
A Little Book on
Error-Free Software

Mats Danielson

 Mats Danielson

A LITTLE BOOK ON ERROR-FREE SOFTWARE III

A Little Book on

Error-Free Software

 Mats Danielson

Sine Metu

IV A LITTLE BOOK ON ERROR-FREE SOFTWARE

Published by Sine Metu Productions, Stockholm, Sweden, 2023

Website: www.sinemetu.se

© 2001, 2009, 2023 Mats Danielson

Licence details: https://creativecommons.org/licenses/by-nc-nd/4.0/

Front and back cover images: DALL∙E 2

DALL∙E 2 was prompted to illustrate the fight against software bugs

ISBN 978-91-531-0456-8

First printing, August 2023

Parts first published as a compendium in 2009

https://www.sinemetu.se/

A LITTLE BOOK ON ERROR-FREE SOFTWARE V

The computer is more than a tool. It is a medium in which we think and feel. Its

programming languages are materials out of which we can build castles of the

mind. Programming becomes a kind of craftsmanship—a process of constructing

and debugging that is deeply personal.

 Sherry Turkle, 1984, p. 104

VI A LITTLE BOOK ON ERROR-FREE SOFTWARE

Contents

Preface

1. What is Programming .. 7

Correctness in Programming .. 13

Expressiveness and Interpretation .. 16

Absence of a Unifying Theory ... 20

Philosophy and Culture .. 24

2. A True Craft ... 27

Thoughts from 2001 ... 28

Today (2023) .. 45

3. Software Bugs .. 47

Trivial Bugs, Epic Failures .. 47

Accumulated Toll of “Small” Errors ... 55

Preventing the Preventable... 60

Towards Software Craftsmanship .. 69

4. Guidelines for Error-Free Code ... 77

Naming Conventions ... 80

Data Types and Constants .. 83

Variables and Scope ... 87

Functions and Macros .. 90

Control Flow Structures ... 93

Interrupts and Multitasking .. 97

Modularity and File Structure .. 100

5. The Elephant in the Room ... 103

Orthodoxy .. 113

Resolution .. 119

References

2 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Preface

Most programming books are written for hackers rather than programmers. This

book, by contrast, is written with programmers in mind. What does this mean? For

the purpose of this book, a hacker is someone who sees programming as a personal

hobby. They spend their spare time writing code, often just for the joy of doing so,

and tackle a wide range of tasks without necessarily needing a practical reason.

Hackers represent a small portion of all software developers, perhaps about one per-

cent. This is the original meaning of the word hacker, and it does not refer to people

who break into or damage computer systems for fun or profit. Those individuals are

referred to here as criminals. Programmers, on the other hand, make up the rest.

They enjoy programming as a creative and intellectually stimulating job, but they

choose other things for their unpaid time. Surprisingly, most programming books

are targeted at hackers and enthusiasts, apart from the well-known “for dummies”

books and other materials intended for complete beginners. Since the vast majority

of software developers fall into the category of programmers in this sense, it makes

more sense to focus on improving their productivity and skills than to cater to the

hacker community.

This story begins in the early 1980s. The author, just out of upper secondary

school, like many young people without wealthy parents, looked for work instead of

going to university. At that time, entry-level jobs were more accessible to those with

only a high-school diploma. Having already worked as a computer operator on a

shift schedule during a summer internship, and also during military service in the

Navy, it felt natural to look for jobs in the growing computer industry. After apply-

ing to several companies, fortune had it that a job offer came from Philips Elektro-

nikindustrier (PEAB) just outside Stockholm. Philips had a Swedish manufacturing

plant known as PEAB which had three divisions. The job was in PEAB-T which

was part of Philips Data Systems that produced front office equipment for banks,

retail stores, and other service providers. This product line was known as Philips

Terminal Systems (PTS). At the time, Philips was one of the top three global man-

ufacturers in the banking front office segment, alongside NCR in the United States

and Nixdorf in Germany. Together, these three accounted for half the world market,

with Philips leading at over twenty percent. The PTS hardware was entirely custom-

A LITTLE BOOK ON ERROR-FREE SOFTWARE 3

designed, including the CPUs, all other electronics, cabinets and peripherals such as

printers for bankbooks and vouchers, as well as ATM machines.

By 1980, all major Swedish banks except one used PTS equipment for their front

office operations and ATM networks. The same was true for a large number of banks

throughout Europe, which was Philips’ core market, and also many banks in other

parts of the world. The exception was the United States, where the domestic supplier

NCR had a strong position. In the rest of the world, Philips had a position as the

global leader in banking front-office technology. However, in the mid-1980s the

landscape began to shift with the rise of the microprocessor and the arrival of the

IBM PC. These developments made smaller, more flexible computer systems widely

available at lower cost. At the same time, the Unix operating system started to gain

ground in the banking and retail sectors. Philips PTS, despite its earlier success,

struggled to adapt to these changes. The custom-built minicomputer models it relied

on was losing relevance. In 1989, the division was renamed Philips Financial Busi-

ness Systems, but it was already facing serious challenges. Two years later, in 1991,

it was acquired by Digital Equipment Corporation and merged into a new unit called

DEC BCFI (Business Centre Financial Industries). This marked the beginning of the

end. When Compaq, a personal computer manufacturer, bought Digital Equipment

in 1998, much of the original PTS culture was already lost. By 2001, when Hewlett

Packard acquired Compaq, the legacy of Philips Terminal Systems had totally dis-

appeared. A detailed history of the entire Philips Data Systems rise and fall can be

found in (Danielson, 2023). In a little over a decade, Philips had gone from being a

global leader in front-office banking systems to vanishing from the field entirely.

And with it, the programming culture of PTS was nearly forgotten.

But not completely. Some of the people who worked there tried to carry the PTS

coding spirit on, and it was only now that it became clear that the spirit had become

rather well-known in some programming circles. The author did his best to carry it

on in the workplaces he came to work at after PTS, and he tried to write down some

of the guidelines for his own preservation. He also tried to keep them updated when

he met new languages and new trends such as OOP and design patterns.

The PTS tradition and culture have sometimes been mentioned in writing, for

example by Bo Sandén, a PhD working at Philips PTS during its heyday (the early

4 A LITTLE BOOK ON ERROR-FREE SOFTWARE

1980s). Sandén went on to become a professor at various US universities. In his

book (Sandén, 2011, p.246), he writes

Philips Terminal Systems (PTS), where I worked later, produced teller terminals

for banks. Their software had the wonderful property of being correct; once in-

stalled, it performed without a glitch. Such were some dedicated systems of old.

This one ran a single teller terminal application—albeit with multiple tellers—

under the custom operating system TOSS.

Until now, however, these principles have not been collected into a structured set of

guidelines. Yet over the years, they have contributed to software projects that came

remarkably close to being error-free. In fact, based on the author’s experience across

two decades as a software consultant, there has been a clear pattern. The more

closely a development team adhered to the PTS rules of thumb, the fewer errors

appeared in the final software. Conversely, when such practices were neglected or

only loosely followed, faults became more common, often in ways that could have

been prevented with better discipline. These observations are not drawn from theory

but from real-world projects across a variety of organisations. What became evident

over time was that good practices, when applied consistently, make a measurable

difference. The PTS rules may seem simple, even obvious at times, but their power

lies in their cumulative effect. Following them can raise software quality signifi-

cantly, and often with less effort than one might expect.

All banking systems sold were turnkey solutions and the software was bundled

with the hardware sales. Thus, banking software for installations worldwide was

produced at PEAB-T. How did Philips manage to develop and maintain the organi-

sational skill required to produce software that was almost error-free? It was not by

hiring large numbers of graduates from computer science programmes, since at the

time such were still rare outside the United States. Of course, people with university

degrees in other fields were hired, along with those who had no academic back-

ground at all. But the real strength of the organisation came from within.

At Philips Terminal Systems, there was a broad system of internal courses de-

signed to teach everything from programming languages and coding practices to

operating systems and hardware design. These courses formed a kind of internal

university. Each employee’s progress through the various topics was monitored, and

A LITTLE BOOK ON ERROR-FREE SOFTWARE 5

so too was their ability to apply the knowledge in real-world projects. As you gained

experience and demonstrated skill in a particular area, you were gradually trusted

with more complex tasks and greater responsibility. Learning was not confined to

any classroom. Much of it took place through exposure to the work of more experi-

enced colleagues. You were given time to study their code, observe how they

worked, and engage with them directly. While pair programming was hardly yet

invented, and would not have been encouraged even if it was due to gross ineffi-

ciencies, skills were transferred in other, sometimes subtle, ways. There was a strong

culture of discussion and idea-sharing, both within project teams and across teams.

People were encouraged to talk through design decisions, review each other’s solu-

tions, and support each other in debugging and problem-solving. This culture cre-

ated positive feedback loops. The fewer errors that appeared in the software, the

more time and mental space the team had to collaborate, explore, and improve their

skills. Instead of spending time firefighting defects, they could focus on learning

from one another and advancing their crafts. It was this shared commitment to qual-

ity and continuous learning that sustained high standards over time.

This is not to say that software project teams at Philips were never under pressure.

Of course there were times when deadlines were approaching quickly and teams

simply had to deliver. However, such occasions were generally limited in duration

and could be managed mostly at the organisational level. One of the reasons this

worked well was that coding standards and development practices were shared

across different projects and teams. This meant that developers could be reassigned

between projects when needed, without a significant drop in productivity. They were

already familiar with the way things were done, which allowed the organisation to

remain flexible and responsive. Over time, the effectiveness of the software teams

became well-known internally. The sales department began to factor this into project

planning, gradually reducing the time and budget allocated to the software compo-

nent of larger projects. In a sense, the continued success of those teams raised ex-

pectations, creating an ongoing incentive to refine processes and improve further.

However, the culture that supported this success did not easily transfer to other

parts of Philips in other countries. In many cases, it was not well understood, even

by those working within PTS. Most developers at PTS were in their first or second

6 A LITTLE BOOK ON ERROR-FREE SOFTWARE

jobs in software, and they quickly developed the impression that software develop-

ment was simply not that difficult. This belief was often shattered later in their ca-

reers when they moved to other organisations and encountered different develop-

ment cultures. The practices and structures they had taken for granted at Philips were

seldom present elsewhere, and it became clear that the apparent ease of PTS devel-

opment had come from more than just individual talent and devotion. It had grown

from a carefully cultivated and disciplined environment.

Perhaps a first hint of how these PTS principles work comes from another pas-

sage in Sandén’s book. His book is about a specific problem in programming, that

of concurrent processes and tasks, but some of his observations are much broader.

Treated as skilled artisans (Turkle, 1984), we crafted the software by emulating

others and visualised their software architectures as we pored over their code.

That’s how we acquired the tacit knowledge of the trade (Hoare, 1984). One re-

deeming trait was that almost every assembly instruction was commented. Seeing

how reluctant “real programmers” are to document anything, this was a remark-

able concession to understandability. (Sandén, 2011, p.246)

This should not be taken as an argument against formal training in computer science,

but rather simply being an observation that there might be something more to soft-

ware development than what is being taught in more formal course settings, espe-

cially at universities.

Most of the text in the book was written around 20002001 when the author was

about to change sectors to academia, with additional material drawn from a com-

pendium compiled in 2009. However, the text remained incomplete and was not

assembled into a book until the summer break of 2023. Special thanks go to the

publisher’s English editor who improved the language enormously, to the extent that

it almost feels like a new manuscript.

Happy reading!

The author, Stockholm, August 2023

A LITTLE BOOK ON ERROR-FREE SOFTWARE 7

1. What is Programming

Programming is not a branch of engineering, nor is it a subfield of mathematics. To

assert that it is reveals a failure to understand either what software is, how it is cre-

ated, or the unique mental labour required to produce it correctly. The conventional

categorisations into which programming is often forced, be it civil engineering met-

aphors or the rigour of mathematical formalism, are each inadequate in capturing

the ontological and epistemic particularity of software construction. Rather, pro-

gramming must be recognised as a distinctive intellectual craft, shaped by a dynamic

interaction between static structure and potential behaviour, between symbol and

execution, between abstract form and concrete manifestation. It belongs neither

wholly to the sciences nor entirely to the humanities, yet it borrows tools from both.

It operates in a realm where the artefacts produced have no weight or size, and yet

are required to behave with predictable precision in a wide range of contingent con-

texts.

The concern is not with algorithmic elegance, nor with theorems about comput-

ability, but with clarity and cognitive legibility of code to human readers and main-

tainers. Complexity is the adversary, not because it cannot be understood in princi-

ple, but because its accumulation overwhelms our capacity to reason about behav-

iour, especially over time and at scale.

Unlike mathematics, where correctness is a question of proof and the artefact is

complete upon the derivation of the theorem, programming never guarantees cor-

rectness except by exhaustive empirical testing. The testing is not mathematical; it

is practical. The artefact is “complete” only in a contingent, tested sense: correct

enough, robust enough, under known and bounded conditions. Yet those conditions

are rarely static. Code needs to evolve; it is not a static thing. If mathematics is

content to assert timeless truths within axiomatic systems, programming must re-

spond to dynamic specifications, moving targets, new inputs, and novel uses. This

alone disqualifies the idea that programming is a mathematical act, however much

it might borrow notational or logical tools from that domain.

Nor is programming engineering in the classical sense. Physical engineering re-

lies on three-dimensional materials that obey invariant physical laws. Steel, glass,

8 A LITTLE BOOK ON ERROR-FREE SOFTWARE

concrete, you name it. These materials are subject to gravity, fatigue, compression,

and thermodynamics. An engineer can stress-test a bridge or a building. A structural

flaw can often be seen or measured. But code has no tensile strength. It cannot be

weighed. It has no texture. The failures it produces are not cracks but crashes; they

are invisible until they manifest, often in interaction with systems or data that were

never anticipated by the original programmer. In this respect, software systems are

not merely fragile; they are epistemically fragile. That is, our knowledge of how

they will behave is necessarily incomplete. Testing becomes not just a tool for error

detection but a form of epistemic validation: the generation of knowledge about the

artefact through empirical investigation.

Programming cannot be reduced to the execution of rules. It is not enough to

know the syntax of a language or the design patterns of an architecture. Program-

ming requires judgement, experience, and critical thinking. The ideal practitioner is

not just “a jack of all trades” but someone who thinks about their work in a conscious

and who critiques the work without fear. In programming, the constraints are not of

material scarcity but of conceptual entropy, of systems growing out of control, of

code becoming opaque even to its own authors.

The dualism of programming, the intertwining of static representation and dy-

namic behaviour, is key to its distinctiveness. No other discipline requires such sim-

ultaneous mastery over symbolic abstraction and temporal execution. Data struc-

tures are static; they describe the layout, the types, and the potential relationships

among elements. But these structures are inert until executed. The execution brings

behaviour, motion, and side-effects. And the behaviour of software is not deter-

mined purely by its structure. It depends on input, runtime context, and environmen-

tal conditions. This is why programs must be tested with extreme data points, corner

cases, and degenerate paths. Testing every control path is not an ideal but a practical

necessity. And yet, paradoxically, it is also practically impossible in any nontrivial

system. This tension between the need for certainty and the impossibility of proof is

what gives programming its unique philosophical flavour.

The artefacts of physical engineering are external to the engineer. A bridge, once

built, stands or falls by the laws of physics. Its flaws are usually observable and

repairable. In programming, the artefact is internalised. It must be understood to be

A LITTLE BOOK ON ERROR-FREE SOFTWARE 9

maintained. It must be read to be verified. There is no physics of code. There is only

the logic of its execution and the quality of its documentation. This is why program-

ming is so often likened to writing. But unlike prose, code must be both readable

and runnable, both interpretable by humans and executable by machines. This dual

audience further deepens the intellectual demands on the programmer, who must

constantly balance clarity with performance, elegance with expediency, and abstrac-

tion with transparency.

Software systems also differ from physical structures in their changeability. Once

a building is constructed, modifying it is costly, disruptive, and often constrained by

physical law. Software, by contrast, is fluid. It can be copied, refactored, forked, and

extended at near-zero marginal cost. But this fluidity is deceptive. Each change risks

introducing bugs, altering assumptions, and breaking interfaces. The cost of com-

plexity is cumulative. It is not the feature that kills you, but the interactions among

features. The problem is not code in isolation but code in context. Complexity

emerges not from any single module but from the interdependencies among mod-

ules, the assumptions they encode, and the coupling they imply. Hence the necessity

of design principles that foreground isolation, clarity, and layering, principles that

resemble heuristics far more than they do the formal rules of science or the deter-

ministic mechanics of engineering.

To understand programming as a craft is not to romanticise it. It is to acknowl-

edge that it resists complete systematisation. Methodologies, languages, and tools

may offer guidance, but they do not eliminate the need for judgement. The argument

is that good programming emerges not from adherence to formal method alone but

from critical engagement with the problem space, the user context, the evolving

codebase, and the practitioner’s own reasoning. These are not procedural skills but

intellectual virtues.

Craft also implies community. A craft tradition is not simply a personal set of

techniques; it is a shared culture of standards, mentorship, peer review, and pride of

authorship. The code should be traceable to its author. Not to shame or penalise, but

to affirm ownership and responsibility. Anonymous code, like anonymous architec-

ture, is often fragile and incoherent. Code with a signature carries intention. And

intention, in craft, is what separates function from art. The remarkable autonomy

10 A LITTLE BOOK ON ERROR-FREE SOFTWARE

with which programmers operate in the absence of formal epistemologies, exploring

implications for pedagogy, professional culture, and systemic risk

If programming is a true craft, then it is a novel and modern one: dispersed, de-

centralised, and highly autonomous. There exists no formal epistemology of pro-

gramming akin to mathematical logic, no universally established method of valida-

tion or pedagogy. Yet millions of individuals write code every day, many without

formal education in software development, and often with a striking degree of oper-

ational independence. This is perhaps the most extraordinary fact about program-

ming: we allow it to be done with so little oversight, so little enforcement of proce-

dure, and so much reliance on the discretion of the individual. Programmers are, in

practice, left largely to their own devices, tools aside, to construct artefacts of enor-

mous social, economic, and individual consequences.

The professions and subjects to which programming is most often compared,

such as engineering, mathematics and architecture, all feature stringent systems of

certification and procedural vetting. To build a bridge, one must be licensed. To

prescribe medication, one must be authorised. These professions protect their prac-

tices through accreditation, regulation, and peer oversight. Software development,

by contrast, exhibits few such constraints. There is no licensure required to build a

payroll system, an e-commerce backend, or even safety-critical code running in hos-

pitals or aircraft. The artefacts themselves are not subjected to independent physical

testing, because they cannot be; their behaviour must be inferred, simulated, or em-

pirically observed. And so we rely on the programmers’ own conscience, standards,

and ability to anticipate complexity, isolate faults, and reason about correctness.

This has led to a peculiar kind of professional culture, one that emphasises learn-

ing by doing, by tinkering, and even by copying and remixing code found in the

wild, for example on online forums. While formal instruction in computer science

exists, and is valuable, it is neither a necessary nor sufficient condition for competent

programming. This is not a cause for celebration; rather, it demands explanation.

What we call best practice is often a matter of oral tradition, informal mentorship,

or individual experimentation. This absence of centralised knowledge production

does not make programming unprofessional. It makes it artisanal. Knowledge

spreads through communities of practice, not doctrinal institutions. It is shared

A LITTLE BOOK ON ERROR-FREE SOFTWARE 11

through example, code review, open-source contribution, and not least admitted fail-

ure.

This autonomy is enabled, in part, by the nature of software itself. Code is ame-

nable to version control, rapid iteration, and instantaneous deployment. This allows

feedback loops that are far shorter and more intimate than those found in physical

disciplines. A civil engineer must wait months or years to see a project realised in

the real world. A programmer sees the result of their intervention immediately. If

not in a browser, then in a test suite or a debugger. The machine becomes both can-

vas and critic. This immediacy allows for a kind of solo apprenticeship: through the

recursive interaction with the machine, the programmer internalises a sense of cause

and effect, of effort and consequence. They develop, over time, an intuition for sys-

tem behaviour, a feel for abstraction, and a sensitivity to fragility.

And yet this mode of working, independent, improvisational, loosely governed,

carries risk. As software systems become more central to public life, the conse-

quences of design failure scale accordingly. The failure of a database may now com-

promise not a ledger but a democracy. An error in a sorting algorithm may not in-

convenience a few users but structurally bias the allocation of loans, benefits, or

jobs. In such a context, the reliance on personal integrity, on craft as a virtue, begins

to seem insufficient. It is here that the limitations of the craft metaphor reveal them-

selves. Craft traditions, historically, were slow to scale. They resisted mechanisa-

tion. They thrived on direct experience and bodily engagement with materials. Pro-

gramming, in contrast, can be scaled globally and instantaneously. The same script

may be executed a billion times. A single failure can propagate through the cloud at

the speed of light. What kind of craft is this, then? One that must remain artisanal,

yet produces artefacts whose effects are industrial?

This is the paradox of programming today: it must retain the sensibility of craft

while bearing the responsibility of infrastructure. It is neither sufficient to treat pro-

gramming as amateur tinkering, nor accurate to treat it as a solved engineering sci-

ence. It is a knowledge practice, but one whose knowledge is often tacit, situated,

and difficult to formalise. Polanyi described this kind of knowledge as “we know

more than we can tell” (Polanyi, 1966). Programming is replete with such knowing.

Ask an experienced developer how they detected a subtle concurrency bug, and they

12 A LITTLE BOOK ON ERROR-FREE SOFTWARE

may tell you a story, not a theorem. They may invoke pattern recognition, experi-

ence, and aesthetic discomfort. They may say: “It just did not look right.” This is

not superstition. It is the residue of accumulated craft knowledge, encoded not in

rules but in intuition.

Indeed, much of programming operates at this almost subconscious level. Despite

the apparent formalism of code, many decisions are made based on readability, style,

or maintainability. Concerns that are social more than logical. Style guides, naming

conventions, and indentation rules: these are expressions of culture, shared values,

and implicit pedagogy. Complexity is not a metric of cleverness but a tax on future

cognition. The good programmer is not the one who writes the shortest code, but the

one who enables the clearest reasoning. Again, we are in the domain of intellectual

craft, not algorithmic virtuosity.

In this culture of craft, tools matter but not as ends in themselves. No tool is the

universally best. Each must be judged in context, selected pragmatically, and eval-

uated empirically. The emphasis is on adaptability, not adherence. This anti-doctri-

naire posture is characteristic of craft traditions, which favour heuristics over rules

and exemplars over axioms. The practitioner must know not just how to use the tool,

but also when and why, and when to abandon it. Thus the programmer becomes, in

its ideal form, a doer: one who constructs from what is at hand, who adapts and

combines, who is not bound by purity but guided by function.

This notion of a doer is not the absence of rigour. It is a case of situated judge-

ment. The complexity of modern software systems makes pure formalism insuffi-

cient. The search space is too vast. The constraints are too variable. The goals are

too conflicting. What is required is not a calculus but a sensibility. This is why pro-

gramming, properly understood, must be treated as a practice of cultivated intelli-

gence. A craft of the mind, performed through the medium of symbol and logic, in

negotiation with both machine constraint and human ambiguity.

But if programming is a craft, then where is its studio? Where is its apprenticeship

model? Where are its roots, its shared language of critique, and its pedagogical lin-

eage? In truth, programming pedagogy remains fragmented. University courses fo-

cus on algorithms and data structures, computability and complexity. These are nec-

essary but not sufficient. They provide the grammar but not the rhetoric. They teach

A LITTLE BOOK ON ERROR-FREE SOFTWARE 13

how to compute, not how to design. They treat software as output, not as dialogue.

And design, as any craftsperson knows, is where the discipline lives. Without de-

sign, there is only assembly.

This educational gap has led to the rise of alternative pedagogies: coding boot-

camps, open-source mentorships, pair programming, and online communities. These

are not substitutes for formal education, but they do fill a void. They provide the

studio and apprenticeship model that the academy often lacks. They offer critique,

collaboration, and visibility. They allow the transmission of tacit knowledge through

joint activity. But they are also unregulated, inconsistent, and exclusionary in their

own ways. Not all apprenticeships are created equal. Not all studios are healthy. And

so the craft of programming, while vibrant, remains unevenly distributed. Its stand-

ards are emergent, not enforced; its virtues are aspirational, not certified.

This, perhaps, is the final irony. Programming is one of the most consequential

occupations in the modern world, shaping economies, institutions, and social expe-

rience. And yet it remains among the least formalised. Its practitioners operate with

enormous autonomy, under conditions of accelerating complexity, without a shared

epistemology or pedagogical framework. They succeed, when they do, not because

their profession guarantees it, but because they have cultivated habits of attention,

reflection, and coping. These are not technical skills. They are intellectual virtues.

And they are the foundation of programming as a craft.

Correctness in Programming

The notion of correctness occupies a central yet precarious position in programming.

Unlike in mathematics, correctness cannot be proven in most practical cases; and

unlike in physical engineering, correctness cannot be observed through physical be-

haviour alone. The code may run, it may return the right output under known con-

ditions, and still it may harbour fatal errors that might manifest only under obscure

input sequences, specific timing interactions, or after scaling beyond its original de-

sign parameters. This is not an accidental feature of programming but an essential

one. It arises from the dual nature of software as both static and dynamic: the code

as written is a static artefact, while its meaning, the way it behaves when executed,

is only revealed in motion. Correctness, then, is not a stable property of the artefact

14 A LITTLE BOOK ON ERROR-FREE SOFTWARE

itself, but a relational property that emerges in interaction.

This distinguishes programming from mathematics in the most fundamental way.

In mathematics, a theorem is correct if it is derivable from axioms via valid infer-

ence. The artefact (the proof) is both the justification and the product. Once the proof

is complete, the matter is settled. No further observation is needed. But in program-

ming, a piece of code may compile successfully, it may even be logically coherent

within the grammar of the language, and yet behave utterly incorrectly under exe-

cution. The gap between syntax and semantics, between the form and the effect, is

not merely a theoretical nuisance. An error-free compilation means almost nothing.

This is the heart of the problem. It is why even formally verified software, where

logical specifications are proved against code, can fail to meet real-world require-

ments. The specification itself may be incomplete, incorrect, or naïvely conceived.

In the world of actual programming, there is no refuge in proof.

Nor is correctness accessible in the manner of physical engineering. When a

bridge stands, its load-bearing properties can be modelled, inspected and tested. The

structure exists in three-dimensional space and obeys known laws of physics. When

it fails, the reasons can often be diagnosed through material analysis, sensor logs, or

physical inspection. But when a program fails, when it crashes, produces the wrong

output, or hangs indefinitely, the cause is not visible in the static artefact. One must

infer it from traces of dynamic behaviour. The code must be examined line by line,

the logic mentally reconstructed, the inputs replayed and the state recreated. The

failure is semantic, not material. It is a kind of conceptual rot, undetectable by the

senses, knowable only through reasoning or simulation.

This epistemic opacity makes testing central to the craft of programming. Testing

is not a postscript to implementation; it is the primary method by which the pro-

grammer discovers what the program actually does. The programmer does not know

where the flaws are. He can only probe, sample, and experiment. This makes testing

less like measurement and more like science: hypothesis, experiment, falsification.

Yet this scientific endeavour is constrained by pragmatism. Testing every possible

state or path is computationally intractable in all but the most trivial programs. The

number of potential states in even a simple interactive system is exponential in the

number of input variables and internal branches. Thus, exhaustive testing becomes

A LITTLE BOOK ON ERROR-FREE SOFTWARE 15

impossible, and correctness becomes statistical. We gain confidence in our code not

by proving it correct, but by failing to find it incorrect under many plausible scenar-

ios. This is a philosophical compromise. But it is also a practical necessity. The

alternatives, to do nothing or to await perfect proof, are paralysis.

This has consequences for how we think about responsibility in programming. In

physical disciplines, responsibility is often shared between design and materials. A

bridge collapses, and we ask: was the design flawed, or did the materials fail? But

in programming, the design is the material. There is no intervening substance be-

tween idea and execution. The artefact is the embodiment of logic itself. Thus, when

the code fails, the fault is conceptual. It lies in the model, the assumptions, or the

abstractions. And therefore, it is personal. Complexity is not a neutral state. The

programmer is accountable not just for what the code does now, but for how under-

standable it will be tomorrow. Maintenance is 80% of time spent coding, or more.

The code becomes a signature of intent, of care, of quality. It signals that someone

has thought about the edge cases, wrestled with the ambiguity, and stands behind

the logic. This stands in sharp contrast to industrial models of software production,

where code is often anonymous, commoditised, and subject to rapid churn. In the

craft model, code is not just written; it is authored.

But even the most careful author cannot eliminate all uncertainty. In program-

ming, correctness is a moving target. As requirements change, as inputs evolve, and

as systems integrate, what was once correct may become incorrect. Acceptable be-

haviour may become insecure. Valid outputs may become offensive or discrimina-

tory. This makes programming not just a creative activity, but a recursive one. The

artefact is never done. It must be revised, retested, re-understood. This evolutionary

view further distinguishes programming from mathematics, where proofs remain

valid once established, and from physical engineering, where the material con-

straints remain stable across time. Programming occurs in a fluid epistemic land-

scape. The platform changes, the user changes, and thus the threat model changes.

The artefact must adapt or perish. This is why test coverage, version control, and

modularity are not just technical conveniences but existential safeguards. They al-

low the artefact to change without losing its integrity. They make the artefact self-

reflexive, able to contain within itself the means of its own renewal.

16 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Testing, then, is not a chore to be appended to development. It is part of the on-

tology of programming itself. It is the mechanism by which static intention is trans-

formed into dynamic verification. But it is also incomplete. No test can guarantee

that the program does the right thing. It can only show that it fails to do the wrong

thing under specified conditions. This is why testing must be complemented by doc-

umentation, naming conventions, and readable code. By anything that allows a hu-

man to understand what the code is meant to do. And herein lies a tension. We often

speak of code as if it were formal, rigorous, and deterministic. But our practices

betray that illusion. We test empirically. We debug heuristically. We refactor aes-

thetically. We rely on code linters, code reviewers, and informal conversations. We

search Stack Overflow. We experiment. These are not the habits of mathematicians.

They are the habits of craftspeople. People who know that materials lie, that tools

fail, that the artefact may turn against them if handled carelessly. They respect the

medium not for its purity, but for its complexity.

This perspective should not be mistaken for anti-scientific relativism. The logic

of code is precise, and bugs are real. But the context in which code runs, and the

intentions it embodies, are neither fully specifiable nor fully stable. There is always

a residue of ambiguity, of human error, of unexpected interaction. The craft of pro-

gramming consists of managing this ambiguity without succumbing to it. It is the

art of the incomplete proof, the unprovable necessity, and the partially ordered

world. The consequence of all this is profound: programming does not produce ar-

tefacts that are proven correct, but those that must be believed to be correct based on

evidence, inspection, and trust. This is a unique epistemic condition. It blends logical

reasoning with empirical methods, intuition with formalism, and experimentation

with tradition. It cannot be captured by diagrams alone, nor by proofs alone, nor by

test results alone. And it is in this mode of practice, in this balance of constraint and

creativity, verification and invention, that programming reveals itself as a distinct

form of intellectual craftsmanship.

Expressiveness and Interpretation

To speak of programming as a craft is also to acknowledge its expressive dimension.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 17

Code is not merely instruction to machines; it is also communication between hu-

mans. The programmer writes not only for the compiler, but for the reader, who may

be a teammate, a future maintainer, or the programmer’s own self revisiting a system

months later. The expressive character of code, then, is not incidental; it is central.

It conditions how complexity is managed, how collaboration unfolds, and how un-

derstanding is preserved across time. The mistake of many formal treatments of pro-

gramming is to treat code as pure logic. In truth, code is also language.

This linguistic quality gives programming a dual audience: the machine and the

human. The machine demands unambiguous syntax, determinism, and operational

semantics. The human seeks legibility, meaningful structure, and economy of ex-

pression. These two demands often exist in tension. The shortest code is not neces-

sarily the clearest. The most performant code is not necessarily the most maintaina-

ble. It is the job of the craftsperson to navigate these tensions, to produce artefacts

that are at once precise and communicative, functional and intelligible. This is why

naming matters. Why indentation matters. Why code layout, ordering, and module

boundaries matter. They are not cosmetic choices. They are rhetorical devices in a

language whose semantics extend beyond the machine.

Clarity is not just an aesthetic preference; it is a cognitive strategy. Code that is

easier to understand is easier to verify, easier to modify, and easier to reason about.

It reduces the cognitive load on the reader, allowing them to build a correct mental

model of the system. This, in turn, reduces the likelihood of bugs, the cost of on-

boarding, and the risk of unintentional collapse. Clarity, then, is not polishing the

end product. It is structural. The pursuit of clarity brings programming into the do-

main of writing, not writing as a means of verbal expression, but writing as an act

of structuring thought. Code is structured thought rendered in a symbolic system,

bound by syntactic constraints but animated by semantic intent. Just as writers must

consider audience, context, tone, and narrative arc, so must programmers consider

interfaces, abstraction, side-effects, and modular cohesion. The best code, like the

best prose, invites understanding. It leads the reader. It suggests, rather than ob-

scures, intent.

But this analogy also illuminates a key challenge. Language is inherently inter-

pretive. No sentence is immune to misreading. No text guarantees a single, universal

18 A LITTLE BOOK ON ERROR-FREE SOFTWARE

interpretation. Code is less ambiguous than natural language, but not immune. A

function name may suggest the wrong metaphor. A variable name may imply the

wrong unit. A nested loop may conceal a performance hazard. Even if the code be-

haves correctly under execution, its meaning, its intent, rationale, and domain logic,

may be misread. This is the interpretative burden of programming. One must not

only understand what the code does but also why it was written that way.

This interpretative burden is exacerbated in systems that evolve. As software ac-

cretes features, fixes, and refactors, the original design intent is diluted. Without

clear structure, without expressive interfaces, the code becomes opaque. Still exe-

cutable, but no longer readable. This is incremental complexity: the slow build-up

of structural entanglement that makes each new feature harder to add and each bug

harder to trace. The antidote to this is not merely better tools or stronger typing. It

is more deliberate writing. It is the insistence that code be readable as a narrative

and that its structure reflects the conceptual architecture of the domain it represents.

Such deliberateness requires taste. It requires the capacity to recognise when code

is "good," in an aesthetic and/or functional sense. This is another hallmark of craft:

the presence of aesthetic judgement. The experienced programmer knows when a

function is too long, when a class is overloaded with responsibility, or when a de-

pendency breaks encapsulation. These are not issues of syntax but of style and struc-

ture. They are perceived, not computed. And they are refined through practice, ex-

posure, and critique. This is why programming, like writing, benefits from peer re-

view. Not just for correctness, but for clarity. Not just for bugs, but for beauty.

Beauty in code is not about ornament. It is about proportion, coherence, and expres-

siveness. A beautiful piece of code is one that says exactly what it means, no more

and no less. It is one whose structure mirrors its function, whose boundaries reflect

the conceptual seams in the problem space. It is not clever for its own sake. It is

elegant because it does much with little and reveals rather than hides. Yet program-

ming differs from writing in one decisive respect: code must run. The artefact is not

merely expressive; it is executable. It is not enough for it to be well-structured; it

must also do something, and do it correctly. This is what makes programming

uniquely demanding. The artefact is both a description and a prescription. It both

tells a story and enacts a procedure. It must satisfy two masters: the human and the

A LITTLE BOOK ON ERROR-FREE SOFTWARE 19

machine. No other medium has quite this duality. Blueprints are never mistaken for

buildings. Scripts are not confused with performances. But code is both script and

performance. It is both notation and action.

This duality also means that code can deceive. It can appear clean while hiding

subtle bugs. It can look elegant while violating essential invariants. It can behave

correctly under test cases while failing under edge conditions. This is why style is

not a substitute for correctness. The code must both read well and run correctly. This

demands a level of discipline and self-awareness rarely required in other forms of

writing. The programmer must be both author and editor, both dramatist and critic.

They must anticipate not only how the machine will execute their code, but how

another human will interpret it: under pressure, with limited context, perhaps in a

different time zone or cultural milieu.

These demands are rarely made explicit in traditional computer science educa-

tion. Courses focus on computability, complexity, and algorithmic efficiency. These

are important, but they are not enough. They do not teach the student how to name

variables meaningfully, how to break a problem into layers, how to balance perfor-

mance with readability, or how to write for the next person who reads the code.

These are rhetorical skills. They require empathy, judgement, and revision. They are

closer to design than to science, and closer to prose than to proof. They are, in short,

the skills of a craft.

One of the most telling indicators of this linguistic dimension is the very exist-

ence of programming idioms. Just as natural languages evolve idioms, common

phrases whose meaning transcends their literal syntax, so too do programming lan-

guages develop idiomatic forms. These idioms are not enforced by the language.

They are conventions learned by reading, mimicking, or participating in a culture.

They mark membership in a community of practice. They signal familiarity, trust-

worthiness, and competence. They are the oral tradition of the programming tribe.

Yet idioms can also obscure. What is idiomatic to one community may be cryptic to

another. This variability reinforces the need for interpretative flexibility, for the abil-

ity to read across styles, adapt to dialects, and understand not just what the code does

but how it is situated in its cultural context. This is not a technical skill. It is a hu-

20 A LITTLE BOOK ON ERROR-FREE SOFTWARE

manistic one. It requires the ability to empathise with the author, reconstruct inten-

tion, and navigate ambiguity. In this sense, programming is a philological act. It is

the interpretation of text under the constraints of logic and effect.

Design is also about shaping interfaces. Not just technical ones, but conceptual

ones. An interface, after all, is a boundary across which understanding must flow. If

the interface is poorly named, poorly documented, or poorly structured, the bound-

ary becomes opaque. The cost is not just technical; it is cognitive. The downstream

reader must reverse-engineer the logic, reconstruct the assumptions, and divine the

contract. This is labour that good design should prevent. The goal is not to prevent

all bugs since that is impossible, but to prevent misunderstanding. Misunderstanding

is the root of error. The best code prevents misunderstanding by being as clear as it

is correct.

Programming, then, is not merely the act of getting the machine to do what we

want. It is the act of expressing intention in a medium that is both unforgiving and

abstract. It is a writing practice in which the reader is often ourselves, months later,

or a stranger in a different part of the world, under deadline, under stress. The best

programmers know this. They write not only for the CPU but for the next human

being. They craft their code as a message across time. And this, above all, is why

programming is a craft. Not because it is beautiful, although it often is. Not because

it is expressive, although it must be. But because it is authored with intent, inter-

preted with care, and sustained by a community that values both.

Absence of a Unifying Theory

The refusal of programming to yield to a unified theory of programming is not a

sign of its immaturity. It is a structural feature of the medium itself. Programming

resists total systematisation because its domain, human intention rendered as com-

putational behaviour, is neither closed nor fully formalisable. While other disci-

plines develop mature professional frameworks by constraining their object of

study, programming remains open-ended. Its object is not just “the program,” but

the evolving web of interactions, data, interfaces, side-effects, and human needs that

define the software system over time. In this sense, the absence of a canonical

method is not an oversight; it is a consequence of the terrain.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 21

Why, then, has programming not developed the guild-like institutional trappings

of other technical disciplines, accreditation boards, licensure systems, or codes of

conduct? Partly this is historical. Programming emerged in the mid-twentieth cen-

tury as an auxiliary to mathematical computation and military engineering. Its early

practitioners were often physicists or engineers by training, and the academic disci-

plines that housed it were shaped by that lineage. But as programming grew into a

global, autonomous practice, its disciplinary structure failed to evolve in tandem.

Computer science, as taught in universities, remains focused on abstract formalism:

automata theory, computational complexity, and logic. It did not become the foun-

dation for practising programmers. Instead, the practice proliferated in industry,

open-source communities, and informal training environments. The higher institu-

tions never fully captured the craft.

The result is a bifurcation: on one side, an academic discipline rooted in the math-

ematical and theoretical foundations of computation; on the other, a vast, heteroge-

neous, and largely self-taught population of practitioners building the actual soft-

ware systems that run the world. This bifurcation explains much of the unease in

programming culture: the lack of a unified identity, the tension between science and

practice, and the suspicion of academic approaches that seem out of touch with real-

world needs. It also explains the persistent rediscovery of insights long known to

craftspeople but marginal in the theoretical canon, such as the importance of naming,

layering, and interface clarity.

Attempts to bridge this gap often take the form of ideas called methodologies,

such as Agile or Extreme Programming (Beck, 1999). These are not scientific theo-

ries; they are cultural movements. They codify practices, articulate values, and pro-

pose rituals. Some are valuable, some are reactionary, and most are incomplete.

What they share is a recognition that programming requires not just tools, but shared

discipline, habits of interaction, and norms of code review. But none has succeeded

in becoming canonical, because none can be. The variety of contexts in which pro-

gramming occurs: web applications, enterprise systems, embedded software, simu-

lations, and games, among many others, precludes methodological hegemony. No

single set of rituals can govern them all. What is needed instead is a meta-discipline:

a way of cultivating judgement about which practices to apply, when, and why.

22 A LITTLE BOOK ON ERROR-FREE SOFTWARE

However, craft as a model has its own limitations. It resists automation. It de-

pends on tacit knowledge. It scales unevenly. This poses a serious challenge in a

world where software must be secure, reliable, and compliant at scale. The stakes

are higher than ever. Software no longer runs in isolated systems; it orchestrates

finance, governance, infrastructure, and identity. The call for “software engineer-

ing” is therefore understandable: it promises predictability, standardisation, and au-

ditability. It promises to transform programming from a cottage industry into a ma-

ture profession.

And yet, many decades after the phrase “software engineering” was coined, it

remains more aspirational than descriptive. The failure is not one of ambition, but

of fit. The metaphors of engineering, such as blueprints, load-bearing structures, or

stress analysis, fail to capture the dynamics of code. Software is not poured into

forms. It is not subject to physical degradation. Its cost is not in materials but in

cognition. Its failure modes are not cracks but misbehaviours, often subtle, emer-

gent, or context-sensitive. The assumptions that undergird physical engineering do

not hold in the domain of code.

Moreover, the artefacts of software are mutable in a way that physical artefacts

are not. One cannot “patch” a bridge in production with a keyboard and a Git com-

mit. But one can, and often must, patch software. One cannot deploy ten thousand

copies of a building to run in parallel on different continents. But one can, and often

does, deploy software at a planetary scale. This scale and mutability require a dif-

ferent epistemology. They require practices that are robust under change, resilient

under uncertainty, and responsive to user behaviour. These are not the qualities of

classical engineering. They are the hallmarks of responsive craft.

If there is an analogy to be drawn, it is perhaps to architecture rather than civil

engineering. The architect, like the programmer, works with constraints, client

needs, budgets, and physical laws, but must also produce something inhabitable,

interpretable, and meaningful. The architect’s success is not only measured in struc-

tural integrity but also in experience. Likewise, a programmer’s success is not only

measured in correctness, but in usability, maintainability, and conceptual integrity.

The blueprint is not the building. The code is not the system. Both must anticipate

the future, embody purpose, and mediate ambiguity.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 23

This interpretative burden is what makes programming somewhat philosophical.

It is not reducible to physics or logic. It involves reasoning about systems that do

not yet exist, in contexts that may change, for users who may misunderstand. It in-

volves choosing between competing goods: performance versus readability, security

versus flexibility, or abstraction versus transparency. These are not technical trade-

offs alone. They are normative choices, structured by human values and cultural

norms. They require judgements, not algorithms. They are shaped by critical reflec-

tion, not mere specification.

And this is why programming, even in its most industrial forms, remains irreduc-

ibly human. We may speak of outsourcing, coding automation, or recently of AI-

assisted development. But behind every developing effort is a choice about what to

automate. Behind every abstraction is a choice about what to hide. These choices

are not made by tools, they are made by people. People who bring with them as-

sumptions, biases, intuitions, and beliefs. The code they write is not neutral, how-

ever much their employer would like that. It is an inscription of these values into a

system of behaviour. This inscription may be subtle, but it is consequential. It shapes

what the system allows, forbids, enables, and precludes. It defines what users can

see, can do, and can imagine.

Thus, the refusal of programming to become a fully standardised profession is

not a failure of institutionalisation. It is an acknowledgement of its epistemic condi-

tion. Programming is a practice that operates in the gap between specification and

implementation, between intention and behaviour. It is a form of design that must

be both correct and communicative, both efficient and expressive. It is a form of

knowledge production that resists full formalisation because its context is never

fixed. The best we can do is to cultivate practitioners who can think in this space,

who can tolerate ambiguity, reason across layers, and balance competing constraints.

We can teach principles, not recipes. We can share cases, not commandments. We

can pass on habits of mind, not mandates of doctrine.

This is the core of an intellectual craft. It is not about artisanal elitism. It is about

recognising that good work requires good judgement, and that good judgement is

cultivated through experience, reflection, and dialogue. It is about building a culture

24 A LITTLE BOOK ON ERROR-FREE SOFTWARE

that values clarity, wisdom, and experience, not because they are efficient, but be-

cause they are durable. In the long run, the systems that endure are not those that are

merely optimised, but those that are well-understood. And understanding is not a

by-product. It is the work itself.

Philosophy and Culture

To insist that programming is a craft is not to diminish it. It is to dignify it rightly.

In a landscape dominated by metaphors of science and industry, it is tempting to

frame programming as an immature engineering discipline, awaiting its equivalent

of Newton or Gauss. Or, conversely, to treat it as a misapplied form of mathematics,

whose tools are half-finished and whose proofs are merely implicit. But program-

ming resists both characterisations. It is neither a subset of physical design nor a

variant of formal reasoning. It is its own kind of knowledge production. It is a prac-

tice of shaping symbolic artefacts whose reality is behavioural, not spatial; whose

correctness is partial, not proven; and whose purpose is evolving, not fixed.

Programming is not the act of commanding machines. It is the act of expressing

intentions in a form that both humans and machines can interpret and act upon. This

expressive constraint is not a weakness. It is what gives programming its creative

and intellectual character. The programmer does not simply solve problems; they

articulate systems of possibility. They design grammars of action. They render the

fluid demands of human thought and institutional structure into the crystalline logic

of execution. The elegance of a function, clarity of an interface, or modularity of a

system are not incidental features. They are the signatures of a mind grappling with

complexity, communicating across time, and reasoning under uncertainty.

And always, the work is dual. The artefact itself is static, but its life is dynamic.

The program, in source code, is inert. But in execution, it lives. It consumes input,

produces output, responds to stimuli, reacts to edge cases, and fails under pressure.

The dualism is not just metaphysical. It is methodological. It is why we test, debug,

simulate, refactor. It is why correctness cannot be asserted, only supported. It is why

formal verification, though powerful in principle, remains rare in practice. The ter-

rain is too wide. The assumptions are too fragile. The interactions are too many.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 25

It is this gap between the code as written and the code as lived that makes pro-

gramming distinct. Physical engineering has its materials; mathematics has its axi-

oms. Programming has neither. Its materials are abstractions, and its axioms are pro-

visional. The only test is behaviour. The only validation is empirical. The only guar-

antee is vigilance. And yet, it works. Complex systems are built, maintained, and

evolved. Failures occur, but successes abound. Code runs in phones, planes, hospi-

tals, farms, museums, laboratories, or just about anywhere. It shapes the world, not

through brute force or aesthetic metaphor, but through the orchestration of logic and

contingency.

This orchestration is a craft because it cannot be reduced to rule-following. It is

not the mere application of templates. It is not the automation of prior knowledge.

It is the careful negotiation between constraint and possibility. Between what is de-

sired and what can be encoded. Between what is specified and what will be inter-

preted. The good programmer is one who sees this negotiation for what it is: not a

burden, but the substance of the work. They do not seek to eliminate judgement,

they seek to refine it. They do not seek to replace human intuition with static rules.

They seek to train that intuition through disciplined experience.

This experience is communal. It is accumulated not in isolated minds, but in a

culture: a culture of shared tools, practices, debates, and conventions. Programming

culture, for all its fragmentation, is rich in informal pedagogy. Open-source reposi-

tories are textbooks of idioms. Style guides are expressions of commitment. Forums,

issue threads, and documentation are sites of epistemic struggle: What does this do?

What should it do? Why was it done this way? The work is not just in the artefact

itself. It is in the discourse around it. It is in the code comments and commit mes-

sages, in the pull requests and post-mortems. These are the annotations of a living

craft.

The craft is living because the systems are never finished. Unlike bridges or

books, most software systems are under constant revision. Requirements change,

libraries evolve, and platforms shift. The very fluidity that makes software powerful

also makes it unstable. This requires a mindset not of finality but of care. The pro-

grammer must assume that what is written today will be read, modified, misunder-

stood, and extended tomorrow. They must write with that future in mind. This is not

26 A LITTLE BOOK ON ERROR-FREE SOFTWARE

taught in textbooks. It is taught in pain. In late nights spent tracing bugs. In awkward

meetings explaining why a feature broke. In moments of insight when a better ab-

straction makes everything simpler.

To elevate programming as a craft is not to deny the value of science or engineer-

ing. On the contrary, it is to locate programming alongside them, as an equal but

different form of rational engagement with the world. Science discovers what is.

Engineering constructs what can stand. Programming constructs what can behave.

That behaviour is not visible in space. It unfolds in time. It is not constrained by

gravity but by complexity. It is not tested with callipers, but with test suites and

simulations. It is not made robust by stronger steel alloys but by clearer logic, tighter

interfaces, and better naming.

The intellectual demands of this work are immense. They combine symbolic rea-

soning with empirical investigation, social awareness with logical structure, and cre-

ative synthesis with critical review. Few other domains ask as much breadth from

their practitioners. Few others entrust so much responsibility to the individual. Pro-

gramming remains largely autonomous. Millions of practitioners write software

with little formal oversight. They are trusted not because the process guarantees cor-

rectness, but because the culture encourages care. This is both a strength and a risk.

But it is the condition of the discipline. It is what makes the craft fragile, and what

makes it essential. And so programming must be taught, not only as syntax and con-

trol flow but as philosophy and judgement. Not only as data structures and algo-

rithms, but as writing and design. Not only as a job but as a form of thinking. It must

be framed as a craft because only that term captures its epistemic heterogeneity. The

craft of programming is not what one does after the “real work” is done. It is the real

work. It is the place where abstraction becomes action, where desire meets con-

straint, and where logic comes alive.

Finally, is there a built-in tension between regarding programming to be a craft

or an art, on the one hand, and on the other striving for error-free software? At first

glance, it might seem so. If programmers are let loose like artists painting impres-

sionist visions, surely it will end up as ad-hoc codebases? The key here is to realise

that the artistic freedom lies at the conceptual level, not the code level. Read on, and

you will be enlightened.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 27

2. A True Craft

This chapter is written a year later than Chapter 1 and addresses the identity of pro-

gramming from a different viewpoint. As argued in the previous chapter, program-

ming is an intellectual craft, not a form of engineering or a branch of mathematics.

While programming shares elements with both disciplines, it transcends both those

categories. The art of writing software code is not the application of prefabricated

formulas to well-bounded problems, nor is it the derivation of abstract theorems.

Instead, programming is a creative and at the same time scholarly pursuit that blends

precision and ingenuity to produce complex, dynamic artefacts that are at the same

time conceptual and operational. It is a craft in the truest sense: requiring specialised

skills acquired through experience and reflection, and yielding outcomes judged not

only by correctness but also by elegance and maintainability. This view was also

held by early computing pioneers, not only modern practitioners. Donald Knuth

(1974) said that “computer programming is an art, because it applies accumulated

knowledge to the world, because it requires skill and ingenuity, and especially be-

cause it produces objects of beauty”. Yet the term “art” in this context is similar to

its older meaning of skilled practice (from Latin ars, meaning skill), much like the

arts of carpentry or architecture, which combine creative vision with practical exe-

cution. This is the same concept of art as in KTH Royal Institute of Technology’s

(the author’s alma mater; Danielson, 1997) motto “Science and Art”, in which art

should be taken as the engineers’ craftsmanship. In contemporary language, one

might say craft. Indeed, good programming exhibits the hallmarks of craft: it com-

bines beauty with utility and creativity with discipline. As Knuth suggested, a pro-

grammer who approaches the task as a craftsperson, taking pride in the creation of

a well-made software artefact, will enjoy what he does and will do it better (Knuth,

1992).

Consider how the perception of programming has evolved. In the 1950s, pro-

gramming was a discipline often practiced by mathematicians and electrical engi-

neers. Early computers were programmed in machine code or at best assembly lan-

guage, and programming was often viewed as a low-level, almost clerical activity

with teams of human “computers,” often women, hand-calculating or hand-coding

28 A LITTLE BOOK ON ERROR-FREE SOFTWARE

algorithms. However, as projects grew in scale, for example, IBM’s OS/360 operat-

ing system in the 1960s, which required hundreds of person-years (Brooks, 1975),

the need for a more systematic approach became evident. The term “software engi-

neering” was introduced at a NATO conference in 1969 to provoke thinking about

applying engineering principles to software development (Buxton and Randell,

1970). Yet even at that conference, participants debated whether programming could

truly be engineered or whether it was inherently a craft. Over the following decades,

various movements in software methodology swung between formalism and flexi-

bility. The 1970s brought structured programming and attempts to prove programs

correct, with advocates like Dijkstra and Hoare promoting rigorous reasoning (see,

e.g., Dijkstra, 1971). In contrast, the 1980s and 1990s saw a surge of practical tech-

niques emphasizing manageability and reusability, such as modular design, object-

oriented programming, and design patterns. By the late 1990s, frustration with heav-

yweight, plan-driven processes led to the Agile movement, essentially reasserting

the importance of human adaptability and craft over strict processes (Beck et al.,

2001). This historical back-and-forth illustrates a central built-in tension: on one

hand, a desire for predictable, assembly-line software production, on the other, the

reality that programming is an exploratory, creative endeavour that resists too much

rigidity. As Kernighan (1984, 1988) once said, controlling complexity is the essence

of computer programming. What has emerged in practice is a hybrid view: we need

engineering discipline in areas like version control, testing protocols, and project

management, but at the coding keyboards, programming remains a creative craft.

The best results come when individual programmers are empowered to make deci-

sions, experiment, and iterate, i.e. when they are treated as craftspeople who take

ownership of their work.

Thoughts from 2001

It is necessary to distinguish this concept of programming-as-craft from the more

rigid notion of programming-as-engineering. The software industry has long bor-

rowed the language of traditional engineering: we speak of “software engineering,”

of architects and blueprints, of construction and maintenance. These metaphors were

adopted in the late 1960s in response to the first “software crisis” (the second came

A LITTLE BOOK ON ERROR-FREE SOFTWARE 29

in the 1990s, leading to i.a. the agile movement) reflecting a desire to bring order

and predictability to software development. Indeed, large software projects, like

large civil engineering works, demand teamwork, planning, and sound methodol-

ogy. However, the engineering paradigm does not preclude individual craftsmanship

within the larger effort. As Hunt and Thomas (1999) observe in a recent, untradi-

tional book on programming, even monumental structures like the great medieval

cathedrals, which took decades and teams of thousands to build, ultimately depended

on the mastery of individual artisans. The stonecutters, carpenters, carvers, and glass

workers on those projects were “all craftspeople, interpreting the engineering re-

quirements to produce a whole that transcended the purely mechanical side of the

construction”. Their personal skills gave the final structure qualities beyond what

any blueprint could prescribe. The builders’ mindset was captured in the so-called

Quarry Worker’s Creed: “We who cut mere stones must always be envisioning ca-

thedrals” (Hunt and Thomas, 1999). In software development, similarly, while

overarching design and requirements provide a framework (an analogue to structural

engineering), it is the creativity and care of individual programmers that determine

the difference between a merely functional system and an elegant, robust one.

Within the structure of a software project, there is ample room for individual skill

and judgement. It is important for developers to seriously “care about your craft,”

treating each coding task as an opportunity for creative expression rather than a rote

assignment (Hunt and Thomas, 1999). Over time, the sum of these individual con-

tributions yields software that reflects both solid engineering principles and the in-

tangible imprint of craft.

Unlike a bridge or a building, a software program has no physical form that can

be directly inspected or stress-tested in the traditional sense. Indeed, as Brooks

(1975) noted, the programmer “works only slightly removed from pure thought-

stuff,” able to “build… castles in the air, from air” through imagination alone. This

tractable medium of pure logic is immensely flexible since the program’s constructs

“move and work,” producing tangible outcomes in the real world. Paradoxically,

this power of abstraction also makes software elusive to grasp in full, because there

is no concrete artefact that can be mapped in its entirety. Software’s reality is not

inherently embedded in space, hence it remains invisible and unvisualisable in ways

30 A LITTLE BOOK ON ERROR-FREE SOFTWARE

physical structures are not. An architect can draw blueprints and construct scale

models; an aerospace engineer can test a wing in a wind tunnel. But a software de-

sign, no matter how detailed on paper, cannot be fully understood until the program

runs. Any attempt to visualise a complex program results in “not one, but several,

general directed graphs, superimposed one upon another,” representing control flow,

data flow, module dependencies, and so on. These overlapping dimensions resist

any single, static representation. The absence of a tangible model is not merely a

cosmetic concern but an epistemological one: it impedes our ability to reason about

the system’s correctness and performance with the kind of certainty we have in clas-

sical engineering. We cannot see the whole of a software system at once; we must

mentally synthesise its behaviour from reading code and observing runtime outputs.

This is a key reason why programming must be approached as a craft of managing

complexity in thought, rather than as straightforward construction. One of the earli-

est software engineering lessons noted this cognitive challenge: The craft of pro-

gramming involves structuring our invisible designs in ways that our finite human

minds can control. This stands in stark contrast to traditional engineering, where

once a structure is built its physical behaviour often speaks for itself through direct

observation or instrumentation. Software’s invisibility means that the programmer

must play the dual role of both designer and experimental scientist, continually prob-

ing and refining the intangible system to ensure it meets its requirements.

Furthermore, the construct of the software is not only invisible when static; its

dynamics when in operation are as well. A program’s true nature lies in its execu-

tion, which can vary with different inputs and conditions. The duality of static code

and dynamic behaviour is at the heart of what makes programming unique. The

source code is a static textual artefact (comparable to a blueprint or a music sheet),

but when executed it produces behaviour in time, somewhat comparable to a func-

tioning machine or a performed song. Yet the analogy breaks down immediately.

An architect can envision the completed building and the skilled musician can envi-

sion the recorded or performed music, while for a programmer there is nothing as

tangible to imagine. This fusion of the static and dynamic means that a program-

mer’s work product is simultaneously a description of a process and the process

A LITTLE BOOK ON ERROR-FREE SOFTWARE 31

itself instantiates from that description. The correspondence between the two is ex-

act. The running program does precisely what the code says (unless the underlying

compiler, systems software or hardware are broken). Yet, comprehending that cor-

respondence is nontrivial. This makes debugging an intellectual task rather than a

checklist activity. Every bug is a case of a static mistake causing a potentially large

dynamic misbehaviour. And unlike in mathematics, where a proof can establish with

certainty that a theorem follows from axioms, in programming there is seldom a

feasible formal proof that a program’s behaviour matches the desired intent. As a

result, the validation of software leans heavily on empirical testing and iterative re-

finement. Already in 1969, Dijkstra stated that program testing can be used to show

the presence of bugs, but never to show their absence (Dijkstra, 1970). This high-

lights the hard truth: no amount of testing can conclusively guarantee correctness. It

can only increase our confidence by failing to find counterexamples. In practice,

developers acquire a sense of correctness by exercising software under many sce-

narios and edge cases, writing unit tests and integration tests as probes into the pro-

gram’s behaviour. They simulate special conditions, explore corner cases, and use

runtime assertions, in effect performing experiments on the software. Through this

process, knowledge about the software’s reliability is built inductively rather than

deductively. This is more akin to the empirical approach of experimental sciences

rather than the certainty of formal logic. One can perhaps say that each program is

a hypothesis about how to achieve certain outcomes, and testing is the experiment

that probes that hypothesis. When tests are passed, the hypothesis survives; when a

test fails, the programmer must study the results, refine the approach, and try again.

Just as a craftsman might test the integrity of a physical piece by applying pressure

in various ways, a programmer tests a module by running it through various inputs

and states. But where the craftsman’s feedback is immediate and tactile, the pro-

grammer’s feedback is abstract, such as numbers on a screen, log messages, or user

bug reports, requiring interpretation and careful reasoning. This underscores that the

knowledge embodied in a software system resides not only in its code but also in

the mind of the programmer. It is a personal mental model of how the program

works, refined through continual experimentation and learning. The programmer

builds a particular kind of theory in their head about the program’s behaviour (Naur,

32 A LITTLE BOOK ON ERROR-FREE SOFTWARE

1985). Expert developers often internalise techniques that allow them to write sim-

pler, more adaptable code, yet they may find it hard to articulate exactly what they

do differently. This is tacit knowledge in the sense of Polanyi’s “we know more than

we can tell” (Polanyi, 1966).

While engineering metaphors highlight the practical construction aspects of pro-

gramming, comparing programming to pure mathematics leads to other discrepan-

cies. Computer science theory provides a foundation for algorithms and formal lan-

guages, and one might think of programming as just applied mathematics or formal

logic. After all, programs execute logical operations and many foundational results

in computing, such as algorithm correctness proofs or formal grammars, are mathe-

matical in nature. And many theoretical computer scientists do all in their power to

convince the world that “true” computer science is a branch of mathematics. But in

practice, programming diverges from mathematics in several ways. Mathematics

deals in eternal truths and proofs that, once verified, remain valid for all time while

programming deals in contingent solutions that must work in a specific context, un-

der changing requirements and environments. A mathematical proof, once accepted,

does not need retesting while a program, on the other hand, can pass all tests today

and fail tomorrow if its operating environment or inputs change. Moreover, the spec-

ifications that programs implement are often written in natural language or informal

diagrams, not in the strict language of axioms and inference rules. There is always

ambiguity and interpretation involved in translating requirements into code. Even

when formal specifications exist, the complexity of real software often makes full

formal verification infeasible. This does not make programming a lesser intellectual

task, merely a different one. Formal program proofs have limited practical value

unless they become part of a social process of validation; otherwise, a proof can be

as inscrutable as the code itself (DeMillo et al., 1979). In reality, few developers

attempt to prove programs correct with respect to comprehensive formal specs; in-

stead, they use a mix of informal reasoning, peer review, and testing to gain confi-

dence in correctness. Thus, the “truth” of a program is not an abstract certainty but

a pragmatic consensus built through evidence. Furthermore, mathematics strives for

minimal, elegant solutions, whereas in programming there are often many accepta-

A LITTLE BOOK ON ERROR-FREE SOFTWARE 33

ble solutions with different trade-offs in memory space, execution time and main-

tainability, the latter often being the most important. For example, one sorting algo-

rithm might be provably optimal in asymptotic complexity, yet a less optimal algo-

rithm could be preferable in a given software context due to ease of implementation

or better real-world performance on typical data. Such decisions are not purely math-

ematical; they involve judgement about context and priorities, again reflecting the

craftsman’s mindset. In sum, while programming demands logical thinking and oc-

casionally employs formal methods, it is not reducible to mathematics. The pro-

grammer’s task is less like proving a theorem and more like solving a puzzle that

has multiple possible solutions, and then continuously adjusting that solution as the

problem itself evolves over time.

The unavoidable complexity of real-world software is another reason program-

ming cannot be reduced to rigid formulas. Software systems are inherently more

complex than any other human artefact of similar size, and that complexity is an

essential property of software, not an accidental one (Brooks, 1987). Unlike physical

machinery, where many parts might be identical or standardised, in software almost

no two parts are alike at the detail level. A large program may have an astronomi-

cally large number of possible states and execution paths, far beyond what any in-

dividual can comprehend. As systems grow, the interactions and edge cases grow

combinatorially. The craft of programming thus focuses on taming this complexity

by finding ways to organise and reduce it so that our minds can manage the remain-

der. Dealing with complexity is the most difficult challenge in software design.

Good programmers develop heuristic techniques and design principles to keep com-

plexity at bay by dividing systems into modules, establishing clear interfaces, limit-

ing interdependencies, refactoring out duplication, and so on (Parnas, 1972). Each

of these techniques is less a scientific law than a craft guideline, a distillation of

experience about what tends to work. For example, Parnas’ principle of information

hiding (1972) advised designers to encapsulate details likely to change behind stable

module interfaces, thereby reducing the cognitive burden on anyone using or modi-

fying that module. This was not derived from a theorem but from insight and expe-

rience in managing change in complex systems. Likewise, the use of design patterns

34 A LITTLE BOOK ON ERROR-FREE SOFTWARE

in software (recurring solutions to common design problems) arose from practition-

ers noticing how certain arrangements of classes and objects repeatedly proved ef-

fective (Gamma et al., 1994). These patterns became part of the shared experiences

of the craft, a way to transfer hard-won knowledge without needing formal proof.

Where classical engineering relies on laws of nature and well-understood material

properties, software design relies on a growing set of patterns, practices, and princi-

ples that skilled programmers learn and apply. This “oral tradition” of software en-

gineering, often passed on in code reviews, wikis, and conference talks, is evidence

of its craft nature: knowledge is often transmitted through examples, analogies, and

narratives as much as through specifications. At the same time, it highlights why

you cannot learn the craft at a university alone. Despite more than 50 years of pro-

gramming1, there has been surprisingly little conversation about how to design pro-

grams or what good programs should look like, with the core issues of software

design remaining largely absent in formal education. Instead, much design wisdom

lives in the minds of veteran developers or is scattered across books. The large var-

iation in productivity and quality among programmers attests to this fact. One of the

earliest empirical studies found as much as a 10-to-1 difference in performance be-

tween individual programmers solving the same problem, underlining the huge in-

fluence of personal skill (Sackman et al., 1968). This gave rise to the “10 X” myth

still alive to this day. While true under very specific circumstances, it does not mean

that certain individuals are ten times as valuable to a software project. Such individ-

uals often lack other capabilities, such as writing maintainable code or documenting.

In fact, the most useful programmer is the “0.1 X” individual, i.e. the one that makes

one-tenth the mistakes of his or her peers. Expert developers (not the ten-Xers) often

internalise techniques that allow them to write cleaner, more adaptable code, yet

they may not be able to fully explain what they do differently. This is because a lot

of their know-how is tacit and experience-based. This is why novice programmers

typically must undergo a fairly long apprenticeship of trial and error to acquire mas-

tery, a defining characteristic of a true craft. However, the making of good program-

mers, indeed 0.1X-ers, can go much faster by adopting the guidelines of Chapter 4.

1 Counting generously: since the first von Neumann-architecture machine, the Manchester Mark I in 1949.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 35

Another distinctive aspect of software is its malleability over time. Physical prod-

ucts like bridges or engines undergo wear and tear and eventually fail, whereas soft-

ware does not rust or crack. If untouched, it can theoretically run forever. However,

software does age in a different sense. As user needs evolve and other system com-

ponents change, software must be modified, and those modifications can introduce

new problems. Lehman’s laws of software evolution says that a successful software

system is in continual change and growth, and as it evolves its complexity tends to

increase unless proactive efforts (like refactoring) are made to reduce it (Lehman,

1980). This is sometimes called software entropy or software rot, as degeneration

accumulates over time and gradually disorders the structure. In essence, while engi-

neers face metal fatigue, programmers instead face design decay. Managing this en-

tropy is typical of craft-type knowledge. It requires understanding not only the code

in isolation but also its context and history of changes, forming what Naur (1985)

calls the evolving “theory” of the program in the programmer’s head. A classic ex-

ample is the incremental and sometimes swift degradation of a codebase when quick

fixes (“hacks”) are applied to solve urgent issues without cleaning up the underlying

design. Over time, such software becomes both brittle and difficult to extend. The

remedy is not found in any physical repair, but in intellectual restructuring: rewriting

or refactoring parts of the code to restore simplicity. That is why good programmers

emphasise keeping code clean and continually improving its structure. The broken

windows theory borrowed from urban sociology makes the same point (Wilson and

Kelling, 1982). Leaving “broken windows” (messy, flawed code) unrepaired in a

codebase tends to invite further neglect and deterioration, whereas a culture of con-

stant small fixes prevents such rot (Hunt and Thomas, 1999). In traditional engineer-

ing, maintenance is often about repairing material faults. In software, maintenance

is more about reconciling the program with new knowledge and requirements. The

cost of not treating programming as a craft becomes evident here. If developers do

not deeply understand and respect the design of a system (the way a craftsman knows

their creation), ill-conceived and ill-applied maintenance changes can quickly erode

the structure. On the other hand, a software system that is nurtured by its creators,

with periodic redesigns and documentation of rationale, can remain robust and ser-

viceable for decades. This longevity through care is another sign of software’s crafty

nature. The lack of such a long-term focus is most often not due to the programmers

36 A LITTLE BOOK ON ERROR-FREE SOFTWARE

themselves but rather comes from management decisions. Since the actual state of

quality of code artefacts is hard to measure from the outside (i.e. from a management

level), it is required of management to stay in close contact with the development

teams in order to monitor the quality of codebases that likely are central to the or-

ganisation’s future.

The cultural and professional milieu of programming further underscores its iden-

tity as a craft. Unlike civil or electrical engineering, software development has not

historically required a license or formal degree to practice. Millions of programmers

around the world enter the field through various paths. Some are formally trained in

computer science, but many are self-taught or learn primarily on the job. In the ab-

sence of a regulatory framework, software developers exercise a great deal of au-

tonomy in their daily work. A team of programmers might operate with looser over-

sight compared to engineers in other fields. There is no equivalent of the architec-

tural stamping of blueprints or the mandated external review processes that, say,

bridge designs undergo. Instead, the software industry has developed its own self-

regulatory practices: code reviews by peers, open-source communities that enforce

standards through collective scrutiny, and an emphasis on testing and continuous

integration to catch problems early. These practices function similarly to the appren-

ticeships and peer critiques of traditional crafts. Within a healthy programming

team, junior developers learn from senior ones by reviewing code together or pairing

on tasks, much as an apprentice woodworker learns by observing a master’s tech-

nique. Knowledge transfer is often informal and experience-based. One conse-

quence of this informality is that the quality considerations fall heavily on the indi-

vidual programmer’s sense of professionalism. There is a growing recognition that

programming autonomy must be coupled with responsibility. For example, both the

ACM and IEEE have called for codes of ethics for software engineers, and there are

periodic calls for stronger professionalisation of the field (Gotterbarn et al., 1999).

Still, the consensus in the community tends to favour approaches that elevate craft

competence over bureaucratic control. McBreen has argued that software develop-

ment should embrace a model of software craftsmanship rather than imitate tradi-

tional engineering, emphasizing personal skill, pride in workmanship, and the men-

A LITTLE BOOK ON ERROR-FREE SOFTWARE 37

torship of less experienced developers (McBreen, 2002). They emphasise the crea-

tive and human-centric aspects of coding, the fact that writing good code involves

style, taste, and judgement that cannot be reduced to a set of checklists.

In the early days, influenced by engineering, many sought to impose rigorous,

linear methodologies such as the waterfall model, where development proceeded

through discrete phases (requirements, design, implementation, testing) with formal

sign-offs at each stage. This approach mirrored the assembly-line discipline of man-

ufacturing or construction. However, experience soon showed that the waterfall

model rarely worked well for software development because of its intrinsic invisible

complexity. It proved impossible to foresee all problems in a large system during a

single upfront design phase. Important issues and insights only emerged during cod-

ing and integration, when one confronts the reality of the code. The initial design for

a software system will inevitably have flaws that only will become apparent once

implementation is underway, at the earliest. As a collective response, more iterative

and flexible methodologies were developed, such as agile development. The very

recent Agile Manifesto (Beck et al., 2001) explicitly puts individuals and interac-

tions over processes and tools and favours responding to change over following a

plan, clear acknowledgements that software development is an evolving, explora-

tory activity. Agile methods treat a project not as a fixed blueprint to execute, but as

a living process that adapts through frequent feedback. Techniques like short devel-

opment sprints (short time-boxed development cycles), continuous refactoring, and

close customer/end-user collaboration all suggest that building software is as much

a craft of discovery as an engineering execution. As a result, design and implemen-

tation co-evolve. Programmers refine the architecture as they implement features,

adjusting to feedback from tests and users. This dynamic fits naturally with a craft

perspective: a potter may start with a vision for a vase, but adjusts the shape contin-

uously on the wheel; a programmer likewise refines the design as code is written,

tested, and observed in action. Far from being a sign of weakness, this adaptability

is a source of strength in software. It recognises that in an intangible medium gov-

erned by logic and complexity, foresight is limited and humility is warranted. The

best programmers approach design with a willingness to reconsider, which is why

38 A LITTLE BOOK ON ERROR-FREE SOFTWARE

practices such as refactoring (improving code structure without changing its behav-

iour) are deeply ingrained in the culture. This is the kaizen (continuous improve-

ment) mindset applied to code, a term borrowed from Japanese manufacturing but

also suitable for programming. However, refactoring is a double-edged sword. It

might become a perfect excuse for not doing things well in the first place, and it

gambles on resources being available to afford to do the work twice. Further, with

changes in both management and team members over time, refactoring ambitions

tend to be forgotten or postponed, resulting in unnecessarily bad software quality.

Instead, good practice is to fix any “broken windows” (small flaws) as soon as they

are discovered to prevent a build-up of software entropy, reflecting an artisan’s at-

tention to small details to uphold overall quality. Thus, modern methodologies

acknowledge that writing software is not a linear procedure of assembling prefabri-

cated components, but an iterative craft of discovery, where feedback and revision

are integral to converging on a successful solution.

Equally important are the tools of the trade. Every craft relies on quality tools,

and programming is no exception. A software developer’s basic toolkit can be com-

pared to a woodworker’s set of rules, saws, planes, and chisels, chosen carefully and

used skilfully (Hunt and Thomas, 1999). Programmers make use of editors, compil-

ers, debuggers, version control systems, build automation, testing frameworks, and

many other tools to amplify their effectiveness. Such a basic set of tools is often

mandated by the employer or other management structures. But beyond using basic

tools, proficient developers often create or tailor tools to fit their needs. Writing

small scripts to automate repetitive tasks, refining build systems, or developing new

utilities for common problems is considered part of the craft. This self-made tooling

is analogous to a craftsman forging a custom instrument for a specific job. It reflects

an intimate understanding of the work and a desire to improve the process itself. In

the software world, this has led to a culture of sharing tools and automation tech-

niques. The ability to bend one’s working environment to one’s needs is a hallmark

of craft mastery. The practitioner is not a passive user of tools, but an active shaper

of them. The flexibility of the digital medium makes this possible and indeed com-

monplace. Many popular development tools, from text editors to testing frame-

A LITTLE BOOK ON ERROR-FREE SOFTWARE 39

works, started as one developer’s side project, later evolving into broadly used so-

lutions. Think of the Emacs editor as an early example (Stallman, 1985). Such or-

ganic growth of tooling underscores how the software craft is in constant evolution,

driven by practitioners themselves rather than top-down mandates.

An important aspect of programming as a craft is that code must communicate to

two audiences at the same time: the machine and the human. While the computer

will faithfully execute any syntactically correct sequence of instructions, no matter

how convoluted, the long-term success of software depends on its readability and

clarity to other programmers (and likewise to the future self of the original author).

This is why programming has an inherent literary dimension. Abelson and Sussman,

in the world’s arguably best programming course ever, MIT 6.001,2 advised that

“instead of imagining that our main task is to instruct a computer what to do, let us

concentrate rather on explaining to human beings what we want a computer to do”

(Abelson and Sussman, 1985). In other words, code is also a medium of communi-

cation among people since it serves as documentation of intent. This also underlies

Knuth’s concept of literate programming (Knuth, 1992), where a program is seen as

written as an explanatory essay intertwining code and prose, as well as the wide-

spread emphasis on code style and clarity in professional practice. Unlike a mathe-

matical proof which can function while being opaque as long as it is logically cor-

rect, a piece of software is far more valuable when it is clean and understandable

because it will inevitably be modified or extended by others. Here again, the craft

analogy holds: a finely crafted chair is not just sturdy; its joinery and structure are

also evident and elegant, making it easier for another carpenter to repair or build

upon it. When programmers refactor code, it is often to make its structure more

transparent, i.e. to make the invisible more comprehensible, a goal shared with de-

signers, another craft. This is a tacit acknowledgement that programs live in a social

context where humans must trust and work with each other’s code. The intellectual

activity of programming thus includes an element of narrative and style. Just as au-

thors develop a voice, programmers develop a coding style, and part of the mentor-

ship in software teams is transferring conventions that make contributions coherent.

2 The course, featuring Abelson and Sussman themselves, was filmed and distributed on VHS cassettes to other

universities. The author watched the films, which showed another programmer-as-craft dimension, in 1987.

40 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Code reviews often focus not just on correctness but on clarity and simplicity, values

that have both a functional and an aesthetic character. We commonly judge code as

“beautiful” or “ugly” based on qualities like simplicity, consistency, and expressive-

ness, reflecting shared cultural aesthetics in the programming community. These are

qualities that cannot be measured easily, but experienced developers sense them,

much as a seasoned chef can taste a sauce and know whether it needs more salt. The

presence of these aesthetic and communicative aspects further establishes program-

ming as a craft where the human element is central.

One of the most powerful demonstrations of programming-as-craft is the open-

source software communities. Open-source projects like Linux, Apache, or Python

have been built by globally distributed communities of programmers, often volun-

teers, without a rigid top-down management structure. The “cathedral and the ba-

zaar” metaphor coined by Raymond (2001) contrasts two styles: the cathedral model

of software built by a small, tightly controlled team (analogous to traditional corpo-

rate engineering) versus the bazaar model of software evolved in the open, with

contributions from many independent individuals. The success of the bazaar ap-

proach (for example, Linux is now the backbone of servers and Android devices

worldwide) suggests that software can grow through a highly decentralised, craft-

driven process. In such projects, individual contributors exercise autonomy over

small parts of the system and their contributions are integrated through a culture of

peer review and continuous refinement. Linus Torvalds, the creator of Linux, lik-

ened this process to natural selection (Raymond, 2001). This observation, known as

Linus’ Law, implies that with many independent craftspeople examining and exper-

imenting with the code, defects and design flaws will be discovered and corrected

in an almost evolutionary fashion. The open-source model relies on personal initia-

tive and pride. Developers contribute because they want to make something better

or because the software directly serves their own needs. There is often no formal

chief architect for many projects (Linux being an exception). Instead, design

emerges from the collaboration of many minds, guided by shared principles and the

curation of a few maintainers. This is very much the dynamic of a set of craftsmen

working in a “bazaar”, learning from each other and collectively producing a com-

A LITTLE BOOK ON ERROR-FREE SOFTWARE 41

plex artefact. It shows that the craft approach can scale (at least under the right con-

ditions) to very large systems. At the same time, open-source communities enforce

quality through social norms. For instance, insisting on coding standards, requiring

descriptive commit messages, and sometimes rejecting patches that do not meet the

project’s standards of design or cleanliness. The fact that such communities can

maintain coherence and produce high-quality software without formal hierarchy

speaks to the power of treating programming as a collaborative craft. It reminds of

the way scientific communities operate with peer review and replication, but here

the “experiments” are software patches and the “replication” is others running and

extending the code.

It is worth noting that the balance between rigorous engineering and freestyle

craft in programming can vary with the application domain. In safety-critical soft-

ware such as avionics, medical devices, or nuclear control systems, there is a much

greater emphasis on upfront analysis, formal verification, and process. These do-

mains borrow more heavily from classical engineering because the cost of failure is

catastrophic. After all, the fact that an aeroplane’s software was due for refactoring

the next week would be of little consolation if the plane did not reach its destination

safely. For instance, aviation software standards (like DO-178C) require evidence

of exhaustive testing and traceability from requirements to code, and some aero-

space software undergoes formal proofs of certain properties. In these contexts, the

autonomy of the individual programmer is deliberately constrained by checklists,

peer review, and quality assurance procedures. And yet, even in such fields, the final

reliability often comes down to the expertise of individuals making wise choices.

Leveson and Turner’s (1993) analysis of the Therac-25 radiation therapy accidents,

where software bugs in a medical machine led to patient deaths, revealed not just

process failures but also a lack of software craftsmanship such as poor design deci-

sions (like inadequate fail asserts and insufficient consideration of concurrency) and

insufficient testing of complex interactions (see Chapter 3). The analysis showed

that following a process is not enough without deep understanding. Similarly,

NASA’s Mars Climate Orbiter was lost in 1999 due to a simple software unit mis-

match between teams (one used S.I. metric units, the other U.S. units). A failure to

catch this discrepancy in testing caused the spacecraft to deviate and crash upon

42 A LITTLE BOOK ON ERROR-FREE SOFTWARE

arrival at Mars. The post-mortem blamed a breakdown in communication and veri-

fication, again demonstrating that even in a highly structured project, the small-scale

craft of careful coding and checking was needed (also see Chapter 3). Conversely,

in consumer internet software (say a social media app or e-commerce site), a “move

fast and break things” culture might prevail, with the craft aspect being dominant

and the formal processes minimal. Changes are deployed quickly and developers

rely on monitoring and quick rollbacks if something goes wrong. This can work

because the cost of failure is lower (a glitch might annoy users, not endanger lives)

and because the human is very much in the loop. Still, as soon as such systems scale

to millions of users or handle sensitive data, they too should incorporate more dis-

ciplined practices to manage complexity and risk, such as careful code review, au-

tomated testing pipelines, and gradual rollouts of new features. The conclusion is

that programming involves aspects of both craft and engineering, but the mix shifts

heavily with context. Recognising programming as an intellectual craft does not

mean rejecting all structure. Rather, it means empowering practitioners to apply the

right techniques at the right times. Craft-aware programmers know when to rely on

intuition and quick experimentation and when to apply rigorous analysis or formal

methods. In high-stakes situations, they apply their craft in controlled, systematic

ways, much as an expert surgeon (another high-skill craftsperson) follows stringent

protocols during an operation, yet still relies on experience and judgement for the

unexpected. In more exploratory software projects, the same programmer might take

bolder creative leaps. This adaptability is itself part of the craft. Knowing the context

and constraints and adjusting one’s approach accordingly.

Another insight from decades of experience is that adding more people to a soft-

ware project does not linearly increase productivity; in fact, it might decrease.

Brooks’ Law, formed in the context of developing IBM OS/360, states that “adding

manpower to a late software project makes it later” (Brooks, 1975). The rationale

behind this is that software tasks are not easily divisible. Work done by one devel-

oper cannot simply be partitioned among five developers without significant com-

munication and coordination overhead. In a factory assembly line, more workers can

rather linearly produce more widgets, but in software, five programmers working

A LITTLE BOOK ON ERROR-FREE SOFTWARE 43

independently on interrelated parts may slow each other down unless carefully man-

aged. This again emphasises the intellectual and conceptual nature of programming.

Communication overhead grows nonlinearly with team size (each pair of developers

potentially needs to stay in sync), and the difficulty of integrating many pieces of

code can rise sharply. Brooks advocated keeping the teams small and fostering con-

ceptual integrity, which is the idea that a system’s design should be unified, ideally

by the vision of one or a few minds (Brooks, 1975). This is akin to a work of art that

bears the stylistic coherence of its creator. In practice, large successful systems often

achieve conceptual integrity by partitioning into components that are owned by

small sub-teams, each acting with a degree of autonomy (a bit like separate craft

workshops contributing to a cathedral). The lesson is that building software is not a

brute-force endeavour. It relies more on talent and tight-knit collaboration than on

sheer numbers. This runs counter to a naïve industrial view but aligns with the craft

perspective that what matters is the quality of the artisans and the communication

among them. It also explains why small start-up teams can out-innovate larger com-

petitors. The efficacy of a few skilled craftspeople with a clear vision can surpass a

big group mired in coordination. Good managers of software projects, therefore, act

less like foremen directing workers on an assembly line and more like facilitators

who enable developers to do their best work. Protecting their time and energy,

providing them with good tools, and ensuring that knowledge flows freely within

the team. This management approach, sometimes called servant leadership in agile

contexts, acknowledges that programming is a creative craft at its core and tries to

set the conditions for craftsmanship to flourish rather than attempting to microman-

age each technical detail. On a larger scale, online communities like Stack Overflow

and countless developer forums serve as informal societies where programmers ask

questions and disseminate tips and idioms, a modern incarnation of the apprentice-

ship model at a global level.

Recognising programming as a craft has practical implications for how we train

software developers, not least at universities. It suggests that education should go

beyond classroom lectures on algorithms and include more studio-like practice and

apprenticeship. Just as a budding architect learns by designing and critiquing build-

44 A LITTLE BOOK ON ERROR-FREE SOFTWARE

ings under a mentor, student programmers learn deeply from actually writing pro-

grams and receiving feedback from experienced developers. A few universities have

begun to incorporate more project-based learning to simulate such an apprenticeship

model, but much learning still happens informally in internships and open-source

contributions. This is not to say that the rather commonly employed pair program-

ming concept in university settings constitutes a step in the right direction. Pair as-

signments of any kind and in any subject have mostly been introduced to save money

in the hope that less teaching time and less grading effort can go into such assign-

ments. This constitutes a miserable indifference to the vastly different learning styles

students have, and can in no way substitute the learning in teams also containing at

least one more experienced member.

The craft perspective validates hands-on learning pathways. It also emphasises

mentorship within organisations: knowledge transfer in software is often best

achieved by code review sessions and informal design discussions, rather than solely

by documents. Companies that foster a culture of craftsmanship, for example by

encouraging engineers to refactor code when needed, share best practices, and de-

vote time to technical excellence, often produce more maintainable, resilient sys-

tems in the long run. Conversely, organisations that treat developers as interchange-

able resources and focus only on the processes can stifle the creative problem-solv-

ing needed to tackle complex software problems. The craft approach also highlights

the importance of diversity in perspectives: a team with varied experiences can bring

a richer set of heuristics and ideas to a problem, much as a guild benefits from mas-

ters of different specialties. By viewing developers as craftspeople, we encourage

pride and ownership in the code they produce, which can lead to higher quality. A

programmer who identifies as a craftsperson is likely to care deeply about the prod-

uct’s integrity and the impact on users, rather than just meeting minimum require-

ments. In an era when software increasingly mediates society’s critical functions,

from healthcare to transportation and finance, nurturing this sense of responsible

craftsmanship is not just an aesthetic preference but a societal need.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 45

Today (2023)

A current3 development that is testing the boundaries of programming-as-craft is the

rise of AI-assisted coding tools (such as GitHub’s Copilot from 2022 or the more

general OpenAI ChatGPT 3.5 from the same year). These tools can automatically

generate code snippets or even entire functions based on natural language prompts

or context from the developer’s current file. This has raised questions whether the

automation will eventually reduce the need for human programmers or transform

programming into a higher-level supervisory activity. In practice, however, these AI

tools hitherto serve more as very junior assistants than replacements. They can today

handle boilerplates and suggest solutions to routine sub-problems, but they do not

“understand” the overarching requirements or the subtle trade-offs and constraints

of a particular project.4 It still takes a skilled programmer to judge whether a gener-

ated piece of code fits correctly, to test it, and to integrate it with the system’s archi-

tecture, assuming that it was even locally correct in the first place.5 Therefore, the

advent of such tools actually further highlights the craft aspect. The human program-

mer takes on an even more design-oriented role, curating and refining the output of

automated chatbot power. Using AI assistance effectively will become a new skill

in the programmer’s toolbox, analogous to an experienced craftsman using power

tools such as power drills and chainsaws. They significantly speed up the execution

of certain subtasks, but the craftsperson must guide the tool and ensure quality. Early

studies of Copilot usage seem to indicate that it can accelerate coding for those who

know how to prompt it well and critically assess its suggestions, but it can also pro-

duce blatant errors and unsafe code if taken anywhere near face value (Pearce et al.,

2022). Thus, rather than eliminating the need for craftsmanship, AI may eliminate

some plain work while elevating the importance of human judgement, architecture,

and creative problem-solving, the very areas where the craft of programming is most

evident. It reaffirms that programming, at its core, remains an intellectually driven

3 In 2023, when this text now receive some renewed attention after having spent many years in a “drawer”.
4 By “understand” is not meant any conscious human activity, but rather the ability to adapt to a larger context.
5 At the time of writing (2023), many AI-suggested code snippets do not make much sense or are not even syn-

tactically correct. This will surely improve rapidly, and the only wise thing to do is not to make any predic-

tions on the extent or quality of coding assistance provided by such tools in, say, five years’ time from now.

46 A LITTLE BOOK ON ERROR-FREE SOFTWARE

activity requiring insight and discernment that cannot be fully automated away.

Ultimately, proposing that programming is an intellectual craft is not to downplay

the scientific or engineering facets, but to elevate the importance of human skill,

creativity, and responsibility in software. It points out that great software is made by

great programmers, not by managers, sales departments, processes or tools alone.

By recognising the craft element, we encourage continuous learning and a commu-

nity of practice where knowledge is shared. The challenges of the future, ranging

from artificial intelligence to global-scale complexity, will demand programmers

who are not just coders but true craftspeople of logic, able to marry theory with

practice in inventive ways. In conclusion, programming is still an endeavour that is

intensely intellectual yet deeply practical, constrained by logic yet propelled by cre-

ativity. This is not changed by the introduction of AI/LLM tools. Likewise, the need

for good and consistent coding guidelines and rules, like those of Philips PTS pre-

sented in Chapter 4, still prevails. The human in the loop is still the same old human,

and if nothing else, the tools can help pruning the expression space a bit while main-

taining the creative craft components, even enhancing them.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 47

3. Software Bugs

Software has become the invisible infrastructure of modern civilization, and its re-

liability hinges on a paradox: while elegant algorithms and sound architectures are

necessary, even the simplest implementation mistake can bring the entire system

down. In other engineering disciplines, catastrophic failures often trace back to com-

plex causes or unforeseeable external forces. In software engineering, by contrast,

the cause of a disaster is often embarrassingly trivial: a missing minus sign, a mis-

typed unit, or an off-by-one loop index. These minuscule lapses in attention to detail

have repeatedly led to outsized consequences: space missions lost to unit conversion

errors, airliners felled by a few lines of faulty code, or financial systems bankrupted

by a single unchecked assumption. This pattern suggests that error-free software is

largely dependent on attention to detail at the coding and testing stages. The best

algorithms and architectures cannot compensate for sloppy implementation. Most

software-related losses, whether measured in human lives, money, or time, stem

from small mistakes that could have been prevented by rigorous “software hygiene”,

i.e. the disciplined application of best practices and quality checks at every step. This

chapter examines that unsettling truth, surveying high-profile software failures at-

tributable to tiny errors, assessing the cumulative toll of everyday bugs, and arguing

that a diligent commitment to detail and discipline is needed in software develop-

ment. Throughout, the discussion is academic in tone yet also reflective and critical,

calling for a cultural shift in how we approach software quality. The analysis is in-

formed by both industry insights and academic research (including principles from

professional coding standards) to make the case that our biggest enemy is not algo-

rithmic complexity per se, but the simple preventable mistakes we persistently allow

to slip through.

Trivial Bugs, Epic Failures

In July 1962, NASA’s Mariner I spacecraft veered off course shortly after launch

and had to be destroyed, a failure later attributed to a single omitted hyphen in the

guidance computer’s code. This early cautionary tale prefigured a long history of

software failures caused by seemingly tiny mistakes. Over decades, countless mis-

sions and systems have been compromised not by fundamental design flaws, but by

48 A LITTLE BOOK ON ERROR-FREE SOFTWARE

lapses so small that one is tempted to label them “bugs” in the original sense of the

word. A “bug” implies something gnat-sized, a grain of sand in the eye, a tiny an-

noyance. Yet in software, such a gnat can cause a hurricane. The following examples

illustrate how often the downfall of complex systems has boiled down to a few lines

of code or one oversight that better attention to detail would have caught.

Therac-25 (1985–1987) – Concurrency Bug with Lethal Consequences

Not all small software mistakes “only” cost money; some cost lives in the most di-

rect sense. A chilling illustration is the Therac-25 radiation therapy machine inci-

dents in the mid-1980s. The Therac-25, a computer-controlled medical linear accel-

erator, delivered massive radiation overdoses to patients on at least six occasions,

causing severe injuries and three confirmed deaths, essentially frying people. Inves-

tigations revealed that the machine’s control software had a race condition, a subtle

timing bug in which a particular sequence of fast user inputs could bypass safety

checks and allow the machine to enter an improper state. Essentially, a tiny synchro-

nization flaw (a shared variable not protected properly or a flag reset too late) was

the culprit. This was not a hardware failure or an operator error; it was a relatively

simple programming oversight in handling concurrent operations. The Therac-25

software was written in assembly language and reused code from earlier models.

Unfortunately, it lacked the interlocks and failsafe-guards of its predecessors, rely-

ing purely on software for safety. The bug remained latent for a long time, a testa-

ment to how such issues can lurk unnoticed until rare conditions align and trigger

them. When they did, the software would erroneously disable the safety beam mon-

itor under certain conditions, allowing the machine to fire its high-powered beam

without proper moderation. This is a dramatic example of a “small” bug (just a few

lines of problematic code) having deadly results. It emphasises that in safety-critical

systems, no detail is too minor to double-check. The Therac-25 accidents led to a

complete rethinking of software quality assurance in medical devices. They under-

line how an accurate assembly of software, thoroughly reviewing and testing even

the smallest concurrency scenarios, is sometimes literally a matter of life and death.

Most importantly, Therac-25 taught the software community that “trusted” code

(carried over from previous versions) must still be rigorously inspected in its new

A LITTLE BOOK ON ERROR-FREE SOFTWARE 49

context, and that any assumption that a certain combination of events “cannot hap-

pen” should be challenged with thorough attention to detail.

Saab JAS 39 Gripen (1989 and 1993) – Unstable Control from a Software Bug

The JAS 39 Gripen, a Swedish multi-role fighter, offers another example from avi-

ation where small software mistakes had dramatic consequences. During the devel-

opment of this fly-by-wire fighter jet, two early crashes (one in 1989 at the manu-

facturer’s airstrip and another in 1993 over the capital) were attributed to instabilities

in the flight control software. In the 1993 incident, a widely televised crash during

an air show over Stockholm city, the test pilot lost control at low altitude due to a

pilot-induced oscillation, exacerbated by a flaw in the control software. This was

the fighter jet’s premier in public, which ended as it went down on Långholmen

island, the former prison island in the middle of Stockholm city. The author watched

this incident live. Specifically, an investigation found “high amplification” of the

pilot’s quick stick inputs by the flight control system, effectively a feedback loop

that grew out of control. In simpler terms, the software’s response to large control

inputs was not properly damped; it amplified rather than mitigated the pilot’s over-

correction. This was traced to a minor mis-tuning or algorithmic oversight in the

control software. Essentially a few parameters or lines of code determined how the

aircraft responded to rapid stick movements. Once identified, the problem was cor-

rected with a software update and the Gripen program proceeded with additional

stability modifications. As with other cases, the error itself was trivial in nature (a

control gain issue in a feedback loop). It did not require reinventing the physics of

flight; it only required adjusting the software to avoid reinforcing the pilot’s inputs

so aggressively. Yet until it was fixed, this subtle bug proved dangerous, causing the

loss of expensive prototypes and risking lives. The Gripen crashes underscore how

cumulative small errors in real-time software (here, the exact values in control algo-

rithms) can tip a system from stable to unstable. Fly-by-wire aircraft rely wholly on

software mediation between pilot and plane, so a tiny mistake in that mediation can

nullify the plane’s engineered stability. This is why modern aerospace software de-

velopment is notoriously strict about validation. Every coefficient and line in the

flight control code must be scrutinised. In Gripen’s case, one can view the initial

50 A LITTLE BOOK ON ERROR-FREE SOFTWARE

crashes as a costly but perhaps somewhat constructive lesson in getting those details

right. The subsequent success of Gripen (once the bug was fixed and the software

matured) highlights that when attention to detail is restored, the system can perform

excellently. It also reinforces that pilot training or hardware quality cannot compen-

sate for software mistakes in such systems. The only solution was to fix the code

itself through more careful analysis and testing, the kind of painstaking work that

should have prevented the bug in the first place.

Ariane 5 Flight 501 (1996) – Overflow and Self-Destruct

When the European Space Agency’s Ariane 5 rocket had its maiden flight in June

1996, the launch ended in an explosion barely 37 seconds after lift-off. The cause

was eventually traced to a bug in the rocket’s inertial navigation software: a data

conversion from a 64-bit floating point number to a 16-bit integer overflowed the

smaller variable, an overflow error that had not been anticipated. This caused the

primary inertial reference system to crash. Unfortunately, the redundant backup sys-

tem was running the same flawed software, so it crashed too, both systems having

effectively “failed on the same bug.” With no valid attitude data, the rocket veered

off course and triggered its automatic self-destruct. The root of this bug was software

reuse without sufficient re-evaluation. The software module that overflowed had

been carried over from the Ariane 4, in which the particular variable’s value never

grew large enough to overflow. But Ariane 5’s faster trajectory meant the same cal-

culation quickly exceeded the 16-bit range. In essence, an overflow error, one of the

most mundane programming mistakes, destroyed a $370 million launch and its sat-

ellite payload. The subsequent inquiry noted that the code did not handle the excep-

tion because it was assumed to never occur, an assumption invalidated by the new

context. This case underscores a crucial point: small mistakes often hide in assump-

tions. A simple range check or exception catch could have averted the overflow’s

effects. Indeed, had the developers foreseen the possibility of this one variable ex-

ceeding its limit and added a few lines of defensive code or even just disabled that

module during the critical launch phase, the mission would have proceeded nor-

mally. Ariane 5’s failure became a textbook example in engineering schools pre-

cisely because it was caused by such a pedestrian error. The lesson, as observed in

A LITTLE BOOK ON ERROR-FREE SOFTWARE 51

an analysis, was that the quality of a device’s software must be considered in the

context of the entire system. In other words, rigorous attention to detail is needed

especially when reusing code. One cannot blindly trust legacy software in a new

environment without re-checking all the little assumptions baked into it.

Mars Climate Orbiter (1999) – Metric vs. Imperial

In September 1999, NASA’s $125-million Mars Climate Orbiter disintegrated in the

Martian atmosphere because of a unit conversion error that went undetected. One

engineering team had provided thruster impulse data in pound-seconds while an-

other team’s navigation software expected newton-seconds. The mismatch meant

that navigation calculations were off by a factor of 4.45. Yes, 445%, not 4.45%.

Over the long interplanetary journey, this small discrepancy accumulated until the

Orbiter’s trajectory was fatally off. A post-mortem by NASA described it as a “sim-

ple error” in unit conversion that was not caught due to insufficient systems engi-

neering checks. The director of JPL remarked that their “inability to recognise and

correct this simple error has had major implications”. In other words, no exotic hard-

ware failure or esoteric algorithm was to blame. The spacecraft was essentially “lost

in translation”, an undeniably trivial oversight that any attentive review could have

caught. Outside observers were blunt in their assessment. A space policy expert said

of the loss: “That is so dumb […] There seems to have emerged […] a systematic

problem in the space community of insufficient attention to detail.” The Mars Cli-

mate Orbiter fiasco dramatically showed how a single unchecked calculation (a

mundane piece of code) undermined an entire mission. It was a stark reminder that

even at NASA, with its highly skilled teams, lapses in basic diligence (failing to

double-check units and interfaces) can annihilate vast investments of time and

money.

Mars Polar Lander (1999) – A Premature Shutdown

Just a few months later in 1999, NASA lost the Mars Polar Lander, a companion

mission, in a similarly frustrating manner. The lander’s descent software likely mis-

took the jolt of the landing legs deploying for a touchdown signal and cut off the

engines while the probe was still high above the surface. In essence, a false sensor

52 A LITTLE BOOK ON ERROR-FREE SOFTWARE

reading triggered by a routine event (leg deployment) was not properly filtered out

by the software. The code interpreted a transient spike as confirmation of landing

and shut down the thrusters, causing the lander to free-fall and crash. Post-incident

analyses concluded that an “inadequate software” logic caused the premature engine

cut-off. Again, the underlying mistake was trivial in principle: a simple logic check

or sensor validation could have prevented the engines from stopping too early. But

because this small case was overlooked, arguably an omission in requirements or a

missed detail in coding, NASA’s lander was destroyed. The Mars Polar Lander and

Climate Orbiter failures, coming back-to-back, forced NASA to confront the reality

that its faster, cheaper mission approach had skimped on the “hygiene” of rigorous

testing and peer reviews. The problem was not that humans made an error (that’s

inevitable), but that the processes and checks failed to catch it. These Mars mission

failures highlight how often a trivial slip. A single conversion or a single sensor

event can cascade into mission failure if not diligently caught and corrected.

Boeing 737 MAX (2018–2019) – Few Lines of Code, Catastrophic Outcome

Modern aviation is heavily reliant on software, and the Boeing 737 MAX disasters

tragically demonstrated how a small coding logic and oversight can bring down

state-of-the-art aircraft. Boeing’s 737 MAX was equipped with an automated system

called MCAS (Maneuvering Characteristics Augmentation System), introduced to

adjust the aircraft’s pitch under certain conditions due to the plane’s redesigned en-

gine placement. The MCAS logic, in essence, consisted of only a few lines of code

inside the flight control computer, but it was implemented in a way that relied on a

single Angle of Attack (AoA) sensor input. If that lone sensor gave a faulty high

reading (as happened on two flights), MCAS would repeatedly push the airplane’s

nose down, mistakenly “thinking” the plane was stalling. In October 2018 and

March 2019, two new 737 MAX aircraft (Lion Air Flight 610 and Ethiopian Airlines

Flight 302) crashed, killing 346 people in total. Investigations pinpointed that erro-

neous data from a failed AoA sensor had activated the MCAS software in both cases,

repeatedly trimming the aircraft into an unrecoverable dive. From a software per-

spective, what is astounding is how minor the implementation of MCAS was: one

report noted that the entire MCAS control law was a few lines of code that could

A LITTLE BOOK ON ERROR-FREE SOFTWARE 53

command nose-down trim when triggered by a single sensor failure. In other words,

a tiny fragment of the millions of lines on the aircraft became the single point of

failure. Boeing’s design did not include adequate cross-checks or redundancy for

this system. A mere eight lines of defensive code could have prevented the disaster,

according to one software expert’s recent analysis (Hamblen, 2023). Those eight

lines (which would compare the readings of the two AoA sensors and disable MCAS

if they disagreed beyond a certain threshold) were not in the original implementation

which relied on a single sensor not malfunctioning. Such a statement illustrates how

extremely small omissions, a few lines not included, can lead directly to catastrophe.

The 737 MAX case is especially instructive because it shows that even in a highly

regulated, safety-critical industry like aerospace, lapses in software diligence can

creep in under competitive and schedule pressures. Boeing initially classified

MCAS as a non-critical change to avoid extensive retraining for pilots, which led to

it being developed without the utmost rigor a critical system would merit. The out-

come was essentially a hidden “trapdoor” in the plane’s behaviour. Once again, a

chain of minor failures contributed: a faulty sensor, an omitted warning light (an-

other detail that Boeing chose to sell as an optional feature), and pilots not informed

of the system’s existence all played a role. But at the core was the software’s small

logic mistake of trusting one sensor implicitly. In the aftermath, Boeing and regula-

tors fixed the software to take input from two sensors and limit MCAS’s authority,

effectively implementing those few lines of code that were missing. The lesson is

that in complex systems, even a short snippet of poorly conceived code can over-

power all the sophisticated engineering around it. The 737 MAX crashes became a

case study in how not to handle software engineering: they demonstrated the need

for thorough unit testing, scenario analysis, and failure-mode consideration for even

minor code changes.

Financial Systems and Other Domains – Small Errors, Massive Losses

The sphere of mission- and safety-critical systems is not the only one riddled with

examples of little bugs causing big trouble. In finance and business, where software

glitches may not kill people but can wipe out fortunes, the story repeats itself. A

notorious example is the Knight Capital Group incident of 2012, often cited as one

54 A LITTLE BOOK ON ERROR-FREE SOFTWARE

of the most expensive software bugs in history. Knight Capital, a major financial

trading firm, deployed new code for its high-speed trading algorithms that, due to a

simple error, accidentally triggered an obsolete function left over from old software.

In essence, a flag in the code was mis-set, or an old debug routine was not removed,

a very basic version control or deployment oversight. This caused the trading system

to enter an erratic loop of buying and selling millions of shares in minutes. In 45

minutes, Knight Capital accumulated about $440 million in losses and was driven

to the brink of bankruptcy. It turned out that just one defect in the code was respon-

sible. An internal review later revealed that deploying the new code to some of the

servers but not others (an operational oversight) allowed an old unused piece of

code, ironically called the Power Peg, to activate on those servers and flood the

market with erroneous orders. The root cause was traced to a lack of testing. In ad-

dition, the rollout procedures did not catch that one server was left running the old

code and the software itself lacked safeguards to prevent such high-volume unin-

tended trades. As analysts noted, this bug was not an intricate mathematical flaw. It

was a lapse in simple software hygiene, failing to remove dead code and failing to

uniformly update all modules. The lesson from Knight Capital is straightforward:

when dealing with high-stakes software (in this case, controlling real money), even

one unchecked bug can bankrupt a company. The “glitch”, as it was euphemistically

called, was entirely preventable through more careful testing and deployment pro-

tocols. Industry observers remarked that Knight’s fiasco, happening to a highly reg-

ulated financial firm, proved that no amount of external audits or compliance can

save you if your internal software engineering practices are too sloppy. The fix for

Knight’s bug was presumably as simple as removing or disabling a few lines of old

code, a trivial change that would have averted a multi-hundred-million-dollar loss.

Similar scenarios have played out in other sectors. For instance, a 2012 software bug

in the NASDAQ exchange’s IPO system led to chaos during Facebook’s initial pub-

lic offering, causing tens of millions in losses due to order processing errors. Or

consider the AT&T long-distance outage of 1990, where one mistyped line of code

in a single switching centre’s software update cascaded through the network and

brought down AT&T’s long-distance phone service nationwide for nine hours. The

culprit was a break statement in C code placed incorrectly inside an if block; this

tiny mistake prevented the error-handling code from working and triggered switch

A LITTLE BOOK ON ERROR-FREE SOFTWARE 55

resets that propagated through the network. It cost AT&T an estimated $60 million

and huge reputational damage, all for want of a careful code review on one line.

These incidents, though in different domains, echo the same refrain: most failures

are not due to the fundamental impossibility of building correct software, but due to

known, small failure modes that were simply not guarded against. They reinforce

the argument that the vast majority of the real work in delivering error-free software

lies in the accurate assembly of the system through programming and testing, rather

than in the conceptual brilliance of the design. When that assembly process lacks

diligence, the smallest imperfection can spoil the result.

Accumulated Toll of “Small” Errors

For every headline-grabbing disaster caused by a software bug, there are thousands

of smaller bugs quietly exacting a toll on productivity, profitability, and user satis-

faction. Indeed, while the dramatic failures discussed above illustrate the principle

in extreme form, the claim that “most software-related losses come from small mis-

takes” is borne out by industry statistics and studies of software quality. These stud-

ies reveal a staggering cumulative impact from the multitude of minor defects that

slip into everyday software. Individually, a typo in code might cost an hour of de-

bugging; a missed null-pointer check might cause a minor service outage. But col-

lectively, such issues can cost billions of dollars and untold hours of lost time. This

section examines the evidence for the scope of these losses and how they over-

whelmingly trace back to preventable mistakes in implementation.

Economic Costs

The cost of poor software quality has been quantified in numerous analyses, and the

numbers are eye-opening. A study commissioned by the U.S. National Institute of

Standards and Technology (NIST) in 2002 estimated that software bugs were cost-

ing the U.S. economy approximately $59.5 billion per year at that time. Notably, the

study concluded that over a third of that cost (around $22 billion) could be elimi-

nated by improved testing and earlier detection of defects. In other words, billions

were being lost essentially because of a lack of attention to detail early in the soft-

ware lifecycle, allowing small bugs to persist into production where they became

56 A LITTLE BOOK ON ERROR-FREE SOFTWARE

much more expensive to fix. Fast-forward two decades, and the costs have only sky-

rocketed with the growing scale of software systems. The Consortium for IT Soft-

ware Quality (CISQ, 2020) publishes regular reports on “The Cost of Poor Software

Quality” in the U.S. Their report estimated that poor software quality cost the U.S.

around $2.08 trillion in 2020 alone. By 2022, this figure had grown to $2.41 trillion

annually. These figures encompass various sources of loss such as failed IT projects,

legacy system problems, operational failures, and cybersecurity breaches, with the

common thread that much of it stems from avoidable software defects. For example,

of the 2020 cost, the largest component (about $1.56 trillion) was attributed to op-

erational software failures, which include downtime, outages, and security incidents

caused by software malfunctions. Such failures often have proximate causes like

unhandled exceptions, memory leaks, off-by-one errors leading to crashes, etc. The

mundane bugs of day-to-day programming. The CISQ analysis emphasises that

these are not “Acts of God” but consequences of poor-quality code and insufficient

testing. The fact that the figure is in the trillions suggests that across all industries,

the aggregate effect of small software faults is enormous. It dwarfs the losses from

headline disasters. To put it in perspective, $2 trillion is about 9% of US GDP or

three times the Swedish, an economic drag attributable purely to suboptimal soft-

ware. If even a fraction of those trillions could be saved by catching bugs earlier or

preventing them, the impact would be measured in hundreds of billions of dollars.

Developer Time and Productivity

Another way to measure the toll of software bugs is in the time and effort developers

must spend to find and fix them. Numerous studies in software engineering have

found that a significant portion of the development cycle is consumed by debugging

and rework. One widely cited statistic is that programmers spend anywhere from

35% to 50% of their time not writing new code, but rather debugging and validating

existing code. O’Dell (2017) notes in ACM Queue that testing, debugging, and ver-

ification activities often account for 50–75% of a software project’s total budget.

This is an astonishing figure: it implies that for every dollar spent on developing

software, up to three-quarters might be spent on detecting and correcting mistakes

that were introduced along the way. While some level of verification is unavoidable,

A LITTLE BOOK ON ERROR-FREE SOFTWARE 57

the implication is that a huge amount of effort is essentially waste that results from

preventable defects. If initial coding were flawless or at least much more reliable,

the cost and time spent on debugging could be dramatically reduced, accelerating

project schedules and reducing expenses. There is also the oft-quoted aphorism:

“Debugging is twice as hard as writing a program in the first place. So if you write

the program as cleverly as possible, you are, by definition, not smart enough to de-

bug it.” (Kernighan and Plaugher, 1974). This humorous observation carries a seri-

ous point: clever, complex code invites bugs that are hard to find. Thus, simple,

clear, and carefully written code, a result made possible by disciplined, detail-ori-

ented development, makes for easier debugging and maintenance. Too often, how-

ever, developers do not pay that rigorous attention at the outset, and the result is a

tedious hunt for bugs later. The cost difference between finding a bug during re-

quirements or coding and finding it in production can be enormous. A rule of thumb

in software engineering (stemming from early work by Boehm and others) is that a

bug fixed during the design phase might cost 10 times less than if fixed during cod-

ing, and a bug fixed in coding costs perhaps 10 times less than if found after release.

Multiply these factors across hundreds of bugs, and the savings from better initial

diligence become clear. Poor “software hygiene” effectively taxes the developers by

forcing them into long debugging sessions. In the US alone, it is estimated that over

$100B is spent annually on identifying and fixing product defects and that the aver-

age developer spends up to 75% of their time on debugging in some capacity. Even

a more conservative figure of around 50% would indicate an industry-wide ineffi-

ciency of sorts. If half of the developer time is spent on avoidable rework, then any

practice that can reduce bug introduction (and thus debugging) can effectively dou-

ble developer productivity in terms of feature delivery. This is precisely why many

organisations invest in test-driven development and continuous integration testing:

to catch mistakes earlier when they are quicker to fix. The data overwhelmingly

supports the argument that small bugs collectively steal vast amounts of time.

Compounding Technical Debt.

Software bugs and quality shortcuts accumulate over time into what is often termed

technical debt. This metaphor characterises suboptimal code and known defects as

58 A LITTLE BOOK ON ERROR-FREE SOFTWARE

a debt that the development team owes. One that incurs “interest” in the form of

extra effort to work around the issues or fix them later under less optimal circum-

stances. Just as minor financial debts can spiral with interest, minor software issues

can accumulate and interact in ways that greatly increase the difficulty of making

changes or ensuring reliability. The CISQ 2022 report estimated that the “technical

debt” in the U.S. (meaning the future cost to fix issues left in code) was about $1.52

trillion and growing (CISQ, 2022). Technical debt often consists of those “little”

things developers knew were not ideal. A quick hack here, a TODO left there, a set

of edge cases not thoroughly tested. Be honest, you have seen it many times. Initially

they might not cause a system to fail, but over time they create brittleness. Eventu-

ally, some small change will cause the system to collapse under the weight of all

those neglected details. High-profile outages in industry often reflect this: a system

that worked for years suddenly breaks when a slight increase in load or a new con-

figuration exposes one of these latent bugs that have been lurking. In many cases,

each individual issue was minor (and perhaps management consciously deferred fix-

ing it, thinking it was a low priority), but aggregated they pose a systemic risk. The

key insight is that quality is not simply a feature that can be added later; it is the

result of continuously keeping the codebase clean and robust. The small mistakes

that are left “for now” tend to become tomorrow’s big production incident. Thus,

discipline in fixing even trivial bugs and polishing rough edges is part of reducing

technical debt and thereby avoiding exponential costs later.

User Impact and Trust

Another intangible but significant cost of software bugs is the erosion of user trust

and the opportunity cost of poor quality. If a word processor crashes and loses a

document due to some small memory management bug, or if an e-commerce site

suffers a glitch that prevents checkouts, users may lose confidence in the product.

While this may not be as quantifiable as direct losses, it translates to brand damage

and customer attrition. Security bugs, often literally single-line mistakes such as

buffer overruns or unchecked inputs, can lead to data breaches that destroy user trust

irreparably. For example, the Heartbleed vulnerability in OpenSSL (disclosed in

A LITTLE BOOK ON ERROR-FREE SOFTWARE 59

2014) was caused by improper input validation. A missing bounds check in the han-

dling of a TLS heartbeat message. This one mistake in C code allowed attackers to

read out sensitive data from servers’ memory, affecting an estimated two-thirds of

websites and forcing emergency patching worldwide. While the direct costs of

Heartbleed in terms of responding to the incident were substantial, the bigger cost

was arguably the hit to public confidence in internet security. Here again, the root

cause was simple: a length field provided by the user was not validated against the

actual buffer size, a mistake any diligent code review should have caught. The fall-

out required days of work by thousands of sysadmins globally (another labour cost)

and a reputational black eye for open-source security software. Cases like

Heartbleed show that small coding mistakes can have a global impact, undermining

fundamental trust in systems (in this case, the trust that your encrypted communica-

tion cannot be spied upon). In safety-critical software, the equivalent is a loss of

public trust in technology, for instance the 737 MAX crashes, led to a worldwide

grounding and a crisis of confidence in Boeing that the company is still trying to

regain. The indirect economic impacts (lost sales, legal liability, etc.) stemming from

such trust issues often dwarf the direct cost of fixing the bug.

The Takeaway

Whether measured in direct financial losses, wasted developer hours, or intangible

reputation damage, the bulk of the cost of software failures arises from preventable

errors introduced during implementation and insufficiently caught in testing. These

errors are usually not deep mysteries of computer science; they are the kind of issues

that every programmer is taught to avoid, yet which still slip through under real-

world pressures. As one industry report noted, most forms of testing are less than

50% efficient in finding bugs, whereas techniques like code inspections can catch

85% or more (Jones, 2011). The implication is that if we rely only on standard test-

ing and if our coding processes are not meticulous, at least half of the bugs (many

of them trivial in cause) will escape into the wild. Those escaped bugs then incur

massive clean-up costs. The next section turns to the critical question: if small mis-

takes cause such outsized problems, what can be done to prevent them? The answer

60 A LITTLE BOOK ON ERROR-FREE SOFTWARE

lies in treating software development with the same kind of uncompromising disci-

pline seen in mature engineering fields: addressing the hygiene factors that, while

not glamorous, have proven effective in catching or preventing the “small” errors.

Preventing the Preventable

If the devil is in the details when it comes to software, then the defence against

failure lies in an almost obsessive attention to those details. In practical terms, this

means instituting “software hygiene.” A set of best practices and cultural norms in

development teams that ensure mistakes are caught (or avoided) as early as possible.

Just as hand-washing and sterilization revolutionised safety in medicine (turning

surgery from a high-risk gamble to a routine procedure), certain fundamental prac-

tices can dramatically reduce the incidence of software bugs. What are these prac-

tices? Many of them have been known for decades, yet they are not uniformly fol-

lowed, which is why we continue to see the same types of errors. In this section, we

outline key hygiene factors and explain how each directly addresses the kinds of

trivial mistakes discussed earlier. The ideas here stem from the author’s early years

as a programmer at Philips Terminal Systems, the world’s largest manufacturer of

banking computers, the PTS 6000 series (Danielson, 2023). These banking comput-

ers were sold as systems sales to banks, including hundreds and often thousands of

workstations and encompassing both hardware and software. The software for the

customer projects was most often developed by Philips, not by the customer. This

centralisation and the coding standards upheld resulted in the software delivered al-

most invariably being shipped error-free (Sandén, 2011, p.246). The overarching

theme is discipline: getting developers to consistently do the “boring” things that

prevent bugs, even when shortcuts attract. The PTS 6000 series was programmed in

assembler language and in a COBOL-inspired interpreted proprietary language

called CREDIT. Philips then moved on to C in the mid-1980s, and many of the

author’s other projects were also C-based. Since C has survived as a major language

until this day, it is the language used in the examples in the book. But the principles

are easy to transfer to any imperative language, object-oriented or not.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 61

Coding Standards and Consistent Style.

One of the simplest yet most effective hygiene practices is to adopt a strict coding

standard. A set of stylistic and programming rules that everyone on the team follows.

Superficially, coding standards (naming conventions, brace styles, etc.) might seem

unrelated to bug prevention, some even view them merely as aesthetic guidelines.

However, well-designed coding guidelines explicitly aim to reduce the likelihood of

mistakes. The idea is that by enforcing consistency and disallowing known danger-

ous practices, the code becomes more readable and less error-prone. A trivial exam-

ple: requiring that every if or while block use braces even if it is a single line. This

prevents the classical bug of an unintended dangling else or a misplaced statement

that is not guarded by the condition (a source of many logic errors in C/C++). An-

other common rule is to ban the use of magic numbers or hard-coded constants in

favour of named constants or enumerations, which reduces the chance of using the

wrong value or misinterpreting units. Standards often outlaw certain language fea-

tures known to be problematic, For example, in C functions like gets() that do not

check bounds, or implicit conversions that could truncate data. By removing these

pitfalls, the standard guides programmers toward safer patterns. The evidence of

effectiveness is strong: organisations that rigorously apply such standards have ob-

served reductions in bug density and debugging time. One reason is that a common

style makes it easier for developers to review each other’s code. Inconsistencies or

odd constructs stand out like sore thumbs, prompting closer inspection of where a

hidden bug might lurk. Additionally, many coding standards include “robustness”

rules, such as always checking the return value of system calls and library functions.

This directly catches errors that would otherwise propagate (for instance, if a file

open fails and the code does not check, subsequent operations might behave incor-

rectly). By mandating these checks everywhere, the standard instils a habit of de-

fensive programming. We can see the benefit in cases like the Mars Polar Lander:

had the software been developed under rules requiring redundant confirmation of

critical sensor signals, the false touchdown detection might have been averted. In

sum, adopting a rigorous coding standard is akin to a checklist for coding. It ensures

that each line of code adheres to known best practices and avoids patterns with high

bug potential. It may not eliminate all bugs (no standard can guarantee that), but it

62 A LITTLE BOOK ON ERROR-FREE SOFTWARE

can certainly eliminate a sizable fraction of the trivial ones to become essentially

error-free, the promise in the title of the book that never came to fruition. It sets a

baseline of discipline: no matter how rushed or tired a developer is, the standard is

a safety net reminding them of the details not to forget.

Code Reviews and Inspections

Human fallibility is what it is, even the best programmers miss their own mistakes.

That is why a cornerstone of software quality is independent reviews: having peers

inspect code changes. Formal code inspections, as practiced in some organisations,

involve systematically reading through the code in team meetings and using check-

lists to find errors. Numerous studies have shown that such inspections are extremely

effective at catching bugs early. According to one analysis, formal design and code

inspections are more than 65% efficient in finding defects and often top 85% effi-

ciency (Jones, 2011), whereas unit testing might only catch 25-50% of defects on

average. The reason inspections work well is because they force a slow, methodical

examination of the “boring details” that automated tests might not execute. A re-

viewer might notice, for example, that a certain variable is not initialised, or that a

loop’s boundary condition seems off by one. Things that might not immediately

cause a failure in a limited test, but are indeed bugs. Inspections also leverage the

fact that different people have different strengths; one reviewer might be good at

catching arithmetic precision issues, another at spotting potential null-pointer deref-

erences. By pooling their attention, the team’s overall attention to detail is amplified.

A study by IBM on its cleanroom development process (which emphasise preven-

tion over testing) found that with extensive inspections and careful adherence to

process, they could achieve near-zero defect rates in delivered code. In practice, not

every project can afford extremely formal inspections, but even lightweight reviews

(such as pair programming or GitHub pull request reviews) have proven their value.

For instance, the aerospace industry often requires that every line of code for flight

software is reviewed by multiple people. This is how the Space Shuttle on-board

software achieved only 17 errors in 420,000 lines across many years. It was not

magic but method: every change was scrutinised, tested, and verified exhaustively.

For less critical software, the stakes may not be life-or-death, but the mindset should

A LITTLE BOOK ON ERROR-FREE SOFTWARE 63

still apply: treat every abnormality in code as potentially serious until proven other-

wise. Modern development tools also aid reviews. Static code analysers (discussed

shortly) highlight suspicious code constructs, effectively acting as an automated re-

viewer that never tires of nit-picking. But ultimately, having a human in the loop

who says “I do not quite understand why you did X here; could that cause a problem

if Y?” often exposes hidden bugs. The key is creating a culture where such critique

is welcomed as a positive, quality-improving step, not as a personal affront. When

done right, code reviews catch those “little” mistakes (typos, logic slips, omissions)

before the code ever runs. This approach maps well to the earlier stories: a thorough

review of the climate orbiter navigation code would likely have questioned the units

at an interface, or a review of the 737 MAX changes would have asked, “What if

the sensor feeding MCAS is wrong?” Many post-mortems of failures reveal that

someone in the organisation did raise a concern but it was not heeded or formally

followed up. A disciplined review process institutionalises the addressing of such

concerns. To sum up, code reviews enforce collective attention to detail, making it

far less probable that trivial bugs survive in the wild.

Automated Static Analysis and Tools

In addition to human reviewers, automated analysis tools serve as an ever-vigilant

eye for certain classes of mistakes. Static analysis examines source code (or com-

piled binaries) without executing them, looking for patterns that are likely errors:

e.g., possible null pointer dereferences, variables used before initialization, buffer

overflows, inconsistent use of values, unreachable code, etc. Many trivial bugs have

signatures that static analysers can detect. For example, a static tool can easily catch

that a function has two return paths, one of which fails to assign a value to the output

variable, a mistake a human might easily gloss over. The advantage of static analysis

is that it can check every single path and combination up to a certain complexity,

something human testers cannot do exhaustively. Mature static analysis tools have

been shown to significantly reduce defect density when applied regularly. In mis-

sion-critical systems, use multiple static analysis tools alongside coding standards

and inspections in order to achieve cumulative defect removal rates above 95%. The

reason multiple tools are mentioned is that different tools have different strengths.

64 A LITTLE BOOK ON ERROR-FREE SOFTWARE

One might be better at spotting concurrency issues and another at spotting arithmetic

edge cases. By incorporating these into the build process (e.g., as part of continuous

integration, code must pass static analysis checks with zero warnings), teams enforce

a level of detail-checking that goes beyond what any individual could do. It is similar

to having a tireless proofreader for code. Another form of static checking is the use

of more stringent compilers or compiler settings. Many languages allow optional

warnings (for instance, the -Wall -Wextra flags in C/C++ compilers turn on a host

of useful warnings). Ensuring the code compiles with all warnings enabled and treat-

ing warnings as errors can prevent a lot of silly mistakes (like using = when == was

intended in C, which is a classic bug that compilers can flag as a suspicious assign-

ment in a conditional). For managed languages like Java or C#, linters and code

quality analysers play a similar role. These tools embody the collective wisdom of

many experienced programmers, flagging constructs that have led to bugs before.

Using them is an obvious hygiene step, yet in the rush of development, many teams

skip them or ignore their output. Do not ignore a single warning lightly. If the static

analyser says there’s a possible null pointer, investigate it. Either prove it is a false

positive or fix it, but always attend to it. Taking tools seriously is part of cultivating

an attention-to-detail mindset. When static analysis is combined with adherence to

a safe subset of the language, it can even approach formal verification levels for

certain properties. For example, the absence of any out-of-bounds array access can

be practically guaranteed if one follows certain rules and uses static analysis to en-

force them. In safety-critical circles, it is often said that a compiler warning fixed is

a failure avoided. The bottom line is that in modern software engineering, there is

little excuse for letting common mistakes slip by, given the quality of tools available.

It is more a matter of will and policy, requiring that these tools be used and their

output acted upon. This too is an element of discipline: it can be tedious to fix all

“potential null dereference” warnings in a large codebase, but doing so systemati-

cally will likely eliminate some real bugs and certainly improve the clarity of the

code (if only by making the programmer think about whether that null case can hap-

pen). It is similar to cleaning up every corner of a workshop to ensure nothing dan-

gerous is left lying around. It takes time, but it prevents accidents.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 65

Thorough Testing at Multiple Levels

Testing may seem too obvious to mention. Of course everyone tests their software.

But the key is how testing is done and at what stages. A disciplined approach in-

volves multiple layers: unit tests for individual functions or modules, integration

tests for components working together, system tests under realistic scenarios, and so

on. The concept of improved testing as a way to eliminate bugs was strongly en-

dorsed in the NIST study which said one-third of the bug cost could be saved by

improved testing. The idea is that better testing is essentially better attention to detail

during verification. However, simply having tests is not enough; one needs to con-

sider test coverage and test design. It is easy to write cursory tests that check the

expected cases and call it a day, and thus miss the edge case that will later cause a

problem. Best practices encourage writing tests not just for correct inputs but also

for erroneous and extreme inputs, to ensure the software handles them gracefully.

This is especially crucial for catching off-by-one errors, overflow, and other bound-

ary issues that are frequent culprits of failures. For example, had the Ariane 5 soft-

ware been tested with simulated input values exceeding the 16-bit limit (values that

Ariane 4 never produced but Ariane 5 did), the overflow would have been discov-

ered before the flight. Similarly, testing the Mars lander software with spurious sen-

sor signals might have revealed the premature engine cut-off logic flaw. Good test

practices also involve regression testing. Every time a change is made, re-running

the full suite to ensure nothing else broke. This is a guard against the scenario where

a “fix” for one bug introduces another bug (a phenomenon not uncommon when the

root cause is not fully understood or the fix is rushed). Automated testing frame-

works make it feasible to run hundreds or thousands of tests on each code commit.

However, writing a comprehensive test suite is itself a matter of discipline and at-

tention to detail. It requires thinking about what could go wrong in every corner of

the code. One effective approach is test-driven development (TDD), where devel-

opers write tests for the functionality before implementing it, clarifying the expected

behaviour and edge cases upfront. TDD forces you to consider the little details (like

“What should happen if this input is zero or negative?”) early on, often revealing

potential issues in the design or assumptions. While TDD is not a panacea, teams

66 A LITTLE BOOK ON ERROR-FREE SOFTWARE

practicing it often report fewer defects, precisely because it bakes in a habit of check-

ing details. In safety-critical industries, testing extends to simulation and even for-

mal methods. For instance, aerospace software goes through hardware-in-the-loop

simulations where every sensor and actuator is modelled to test the software in con-

ditions as close to real as possible. They perform stress tests and fault injections

(e.g., simulate a sensor giving nonsense data) to ensure the software responds safely.

The general software industry can learn from this by at least adopting chaos testing

or fault injection in staging environments to see how robust systems are to weird

inputs or partial failures. Such tests often uncover the kinds of small oversights (like

an uninitialised variable that only matters when a certain flag is set under high load)

that would be hard to catch otherwise. Ultimately, a key principle is that testing

should be aimed at breaking the software. Testers (or automated test generators)

should actively seek out the weak spots rather than just demonstrating that the soft-

ware works on expected input. This adversarial mindset in testing complements the

constructive mindset in coding. Where a developer might subconsciously avoid

thinking of extreme cases because they want their program to work, a good tester

does the opposite: “How can I make this fail?” Adopting that perspective within the

development team itself, early on, is extremely beneficial. In fact, some organisa-

tions rotate developers into testing roles or have them review each other’s modules

with the intent to find bugs, not to validate designs. Doing so reinforces attention to

detail by making everyone more aware of the kinds of mistakes that can happen.

Risk Assessment and Worst-Case Thinking

A more mindset-oriented practice, but crucial: developers should be trained (and

encouraged) to think about worst-case scenarios and to assume things will go wrong.

Much of the time, small bugs slip in because developers assume a particular condi-

tion will never occur (e.g., “the sensor will never send crazy data”, “the user will

never input a 10000-character string”, or “this array will never go out of bounds”).

As we have seen, those assumptions often do not hold. Adopting a defensive pro-

gramming stance means always coding as if the worst can happen. One practical

way to enforce this is to add explicit checks for conditions that “should not happen,”

A LITTLE BOOK ON ERROR-FREE SOFTWARE 67

paired with safe handling or at least clear logging if they do. For example, if a func-

tion is only supposed to be called with a non-null pointer, an assert or explicit null

check with an error return can catch any violation of that contract. It is a simple

addition, but it turns a potentially catastrophic bug (null pointer leading to crash or

corruption) into a controlled failure or a logged anomaly that can be fixed. In high-

integrity systems, this is taken further with mechanisms like built-in tests (BIT) and

sanity monitoring. Essentially code that continuously verifies that internal assump-

tions hold, and if not, transitions the system to a safe state. The broader notion is

sometimes referred to as design by contract, where functions explicitly state precon-

ditions and postconditions, and the code checks them. These checks act like trip-

wires for bugs: if a bug causes an unexpected condition, the program halts or alerts

at the point of detection, making diagnosis easier and preventing compounding dam-

age. It is far better to fail fast than to propagate erroneous data and later fail myste-

riously. In less formal settings, even code comments that flag assumptions can help

future maintainers not violate them. The overall culture should be that every time

someone writes “this should never happen” in a comment, they either write code to

handle it just in case or at least an assertion to catch if it does happen. Another aspect

of worst-case thinking is considering performance and resource limits. Many fail-

ures in the real world occur when load or input exceeds tested ranges (e.g., a web

service times out or crashes when requests spike because of a subtle race condition

that only manifests under high concurrency). By doing stress tests (as part of the

testing regimen) and planning for capacity, teams can often uncover issues that re-

sult from those “we never expected so many users/files/etc.” conditions. Again,

these issues often trace to small mistakes: maybe a data structure that becomes inef-

ficient at scale, or an algorithm that fails when a list is empty (which suddenly hap-

pens under heavy load due to timing). Paying attention to detail means also attention

to rare events. A disciplined team might, for example, have a checklist item: “Have

we handled all error returns from this library call? What if the network is down?

What if the disk is full?” It can feel tedious to ponder all these unlikely problems,

but such foresight distinguishes robust software from brittle software. The cost of

adding code to handle edge cases is usually low (often just a few lines, as Greg

Travis’s eight lines for MCAS illustrate), but the cost of not adding them can be

immense.

68 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Continuous Integration and Fast Feedback Loops

Effective error prevention also relies on getting quick feedback to developers when

something goes wrong. The longer a bug lives in the code, the more context is lost

and the harder it is to root-cause-track and fix. Modern best practices use continuous

integration (CI) that automatically builds and tests the software on every commit.

This means that if a developer introduces a bug that breaks some tests, it is caught

within minutes and they are immediately notified. Rapid feedback tightens the at-

tention loop and developers learn of their mistakes while the code is fresh in their

mind, and can correct it before moving on. It helps avoid the scenario of a small bug

lurking for months and causing a failure later in production when no one remembers

that piece of code well. CI can also incorporate static analysis and style checks so

that any deviation from the agreed standard or any new warning is flagged instantly.

Essentially, automation enforces attention to detail. If a developer forgets to run

tests, the CI will run them. If he skimmed over a warning, the CI will remind him

by failing the build if any warnings are present (if configured to be strict). This re-

moves reliance on memory or personal diligence alone, embedding diligence into

the process. Many open-source projects have adopted a policy of “no regressions

allowed.” If a commit increases the number of warnings or fails any test, it cannot

be merged. Such policies, when followed, maintain a very high baseline quality.

Another practice is code hygiene days or regular refactoring, essentially scheduling

time to pay off technical debt and tidy up the code. During these times, teams might

focus on cleaning up compiler warnings, improving error messages, increasing test

coverage, etc. While this might seem tangential to features, it directly addresses

those lurking small issues that otherwise might be forgotten. Managers who under-

stand software quality often allocate, say, 10–20% of iteration capacity to these

tasks, treating them as first-class work. This kind of proactive maintenance is cru-

cial; otherwise, as projects mature, the accumulation of little mistakes and kludges

eventually slows development to a crawl or results in a major failure.

Learning Culture and Retrospectives

Even with all of the above, bugs will still occur. The difference in a detail-oriented

culture is how these bugs are treated when found. Rather than just patching and

A LITTLE BOOK ON ERROR-FREE SOFTWARE 69

moving on, high-maturity teams conduct post-mortems or retrospectives even on

small incidents or escaped defects. The goal is to identify the root cause and, im-

portantly, improve the process to prevent similar bugs in the future. This might lead

to adding a new test case, expanding the coding standard, or educating the team

about a particular gotcha. For example, after the Mars Climate Orbiter loss, NASA

convened multiple review boards and disseminated the lesson about unit consistency

to all projects. The result was process changes to ensure no similar lapse in unit

conversion would recur. In a corporate software setting, if a production outage was

caused by, say, a misconfigured setting that was not caught, the post-mortem might

result in improved deployment scripts or monitoring checks. This continuous im-

provement mindset closes the loop in attention to detail: it is not enough to be detail-

oriented in writing code; one must also be detail-oriented in examining failures. A

blameless retrospective asks “What went wrong in our process that allowed this bug

through, and how can we tighten the sieve?” This way, even mistakes become fuel

for preventing future mistakes, a virtuous cycle of quality improvement. Over time,

such teams build a deep collective knowledge of pitfalls to avoid. Notably, some of

the best engineering organisations (like those behind space missions or critical in-

frastructure) institutionalise this knowledge in formal guidelines and training. The

lessons-learned databases at NASA or the checklists airlines use before flights

(spawned from past incidents) are examples. Adapting that approach, software

teams could maintain an internal wiki of patterns to avoid or an internal “bug of the

month” discussion where they dissect a recent bug. All of this contributes to raising

everyone’s attentiveness.

Towards Software Craftsmanship

The evidence and examples discussed lead to a clear conclusion: most software dis-

asters and much everyday software grief could be avoided by a more disciplined,

craftsmanship-like approach to development. It is not that we lack the knowledge of

how to write correct software; it is that we often fail to apply this knowledge con-

sistently. In effect, the industry’s challenge is more cultural than technical. We must

elevate attention to detail from a personal trait of only some programmers to a core

value embraced by every developer, team, and organisation. This calls for something

70 A LITTLE BOOK ON ERROR-FREE SOFTWARE

like rules for software hygiene, a set of principles that developers commit to, em-

phasizing that quality is not negotiable and that small things matter tremendously.

The final part of this chapter articulates such a perspective, synthesising the lessons

learned into a set of guiding principles.

Principle 1: Bugs Are Not Inevitable

Aim for Zero, Do not Tolerate Good Enough.

Too often, a fatalistic attitude prevails that all software has bugs or that certain

amounts of failure are just part of the trade-off for rapid innovation. While it is true

that complex software will never be absolutely perfect, the mindset of inevitability

is dangerous. It leads to complacency and corners cut under the assumption that

some bugs are okay. A more productive stance is to treat every bug as preventable

until proven otherwise. Historically, people once accepted that infections in surgery

were inevitable. It took medical pioneers like Semmelweis to show that simple hy-

giene (hand-washing) could nearly eliminate them. Likewise, software teams should

operate under the assumption that with enough care, most defects can be prevented

or caught early. This does not mean features take forever. It means building quality

activities into the normal workflow. The psychological shift is key: developers tak-

ing pride in writing code that just does not fail. This can be fostered by setting quality

goals explicitly (e.g., targeting a certain low defect rate or mean time between fail-

ures) and celebrating achieving them just as one would celebrate feature delivery.

The principle “first, do no harm” from medicine can translate to “do not introduce

new bugs” in software. For instance, teams can adopt a zero-tolerance policy for

known critical bugs in the backlog at any time; they must be fixed immediately. By

not accepting bugs as a norm, teams will naturally push themselves to refine their

processes and skills to approach zero-defect software. Notably, some software or-

ganisations have achieved extremely low defect rates (on the order of 0.1 defects

per kLoC) by adhering to such high standards. Their example disproves the myth

that you must choose between speed and quality. In fact, quality-focused teams often

end up faster in the long run because they do not waste time on endless fixes.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 71

Principle 2: Prevention Over Cure

Catch Mistakes Early, Before They Manifest as Failures.

This principle echoes a recurring theme: it is far cheaper and easier to prevent a bug

than to fix it later. Practically, this means investing effort in activities that happen

before the software is running in production. Code reviews, static analysis, and com-

prehensive test suites may seem like overhead, but they are the front-line mecha-

nisms for bug prevention. If something is suspected to be wrong during develop-

ment, fix it or investigate it immediately. Do not defer it with the idea of testing it

later or patching it in maintenance. The earlier a bug is removed, the less impact it

has. The prevention-over- cure mindset also encourages developers to think care-

fully when writing each piece of code: How can I write this in a way that inherently

avoids errors? This might mean using higher-level abstractions (for example, using

safe libraries rather than writing low-level pointer manipulations), or leveraging lan-

guage features (such as strong typing or immutability) that eliminate classes of bugs

by design. Modern programming languages and frameworks often provide con-

structs to help with this, but they must be intentionally used. Teams should prefer

coding practices that make incorrect code harder to write. One illustration is using

enumerations or distinct types instead of generic integers for values that represent

different domains (like using a Distance type vs. a raw number, so one cannot ac-

cidentally mix meters and feet). This builds unit safety into the code, a direct lesson

from the Mars orbiter loss. If one had a Force class with a unit attribute, it would be

impossible to mix up Newton- and Pound-force without an explicit conversion,

which would have made the error obvious. This prioritization justifies spending time

on design, using static type checkers, formal specifications for critical algorithms,

etc., because those are prevention tools. It is striking how in other engineering fields,

enormous effort is spent in design verification (e.g., multiple prototypes, stress-test-

ing materials) to ensure things do not break later. Software should be no different.

As an industry, we should shift resources earlier in the lifecycle. A point made in

the classic Boehm curve, which showed that errors become exponentially more

costly to fix later. The good news is that with today’s automation, a lot of prevention

can be done quickly (e.g., running thousands of static checks in seconds).

72 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Principle 3: Hygiene Factors Matter

Embrace the Boring Best Practices Diligently.

There is a set of development practices often considered pedantic or tedious: writing

documentation, commenting code, using version control properly, continuously re-

factoring to keep code clean, sticking to conventions, etc. These might not be as

exciting as developing a new feature, but they are exactly analogous to washing

hands or cleaning tools in a workshop, i.e. essential for preventing mistakes. For

managers and stakeholders, it is important to allocate time for these tasks explicitly.

If a team is pressured to deliver features at breakneck speed with no time for clean-

up, the debt incurred will likely surface as customer-visible bugs. A critical practice

under hygiene is configuration management: ensuring that environments are con-

sistent, deployments are automated, and rollback procedures exist. Many outages

occur not because of bad code but because a good code change was deployed incor-

rectly or to the wrong environment. Strict procedures and tooling around build and

release (e.g., infrastructure as code, one-click deploys with validation) are the hy-

giene that prevent such fiascos. Another one is backups and monitoring. Those are

not directly coding practices, but operational hygiene. Having good monitoring can

catch a small anomaly before it becomes a big incident (e.g., a slow memory leak

can be fixed during routine maintenance if noticed, rather than causing a crash in

peak business hours). The overarching message is that nothing is beneath attention.

In a culture of true craftsmanship, even the smallest component or process is given

due care. A telling example is from the Apollo program: the on-board guidance com-

puter’s software famously had an implicit “do not blow up” rule. They put enormous

effort into ensuring the software would reset gracefully and not send spurious com-

mands if it encountered an error. That required diligently handling even the unlikely

edge cases. It was not glamorous, but it was necessary. Modern developers should

channel that same thoroughness. The end goal of software hygiene is that when

someone asks, “Did you consider X? Did you handle Y?” the answer is always

“Yes.” Perhaps one of the reasons the tech industry has often moved fast and broken

things (to borrow a Facebook motto) is the youthful culture and lack of formal pro-

fessional standards compared to, say, civil engineering. But as systems become more

safety-critical and the costs of failure mount, the industry is maturing. There are

A LITTLE BOOK ON ERROR-FREE SOFTWARE 73

calls to treat software engineering more like a profession with agreed standards of

conduct. This is not contrary to the view of programming as an art. The art is in the

design and overall programming of the systems, not in the good or bad habits of

detailed coding. Any artist working with physical artefacts must still make sure their

artwork holds together to stand the test of time. This is no different for programs. It

is telling that in engineering or medicine, negligence in basic practice can cost one’s

license. In software, anyone who can code can potentially work on critical software

without certification. While formal licensing is a debated topic, at the very least

teams can self-impose high standards. We can view things like thorough testing and

code reviews as our professional oath to do right by the users who depend on our

code.

Principle 4: Learn from Failure

Every Incident or Near-Miss Is a Lesson to Internalise.

High-reliability organisations have a characteristic: they are preoccupied with fail-

ure, even the small ones. They investigate, disseminate findings, and adjust accord-

ingly. Software teams should do the same. Instead of seeing bugs as an embarrass-

ment to be quickly hidden, they should be seen as valuable data. Adopting blameless

post-mortems (focusing on what in the system or process allowed the bug, not who

made the mistake) encourages openness. For example, after a critical outage, the

team can publish a brief report: “Here’s what happened, why, and what we’re doing

to prevent it going forward.” This not only helps the team not repeat mistakes but

contributes to industry knowledge when shared publicly. The aviation industry’s

safety record improved dramatically through transparent investigation of crashes

and the sharing of recommendations. In software, companies often operate in silos

regarding failures, but there is a trend of more transparency (some companies openly

blog about outages and fixes). Embracing this is part of the error-eradicating atti-

tude: it is okay to err, but not okay to fail to learn. When developers see their mis-

takes leading to constructive changes (rather than just reprimand), they are incentiv-

ised to bring forward issues early. It also sets a tone that quality is everyone’s re-

sponsibility. If a bug slips through, it is not just “the tester’s fault” or “that devel-

oper’s fault,” it is a symptom that the team’s process can improve. This communal

74 A LITTLE BOOK ON ERROR-FREE SOFTWARE

approach reduces ego and defensiveness that sometimes hinder acknowledging

bugs. In essence, the mindset respects the complexity of software by acknowledging

that avoiding all mistakes is hard but then doubles down on systematically driving

down the mistake rate. Over time, an organisation with this culture builds a reputa-

tion for reliability. Customers and users notice when a service or product just works

consistently. Conversely, they also notice when each update introduces new prob-

lems. Ultimately, fostering trust through quality can be a competitive advantage. It

aligns with the point that many software-related losses (time, money, goodwill) are

preventable. So preventing them is not just good engineering, it is also good busi-

ness.

Principle 5: True Professionalism

Recognise the Real-world Consequences of Software Errors.

Those of us who create software must be cognizant of the impact our mistakes can

have on others. In safety-critical fields, this is obvious, but even a “simple” app can

cause harm if it fails at a bad time. Consider an electronic health record system glitch

that mixes up patient data or a navigation app error that misroutes drivers into dan-

ger. These are software mistakes with potentially grave outcomes. Thus, attention

to detail is not just a technical nicety; it is a responsibility. The “Software Engineer-

ing Code of Ethics” (adopted by professional societies like ACM/IEEE) emphasises

that engineers shall ensure their products are as safe and error-free as possible and

shall be honest about limitations. Taking that to heart means pushing back on unre-

alistic deadlines that force cutting corners, and ensuring management understands

the risks of not investing in quality. It might mean spending extra personal effort to

test that one more scenario because it could save user frustration. This ethical per-

spective fuels the critical tone of our discussion. It is, after all, calling for change.

We must, as a profession, move away from celebrating only speed and features, and

give equal billing to reliability and care. There is room for optimism: industries like

automotive and aerospace have steadily raised the bar on software quality through

standardization and regulation (for example, ISO 26262 for automotive software

safety). While nobody wants stifling regulation in all software domains, the writing

is on the wall that if we do not improve self-discipline, external forces will impose

A LITTLE BOOK ON ERROR-FREE SOFTWARE 75

it after enough failures. Better that we voluntarily improve. In practical terms, this

principle encourages mentoring and training. New developers should be taught not

just how to code, but how to code well. Universities often underemphasise secure

and robust coding in favour of quick hacks to get assignments working. Industry can

fill that gap by inculcating best practices from day one. Senior engineers should

exemplify calm, detail-oriented work, rather than “cowboy coding.” When juniors

see that careful consideration is valued more than clever one-liners, they will emu-

late that.

Summary

In conclusion, the argument that “error-free software is largely dependent on atten-

tion to detail” is supported by abundant evidence, and it points towards a necessary

evolution in our approach to software development. The small mistakes that plague

software projects are not an intractable mystery; they are solvable problems with

known techniques if we choose to apply them. The challenge is mustering the will

to do so consistently. This is why a diligent stance can be beneficial: it frames soft-

ware quality not as a bureaucratic burden, but as a cause worth championing. It as-

serts that quality is an integral part of the definition of done, not a desirable after-

thought. It appeals to professional pride: hopefully, nobody wants to be associated

with sloppy work that fails dramatically. And it appeals to rational self-interest too

since high-quality software is cooler in the end and enhances reputation.

To return to the examples that opened the chapter. We should live in a world

where no space probe is lost due to a unit conversion error because every space

software team double-checks interfaces by habit. A world where aircraft software

does not surprise pilots because every new line of code is scrutinised under multiple

failure scenarios. A world where the only outages in banking systems are from un-

avoidable external events, not from a developer forgetting to synchronise a config

file. Such a world is achievable; the knowledge exists. The cost of achieving it is

mainly discipline, and that is a cost that yields returns many times over. As the old

adage goes, “The devil is in the details”, but with diligent angels (the developers)

attending to those details, the devils of chaos and error can be exorcised from our

76 A LITTLE BOOK ON ERROR-FREE SOFTWARE

software. This is the path to truly engineering software, to making it a rigorous pro-

fession on par with others, and to drastically reduce the unnecessary losses that today

we far too commonly chalk up to “computer glitches.” The time has come for soft-

ware engineering to grow up and recognise that its biggest challenges are not un-

solvable algorithms, but the mundane and vital work of getting every little thing

right.

The cause of most software-related failures and losses can be traced to small pre-

ventable mistakes made during implementation and insufficiently caught during

testing. By treating those small mistakes as unacceptable and attacking them with

disciplined practices, we can avoid most of the dire consequences they would oth-

erwise produce. This often calls for a culture change, a recommitment to program-

ming fundamentals. The benefits of such a change would be enormous: more relia-

ble systems, less downtime, fewer safety incidents, and huge savings of time and

money. The case studies and data presented serve as both warning and motivation.

Small bugs might be trivial in isolation, but aggregated they shape the fate of pro-

jects and companies. The onus is on us, as software professionals, to heed the warn-

ings and take up the meticulous, unglamorous, yet ultimately satisfying work of

making our software as close to error-free as humanly possible. This is our collective

hygiene challenge, our call to ensure that the next Mars orbiter, the next aircraft, and

the next financial platform all benefit from the hard lessons etched in the history of

software failures. The PTS way of programming can help with this.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 77

4. Guidelines for Error-Free Code

In software development, the significance of general coding rules cannot be over-

stated. These Philips PTS guidelines serve as a foundation upon which other organ-

isation-specific rulesets should rest, shaping how code is structured, interpreted,

maintained, and validated. Not least in systems where reliability is a non-negotiable

constraint and debugging is often difficult due to, for example, complex unforesee-

able user interactions, it is important to establish a uniform style and methodology

that can be trusted across project teams, tool-chains, and architectural targets.

Conscious restriction of language extensions and preprocessor manipulation is

important. It might be tempting for a developer to redefine keywords or insert mac-

ros to simulate language-level constructs, such as #define forever for(;;) or

#define begin {. These alterations, while sometimes clever, are hazardous. They

mislead developers, break expectations for those accustomed to standard C, and

make it nearly impossible to port the code across compilers or tools. The preproces-

sor should be used for inclusion guards, conditional compilation, and header abstrac-

tions, not as a mechanism to rewrite the language itself. Compiler-specific constructs

such as __attribute__, #pragma, and inline assembly should be isolated to inter-

face modules and documented rigorously. If they leak into application logic, they

undermine portability and increase the mental overhead of reading and debugging

the software.

Code line length is another general rule that supports not only readability but also

collaboration. Source code lines should not exceed 80 characters. This guideline has

persisted through decades of computing history because it reflects the limitations of

terminal widths and printing formats. More importantly, it allows tools like diff

(fc if you are Windows-bound) and code review platforms to present changes side-

by-side without truncation. Excessively long lines make code harder to scan and

maintain, and they are often a sign of overly complex logic that should be broken

down into simpler components. A good heuristic is: If a single line of code contains

more logic than a developer can comprehend in one glance, it is too complex. The

same goes for functions and procedures (methods for OOPers). In the old days of

24x80 screens, a single procedure should fit onto the screen to be comprehendible.

78 A LITTLE BOOK ON ERROR-FREE SOFTWARE

With today’s screens having at least 80 lines, a screenful can be a stretch, but 50

lines is a good maximum size for a procedure (OOPers will object; see Chapter 5).

The structure of control flow blocks such as if, else, while, for, and switch,

should be explicit and uniform. Each such block should be enclosed in braces, re-

gardless of whether the body contains a single statement. This rule is a direct re-

sponse to some of the most catastrophic software bugs in history, including the “goto

fail” bug in Apple’s TLS implementation (from the same year as the TLS Heartbleed

bug discussed in Chapter 3, but is something completely different). The absence of

braces leads to ambiguity. It invites logical errors when code is modified, and it

relies on indentation to imply meaning, which is not enforced by the compiler. Al-

ways placing opening braces on their own lines, aligned with the controlling key-

word, creates a visual symmetry that enhances readability and debugging.

Another important rule involves the use of parentheses in expressions. Most lan-

guages’ operator precedence rules are complex and sometimes counterintuitive. Pro-

grammers make frequent errors by assuming a particular evaluation order, especially

when combining logical operators (&&, ||) with relational or arithmetic operators.

To avoid ambiguity and ensure intent is clear, wrap each logical clause in its own

set of parentheses. For example:

if ((temperature > THRESHOLD) && (pressure < LIMIT)) {

 // Safe to proceed

}

Even if redundant, these parentheses prevent accidental misinterpretation and serve

as documentation of intended precedence. They are particularly useful in conditions

involving multiple layers of logic, where a missing set of parentheses can change

the meaning of the entire condition.

Mixing logical operators (&&, ||) with bitwise operators (&, |) might sometimes

yield the same results under certain circumstances. But code containing such mis-

takes runs a large risk of failing sometime in the future, perhaps after maintenance.

Comments are not decorations; they are integral to code quality. All comments

should be written in full sentences, using correct grammar and spelling. Each com-

ment should provide insight into the purpose or rationale behind the code. Avoid

A LITTLE BOOK ON ERROR-FREE SOFTWARE 79

trivial comments like // increment x next to x++;. Instead, explain why x is being

incremented, under what conditions, and what role it plays in the system’s operation.

When disabling code, never use block comments (/* ... */) to comment out large

segments. Instead, use conditional compilation with #if 0 ... #endif to make it

clear to both the compiler and the reader that the code is intentionally excluded.

Always add a reason, such as

#if 0 // Temporarily disabled due to thread race condition

Annotations like TODO, FIXME, NOTE, and WARNING should be used consistently and

in uppercase, preferably at the beginning of a comment line. These markers stand

out visually and can be easily searched or flagged by tools. For example:

// TODO: Refactor this loop to handle overflow correctly

Whitespace conventions are another essential aspect of general coding rules. Code

should use four spaces per indentation level and spaces, not tabs, should be used.

This is easily configured in any IDE. Tabs render inconsistently across editors and

platforms, leading to misaligned code and readability issues. There should be a space

on both sides of binary operators, after commas in parameter lists, and before braces.

Proper whitespace usage not only makes code easier to read, it also reduces the like-

lihood of introducing syntax errors during editing.

Files should terminate with a newline character and a comment like // end of

file. This seemingly minor practice serves practical purposes. The final newline

ensures compatibility with version control tools and POSIX file handling. The end-

of-file comment is a visible signal that the file is complete and not accidentally trun-

cated. This can be especially useful in headers, where an incomplete macro defini-

tion or missing semicolon can lead to hours of frustrating debugging.

Lastly, projects should adopt consistent and automatable enforcement of these

rules. Use linters, formatters, and code review checklists to ensure compliance. Even

the best guidelines lose value when inconsistently applied. Automated tools ensure

that rules are followed uniformly, freeing developers to focus on logic rather than

style policing.

These general rules form the scaffolding of disciplined C programming, and sim-

ilar rules can be set up for any language and environment. They are the smallest unit

80 A LITTLE BOOK ON ERROR-FREE SOFTWARE

of structure and yet influence every subsequent layer of abstraction and modularity.

Ignoring these rules results in codebases that are brittle, difficult to read, and error-

prone. Three “qualities” that have no place in systems where correctness and resili-

ence are targets.

Naming Conventions

Naming conventions form the verbal architecture of a codebase. In important sys-

tems, where software often lives for decades and must be interpreted by engineers

far removed from its original authors, consistency in naming becomes a lifeline.

Clear and predictable names reduce on-boarding time, facilitate cross-team collab-

oration, and simplify auditing and debugging processes. They are especially valua-

ble in large codebases where navigation relies as much on lexical patterns as it does

on structure.

File names should be lowercase and consist only of letters, digits, and under-

scores (some languages enforce that, others do not). They should reflect the mod-

ule’s purpose or domain clearly, avoiding abbreviations unless absolutely standard

within the specific project. For instance, reconcile.c is clear for an end-of-day

module, whereas rec.c is cryptic. Underscores improve readability over camel case

in file names, which are often manipulated through command-line tools that favour

underscore delimiters. File names should avoid collisions with standard library

headers such as math.h or time.h, and every .c file should include its own header

first to validate internal consistency.

Variable names should be long enough to convey meaning but short enough to

remain readable. For local variables, one-letter names such as i or j are acceptable

only in the smallest of scopes, such as within a for loop. In all other cases, names

should describe the content or purpose of the variable. For example, buffer_index,

or timeout_counter are preferable to bi, or tc. Boolean variables should be named

to reflect their binary nature using affirmative phrasing, such as is_done or

has_data.

Prefixing is another key strategy. Global variables should be prefixed with g_,

pointers with p_, and booleans with b_. This prefixing system enhances scanning

A LITTLE BOOK ON ERROR-FREE SOFTWARE 81

and reduces bugs from misuse. For example, accidentally dereferencing a non-

pointer becomes less likely when all pointers are explicitly marked. Similarly, rec-

ognising that b_configured is a boolean, not an integer, allows a reader to imme-

diately interpret expressions where the variable appears.

Function names should reflect the actions they perform. They should begin with

a verb and be written either in lowercase with underscores separating words (snake

case) or with a cap letter separating words (camel case). A strict naming convention

increases clarity and ensures consistency. Examples include read_user_data(),

init_display_module(), and handle_error_condition()for snake case, which

we use in this chapter. Public functions should be prefixed with the module name to

avoid symbol conflicts and to signify ownership. For example, in the led module,

public functions might be named led_init(), led_on(), and led_toggle().

Naming conventions also extend to type declarations. All typedefs should use

lowercase and terminate with _t, such as timer_config_t or user_data_t. Public

types should also be prefixed with the module name, just as public functions are.

This ensures a one-to-one mapping between symbol and module, which becomes

essential when debugging symbol tables or navigating complex project hierarchies.

Structures, enums, and unions should always be declared with a typedef to simplify

syntax and enforce consistency.

Macros and constants also benefit from naming rules. Macro names should as a

convention always be written in all uppercase with underscores: MAX_BUFFER_SIZE,

DEFAULT_CURRENCY, and ENABLE_LOGGING. This convention distinguishes them

from variables and functions at a glance. Constants defined via #define or const

variables should follow the same convention, as they often play a similar role in

logic and configuration.

Abbreviations should be used with care. Developers often assume their own

shorthand is universally understood, which leads to opaque identifiers. Use only

widely accepted abbreviations. Project-specific abbreviations must be centrally doc-

umented in a version-controlled glossary file. This file should be reviewed and main-

tained like source code, as it ensures that the naming conventions evolve deliberately

rather than arbitrarily.

82 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Misleading names can cause severe misunderstandings. For instance, naming a

number read function read() in a system where some input numbers are integers

while others are floats is ambiguous. Better names would be read_float() and

read_int(), which convey intent and precision. Similarly, avoid names that imply

units where none exist, or vice versa. If a variable is named usd, readers will expect

it to represent US dollars. If it stores any currency, then money is far more accurate.

Consistency across naming conventions is more valuable than the particular style

chosen. Teams should follow a shared convention, even one that is slightly flawed,

than for each module to follow its own ad-hoc rules. Inconsistent naming disrupts

cognitive flow, increases search times, and introduces uncertainty. Consistency al-

lows developers to "guess" names and be correct more often than not, increasing

velocity and confidence during navigation and debugging.

Notation where types are embedded in variable names (e.g. szBuffer, ulCount),

should be avoided. It adds clutter, is prone to becoming stale, and often communi-

cates less information than well-chosen prefixes and descriptive identifiers. Moreo-

ver, modern tools and IDEs already display type information when needed. The goal

of naming is not to encode type, but intent.

In code reviews, naming should be a first-class topic. A good reviewer should

ask: Is the purpose of each identifier immediately clear? Does the name reflect the

scope and lifespan of the variable? Are similar concepts named similarly across

modules? Are abbreviations known and documented? These questions enforce a

high standard of communication and encourage developers to write code that is read-

able even when the context is stripped away. Ultimately, naming conventions serve

as a shared vocabulary. They encode domain knowledge, design intent, and archi-

tectural boundaries into the very fabric of the code. When applied consistently, they

reduce ambiguity, streamline maintenance, and provide an on-boarding path for new

developers who can “read the code” in the same way they would read a well-written

document.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 83

Data Types and Constants

Especially in programming where memory and processing constraints are strong,

the careful selection and use of data types and constants becomes a strategic engi-

neering decision rather than a stylistic choice. This is not merely a matter of coding

hygiene but one of correctness, performance, and cross-platform predictability. Er-

rors in type usage can lead to overflow, sign extension issues, misinterpretation of

sensor data, protocol mismatch, and system instability. Particularly damaging in en-

vironments where determinism and precision are essential.

Knowing your available data types is essential to achieve error-free software.

Since all software run on digital hardware, the truly basic data types can be catego-

rised into four categories: pointers (to the other three categories), integers, floating

point numbers, and the rest. The rest might be called strings, but can also be called

characters or even general memory space. In addition to these, we have machine

instructions as equally first-class citizens in the computer’s memory but for our pur-

poses, we do not count them as data. Some languages do, but those languages usually

belong to the hacker domain rather than the professional one.

Note that an integer is really a misnomer in computing. The int data type re-

sembles mathematical integers but has properties very different from those. The

most important differences are 1) that real integers reach all the way to infinity (both

on the positive and the negative side) while int has a very small range depending

on the number of bits used to represent the int in computer memory, and 2) that an

undefined result cannot be adequately represented as an int (or at all). And this is

only the beginning of the arithmetic blues. Surprisingly, the four basic arithmetic

operations (addition, subtraction, multiplication and division) are a frequent source

of bugs, even in critical software. One might assume they are trivial to handle since

they are mastered early in school. But in computing, the rules shift. Architectures

impose strict limits. Numeric representation distorts expectations. Precision is no

longer infinite. What appears obvious on paper can fail silently in code.

One of the most important recommendations is the use of fixed-width integer

types defined in the stdint.h standard header. These types (uint8_t, int16_t,

uint32_t, etc.) explicitly declare the number of bits used to represent the variable,

84 A LITTLE BOOK ON ERROR-FREE SOFTWARE

removing any ambiguity tied to compiler- or architecture-specific definitions of int,

long, or short. For example, if int is 16 bits on one target architecture and 32 bits

on another, it can lead to subtle bugs, especially in arithmetic operations, data align-

ment, and external data interfaces. By enforcing the use of fixed-width types, code

becomes robust, portable, and easier to audit.

Avoiding ambiguous native types is particularly important when dealing with

data shared across system boundaries. If a structure containing mixed-width or am-

biguous types is shared between packages of different origins, the lack of type clarity

can result in data misinterpretation. Even a seemingly irrelevant difference in as-

sumed type size or alignment, such as small integers fitting any int size, can still

cause bitwise logical mismatches or checksum failures. The key is as always that

you never know how your code is being used after the next system revision.

Signedness should be explicit. Prefer uint32_t over unsigned int, not just for

the width clarity but also for consistency. Use suffixes like u, U, L, and UL when

defining numeric constants in macros or code to match the intended type precisely.

For example, 1000U is safer than 1000 when used with unsigned comparisons or

when passed to functions expecting unsigned values. This eliminates implicit con-

versions and warnings (or worse, silent bugs) related to sign mismatches.

Mixing signed and unsigned types in expressions is a known pitfall in C program-

ming. This practice triggers implicit conversions and type promotions that can lead

to logic errors. A common example is comparing a signed int loop counter with

an unsigned int size value, which can cause premature loop termination or infinite

loops. As a rule, if two variables are to be compared or combined arithmetically,

ensure they have the same signedness and ideally the same width. Static analysis

tools should be configured to flag such inconsistencies.

Bitwise operations should only be performed on unsigned types. The results of

bitwise operations on signed integers are implementation-defined in C, especially

when dealing with right shifts or bit masking. To avoid undefined or unexpected

behaviour, always cast signed variables to their unsigned counterparts before apply-

ing bitwise manipulation. For example:

A LITTLE BOOK ON ERROR-FREE SOFTWARE 85

uint32_t mask = 0xFF;

uint32_t result = ((uint32_t)my_value) & mask;

Floating-point types should be used with caution. On some platforms, floating-

point arithmetic is not hardware-accelerated and incurs a significant performance

penalty. Even where hardware support exists, using floating-point operations in real-

time control loops or interrupt routines can introduce delays. Moreover, equality

comparison with floating-point values is a known source of error due to the inability

to represent some decimal fractions exactly. Instead of writing:

if (total_sum == 2.0f) { ... }

it is mandated to use a small tolerance:

if (fabs(total_sum - 2.0f) < 0.001f) { ... }

When floating-point values must be checked, functions like isfinite(), isnan(),

and isinf() from <math.h> should be used to guard against invalid values propa-

gating through control logic. A silent NaN or Inf can propagate through algorithms

and cause erratic or dangerous behaviour. The fact that it is silent means that the

execution flow seems correct, but it carries nonsense, not data.

One important way to safeguard against arithmetic arthritis is to replace all criti-

cal math operations with macros (or inline counterparts) during development and

testing, and then replace them when the software ships. That way, nearly all of the

arithmetic risks are cleaned out in the production stage. For example, a floating point

number that was supposed to be zero at some point, but due to rounding errors ended

up being a small negative number, brings havoc to the sqrt() function. An example

of such a safeguarding macro set is the following, calling trace_ifperr() on error:

Also make good use of the numeric error flags provided by almost all CPUs today.

Especially a lot of floating-point errors can be detected this way.

86 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Fixed-point arithmetic is often a better alternative in systems without floating-

point hardware.6 By scaling integer values to represent decimal precision, develop-

ers can maintain high performance and determinism while preserving sufficient res-

olution. The use of fixed-point libraries or macros that wrap the logic and hide the

scaling factors is highly recommended.

Constant values, whether magic numbers or configuration values, should never

be embedded directly in code. They should be defined in headers or configuration

files using descriptive names and documented units. For example, instead of writing:

if (total_sum > 100.0f) { ... }

use:

#define TOTAL_XYZ_THRESHOLD 100.0f

if (total_sum > TOTAL_XYZ_THRESHOLD) { ... }

This change improves readability, supports maintainability, and ensures that con-

stants are easy to audit and update across builds. Always include the unit in the name

of the constant if there is one to decrease ambiguity for readers.

Enums should be used for symbolic constants, not numeric tuning parameters.

They should be defined via typedef, use all-uppercase enumerators, and be given

explicit starting values where alignment with external systems (e.g. protocol states)

is necessary. Unnamed enums or those used as cheap integer aliases should be

avoided in favour of properly scoped and documented ones.

The use of const is powerful and underused. Declaring constants with const

instead of #define allows type checking, debugger visibility, and scope control. For

example:

static const uint16_t MAX_RETRIES = 5;

This declaration is preferable to #define MAX_RETRIES 5 because it respects scope

boundaries, avoids macro side effects, and integrates better with IDE tooling and

type-aware debuggers. Constants that are module-private should always be static

const to prevent leakage into the global namespace.

6 Not common in 2023, but definitely still around in 2001 when this was written.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 87

All type usage should be justified and documented. Type choices for every struc-

ture, buffer, field, and function parameter should be made deliberately and never by

default. The mental discipline of explaining type selections improves design and

provides clarity for reviewers. By adopting rigorous practices around data types and

constants, developers protect themselves from a class of subtle and dangerous bugs.

These choices form the arithmetic and logical backbone of well-designed software.

Precision, predictability, and transparency should be the guiding principles.

Data from one type can be made into another type by means of typecasting. Al-

ways make sure any intended type casting is expressed explicitly in the code. A

common source of error is that implicit typecasting takes place without the program-

mer realising it. The remedy is twofold: 1) explicit type casting when it is intended,

accompanied by a comment on why it is being done. This allows others to follow

the reasoning. 2) the compiler and lint program can warn about the rest, and these

warnings should be considered errors until vindicated by either explicit type casting

or corrected if they were true errors. For example, in C the built-in sizeof operator

returns the number of bytes that an item occupies. Assume that a snippet of code

wants to explore the area around a particular string. The following code fails because

of implicit typecasting:

 for (i = -sizeof(strg); i <= sizeof(strg); i++)

 // do something

The intention of the loop was to let the int i run over the interval [-sizeof(strg),

sizeof(strg)] but the result was something quite different because of implicit type

casting.

Variables and Scope

Managing variables effectively is a fundamental discipline in programming. While

variables are the basic units of data storage, their declaration, scope, lifetime, and

mutability have direct implications on software safety, maintainability, and perfor-

mance. A well-structured approach to variable usage supports error-freenesss.

88 A LITTLE BOOK ON ERROR-FREE SOFTWARE

To begin, all variables should be declared as close as possible to their first use.

This practice ensures clarity of intent, confines visibility, and helps the reader cor-

relate variable purpose with its operational context. When declarations are scattered

at the top of functions or files, particularly those spanning dozens or hundreds of

lines, readers are forced to scroll or context-switch, increasing cognitive load and

the potential for misuse.

Every variable should be initialised before use. Uninitialised variables are one of

the most dangerous and common classes of bugs. They lead to unpredictable behav-

iour that can vary between builds, compilers, or memory configurations. The risk is

magnified in systems lacking active memory protection, where a misused pointer

can silently corrupt critical state. Further, there is often a deceptive kindness when

compilers in development mode initialises variables in the background, something

that becomes an unpleasant surprise when optimised away.

Global variables are sometimes necessary, but they must be used sparingly and

always prefixed with g_ to clearly indicate their broader visibility. Globals introduce

tight coupling between modules, make testing and mocking more difficult, and can

easily become unintended side channels for state sharing. Every global should be

accompanied by a comment justifying its scope, whether for performance, synchro-

nisation, or persistent state sharing.

Static variables are preferable when a persistent state is needed across function

invocations but should not be visible outside the compilation unit. Declaring such

variables as static ensures internal linkage, supporting encapsulation. For exam-

ple, in a driver file, a static uint8_t rx_buffer[BUFFER_SIZE]; serves as a

well-contained, reusable resource that cannot be accessed or modified by unrelated

modules.

Local variables should always be preferred unless there is a compelling architec-

tural reason for a broader scope. Use the smallest possible scope for any variable.

For example, loop counters should not leak into the function body, and error flags

used in specific branches should be declared within that branch if the language ver-

sion and style allow it.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 89

The const keyword is essential for safeguarding variables against unintended

mutation. Whenever a variable should remain immutable after initialisation, mark it

as const. This applies to function parameters as well: if a pointer parameter is in-

tended only for input, declaring it as const both informs the reader and enforces the

contract at compile time. For example:

void process_data(const uint8_t *data, size_t length);

Mutability must be an explicit design choice, not a default condition. By applying

const consistently, you gain both documentation and enforcement, reducing the risk

of accidental side effects.

The volatile keyword is also important. It prevents the compiler from applying

optimisations that assume variables do not change unexpectedly. Variables shared

with other threads must be marked as volatile to ensure the compiler does not

cache or reorder accesses. For example:

volatile uint8_t system_flags;

Failure to use volatile correctly can lead to elusive bugs that appear only under

specific timing or load conditions. These are often among the hardest to diagnose,

as stepping through code with a debugger alters timing and can mask the problem.

Pointer variables require special care. Every pointer should be initialised, and if

it does not point to valid memory at declaration, it should be explicitly set to NULL.

This allows safer conditional checks and avoids dereferencing wild or dangling

pointers. Where possible, use restrict qualifiers or clearly document ownership se-

mantics to avoid aliasing and double-free errors.

Variable naming should reinforce semantic intent. The use of prefixes such as p_

for pointers, b_ for booleans, h_ for handles, and g_ for globals creates a visual map

of variable roles. These conventions allow developers to scan function headers or

struct declarations and immediately infer variable purposes without needing to

cross-reference definitions. For instance:

static const uint8_t *p_config_data;

static bool b_ready_to_send;

All variable names must avoid leading underscores, which are reserved for sys-

tem and library use. Names should be no longer than necessary, typically capped at

90 A LITTLE BOOK ON ERROR-FREE SOFTWARE

31 characters for legacy tool compatibility, but long enough to be descriptive. Ac-

ronyms within variable names should be capitalised consistently or avoided if pro-

ject naming policies dictate.

Avoid declaring multiple variables on the same line. While syntactically valid,

such declarations reduce clarity and complicate initialisation tracking. Prefer:

int status_code;

int retry_count;

over:

int status_code, retry_count;

Variables involved in inter-task communication or shared memory regions must be

accompanied by synchronisation logic or documented access policies. Whether

through semaphores, atomic operations, or disable-interrupt blocks, the data flow

must be predictable and race conditions eliminated.

Unused variables should never be left in the code. They should be removed en-

tirely unless they are reserved for future implementation, in which case a comment

such as // reserved for driver extension should justify their presence. Com-

piler warnings should be treated as errors, and the build system should prevent warn-

ings from being ignored.

By applying thoughtful, consistent, and defensively structured variable manage-

ment, developers can prevent a wide range of defects before they reach runtime.

Variables, properly handled, are allies of system clarity and correctness; mishandled,

they are liabilities that increase entropy and degrade system behaviour over time.

Functions and Macros

Functions are the building blocks of structured software. They are more than just

logical units of behaviour, they are fundamental to maintaining clarity, testability,

and determinism. Poor function design contributes to tangled control flows, hard-

to-track bugs, and brittleness under change. Macros, on the other hand, are a pow-

erful but dangerous tool in the C language. Used wisely, they simplify code; used

poorly, they become sources of hidden behaviour, type errors, and maintenance

nightmares.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 91

Each function should serve a single, clearly defined purpose. The function name

should reflect this purpose as an action or verb-noun phrase. For example, init_

scratchpad() clearly conveys that the function performs an initialisation routine

specific to a scratchpad module. Avoid general names like handler() or do_work()

which obscure what the function is actually doing. Clarity in naming is the first line

of documentation and supports both code navigation and automated tool analysis.

Functions should ideally be no longer than 100 lines. This is not a hard limit, but

a strong heuristic. Functions that exceed this length often do too much, hide latent

bugs, and resist unit testing. Break long functions into smaller, more focused sub-

routines, even if these are declared static and used only internally. Doing so sup-

ports readability, testability, and the reuse of logic. For example, a complex startup

routine might be divided into init_gpio(), init_peripherals(), and init_com-

munication_stack(), each encapsulating a subset of responsibilities.

Every function should have a single exit point at the end. This rule is particularly

valuable in environments where resource cleanup, critical section exits, or logging

must occur before the function returns. While early returns might be acceptable in

some coding standards when they improve clarity, single-exit strategies reduce the

chance of unfreed resources, dangling locks, or inconsistent states. A good rule of

thumb is to only allow early returns up until the first external (to the procedure)

resource is used, and that point should be marked with a comment stating “point of

no early return”.

Function parameters should be as minimal and explicit as possible. Prefer passing

parameters by value when the data size is small (e.g., integers or enums), and by

pointer or reference when larger structures or buffers are involved. Use const qual-

ifiers on pointer parameters whenever the function does not modify the data. This

enforces intent and allows compilers to apply further optimisation and static analy-

sis. For example:

void transmit_packet(const uint8_t *p_data, size_t length);

Functions returning success or failure should use an explicitly defined return type,

such as an enum with values like RESULT_OK and RESULT_FAIL. Avoid using raw

92 A LITTLE BOOK ON ERROR-FREE SOFTWARE

integers or mixing magic return codes. Clearly define what each return code means

and document it in the function’s header comment.

Every function should be documented using a consistent format, preferably one

that supports automated extraction such as Doxygen. A proper comment block

should include a description, parameter list, return value, side effects, and any usage

restrictions. This is especially important in public APIs, but private functions benefit

as well.

Avoid using functions with implicit side effects unless clearly justified. For ex-

ample, read_sensor() should not also reset error flags or clear a buffer unless this

behaviour is documented and expected. Functions with observable side effects

should be carefully named to suggest their impact. Predictable behaviour is more

valuable than cleverness in function implementation.

Macros should be used with great restraint. They do not perform type checking,

are evaluated through textual substitution, and can introduce subtle bugs when im-

properly defined. If a macro is necessary, always wrap parameters and bodies in

parentheses to avoid precedence issues:

#define SQUARE(x) ((x) * (x))

Never write a macro with a side-effect-prone argument. For example, SQUARE(x++)

expands to ((x++) * (x++)), which increments x twice with undefined order. These

bugs are hard to diagnose and often only appear under specific timing or compiler

configurations.

Function-like macros should almost always be replaced with static inline

functions. These provide the same inlining benefit while also offering full type

safety and scoping. For example:

static inline uint16_t square(uint16_t x) {

 return x * x;

}

Use macros primarily for compile-time constants and conditional compilation, not

for behaviour. Constants should be defined with #define or better, as const varia-

bles when appropriate. For example:

#define MAX_BUFFER_SIZE 256

A LITTLE BOOK ON ERROR-FREE SOFTWARE 93

static const uint8_t retry_limit = 3;

In conditional compilation, clearly comment the purpose of each condition. Avoid

nesting #ifdef blocks deeply, and always provide a fallback or default case. For

example:

#ifdef USE_EXTERNAL_CLOCK

configure_external_clock();

#else

configure_internal_clock();

#endif // USE_EXTERNAL_CLOCK

Macros that redefine control flow (e.g., #define forever for(;;)) should be

avoided entirely. They mislead readers, hide true syntax, and create barriers for new

developers. Code that appears clever at first glance often becomes unmaintainable.

Variadic macros (those accepting ...) should only be used when interfacing with

logging or diagnostic systems and never for business logic. These macros are diffi-

cult to parse, cannot be easily validated by static analysis, and tend to introduce side-

channel complexity.

Functions and macros form the interface and behaviour contract of your software.

Their design should favour clarity, predictability, and decomposability. The careful

use of inline functions, well-documented interfaces, and type-safe constructs al-

lows programmers to code with speed and confidence. In contrast, lazy macro usage

and unclear control flow create fertile ground for technical debt and latent bugs.

Above all, good function and macro design is not about saving keystrokes. It is

about encoding and preserving intent so that the system’s behaviour is stable, dis-

coverable, and testable not just today, but for the lifetime of the product.

Control Flow Structures

Control flow is the skeleton of software behaviour. In systems where timing and

predictability matter more than elegance, control structures must be both deliberate

and auditable. Ambiguity, inconsistency, or excessive cleverness in control flow

leads to software that is fragile, difficult to test, and dangerous to modify. Accord-

ingly, best practices in control flow design prioritise simplicity, transparency, and

robustness.

94 A LITTLE BOOK ON ERROR-FREE SOFTWARE

The if-else if-else construct remains the most fundamental and readable path-

selecting construct. Its structure should always be reinforced with explicit braces for

each clause, regardless of line count. This removes ambiguity, prevents bugs intro-

duced by unintentional dangling clauses, and supports better formatting and viewing

in diff tools (fc in MS Windows) and code reviews. Braces also signal code bound-

aries clearly, especially when editing or extending logic blocks. The style:

if (condition) {

 // action

} else if (other_condition) {

 // other action

} else {

 // fallback

}

should be used consistently. Ending a chain with a final else block is required, even

if the default path only logs an error or calls an assertion. This practice future-proofs

the code against undefined branches and highlights developer intent.

Avoid nesting more than three levels of if statements. Deep nesting makes code

harder to follow and obscures logical relationships. When nesting is unavoidable,

consider breaking the logic into helper functions or restructuring the flow to short-

circuit early. For instance:

if (!valid_input(data)) {

 return ERROR_INVALID;

}

if (!resource_ready()) {

 return ERROR_BUSY;

}

return process_data(data);

This flattened structure improves readability, testability, and logical traceability.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 95

Switch statements should always include a default case. Omitting default in-

vites silent failure when inputs fall outside expected ranges, particularly when deal-

ing with enums or protocol message types. Even if the default case does nothing

or only logs an error, its presence documents completeness. For example:

switch (command) {

 case CMD_START:

 start();

 break;

 case CMD_STOP:

 stop();

 break;

 default:

 log_warning("Unknown command: %d", command);

 break;

}

Case labels should be aligned vertically and terminated with break unless fall-

through is intentional and clearly marked with a comment such as // fall-

through. Accidental fall-through is a notorious bug source, and compilers can be

configured to warn on missing break statements if annotated properly.

Loop constructs such as for, while, and do-while should be used with care and

consistency. Loop counters should be declared within the loop where possible and

have clearly bounded ranges. Magic numbers must not be used for limits; instead,

define named constants or use the size of relevant arrays or buffers. For example:

for (size_t i = 0; i < NUM_SENSORS; i++) {

 read_sensor(i);

}

Avoid modifying loop control variables within the loop body. This practice leads

to unpredictable flow and makes formal verification and static analysis more diffi-

cult. If the loop termination logic is complex, document it with a comment or use

clearer constructs such as break and continue only when justified and documented.

96 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Infinite loops should be written as for (;;) and never as while (1). The latter

can be mistaken for a conditional check or a typo. Using for (;;) is a clear signal

to both the compiler and the reader that the loop is intentionally unbounded. When

infinite loops are used in firmware tasks or main routines, ensure there is a docu-

mented mechanism for escape or reset under fault conditions.

Avoid goto under almost all circumstances. While C permits its use, and it can

simplify certain cleanup patterns, it also undermines structured flow and introduces

hard-to-follow code paths. If goto is used for error unwinding in deeply nested logic,

all labels should be clearly named, such as cleanup_resources: or

exit_with_error:, and not placed arbitrarily. An example:

if (!init_subsystem()) {

 goto exit_with_error;

}

// ...

exit_with_error:

 shutdown_all();

 return ERROR_INIT_FAIL;

This limited use is acceptable only if accompanied by detailed commentary and

limited to forward jumps within the same function.

Avoid using continue unless absolutely necessary. Its use often breaks the linear

reading flow of loops and skips over valuable instrumentation such as logging or

counters. Where used, it should be accompanied by a comment explaining the early

skip condition.

Boolean expressions in control statements should be self-explanatory. Avoid as-

signments in conditions:

if ((status = read_sensor()) == SENSOR_OK) // wrong

This may be legal C, but it is confusing. Prefer separating assignment from evalua-

tion:

status = read_sensor();

if (status == SENSOR_OK)

A LITTLE BOOK ON ERROR-FREE SOFTWARE 97

Place constants on the left side of equality tests to prevent assignment mistakes from

compiling silently:

if (MAX_RETRIES == retry_count) { ... }

If = is accidentally typed instead of ==, the compiler will flag an error, reducing one

of the most persistent logic bugs in C programming.

When using while loops, ensure they cannot silently degenerate into infinite

loops unless that is the explicit goal. Where appropriate, insert timeouts, state

checks, or watchdog resets. For example:

while (!data_ready() && retry-- > 0) {

 delay_ms(10);

}

Such patterns make loop behaviour deterministic and traceable, essential quali-

ties in real-time or safety-critical firmware.

In conclusion, control flow should be structured to be not only correct but also

readable, predictable, and maintainable. These structures underpin how the system

behaves, reacts to inputs, and recovers from faults. The more deliberate and trans-

parent they are, the more confidence we can place in the system’s operation under

every conceivable condition.

Interrupts and Multitasking

This section addresses risks particular to real-time programming. Interrupt Service

Routines (ISRs) and real-time task management should be engineered with great

precision. Improper design or careless implementation in these domains can result

in unpredictable system behaviour, data corruption, or unresponsive applications.

This section outlines detailed guidelines for handling interrupts and multitasking in

a manner that promotes safety, determinism, and maintainability.

All ISRs should be written with minimal latency and determinism in mind. An

ISR should do as little work as possible, ideally limited to acknowledging the inter-

rupt source, capturing time-critical state, and setting flags or buffering data for later

processing in a lower-priority context. The rationale is twofold: long ISRs block

other interrupts from executing (depending on the interrupt controller’s design), and

98 A LITTLE BOOK ON ERROR-FREE SOFTWARE

lengthy ISR logic increases worst-case response times for the entire system.

ISRs should be declared static to restrict their visibility to the local translation

unit. They should also be explicitly marked with compiler attributes that designate

their purpose, such as __attribute__((interrupt)) for GCC-based systems.

This informs both the compiler and the reader that the function has special linkage

and calling conventions. For example:

volatile uint8_t data_ready_flag;

Accesses to shared variables should be performed atomically. This means reading

or writing data in units that match the processor’s word size or using atomic opera-

tions if available. Multi-byte data structures should be protected with critical sec-

tions such as blocks where interrupts are temporarily disabled or synchronisation

primitives like mutexes in a real-time environment.

For multitasking systems, threads should be carefully prioritised and scheduled

with predictable timing in mind. Task priorities must reflect system-level criticality.

For instance, a watchdog refresh or motor control task must run at higher priority

than a user interface updater. Improper priority assignments lead to starvation, jitter,

or missed deadlines.

Each task should have a clearly defined role, lifecycle, and termination condition.

Threads should not run forever unless they are true background tasks with well-

scoped responsibilities. Thread stacks must be sized conservatively and checked

during testing to ensure that no overflow occurs, almost regardless of what a user

does. Many debuggers provide stack watermarking or usage statistics. Use them to

confirm runtime safety margins.

Avoid dynamic memory allocation inside ISRs or real-time tasks. Memory allo-

cation functions (malloc, calloc, free) are typically non-reentrant, unbounded in

execution time, and prone to fragmentation. Use statically allocated memory pools

or ring buffers instead. Any dynamic structures should be preallocated at system

startup and reused via managed pools.

Synchronisation between tasks and ISRs must be deliberate. Real-time operating

systems often provide mechanisms like semaphores, event flags, and message

queues. These primitives allow ISRs to signal work to tasks without busy-waiting

A LITTLE BOOK ON ERROR-FREE SOFTWARE 99

or polling. For example, an ISR might use xSemaphoreGiveFromISR() to notify a

task that new data has arrived. The task, blocked on xSemaphoreTake(), then wakes

up, processes the data, and returns to sleep.

Watchdog timers should be integrated with the task model. Every long-running

thread should periodically notify the watchdog timer subsystem that it is alive. This

allows the system to reset automatically if a task hangs, a resource deadlocks, or an

infinite loop occurs. Ensure the watchdog kick is performed only after all safety

conditions are met, not merely on entry to the task.

To defend against stack overflows, make use of memory protection units (MPUs)

if available. Configure separate stacks for ISRs and tasks, and instrument the start-

up code to detect stack violations. Avoid recursion unless depth can be bounded and

justified. Recursive calls consume stack unpredictably and are difficult to test ex-

haustively.

Interrupt nesting should be handled carefully. Some microcontrollers allow

higher-priority interrupts to preempt lower ones. While this increases responsive-

ness, it also complicates system timing and resource usage. Always document which

interrupts are enabled at which priority levels, and avoid deep nesting unless latency

constraints require it.

Unused interrupts should not be left unhandled. Instead, install a default ISR that

logs the event, disables the offending source, or performs a safe system reset. This

practice prevents hangs or faults from unassigned interrupt vectors, which can occur

due to misconfiguration or peripheral start-up glitches, something rather frequent in

Philips PTS systems.

Finally, all interrupt and multitasking behaviour should be documented in both

code and architecture diagrams. Specify which resources are accessed in each ISR,

which tasks respond to which signals, and what the expected timing is for each event

type. This documentation becomes essential during certification, regression testing,

and field servicing.

The challenge of asynchronous behaviour is central to complex system design.

Interrupts and multitasking are powerful and necessary tools, but risk-free only

100 A LITTLE BOOK ON ERROR-FREE SOFTWARE

when used with precision and a good understanding of the system’s temporal con-

straints. Mastery of these elements distinguishes stable systems from those that are

flaky, intermittent, or dangerously unpredictable.

Modularity and File Structure

Modular design is one of the hallmarks of robust software architectures. Without

clear boundaries between components, even well-written code becomes fragile and

difficult to evolve. File structure, naming conventions, and dependency control all

contribute to a system’s long-term maintainability, scalability, and testability.

At its core, a module should encapsulate a single concept or abstraction. Each

module should reside in its own pair of files: a header (.h) and a source (.c). These

files should share a base name. This simple convention helps tools, IDEs, and hu-

mans navigate large codebases with ease.

Header files define the module’s public interface. They should contain only what

is necessary for other modules to interact with it: typedefs, enums, macro definitions,

function declarations, and documentation comments. The implementation details,

such as private helper functions, static variables, and internal logic, must remain in

the .c file. This distinction ensures encapsulation, a cornerstone of software engi-

neering. By exposing only the interface and hiding the implementation, changes to

internal logic do not ripple through dependent modules.

All header files should begin with guards using the #ifndef/#define/#endif

pattern or the more modern #pragma once where supported. The macro name in

traditional guards should be unique and consistent, often constructed from the file

path or module name in all caps. These guards prevent multiple inclusion and avoid

mysterious compile errors caused by double declarations or recursive header de-

pendencies.

The first include in every .c file should be the module’s own header. This practice

enforces interface validation. If the header and source become desynchronised, say

if a function is declared in the header but renamed in the source, the compiler will

catch the mismatch immediately. After the self-include, standard library headers

A LITTLE BOOK ON ERROR-FREE SOFTWARE 101

come next, followed by third-party or project-wide includes, all grouped and sepa-

rated by blank lines.

Each source file should follow a consistent internal structure. A recommended

layout includes:

1. File-level comment block describing the module’s purpose

2. #include directives

3. Macro definitions

4. typedefs and enums

5. Static (private) global variables

6. Forward declarations of static functions

7. Public function implementations

8. Static function implementations

This disciplined order helps readers scan the file efficiently and maintain predictable

structures across modules. When every file follows the same format, teams can del-

egate, audit, and refactor with greater confidence. Avoid defining variables in header

files. The use of extern declarations in headers is permissible, but only when the

symbol is truly shared across multiple modules. And even then, use them with re-

straint. Define the variable in a single .c file, and include a detailed comment ex-

plaining why a global scope is justified. Modules should depend only on what they

need. Avoid gratuitous inclusions or circular dependencies between headers. If a

module depends on another, include only the header file and never access internal

implementation symbols. This supports clean dependency graphs and enables mod-

ular compilation, testing, and reuse.

For shared interfaces, such as buffer routines used by multiple sub-systems, in-

troduce interface abstractions. These may take the form of function pointer struc-

tures, typedefed callbacks, or abstracted init/config/data-transfer routines. This de-

coupling supports unit testing and enables mocks to replace real user interaction

during simulation.

Public type names, constants, and function names should always be prefixed with

the module name. This avoids name collisions in large projects and reinforces own-

ership. Modularity also applies to configuration. Avoid scattering #define con-

stants throughout source files. Instead, centralise configuration into a dedicated

102 A LITTLE BOOK ON ERROR-FREE SOFTWARE

header that groups all tuneable parameters, timeouts, sizes, and hardware-specific

mappings. These constants should also be named clearly and grouped by function.

Keep module files focused and atomic. If a single module becomes even slightly

bloated, it should be decomposed into sub-modules. The top-level module can ag-

gregate these, offering a unified API while preserving a separation of concerns un-

derneath. Each module should be independently testable. This is easier when mod-

ules avoid tight coupling, global state, or architecture dependencies. Use depend-

ency injection, interfaces, or layered design to isolate logic from architecture. Doing

so enables the use of host-based unit testing frameworks and simulators.

Document each module clearly at the file level. The header file should include a

comment block describing the purpose, usage, assumptions, and any dependencies.

Public functions should be documented inline using a consistent format to allow

automated documentation generation and serve future maintainers.

In larger projects, define module ownership and code stewardship policies. Who

reviews changes to this module? Where are the test plans? What are the architectural

dependencies? For example, how many browsers should the JavaScript code run in?

These meta-rules ensure that the knowledge embedded in your file structure is pre-

served and transferred as teams evolve.

In summary, a strong modular structure is the backbone of embedded software

quality. It enables abstraction, isolates risk, clarifies design, and supports maintain-

able growth. While naming, structure, and encapsulation may seem mundane com-

pared to algorithms or driver logic, they provide the navigational and cognitive scaf-

folding that every programmer depends on, whether they realise it or not. This con-

cludes the guidelines as they were once transformed from proprietary languages at

Philips Data Systems to a generic C formulation, which in turn is rather easily

mapped onto any imperative language today. The hope is that these guidelines will

help foster more 0.1X programmers (see Chapter 2) that the world so desperately

needs today. And while explicitly directed towards programmers, there are many

hackers that clearly need these PTS guidelines as well. In their circles, the 10X coder

is unfortunately much more of a hero than the 0.1X one.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 103

5. The Elephant in the Room

Object‐oriented programming (OOP) began as a brilliant and intuitive model for

designing software by mirroring real-world entities. The earliest OOP languages,

such as Simula in the 1960s, were explicitly created for simulation programs that

needed to model complex real-world processes with interacting objects (Dahl and

Nygaard, 1966). The idea was that software objects could behave like physical or

conceptual entities. They would encapsulate state and expose behaviours, allowing

programmers to reason about systems in terms of “actors” that send messages to

each other (Kay, 1993). This was a profound shift from the earlier packaging para-

digm of procedural imperative programming, which, while effective for many tasks,

did not inherently lend itself to modelling rich interactions between multiple inde-

pendent components. It was still imperative as opposed to other coding paradigms

like functional and logic programming. If you ever find a claim that OOP is another

code paradigm, stay sceptical. It is another way of packaging imperative code; no

more, no less.

In the decades that followed, OOP was presented as a way to manage complexity

by bundling data with the code that operates on it (encapsulation) and by allowing

classification hierarchies through inheritance, so that more specific concepts could

be built upon general ones (Gamma et al., 1994). Especially in domains like graph-

ical user interfaces (GUIs) and simulations of real-world systems, this approach felt

natural and powerful. A window on the screen could be represented as a window

object, containing buttons as objects, all with properties and methods corresponding

to their real-world or conceptual counterparts. Early proponents of OOP described

it as a way to make code more reusable and modular, enabling a new level of ab-

straction that could tame large software projects. By the 1990s, OOP had moved

from a niche concept to the de facto standard in software engineering orthodoxy,

often touted as the silver bullet for the software crisis of complexity (Brooks, 1987)

and the only, right way of writing programs. Indoctrination started early, students

were taught to think in terms of classes and objects as the right way to program, and

major languages like C++ and Java made object-oriented design their core organis-

ing principle. In documented cases, not following the doctrine made students fail

104 A LITTLE BOOK ON ERROR-FREE SOFTWARE

their exams, even in project courses with no mandated programming language.

However, as with many grand ideas in software, the success of OOP also bred an

orthodoxy. A dogmatic mindset that OOP is the only proper way to design software,

regardless of context. What began as a set of useful concepts hardened into an almost

religious stance: everything in a system should be an object, all code should reside

in classes, and alternative approaches were often dismissed as inferior, misguided

or outdated. This book argues that OOP’s rise to dominance, while historically jus-

tified by its early benefits, has led to an overreach. The object-oriented packaging

became so deeply ingrained that it started to ignore or even suppress other ap-

proaches that in many situations are more appropriate or straightforward. Instead of

being one tool among many, OOP was treated by many practitioners and educators

as an end in itself, the fundamental pillar of “good” software design. This orthodoxy

can be seen in how programming guidelines and textbooks from the late 1990s

through the 2010s relentlessly emphasised OOP design patterns, class hierarchies,

and “pure” object-oriented design principles (Gamma et al., 1994; Martin, 2008).

While these principles have their merits, the dogmatic application of OOP to every

problem domain has revealed significant drawbacks. Ironically, some of the very

goals OOP set out to achieve, such as reducing complexity and improving maintain-

ability, have been undermined by overzealous object-oriented designs that disregard

the strengths of the human mind and better-suited packaging paradigms. Forcing a

carpenter to use screwdrivers for both nails and screws does not enhance speed or

quality. It slows the process and weakens the result. Allowing the occasional use of

a hammer when the task demands it leads to better workmanship with less strain and

also to a superior end product.

One of the clearest manifestations of this OOP overreach is the extreme fragmen-

tation of code that often results from rigid adherence to object-oriented “best prac-

tices.” Under OOP orthodoxy, it became common to decompose systems into doz-

ens or hundreds of tiny classes, each with dozens of trivial methods, in an effort to

achieve maximal encapsulation and single-responsibility components. Influential

texts like Clean Code admonish programmers to write “small methods” and keep

each method focused on a single task, often just a few lines of code (Martin, 2008).

The intention behind such guidance is at first sight understandable. Smaller methods

A LITTLE BOOK ON ERROR-FREE SOFTWARE 105

should be easier to verify and reuse, and a method that does only one thing is less

likely to have unforeseen side effects. However, taken to extremes, this style leads

to codebases where the logic of even simple operations is fragmented across a lab-

yrinthine call graph of many tiny functions. The inherent complexity of software

systems is pushed from the code itself to a combination of code lines and a network

of method calls, making it harder to follow for a human. The natural flow of a pro-

gram, the sequence of steps that accomplish a task, is no longer easily visible in one

place but is instead spread across numerous class files and method definitions. Each

step or subcomponent of an algorithm might reside in its own method, often in a

different class, requiring the reader to jump back and forth through multiple layers

to understand what is happening. The cognitive burden of such fragmentation can

dwarf the benefits of neat subdivisions. Unfortunately, many OOP systems consist

of shallow modules. They present a complex surface of many interconnected pieces

(interfaces), but each piece does very little, so the actual functionality is severely

distributed and hard to grasp in aggregate. In practice, this leads to code that is for-

mally modular (in the sense of many modules), thus passing code reviews, but not

honestly modular in the sense of localisation of concern. Instead of one coherent

module handling a significant piece of functionality, as in classical procedural im-

perative programming, you get many shallow modules that collectively handle the

functionality, but require understanding all of them to see the whole picture.

To illustrate the problem, consider a common scenario influenced by strict OOP

design advice: Suppose we need to implement a routine to process a user’s order in

an e-commerce system: checking the order items, charging the customer’s payment,

and then arranging shipment. In a straightforward procedural style, one might write

a function processOrder(order) that performs these steps in sequence: verify

items in stock, calculate totals, charge payment, then schedule a shipment. The logic

could be written in a clear, top-down manner, essentially narrating the steps as they

occur and as they would be described to anyone asking what the process as a whole

does, i.e. how a human best comprehends it. If each sub-task is complex, it might be

factored into a helper function (e.g., a function chargePayment(details)), but cru-

cially, the structure of the operation is visible in one contiguous block of code. A

programmer reading this code can follow the flow much like reading a story: first,

106 A LITTLE BOOK ON ERROR-FREE SOFTWARE

this happens, then that, and so on.

Now contrast this with an object-oriented approach. One might have an Or-

derProcessor class, which uses a StockVerifier object, a PricingCalculator

object, a PaymentService class hierarchy, and a ShipmentScheduler object. Each

of these might have a method like execute() or, worse, a generic name like pro-

cess() that is called in sequence. The OrderProcessor.process() method might

do nothing but call methods on these collaborators: e.g., verifier.verify(or-

der), calculator.calculateTotal(order), paymentService.charge(order),

shipper.schedule(order), etc. In isolation, each of those calls appears simple

(just one line), and each corresponding class contains a small bit of logic. But to

truly understand the end-to-end process, one must open the StockVerifier class to

see what it does, then the PricingCalculator, and so forth. If each of those in turn

calls further methods (perhaps StockVerifier calls Inventory.check() and

AlertService.notifyIfOutOfStock()), the reader must mentally juggle multiple

classes and methods at once. The simple narrative of verify-calculate-charge-ship is

lost amid indirections. The natural reading flow of the code is disrupted. Instead of

reading one coherent procedure, the poor reader is bounced around the codebase like

a pinball, chasing the thread of execution through numerous narrow methods. This

is code fragmentation, the breaking of what could be a clear narrative into a dozen

pieces scattered across the codebase. Not a problem for the compiler, but for hu-

mans.

Such fragmentation runs counter to the cognitive and perceptual strengths of hu-

man programmers. Humans, by nature, often find it easier to understand a sequence

of events when those events are presented in order, without unnecessary interrup-

tions. Psychological research into program comprehension has shown that program-

mers construct mental models of code that often include a narrative flow or program

model, especially when reading procedural code (Pennington, 1987; Wiedenbeck et

al., 1999). This should not come as a surprise to anyone who learned reading as a

young kid, where text comprehension crucially depended on some kind of narrative

or line of reasoning being built in the reader’s mind. A study by Pennington (1987)

A LITTLE BOOK ON ERROR-FREE SOFTWARE 107

found that experienced programmers reading a piece of code tend to form two men-

tal representations. One of the program’s control flow (the “program model”) and

another of the domain semantics or data flow (the “situational model”). Critically,

for imperative code, forming the program model (what happens first, then next, and

so on) is straightforward because the code’s structure directly reflects execution or-

der. In object-oriented code, especially event-driven or highly decoupled OOP code,

this is harder. The control flow is often implicit, following pointers from object to

object, rather than explicitly laid out. Empirical evidence suggests that novices, in

particular, struggle with understanding OOP control flow. Wiedenbeck et al. (1999)

compared novice comprehension of object-oriented vs. procedural programs and

found that the procedural style led to stronger mental representations of the pro-

gram’s functionality for beginners, whereas the object-oriented style could be more

confusing without proper conceptual scaffolding. The novices reading OOP had dif-

ficulty following the flow because it was distributed among interacting objects

(Wiedenbeck et al., 1999). This indicates that the human mind does not automati-

cally track scattered pieces of a narrative as easily as a single-threaded story.

From a cognitive-load perspective, every time a reader of code has to jump to

another function or class, there is a context switch. The reader must recall what was

happening in the caller, load the callee’s details into mind, and then perhaps jump

back, all the while maintaining the high-level goal of the code. Each such jump in-

curs what cognitive psychologists call extraneous cognitive load, which is mental

effort expended not on the inherent problem, but on the structure used to represent

the problem (Sweller, 1988). In well-written code, we strive to minimise extraneous

cognitive load so that a programmer’s mental energy goes into understanding the

problem being solved, rather than deciphering the code’s tangled organisation.

Overly fragmented OOP code, with numerous tiny methods and classes, adds a

heavy extraneous load. It forces the programmer to keep track of many more names,

more indirections, and more incomplete fragments of logic than would a simpler,

more consolidated representation. As an analogy, consider reading a novel where

each sentence of a paragraph is on a different page. The reader would have to flip

pages constantly to get through a single paragraph’s worth of meaning. That cogni-

tive thrashing is similar to what happens when a developer must click in and out of

108 A LITTLE BOOK ON ERROR-FREE SOFTWARE

dozens of definitions to follow a single execution path. The human working memory

is limited. As already Miller (1956) observed, we can only hold about 7±2 chunks

of information at once. If a piece of code requires you to hold the context of Class

A, B, C, method D, E, and F simultaneously to understand it, you are quickly over-

loading those limits. In contrast, a more linear piece of code, even if longer, can

often be digested in a piecemeal fashion: you understand the first part, then move

on to the next, and so on, without having to remember too many disconnected pieces

at once.

It is important to recognise that this critique of excessive fragmentation is not an

indictment of all uses of small functions or abstraction. It is about balance and con-

text. The OOP orthodoxy often promotes small methods as an inherent good, citing

benefits like reuse and testability. And indeed, small, well-named methods can be

very useful for factorising repeated logic or isolating conceptually distinct sub-tasks,

but so can procedures as well. The problem arises when the drive for small methods

is taken to a dogmatic extreme, divorced from an understanding of human cognitive

needs. There comes a point where breaking a procedure into ten pieces does not

reduce complexity but instead increases it for the reader, because the cost of assim-

ilating the overall logic outweighs the benefit of each piece’s simplicity. This is wit-

nessed by practitioners who have seen “clean” codebases that are theoretically spot-

less in adherence to principles, yet practically nearly impossible to read or modify

due to their sheer decoupling and abstraction. Many OOP designs expose a large set

of numerous classes that collectively provide only a very limited amount of func-

tionality. Such designs force the programmer to learn many class interfaces to

achieve something that might have been done in a single module otherwise. In other

words, the fragmentation taxes the programmer’s ability to quickly understand and

make changes to the code, energy that could have been used in better ways.

The orthodoxy of “everything is an object” also led to sidelining many traditional

programming concepts that were not only perfectly valid but often more suited to

certain tasks. One example is the concept of the finite state machine (FSM). FSMs

are a time-honoured way to model entities that have a finite number of states and

transitions (such as protocols, device controllers, game logic, etc.). In a procedural

packaging, implementing an FSM might involve an explicit state variable and a

A LITTLE BOOK ON ERROR-FREE SOFTWARE 109

switch statement or lookup table for transitions. This approach centralises the logic

of state transitions in one place, which can be very clear for anyone reading the code:

you see all possible states and how you can move between them, often in a few

dozen lines of straightforward code. However, within a strict OOP mindset, an FSM

is often implemented via the state design pattern. One might create separate classes

for each state, each class implementing a common interface (for the actions or tran-

sitions), and use polymorphism to switch behaviour when the state changes (Gamma

et al., 1994). While this is an object-oriented way to model state, it also splinters the

FSM’s logic into multiple pieces (one for each state class). If you want to understand

the whole state machine, you have to open each class and piece together the transi-

tions. The clarity of the single state-transition table is lost. In some cases, the state

pattern is elegant, especially if states have significantly different behaviours or com-

plex internal logic, but in many simple cases, it is overkill. Again, using OOP is not

black or white. The point is that OOP’s insistence on treating the FSM as a set of

objects, rather than allowing a simple tabular or procedural representation, will in

some cases make the code harder to follow. The OOP-indoctrinated programmer

does not have the understanding or experience to make the choice. It is a situation

where the “everything is an object” mentality has arguably made things less clear,

not more. This is not just a hypothetical scenario. Many developers have encoun-

tered code where a simple problem was solved with an unnecessarily elaborate ob-

ject structure when a few loops or conditionals would have sufficed with greater

transparency. In many cases, it is not their own fault. The object design is often

mandated from above, by ill-informed managers and misguided organisational pol-

icies.

Imperative control flow constructs like loops, conditionals, and straightforward

function calls have also been sidelined in favour of an OOP style of indirection and

callbacks. In traditional imperative programming, if you want to perform a series of

operations, you just write them out in order. If you want to repeat something, you

use a loop. If you need to handle two kinds of cases, you use an if/else or switch.

These constructs map directly to how we might describe algorithms in plain lan-

guage: “Do X for every item; if Y is true, do Z; otherwise, do W.” That these three

constructs plus procedure calls suffice for any conceivable program was shown by

110 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Böhm and Jacopini (1966) in what is perhaps the most influential paper of all time

in computer science. Object-oriented design sometimes encourages replacing these

straight-line flows with polymorphic dispatch. For example, rather than a single

function that handles multiple cases via conditionals, one might design a class hier-

archy where each subclass implements a method in a different way. Thus, choosing

the subclass becomes the way to choose the code path (a classic replacement for a

switch case is polymorphism). This of course works, but it also means the logic that

was once clearly visible as branching in one place is now spread out over multiple

class definitions. A reader must know the class hierarchy to know what happens in

each case. Similarly, rather than a simple loop, some OOP frameworks encourage

an “iterator object” pattern, where an object maintains the iteration state and the

client just calls a method like iterator.next() repeatedly, again adding a layer of

abstraction between the human reader and the actual control flow (which is concep-

tually just a loop). Inversion of control frameworks (common in UI toolkits and en-

terprise applications) pushes this to an extreme: the overall flow of the program is

managed by a framework (often object-oriented), and the developer provides many

small object implementations (handlers, listeners, etc.) that the framework will call

at appropriate times. This event-driven and object-heavy approach can make it dif-

ficult to trace the sequence of actions because there is no single place in the code

where the sequence can be seen. It is orchestrated by the framework at runtime via

numerous callbacks. It can be speculated that this architectural style reflects a

broader lack of confidence within the field of computer science and that a remedy

should be to make the field more “advanced” by unnecessarily complicating matters

and obscuring the obvious. The tendency to fragment logic and obscure execution

paths could be interpreted as an attempt to appear more sophisticated by introducing

unnecessary complexity rather than favouring transparency and understanding, per-

haps with a touch of guild thinking. While event-driven design is necessary for in-

teractive programs, a pure OOP implementation can increase indirection. The key

observation is that OOP tends to turn explicit control flow into implicit control flow,

hidden behind object interactions. This implicitness often hampers program com-

prehension. Many studies in software engineering have underscored the importance

of explicitness for maintainability (Ko et al., 2006).

A LITTLE BOOK ON ERROR-FREE SOFTWARE 111

Another area where OOP’s dominance starved out traditional approaches is in

concurrency models. Classic concurrent programming relies on constructs like

threads, locks, semaphores, and message passing between processes (Dijkstra, 1968;

Hoare, 1974). These are lower-level primitives that any programmer dealing with

concurrent systems must understand, regardless of the packaging paradigm. Yet,

there was a period when OOP was so ascendant that curricula and developers tended

to introduce concurrency through an OOP lens. Java, for instance, integrated threads

as objects (Thread class) and provided synchronised methods, essentially an object-

oriented veneer over the concept of a mutex lock. While this in itself is not problem-

atic, many in the OOP camp treated these concurrency primitives as just library fea-

tures, not fundamental concepts, leading to developers who could use a synchro-

nised block but perhaps never learned the broader theory of semaphores or the pit-

falls of shared mutable state. OOP does not inherently solve concurrency issues; if

anything, shared-object concurrency can be more error-prone due to unexpected ali-

asing and side effects. Models that move away from “shared state” concurrency,

such as the Actor model (Hewitt, 1973) used in Erlang or the communicating se-

quential processes (CSP) model (Hoare, 1978) that influenced languages like Go,

deliberately eschew shared object state in favour of message-passing or isolated pro-

cesses. Yet OOP orthodoxy, with its emphasis on objects everywhere, often meant

that these models were not taught or utilised as widely as they could have been.

Instead, large object-oriented systems often attempted to handle concurrency by lay-

ering object frameworks on top of threads (e.g., Java’s Enterprise Beans had com-

plex object lifecycles partly to deal with threading and distribution, rather than en-

couraging simpler concurrency models). The result was frequently enormous com-

plexity. Reentrant code had to be carefully written in objects, with numerous design

patterns (like double-checked locking, thread-safe singletons, etc.) to cope. If one

steps back, many of these problems were the result of trying to stay within an object-

oriented worldview while dealing with inherently non-object-oriented problems

(like synchronizing access to a shared resource). In simpler terms, a developer thor-

oughly indoctrinated in OOP might think of first solving a concurrency problem by

creating an “object manager” or adding more classes, rather than considering time-

honoured, simpler solutions like a semaphore or a producer-consumer queue. Thus,

important concepts like semaphores, monitors, or even just the idea of an explicit

112 A LITTLE BOOK ON ERROR-FREE SOFTWARE

state flag, were sometimes dismissed as “low-level” or archaic, when in fact they

were the proper tools for certain situations.

This dogma of everything-as-object reached a peak where even data that had no

behaviour was wrapped in objects, and actions that did not naturally belong to any

object were forced into class methods. Yegge (2006) ridiculed this in Execution in

the Kingdom of Nouns. In his satirical essay, he describes the Kingdom of Javaland

where no one is allowed to use verbs; instead, all actions must be encapsulated inside

noun objects (Yegge, 2006). If a task like “taking out the garbage” were to be pro-

grammed in such a kingdom, one could not simply write a procedure takeOutGar-

bage(). Instead, one would have to create a GarbageDisposalManager class, in-

stantiate a GarbageBag object, then call a method like garbageDisposal-

Manager.execute(), which internally calls various other noun-objects like Gar-

bageTransporter or DestinationLocatorsteve-yegge.blogspot.comsteve-

yegge.blogspot.com. The result is an absurdly roundabout way of doing something

conceptually simple, all because of a bias that favours nouns (objects) and disfavours

verbs (functions). Yegge’s critique highlights a real cognitive point: humans think

about actions and processes all the time, not just about static things. By overly ob-

jectifying every aspect of a program, we risk losing the clarity of describing what

the program does. It is as if one were required to describe a recipe not as a sequence

of steps (verbs), but as a collection of kitchen object interactions (nouns). The cog-

nitive load on the person trying to understand the recipe would skyrocket, and the

elegance of a straightforward sequence would vanish. In programming terms, some-

times a function is just the most direct and clear way to represent a piece of logic.

There is no benefit in turning it into an object with a single execute() method. As

Yegge notes, other programming paradigms and languages freely mix nouns and

verbs. They let you have first-class functions, for instance, which are just actions

that can be passed around. But OOP frowns on free functions or procedural se-

quences as if they were design failures, rather than simply another tool in the

toolbox.

Historically, the everything-is-an-object mantra can be traced back to the influ-

ence of languages like Smalltalk, where indeed every value is an object and even

control structures are messages sent to objects, and to certain interpretations of what

A LITTLE BOOK ON ERROR-FREE SOFTWARE 113

Kay (the grandfather of OOP) intended. It is ironic, though, that Kay himself la-

mented the narrow interpretation of OOP in mainstream languages. He said (1993)

that he did not have in mind the static, class-heavy OOP of C++/Java when he coined

the term object-oriented programming. His vision was more about message-passing,

dynamic objects that simulate independent agents. In practice, however, the popu-

larity of Java and C++ in the 1990s cemented a view of OOP that revolved around

class hierarchies, rigid type systems, and deep taxonomies of object types for eve-

rything. This had the beneficial effect of standardising certain good practices (like

encapsulating data), but it also had a stifling effect on the use of plain data structures

and procedures where they make sense. In some circles, writing code in a non-OOP

style came to be seen as a kind of heresy or at least a mark of poor design and lack

of skills. The author has lost consulting assignments when suggesting that an object-

oriented approach was not the best for a certain task. Even when other paradigms

are clearly a better fit, OOP designs are contrived to solve the problem. We can see

this in the way some developers would cast purely functional problems (like math-

ematical computations or data transformations) into an object form. For instance,

creating classes to represent every function or using objects to simulate higher-order

functions, instead of simply using actual functions or more appropriate constructs.

This dogmatic approach has led to absurd outcomes, where straightforward tasks

became bloated with boilerplate code. A striking example often cited in discussions

is the enterprise Java era, where something simple like reading a configuration might

involve creating a ConfigReaderFactory, a ConfigReader interface, multiple imple-

mentation classes, etc. when a five-line code snippet would have done the job. The

complexity was justified in the name of flexibility and extensibility. These are im-

portant principles but applied dogmatically and aimlessly when no such flexibility

was even needed.

Orthodoxy

The human cost of this orthodoxy is evident in large codebases that become opaque

to those who must work with them. It is not uncommon to hear experienced pro-

grammers complain that in some enterprise environments, to make sense of the code

you have to navigate an object jungle, where you are handed not just the banana you

114 A LITTLE BOOK ON ERROR-FREE SOFTWARE

asked for, but the gorilla holding the banana and the entire jungle with it, a vivid

metaphor given by Armstrong, the creator of Erlang at Ericsson Telecom (Siebel,

2009, p.220). This captures a key issue: OOP’s fondness for interrelated objects can

make it very hard to isolate a piece of code. To use or understand one class, you

often need to understand its collaborators, and those collaborators’ collaborators,

and so on. Soon, you have the whole jungle in view. In contrast, he advocated the

use of referentially transparent code (as in functional programming), where each

piece is self-contained. You give it inputs, it gives you outputs, and there is no hid-

den state or context (Siebel, 2009). Such code is indeed easier to reuse and reason

about, because you do not need the gorilla or the jungle, just the banana. The per-

spective comes from the world of Erlang, a functional, actor-model language de-

signed for concurrency and reliability, which took almost the opposite approach to

complexity. Keep functions small and side-effect-free and processes isolated. It suc-

ceeded in domains such as telecom where complexity had to be managed rigorously.

It is telling that Armstrong, coming from outside the mainstream OOP camp, ob-

served what many within the OOP camp had come to accept as normal: the heavy

coupling and context in OOP systems that impede understanding and reuse, thus

being contra-productive.

Not all prominent software thinkers fell into the orthodoxy. There have always

been voices in industry and academia cautioning against over-reliance on any one

paradigm. Brooks warned that there is no single development, in either technology

or management technique, which by itself promises even one order-of-magnitude

improvement in productivity (Brooks, 1987, p.10). OOP was often touted as a silver

bullet in the late 20th century, yet by Brooks’ reasoning it would not be. Indeed,

while OOP improved how we model certain problems, it did not eliminate the es-

sential complexity of software. By the mid-2000s, we began to see a more pragmatic

shift: the rise of multi-paradigm programming. Languages like Python, for example,

treat OOP as optional. One can write procedural scripts or one can define classes, or

mix both as needed. C++ (which was originally described by its creator as a multi-

paradigm language) allows object-oriented programming but also supports generic

programming, template metaprogramming, and plain C-style procedural program-

A LITTLE BOOK ON ERROR-FREE SOFTWARE 115

ming (Stroustrup, 1997). The emergence of functional programming in the main-

stream, with the incorporation of functional features in Java and C#, provided alter-

natives and reminded developers that we can combine paradigms. We do not have

to be purists. Purism is the enemy of productivity when it blinds us to the merits of

other approaches. Unfortunately, in many corporate and educational settings, OOP

had so much mindshare that it effectively became a purist dogma. But gradually,

experience showed that a more eclectic approach yields better results.

Cognitively, a more flexible paradigm that lets the problem dictate the solution

style is inherently more “human-oriented.” Human programmers vary in how they

best conceptualise a problem. For some problems, thinking in terms of objects with

data and associated behaviours is very natural (especially if the problem domain

itself is about entities interacting, like a simulation or a GUI). For other problems, it

is easier to think in terms of procedures or transformations (for instance, parsing and

processing a data file might be easiest as a pipeline of functions). A rigid insistence

on OOP in the latter case would be forcing a round peg into a square hole. The result

will likely be code that is both inefficient (because it does not use the most direct

solution) and harder for humans to understand (because the form does not match the

way we naturally think about that problem). The call for a more human-oriented

programming paradigm is essentially a call for open-mindedness and pluralism in

software design. It is revolutionary in spirit because it urges a revolt against the one-

size-fits-all mentality.

What might this flexible, human-centric approach look like? First, it involves

using OOP where it fits naturally but not elsewhere. If we are designing a user in-

terface toolkit, it makes perfect sense to have objects like Window, Button, TextBox,

each encapsulating state (properties like size, colour, text content) and behaviour

(methods like draw(), onClick() handlers). The interactions of these objects mirror

what happens on screen. OOP shines here by making it easy to handle many similar

entities and polymorphically treat them. For example, a framework can hold a list

of UIComponent objects and call draw() on each without caring if it is a Button or

a Checkbox. This is polymorphism used in its sweet spot. Similarly, if modelling an

employee management system, having Employee objects, Manager as a subclass,

116 A LITTLE BOOK ON ERROR-FREE SOFTWARE

etc., might be reasonable. Although one should always watch out for over-compli-

cating simple data records with trivial methods. OOP is not at all a bad idea, it is just

not a Swiss army pocket knife.

Second, a human-oriented approach would resurrect and integrate those “side-

lined” traditional concepts alongside OOP. Finite state machines, for instance, could

be elevated as a first-class design tool: one might incorporate a small domain-spe-

cific language or use a state table within an otherwise object-oriented program when

it makes the behaviour clearer. There is no shame in a good old switch statement

driving a piece of logic if it is actually the simplest representation. In fact, often a

well-structured switch (or pattern matching in modern languages) can be far more

legible than an intricate object hierarchy, precisely because it is explicit. The same

goes for concurrency: instead of burying concurrency control inside objects, a hu-

man-centric approach might expose it clearly, e.g. using well-named locks or higher-

level concurrency libraries that make the flow obvious (like a Parallel.ForEach

in C# which let you see the pipeline of data). The everything-is-an-object school

might frown at these as being impure, but a pragmatic approach cares that the re-

sulting code is safer, clearer, and more maintainable by humans. We should use plain

threads and semaphores when appropriate, or actor frameworks when those are a

better abstraction, rather than trying to stay within a single unsuitable paradigm.

Third, a human-oriented paradigm encourages readability and writeability as top

concerns, aligning with what Knuth advocated as literate programming (Knuth,

1992). He suggested that code should be written as if it is an essay intended to be

read by humans, explaining the logic in a flowing manner. This philosophy is not

inherently tied to any one paradigm, but it pushes back on techniques that make code

harder to read linearly. If we adhere to the literate programming’s spirit, we might

choose to write a section of code in an imperative style because it reads like a story,

and that is more important than rigidly applying an object abstraction. If not allowed

to for policy reasons, we might at least include comments and documentation that

highlight the overall flow that OOP obscured. In a sense, a literate or human-oriented

program might mix paradigms in the same source file. It could start with some im-

perative overview, then delegate to an object-oriented module where that makes

A LITTLE BOOK ON ERROR-FREE SOFTWARE 117

sense, and perhaps even use a functional style for a specific calculation, all com-

mented and explained so that a reader is never lost. This stands in contrast to a dog-

matic OOP stance where every piece must be a class, and anyone reading has to

navigate through the class graph.

Furthermore, education and community norms need to evolve. New programmers

should be taught multiple ways to approach a problem, not just object-first-or-not-

at-all. There is evidence that starting with a functional or simple procedural approach

can actually build a better understanding of algorithmic thinking for novices, before

adding the complexity of objects (Wiedenbeck et al., 1999). If object-oriented de-

sign is introduced as one paradigm among several, with clear explanations of when

it is useful and when it might be overkill, future developers will be less likely to

become susceptible to OOP dogma. They will more naturally reach for a simple loop

instead of an iterator object when the loop is clearer, or write a straightforward func-

tion instead of an entire class when one will do. They will see that sometimes less

abstraction is more clarity, a principle that can be as important as any design pattern

in achieving maintainable code.

Language designers also have a role. The rigidity of OOP in practice was partly

enabled by languages that enforced it. Java, for example, requires every piece of

code to be inside a class, even the main method. This makes writing a quick script

or simple procedural program awkward in Java. Everything has to be wrapped in the

ceremony of a class. Python, on the other hand, has always allowed to write code in

a script without any class if classes are not needed.7 Such s shift removes some of

the pressure to over-OO-ify a solution. Additionally, multi-paradigm languages like

C++ allow programmers to choose different approaches in different parts of the pro-

gram. Even purely object-oriented languages like Ruby have culturally embraced a

more flexible stance: Rubyists often write scripting code without classes, or they use

mix-ins and dynamic typing to achieve things that in Java would require a hierarchy.

The takeaway for language design is that supporting multiple paradigms and not

forcing the programmer’s hand can lead to more human-friendly code, at least if

combined with sensible organisational policies. It empowers the programmer to use

7 However, it is not typed in the usual sense, creating other problems that are not the topic of this text.

118 A LITTLE BOOK ON ERROR-FREE SOFTWARE

the right level of abstraction for each task. Being a craft, the programmer should be

allowed to use the tools that fit the task at hand.

From a theoretical perspective, one might worry that mixing paradigms leads to

chaos. But in practice, many big software systems are already multi-paradigm. The

Unix operating system, for instance, is often lauded for its design philosophy (Ray-

mond, 2001): “Write programs that do one thing and do it well; write programs to

work together.” This is not object-oriented thinking; it is a pipeline (imperative) and

composition approach. Yet, Unix is incredibly successful and forms the backbone

of modern computing. On the other hand, some software is beautifully designed with

objects. Consider GUI frameworks or well-crafted game engines that use OOP pat-

terns appropriately for entities and game objects. The best programmers borrow

techniques from everywhere. A database engine might use FSMs and locks inter-

nally (procedural and low-level), but present an object-oriented API to user applica-

tions. A web application might use a functional style for request handling but object-

oriented modelling for the domain entities. The orthodoxy that one paradigm must

rule all others is simply not born out of the best practices seen in successful systems.

Instead, successful systems sometimes quietly bypass OOP dogma when it is bene-

ficial, by intent or by happenstance. By openly acknowledging this and encouraging

it, we can do better at a conscious level rather than as an underground practice.

Let us also address efficiency and performance: OOP orthodoxy not only affects

readability, but it can also impact performance. Objects and dynamic dispatch have

some overhead, and while usually minor, the insistence on many layers can add up

(Sweeney, 2006). Many developers indirectly favour a more data-oriented design,

where data is laid out in arrays or structures for efficiency and processed with tight

loops (which is a procedural/functional style) rather than as scattered objects. The

cognitive justification we have focused on is mirrored by a machine-level justifica-

tion: sometimes it really is more efficient to not use an object for everything. When

you have thousands or millions of entities (think particles in a physics simulation),

an array of structs will be much simpler and faster than a hierarchy of tiny objects.

OOP orthodoxy tended to dismiss such concerns as something that would be solved

by faster hardware or just premature optimisation to worry about. But in truth, good

architecture is about balancing all these factors: clarity for humans, and efficiency

A LITTLE BOOK ON ERROR-FREE SOFTWARE 119

for machines. A flexible paradigm choice helps because you might use a simple

array for those particles (imperative style) even if the rest of your engine is nicely

object-oriented for higher-level entities. There is no betrayal in that; it is using the

right tool for the job.

Resolution

The overarching argument is that programming should be centred on human cogni-

tion and the problem at hand, not on ideological adherence to a particular model of

computation. Object-oriented programming was a means to an end, a powerful set

of concepts to help manage complexity. We should celebrate its contributions: the

idea of encapsulating state and behaviour, the notion of sending messages between

independent objects (which lives on in things like microservices and actor systems),

and the rich thinking it inspired in software design (from design patterns to UML

modelling). But we should also recognise when the OOP paradigm becomes an or-

thodoxy that blinds us to practicality. When developers begin to contort solutions to

fit an object model rather than asking “What is the simplest, clearest way to solve

this problem?”, it is a sign that the paradigm is dictating the design, rather than the

problem dictating it. Such contortions have real costs: hard-to-read code, slower de-

velopment (because of all the boilerplate and indirection), and even poorer runtime

performance. By contrast, a more open approach encourages clarity. If a piece of

code can be written in 20 lines of straightforward, well-commented imperative code,

a healthy engineering culture will embrace that, rather than insisting it be rewritten

as 5 classes and 200 lines to satisfy some textbook notion of decoupling.

In making these arguments, we ground them not only in anecdotal experience but

also in research and historical perspective. Studies in program comprehension (e.g.,

Pennington, 1987; Wiedenbeck et al., 1999) provide evidence that extreme fragmen-

tation can hurt understanding. Cognitive load theory (Sweller, 1988) supports the

idea that more bits of context means more extraneous load on the developer’s mind.

The history of programming languages shows a pendulum swing: from unstructured

assembly to structured programming, from structured programming to object-ori-

ented programming (to handle larger, more complex programs through modularity),

120 A LITTLE BOOK ON ERROR-FREE SOFTWARE

and now from object-only thinking to multi-paradigm pragmatism. We can take les-

sons from each era. Structured programming taught us the value of clarity and di-

rectness. Recall how controversial goto was declared harmful because it obscured

control flow (Dijkstra, 1968)). That lesson is directly applicable in cautioning

against obscured control flow in overly objectified code. OOP taught us the value of

modularity and abstraction, but we now learn that too much abstraction can be as

harmful as too little, a notion that might seem paradoxical but is well-recognised in

other fields. In writing books and papers, too many fancy words can obscure mean-

ing, and in architecture as well as product design, over-abstract designs often worsen

human usability.

We would be remiss not to acknowledge that part of the reason OOP orthodoxy

took hold was in reaction to genuine problems in earlier code. Before OOP, proce-

dural code in large systems could indeed become spaghetti-like, with global varia-

bles and long functions that were hard to reuse or reason about. OOP brought disci-

pline in that it forced developers to bundle data and operations, thus avoiding a lot

of global state, and it promoted the DRY (Do not Repeat Yourself) principle through

inheritance and polymorphism. These gains are real, and any flexible viewpoint

should not throw out the baby with the bathwater. The aim is not to eliminate OOP

but to reintegrate OOP into a broader toolset. In a sense, it is to demote OOP from

the ruling dictator philosophy to an important approach among several. We can still

leverage objects, but we choose them consciously, not by default. The resulting code

might look less purely object-oriented, and that is absolutely fine. A single codebase

could have some essentially object-oriented modules (with classes and polymor-

phism), some that are procedural (just a library of functions), and some that are

functional (using higher-order functions or closures). Whatever provides the clearest

expression, best maintainability and overall stability.

The metric of success for code should be maintainability and comprehensibility

by humans (along with secondary metrics like performance, which also often benefit

from clarity). If an object-oriented abstraction enhances maintainability, use it. If it

hinders it, do not be afraid to break a dogmatic OOP rule. For example, one taboo

in OOP is the use of switch or type-checking on an object’s type because it is seen

as betraying polymorphism. But sometimes, a switch on a type code or an enum is

A LITTLE BOOK ON ERROR-FREE SOFTWARE 121

actually much simpler and thus effective than a whole polymorphic class hierarchy.

An indoctrinated rigid OO thinker might reflexively avoid any instanceof checks

and create a convoluted pattern instead; a pragmatic thinker will weigh the trade-

offs and perhaps decide a little type dispatch in one place is fine if it saves a lot of

indirection elsewhere. Similarly, the DRY principle, while generally good, can be

taken too far under OOP influence, leading to abstract base classes that unify things

that perhaps did not need unifying, just to avoid a few lines of duplication. It may

be clearer, for instance, to have two separate code paths (a bit of repetition) than to

engineer a one-size-fits-both object hierarchy that actually obscures the differences

between the cases. What we seek is to spread that sense of judgment broadly: to

everyone, not just the seasoned experts who have learned these lessons through hard

experience.

In conclusion, it is time to break the spell of the OOP god. We must remember

that object-oriented programming is a means to an end, not an end in itself. Its over-

use and misapplication have led to systems that are over-engineered, excessively

fragmented, and often adversarial to the way human minds comprehend complex

processes. By re-embracing other paradigms, procedural, functional and declarative,

and using them alongside OOP, we can create software that is more in tune with

both the problem domain and the cognitive abilities of developers. We can have

methods as well as functions, objects as well as modules, message-passing as well

as shared-memory concurrency, finite state machines as well as class hierarchies,

really whatever each specific situation calls for. This book does not claim that OOP

has no place; on the contrary, it asserts OOP has a rightful place among the pantheon

of programming paradigms. But it firmly rejects the absolutism of “everything must

be an object.” It calls for a renaissance of flexible thinking in software development,

one that prioritises clear communication of intent in code and leverages the full pal-

ette of programming techniques available from the past 70+ years of computer sci-

ence. The ultimate goal is software that is not only correct and efficient but also

transparent and straightforward to those who read and maintain it. As Dijkstra and

others taught us about structured programming, the clarity of our code is an im-

portant concern. We should be able to look at a program and see the logic without

unnecessary mental gymnastics. By doing so, we align our programming practices

122 A LITTLE BOOK ON ERROR-FREE SOFTWARE

with human strengths: our ability to follow coherent stories, our need to minimise

cognitive load, and our capacity to creatively combine ideas to solve problems. It is

a call to use objects when they help, but to have the wisdom to step outside the

object-oriented mindset when it leads to convoluted, fragmented or obfuscated code.

In the end, programming is an endeavour by humans for humans (even when the

programs serve machines), and our methodologies must serve us. The deeply in-

grained habit of forcing object-oriented programming onto problems that are not

object-oriented in nature was ultimately what led the author to leave the program-

ming industry. Being compelled to do the work with screwdrivers alone, even when

the task clearly called for a hammer, removed the enjoyment from the craft and left

frustration in its place.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 123

References
Abelson, H., & Sussman, G. J. (1985). Structure and Interpretation of Computer

Programs. MIT Press.

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-Wesley.

Beck, K., Beedle, M., van Bennekum, A., et al. (2001). Manifesto for Agile Software

Development.

Böhm, C., & Jacopini, G. (1966). Flow diagrams, Turing machines and languages with

only two formation rules. Communications of the ACM, 9(5), 366–371.

Brooks, F. P. (1987). No silver bullet – essence and accidents of software engineering.

Computer, 20(4), 10–19.

Brooks, F. P. (1975). The Mythical Man-Month: Essays on Software Engineering. Addi-

son-Wesley.

Buxton, J. N., & Randell, B. (Eds.). (1970). Software engineering techniques: Report on a

conference sponsored by the NATO Science Committee, Rome, Italy, 27–31 October 1969.

Brussels: Scientific Affairs Division, NATO.

CISQ (2020). The Cost of Poor Software Quality in the US: A 2020 Report (H. Krasner,

Author). CISQ/OMG. Retrieved from https://www.it-cisq.org/the-cost-of-poor-software-

quality-in-the-us-a-2020-report/ (accessed 2025-04-23).

Dahl, O.-J., & Nygaard, K. (1966). SIMULA: an ALGOL-based simulation language.

Communications of the ACM, 9(9), 671–678.

Danielson, M. (1997). Computational Decision Analysis (Doctoral dissertation). Royal In-

stitute of Technology, Sweden.

Danielson, M. (2023). The Rise and Fall of Philips Data Systems. Sine Metu.

DeMillo, R. A., Lipton, R. J., & Perlis, A. J. (1979). Social processes and proofs of theo-

rems and programs. Communications of the ACM, 22(5), 271–280.

Dijkstra, E. W. (1968). Go To statement considered harmful. Communications of the

ACM, 11(3), 147–148.

Dijkstra, E. W. (1971). A short introduction to the art of programming (Memo EWD316).

Technological University of Eindhoven, The Netherlands.

Dijkstra, E. W. (1970). Notes on structured programming. In O.-J. Dahl, E. W. Dijkstra, &

C. A. R. Hoare (Eds.), Structured Programming (pp. 1–82). London: Academic Press.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley.

124 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Gotterbarn, D., Miller, K., & Rogerson, S. (1999). Software Engineering Code of Ethics is

approved. Communications of the ACM, 42(10), 102–107.

Hamblen, M. (2023, March 15). Eight lines of code could have saved 346 lives in Boeing

737 MAX crashes, expert says. Fierce Electronics. Retrieved April 23, 2023, from

https://www.fierceelectronics.com/embedded/eight-lines-code-could-have-saved-346-

lives-boeing-737-max-crashes-expert-says

Heusser, M. (2012, August 14). Software Testing Lessons Learned From Knight Capital

Fiasco. CIO. https://www.cio.com/article/286790/software-testing-lessons-learned-from-

knight-capital-fiasco.html

Hewitt, C. (1973). A universal modular actor formalism for artificial intelligence. In Pro-

ceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI) (pp.

235–245). Stanford University.

Hoare, C. A. R. (1974). Monitors: An operating system structuring concept. Communica-

tions of the ACM, 17(10), 549–557.

Hoare, C. A. R. (1984). The emperor’s old clothes. Communications of the ACM, 27(2),

118–121.

Hotz, R. L. (1999, October 1). Mars Probe Lost Due to Simple Math Error. Los Angeles

Times. Retrieved April 23, 2023, from https://www.latimes.com/archives/la-xpm-1999-

oct-01-mn-17288-story.html

Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to Master.

Reading, MA: Addison-Wesley.

Jones, C. (2011). Software defect-removal efficiency. Capers Jones & Associates LLC.

Kay, A. (1993). The early history of Smalltalk. In T. J. Bergin & R. G. Gibson (Eds.), His-

tory of Programming Languages—II (pp. 511–578). ACM Press.

Kernighan, B. W., & Pike, R. (1984). The Unix programming environment. Prentice Hall.

Kernighan, B. W., & Plauger, P. J. (1974). The Elements of Programming Style. McGraw-

Hill.

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language. Prentice Hall.

Knuth, D. E. (1974). Computer programming as an art. Communications of the ACM,

17(12), 667–673.

A LITTLE BOOK ON ERROR-FREE SOFTWARE 125

Knuth, D. E. (1992). Literate programming. Stanford University: Center for the Study of

Language and Information, CSLI.

Knutson, C., & Carmichael, S. (2008). Safety first: Avoiding software mishaps. Embedded

Systems Design, 21(10). (Reprinted online at Embedded.com). https://www.embed-

ded.com/safety-first-avoiding-software-mishaps/

Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006). An exploratory study of

how developers seek, relate, and collect relevant information during software maintenance

tasks. IEEE Transactions on Software Engineering, 32(12), 971–987.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceed-

ings of the IEEE, 68(9), 1060–1076.

Leveson, N. G., & Turner, C. S. (1993). An investigation of the Therac-25 accidents.

Computer, 26(7), 18–41.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice

Hall.

McBreen, P. (2002). Software Craftsmanship: The New Imperative. Boston, MA: Addi-

son-Wesley.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review, 63(2), 81–97.

Naur, P. (1985). Programming as theory building. Microprocessing and Microprogram-

ming, 15(5), 253–261.

O’Dell, D. H. (2017). The debugging mindset. ACM Queue, 15(1).

https://queue.acm.org/detail.cfm?id=3068754

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks (Doctoral dissertation,

University of Illinois at Urbana-Champaign).

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), 1053–1058.

Pearce, H., Ahmad, W., Tan, Q., & Javid, Z. (2022). Asleep at the Keyboard? Assessing

the Security of GitHub Copilot’s Code Contributions. Proceedings of the 2022 ACM Con-

ference on Computer and Communications Security (CCS), 2041–2055.

Pennington, N. (1987). Stimulus structures and mental representations in expert compre-

hension of computer programs. Cognitive Psychology, 19(3), 295–341.

Pingdom SolarWinds (2009). 10 historical software bugs with extreme consequences.

126 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Royal Pingdom Tech Blog. Retrieved April 23, 2023, from https://www.ping-

dom.com/blog/10-historical-software-bugs-with-extreme-consequences/

Polanyi, M. (1966). The Tacit Dimension. Garden City, NY: Doubleday.

Raymond, E. S. (2001). The Cathedral and the Bazaar: Musings on Linux and Open

Source. Sebastopol, CA: O’Reilly. (First ed. 1999)

Sackman, H., Erikson, W. J., & Grant, E. E. (1968). Exploratory experimental studies

comparing online and offline programming performance. Communications of the ACM,

11(1), 3–11.

Sandén, B. I. (2011). Design of multithreaded software: The entity-life modeling ap-

proach. Wiley-IEEE Computer Society Press.

Siebel, P. (2009). Coders at Work: Reflections on the Craft of Programming. Apress.

Stallman, R. M. (1979). EMACS: The extensible, customizable self-documenting display

editor (AI Memo No. 519). Massachusetts Institute of Technology, Artificial Intelligence

Laboratory.

Stroustrup, B. (1997). The C++ Programming Language (3rd ed.). Addison-Wesley.

Sweeney, T. (2006). The next mainstream programming language: A game developer’s

perspective. Proceedings of the ACM SIGGRAPH 2006 Conference Courses.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science, 12(2), 257–285.

Turkle, S. (1984). The second self: Computers and the human spirit. Simon & Schuster.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A compari-

son of the comprehension of object-oriented and procedural programs by novice program-

mers. Interacting with Computers, 11(3), 255–282.

Wilson, J. Q., & Kelling, G. L. (1982). Broken windows. Atlantic Monthly, 249(3), 29–38.

Yegge, S. (2006). Execution in the Kingdom of Nouns [Blog post]. Retrieved from

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

A LITTLE BOOK ON ERROR-FREE SOFTWARE 127

About the Author

Mats Danielson is a Full Professor in Computer and Systems Sciences at Stockholm

University and a Senior Advisor to the President. He is a former Dean of the Faculty

of Social Sciences as well as a former Vice President of External Relations, Innova-

tion, and ICT at the university. He has a PhD in Computer and Systems Sciences

from the KTH Royal Institute of Technology as well as university degrees in Com-

puter Science and Engineering (from KTH) and in Economics and Business Admin-

istration (from Stockholm University). He was working in the software industry for

more than 20 years, in the beginning primarily with Philips PTS equipment, before

joining academia to work with research as well as algorithm and software design

and development within decision analysis and support.

The author spent eight years between high school and university mostly in the

software business, and the majority of those years working with PTS computers,

peripherals, and software. Having subsequently learned the hard way that other soft-

ware organisations were not like PTS, and thus not able to produce (almost) error-

free software, he took to trying to document, for his own use, why it worked at PTS

and then tried to use the same or similar principles in other organisations and set-

tings. The degree to which he could observe error-freeness being achieved in various

projects and organisations were roughly proportional to the degree to which they

adopted these principles. This is not to say that the principles are the only component

required for successful software projects, but it goes quite some way when applied.

After more than 20 years in the software industry, the author has since shifted to

work in academia but the observations still stand and constitute the basis of this

book. The recent emergence of AI/LLM coding tools, such as the GitHub Copilot,

does not change the validity of the observations, the conclusions, or the need for

guidelines in pursuit of error-free software.

128 A LITTLE BOOK ON ERROR-FREE SOFTWARE

Other books from Sine Metu in the same series

Transcending Business Intelligence, Third Edition, 2022

K. Borking, M. Danielson, G. Davies, L. Ekenberg, J. Idefeldt, A. Larsson

ISBN 978-91-978-4505-2

A Decision-Analytic Manifesto, Second Printing, 2023

L. Ekenberg, M. Danielson

ISBN 978-91-527-5306-4

The Rise and Fall of Philips Data Systems, 2023

M. Danielson, A. Läppinen

ISBN 978-91-527-6233-2

Foundations of Computational Decision Analysis, 2023

M. Danielson

ISBN 978-91-531-0457-5

A LITTLE BOOK ON ERROR-FREE SOFTWARE 129

This book is about how to attain error-free software with small

means, essentially adhering to a set of common-sense guidelines.

These guidelines originate from Philips’ error-free coding culture.

Sine Metu

