

 © 2016 Mats Danielson

Common-Sense Thinking and Programming Skills

Mats Danielson1,2

1 Dept. of Computer and Systems Sciences, Stockholm University

PO Box 7003, SE-164 07 Kista, Sweden

mats.danielson@su.se
2 International Institute for Applied Systems Analysis, IIASA

Schlossplatz 1, AT-2361 Laxenburg, Austria

Abstract: Why do some individuals excel at programming while others, despite high intelligence or

formal training, struggle? This paper argues that the key differentiator lies not in traditional academic

metrics but in a general-purpose cognitive capacity termed common-sense thinking (CST). Defined as

adaptive, intuitive, and context-sensitive reasoning, CST enables individuals to apply sound judgement

and flexible problem-solving strategies in real-world situations. Drawing from psychology, cognitive

science, and programming literature, the paper develops a theoretical model connecting CST with pro-

gramming proficiency. It contrasts CST with computational thinking, the structured reasoning taught in

formal computer science education, and highlights the necessity of both for effective software develop-

ment. Empirical and anecdotal evidence, ranging from research on programming novices, expert de-

bugging behaviours, and performance disparities, to industry trends favouring self-taught developers,

supports the hypothesis that CST is a primary enabler of programming talent. The paper critiques the

limitations of IQ, mathematical training, and formal CS curricula in predicting programming success,

showing that many high-IQ individuals lack the practical reasoning needed to handle the ambiguity and

decision-making inherent in real coding tasks. Conversely, individuals with strong CST, regardless of

academic background, often thrive by relying on experiential heuristics and adaptive judgement. By

suggesting CST as foundational to programming expertise, this article complements prevailing assump-

tions, emphasising cognitive flexibility, practical intelligence, and real-world engagement over purely

analytical measures. The findings have clear implications for computer science education.

Keywords: Common-sense thinking, Programming skills, Cognitive flexibility, Computational thinking,

Problem solving, Practical intelligence, Coding aptitude, Computer science education

Introduction

Why are some individuals great software developers while others with similar interests, IQs

and training struggle to write effective code? This question has long puzzled educators in the

computing field. Academic institutions, as well as what can be considered conventional wis-

dom, often emphasise analytical intelligence and formal education in computer science as the

key ingredients for programming success. Yet, striking counterexamples abound: mathemati-

cally brilliant minds often struggle with practical coding tasks, and numerous self-taught pro-

grammers without advanced degrees have achieved outstanding feats in software development.

These observations suggest that another cognitive factor, often colloquially termed common

sense, plays a pivotal role. We suggest that individuals who become highly skilled programmers

typically exhibit high levels of common-sense thinking (CST), defined as a general-purpose

capacity for adaptive, situation-sensitive, non-formal reasoning and sound judgement. In other

words, beyond raw analytical prowess, it is one’s practical reasoning ability and intuitive grasp

of real-world complexities that may predict programming excellence.

This article develops a comprehensive theoretical model to explain why CST should be con-

sidered a core enabler of programming expertise. We draw on psychological literature on rea-

soning, practical intelligence, and cognitive flexibility, and on computer science literature about

software craftsmanship, coding practice, and programmer cognition. In the first half, we delin-

eate the concept of CST and its components, situating it within established frameworks such as

dual-process theories of thought, Sternberg’s triarchic intelligence model, and the notion of

Common-Sense Thinking and Programming Skills Page 2 of 24

computational thinking. We argue that programming as a problem-solving activity inherently

demands the kind of adaptable, context-aware reasoning that CST provides. In the second half,

we examine empirical, conceptual, and circumstantial evidence for the hypothesis. We explore

why high-IQ individuals (including those with strong mathematical backgrounds) may under-

perform in programming relative to high-CST individuals, why extended formal education in

computer science does not guarantee programming skills (although it does not hurt), and why

self-taught programmers sometimes excel. We integrate insights from research findings, histor-

ical examples, and industry observations. From the success of software craftsmanship ap-

proaches to studies of novice programmers, to substantiate the claim that CST is a decisive

factor in programming talent. By using perspectives from both software development and psy-

chology, we aim to show that common-sense thinking is a foundational cognitive ability that

underlies much of effective coding practice.

Common-Sense Thinking

At its core, common-sense thinking (CST) refers to the dynamic, situation-responsive applica-

tion of ordinary reasoning and intuitive judgement to solve problems in real-life contexts. It

goes beyond the mere possession of common knowledge. Instead, CST is about how one flex-

ibly uses experience and intuition. In simple terms, CST entails using sound, prudent judgement

based on a direct perception of a situation, often informed by experience rather than formal

rules. For example, knowing not to touch a hot stove or to save money for a rainy day does not

require advanced education; it stems from basic experiential learning. However, CST is more

than just these static common-sense facts; it involves actively thinking through everyday prob-

lems in an adaptive manner.

It is important to distinguish CST from raw academic intelligence. Someone may have an

extensive store of factual knowledge or excel at abstract logic, yet lack common sense in ap-

plying that knowledge wisely. High IQ or subject-matter expertise does not guarantee practical

judgement. Common-sense reasoning tends to be contextual, experience-guided, and prag-

matic, rather than purely abstract or formal. It deals with the nuances of everyday life’s require-

ments, the kind of unstructured problems and situational decisions that textbooks often gloss

over. In the programming domain, having theoretical knowledge (for example knowing algo-

rithms or Big-O complexity) is undeniably valuable, but CST governs the ability to apply that

knowledge appropriately. For instance, deciding when a simple, well-understood solution is

better than an optimised but convoluted one, or intuitively foreseeing how a user might actually

interact with a software feature.

Another way to frame CST is as a mix of cognitive skills working in concert. CST draws on

executive functions (like planning and cognitive flexibility), on rational thinking (the propen-

sity to think logically when it matters), and on both fluid and crystallised intelligence. We can

see CST as a composite mental ability: part practical knowledge, part flexible problem-solving

ability, part self-regulation of thought. This ability allows individuals to navigate situations that

do not come with clear instructions. In essence, CST bridges intuitive insight and deliberate

analysis. It thrives on experience in learning from what has worked or failed in the past, yet

remains open to novel solutions when faced with new problems.

Thus, CST is a general-purpose cognitive capacity for making sound decisions and solving

problems in real-world, variable contexts. It relies on intuitive judgement honed by experience,

but remains adaptable and reflective. As we move to connect this concept with programming,

Common-Sense Thinking and Programming Skills Page 3 of 24

an initial intuition emerges: writing good software is an endeavour that often involves ill-de-

fined problems, continual decision-making, and learning from feedback, precisely the sort of

activity where CST would prove invaluable. Before developing that connection fully, we go

deeper into the psychological foundations of CST to understand why it might be a decisive

factor in something as ostensibly logical as programming.

Practical Intelligence and Tacit Knowledge

The idea that common sense is distinct from academic intelligence has strong support in cogni-

tive psychology, notably in Robert Sternberg’s work on practical intelligence. Sternberg’s tri-

archic theory of intelligence divides intelligence into three facets: analytical, creative, and prac-

tical. While analytical intelligence aligns closely with the abilities measured by IQ tests (logical

reasoning and abstract analysis) and creative intelligence involves innovation and imagination,

practical intelligence corresponds to the ability to apply knowledge in real-world contexts, es-

sentially to have common sense in achieving one’s goals. Sternberg defines practical intelli-

gence as the ability to adapt to, shape, or select environments to meet one’s goals, and it in-

volves applying knowledge to real contexts, often measured through tacit knowledge and situ-

ational judgement tests. Sternberg and Wagner’s studies (1986) have demonstrated that practi-

cal intelligence is distinct from analytical IQ. One can excel in academic problem-solving yet

falter in practical situations, and vice versa.

Research has shown that practical intelligence (as measured by tacit knowledge, the informal

know-how gained from experience) can be a better predictor of real-world success in certain

domains than conventional IQ scores. For example, in studies of business managers, responses

to scenarios requiring practical judgement (e.g. the best way to handle a problematic employee)

predicted managerial success more strongly than did IQ. Likewise, in educational settings,

Sternberg found that testing students with practical problems can identify talents that standard

analytical tests miss. In effect, practical intelligence emerges as a psychological cousin to com-

mon sense. It formalises the notion of common sense into a measurable set of skills for solving

real-world problems (wisdom-in-action).

Translating this to programming, such tasks often present as real-world problem-solving

scenarios rather than abstract puzzles. A good computer science student might be good at algo-

rithm theory (analytical intelligence) but struggle to write a well-designed piece of software or

to design a user-friendly interface if they lack the practical intuition for how real systems fail

or how real users behave. In contrast, a practitioner with high practical intelligence, say a self-

taught coder, might quickly produce an effective solution when faced with a new coding chal-

lenge, drawing on analogous past experiences and a keen sense of what will work in practice.

This aligns with Sternberg’s assertion that tacit knowledge often underlies success. Knowing

how and when to apply knowledge is as important as the knowledge itself. Indeed, practical

intelligence in programming could be seen in one’s capacity to troubleshoot problems under

constraints, to adapt code from known patterns, or to judiciously choose simple solutions over

complex ones based on an intuitive cost-benefit judgement.

Another related construct is adaptive expertise, which complements this discussion. While

not from Sternberg per se, the concept of adaptive expertise in educational psychology distin-

guishes between routine experts (who excel in efficiency at familiar tasks) and adaptive experts

(who can handle novel problems by flexibly learning and innovating). High CST individuals

are akin to adaptive experts. They possess the cognitive flexibility to adjust strategies when

facing a new situation. Good programmers often exhibit adaptive expertise: when a familiar

Common-Sense Thinking and Programming Skills Page 4 of 24

approach fails, they nimbly try alternative methods or reframe the problem, rather than being

stuck. This flexibility is grounded in practical reasoning. A programmer with adaptive, com-

mon-sense thinking might say: If I cannot solve this bug directly, perhaps I can break the prob-

lem down or replicate it in a simpler scenario, echoing Polya’s heuristic that if you cannot solve

a problem, then there is an easier problem you can solve instead. In fact, Pólya’s principles

(1945) for problem-solving (originally for mathematics) are compatible with guidelines for

practical intelligence and CST at work. Pólya advocated understanding the problem deeply,

devising a plan, checking the result, and importantly, if stuck, finding a similar, simpler problem

to get insight. These heuristics, to draw analogies to past problems, restate the problem and

solve a part of it first, are strategies any seasoned programmer will recognise. They are not

formulaic, but rather common-sense approaches to overcoming hurdles. A coder with high CST

will naturally employ such strategies, whereas a more rigid thinker might insist on more formal

approaches even when those are not yielding any progress.

Sternberg’s work also highlights the role of tacit knowledge, the unspoken, experience-based

know-how, in practical intelligence. In programming, tacit knowledge might include an intui-

tive feel for code readability, a sense of which algorithmic approach usually works best for a

type of task, or knowing the typical pitfalls in a certain programming language. Such knowledge

is rarely taught explicitly in school; it is gained through hands-on practice and exposure to many

examples. It is, in effect, the common sense of the programming world. Software craftsmanship

literature often speaks of the craft knowledge that expert programmers accumulate, which is

often not fully captured in textbooks or formal methods. For instance, experienced developers

learn idiomatic patterns that prevent errors and promote clarity, a form of tacit knowledge that

guides their day-to-day decisions in coding. This practical know-how can distinguish a skilled

programmer from a novice as much as, if not more than, their understanding of computer sci-

ence theory.

The distinction between analytical intelligence and practical intelligence maps onto the dis-

tinction between formal problem-solving ability and common-sense reasoning. Programming

is a domain that demands both, but evidence suggests that the practical side (CST) is important

for actually getting things done in real programming tasks. An individual high in CST will

effectively leverage tacit knowledge, adapt to new challenges, and apply wisdom gleaned from

experience, all of which greatly facilitate programming work. Meanwhile, someone may have

high analytical prowess but, if low in CST, might overthink simple tasks, misjudge what a

problem requires in practice, or fail to learn from past mistakes. This idea will be further rein-

forced when we examine evidence of high-IQ individuals struggling with programming. First,

we turn to another facet of CST: rational thinking and the avoidance of cognitive biases, which

further differentiates common sense from raw intellect.

Rationality and Heuristics

Common-sense thinking is closely tied to what Stanovich calls rational thinking (2009). Sta-

novich has extensively argued that standard intelligence (which he equates with the brain’s

algorithmic processing power) is not the same as rationality, the ability and disposition to think

logically and make decisions that align with one’s goals in real-world contexts. In Stanovich’s

view, many smart people suffer from what he terms dysrationalia: the failure to behave ration-

ally despite having adequate intelligence. Dysrationalia is essentially a lack of common sense,

a disconnect between one’s cognitive capacity and one’s practical reasoning in everyday situa-

tions. For example, an individual might excel at abstract algebra yet consistently make poor

Common-Sense Thinking and Programming Skills Page 5 of 24

financial decisions or fall for bogus schemes, indicating a deficit in rational judgement. Sta-

novich’s research has shown that many people with high IQs nonetheless perform poorly on

tests of reflective reasoning, such as the Cognitive Reflection Test, which assesses whether a

person can override an intuitive but wrong answer with deliberation. Intriguingly, these tests

reveal that intelligent people often miss obvious considerations in a rush to intuitive answers.

In other words, they can lack the common-sense checkpoint that flags if a result seems too

obvious and needs double-checking. To quantify this, Stanovich proposed a Rationality Quo-

tient (RQ) to complement IQ, effectively measuring the quality of one’s common-sense reason-

ing and decision-making.

How does this apply to programming expertise? Programming frequently requires rational

thinking in Stanovich’s sense. One must avoid cognitive biases and illogical leaps when de-

signing software. A classic example is the need for a developer to test their assumptions. A

common cognitive pitfall is the confirmation bias (seeing only evidence that supports your be-

lief). A programmer with high CST (and thus high rationality) is more likely to catch themselves

and thoroughly test a scenario, rather than assume their code is correct without proof. On the

other hand, an intelligent but theoretically overloaded programmer might go ahead with a com-

plex design without checking feasibility, a clever-silly approach that backfires when real-world

constraints emerge. The term clever sillies was coined by Charlton (2009) to describe high-IQ

individuals who are surprisingly deficient in common sense. Charlton observed that extremely

analytical people can fall into the trap of overusing abstract reasoning even when a simple,

common-sense solution is more appropriate. He suggested that an increasing relative level of

IQ brings with it a tendency to override instinctive and spontaneous forms of evolved behav-

iour, which could be termed common sense. In effect, very brainy programmers may trust their

elaborate reasoning so much that they dismiss basic intuitive judgement, sometimes leading to

silly program functions that an average person would have avoided. Charlton gives the example

of social situations: highly intelligent people might consider theoretical knowledge for social

problems and propose solutions that are actually maladaptive, whereas an average person’s

evolved common sense would have guided them to a more practical solution. Translating this

to software: a mathematically educated programmer might engineer an overly complex, theo-

retically optimal solution for a simple problem, a solution that impresses in abstraction but fails

in practicality, perhaps because it is too brittle or too hard for others to understand. Meanwhile,

a programmer with better common sense might choose a simpler, well-trodden design that gets

the job done reliably. The clever solution can turn out to be the foolish one in context, if it

ignores domain-specific adaptive behaviours that common sense would dictate.

Empirical research reinforces the point that rational common sense is an independent cogni-

tive domain that matters greatly. Stanovich’s studies found that rational thinking skills (like

avoiding framing effects, correctly applying probabilistic reasoning, etc.) do not strongly cor-

relate with IQ. Thus, it is quite possible to have top-notch formal intelligence yet consistently

make poor decisions or reasoning errors in everyday or applied settings. Programming, as both

a common-sense and a creative endeavour, poses many decisions that are not straightforwardly

answered by formal logic or calculation. One must decide how to allocate effort (is it worth

optimising this code, or is it good enough?), how to interpret ambiguous requirements, or how

to prioritise which bug to fix first. All these require judgement calls under uncertainty. High

CST programmers excel at these judgement calls; they deploy a combination of learned heuris-

tics and reflective thought to steer projects effectively, whereas low-CST programmers might

either make impulsive decisions or overanalyse without action, missing the common sense.

Common-Sense Thinking and Programming Skills Page 6 of 24

It is also worth discussing the role of heuristics in common-sense reasoning. Gigerenzer and

colleagues (1999) have argued that simple cognitive heuristics can be surprisingly effective,

characterising them as fast-and-frugal methods that often outperform complex deliberation in

real-world conditions. For instance, a heuristic like if a solution feels too complicated, try a

simpler approach first is not logically guaranteed to succeed, but experienced problem-solvers

know that it often yields good results in practice. These heuristics are essentially distilled com-

mon sense. In programming, expert developers rely on many such heuristics, for example sus-

pect the simplest cause of the bug before imagining exotic ones. Such rules of thumb encapsu-

late practical wisdom. Gigerenzer’s research showed that heuristics can exploit the structure of

environments to make decision-making more robust and efficient than an impractically exhaus-

tive analysis. A high-CST programmer has a rich repertoire of these experientially validated

heuristics, and importantly, the judgement to know when each applies. By contrast, a less

grounded programmer might either rely on a single method for every problem or attempt a full

formal analysis of every decision, either extreme being suboptimal. As common sense aligns

with this kind of rough-and-ready reasoning that is not rigorously optimal but works well in

typical situations, it complements analytical thinking by guiding it within the bounds of practi-

cality.

In sum, rational common sense is about doing the cognitively right thing in a given context,

not just the smart thing in the abstract. It means noticing obvious cues, avoiding needlessly

contrived solutions, and being aware of one’s cognitive biases. A programmer with strong CST

will avoid the pitfall of being clever-silly. They will not let a predisposition for complexity or

an elegant theory override the empirical feedback their code is giving them. They will use heu-

ristics to navigate complex design spaces effectively and will know when to switch from intui-

tive mode to a more rigorous mode of thought. All these abilities directly enhance programming

performance by preventing errors in judgement that could lead to project failures or intermina-

ble debugging sessions. Next, we examine another aspect of cognition that underlies CST: cog-

nitive flexibility and the capacity to adapt one’s thinking, an important skill for a domain as

dynamic as software development.

Cognitive Flexibility and Adaptive Reasoning

A key element of common-sense thinking is cognitive flexibility, the ability to shift thinking

strategies, consider multiple perspectives, and adapt to changing conditions. In psychology,

cognitive flexibility is often discussed as part of executive functions (which also include work-

ing memory and inhibitory control). It enables someone to think outside the box or simply to

recognise when a habitual approach is not working and to try something different. In everyday

terms, this is the aspect of common sense that stops a person from, say, stubbornly continuing

down an obviously failing path. Instead, they notice the signs and change tactics. In program-

ming, cognitive flexibility is indispensable: one might plan an implementation one way, then

realise partway through that a different approach is needed. The ability to pivot, to refactor code

or even redesign the solution when requirements change or new insights emerge, is a hallmark

of seasoned programmers and is closely tied to CST.

Imagine a scenario where a developer is using a particular library to achieve a task but keeps

encountering bugs or limitations. A rigid thinker might persist, assuming that with enough brute

force or intellectual effort, they can make it work. A more flexibly minded (high-CST) devel-

oper would more readily ask, Is there a simpler way or a different tool that avoids these issues?,

and perhaps switch to an alternative solution, saving time and frustration. This decision requires

Common-Sense Thinking and Programming Skills Page 7 of 24

not just analytical evaluation but a kind of practical meta-reasoning: recognising the point of

diminishing returns and adapting strategy. Such judgements come from experience, and one

learns warning signs and evolves heuristics such as if a bug defies all logic, consider that the

assumption about the source might be wrong. These are manifestations of cognitive flexibility

supported by common sense.

Polya’s problem-solving heuristics (1945) mentioned earlier are again illustrative. He ex-

plicitly encourages the solver to try alternate formulations of a problem or solve a related sim-

pler problem, if stuck. This is essentially advice to be cognitively flexible: do not get fixated;

be willing to change your approach. Empirical studies of expert problem-solvers (including

programmers) find that experts indeed spend more time reframing problems and considering

different strategies upfront, whereas novices often rush in one direction and get stuck. The ex-

pert’s advantage is not just greater knowledge but better self-regulation of the problem-solving

process, an ability strongly tied to CST. It is the practical intelligence of knowing when to

abandon a line of attack and try another angle.

Another concept relevant here is learning from failure, which requires a blend of humility,

reflection, and flexibility, essentially a common-sense attitude. When a piece of code fails, a

high-CST individual treats it as feedback and adjusts their understanding. They debug not just

by systematically tracing execution (analytical skills) but by intuitively suspecting likely

sources (practical heuristic) and, if wrong, quickly moving to test the next hypothesis. In con-

trast, someone without this adaptive mindset might either fail to generate new hypotheses (tun-

nel vision on one bug cause) or flail randomly. Common sense in debugging often tells us, for

example, to check recent changes first when something breaks (because experience says new

changes often introduce bugs), a simple strategy, but one that requires noticing patterns and

updating one’s approach accordingly. Cognitive flexibility also extends to stepping away from

a problem when needed, the sense to take a break, and then return with fresh eyes if not making

progress. Far from being a purely soft notion, this is a proven method to break mental fixation

and often leads to sudden insight after the incubation period.

In terms of psychological research, cognitive flexibility is known to correlate with creativity

and innovation. A programmer exercising flexibility might come up with a clever workaround

to a limitation or repurpose an existing piece of code in an unexpected way to solve a problem,

essentially creative leaps that require breaking from standard scripts. Importantly, these leaps

are often guided by intuition about what might work, and then verified logically. That interplay

of generating ideas (flexibly, even whimsically) and then checking them (analytically) is at the

heart of effective problem-solving. It echoes the dual-process interplay we discussed: an intui-

tive conjecture followed by a verification step. Baron (2008) has described good thinking as

actively open-minded, being willing to reconsider and explore alternatives, which is a fair de-

scription of cognitive flexibility in action, and an attribute of rational common sense.

In the programming literature, cognitive flexibility can be linked to the concept of abstrac-

tion skills, the ability to move up and down levels of abstraction. A strong programmer can

reason about high-level architecture (broad system design) and low-level details (like off-by-

one errors in a loop) and importantly switch between these levels fluidly as needed. This too is

a form of flexible thinking: zooming out for perspective, zooming in for specifics. It is common

sense to know that sometimes one must stop debugging line-by-line and consider the bigger

picture of why the module’s approach might be flawed, or conversely, to realise that a grand

design issue might actually manifest as a small local bug. The judgement of which level of detail

Common-Sense Thinking and Programming Skills Page 8 of 24

to focus on at a given time is guided by CST. Beginners often get lost either in too much detail

or too much big-picture dreaming; experts toggle focus deftly.

To summarise, cognitive flexibility underpins the adaptive, situation-sensitive nature of

CST. It enables programmers to adjust their approach to the unique demands of each program-

ming task, rather than rigidly applying one method. This flexibility is evident in effective de-

bugging, in creative problem-solving, and in the capacity to learn and improve over time. It

shows why someone with moderate raw ability but high adaptability can outshine someone with

higher raw ability who is rigid, a theme that will recur when we discuss formal education versus

self-taught paths. The cognitively flexible, common-sense approach is essentially learning-ori-

ented: it treats each challenge as information about what strategy works. Over years of pro-

gramming, such a person amasses a wealth of practical strategies and the wisdom of when to

use them. This is the essence of CST contributing to expertise.

COT vs. CST

Before directly arguing how CST governs programming prowess, it is useful to contrast CST

with the concept of computational thinking (COT), a term popularised in computer science

education to describe the mental skills needed to formulate problems in a way that computers

can solve. Wing (2006) defines computational thinking as the process of abstraction and algo-

rithmic formulation of problems, involving methods like decomposition, pattern recognition,

abstraction, and algorithm design. In essence, COT is about thinking like a computer scientist:

taking a messy problem and expressing it in clear, computable terms (data structures, logical

steps). For instance, breaking down a task into subtasks or recognising that a new problem has

the same structure as a known problem (and thus can reuse the solution), are classic computa-

tional thinking skills. COT has been rightly championed as a fundamental skill for program-

mers, indeed, it underlies the formal education in algorithms and programming methodology.

However, our hypothesis highlights that common-sense thinking is an indispensable com-

plement to computational thinking in real programming tasks. While COT provides the formal

tools and structured methods, CST provides the contextual judgement and adaptability. One

way to frame their relationship is: computational thinking helps ensure a solution is logically

correct and efficient in theory, whereas common-sense thinking helps ensure the solution is

appropriate in practice. A person might be able to devise a very clever algorithm (COT at work),

but deciding whether the problem at hand truly needs that clever algorithm or if a simpler ap-

proach suffices is a CST question. Likewise, COT can guide one in systematically debugging

code (e.g. binary search through possible fault locations), but CST might tell the programmer

which part of the system is most likely to be at fault based on practical experience (It is probably

the new module we added last night, let’s check there first).

It is instructive to recall that computational thinking, as Wing described, involves abstrac-

tion and automation. Essentially, it teaches us to remove extraneous detail and focus on the

computational essence of a problem. Yet, when engaging with real-world software, an over-

emphasis on abstraction can sometimes lead to a disconnect from reality. This is where common

sense steps in: it reminds us of the real-world considerations that might not be captured in an

abstract model. For example, COT might lead a programmer to design a perfectly normalised

database schema (a very logical design), but common sense might suggest denormalising cer-

tain parts for performance because the real usage patterns demand it. Or COT might produce

an algorithm that is optimal in runtime complexity, but common sense raises a flag that the

Common-Sense Thinking and Programming Skills Page 9 of 24

constant factors or memory usage might actually be impractical given the environment (some-

thing a purely formal analysis might overlook if it fixates only on Big-O). In both cases, the

combination of COT and CST yields the best outcome: the solution remains computationally

sound but also pragmatically sensible.

Another contrast: computational thinking is often domain-general but context-insensitive, it

teaches one to apply the same approach to any problem (formulate, abstract, solve). Common-

sense thinking is inherently context-sensitive, it asks what is unique about this situation? A

high-CST programmer will pay attention to the context: Who is going to use this program?

What constraints are truly important (e.g. is it more important that the code runs blindingly fast,

or that it is easy to maintain)? They use that context to guide their technical decisions. This is

aligned with the software engineering saying that context is key: good programmers choose

methods and tools appropriate to the context rather than a one-size-fits-all. It is not that com-

putational thinking lacks awareness of context (indeed, part of COT is choosing appropriate

levels of abstraction), but common sense explicitly brings in real-world awareness that might

lie outside the formal problem definition. A computer will do exactly what it is told, but a

programmer needs the common sense to tell it the right thing, including handling the things the

specification did not mention.

In educational discussions, some have warned against focusing on computational thinking

to the exclusion of broader thinking skills. Our argument reinforces that: a purely COT-trained

individual might excel at coding competitions or textbook exercises (which are neatly defined),

yet struggle with an open-ended software project or ambiguous customer requirements. Those

latter situations demand what could be called computational common sense, knowing how to

deal with incomplete information, how to iteratively refine an understanding of the problem,

and how to integrate feedback. It is telling that many experienced developers say that under-

standing the problem is often harder than coding the solution. Common sense is important in

understanding problems: asking the right questions, clarifying assumptions, and keeping in

mind practical goals.

To be clear, computational thinking is a powerful skill set and certainly part of what makes

a great programmer. Mastery of algorithmic thinking, pattern generalisation, recursion, etc.,

provides one with mental frameworks to tackle coding problems methodically. We claim that

in addition to those, one needs the less formal, more experience-driven reasoning ability, CST,

to excel in practice. Empirical support for this combined requirement can be seen in the hiring

practices of tech companies: they often test for CS fundamentals (reflecting COT) but also pose

open-ended design questions or scenario-based questions to gauge practical judgement. The

latter is essentially testing a candidate’s CST, for instance, asking how they’d design a system

under certain constraints or how they’d troubleshoot a vague issue. Pure theoretical knowledge

might not carry one through those questions without common-sense reasoning.

In bridging CST with COT, we might view programming as a bilingual mental activity: one

language is that of formal logic and computation, the other is the vernacular of real-life reason-

ing. The best programmers are fluent in both, translating back and forth. Donald Knuth, in his

1974 Turing Award lecture titled Computer Programming as an Art highlighted that program-

ming requires skills and ingenuity and produces artefacts of beauty, likening it to creative arts

like carpentry or architecture. Knuth’s use of art (from Latin ars, meaning skill) was deliberate.

He was pointing out that programming is not just applied mathematics or engineering. It also

involves craft, aesthetics, and human judgement. In other words, beyond the scientific method,

Common-Sense Thinking and Programming Skills Page 10 of 24

there is an artful, intuitive side, which we call CST. He noted that a programmer blends preci-

sion with ingenuity and combines beauty with utility and creativity with discipline. This beau-

tifully encapsulates the union of computational thinking (discipline, precision) with common-

sense thinking (ingenuity, sense of utility).

Thus, computational thinking and common-sense thinking should not be seen as competitors

but as partners in programming. COT provides the formal structures and habits of mind to deal

with complexity through abstraction; CST keeps those abstractions tethered to reality and en-

sures adaptability. A high-CST individual will make the most of computational thinking skills

by applying them in the right measure and context. Conversely, without CST, computational

thinking might be applied inappropriately or rigidly. Theoretical knowledge must be put into

service of common-sense goals and values to be meaningful. All the computational thinking in

the world is only useful if guided by the common-sense goal of delivering a working, useful

program.

Programming as a Craft

The nature of programming itself offers clues that common-sense thinking is essential to mas-

tery. There has long been a debate: is programming a science, an engineering discipline, or a

craft? Increasingly, voices in the field recognise that programming, especially at the level of

writing and maintaining code, resembles a craft practice where experience and judgement mat-

ter as much as theory. The software craftsmanship movement explicitly frames software devel-

opment as a craft apprenticeship model, valuing practical wisdom, code aesthetics, and contin-

uous learning over rigid formal processes. McBreen (2001) argues that developers need not see

themselves purely as engineers implementing specifications, but rather as craftspeople who take

ownership of their work and rely on skills and judgement honed through practice. This perspec-

tive inherently elevates the status of CST in programming: it is the craftsman’s common sense,

their intuitive feel for good code and prudent design, that guides their hand, much as a wood-

worker’s tacit knowledge guides them beyond what any blueprint may specify.

Historically, the push for software engineering in the late 1960s and 1970s sought to intro-

duce more formalism and process into software development (a reaction to many failed soft-

ware projects). While this introduced valuable discipline, it also became clear that no amount

of process can compensate for a lack of individual skills or judgement. Brooks (1986) points

out that the essence of software design, i.e. building complex conceptual structures, is an inher-

ently difficult task not easily automated or systematised. He noted that among the essential

difficulties of software are complexity, conformity, changeability, and invisibility, and that

great designers (individuals) make a huge difference. He attributed this partly to individual

talent. We can infer that the talent in question is not just raw IQ (plenty of very bright teams

were still failing) but a combination of analytical ability with design judgement and insight,

essentially those with a propensity for managing complexity by wise simplification and intui-

tion. According to Brooks, conceptual integrity is the most important consideration in system

design, and it is best maintained by a unified vision from one mind or a small team. Conceptual

integrity in practice means keeping a system’s design straightforward and coherent, a goal

which is served by common-sense judgement, i.e. knowing which features to cut, which design

is too convoluted, etc.

Modern agile methodologies, which have largely replaced heavy upfront brute force, implic-

itly trust developers to use their judgement iteratively: test-driven development, refactoring,

and close customer collaboration all rely on developers continuously making decisions about

Common-Sense Thinking and Programming Skills Page 11 of 24

what is the simplest thing that can possibly work and how to respond to feedback. Agile prin-

ciples de-emphasise exhaustive documentation in favour of working software, which again puts

the focus on developers’ tacit understanding and sensible communication. This trend in industry

underscores that after trying formalised heavy processes, the pendulum has swung toward val-

uing adaptability and practical wisdom. Danielson (2012) provides a contemporary analysis of

programming as a craft and reinforces why CST is vital. He traces how the institutional push

for strict software engineering was tempered by a resurgence of craftsmanship ideals, conclud-

ing that true software quality arises from skilled application of practices balanced with creative

design. He argues that low-level standardisation (like consistent coding style) can reduce errors

and cognitive load, but high-level architecture still needs genuine creative judgement. In other

words, you can enforce certain rules to handle routine matters, but there remains an irreducible

need for personal judgement in higher-level decisions. This judgement is exactly the realm of

CST. Danielson shows that in successful software teams, there’s an equilibrium: discipline at

the micro-level and freedom at the macro-level. Achieving this requires programmers to know

when to be rigid and when to be flexible, itself a common-sense discernment. He gives the

example that enforcing a consistent style in writing code (braces, naming, error handling con-

ventions) actually frees the mind to focus on the truly hard problems (the creative design). This

perspective resonates with the idea that common sense might tell us where to apply formal rules

and where to allow intuition. Less experienced or less sensible developers often err either by

having chaos at the low level or by stifling creativity at the high level; a craftsman finds the

sweet spot, guided by an intuitive sense of what matters for quality and what does not. Dan-

ielson states that good programming must blend strict discipline at the implementation level

with freedom and ingenuity at the design level, leveraging human skills where it matters most.

Those human skills being leveraged are largely common-sense skills, the ability to inject good

judgement and creativity appropriately.

An interesting point Danielson (2012) makes is about coding guidelines aiming for near-

error-free software. These guidelines are cited as a model of disciplined practice that achieved

very low defect rates, showing the value of rigorous consistency. Yet, even in advocating such

discipline, the emphasis is that these rules handle the mundane so that humans can focus on the

conceptual. This again is instructive: by routinising what can be routinised, the remaining work

amplifies the role of human judgement. It implies that as tools and processes eliminate some

sources of error (for instance, modern languages taking care of memory management), the rel-

ative importance of the programmer’s common sense in the remaining tasks (like concurrency

issues, user experience considerations, etc.) becomes even greater, those are not fully solved by

tools and demand savvy reasoning.

In sum, viewing programming as a craft reveals why formal training alone is insufficient.

Like any craft (carpentry, metalworking), apprenticeship and practice underlie mastery; one

learns the feel of the material, the tricks of the trade, the balance between following rules and

bending them when appropriate. Common sense is essentially the craftsman’s internal compass.

It guides decisions that have no clear algorithm. A craftsman programmer knows when to ad-

here strictly to specifications and when to negotiate changes because the spec might be flawed;

they know when performance optimisations are premature and when they are important; they

know how to simplify a design for clarity’s sake. These judgements come from experience and

practical reasoning.

Even the day-to-day act of reading and modifying code (which is what developers spend a

lot of time on) benefits from CST. Code can be seen as a form of communication. A developer

with high common sense will write code that others can understand (because they empathise

Common-Sense Thinking and Programming Skills Page 12 of 24

with the reader, a social aspect of common sense) and will interpret others’ code charitably,

looking for the intent behind it. They will also use practical reasoning when navigating a large

codebase: rather than exhaustively read everything, they might make a reasonable assumption

about where to look, much like one uses common sense to find information in a library by first

looking at signs and catalogues rather than inspecting every book. These are trivial examples,

but they demonstrate that at every level, programming involves choices where rules do not

dictate one correct move, you must rely on judgement.

Having built a theoretical understanding that CST, comprising practical intelligence, rational

thinking, cognitive flexibility, and craft judgement, is deeply interwoven with what it means to

program effectively, we now turn to evidence supporting the hypothesis. Do real-world obser-

vations and empirical studies back the claim that high-CST individuals make better program-

mers (and that lacking CST can hinder programming performance)? We will examine studies

of programmer performance, contrasts between individuals of different backgrounds, and an-

ecdotal patterns from the history and practice of software development to validate the linkage

between common-sense thinking and programming expertise.

High IQ and Mathematical Aptitude

One provocative line of evidence for our hypothesis comes from cases where high general in-

telligence or mathematical talent does not translate into corresponding programming success.

Historically, many assumed that top programmers would be those with the strongest analytical

and mathematical backgrounds, and indeed early computing was often done by mathematicians.

Yet, over time, it became apparent that the correlation is not so straightforward. Some brilliant

mathematicians or high-IQ individuals have struggled to deliver software on time or to debug

effectively, whereas individuals with a more ordinary academic profile have thrived as pro-

grammers. This apparent paradox is explained when we consider CST: the academically bril-

liant may lack common-sense approaches or the practical mindset needed in programming,

whereas others compensate for a moderate IQ with excellent CST.

Charlton’s concept of clever sillies (2009), discussed earlier, is directly relevant. Charlton

noted that high-IQ people can fall prey to reasoning that is too abstract and detached, leading

them to override plain common sense. In programming, this might manifest as over-engineer-

ing, creating designs of theoretical elegance but impractical complexity. Famous anecdotes in

software folklore tell how some PhD-holding developers produced an overly complex solution

where a simpler hack would have sufficed, and products failed or were delayed because the

simple things never got done right. Charlton’s explanation is that some high-IQ individuals

have a cognitive style that leans toward novelty and complexity (correlated with the personality

trait Openness to Experience), so they may devise novel solutions that seem clever but are ac-

tually maladaptive in the real context. Without the moderating influence of common sense, high

analytic ability can generate what are essentially brilliant wrong answers. The real problem

arises if the person is high in analytic intelligence but deficient in another facet that correlates

with common sense or presumably practical intelligence. An intellect untempered by practical

sense can go astray. There are many accounts from tech companies of prodigious hires who

struggled with actual coding assignments due to perfectionism, inability to prioritise, or diffi-

culty adapting to the messiness of real projects. These accounts, while not rigorous data, paint

a consistent picture that raw brainpower alone does not guarantee programming success if the

person cannot apply reasoning pragmatically.

Common-Sense Thinking and Programming Skills Page 13 of 24

Empirical support for this comes from Stanovich’s dysrationalia findings (2009): many high-

IQ individuals make silly errors on simple reasoning problems that require common sense to

check intuitive answers. An intelligent programmer might implement a complex algorithm cor-

rectly but then miss the simple fact that an input can be null (leading to a runtime error), some-

thing a more practically-minded programmer would guard against. It is a mundane example,

but such errors are common: forgetting basic cases, not considering user input errors, etc. These

are failures of common sense, not of logic per se. Notably, experienced programmers often

develop what is jokingly called a paranoia about things going wrong. They add checks and logs,

they anticipate misuses, essentially applying common sense to think about what a user or envi-

ronment could reasonably do that would break the code. Those without that intuition might

write code that works only in ideal (read: often school) conditions, as assumed in their analytical

model, but crashes or misbehaves in reality.

On the other hand, consider individuals with high CST but perhaps not top-tier IQ or no

formal math training. Many self-taught programmers fall in this category: they may not score

in the 90th percentile on standardised tests, but they excel in practical problem-solving and have

an intuitive sense for how to make technology serve a purpose. These folks often outperform

colleagues with fancier credentials. They might not derive an algorithm from scratch as ele-

gantly, but they know how to find a solution (perhaps by smartly adapting existing solutions or

trial-and-error) and, importantly, how to integrate it into a working whole. A high-CST pro-

grammer is likely to produce a piece of software that, above all, works reliably and meets users’

needs, even if internally it uses some brute-force or ad-hoc fixes. In contrast, a low-CST but

high-IQ programmer might produce an ingenious piece of code that fails on corner cases or is

incomprehensible to others, undermining its value.

Scientific literature on programmer characteristics provides some backing to these observa-

tions. Early studies by Sackman et al. (1968) found enormous variability in programmer per-

formance, with some developers more than 10 times as productive as others when performing

the same tasks. Importantly, these differences were not fully explained by differences in expe-

rience or academic background available at the time, hinting that an inherent problem-solving

approach and reasoning style played a role. In smaller teams, productivity is mostly dependent

on individual aptitudes and abilities. While aptitude historically was often conflated with IQ or

math ability, modern understanding inclines that it includes less tangible cognitive skills like

the ones we call CST. The 10 X programmer notion (heavily exaggerated in folklore) under-

scores that certain individuals tend to produce working and effective solutions fast. That often

looks like an ability to cut through complexity with simple, common-sense designs and to trou-

bleshoot issues quickly. It is not that they write 10 times more code, but rather they make 10

times better decisions and fewer mistakes to avoid waste and dead ends. Danielson (2012) ar-

gues that a more correct label is 0.1 X programmers, making at most 10% of the errors an

ordinary programmer does.

There is also the phenomenon of some competitive programming or math prodigies strug-

gling in software industry environments, which has been informally observed. Competitive pro-

gramming contests focus heavily on algorithmic puzzles under time pressure, pure computa-

tional thinking skills. Some champions of these contests have later remarked that real software

development required a quite different skill set (team collaboration, dealing with vague require-

ments, debugging large systems) for which their contest prowess did not fully prepare them.

Those additional skills are largely in the CST realm: communication, practical debugging strat-

egies, time management, etc. Conversely, many highly effective programmers were not math

stars but have street smarts about coding gained from practical projects.

Common-Sense Thinking and Programming Skills Page 14 of 24

To avoid misinterpretation, we are not arguing that high IQ or mathematical ability are neg-

ative for programming, certainly not. On the contrary, they are often helpful. But without CST,

they can result in a skewed skill set. When an extremely analytical individual intentionally

works on their practical reasoning and gains experience, they can become formidable program-

mers, combining the best of both worlds. The issue arises when high analytical ability comes

with low inclination towards, say, testing assumptions or learning from concrete feedback. A

well-documented example of smart people making poor programmers comes from Dijkstra’s

observation (1989). He noted that some students who had learned mathematically strict ap-

proaches sometimes struggled with the messiness of real programming, whereas those with a

more heuristic approach managed to get programs working. Dijkstra himself advocated formal

methods, so this remains a debated point, but the key takeaway is that different cognitive ap-

proaches yield different outcomes. Our hypothesis sides with the need for a strong practical

component.

One might ask: Are there specific studies comparing, say, mathematicians vs. others in pro-

gramming tasks? Direct academic studies are few, but there is Charlton (2009) who posited that

high-IQ individuals such as top academics may lack common sense in practical affairs. Charl-

ton’s thesis, while outside computer science, gives a conceptual frame. He even suggests an

evolutionary reason: that common sense evolved for typical scenarios, whereas extremely high

analytic reasoning is an evolutionarily novel trait that can sometimes misfire in everyday con-

texts. If we apply that notion to programming, the coding itself is a novel, artificial activity, but

it simulates problem-solving that engages both formal and informal reasoning. Perhaps a highly

analytical person treats programming purely like math (strict, symbolic, requiring complete

precision from the get-go), whereas a high-CST person treats it more like an exploratory activity

(write something, test it, refine it, use intuition). Interestingly, the exploratory, trial-and-error

strategy was long considered inferior to the planning strategy in programming, but studies have

shown that many successful programmers do a healthy amount of tinkering and iterative devel-

opment (especially in the context of modern interactive environments). This is akin to scientific

pragmatism: try something and see what happens, a common-sense experimental approach,

rather than deducing everything in one’s head first. High-IQ individuals may resist such an

approach if they’ve been trained that everything must be deduced and optimised mentally. Yet

in practice, playing around can be a very effective way to solve programming problems.

In conclusion on this point, numerous examples and arguments indicate that higher analyti-

cal intelligence alone is neither necessary nor sufficient for programming excellence. It must

be paired with strong CST to result in a top programmer. A balanced individual with a moder-

ately high IQ and very high common sense might outdo someone with a high IQ but poor com-

mon sense in many programming scenarios. This sets the stage for examining the influence of

formal education in computer science, which traditionally emphasises analytical and theoretical

training, versus (partially) self-taught routes, which often cultivate practical skills earlier.

The Value of Experience

Formal computer science education, i.e. a university degree, undoubtedly provides a strong

foundation in computational thinking, exposing students to algorithms, data structures, formal

languages, etc. However, it has been observed that some graduates of CS programs still lack

the ability to build software effectively in real-world conditions. This gap highlights that formal

knowledge does not automatically translate to practical programming competence. A striking

study by McCracken et al. (2001) assessed introductory programming students across multiple

institutions and found disappointing results: many students at the end of an introductory course

Common-Sense Thinking and Programming Skills Page 15 of 24

could not effectively program a required task, with an average score around only 20% on a

programming assessment. In other words, many students who had been taught programming

still did not know how to program in practice. A later multinational study by Lister et al. (2004)

has similar concerns. A significant portion of students, even after a couple of courses, struggle

with basic code reading and writing tasks. Failure rates in introductory programming courses

can range from 30% to 60% as reported in various institutions. While part of this is due to the

inherent difficulties of learning to program, it also points to a subset of students for whom

mastering the formal content does not translate into skills. Some educators have noted that cer-

tain students just get it and others do not, and the difference often is not predicted solely by

their performance in math or other subjects. This mysterious “it” could well be CST at work,

the intuition and judgement about how to approach writing a program that is not directly taught.

Moreover, even among graduates who easily pass their courses, employers often comment

that new graduates need significant initial practical training. It is common in industry to find

that academic high performers might still need mentorship to write clean, robust code. On the

other hand, students who maybe were middle-of-the-form academically but built things on their

own (like contributing to open-source, building hobby projects) often turn out to be very com-

petent programmers upon hiring. What is the difference? The latter have exercised their com-

mon-sense thinking in real programming contexts, they have debugged without a prescribed

recipe, dealt with users or requirements changes, experienced the pitfalls of poor decisions and

learned. Essentially, they have cultivated their CST through practice. The academically focused

student may have solved idealised problems but might not have faced the same breadth of messy

problems or been forced to rely on intuition.

A telling indicator is the rise of technical interview questions that focus on practical scenar-

ios. Many tech companies will present candidates with a coding problem that is not a tricky

algorithm but a realistic task or a debugging exercise. They want to see if the person approaches

it methodically, tests their solution and considers edge cases, all markers of common sense.

Some candidates with stellar GPAs sometimes underperform in these interviews if they have

not internalised those habits. This has led some companies to even drop the requirement of a

CS degree for hiring, realising that formal education correlates only imperfectly with job per-

formance.

Another piece of evidence comes from industry surveys on the backgrounds of working de-

velopers. A 2016 global Stack Overflow survey of over 50,000 developers found that approxi-

mately 69% reported being at least partially self-taught, with 13% saying they were entirely

self-taught programmers. In contrast, 43% had a bachelor’s degree in computer science. More-

over, 31% had no formal college degree at all, some came via coding boot camps or just self-

learning (McFarland, 2016). It was actually that survey that triggered the writing of this article.

These numbers are eye-opening: a majority of practicing developers did not learn everything in

a classroom setting. The success of so many self-taught programmers suggests that hands-on

experience and self-directed problem-solving, which exercise CST, can effectively substitute

or surpass formal training in producing programming ability. One might argue that those self-

taught individuals are self-selected enthusiasts (which is true), likely possessing strong intrinsic

problem-solving skills (again, likely CST). But it also shows that the formal curriculum is not

the only or even primary route into programming skills for many people.

Common-Sense Thinking and Programming Skills Page 16 of 24

Formal Education

Why might formal education struggle to impart CST? By nature, an academic course has to

simplify and structure problems for students to handle in a limited time. This sometimes means

students practice more of the computational thinking (structured problems with known solu-

tions) and less of the open-ended problem solving. Real projects involve dealing with ambigu-

ity, integrating many pieces, and making judgement calls, things that are hard to simulate in a

classroom, except perhaps via capstone projects. Additionally, academic grading often rewards

a very specific kind of correctness and efficiency, which may inadvertently de-prioritise crea-

tivity or risk-taking. A student might get full marks for a textbook implementation that in a real

scenario might be overkill or not robust; meanwhile, a scrappy but effective solution might be

discouraged in class but could be exactly what is needed in a hackathon or start-up environment.

There is also evidence that prior programming experience (often gained informally) is a pre-

dictor of success in a CS education. Early practice builds an intuition, likely connected to CST,

that formal instruction alone does not immediately grant. The “two humps” hypothesis by

Dehnadi and Bornat (2006), though later honourably retracted (Bornat, 2014), originally

claimed they found a test to predict who would succeed in learning programming, dividing

students into those who conceptually get assignments and those who do not. While their specific

test did not hold up, the underlying sound idea was that some cognitive schema (not measured

by standard IQ) determined initial programming aptitude, and that idea still has credit. One

interpretation is that a certain mode of reasoning, the ability to reason with unknowns and apply

consistent rules (some aspect of logical common sense), is necessary to grasp the concept of a

variable in programming. Many students who fail to learn programming never internalise the

idea of a variable as a storage that can change. They instead think in ad-hoc case-specific ways.

This inability to generalise could be seen as a lack of a certain form of reasoning that better

programmers have early on.

Another facet is the common lament in the industry that universities teach theory, but we

have to teach graduates how to actually code on the job. Companies often run training programs

for new grads focusing on practical skills: using version control, writing tests, understanding

software lifecycle, etc. These skills, while technical, also involve a lot of common sense (e.g.,

commit logical chunks of code so others can follow, write tests for edge cases that a sensible

person would check). The necessity of these trainings underscores that some very practical as-

pects are not coming naturally from a pure CS education for many. It is no surprise then that

some of the best preparation for programming careers comes from project-based learning, in-

ternships, or personal projects, which allow students to engage their CST in a realistic setting.

Formal education also tends to treat problems as individual endeavours, yet big program-

ming projects are team efforts. Here, social common sense enters: communication, understand-

ing the perspective of others, and writing code that someone else can maintain. A person might

be a whiz at coding alone, but if they lack the social reasoning aspect of CST, they may produce

unmaintainable spaghetti code or not collaborate well. The best developers often have strong

empathy (a component of common sense in social contexts). They think about how users will

experience the software and how fellow programmers will read their code. These soft aspects

are increasingly recognised as important in software engineering, hence the emphasis on things

like clean code (code written for humans to read, not just for machines to execute) in profes-

sional practice. Clean code guidelines essentially encode common-sense principles: use mean-

ingful names, keep functions simple, handle errors gracefully, etc., many of which stem from

Common-Sense Thinking and Programming Skills Page 17 of 24

putting oneself in others’ shoes or considering future consequences beyond the immediate al-

gorithm.

In summary, while formal CS training provides necessary knowledge, it does not guarantee

programming skills because it cannot fully instil the common-sense thinking habits that arise

from practical engagement. Many graduates need to cultivate CST on the job through experi-

ence. By contrast, those who have engaged in lots of practice (even without formal education)

have already built a reservoir of CST relevant to coding. This leads to the next point: the success

of self-taught programmers and how their learning path might inherently foster CST.

Unconventional Pathways

The tech industry has numerous prominent examples of successful programmers (and tech en-

trepreneurs) without formal education in computer science. Bill Gates and Mark Zuckerberg

dropped out of college to start companies (though they did have some college and prior pro-

gramming experience), Steve Jobs was not formally trained in CS, and self-taught developers

like John Carmack (legendary game programmer) or Margaret Hamilton (lead Apollo software

engineer, who did have a math background but largely learned computing on the job) became

pioneers through experiential learning. While fame is anecdotal, broader data (such as McFar-

land, 2016) confirms that a substantial proportion of programmers are either partially or wholly

self-educated in programming. This directly suggests that the abilities needed to program can

be acquired outside formal curricula, and often those who do so demonstrate exceptional capa-

bilities, precisely because they had to rely on their own reasoning and resourcefulness.

When someone is self-taught in programming, what does their learning look like? Typically,

it involves a lot of trial and error: writing code, seeing what works, debugging when it does not,

and gradually taking on bigger challenges. This process heavily exercises common-sense think-

ing. The learner must diagnose errors (often with no teacher to ask, so they use search, forums,

logs, essentially detective work), they must make decisions about which tools or languages to

learn, and they often pursue projects of personal interest (which ensures engagement and itera-

tive improvement). Self-taught developers accumulate a wealth of practical problem-solving

episodes. By the time they are building something significant, they’ve likely internalised many

lessons learned, essentially an arsenal of heuristics and mental models (I’ve seen something

like this before; last time it was due to X, so check that first). This repository of experience is

exactly what constitutes CST in action for a programmer. It is no surprise that when such a

person faces a new bug, they often solve it faster than someone who has mostly seen curated

textbook problems. They have a head start from analogous experiences.

One might wonder if self-taught programmers excel only in small-scale hacking and might

falter in larger system design without a theoretical background. Sometimes that can happen,

theory does matter, but many self-taught folks eventually pick up theory when they need it

(often self-teaching that as well). And importantly, they might approach design with a more

empirical mindset: build a prototype, see if it scales, and refactor if needed. This iterative, com-

mon-sense approach can succeed where a top-down and theoretically optimal design might fail

due to unforeseen requirements. The rise of agile and iterative development models actually

plays to the strengths of practically minded developers.

There is also evidence that enthusiasm and interest (often characteristics of self-driven learn-

ers) correlate with success. Those factors may be tied to what psychologists call grit or a growth

mindset, but they also tie into CST: someone deeply interested in making something work will

try many approaches and learn from mistakes (practical intelligence), whereas someone without

Common-Sense Thinking and Programming Skills Page 18 of 24

that drive might do only what is formally required. Passion projects are in fact an excellent

training ground for CST because constraints (like time and resources) force creative solutions,

and personal investment drives careful reasoning and learning from errors. Many self-taught

coders have portfolios of small programs, websites, etc. Each of those is a story of encountering

a problem, solving it, and internalising that solution for the future.

The anecdote of my best developers do not have degrees is heard often enough from start-

up circles. While degrees certainly provide a lot of value, the statement often underscores that

the degree by itself was not the predictor, the individual’s problem-solving ability was. Repu-

table companies like Google and Apple have, in recent years, relaxed the requirement for a

college degree in their job listings for programmers, acknowledging that capable talent can

come through different pipelines. Hiring managers often look instead for evidence of projects

completed, contributions to open-source, etc., which reflect real-world programming experi-

ence and, implicitly, demonstration of common-sense thinking in solving them. In a trend long

present in art, a portfolio is becoming more and more important in programming as well, rein-

forcing the view of programming as an art. Accountants, as an example, seldom have portfolios

but rather standard CVs instead.

Even in academic research, there are natural experiments where individuals from outside CS

become great programmers because necessity demanded it. For example, scientists or engineers

from other fields often write software for their research. Some struggle, but some excel and

even shift careers to software without formal CS training. Those who excel likely had high

CST. They approached coding pragmatically, learned incrementally, and perhaps had domain

common sense that transferred (e.g., a physicist’s intuition about systems helps in structuring

simulation software).

We should also mention programming competitions like hackathons, where people from

varied backgrounds collaborate to create a working prototype quickly. Success in a hackathon

often hinges on practical ingenuity and adaptability, classic CST traits, rather than deep school-

book knowledge. Teams with balanced skills (a lot of coding knowledge plus some common

sense about scope and user needs) often outperform teams of straight-A students who might

attempt overly ambitious projects or ignore practicality. This again constitutes circumstantial

evidence: time and again, in contexts where delivering something that works is the goal, those

with better practical judgement shine.

All of this is not to downplay the value of formal education or intelligence. Rather, it high-

lights that in the absence of a formal path, people who have the right thinking approach can

still achieve mastery. In fact, being self-taught might even reinforce certain common-sense hab-

its: since there is no professor to debug your code, you become self-reliant and develop diag-

nostic strategies (like careful reading of error messages, simplifying the problem, rubber-duck

debugging, etc.). These are teachable, but often learned best by necessity.

One might question: could it be that those who self-teach are just as analytically smart as

those in formal programs (just minus the degree)? Sometimes yes, but the diversity of self-

taught developers suggests many are very smart, but their talents lie in being autodidactic and

practically oriented. There are also cases of individuals who did not thrive in structured aca-

demic environments (perhaps due to learning differences or simply a lack of interest) but later

found their stride in the more free-form context of programming on their own terms. Such in-

dividuals might have had perfectly fine logical ability but needed a different mode to cultivate

it, one that engaged their common sense and creativity more than formal schooling did.

Common-Sense Thinking and Programming Skills Page 19 of 24

As a final note in this section, consider the role of mentors or master-apprentice relation-

ships, which are central in craft fields. In programming, mentorship (whether via open-source

communities or in a workplace) is often where tacit knowledge is transferred. A mentor will

often give tips that amount to common-sense advice: e.g., check for off-by-one errors first when

the output looks almost right, or when designing, think about how you will test this. These are

not found in textbooks in bold letters, but they are gold nuggets of practical wisdom if filtered

through a CST filter. Self-taught programmers often seek out communities to ask for help. The

answers they get frequently instil common-sense reasoning: perhaps someone on a forum does

not just give the solution but explains how they arrived at it, teaching the heuristic. In essence,

the community becomes the teacher of CST.

Given the significant representation and success of self-taught programmers and those from

non-traditional paths, we have a strong empirical basis to say that practical common-sense rea-

soning and experience can compensate for, and sometimes outperform, formal training. It also

suggests that CST is an underlying enabler. Those who had it (or cultivated it) figure out pro-

gramming one way or another.

Case Studies in Programmer Performance

The hypothesis that CST underlies programming expertise can also be examined by looking at

observed differentials in programmer performance and specific case studies or experiments. We

have touched on the 10x productivity studies. Let’s delve a bit deeper: In the classic Sackman

et al. (1968) study, not only did coding time vary by over a factor of 10 between best and worst

performers, but so did debugging time and error rates. The fastest, most accurate programmers

wrote code that ran sooner and with fewer defects. This strongly indicates qualitative differ-

ences in approach, not just speed of typing or knowledge of syntax. High performers likely

employed better mental models and sanity checks (i.e. common-sense verifications) as they

coded, preventing errors in the first place, whereas low performers probably got stuck in cycles

of trial and error without systematic strategies (a sign of poor CST in problem-solving). Nearly

all attempts to debunk the 10 X myth concede that there are differences, even if they disagree

on the exact factor.

Another interesting observation is how expert programmers approach code comprehension

compared to novices. R. Brooks (1983) proposed a model that experts form hypotheses about

code function and structure in a top-down manner, guided by domain knowledge and expecta-

tions. This means an expert reading unfamiliar code tries to map it to familiar patterns (Ah, this

looks like a standard sorting routine, maybe using quicksort) and then verify details, whereas a

novice might get lost in line-by-line details without context. The expert’s approach is a com-

mon-sense strategy: use prior experience to generate a likely interpretation, then check. It is

essentially applying an analogy and confirming, which is both faster and cognitively less taxing

than a blind read-through. This aligns with Letovsky’s (1987) description of programmers as

opportunistic processors who easily change strategy based on cues. Flexibility and hypothesis-

driven reading are signs of CST at work: the expert uses intuition to guess a meaning, then

analysis to confirm. If wrong, they adjust. Studies have found that expert programmers spend

more time at the outset reading and thinking, building a mental model, rather than diving di-

rectly into editing code. This upfront investment is a common-sense allocation of effort, as the

saying goes, measure twice, cut once.

Consider also the differences in error debugging: A common finding is that experts debug

in a highly goal-directed way; they often can zero in on a bug by reasoning about what must be

Common-Sense Thinking and Programming Skills Page 20 of 24

wrong given the symptoms (sometimes even before running the program, they suspect certain

areas). Novices often resort to wandering through the code or making many random prints. A

controlled study by Vessey (1985) on debugging showed that more skilled debuggers formed

hypotheses and systematically eliminated them, whereas less skilled ones tended to change

many things without a clear rationale, sometimes introducing new errors. The skilled behaviour

again reflects rational problem-solving and good judgement, i.e., CST, in action.

From the history of software, we can identify episodes that underline CST. The infamous

project failures during the first software crisis (in the late 1960s) often came when teams tried

to build large systems with insufficient feedback or practicality. Essentially, they tried to engi-

neer everything perfectly on paper (a very formal approach), and reality broke those designs.

The move towards iterative development was a triumph of common sense: acknowledge that

humans cannot foresee everything, so build in small increments, test and adapt. It is a formali-

sation of common-sense practice into a process. But even the best processes will fail if individ-

uals do not exercise judgement within them.

One circumstantial but illuminating piece of evidence is how programming competency is

evaluated in practice. In addition to technical quizzes, many employers rely on references or

past work as indicators. A glowing reference often speaks to how the person solved problems

under pressure, how reliable their code was, how well they learned new things, essentially de-

scribing common-sense qualities. Meanwhile, there are countless stories of hiring someone with

a stellar academic CV who then underperforms on practical tasks. These outcomes have forced

companies to refine their hiring tests to include pair programming sessions or take-home as-

signments that simulate actual work, because that is where CST becomes visible.

We should highlight the importance of domain knowledge as well, which might be consid-

ered part of crystallised intelligence or tacit knowledge. A programmer with extensive domain

experience (say in finance or operating systems) will often have much more common sense

about typical pitfalls in that domain, which gives them an edge. This is why companies value

experienced hires: not just for what languages they know, but for the judgement that comes

from having seen many projects. It is telling that a study in Sommerville’s textbook (2016)

indicates that domain knowledge is a major factor in individual productivity. Such knowledge

could be seen as a component of CST specific to a field. It is essentially knowing what usually

works or fails in a specific context.

Another perspective is the role of rationality in code quality. A recent area of research ex-

amines how cognitive biases affect software engineers. For example, confirmation bias can lead

a developer to stick to an initial diagnosis of a bug even as evidence mounts against it. Good

developers are often mindful of this. They will not jump to conclusions and instead try to get a

fresh set of eyes on things. Those are rationality-preserving behaviours, essentially common-

sense checks on one’s own fallibility. Teams that practice code reviews implicitly inject more

common sense (since two minds may catch each other’s blind spots). If programming were

purely an application of taught rules, such practices would not be needed. But because human

reasoning quirks can lead to issues, the social process compensates. In instances where projects

skipped such sanity checks, huge blunders have occurred (e.g., NASA’s Mars Climate Orbiter

failure in 1999 because one team used imperial units and another metric…a failure of common-

sense communication and verification rather than a lack of calculus skills).

Finally, consider talent identification efforts. IBM’s Programmer Aptitude Test (PAT) from

the 1960s tested things like pattern recognition, flowchart following, etc., to predict who could

be a programmer. Tukiainen and Mönkkönen (2002) sees the PAT as a trendsetting tool in

Common-Sense Thinking and Programming Skills Page 21 of 24

assessing programming aptitude. The study evaluates the predictive validity of programming

aptitude tests, including the IBM PAT, in forecasting students’ success in learning program-

ming concepts. It also discusses the components of PAT and its historical usage in the industry.

However, it was deemed not highly predictive. Why? Likely because it did not capture the

essence of what makes a good programmer. It tested basic logic, but not the full suite of CST.

Modern equivalent aptitude tests have similarly struggled. The best indicator might be to give

someone a problem and see how they solve it, essentially observing their CST in action rather

than proxying it with puzzles and other IQ-test-style games. One well-known informal test is

FizzBuzz (actually a children’s game: here it is to write a program to print the numbers 1–100,

replacing multiples of 3 with Fizz and multiples of 5 with Buzz). It is an extremely simple

programming problem, yet shockingly many CS graduates have difficulty coding it. The test

has become well-known because it exposes that some students can discuss complexity theory,

yet not easily translate a simple set of rules into working code. Those who fail FizzBuzz often

overcomplicate or freeze, signs of a lack of basic problem decomposition skills (which is partly

CST, but also being grounded enough to see an easy approach rather than conjuring a complex

one). On the other hand, someone with common sense will straightforwardly implement a loop

and conditionals and be done. The fact that FizzBuzz needed to exist as a filter implies that a

subset of applicants lacked a certain baseline of practical coding sense despite their credentials.

In aggregate, all these pieces, productivity studies, debugging behaviours, hiring practices,

and project outcomes converge on the idea that a particular kind of thinking differentiates the

effective programmer from the ineffective one. That thinking is not fully captured by academic

achievement or IQ, but it does align with CST: the ability to apply reasoning in context, to

adapt, to foresee issues, and to make judicious decisions.

Towards a Unified View

Bringing together the theoretical and evidentiary threads, we can formulate a unified under-

standing of why CST is important in programming expertise. High programming skills seem to

emerge from a synergy of abilities: formal analytical thinking (for algorithmic logic), creative

thinking (for innovation), and practical reasoning (for judgement and adaptability). CST is es-

sentially the glue and governor between these abilities, ensuring they are used effectively. One

might say CST provides the executive control in the programmer’s cognition, guiding when to

unleash analytical rigor and when to rely on intuition or experience. It also fills the gaps where

formal knowledge is silent: when facing uncertainty, when requirements change, when a novel

bug appears, when working with others. In those moments, common sense is the navigator. Our

hypothesis posits that individuals high in CST learn programming more readily and achieve

higher proficiency because they:

 Learn more from experience: They notice patterns and principles from each bug fix or

project (reflective learning), which builds their tacit knowledge base faster. Each experi-

ence reinforces heuristics for next time.

 Adapt better to new problems: Instead of being thrown off by an unfamiliar task, they draw

analogies to things they do know (practical intelligence at work) and tackle it. This means

they are rarely stuck for long, an attribute of top coders.

 Make fewer catastrophic mistakes: Through a combination of rational doubting (checking

assumptions), they test their code, thinking about what could go wrong, which catches er-

rors early.

Common-Sense Thinking and Programming Skills Page 22 of 24

 Communicate and simplify: High CST often correlates with being able to explain things

clearly or simplify complexity, because the person is focused on the essence (what matters

in practice). Skilled programmers often talk about finding the simple design hiding in a

complex problem, essentially using common sense to strip away over-engineering.

 Possess self-regulation and metacognition: They think about their own thinking. For in-

stance, realising they are approaching something the wrong way or they need help with

that. This self-awareness is part of rational thinking and practical intelligence. It prevents

time sinks and encourages collaboration when needed.

 Are more motivated by problem-solving than by proving themselves right: This somewhat

touches attitude, but common sense usually entails a certain humility, caring that the job

gets done, not that one’s method was used. In coding, this means a willingness to refactor

or throw away one’s code if it is not working, without ego attachment. That often distin-

guishes good programmers in team settings.

If we attempt a graphical metaphor, imagine programming skills as a growing plant. Academic

knowledge and IQ are like the seeds and initial conditions, but common-sense thinking is like

the soil quality, sunlight, and water that allow the plant to grow. With poor soil (low CST), even

a genetically strong seed (high IQ) will grow stunted. Conversely, rich soil (high CST) can help

a modest seed grow strong. And of course, the best case is a strong seed in rich soil, those are

the superstar programmers who are both brilliant and pragmatic.

Another way to frame it is that programming can be seen as problem-solving under con-

straints. IQ helps remove the constraints of limited cognitive processing (to think through

logic). But CST helps navigate the constraints of reality: time, ambiguity, and human factors.

A high-CST person manages trade-offs exceptionally well: they know when to use a quick-and-

dirty solution and when to invest time in a robust one; when to stick to a plan and when to pivot.

Essentially, they optimise not just the code, but their whole approach to the task. This is why

someone with slightly less raw ability might still finish a project faster, they chose a wiser path.

Common-sense thinking is also self-reinforcing in programming. Success in delivering

working software feeds back positively: the individual gains confidence in their common-sense

approach, which encourages them to trust their judgement and perhaps explore bolder ideas

(creative thinking). Meanwhile, a person without much CST might face repeated failures or

setbacks (code not working as expected, projects ballooning in complexity). Without introspect-

ing that their approach might be the issue, they may conclude that programming is just inher-

ently impossible to manage, leading to frustration or rote reliance on others’ solutions. This

perhaps explains why some people give up on programming, not for lack of intellect, but be-

cause they did not adopt effective strategies and mindsets early on, and the endeavour became

too frustrating. Our argument provides explanatory power for several phenomena observed in

software development:

 It explains why adding more formal processing does not always fix projects, because if the

people lack common-sense judgement, they will rigidly follow processes to the ground or

find ways to game them, whereas skilled teams bend processes wisely.

 It explains why some genius coders produce unmaintainable systems. They maximised

complexity beyond what is sensible or ignored user needs, so their output, though techni-

cally impressive, fails in practical terms (a lack of pragmatic balance).

 It sheds light on why diverse teams (cognitively and experientially) often outperform ho-

mogeneously brilliant teams. A mix of perspectives means more chances that someone’s

Common-Sense Thinking and Programming Skills Page 23 of 24

common sense will catch an issue or propose a simpler approach. A room of only theore-

ticians might collectively miss practical blind spots. Diversity often increases the CST quo-

tient of a team.

 It underscores the importance of teaching strategies in CS education. Recently, curricula

have started incorporating more project-based and heuristic learning, effectively trying to

nurture CST in students (not just COT). Techniques like pair programming in education,

debugging assignments, and code reading exercises are aimed at bridging the gap between

theory and practice by forcing students to engage their common sense and reflection. This

author advocated pair programming in education but not in industry due to its time ineffi-

ciency and common mismatch in CST between the pair.

In conclusion, individuals who excel in programming do so not merely because they learned

the right algorithms or scored high on IQ tests, but also because they approach programming

with a robust common-sense mindset. They treat programming problems as multi-faceted chal-

lenges requiring flexible thinking, draw on practical experience and intuition to guide their for-

mal skills, and continuously refine their judgement through feedback. Meanwhile, those who

rely solely on intellectual ability or formal training without developing CST are at risk of plat-

eauing or underperforming when faced with the full demands of real-world software develop-

ment.

By recognising the central role of CST, we can better train students (by including practical

reasoning and reflection) and better structure teams and processes (valuing intangible skills like

adaptability and foresight). In a rapidly evolving software landscape, the problems and tools

change, but a programmer with strong common-sense thinking will adapt and thrive no matter

the language or paradigm du jour. Thus, common-sense thinking stands out as an enduring

cornerstone of effective programming, linking human cognitive strengths to the craft of creating

reliable, resilient and useful software. Software design is applied CST more than it is applied

science.

References

Baron, J. (2008). Thinking and deciding (4th ed.). Cambridge University Press.

Bornat, R. (2014). Camels and humps: a retraction. Retrieved from https://www.eis.mdx.ac.uk/staff-

pages/r_bornat/papers/camel_hump_retraction.pdf

Brooks, F. P. (1986). No silver bullet: Essence and accidents of software engineering. Computer,

20(4), 10–19. https://doi.org/10.1109/MC.1987.1663532

Brooks, R. E. (1983). Towards a theory of the comprehension of computer programs. International

Journal of Man-Machine Studies, 18(6), 543–554. https://doi.org/10.1016/S0020-7373(83)80031-5

Charlton, B. G. (2009). Clever sillies: Why high IQ people tend to be deficient in common sense.

Medical Hypotheses, 73(6), 867–870. https://doi.org/10.1016/j.mehy.2009.05.022

Danielson, M. (2012) A Little Book on Error-Free Software. Sine Metu.

Dehnadi, S., & Bornat, R. (2006). The camel has two humps. Retrieved from

http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf [heavily web-circulated and influential

in the software community, but never formally published]

Dijkstra, E. W. (1989). On the cruelty of really teaching computer science. Communications of the

ACM, 32(12), 1398–1404. https://doi.org/10.1145/66926.66928

Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999). Simple heuristics that make us

smart. Oxford University Press.

Common-Sense Thinking and Programming Skills Page 24 of 24

Knuth, D. E. (1974). Computer programming as an art. Communications of the ACM, 17(12), 667–

673. https://doi.org/10.1145/361604.361612

Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of Systems and Soft-

ware, 7(4), 325–339. https://doi.org/10.1016/0164-1212(87)90027-1

Lister, R., et al. (2004). A multi-national study of reading and tracing skills in novice programmers.

SIGCSE Bulletin, 36(4), 119–150. https://doi.org/10.1145/1041624.1041673

McBreen, P. (2002). Software craftsmanship: The new imperative. Addison-Wesley.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., ... & Laxer, C.

(2001). A multi-national, multi-institutional study of assessment of programming skills of first-year

CS students. SIGCSE Bulletin, 33(4), 125–140. https://doi.org/10.1145/572139.572181

McFarland, M. (2016, March 30). Lots of coders are self-taught, according to developer survey. The

Washington Post. https://www.washingtonpost.com/news/the-switch/wp/2016/03/30/lots-of-coders-

are-self-taught-according-to-developer-survey/

Pólya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.

Sackman, H., Erikson, W. J., & Grant, E. E. (1968). Exploratory experimental studies comparing

online and offline programming performance. Communications of the ACM, 11(1), 3–11.

https://doi.org/10.1145/362851.362858

Sommerville, I. (2016). Software engineering (10th ed.). Pearson Education.

Stanovich, K. E. (2009). What intelligence tests miss: The psychology of rational thought. Yale Uni-

versity Press.

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the ra-

tionality debate? Behavioral and Brain Sciences, 23(5), 645–665.

https://doi.org/10.1017/S0140525X00003435

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge University

Press.

Sternberg, R. J., & Wagner, R. K. (1986). Practical intelligence: Nature and origins of competence in

the everyday world. Cambridge University Press.

Tukiainen, M., & Mönkkönen, J. (2002). Programming aptitude testing as a prediction of learning to

program. In Proceedings of the 14th Annual Workshop of the Psychology of Programming Interest

Group (PPIG 2002) (pp. 45–57). Brunel University.

Vessey, I. (1985). Expertise in debugging computer programs: An analysis of the content of verbal

protocols. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(5), 694–707.

https://doi.org/10.1109/TSMC.1985.6313394

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

https://doi.org/10.1145/1118178.1118215

