feasible vectors 

(pi1,…,pimi
), (pj1,…,pjmj

), (vi1,…,vimi
), and (vj1,…,vjmj

) 

PEi
max ≥ ∑k pik·vik and PEj

min ≤ ∑k pjk·vjk. It follows from 

vik ≥ 0  k  {1,…,mi} and vjk ≥ 0  k  {1,…,mj} and from  

the following argument. 

                                           
11 The footnotes in Proof 6.1 apply here as well. 
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First, ai1 = Pmax(pi1) is constrained only by P. Next, for some  

k  {2,…,mi}, assume aih (h=1,…,k–1) have been obtained by 

aih = Phmax(pih) (Pn is P  {pi(n-1) = ai(n-1)}  …  {pi1 = ai1}) 

and that for some aik the statement pik = aik is consistent with Pk.  

If pik = aik +  ( > 0) is consistent with Pk, then because of the 

normalisation there are some pih1
,…,pihn

 (where h1,…,hn > k) 

such that {pih1 = aih1
 – 1}  …  {pihn

 = aihn
 – n} is consistent 

with Pk (where  = 1 + … + n, i ≥ 0). Since pik is restricted to 

occurring in only one compound constraint (the normalisation), 
the alt-ordering implies that ·vik ≥ 1·vih1

 + … + n·vihn
. Thus, 

increasing aik by an amount  gives at least as large a contribution 

to ∑k pik·vik as increasing aih1
,…,aihn

 by a total amount of . Thus, 

PEi
max is an optimal way of choosing pik’s for maximisation. A 

similar argument applies to PEj
min.  

This implies Pij ≥ ∑k pik·vik – ∑k pjk·vjk.  

In a P1-base, there are no dependencies between consequence 

sets. Thus each aik in (ai1,…,aimi
) and each ajk in (aj1,…,ajmj

) can 

be chosen within a consequence set independently of the other 

sets.  

In the preconditions, a probability base of type P1 is required. This is 

somewhat over-restrictive since certain P3-bases can be allowed as well. 

It is sufficient to require that each probability variable occurs in at most 

one compound constraint in addition to the normalisation constraint and 

the range constraints.12 Then the alt-ordering implies that ·vik ≥ 1·vih1
 

+ … + n·vihn
 still holds as in the original proof. Increasing aik by  

gives at least as large a contribution as increasing aih1
, …, aihn

 by a total 

amount of . This is the key, and the rest of the proof is unaltered.  

Example 6.1 (cont’d): Reconsider the previous example. Vmid(P12) 

is calculated in the same manner as Pmid(V12) above. The value base 

is alt-ordered, since v11 ≥ v12 by an explicit expression, and v13 ≥ v11 

by non-overlapping ranges. Similarly, v22 ≥ v21 by non-overlap. If, on 

                                           
12 The compound constraint may only contain variables from the same consequence 

set. 
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the other hand, v13  [0.65, 0.85] the consequence set C1 would not 

be alt-ordered, since the ranges of v11 and v13 would then indeed 

overlap.  

Example 6.2:  Suppose there is a probability base P with the follow-
ing constraints for the consequence set C1. 

 p11 + p12 = 0.30 

 p13  [0.00, 1.00] 

 p14  [0.00, 1.00] 

Suppose there is also a value base V with the following constraints 
for the consequence set C1. 

 v11 = 0.90 

 v12 = 0.80 

 v13 = 0.70 

 v14 = 0.10 

Let 10 denote ∑k p1k·v1k. Since for the simplicity of hand calcula-

tions most constraints are equalities, PVmax(10) and Vmax(P10) can 

easily be determined.  

Using the definition of Pij the expression a11·v11 + … + a14·v14 

becomes 0.30·v11 + 0.00·v12 + 0.70·v13 + 0.00·v14. 

 PVmax(10) = PVmax(p11·v11 + … + p14·v14) = 

 0.30·0.90 + 0.70·0.70 = 0.76 

 Vmax(P10) = Vmax(a11·v11 + … + a14·v14) = 

 0.30·0.90 + 0.70·0.70 = 0.76 

As expected from the proposition, the two values are the same.  

The following example demonstrates that the proposition above does 

not imply Vmax(Pij) = PVmax(ij) in general. 

Example 6.3:  Suppose there is almost the same probability base P 
with the following larger set of constraints for consequence set C1. 

 p11 + p12 = 0.30 

 p11 + p13 = 0.40 

 p13  [0.00, 1.00] 

 p14  [0.00, 1.00] 
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Suppose there is a value base V with the same constraints for conse-
quence set C1 as in the previous example. 

 v11 = 0.90 

 v12 = 0.80 

 v13 = 0.70 

 v14 = 0.10 

To compare with the previous example, calculate PVmax(10) and  
PVmax(10) for this base. Using the definition of Pij the expression 

a11·v11 + … + a14·v14 becomes 0.30·v11 + 0.00·v12 + 0.10·v13 + 

0.60·v14. 

 PVmax(10) = PVmax(p11·v11 + … + p14·v14)  

 = 0.30·0.80 + 0.40·0.70 + 0.30·0.10 = 0.61 

 Vmax(P10) = Vmax(a11·v11 + … + a14·v14)  

 = 0.30·0.90 + 0.10·0.70 + 0.60·0.10 = 0.40 

Not surprisingly, since the precondition is violated, the two values 

are not the same this time.  

The last example shows that if a probability variable is included in more 

than one compound constraint except for the normalisation, the above 

proposition might not produce the correct value. The bilinear 

optimisation algorithm VB-Opt nearly suggests itself. It searches for the 

optimum Vmax(Pij) by means of the Simplex algorithm described 

below. The theorem then guarantees that PVmax(ij) can be determined 

by calculating Vmax(Pij) instead, using only linear programming tech-

niques. 

Restricted Bilinear Optimisation 
Looking at the preconditions for PB-Opt and VB-Opt, they do their 

task of eliminating the need for computational optimisation in one of 

the bases by exploiting the structure inherent in the input material. The 

two sets of preconditions do not intersect and they work on separate 

parts of the frame, one base each. This implies that both preconditions 

can be combined, forming their union, and then eliminate the need for 
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computational maximisation in either base, in effect abolishing LP from 

the calculations. This is the key idea of the fourth and last algorithm in 

the stack. The name, NB-Opt, comes from not needing to run any LP 

solver at all. 

Definition 6.3: Given a decision frame C,P,V, 

let VEi
max be as in Definition 6.1.  

Then PVEi
max is 

  

aik  bik
k1

mi

 , where aik = Pkmax(pik) and 

 Pk is P  {pi(k-1) = ai(k-1)}  …  {pi1 = ai1}. 

Also let VEi
min be as in Definition 6.1.  

PVEi
min is 

  

ajk  bjk
k1

mj

 , where ajk = Pkmin(pjk) and 

 Pk is P  {pj(k-1) = aj(k-1)}  …  {pj1 = aj1}. 

Then PVij is PVEi
max – PVEj

min. 

The proofs of PB-Opt and VB-Opt apply to one part each of the 

proposition below. They are independent as are the preconditions, thus 

they can be joined together. Their union justifies NB-Opt. 

Proposition 6.3: Given a decision frame C,P1,V2, assume that 

none of the comparative constraints in V involve variables from 

different Ci’s. Further, suppose that the consequence sets Ci and 

Cj are alt-ordered. Then PVmax(ij) = PVij for any pair Ci and Cj. 

The algorithm based on this proposition is very fast since no pivoting 

procedure needs to be invoked if the hull has been pre-determined. NB-

Opt is the ideal first algorithm to run in an anytime algorithm stack 

since an approximate answer can be supplied almost instantaneously. 

The Solver Stack 
The four algorithms together make up the B-Opt solver stack. This 

stack has the property that one of the faster algorithms can be selected 

to run first in order to receive an approximation. The approximation 
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error is then corrected as the appropriate solver is subsequently allowed 

to run. Figure 6.1 shows the solver stack referral chain for approximate 

or anytime computations. 

QB-Opt

PB-Opt VB-Opt

NB-Opt

 

Figure 6.1  The B-Opt referral chain 

Thus, the stack forms an anytime algorithm, with the property of 

delivering a reasonable answer if being prematurely aborted [Z96]. This 

is a convenient property in interactive applications. 

The Simplex Method 
The algorithm for finding the orthogonal hull relies on the ability to 

solve a sequence of small LP (SSLP) problems rapidly. The frame 

evaluation requires higher-level algorithms that generate long SSLP 

sequences to an even greater extent. The most appropriate candidate for 

an SSLP solver implementation is the Simplex method. 

From the early 1950s onwards, the very general nature of the LP 

problem formulation rapidly led to the solution of an increasing number 

of ever larger problems in industry and government. With the growth of 

computing in general, the area of LP soon gained momentum. The 

Simplex algorithm, originally suggested by Danzig in 1947, is one of the 

earliest solution methods. At first, it was not much more than a clever 
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way to manipulate matrices in order to manœuvre from one corner to 

another of a feasible polytope in such a way that the objective function 

never decreases. Today it has become an entire sub-field within applied 

mathematics. The current research focus is on solving larger and larger 

problems, involving thousands of inequalities and tens of thousands of 

variables. The employed techniques are in some respects akin to 

research in numerical methods [G92].  

Problems still remain with the Simplex method. A theoretical 

problem is that it belongs to the class of exponential algorithms in time. 

Examples can be designed to reveal this deficiency, see for example 

[C83].13 Because of this, other, non-linear approaches to LP problems 

have been suggested, notably Khachian’s ellipsoid method14 and the 

Karmarkar algorithm. The proposed advantages of these non-linear 

approaches only reveal themselves in very large or contrived problems. 

It is evident from recent research summaries that almost all research 

focuses on solving large LP (LLP) problems within a reasonable time15 

[G92, W91]. As was pointed out above, the task in DELTA is to find 

solutions to a sequence of small problems in a short time to allow for 

interactive use.16 None of the non-linear methods, nor much of the 

current research in Simplex is therefore of any great use in this thesis. 

Some extensions to the standard Simplex algorithm are examined to see 

whether they can contribute to the development of a fast algorithm for 

SSLP problems. Other Simplex techniques were discarded because they 

apply to specially structured or very large problems, and many were 

related to numerical properties of very large matrices. The descriptions 

                                           
13 While the general LP problem is polynomial, the algorithms in this chapter are 

based on the Simplex method. Thus, they will inevitably be classified as exponential 

in time. In real-life applications, Simplex performs very well, and there is no reason 

to expect any less from algorithms based on it. 
14 Khachian did not invent the method but provided a proof that it is polynomial. 
15 Which might mean hours or even days. 
16 Typical Simplex execution times are less than a second for a 100  100 problem 

and less than a minute for a 1000  1000 problem, scaling as O(n2). 
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of the extensions given here are intended to be intuitive for the purpose 

of arguing for and against their inclusion in DELTA solver algorithms. 

Revised Simplex 

In each Simplex step, one basic solution is replaced by another by 

means of matrix operations on the coefficient matrix A and the right-

hand side b. If the size of A is m  n, then a Simplex solution to an LP 

problem can most often be found in 3·m/2 steps, each step including a 

pivot operation consisting of a large number of multiplications and 

divisions [L89]. Most LLP problems have a structure where m << n and 

only a minor fraction of the columns will ever be pivoted on. Because 

of this, it seems to be a waste of processing time to update all columns 

in every step. Using matrix algebra, it can easily be shown that the 

column to pivot on in each step can be constructed from the original 

data instead of from the data in the previous step. All potential trans-

formations are held in a matrix, and the total amount of processing of 

columns is now proportional to m instead of n, but an overhead penalty 

is incurred for keeping track of the dormant columns. If m << n, as in 

the LLP problems of mainstream Simplex research, then this is a very 

large improvement. However, in the SSLP case, m ≈ n. Both methods 

iterate the same number of steps, but since a large fraction of the 

columns will be used actively, the overhead introduced in the revised 

method makes it less attractive than the standard method for SSLP 

purposes. The revised formulation of the Simplex method is not applied 

to the DELTA solvers. 

Upper and Lower Bounds 

In many LP problems, a considerable number of the constraints have 

only one variable, reflecting a modelling situation where there are many 

constraints on single variables, in some cases on most of the variables 

involved. It means that if there were a formulation of Simplex where 

these constraints could be handled in an efficient way, the computa-

tional effort for solving the problem could be greatly reduced. This is 
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due to the fact mentioned above that the effort expended on solving an 

LP problem is roughly proportional to 3·m/2, where m is the number 

of constraints.17 Since constraints on single variables are still matrix 

rows18 they account for a fair amount of the computational processing 

of such problems. 

Suppose that the variable xi is subject to the constraints xi ≥ ai and 

xi ≤ bi.19 In the standard formulation, this would be introduced into the 

problem in the form of two constraint inequalities, i.e. two matrix rows, 

increasing the m above by two. Instead, by the formulation of the LP 

problem, all xi’s are automatically subject to the constraint xi ≥ 0. The 

variable xi is then transformed into xi' = xi–ai and the coefficient matrix 

and objective function are adjusted accordingly. The new variable xi' is 

now subject to the constraints xi' ≥ 0 and xi' ≤ bi–ai, which eliminate the 

need for an explicit lower bound. 

For the upper bound, the reasoning is only slightly more involved. 

By defining xi'' = xi'– (bi–ai), and substituting one for the other back and 

forth during the Simplex execution, a variable at its upper bound can be 

regarded as non-basic. When the variable xi' reaches its upper bound 

during a Simplex iteration step, it is replaced by xi'' and vice versa. Then 

the new variable is zero by definition and becomes non-basic.20 Thus 

the implicit constraint xi' ≥ 0 (or xi'' ≥ 0) is again used to eliminate the 

need for an explicit row entry in the coefficient matrix. This is highly 

applicable for the DELTA solvers since there are upper and lower 

bounds on almost every variable in a base. 

                                           
17 Inequalities or rows in the coefficient matrix. 
18 With only one non-zero coefficient. 

19 xi  [ai,bi] in interval notation. 

20 Do not confuse the Simplex concept of base, meaning non-zero variables, with 

the DELTA concept of base, meaning a collection of interval constraints. 
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Generalised Upper Bounds 

There is a promising generalisation of the upper bound handling in the 

previous paragraph. Some LLP problems have a structure where many 

constraints are of the form ∑i xi = b for non-trivial index sets. There is 

a close relationship with the probability base where the normalisation 

equation is ∑k pik = 1 for each consequence set. The theory of 

generalised upper bounds (GUBs) is a matrix method based on 

factorising the base into parts with different properties. The new parts 

are then less complicated to solve. Suppose the coefficient matrix has m 

rows of which m2 are of the generalised form above. The GUB 

technique is then reported to become faster than ordinary revised 

Simplex when m2 ≈ 0.3·m and ten times faster when m2 ≈ 0.8·m [C83]. 

While this is a remarkable speed increase for real LLP GUB problems, 

there is only one normalisation equation per consequence set in the 

probability base,21 and that falls well below the trade-off point, making 

this extension unimportant. 

Implicit Identity Matrix 

The implicit identity matrix technique is a simple observation of how 

the Simplex algorithm works. In any matrix description of the standard 

Simplex, it is readily seen that the basic variables (i.e. those with non-

zero values assigned) form an identity sub-matrix within the coefficient 

matrix. Since this is an invariant fact during the entire Simplex 

execution, that part of the matrix might as well be replaced with index 

values in a vector. The problems considered here are not very large, and 

so the trade-off should be balanced between program code for treating 

special cases and savings in memory space and numerical operations. It 

is also easy to combine with the sparse matrix encoding below. The 

outcome depends on the architecture of the executing machine but the 

gain or loss is not very substantial for the SSLPs. A longer discussion of 

architectural impacts on implemented algorithms can be found below. 

                                           
21 And none in the value base. 
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Sparse Matrix Encoding 

For LLP problems, the matrices often become very large. An ordinary 

LLP problem might have 1,000 rows and 10,000 variables and this 

would result in 107 matrix elements, most of which contain zero values. 

Obviously, this is unfeasible to handle. By observing that only a small 

fraction of the elements in each row are non-zero, the Simplex 

algorithm can be modified to work with a one-dimensional structure 

representing only the non-zero elements of the coefficient matrix. All 

elements not found in the structure are zero by definition. Extra 

program code is required to handle this, but the processing overhead is 

small compared to the savings in memory and increase in speed 

achieved for LLP problems. SSLP problems do not gain as much from 

sparse matrix techniques, since each matrix is rather small. They are not 

as sparse as LLP matrices22 but the approach is still of importance. 

There is one circumstance that is especially important. If the architec-

tural speed of floating point (FP) operations is much slower than testing 

integer and pointer vectors, then sparse matrices are of extra interest, 

but in that case this is a special case of the FP speed issue below and is 

included in the hardware trade-off problem. 

Sensitivity Tests 

An important part of the Simplex method is the provision of conve-

nient means to do sensitivity analysis without reworking the problem, 

but rather by reasoning about small differences in the input data. There 

are standard reasoning patterns for carrying out sensitivity analysis of 

the attained optimal solution. In this way it is possible to vary the 

coefficients of the objective function or the right-hand side to see 

within which ranges the respective coefficients can vary while still 

keeping the same solution as optimal.23 Unfortunately, this does not 

                                           
22 Remember that single variable constraints are handled by the upper and lower 

bound technique. 
23 Even though the optimal value may change. 
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map very well onto either the consistency or the orthogonal hull 

problems. To see this, suppose that the proposed algorithm arrives at a 

solution to the problem 

min (y1 + … + yk) 

when Ax ≥ b 

and x ≥ 0, y ≥ 0, 

and inquire whether this minimal value is zero or not. Usually, there are 

many combinations of basic variables that achieve this because there are 

many possible feasible basic solutions. The Simplex sensitivity analyses 

focus on properties of the obtained basic configuration, while here any 

solution (of the often many) with the desired property is accepted. 

Thus, Simplex sensitivity reasoning is of little value to the solver. 

Instead, the DELTA sensitivity analyses take place on a higher level, 

using the concepts of expansion and contraction. 

The Dual Problem 

An important theoretical as well as practical issue is the theory of 

duality. For each optimisation problem, linear or not, there exists 

another problem called the dual problem, which represents the 

strongest possible relaxation of the primal problem. The details of this 

theory are omitted here. One of its immediate LP applications is that in 

order to solve an m  n LP maximisation problem, it is equally effective 

to solve a dual n  m minimisation problem. While a minimisation and 

a maximisation problem present the same computational load, the dual 

problem is more interesting to solve if m > n, in which case the dual 

problem contains fewer rows and, as mentioned earlier, rows account 

for most of the processing time. The SSLP problems do not fit this 

description well, so the duality techniques are left unexplored. 
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Implementation 
Unfortunately, these Simplex calculation techniques are not enough. An 

empirical investigation into Simplex performance revealed other 

problems with using Simplex for SSLP tasks [D95]. The problems are 

hardware instruction-set related and come from differences in the 

architecture of different computers. It was necessary to develop tech-

niques for handling these problems; otherwise, DELTA would have 

become less of an interactive method. The following contains a discus-

sion of some implementation issues. 

Copy Speed 

There are two main classes of operations to perform in a Simplex 

execution, apart from controlling the program flow. These are copying 

matrices and performing floating point (FP) arithmetic. Regardless of 

the implications of theoretical investigations into preferred executing 

techniques, the relative speed of copy and FP operations has a large 

impact on the algorithm to be executed. If FP operations are slow 

compared to copying memory contents, then saving partial results 

becomes more important. Also, restoring phase one solutions becomes 

meaningful, since an extra pivot takes longer time than to resume 

processing on a copy of a previous state. If FP operations are fast 

compared to copying, the opposite strategy is to prefer. What is meant 

by fast or slow FP arithmetic is discussed in [D95]. 

Guarded Operations 

For much the same reasons as in the discussion on copy versus FP 

speed, it is important to guard FP operations on some architectures.24 

This means that for certain FP operations (e.g. multiplication or 

division) the guard should check for non-effective operations (e.g. 

multiplying or dividing by one). For example, on a machine where FP 

arithmetic is much slower than memory comparison, an FP division that 

                                           
24 This often occurs on machines that lack FP operations in hardware. 
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is executed frequently in an inner loop might be ten times slower than a 

check for a numerical value in the denominator. Since dividing by one is 

not uncommon in normalising matrix rows, speed improvements are 

noticeable if the operation is not carried out (i.e. guarded) when the 

denominator is one. For other architectures, guarding instructions can 

at best be meaningless, and at worst slow down the Simplex execution. 

Extra Cost Rows 

In the formulation of LP for calculating the orthogonal hull, remember 

that besides finding any solution at all (as for consistency), the 

maximum and minimum points for each variable or constraint must be 

determined.25 This amounts to solving bi = max(f(xi)) and ai = min(f(xi)) 

for all xi’s. Each max- and min-problem is an LP problem in its own 

right, but the total speed can be increased substantially by observing 

that each one of the problems is better off starting from the point 

determined by the search for a consistent point than starting from 

scratch. However, this requires that the cost rows for all max- and min-

problems are transformed to a consistent point. To achieve this, all cost 

rows participate in the Simplex iteration steps. Since solving a min- or 

max-problem modifies the consistent original solution, there are two 

alternatives. One is to copy the consistent solution before solving each 

problem, and the other is to continue with the next problem from the 

point where the most recent solution found its optimal value.26 The 

choice depends again on the relative speeds of copy and FP operations. 

Empirical Results 
In [D95] a number of development environments were measured with 

respect to execution speed of some critical instructions, notably copying 

                                           
25 In the discussion that follows it is assumed (without loss of generality) that all 

constraints are range constraints. The reasoning applied is the same for compound 

constraints. 
26 Which probably is a point farther from the next optimum to search for. 
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memory and performing FP arithmetic. It is there clearly seen that three 

broad classes of architectures are common, even though there are no 

sharp, clear-cut speed ranges. Almost certainly, the ranges will change 

over time. Also in [D95], a number of Simplex techniques were 

evaluated in typical environments from the three identified different 

architecture types. Further, measurements were undertaken to support 

the conclusions in the Simplex discussion above. The concluding 

observation after the series of experiments was that a configuration 

program is needed to measure particular operations on the target 

architecture and compiler in order to set compilation parameters for 

configuring the source code for optimal execution in that environment. 

The three identified classes of architectures were categorised 

according to their FP hardware. The first category, mainly consisting of 

workstations, has FP hardware units integrated into the CPU chip or 

board. The next category, consisting of personal computers with FP 

support, has hardware co-processors and can carry out FP arithmetic in 

hardware. The last category contains low-end personal computers lack-

ing FP hardware, and they are thus forced to make all FP calculations in 

software. 

For the three classes, different subsets of the available options 

proved to be optimal. This was mostly due to differences in the execu-

tion speeds of memory copying and FP arithmetic. As the machines 

measured in the empirical studies are not the only ones available, now 

or in the future, the best solution to the architectural problem seems to 

be a configuration program. Such a program would measure the 

interesting speeds of instructions and set source code parameters 

accordingly. The source code would then automatically be recompiled 

prior to execution on a new platform. In this way, the source code 

becomes independent of the actual target machine. This independence 

relies on the source code containing all appropriate techniques as 

inclusion options for the configuration program to choose from. Some 

complicated interdependencies might render the configured source code 
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non-optimal, but the tailored solver would almost certainly be closer to 

the optimum than a solver not being configurable. 

This concludes the discussion on optimisation algorithms and ends 

the presentation of the DELTA method in Part II. The last part is the 

Supplement containing a summary, notes on further research, 

appendices, references, and an index. 
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If you should go skating 

On the thin ice of modern life 

Dragging behind you the silent reproach 

Of a million tear-stained eyes 

Don't be surprised 

When a crack in the ice 

Appears under your feet 

You slip out of your depth 

And out of your mind 

With your fear flowing out behind you 

As you claw the thin ice 

 – R. Waters 



Conclusion 
The thesis ends with this conclusion, two appendices, references and an 

index. The conclusion contains a summary and some pointers to areas 

of further research. 

Summary 
This thesis is about Computational Decision Analysis. Each of the three 

words in the title is a keyword. “Decision” means that it deals with 

selection problems, i.e. situations in which there are more than one 

alternative course of action. “Analysis” means that there are no absolute 

bits of advice given, no single best alternative pointed out by a mecha-

nised procedure, but rather an aid is provided for understanding the 

decision problem and how the solutions relate to each other. “Compu-

tational” means that there exist efficiently computable algorithms that 

perform the analysis in a reasonably short time in order to admit 

interactive analysis. 

The thesis presents the DELTA method for decision-making using 

imprecise information. The objective is to describe a method for eval-

uating choices under uncertainty.1 The nature of most information 

available to decision-makers is imprecise, be it information for human 

managers in organisations or for process agents in a distributed com-

puter environment. In spite of this, most traditional models for deci-

sions disregard this state of affairs. Some more modern approaches, like 

                                           
1 Choices under risk in classical decision analysis. 
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fuzzy decision analysis and Dempster-Shafer-based methods, address 

the problem of vagueness. Many of these modern approaches 

concentrate more on representation and less on evaluation. The 

emphasis in this thesis is more on evaluation, and even though the 

representation used is that of standard probability theory, the use of 

other well-established formalisms is not ruled out.  

Introduction 

The first part introduces decision analysis in general and the DELTA 

method in particular. Chapter 1 begins by surveying a number of tradi-

tional decision models and discussing some of their properties. The 

models are divided into three categories: risk-free, strict uncertainty, and 

risk models. For the latter, some more modern approaches to impreci-

sion in input data are discussed. Finally, appropriate research methods 

are discussed. 

Chapter 2 presents a suggested decision method for human decision-

makers in work cycle form based on the DELTA method. It attempts to 

convey some feeling for how a decision maker can utilise the method in 

analysing a decision situation. It also tries to demonstrate that the 

suggested method is realistic to work with. 

Chapter 3 presents the DELTA Decision Tool (DDT), an interactive 

graphical software implementation of the DELTA method intended for 

aiding human decision-makers in understanding and analysing real-life 

decision situations. The chapter opens with a description of the DDT 

software and its architecture. Most of the chapter is devoted to an 

industrial example, which is used in presenting some of the features of 

DDT and the user interaction. 

Representation 

The core of the thesis is the presentation of the DELTA method in 

Part II. Chapter 4 starts with the structure of a decision problem and the 

required representation of user statements. A model of the situation is 
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created with relevant courses of action and their consequences, should 

specific events occur. The model is represented by a decision frame. 

The courses of action are called alternatives in the model, and they are 

represented by consequence sets in the decision frame. Following the 

establishment of a frame, the probabilities of the events and the values 

of the consequences can be filled in. All statements should have an 

interval form to reflect the imprecise nature of the input data. Next, the 

chapter also presents general properties of bases, i.e. collections of 

constraints and core intervals. Further, properties particular to bases of 

probability statements and then the value base counterparts are 

discussed. Finally, the section on translations shows suggested repre-

sentations of numerical and qualitative statements of both probability 

and value.  

Evaluation 

Chapter 5 presents evaluation methods in detail. The DELTA method is 

presented step by step, beginning with the discussion of the expected 

value rule for selection amongst a number of available courses of action. 

Then a number of other evaluation rules to either replace or supple-

ment the expected value are presented. They are discussed from a 

choice rather than preference view. One of the conclusions is that there 

exists no perfect rule, although the expected value seems to be at least 

as good as many of its contenders. To improve that rule (or any other 

similar rule), it is suggested that it should be supplemented with other, 

qualitative rules rather than engaging in further modifications in chase 

of the perfect rule. A characteristic of qualitative rules is that they do 

not rely on multiplying probabilities and values but treat them as 

separate numeric entities. Once a rule has been agreed upon, it can be 

applied to all the alternatives, provided there is a computational 

procedure for evaluating the alternatives under that rule. The DELTA 

dominance is introduced as a unifying concept for many of the 
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dominance rules in current use. Dominance and threshold methods are 

discussed and the kinship between them is pointed out.  

Dealing with imprecise statements means frequently encountering 

decision situations where more than one alternative is to prefer in 

different parts of the consistent solution space to the constraints. 

Consequently, dominance selection rules are not enough to indicate 

preferred choices. Many ideas have emerged in response to the problem 

arising when the information given is imprecise and overlaps in the 

sense that parts of the information seem to favour one alternative 

(consequence set) while other parts favour another one. This thesis 

conforms to statistical decision theory and introduces some new 

concepts to aid the selections. The concepts of maximal and minimal 

differences represent the most and least favourable possibilities respec-

tively. A new set of selection rules is introduced – the concepts of 

strong, marked, and weak dominance. The selection procedures 

suggested are based on those concepts and on the expansion and con-

traction principles from Chapter 4. 

Optimisation 

Chapter 6 deals with computations for DELTA, especially optimisation 

algorithms since they are the most demanding ones. It starts with linear 

programming (LP) for determining properties of bases. For solving 

these LP problems computationally, the Simplex method is used. The 

chapter continues with bilinear programming, necessary to calculate the 

results of the evaluation rules. First quadratic programming is discussed 

and then three algorithms are presented that under mild constraints 

solve the required bilinear programming problem (BLP1) with Simplex 

techniques instead. Due to the unusual problem structure (a long 

sequence of smaller problems rather than the usual single large one), 

each of the Simplex techniques must be carefully considered in order to 

select which ones to apply. Furthermore, hardware architectural issues 

are found to be important for the implementation of the DELTA solver. 
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The conclusion is that a configuration program is necessary, which will 

measure the relative speeds of different operations and configure the 

solver’s source code accordingly. 

Appendices 

There are two appendices, each addressing one application area of 

computational decision analysis. Appendix A deals with problems of co-

ordinating multi-agent systems and the applicability of DELTA to that 

area. In dealing with rational agents and their ability to make decisions, 

it is again emphasised that there is no universal rule with which 

rationality could be equated. Instead, the conclusion is that a successful 

agent must be good at analysing results from a set of reasonable 

decision rules. Such analyses should ideally exploit several decision rules 

shown appropriate for the particular domain of interest. Agents using 

the expected value and security levels are discussed in the appendix, but 

it should be noted that these are not the only possible rules and the 

method could use other decision rules as well. 

Appendix B applies DELTA to the area of risk analysis by introducing 

the DEEP (Damage Evaluation and Effective Prevention) method. A 

risk analysis method is presented that substantially improves the 

evaluative phases compared with other, earlier approaches. The 

presentation is focused on the analysis and identification of threats and 

on the evaluation of the suggested actions since those are the steps 

where the DEEP method differs the most from other methods. The 

idea behind DEEP is to offer an analytical framework for risk 

management in the classic chain identification–valuation–action without 

trying to replace it. 

Further Research 
The DELTA method should be seen as a framework. Even though the 

method is in a sense complete, there are numerous plausible research 
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tasks to extend it in several directions. Two of the most important 

directions are 

 (i) augmenting the method with new features, and  

 (ii) extending the method to handle multiple criteria. 

There are other directions as well. One is extending DELTA to handle 

multi-level trees in other ways than the obvious compound strategies 

mentioned in Chapter 1. Another is generalising security levels to 

account for other types of undesirable results. 

New DELTA Features 
The current DELTA method may be augmented by new features along a 

number of different lines of development including representation, 

evaluation, and computation. It is also desirable to conduct larger field 

studies on the real-life use of tools based on DELTA. 

Representation 

Today DELTA uses probabilities in the form of numbers 0–100%. 

Another type of input probability is the odds formulation. The odds of 

an event E is p(E)/p(E) = p(E)/(1–p(E)) for some probability func-

tion p. Sometimes this is felt to be a more natural way of expressing 

probabilities for decision makers. It has gained some popularity within 

probabilistic reasoning in conjunction with using Bayes’ Rule, where 

advantages can be found in not having to specify certain probabilities 

[GN87]. The odds formulation could be of use for DELTA as well in 

allowing the input probabilities to be in odds form, should that be 

found to be more natural. This is an open question but warrants further 

investigation. 

Another input issue is the user interaction in tools for human 

decision-makers. In DDT, the input is handled using rulers to enter 

essentially numerical data, while in Chapter 4, there is a section on the 

translation of linguistic input data. Those two forms may be combined 

in various ways, for example by extending DDT to handle qualitative 
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statements as well. This poses questions about how to design such an 

interface with regard to alternative interpretations of vague statements 

and sensitivity analysis of non-numerical data. 

This thesis only considers standard probability systems for repre-

senting decision-maker statements. Other approaches mentioned in 

Chapter 1 include Dempster-Shafer theory and fuzzy decision analysis. 

These other approaches also allow the decision maker to model and 

evaluate a decision situation in vague terms, but using other means to 

deal with vagueness or imprecision. It is plausible, for example, to view 

the concepts of expansion and contraction as membership functions on 

fuzzy sets corresponding to interval constraints. It would probably be 

worthwhile to consider the DELTA evaluation framework for those 

methods too. The cross-fertilisation would certainly be beneficial for 

the DELTA evaluation method and possibly for the others as well. 

Evaluation 

The general ∆-dominance rule is introduced as a unifying concept. In its 

generic form, it describes the type of dominances to be considered and 

thus the type and amount of computation involved in evaluating 

alternatives in the framework. It is very general and many instantiations 

are possible, of which a few are given in Chapter 5. It would be 

interesting to further explore the ∆-dominance concept with more rule 

instances. The classification into dominance orders opens up questions 

of higher order rules – are they necessary and what are their properties 

and instances? Certainly, also first- and second-order classes have 

interesting members not mentioned in the thesis. While general numeric 

rules have been considered on paper, the only implementations so far 

are based on the expected value. It is also interesting to study further 

several different replacement rules and their use in a real-life tool. 

The selection procedures are not very precise, partly due to the 

nature of the decision problem, and partly because the dynamic inter-

connection between strong/marked/weak dominance and expan-
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sion/contraction needs further study. It depends on the decision 

situation, on whether the decision maker is a human or a machine, and 

on whether the goal is to make a final decision or to gain a better 

understanding of the decision problem. 

Optimisation 

For consistency and hull calculations, Simplex is the most versatile 

method, but it is more general than required. An important task is to try 

to develop more specialised algorithms. These algorithms would 

probably not be pivoting matrix algorithms, but use some special 

representations that exploit the structure of the problems better. 

The general BLP1 problem is today covered by QP, usually solved 

with factorised matrix techniques. There is another, perhaps more 

promising technique to solve QP problems. The area of linear 

complementarity problems (LCP) originates from the mid-1960s, and in 

the beginning LP and QP were the main application areas of LCP. 

Those are still important, and the search for first-order optimality 

conditions in QP problems by means of LCP algorithms is one possible 

direction for developing a general BLP1 algorithm. See [CPS92] for a 

thorough discussion of LCP. 

There are, however, two main reasons for preferring a different 

solution to the BLP1 problem. The first has to do with execution times. 

In larger problems, any algorithm for solving BLP1 will start running 

too slow for interactive purposes. Then it is desirable to have an 

anytime algorithm. This means that it can be prematurely asked for a 

preliminary solution, and this solution should be a good approximation 

of the exact result to be obtained in time due. 

The second reason is connected to future developments of the 

DELTA method. As indicated below, multiple criteria are a reasonable 

extension to DELTA. Another extension is layers of credibility and trust 

in the multi-agent application of Appendix A. In those cases, the 

objective function will not be bilinear but multilinear, the terms having 
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the form wk∙pik∙vik if weights are included, ck∙pik∙vik if credibilities are 

included, or even more terms if other situations are modelled. Thus, a 

good BLP1 algorithm should be extendible to handle multi-linear 

problems. This is not the case for QP algorithms since they solve only 

quadratic problems, while multi-linear problems might be of higher 

order. The B-Opt family should be possible to extend to the multi-

linear case. 

The LP-based bilinear optimisation algorithms are efficient but 

require certain kinds of decision-maker expressions to be left out, most 

notably some comparisons between either probability or value variables. 

While this is not a great problem, the solver stack would be more 

complete if the range of algorithms available could cover all possible 

decision frames without resorting to QP techniques, since the full power 

of the QP formulation is not needed. Such an algorithm could be called 

PVB-Opt. The bilinear objective function and the constraints are 

separable into probability and value parts, and the first order differen-

tials have a certain structure that ought to be possible to exploit in a way 

similar to how linear programming uses its constant differentials. 

There are essentially two ways of approaching the design of PVB-

Opt. In the first, PB-Opt and VB-Opt are taken as starting points, 

developing some more advanced but still LP-based algorithm that 

executes in one of the probability (P) or value (V) bases at a time. This 

seems promising at first. The constraints in P, V, and PV, being 

systems of linear inequalities, form compact convex sets, but since the 

objective z is non-linear, the gradient components 
  

z

p ik

 and 
  

z

v ik

 alter 

their signs in ways that are hard to control and risk winding up in local 

optima. The other way to design the PVB-Opt algorithm is to start with 

a general QP algorithm and remove functionality not needed because of 

the special structure of BLP1. Early QP algorithms, based on LP-style 

ideas, have means of controlling that issue and ought to be investigated. 

Which road will lead to the goal, and with what grade of success, is an 
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open question. Naturally, such an algorithm would run slower than the 

LP-based PB-Opt and VB-Opt but hopefully considerably faster than 

ordinary QP algorithms. 

Empirical Studies 

The DELTA method needs more exposure to real-life decision problems. 

It would be interesting to apply the method to a number of real-life 

situations and to compare the outcome with unaided decisions made in 

parallel. This has been done in a NUTEK project together with Ban-

verket (The Swedish National Rail Administration) [DE97b]. Banverket 

intended to procure railway equipment for around 5 billion SEK and 

conducted a large evaluation of all prospective suppliers. The results 

from this empirical study are encouraging but more studies are needed. 

Preferably, such empirical studies could partly be made in co-operation 

with researchers from the area of psychology. 

Multiple Criteria 
A decision can often be seen from different perspectives, usually called 

criteria, and the expected (or numerical) values of the alternatives are 

often different when seen from the different criteria. This is the 

research area Multi-Criteria Decision Analysis (MCDA), see for example 

[V92] or [B90]. Traditional criteria include finance, environment, policy, 

public opinion, competence, and growth opportunities. 

Example:  A chemical industry is about to invest in a new purifying 

plant for wastewater. This investment decision can be studied using 

several criteria. The financial criterion is usually the first, where costs 

incurred from the actual investments as well as losses in production 

efficiency are considered. The environmental criterion might con-

cern the risk of being sued for polluting or causing other harm to the 

environment, which could also lead to liabilities and badwill for the 

company. A further criterion is that of personnel, where care must 

be taken to prevent noise and chemical hazards, and thought must 

also be given to changes in employee responsibilities. It is no easy 
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task to evaluate these different criteria manually and then make a 

total evaluation. Normally, a company spends considerable time, 

effort, and money on feasibility studies before making such a large 

investment. n 

In most cases, the preferred alternative is not the same for all criteria. 

The alternative with the highest cash flow is seldom the best from an 

environmental point of view, or seen from the perspective of the 

employees. How can all these conflicting requirements be taken into 

consideration? 

If there is one criterion that can clearly be considered the most 

important, then the simplest way would be to evaluate the alternatives 

only with respect to that criterion. In that case, all the information from 

other criteria would be disregarded, almost certainly leading to lower 

quality of the decision. For example, if an alternative is marginally better 

according to the financial criterion, but much worse from an 

environmental point of view, then a decision in favour of that 

alternative could be considered sub-optimal. 

The aggregation of utility (or value) functions under a variety of 

criteria is investigated in the area of Multi-Attribute Utility Theory 

(MAUT), see for example [K92, KR76, F70]. A number of techniques used 

in MAUT have been implemented as computer programs such as 

SMART [E77] and EXPERT CHOICE, the latter being based on the 

widely used AHP method [S80]. AHP has been criticised in a variety of 

respects [WF82, BG83] and models using geometric mean value tech-

niques have been suggested instead [BCG87, K87]. Techniques based on 

the geometric mean value have, for instance, been implemented in 

REMBRANDT [L93]. All these approaches have their advantages, but as 

for the probabilistic decision situations treated in this thesis, the 

requirement to provide numerically precise information sometimes 

seems to be unrealistic in real-life decision situations. Some multi-

criteria models with representations allowing imprecise statements have 

been suggested. For instance, the system ARIADNE [SW84] allows the 
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decision maker to use imprecise estimates but does not discriminate 

between alternatives when these are evaluated into overlapping 

intervals. [SH95] extends the AHP method in this respect and makes use 

of structural information when the alternatives are evaluated into 

overlapping intervals. 

One research direction is to extend the DELTA method with the 

capability of handling multiple criteria. One idea would be to assign the 

different criteria weight factors between 0 and 1 according to their 

relative importance and require the weights to sum to one. The weights 

would then not be given as absolute real numbers, but could be in the 

form of interval statements such as criterion C has an importance weight 

between 0.2 and 0.5 or criterion C is more important than criterion D. The value 

base would then be extended with weights and sets of values for each 

criterion and then evaluated using additive MAUT-type of rules or other 

types. That is a natural extension of the DELTA method that warrants 

further research [DE97a]. 



Multi-Agent Systems 
This appendix deals with an application area of computational decision 

analysis, the area of multi-agent systems. The content of the appendix is 

joint work with Magnus Boman, DSV, and Love Ekenberg, IIASA. The 

text is partly derived from [EDB96b] and [EDB97]. 

Distributed AI (DAI) emerged as a research field in its own right 

around 1980 [BG88] and a partition is often made into distributed 

problem-solving systems (DPSs) and multi-agent systems (MASs). Both 

parts of DAI are important to software systems. The DPS part covers 

the case when a coordinating agent controls a set of agents in order to 

accomplish some task in a distributed way. The MAS part covers the 

case when a set of agents must act on their own without immediate aid 

from a coordinator. In the former, there is a global task that needs to be 

solved and usually a global notion of utility that can constrain the 

actions of the intelligent agents. In MASs, by contrast, there is no such 

global notion of utility [R93]. 

Theories of intelligent agents offer means for dealing with the 

complexity inherent in developing distributed systems, and the advances 

in DAI over the last five years have affected the design methods of 

distributed software in several ways. One main issue in DAI is how a 

group of agents can cooperate in order to solve different tasks and how 

such a system of agents can be coordinated. Some aspects of decision 

theory have influenced the area of MASs [RS95], partly as a result of 
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philosophical aspects of agent rationality [D92], and partly because of 

interest in extending the principle of maximising the expected value in 

efficient real-life applications [B95].  

The idea in this appendix is to demonstrate that a method for 

evaluating reports from sets of autonomous agents from a decision 

analytical viewpoint can be built around the DELTA concepts. A 

decision-making agent (DMA) may make use of imprecise and possibly 

incomplete reports made by different autonomous agents when co-

ordinating its activities and deciding which action strategy to adopt. In a 

manner similar to the standard DELTA method, these reports are 

translated into a suitable representation and the strategies are evaluated. 

The set of non-dominated strategies is usually too large after a first 

evaluation and the situation needs to be analysed with respect to further 

discriminating principles. To allow the DMA to make a flexible analysis 

of its decision situation, a method such as the one described here ought 

to contain the possibility of analysing the situation in several respects. 

Since DELTA includes efficient evaluation of non-trivial decision 

problems, the method and implementations thereof are well suited for 

use in the reasoning mechanisms of more sophisticated agent-based 

information systems, and it is quite straightforward to include a 

multitude of decision rules in this framework. 

This particular application considers a decision problem with respect 

to the contents and the credibilities of the received reports. These two 

aspects are modelled in an agent decision frame consisting of two 

systems of translated interval statements, similar to an ordinary decision 

frame. Once it is decided that a set of agents should achieve some goal, 

and some semantic mapping has been provided for any syntactically 

heterogeneous subsets of information deemed to be of interest, then 

the possibility of a disagreement must be considered. This is the 

problem of coordinating incomplete and possibly conflicting reports 

made by autonomous agents, with the purpose of reaching a decision 

on which action to take.  
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Rational decision-making is weakly defined in [S76b] as the process 

of choosing among a finite number of acts by a series of steps that 

 (i) lists the acts, 

 (ii) determines all their consequences, and 

 (iii) makes a comparative evaluation. 

Although the definition is of little use as such, its weaknesses make it 

suitable for use as a proviso for some points made in this appendix. 

Note that the term act is loosely used, and the concept of strategy is used 

here instead. A more detailed discussion can be found in [L92]. A 

classical problem concerning (iii) is that there exists no absolute notion 

of rational decision-making. Rather, rationality is usually interpreted as 

meaning that any agent behaviour being sub-optimal with respect to the 

goal is either accidental or unavoidable. To explicate this interpretation, 

one may turn to the first presidential address of AAAI [N81] which has 

been influential in spreading the agent metaphor. Drawing upon ideas 

put forward by McCarthy in the late 1950s, Newell suggested his 

principle of rationality: “If an agent has knowledge that one of its actions will lead to 

one of its goals, then the agent will select that action […] The principle of rationality 

provides, in effect, a general functional equation for knowledge. The problem for agents is to 

find systems at the symbol level that are solutions to this functional equation, and hence can 

serve as representations of knowledge […] The principle of rationality corresponds at the 

symbol level to the processes (and associated data structures) that attempt to carry out 

problem-solving to attain the agent’s goals.” [op. cit. pp.8–14].  

The concept of rationality was initially treated in the MAS area as 

merely another property that agents could have, along with, e.g., 

autonomy, mobility, and benevolence (cf. Chapter 2 of [G86]). This 

development undoubtedly came about as a reaction to the view pro-

posed earlier by traditional AI that cognitive capabilities are more 

important than an agent’s means to communicate, react, or adapt. In the 

most extreme MAS frameworks, rationality is treated as an emergent 

feature of an agent system [B86].  
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The prime evaluation principle suggested is based on the principle of 

maximising the expected value (PMEV) since that principle is at the core 

of rational agent behaviour.1 In the last few years, several researchers 

within DAI have equated rationality with the use of PMEV as a decision 

rule (see, e.g., [GD93]). However, this principle is not the only 

reasonable candidate for a decision rule. There are many reasons not to 

identify rationality with the PMEV, some of them well-known to game 

theorists [BE95]. The unrealistic assumption that the perfectly rational 

(or even hyper-rational, see [R92], p.107) players of the game have full 

knowledge of the game structure, and of the rationality of their 

opponents, is necessary to attain the desired equilibria [BC92]. Even if 

one accepts that game-theoretical decision rules cannot always provide 

useful advice to agents in non-ideal games, a view now seemingly 

assumed in computer science [R93], there remain difficult problems to 

face [M92].  

As mentioned in Chapter 5, a number of other rules have been 

suggested by various researchers. One conclusion from that chapter is 

that it seems plausible to supplement a method based on PMEV with 

other rules. The strategies might be evaluated relative to a set of security 

levels considering how risky the strategies are. Moreover, it can be 

investigated in which parts of the hull those conditions are met. This is 

accomplished by using contractions for security levels as well. 

Agent Modelling 
In the agent model that underlies this approach, the DMA2 faces a 

situation involving a choice between a finite set of strategies {Si} having 

access to a finite set of autonomous agents {Ai} reporting their 

                                           
1 To be more precise, it should be called the principle of maximising the reported 

value. The credibilities represent importance weights given to individual reports. The 

aggregation should therefore be considered a weighted report value rather than an 

expectation. 
2 A DMA may be a human coordinator as well as another agent process. 
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opinions on the strategies to the DMA, see Figure A.1. Each of these 

agents may itself play the role of decision making agent, and the theory 

is independent of whether there is a specific coordinating agent or not. 

In other words, the focus in this appendix on a particular DMA is a 

matter of convenience. However, for the agents to carry out their tasks 

and to acquire sufficient and reliable knowledge en route, it is 

fundamental that they are able to evaluate information gathered from 

different sources, some unreliable and some noisy. The dynamic 

adaptation taking place over time as the agents interact with their 

environment, and with other agents, is affected by the means available 

to assess and evaluate imprecise information. 

DMA

Strategy 1

Strategy m

Agent 1

Agent n

•••

•••

Agent 1

Agent n

•••

 

Figure A.1  A multi-agent decision model 

In a situation modelled as in Figure A.1, some agents may be more 

reliable than others when evaluating the strategies involved, since 

different agents may have different capabilities to determine the values. 

The DMA may also have access to assessments expressing how 

trustworthy the different agents are. In the model, the DMA is set on 

choosing the most preferred strategy given the agents’ individual reports 

and their relative credibility. The statements are assumed to be assigned 

and revised, typically with incomplete background information, and the 
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evaluation method allows for vague and numerically imprecise 

information. Thus, the DMA may rank the credibilities of the different 

autonomous agents as well as quantify them in imprecise terms. The 

autonomous agents have a similar expressibility regarding their 

respective opinions about the strategies under consideration. 

Example A.1: Assume a simplified scenario where a set consisting 
of the agents A1, A2, A3, and A4 report to a decision-making agent 

DMA on their respective opinions concerning the strategies for 

managing a system communications resource. The DMA has to 

decide whether to keep all time slots open for negotiation, to allo-

cate some fixed bandwidth for high-volume users, or to lease out 

some of the bandwidth to neighbouring systems. Call these strate-
gies S1, S2, and S3, respectively. Further, assume that the agents A1 

through A4 have reported to the DMA the following value state-

ments.3 The values involved could, for example, be monetary.  

In that case, they are linearly transformed to real values in the 

interval [0,1].  

Statements according to agent A1: 

• The value of strategy S1 is between 0.50 and 0.70. 

• The value of strategy S2 is between 0.10 and 0.70. 

• The value of strategy S3 is at least 0.30. 

Statements according to agent A2: 

• The value of strategy S1 is between 0.10 and 0.50. 

• The value of strategy S2 is between 0.40 and 0.70. 

• I have no opinion about the value of strategy S3. 

Statements according to agent A3: 

• The value of strategy S1 is not less than that of S2. 

• The value of strategy S3 is between 0.50 and 0.70. 

Statements according to agent A4: 

                                           
3 The agents may have evaluated the prospective strategies using any number of 

well-established datacom traffic models. Here, only the evaluation of the total 

throughput situation is considered. 
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• The value of strategy S2 is not less than that of S3. 

• The value of strategy S1 is between 0.50 and 0.70. 

• The value of strategy S2 is at most 0.70. 

Moreover, the DMA has estimated the credibility of A1 through A4 

as numbers in the interval [0,1]. The number 0 denotes the lowest 

possible credibility, and 1 the highest:  

• The credibility of agent A1 is between 0.20 and 0.90. 

• The credibility of agent A2 is between 0.10 and 0.30. 

• The credibility of agent A3 is between 0.20 and 0.70. 

• The credibility of agent A4 is at most 0.50.  

The rest of this appendix describes how the DMA may use the DELTA 

method in evaluating multi-agent problems such as the one above. A 

significant feature of the method is that it encourages the agents not to 

present report statements with an unrealistic degree of precision. 

Essentially, the model consists of a set of agents, a set of strategies, and 

two systems of statements concerning the credibilities and values 

involved. The sets of credibility statements and value reports are 

transformed into bases of linear constraints. The properties of those 

bases are discussed next. 

Credibility Bases 
A credibility base K with m agents is expressed in the credibility variables 

{c1,…,cm}, stating the relative credibility of the different agents. The 

term ck denotes the credibility assessment of agent Ak. A credibility base 

contains expressions about the credibility of each agent. To make the 

qualitative statements of credibility computable, they are translated in a 

manner similar to the standard DELTA method. Here, four types of 

possible credibility statements will be discussed. For a longer discussion 

of the parameters involved in the translations, refer to the 

corresponding treatment of probability statements in Chapter 4. 

1. The credibility of Ak equals a number r, is at least r, is at most r. 

Example: The credibility of Ak is greater than r. 
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Translation: ck  [r+1, r+1] 

2. The credibility of Ak is between some real numbers. 

Example: The credibility of Ak is between r1 and r2. 

Translation: ck  [r1–1, r2+1] 

3. The credibility of Ak is equal to the credibility of Aj, is approximately 

equal to that of Aj, is not less than that of Aj, etc. 

Example: The credibility of Ak is equal to the credibility of Aj. 

Translation: ck – cj  [–2, 2] 

4. Agent Ak is credible, the opinion of agent Ak is worth considering, 

agent Ak is not credible, etc. 

Example: Agent Ak is credible. 

Translation: ck  [r3, r4] 

In order for the credibility statements to be normalised, the constraint 

∑k ck = 1 is added to the constraints above. The conjunction of con-

straints of the four types above, together with the normalisation, is the 

credibility base. 

Example A.1 (cont’d): The DMA has estimated the credibility of A1 

through A4 as numbers in the interval [0,1]. The translation of the 

statements into a credibility base results in the following expressions.

c1  [0.20, 0.90] 

c2  [0.10, 0.30] 

c3  [0.20, 0.70] 

c4  [0.00, 0.50]  

The credibilities are subject to the normalisation constraint 
∑k ck = 1. Consequently, the greatest value that can consistently  

be assigned to c1 is 0.7 (the minimum value that c2 + c3 + c4 can 

have is 0.3, since c1 + c2 + c3 + c4 should be 1). Since no other  

weight is affected, the hull of this base is {0.20, 0.70, 0.10, 0.30, 

0.20, 0.70, 0.00, 0.50}.  
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Report Bases 
A report base R contains statements about individual agents’ opinions 

of the values of different strategies, i.e., it consists of a number of inter-

val constraints and core intervals that represent various strategy 

statements. It is expressed in value variables {v11,…,v1n,…,vm1,…,vmn} 

stating the values of the strategies according to the different agents. The 

term vik denotes the value of strategy Si according to the report of agent 

Ak. Five types of possible report statements are handled. 

Given an autonomous agent Ak: 

1. The value of the strategy Si equals r, is at least r, etc. 

Example: The value of Si is greater than r. 

Translation: vik  [r+1, r+1] 

2. The value of strategy Si is between some real numbers. 

Example: The value of Si is between r1 and r2. 

Translation: vik  [r1–1, r2+1] 

3. The strategy Si is as desirable (or undesirable) as strategy Sk, more 

desirable than Sk, the value of Si is approximately equal to the value 

of Sk. 

Example: The strategy Si is as desirable as Sj. 

Translation: vik – vjk  [–2, 2] 

4. The difference in value between Si and Sj is not less than the 

difference in value between Sm and Sn.4 

Translation: (vik – vjk) – (vmk – vnk)  [1, 1] 

5. The strategy Si is desirable, Si is fairly desirable, Si is undesirable, etc. 

Example: The strategy Si is desirable. 

Translation: vik  [r3, r4] 

Example A.1 (cont’d): The reports provided by the agents are 

translated into the following expressions.5 

v11  [0.50, 0.70] v33  [0.50, 0.70] 

                                           
4 For simplicity, it is assumed that the value of Si is greater than the value of Sj, and 

that the value of Sm is greater than the value of Sn. 

5 The constants in the translations are chosen to keep the presentation simple. 
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v21  [0.10, 0.70] v14  [0.50, 0.70] 

v31 ≥ 0.30 v24 ≤ 0.70 

v12  [0.10, 0.50] v13 ≥ v23 

v22  [0.40, 0.70] v24 ≥ v34 

This report base is then subject to evaluations using aggregate rules 

or security levels.  

Agent Decision Frames 
A credibility base K together with a report base R constitute an agent 

decision frame S,K,R, where S is the set of strategies. This is in analogy 

to the ordinary decision frame C,P,V in the standard DELTA method. 

The mapping onto ordinary frames is straightforward. The strategies 

correspond to consequence sets, and the report elements are analogous 

to the consequences. Further, the credibilities have properties similar to 

probabilities, and report values are almost the same as values in the 

ordinary frame. 

The mapping is not perfect, though. At first, it seems that credibil-

ities map directly onto probabilities in that they have a similar role, 

distributing mass over the report values. But if credibilities are allowed 

to be assigned per strategy for each agent, then a more credible report 

about vik from the agent Ak might be forced to assume a lower credi-

bility than a less credible report about vjk from the same agent due to 

other agents also being more credible when giving reports about strat-

egy Si and the credibilities being normalised to sum to one.6 Thus, only 

one credibility assessment per agent ought to be allowed. Still, since it is 

a normalised mass to be distributed, it might be more reasonable to 

interpret credibilities as weights instead. If there are no credible reports, 

the agents’ credibilities must sum to one, and conversely, if all reports 

are very credible, they must still sum to one. This is not in accordance 

with the common interpretation of credibility. Finally, if an agent Ai has 

                                           
6 If there would be no normalisation, then the aggregated value would not make 

sense. 
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low credibility and another agent Aj has a much higher credibility, the 

statement vik > vjk has the same effect regardless. These discrepancies 

must be accounted for in an agent decision model. Such problems 

notwithstanding, the DELTA method is well-suited for multi-agent 

systems. 

Comparing Strategies 
Relative to a particular agent decision frame, which strategy should be 

chosen? The problem formulation is mathematically almost equivalent 

to the decision frame in Chapters 4–6, thus rendering the method and 

computational machinery of those chapters suitable for this task as well. 

As is the case for ordinary decision frames, for agent frames it is often 

not enough to determine the set of non-dominated (admissible) 

strategies, since in non-trivial decision situations this set is too large, i.e. 

the admissible strategies are too numerous and the DMA cannot 

adequately discriminate between them. Moreover, when approaching a 

problem, the autonomous agents as well as the DMA are encouraged to 

be deliberately imprecise, and thus values close to the boundaries of the 

interval constraints seem to be the least reliable ones. This is a typical 

case for applying the contraction principle as described in Chapters 4–5, 

and in the example, the effects of contraction can be seen. Note that no 

core is specified, and the contraction goes from the hull inwards to the 

degree of 80%. 

Example A.1 (cont’d): Entering the information into DELTA 

results in the agent decision frame in Table A.1. 
 

Frame 'ExA1' in folder 'PhD' has 3 strategies 

S1 (Strategy 1) 

S2 (Strategy 2) 

S3 (Strategy 3) 

 

Each strategy is valued by 4 agents 

A1 (Agent 1) 

A2 (Agent 2) 

A3 (Agent 3) 

A4 (Agent 4) 

 

The credibility base contains 4 constraints 

 1: C1  [0.200,0.900] 
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 2: C2  [0.100,0.300] 

 3: C3  [0.200,0.700] 

 4: C4  [0.000,0.500] 
 

Credibility hull    Symmetry hull 

C1  [0.200,0.700]  [0.200,0.494] 

C2  [0.100,0.300]  [0.100,0.218] 

C3  [0.200,0.700]  [0.200,0.494] 

C4  [0.000,0.500]  [0.000,0.294] 
 

The report base contains 10 constraints 

 1: V1.1  [0.500,0.700] 

 2: V2.1  [0.100,0.700] 

 3: V3.1  [0.300,1.000] 

 4: V1.2  [0.100,0.500] 

 5: V2.2  [0.400,0.700] 

 6: V3.3  [0.500,0.700] 

 7: V1.4  [0.500,0.700] 

 8: V2.4  [0.000,0.700] 

 9: V1.3 - V2.3  [0.000,1.000] 

10: V2.4 - V3.4  [0.000,1.000] 
 

Report hull 

V1.1  [0.500,0.700] 

V1.2  [0.100,0.500] 

V1.3  [0.000,1.000] 

V1.4  [0.500,0.700] 

V2.1  [0.100,0.700] 

V2.2  [0.400,0.700] 

V2.3  [0.000,1.000] 

V2.4  [0.000,0.700] 

V3.1  [0.300,1.000] 

V3.2  [0.000,1.000] 

V3.3  [0.500,0.700] 

V3.4  [0.000,0.700] 
 

Focal point 

Cred:  0.347  0.159  0.347  0.147 

Agent     A1     A2     A3     A4 

S1:    0.600  0.300  0.500  0.600 

S2:    0.400  0.550  0.500  0.350 

S3:    0.650  0.500  0.600  0.350 

Table A.1  The agent decision frame 

Evaluating the frame above results in Tables A.2–A.4.7 Table A.2 
shows the contraction of strategy S1. 

 

Contraction      0%     20%     40%     60%     80% 

S1      min:  0.166   0.247   0.322   0.392   0.458 

                                           
7 The output from DELTALIB (see Chapter 3) is numeric. DMAs, especially software 

agents, often desire to receive the evaluation results in the form of matrices or tables 

instead of graphs in order to perform numerical computations on them. 
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        mid:  0.518   0.518   0.518   0.518   0.518 

        max:  0.828   0.758   0.691   0.629   0.572 

Table A.2  The contraction of S1 

Tables A.3–A.4 show the contractions of the strategies S2 and S3, 

respectively. Hence, strategy S2 is inferior to both S1 and S3, but 

strategy S3 is slightly better than S1. A further investigation is 

recommended in order to identify critical variables.  
 

Contraction      0%     20%     40%     60%     80% 

S2      min:  0.060   0.143   0.223   0.300   0.375 

        mid:  0.451   0.451   0.451   0.451   0.451 

        max:  0.848   0.767   0.686   0.607   0.528 

Table A.3  The contraction of S2 

 

Contraction      0%     20%     40%     60%     80% 

S3      min:  0.186   0.269   0.349   0.424   0.496 

        mid:  0.565   0.565   0.565   0.565   0.565 

        max:  0.914   0.840   0.768   0.699   0.631 

Table A.4  The contraction of S3 

It is natural to ask how sensitive the different contractions are to 

changes in the agent frame. The DMA can simultaneously vary any 

number of intervals to discover credibility or value variables that are 

especially critical. Assume that the DMA wants to investigate 
whether it is meaningful to allocate resources to agent A1 for 

collecting additional information about strategy S3. Before doing 

that, the DMA can investigate how influential the report from the 

agent would be. For instance, the DMA can restrict the maximum 
value of v31 to 0.6 instead of 1 and evaluate the modified decision 

situation. Table A.5 shows the result for strategy S3. The strategy is 

now slightly worse than S1. The new information does not change 

the results in Tables A.2 or A.3.  
 

Contraction      0%     20%     40%     60%     80% 

S3      min:  0.186   0.257   0.324   0.386   0.443 

        mid:  0.495   0.495   0.495   0.495   0.495 

        max:  0.745   0.695   0.645   0.596   0.546 

Table A.5  The result of modifying S3 
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Thus, it is reasonable to allocate resources to collect more informa-
tion about strategy S3 from agent A1. The DMA may now interac-

tively proceed in this way to investigate critical reports in order to 

gain a better understanding of the decision problem and finally reach 

a conclusion.  

Security Levels 
The intuition behind security levels is that they provide limits beyond 

which a strategy is undesirable. Thus, a DMA might regard a strategy as 

undesirable if it has access to a report in which a credible agent assigns a 

low value to the strategy. 

Example A.2: Suppose that the DMA has stipulated that a strategy 
Si is undesirable iff 

• according to some agent Aj, the value of strategy Si is less than 0.45 

• the credibility of that agent Aj is greater than 0.65. 

Assume that v12 is in the interval [0.40, 0.60] and that c2 is in the 

interval [0.20, 0.70]. Then S1 is below the threshold and is thus 

undesirable. It is advisable to investigate how much the different 

intervals can be decreased while the security levels are still violated. 

In this manner, the stability of the result can be studied. For 

example, it can be seen that strategy S1 ceases to be undesirable 

when the left end-point of the interval of v12 is increased by 0.05. 

Consequently, the result is quite unstable.  

The example contained a very simplistic approach to limiting unde-

sirable outcomes. To be more sophisticated and utilise the DELTA 

method, the concept of security level as defined in Chapter 5 is applied. 

There, an observation regarding security levels was made, which is here 

turned into a definition of agent security levels and is put to use in 

testing which strategies might be undesirable. 
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Definition A.1:  Given an agent decision frame S,K,R and two 
real numbers r,s  [0,1], a strategy Sj violates agent security level s for 

value threshold r iff for Kj = {k  vjk ≥ r} 

  

ck
kK j

  1 s. 

This is best illustrated by an example which evaluates the security levels 

using weak first order dominance.8 

Example A.1 (cont’d): Using the definitions above, it may now be 

investigated to what extent the different strategies are undesirable. 

Figure A.2 shows, for each strategy and a value threshold of 0.10, 

the worst possible credibility assignments consistent with the frame 

for different degrees of contraction, i.e. the security levels violated 

by weak dominance. In the figure, the K- and R-bases are contracted 

simultaneously, but this is not the only option. The K-base might be 

left uncontracted, studying only the R-base under contraction, and 

conversely, the R-base might be untouched while contracting K. 
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Figure A.2  Value threshold 0.10 

From the figure, it can be seen that the strategies S1 and S2 are not 

undesirable in any part of the decision frame. Strategy S3 is unde-

sirable in the original frame and remains so until it is contracted  

by more than 60%. For instance, when the decision frame is con-

                                           
8 See Chapter 5 for an explanation of weak dominance. 
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tracted by 40%, the greatest joint credibility for the bad reports of 

this strategy is 0.58. 
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Figure A.3  Value threshold 0.20 

Figures A.3 and A.4 show the evaluations for the value thresholds 

0.20 and 0.50 respectively. As can be seen in Figure A.3, the strate-

gies S1 and S2 are now undesirable in some parts of the decision 

frame. However, they cease to be undesirable at contractions of at 

least 20%. 
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Figure A.4  Value threshold 0.50 
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Figure A.4 shows that for very high value thresholds, S3 is undesir-

able regardless of the degree of contraction. Thus, it can be seen that 

the results of the evaluation are strongly dependent on boundary 

values, and consequently they should be further investigated in 
sensitivity analyses. While S1 and S3 were preferable to S2 already in 

the primary evaluation above, S3 seems to be too dangerous to adopt 

as the main strategy for the time slot allocation. Thus, the agent 
selects strategy S1 – keeping all the time slots open for negotiation.  

By using security levels, the decisions made by the DMA will be more 

reliable and predictable than if such levels were not imposed on the 

reports. The trust the DMA can put in the results will increase consid-

erably as it is able to set the levels and thresholds according to its 

appreciation of the particular decision problem. 
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Long you live and high you fly 

Smiles you give and tears you cry 

All you touch and all you see 

Is all your life will ever be 

Run, rabbit run 

Dig that hole, forget the sun 

And when at last the work is done 

Don't sit down, it's time to dig another one 

For long you live and high you fly 

But only if you ride the tide 

And balance on the biggest wave 

You race towards an early grave 

 – R. Waters 



Risk Management 
This appendix deals with another application area of computational 

decision analysis methods, the area of risk management. The content of 

the appendix is joint work with Love Ekenberg, IIASA, and Anders 

Elgemyr, ROA. The text is partly derived from [ED95] and [DEE96]. 

The risk analysis method DEEP (Damage Evaluation and Effective 

Prevention) substantially extends the evaluative phases compared with 

earlier approaches. The concept of risk analysis is used in a little wider 

sense than usual. Often, only identification and valuation of damage 

risks are included in the concept, but here selection of risk treatment, 

risk financing, and analysis of the measures taken are also included. The 

presentation is focused on the identification and analysis of threats and 

on the evaluation of the suggested actions since those are the steps 

where the DEEP method differs the most from other methods. The 

other steps are fairly well covered in other texts.1 The idea behind 

DEEP is to offer an analytical framework for enhancement of the chain 

identification–valuation–action in risk management without aiming at 

replacing it. 

                                           
1 Risk analysis is less general in its first steps. In different industries, the values to be 

protected and the threats are fairly industry specific. It is therefore not surprising 

that, for example, the chemical industries in Sweden publish a text applicable 

specifically to their own needs [K96]. But also the later evaluation steps are treated as 

if they were industry specific. This might be due to the lack of general methods that 

seem to fit in different industries, see for example [EM92]. 
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To acquire a satisfactory understanding of the risk situation, 

management often desires some kind of structured approach to the 

analysis. Thus a risk analyst, conducting a risk analysis, frequently has 

access to standard procedures for identifying and assessing threats and 

for identifying and valuating assets. A tentative list of basic steps in risk 

management could be the following: 

• Identify the assets/objects that should be protected. 

• Identify the threats that should be protected against. 

• Estimate the probabilities for the threats to materialise. 

• Estimate the values lost if the threats materialise. 

• Assess the current protection. 

• Decide which threats to rectify and which to leave unmanaged. 

• Evaluate which protective measures are reasonable to take. 

• Find financing for a reasonable part of the remaining risk. 

• Execute the decided plans. 

• Follow up on the effectiveness and efficiency of the plans. 

In the analysis, different threats are compared to each other, and those 

not found to be serious are filtered out. The others are ranked in order 

of treatments necessary. Below, some risk models are criticised for not 

being able to rank the seriousness of different threats. In the evaluation 

step, the possible courses of action are specified. Although in real life 

such analyses are often carried out, this step is left out in most existing 

risk analysis models. This is a clear deficiency that may substantially 

reduce the applicability of analysis results. 

For insurance management problems, for example, different prob-

lems are encountered depending on the type of insurance. For high-

volume, high-frequency incidents, insurance companies have a well-

developed set of mathematical and statistical tools at their disposal 

when calculating the cost of insurance. The risk management issue is to 

keep such insurances or not, balancing the decision against the profit 

margin for the insurance companies and assuming a reasonably well-

working insurance market with at least rudimentary competition 
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mechanisms. For low-frequency risks, the situation quite is different. 

Insurance statistics is not as good a tool, but the need for risk analysts 

to have tools at their disposal is perhaps even greater. This poses some 

hard challenges to risk staff in general and to risk managers in 

particular.  

To make it easier to grasp the ideas behind the DEEP method, to 

compare it with traditional approaches, and to indicate some of their 

disadvantages, a brief survey of some approaches to risk analysis is 

included. Ensuing this, an informal overview of the method is given, 

followed by a description of its evaluation step incorporating DELTA. 

Risk Evaluation Approaches 
Different decision methods are used for assessment in risk analysis. 

They are typically involved in several steps to identify and evaluate 

assets, such as properties and information, and to identify and evaluate 

threats, such as fire, burglary, and industrial espionage. Such analyses 

are also carried out to verify the current protection, and to evaluate the 

effects of modifying it. 

Often, when evaluating the cost of an incident, the model requires 

numerically precise data. A main problem is that in real-life analysis it is 

often impossible for an analyst to explain the difference between closely 

proximate probabilities, for example 23% and 25%. The problem is 

emphasised by the inability to express varying reliabilities for different 

pieces of information. Which data are based on long experience, and 

which are mere guesses? In models using numerically precise 

information, this kind of expressibility is severely limited.2 The 

following three sub-sections focus on two common techniques used in 

risk evaluations and a more powerful approach, the expected cost. 

                                           
2 Methods for estimating the monetary cost of a simple incident by using numeri-

cally precise data in an expected cost model can be found in, e.g., [D90, pp.86 ff.]. 
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Point Scale Models 
One attempt to overcome the unrealistic and time-wasting assumption 

of numerically precise information is to be more imprecise, even in 

making the estimates. Broder writes: “[…] it is neither necessary nor desirable to 

make precise statements of impact and probability. The time needed for the analysis will be 

considerably reduced and its usefulness will not be decreased if impact (i) and frequency (f) 

correlations are given in factors of 10.” [B84, p.22]. Then he proposes the 

following scale:3 

Loss valuation of an incident Estimated frequency to occur 

 $10 i = 1 Once in 300 years f = 1 

 $100 i = 2 Once in 30 years  f = 2 

 $1,000 i = 3 Once in 3 years f = 3 

 $10,000 i = 4 Once in 100 days f = 4 

 $100,000 i = 5 Once in 10 days f = 5 

 $1,000,000 i = 6 Once per day f = 6 

 $10,000,000 i = 7 10 times per day f = 7 

 $100,000,000 i = 8 100 times per day f = 8  

Table B.1  Broder’s point scale 

The annualised loss expectancy is then approximated by 
  
10
3

(f+i-3)
. 

A problem with this approach is that the possible values and fre-

quencies are spaced too far apart. This can be solved by using decimal 

numbers for i and f, but then the reasoning is back where it began. 

Furthermore, an important feature of a method allowing imprecise data 

should be enabling the detection of critical variables and the study of 

what effects modifications to the given data will have. This is not least 

important when the possible values are spaced far apart. Also, a risk 

analyst using point scales is still unable to express varying degrees of 

reliability for the different pieces of information. 

                                           
3 The method was originally suggested in [C77] and is recommended to prospective 

U.S. government suppliers by NIST. 
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Risk Level Models 
One way to partially overcome the problems with point scale models is 

to allow the analyst to express the different values in non-monetary 

terms. In Sweden, for instance, a relative three-level model has been 

used for example by [H88, SAF86, W91b]. The probabilities and values 

involved (somewhat misleadingly called consequences in this approach) 

are expressed as shown in Figure B.1. Variants of the three-level model 

are also frequently used. For example, [S89–91] uses a four-level model, 

as does the Swedish SBA method [W84]. Not infrequently, even more 

rudimentary models are proposed.4 

 

Figure B.1  From [H88, p.76]. 

The risk level is a function of the sum (not product) PV = probability + 

value. If PV  {2}, the risk level is 1, if PV  {3,4}, the risk level is 2, 

and if PV  {5,6}, the risk level is 3. A major problem with this ap-

proach is that the categories are too wide, with no discrimination within 

them. Therefore, most risks evaluate to risk level 2 with no indication of 

                                           
4 Many practitioners have abandoned the concept of probability altogether. For 

instance, insurance advisors often find it too hard to make estimates of the 

frequencies of accidents because of low levels of repetition, and they sometimes 

erroneously draw the conclusion that all kinds of probability based reasoning should 

be avoided. For example, in [G92b] a five-level model without probabilities is 

suggested and in [ESF91] probabilities are also ignored. 
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how to order the risks within that level. A competent risk analyst is 

capable of differentiating between disastrous, unacceptable, and accept-

able risks without the aid of decision tools. The problem is to decide 

the order and the extent of the reduction needs of different unac-

ceptable risks. Hence, when the risk situation is obvious, there is little 

need for a model, and when it is not, the models offer little help. 

Expected Cost Models 
The choice of the formula above for evaluation seems peculiar, and it is 

obvious that what results from it differs from evaluations using the 

expected value, which can be formulated in risk analysis terms as 

follows. The first definition covers the costs of actions, and below costs 

of incidents are defined as well. They differ conceptually as in the 

former the probabilities refer to possible incidents following actions, 

while in the latter the probabilities refer to possible effects of an 

incident. Example B.2 below uses expected cost in the first sense. 

Definition B.1:  An action Ai may result in a number of possible 

incidents {Hi1,…,Hin}. The expected cost of an action Ai can be 

expressed as pi1·ci1 +…+ pin·cin, where cik denotes the cost of 

the incident Hik, and pik denotes the probability of Hik 

occurring given that action Ai is taken. 

In a corresponding way, the definitions can be expressed in terms of 

incident costs instead and the expected cost should be minimised. 

When analysing the consequences of an incident, not only monetary 

costs are of interest. Thus, the concept of cost will be used in a more 

general sense, including both quantitative and qualitative values. Utilities 

could have been used instead, but in this context, cost is a more natural 

concept than utility. Note that monetary cost is a special case of cost.  

The first pure risk concept to be considered is simple incidents 

(resulting in only direct consequences), which then will be extended to 

incidents (resulting in both direct consequences and new incidents). 
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Definition B.2:  A simple incident Hi has a number of possible 

consequences {Ci1,…,Cin}. The expected cost of a simple incident Hi 

can be expressed as pi1·ci1 +…+ pin·cin, where cik denotes the 

cost of the consequence Cik, and pik denotes the probability of 

Cik occurring given that the incident Hi occurs. 

It is possible to generalise the description of a simple incident resulting 

in a set of consequences. The new description allows an incident to 

generate both new incidents and consequences, which in turn can 

generate even more incidents and consequences, see Figure B.2. The 

H’s in the figure denote incidents, and the C’s different consequences. 

The P’s denote the probabilities involved.  

 

Figure B.2  An extended consequence analysis 

Now, the definition of expected cost is extended. Note that in the 

following definitions, an incident is formally a set of consequences and 

incidents. 

Definition B.3:  A set of incidents and simple incidents 
{H1,…,Hr} is an incident. The expected cost of an incident {H1,…,Hr} 

is expressed by the formula Ei = pi1·E1 +…+ pir·Er, where Ek 

denotes the expected cost of the incident (or simple incident) 
Hk, and pik denotes the probability of the incident Hk given Hi. 
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Example B.1: Consider Figure B.2.5 The incident H5 can result in 

C8 and C9, and only these. Hence, H5 is a simple incident, and the 

expected cost of it is equal to p8·E8 + p9·E9. The incident H2 gener-

ates a new incident H5 and can also result in C4. The expected cost 

of the incident H2 is therefore equal to p4·E4 + p5·E5. E4 is the cost 

of the simple incident consisting of the single consequence C4, and 

E5 (= p8·E8 + p9·E9) is the expected cost of the simple incident 

H5.  

The discussion about evaluation below is based on a one-level descrip-

tion, i.e., an incident does not generate new incidents. This does not 

cause any real restriction, because as mentioned in Chapter 1, a multi-

level tree problem (where an incident generates new incidents) can 

always be transformed into a one-level problem. Before the evaluation, 

the next section presents the method in general. 

The DEEP Method 
This section describes the DEEP method and how it may be used to 

evaluate the effects of different actions to prevent possible incidents. By 

using the method, it is easier to realise which threats are the most 

important to handle and what effects will follow from the treatments. It 

is also important that the method can be adjusted to the risk policies of 

the specific companies using it. 

Nine Risk Analysis Steps 
The DEEP method is a systematic model for risk analysis using sophis-

ticated methods for calculating in which order different threats should 

be handled as well as comparing different actions to each other. The 

analysis method is divided into nine steps. 

An overview of the process is pictured in Figure B.3. The numbers 

in the figure relate to the steps in DEEP. 

                                           
5 For clarity, the indices have been simplified in the example. 
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2 3 4 5 6 71 8 9

 

Figure B.3  The DEEP steps 

The nine steps follow naturally after each other and comprise every-

thing from investigating possible incidents to sensitivity analysis of the 

risk analysis. In every step, the results are documented in order to be 

able to easily return for a renewed analysis should the preconditions for 

the original analysis have been partially changed. Steps 1–3 and 8–9 are 

discussed only superficially, as this part of the thesis deals with 

applications of computational decision analysis and not risk analysis per 

se. The first three steps aim at providing a picture of the current risk 

exposure of the organisation under analysis. 

1. Scope Analysis 

When a risk analysis is planned, it is important to state clear goals for 

the analysis and delimit its scope. Seldom an entire corporation is to be 

analysed at the same time, and Step 1 includes dividing the analysis into 

suitable parts and risk areas. A decision is often made only to handle 

pure losses, incidents that only generate costs since then it is easier to 

apply rational decision processes.6 

2. Possible Damage 

The second step in DEEP is to closer examine those parts of the company 

or organisation that are included in the analysis. Which incidents may 

occur? Which other incidents may follow as a result of primary damage? 

To what extent will the production process be interrupted? It is 

important to systematically identify all potential objects in danger of 

being damaged and all events that lead to damage to property, 

                                           
6 The other option would be to include risks that could result in incomes as well, so 

called business risks. 
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personnel, process interruption, liabilities, etc – not only the results of 

an incident. 

3. Current Protection 

Ensuing that, it is natural to closely study the current protection. It 

consists of both direct protection and indirect protection in the form of 

insurance. Typical questions in Step 3 include: Is the protection level 

sufficient? What happens if the protection devices do not work as 

expected? Which is the appropriate balance between direct protection 

and insurance? The third step is concluded by investigating possible 

treatments. For every possible incident that has been identified, some 

alternative protections are listed. They should be at least two – keeping 

the current protection and improving it in some way. Often, there is 

more than one way of reducing the risk, and those alternatives differ 

with respect to costs and effects. For example, spreading the risk can be 

done in several ways, physically by changing the flow of work and 

goods or monetarily by increasing the level of insurance. Another 

example is reducing the risk, either by pre-incident actions (which 

decrease the probability of an incident occurring) or by post-incident 

actions (which decrease the cost of an incident that has already 

occurred).  

4. Probabilities 

The next two steps contain statements of probabilities and costs. For all 

alternative actions, the probabilities for the possible incident and the 

cost (or value) for the damage given that action are stated. This is done 

relative to the list of possible actions from the previous step. Step 4 

contains estimates of probability. To perform a reasonable risk analysis, 

it is necessary to estimate the frequencies of possible incidents. 

Sometimes, the frequency data available is sufficient, but in many cases 

the analyst must rely on more or less well-founded estimates. 
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5. Costs 

In the same manner, Step 5 contains the estimation of costs. This 

includes protection costs as well as costs incurred from damages. The 

costs can be expressed directly in monetary values or in some other 

appropriate scale. In those two steps, it is not unusual to find that the 

information available is insufficient and a supplementary investigation 

has to be made in order to achieve reasonable results. In these steps, it 

may even turn out that the problem has been structured in an unsuitable 

way, and that the terms of reference for the analysis have to be revised. 

6. Evaluation 

When all incidents have been identified and valued, it is time in Step 6 to 

evaluate the alternative actions. Such an evaluation can be made with 

respect to different principles, for example minimising the expected 

loss. An important feature of the evaluation step is the ability to exclude 

acceptable risks from further evaluation with the aid of threshold 

levels.7 If the potential cost for a specific risk is below the policy level of 

top management, it may be classified as acceptable and no more resour-

ces need to be used for further analysis of the accompanying threats. 

7. Sensitivity Analysis 

Even a thorough analysis may have much to gain from being subject to 

a sensitivity analysis, which is the purpose of Step 7. In this step, the 

probabilities and costs are altered in order to study the stability of the 

results. When the numbers are altered, the evaluation result will possibly 

change as well. Exactly where this occurs is interesting, because it 

indicates which input data is critical to the conclusions drawn. Those 

should be studied more closely since they help indicate the better use of 

the resources for analysis. 

                                           
7 Security levels through thresholds are described in Chapter 5 and Appendix A. 

Here, good alternatives are removed, but the reasoning involved is the same. 
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8. Implementation 

When the evaluation process is concluded, the chosen actions are 

implemented in Step 8. This step is specific to the particular organisation 

and it also includes the financing of risks remaining after the actions 

have been taken. This financing could be done by using insurances. 

9. Follow-up 

After some time has elapsed, it is important to verify the results of the 

actions. Otherwise, the actions may have resulted in the problems being 

transferred to other problem areas, and Step 9 is supposed to discover 

such problems. 

As was explained above, during the analysis it may turn out to be 

necessary to collect further information or renew discussions made 

earlier. This feedback is illustrated by backward pointing arrows in the 

process in Figure B.3. 

Evaluation in DEEP 
When evaluating information from a consequence analysis, risk analysts 

using DEEP may use a formula expressing the expected cost of an 

incident, and this section demonstrates how the DELTA method can be 

modified to evaluate the expected cost in the same manner as the 

expected value is handled in Chapters 4–6. 

A set of simple incidents is treated simultaneously since much can be 

gained from studying several interrelated incidents at the same time. 

The representation of probabilities is not considered here, since it is the 

same as in the original DELTA method of Chapter 4. The representation 

of costs is considered instead, the interpretations of admissible 

statements are formalised, and this is described for four types of 

possible cost statements. 

1. The cost of the incident Hij equals m, is at least m. 

Example: The cost of Hij is greater than m. 
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Translation: cij  [m+1, m+1] 

2. The cost of the incident Hij is between some real numbers. 

Example: The cost of Hij is between k1 and k2. 

Translation: cij  [k1–1, k2+1] 

3. The incident Hij is as expensive as incident Hik, more expensive than 

incident Hik, the cost of incident Hij is approximately equal to the 

cost of incident Hik. 

Example: The incident Hij is as expensive as incident Hik. 

Translation: cij – cik  [–2, +2] 

4. The difference in cost between Hij and Hik is not less than the 

difference in cost between Him and Hin.8 

Translation: (cij – cik) – (cim – cin)  [m+1, m+1] 

The important point is that statements as above are translated into a 

system of linear inequalities that make them easy to handle in the 

DELTA method. If a risk analyst still is averse to the use of qualitative 

statements, he may use only interval statements instead. 

The conjunction of expressions of the four types above is called the 

cost base K. The probability base and the cost base are linear systems and 

together constitute the risk frame C,P,K. Evaluating a risk frame is 

mathematically equivalent to the evaluation of decision frames in 

Chapters 5–6. Hence, this appendix will not discuss those procedures 

but rather conclude with an example to illustrate the method. 

Evaluation Example 
The following example is supposed to show how the DEEP method 

works in steps 4–7. The much simplified numerical example concerns 

one burglary event during a given period and the estimates are 

imprecise. The purpose is to illustrate that the method can facilitate an 

                                           
8 For simplicity, assume that the cost of Hij is greater than the cost of Hik and that 

the cost of Him is greater than the cost of Hin. 
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assessment as to which protective measures are reasonable even though 

only imprecise information is available. 

Example B.2:  A company desires to decrease its exposure to risk 

by installing more protective equipment and mechanisms at a certain 

production facility. The tax deduction period for such equipment is 

five years, and thus the analysis below is based on estimates of 

probability for a five year period. 

First, the possible damages for the period are assessed. The assess-

ment results in the following possible incident list. 

H1 No burglary attempts 

H2 All burglary attempts fail 

H3 A burglary succeeds 

Table B.2  Incident list 

The existing protective equipment is assessed and possible actions 

are listed. This list contains three possible alternative acts. 

A1 Keep the current protection 

A2 Add the improvements recommended by the insurance company 

A3 Additionally install more functionality as recommended by an 

independent security consultant 

Table B.3  Action list 

After that, an analysis commences which gives the following coarse 

estimates for the probabilities and costs for possible damages with 

respect to the different available courses of action. The costs listed 

include purchase costs for the equipment and costs for events that 

occurred. 

Probabilities No attempts All attempts fail Burglary 

A1 – Current protection 20–50% 10–20 % 30–60 % 

A2 – Insurance company 30–50% 20–50 % 15–30 % 

A3 – Ins.comp. + consultant 35–55% 30–60 % 10–20 % 

Costs ($ million) No attempts All attempts fail Burglary 

A1 – Current protection 0 0.1–0.3 2.5–6.5 

A2 – Insurance company 0.6–0.8 0.8–1.2 3.3–7.5 

A3 – Ins.comp. + consultant 2.2–2.6 2.4–3.1 5.2–9.1 
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Other statements 

• The probability of ‘No attempts’ increases the more powerful 

protection is installed. 

• The difference in costs between ‘No attempts’ and ‘All attempts 
fail’ is small if A2 is chosen. It is estimated to be about $0.2 to 

0.4 million and is due to equipment only. 

• Also the difference in costs between ‘No attempts’ and ‘All 
attempts fail’ is small if A3 is chosen. It is estimated to be about 

$0.2 to 0.5 million. 

Table B.4  Estimated probabilities and costs 

In this example, there are three incidents (H1–H3) to each of the 

three courses of action – the two additional protections plus keep-

ing the current protection level during the period. 

p11  [20%,50%] c11  [0.00,0.00] p11 < p21 < p31 

p12  [10%,20%] c12  [0.01,0.03] p12 < p22 < p32 

p13  [30%,60%] c13  [0.25,0.65] c22 -- c21  [0.02,0.04] 

p21  [30%,50%] c21  [0.06,0.08] c32 -- c31  [0.02,0.05] 

p22  [20%,50%] c22  [0.08,0.12] 

p23  [15%,30%] c23  [0.33,0.75] 

p31  [35%,55%] c31  [0.22,0.26] 

p32  [30%,60%] c32  [0.24,0.31] 

p33  [10%,20%] c33  [0.52,0.91] 

Table B.5  Translated probabilities and costs 

The costs have been transformed into the interval [0,1] by choosing 

the cost scale to be $0–10 million. Now the evaluations can be 

carried out, using the machinery of Chapters 5–6. It is done by 

calculating the expected cost and expressing it as an interval. The 

upper bound of the interval is the maximum expected cost, and the 

lower bound of the interval is the minimum expected cost. 

Probability hull      Symmetry hull 

P1.1 = [0.200,0.500]  [0.243,0.500] 

P1.2 = [0.100,0.200]  [0.114,0.200] 

P1.3 = [0.300,0.600]  [0.343,0.600] 

P2.1 = [0.300,0.500]  [0.315,0.500] 

P2.2 = [0.200,0.500]  [0.223,0.500] 

P2.3 = [0.150,0.300]  [0.162,0.300] 

P3.1 = [0.350,0.550]  [0.350,0.532] 

P3.2 = [0.300,0.550]  [0.300,0.527] 

P3.3 = [0.100,0.200]  [0.100,0.191] 
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Value hull 

V1.1 = [0.000,0.000] 

V1.2 = [0.010,0.030] 

V1.3 = [0.250,0.650] 

V2.1 = [0.060,0.080] 

V2.2 = [0.080,0.120] 

V2.3 = [0.330,0.750] 

V3.1 = [0.220,0.260] 

V3.2 = [0.240,0.310] 

V3.3 = [0.520,0.910] 

 

Focal point 

Cons.    P      V 

C1.1:  0.371  0.000 

C1.2:  0.157  0.020 

C1.3:  0.471  0.450 

C2.1:  0.408  0.070 

C2.2:  0.362  0.100 

C2.3:  0.231  0.540 

C3.1:  0.441  0.240 

C3.2:  0.414  0.275 

C3.3:  0.145  0.715 

For the actions A1, A2 and A3 above expressions for the expected 

costs are obtained. These are denoted E1, E2, and E3 respectively. 

For each action, both minimal and maximal expected costs have 

been calculated. 

min E1 = 0.087 

min E2 = 0.110 

min E3 = 0.257 

max E1 = 0.395 

max E2 = 0.296 

max E3 = 0.407 

Table B.6  Expected costs 

This means that the expected cost if action A1 is chosen is in the 

interval $870,000 to $3,950,000. In the same way, the expected costs 

if actions A2 or A3 are chosen are in the intervals from $1,100,000 to 

$2,960,000 and $2,570,000 to $4,070,000 respectively. Note that 

these intervals are overlapping, and it seems hard to determine 

which action to choose based on those numbers only. Further 

analysis is required. 
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By contracting the estimates, the relationships among the three 

courses of action can be studied. One way is to study how the max-

imal and minimal expected costs behave under contraction. For a 

specific course of action to be better, it should have lower costs in 

the columns of Table B.7. Therefore, from the table it can be seen 
that action A3, adding extra equipment as suggested by the security 

consultant, is more and more becoming the worst action the more 
the intervals are contracted. The overlap between A1 and A2 

remains, however, and further analysis is necessary. 

 0% 20% 40% 60% 80% 

min E1 0.087 0.109 0.132 0.158 0.186 

min E2 0.110 0.124 0.139 0.154 0.171 

min E3 0.257 0.269 0.282 0.295 0.309 

max E1 0.395 0.355 0.317 0.281 0.247 

max E2 0.296 0.273 0.250 0.229 0.208 

max E3 0.407 0.389 0.372 0.355 0.339 

Table B.7  Minimal and maximal expected costs 

Figures B.4–B.6 are graphic representations of the table. 
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The first evaluation was based on independent evaluation of the 

alternatives. The main evaluation using ∆-dominance is the next step 

in the DEEP evaluation. To be able to study the differences more 

clearly, pairwise comparisons are carried out. The results for string 

and weak dominance are presented in Table B.8 and illustrated in 

the three comparative graphs in Figures B.7–B.9. The table shows 

the smallest and largest difference between the courses of action. It 
can now more clearly be seen that action A3 is inferior in that it is 

strongly NE-dominated because fairly early in the contraction 

process it receives positive differences, meaning it is more expensive 

than the others. 

 0% 20% 40% 60% 80% 

min (E1-E2) -0.201 -0.160 -0.115 -0.069 -0.023 

min (E1-E3) -0.314 -0.276 -0.237 -0.197 -0.153 

min (E2-E3) -0.274 -0.246 -0.220 -0.196 -0.168 

max (E1-E2) 0.284 0.231 0.178 0.127 0.076 

max (E1-E3) 0.137 0.085 0.035 -0.014 -0.062 

max (E2-E3) 0.038 0.002 -0.033 -0.067 -0.101 

Table B.8  Pairwise comparisons between the alternatives 
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To be able to discriminate between actions A1 and A2, further sensi-

tivity analysis is recommended, for example by contracting subsets of 

intervals, not all at the same time. This will not be carried out here, 

since the purpose of the example is to give an impression of how 

DEEP can evaluate risk information. Possibly, more information is 

needed about the two courses of action that remain. Especially the 

estimates of the probabilities when burglary attempts fail are critical. 

If, after further analysis, it is not possible to obtain more conclusive 

indications, then it is an indication that the actions are indeed very 

similar relative to the model data. Then other activities, like 

contacting more equipment vendors or other insurance companies 

might help. 

This concludes the evaluation example and the description of the DEEP 

method as well. A longer description can be found in [DEE96]. 
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Every year is getting shorter 

Never seem to find the time 

Plans that either come to naught 

Or half a page of scribbled lines 

Far away across the field 

The tolling of the iron bell 

Calls the faithful to their knees 

To hear the softly spoken magic spells 

 – R. Waters 
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