
C l i e n t - s i d e p r o x i e s
- a better way to individualise the Internet?

Master’s thesis1

Tomas Viberg

Department of Computer and Systems Sciences
Stockholm University / Royal Institute of Technology

May 2000

Abstract

With the growth of the Internet, information overload has become a problem. Because of the sheer amount of
available data, there is a need for tools that can find and transform data into useful information. Existing tools,
such as online search engines, directories and more or less specialised portals are popular, but they do not adjust
very well to individual needs. This thesis examines an alternative approach - client-side proxies, running on the
end-user's local machine. More versatile than the original proxy servers, they have the ability to intercept
communication to support information retrieval and adaptation of content.

To establish the benefits and drawbacks of the approach, a number of existing proxies has been compared with
each other and with applications that use different techniques to perform similar tasks, such as integrated clients
(browsers, newsreaders, etc), client plug-ins or Web services. The results of this two-phased evaluation show
that client-side proxies have merits that distinguish them from other content processing applications. The
combination of direct and exhaustive access to the content, client independence, support for aggregation of
functionality and complete access to the power of the local computer is a strong argument to use client-side
proxies for content processing. However, when usability or performance is crucial, other approaches could be
better. Client-side proxies introduce greater overhead than other approaches do and they are generally harder to
install and configure. Consequently, even if client-side proxies are better, there is the risk that they will only be
embraced by more advanced users.

Provided as part of this thesis, Blueberry is a framework for content processing. Building on the evaluation
results, this Muffin extension exemplifies how to integrate a consistent user interface with the client application
to increase usability while maintaining the independence of the proxy approach. Through high-level data
abstraction, it also shows a way to help developers of third-party extensions increase their productivity.

1. This thesis corresponds to 20 weeks of full-time work.

1

Table of contents

1 Introduction ...2

1.1 Aim and scope of this thesis2

1.2 Purpose of examining client-side proxies2

1.3 Contributions from this thesis..............................3

1.4 Thesis outline ...3

2 Background..3

2.1 The original proxy..3

2.2 A more versatile approach4

2.3 Some example proxies ...4

2.4 Proxies in mobile environments5

2.5 A great diversity...6

3 Method..6

3.1 Precision of measurement....................................6

3.2 Objectivity ..6

3.3 Method in action ..7

4 Task-oriented evaluation..................................7

4.1 Protecting privacy ..7
4.1.1 Getting started..8
4.1.2 Making the user anonymous8
4.1.3 Increased response time...9
4.1.4 Security considerations..9
4.1.5 The proxy advantage ...9

4.2 Collaborative rating..9
4.2.1 The price of independence10
4.2.2 The rating mechanism ...10
4.2.3 The proxy disadvantage.......................................11

4.3 Improving performance11
4.3.1 Installation and independence11
4.3.2 Functionality and ease of use11
4.3.3 Free lunch?...12
4.3.4 The proxy advantage ...12

4.4 Filtering news...12
4.4.1 Potential platform independence.........................12
4.4.2 The complexity of filter creation.........................13
4.4.3 Disarm security threats by filtering?...................13
4.4.4 The proxy (dis)advantage....................................14

4.5 Blocking content ..14
4.5.1 Setting up ...14
4.5.2 Running the applications14
4.5.3 Performance and security15
4.5.4 The proxy advantage ...15

5 Existing clie nt-side prox ies.............................. 16

5.1 User interaction.. 16
5.1.1 Interaction models ...16
5.1.2 Integration, separation and independence18
5.1.3 User interface quality ..18

5.2 Application architecture 22
5.2.1 Monolithic or modular ..22
5.2.2 Transparency ...22
5.2.3 Sophistication through aggregation23
5.2.4 Development of third-party extensions24
5.2.5 Platform independence..25
5.2.6 Performance impact...25

6 Blueberry... 27

6.1 Goals and design choices 27

6.2 Limitations ... 27

6.3 Blueberry architecture 28
6.3.1 Blueberry, a Muffin filter....................................28
6.3.2 SGML parser ...30
6.3.3 Additional processors..30

6.4 BackLink.. 31

7 Conclusions.. 32

7.1 Use client-side proxies or not?.......................... 32
7.1.1 Exhaustive access to content...............................32
7.1.2 Processing power and sophistication..................33
7.1.3 Independence or integration................................34
7.1.4 Performance impact and usability34
7.1.5 Legal and ethical considerations.........................35

7.2 Today and tomorrow ... 35

7.3 Who will use a client-side proxy?..................... 36

7.4 Further research ... 36

8 References.. 37

2

1 Introduction
The Internet and the World Wide Web provides
vast and ever growing amounts of data with pos-
sibly great value. However, it is also a very
messy place, and there clearly is demand for tools
that can help clear away the rubble and transform
the data into useful information for a particular
user. One clear indication is that online services
as search engines, directories and more or less
specialised portals rate among the most visited
sites on the Web [Waxman 00]. Albeit highly
visible and advertised, these online services are
only one way to get the work done: finding use-
ful information and adapt it to the needs of indi-
vidual users. This work will examine an alterna-
tive approach.

1.1 Aim and scope of this thesis
The aim of this thesis is to evaluate the use of
client-side proxy servers for finding and adapting
information according to user preferences, and to
present Blueberry, a partial proxy prototype that
highlights some ideas for development of the
approach. Traditionally, proxy servers are spe-
cialised large-scale Web servers aimed at im-
proving use of network bandwidth through
document caching and improving network secu-
rity by, for example, restricting access to certain
content. In contrast, a client-side proxy is a
small-scale server running on the user's local
computer. It could also be used for improving
performance and security, but what is of interest
in this context is a more versatile type of proxy
server, a proxy with the ability to support infor-
mation retrieval and adaptation.

To estimate the value of such proxies as opposed
to the value of using other methods, some more
specific questions need to be answered: Could
applications using the client-side proxy approach
be better at providing information that fits the
needs of an individual user? If so, under which
circumstances and for whom? Are there situa-
tions when some other technique is preferable,
such as browser plug-ins, online services or
stand-alone applications? Are the potential bene-
fits of this approach realised in existing systems?
If not, in what ways could they be improved?
These are the questions that will be examined
throughout this work and some of the answers
will be visualised in the proxy prototype imple-
mentation that is also a part of this thesis.

The scope is limited to the merits of using client-
side proxies as an architecture in which function-
ality for information retrieval and adaptation can
be implemented. The functions themselves, such
as filtering, collaborative rating, privacy en-
hancement, etc, will certainly not be overlooked,
since there is often a close relationship between
the architecture of a system and its functionality.
However, they will not receive the full scientific
treatment because each of these fields could eas-
ily qualify as a separate thesis topic.

1.2 Purpose of examining client-side
proxies

The common denominator of many of the popu-
lar online services mentioned earlier is that they
act as a middleman between the user and massive
amounts of information. Just like real-world
travel agents, newspapers and libraries, the mid-
dlemen on the Web use their domain-specific
knowledge and analytical skills to make it easier
for the individual to find what he is looking for.
This function is clearly in demand despite the
prediction that the Web would replace the human
middlemen with "Cool Software" that would
analyse the user and efficiently provide relevant
information [Ganesan 99].

Client-side proxies clearly fall under the "Cool
Software" category. So why bother examine the
merits of this approach, if the advantage lies with
those who provide some more subtle and non-
computable service?

One reason is that some of the services provided
today are simply not good enough. A popular
service (at least among parents) is filtering or
blocking content that is "harmful to minors".
Such censoring filters have blocked access to
web-sites such as middlesex.gov (due to the do-
main name), The Privacy Forum (due to a discus-
sion about cryptography that was rated as crimi-
nal skills), and other subversive material such as
the United States Constitution, the Bible and the
plays of William Shakespeare [Neumann and
Weinstein 99]. Furthermore, a search engine
advertised to be "family-friendly" filtered away
about 90% of the relevant hits when queried for
material about the American Red Cross, San
Diego Zoo and Christianity.

These results certainly indicate that there is a
need for a better solution, a solution more
adapted to the needs and wishes of the individual

3

user and not coloured by the biased opinions of
the middleman. As one among several alternative
solutions, client-side proxies could provide a
framework for making content retrieval and ad-
aptation more flexible and better adjusted to indi-
vidual needs. As there probably are situations
when this is indeed a better solution than what is
available today, and since the merits of this ar-
chitecture are relatively unexplored, it is an ap-
proach worthy of attention.

1.3 Contributions from this thesis
The evaluation of the client-side proxy approach
to information retrieval and adaptation is in itself
a contribution, since this is a relatively unex-
plored field. The results of the evaluation should
be able to provide useful guidelines for those
interested in using this approach.

Blueberry, the prototype implementation that is
part of this thesis, could also be viewed as a con-
tribution to the field. As an example application,
the goal is that it will provide ideas as to how a
proxy can be designed to take advantage of the
potential strengths of the approach. As noted,
there are already a number of existing client-side
proxy applications available, but this one will
highlight some issues that has not been fully
utilised in the available systems.

1.4 Thesis outline
Section 2 provides the background for this work,
giving a brief description of other material about
the use of client-side proxies for content proc-
essing and identifying some key issues regarding
use of such proxies. The methods used in the
evaluative sections of this thesis are outlined in
section 3. Results of the evaluation are described
in sections 4 and 5. The former focuses on the
evaluation of client-side proxies compared to
other types of applications performing similar
tasks. In the latter, the architectural differences
between existing client-side proxies are exam-
ined. The proxy module implementation of this
thesis, Blueberry, is described in detail in section
6. Concluding the thesis, a discussion of the re-
sults and ideas for further research can be found
in section 7.

2 Background
The most obvious starting point for a survey of
related works is to look at other works with a
similar comparative approach to the client-side
proxy architecture for content processing. How-
ever, there does not seem to be any, so instead
this background will survey documentation about
using client-side proxy servers as a fundamental
part of application architecture. What will pri-
marily be examined is for what tasks the proxy is
used, notable details of the proxy architecture,
deployment experiences and, if this is discussed,
the reasons why the proxy approach was pre-
ferred.

2.1 The original proxy
One original function of proxy servers is to inter-
cept communication between client applications
and remote servers in order to improve network
efficiency through caching. Since network con-
gestion is not a diminishing problem, this contin-
ues to be an important function of proxy servers
[Thaler and Ravishankar 98]. As all requests go
through the proxy, documents that are requested
frequently can be stored locally for later use,
decreasing both the response time experienced by
users and the overall network load of subsequent
requests.

Providing caching through a proxy is a natural
choice. The proxy provides a service that is
transparent to the user as well as to client and
server applications. Transparency can be benefi-
cial since users probably are more interested in
the service provided than in the particulars of its
functionality. Transparency also allows users to
share a single proxy easily, for example on a
local area network. It is in this situation that the
biggest gains of a caching proxy are realised.

There will be no in-depth discussion of tradi-
tional caching functionality, since the focus of
this work is on proxies working locally as single-
user applications. At the same time, caching
functionality in a client-side proxy could prove
beneficial to the individual user, for example by
increased browser independence. Through this a
user gets more control of what is stored locally,
the ability to switch client and still have access to
the same cached documents and a consistent way
to view documents off-line, regardless of client
support. Another reason to include caching func-

4

tionality in client-side proxies with other tasks is
that these tasks themselves might result in in-
creased response time. When caching is dis-
cussed, it will be in this context, as a way to im-
prove the efficiency of client-side proxies.

2.2 A more versatile approach
Moving away from the traditional view of proxy
servers towards the kind of proxies examined in
this thesis, [Brooks et al 96] "generalise the no-
tion of proxy servers to construct application-
specific proxies that act as transducers on the
HTTP stream". Normally, clients and servers
expect that requested documents remain un-
changed during transport from server to client,
even if they are cached copies. The motivation
for this transgression is that substantial value can
be added by working directly on HTTP streams
to view and alter the contents. The stream trans-
ducers, called OreOs, can have practically any
functionality, implemented examples include
URL validation, measuring network perform-
ance, creating group histories, supporting group
annotation of documents and creating full-text
indexes of accessed documents.

Every OreO is a specialised stream processor,
with the freedom to use information from any
obtainable source and to produce arbitrary output.
The architecture is modular, aimed at facilitating
sophisticated behaviour by aggregating highly
specialised modules. This is supported by the
ability to place OreOs in a chain, so that the out-
put from one is the input for another. This kind of
system can be configured with high granularity
and set up to support the specific needs of differ-
ent classes of users, from individuals through
groups to enterprises and the public.

Introducing processing modules in the content
stream affects the performance of network trans-
actions, especially if many modules operate on
the same stream. However, during tests the delay
caused by introducing OreOs in the stream was
mostly so small that users hardly perceived them,
as they were accustomed to variations in network
performance. The delay naturally depends on the
efficiency and complexity of the different OreOs,
but if the delays are kept small it does not have to
be a big problem, especially if the added value is
substantial enough.

A proposed architectural improvement is to en-
capsulate the content stream using a higher level

of abstraction than the current low-level byte
stream. This would probably help third-party
developers increase their productivity, and this is
indeed a notion supported by several client-side
proxies today. Other issues of interest are how to
achieve the benefits of a modular approach and
ways to minimise the impact on performance.

2.3 Some example proxies
One system using the notion of proxy servers
described above is Crowds [Reiter and Rubin
99]. It enables users to retrieve Web content
anonymously, using a client-side proxy server as
the backbone of functionality. The idea is to cre-
ate crowds of users and relay requests through a
chain of proxies in the crowd. Neither the ad-
dressed server nor the proxies along the relay
path can be sure who originally sent the message.
Why the proxy solution was chosen is not ex-
plicitly stated. A reasonable assumption is that it
was because the task at hand is to intercept com-
munication between the client (browser, ftp cli-
ent, etc) and the server transparently.

Experiences from deployment of the Crowds
system have shown that there are some potential
drawbacks to the proxy approach. As already
mentioned, any intermediary might slow down
the retrieval of content and/or result in increased
network traffic. If the proxy is aimed at improv-
ing network efficiency this is not an issue, but
that is not the goal of the Crowds system, and so
there will be some performance degradation.

There could also be problems when trying to use
client-side proxies behind firewalls or other secu-
rity constructs. In the Crowds system, the proxies
communicate through non-standard network
ports, which might be disallowed. A related
problem is that system administrators often want
to monitor user communication. However,
monitoring users in a crowd is not easy, which
could inspire administrators to forbid the use of
such systems. This is not a problem directly re-
lated to the use of proxies, but since several ex-
isting proxies are used for enhancing the privacy
of its users, it is an interesting question. These
and related legal, moral and ethical questions will
be discussed further in later sections.

Pavilion is a framework for developing collabo-
rative web-based applications [McKinley et al
99]. An important part of the framework is a
client-side proxy server, with both traditional

5

proxy functionality like caching frequently re-
quested pages and tunnelling content through
firewalls, and functionality that is more versatile.
The default behaviour of the Pavilion proxy is to
provide a group with a common view, for exam-
ple, allowing several users to automatically view
the same document as the group's leader. This is
achieved by multicasting information from the
leader proxy to the other proxies in the group.
Apart from this, the Pavilion framework uses the
notion of extensible proxies, meaning that exter-
nal modules can be attached to the proxy as plug-
ins to facilitate type-specific processing of re-
quests and resources before their delivery to the
client application. This architectural detail is
interesting since it facilitates processing of the
actual content flowing through the proxy, as op-
posed to proxies that simply relay requests and
replies, ignoring the content. Through this, Pa-
vilion realises the notion of a content-altering
proxy.

Apart from the proxy server, Pavilion also offers
interfaces to popular web browsers and protocols
for floor control and multicast delivery of con-
tent, both aimed at facilitating distributed col-
laboration. Browser integration is achieved with
operating system-specific inter-process commu-
nication mechanisms. This is an approach with
possible negative effects on the platform and
browser independence of a system using the Pa-
vilion framework.

In the context of this work, the Pavilion frame-
work raises two issues to be examined further.
First, the merits of extensible proxy servers will
be discussed in more detail in subsequent sec-
tions. Second, the question of whether browser
integration is desirable, and if so, how it should
be done, will also receive attention.

Browser integration is also an issue in WebMate,
a system for helping users browse and search the
web more effectively [Chen and Sycara 98].
WebMate uses a local stand-alone proxy server to
monitor and learn from the browsing and
searching behaviour of the user. This system
provides a relatively close integration with the
client's browser environment, not by using
browser or platform dependent methods but by
inserting the user interface directly into the re-
quested document. The user can interact with the
system through a controller applet at the bottom
of each document, supplying interests, providing
relevant information for processing and receiving

help. Whether or not this is a better solution to
browser integration than the one Pavilion pro-
vides will be examined later.

The WebMate proxy is used for more demanding
tasks than in previously described systems. Inter-
cepting communication between server and client
is one of the functions, but the content of this
communication is not altered in any significant
way. Communication patterns and user feedback
is processed with machine-learning algorithms to
build and refine a model of user interests based
on keywords describing relevant documents.
Through this model, WebMate can automatically
provide documents of interest to the user. An-
other task is to increase the quality and relevance
of search results through criteria refinement and
keyword expansion. Both these tasks require
advanced functionality and algorithms; function-
ality implemented directly in the WebMate proxy
rather than provided as plug-in functionality to a
modular proxy server.

2.4 Proxies in mobile environments
To revisit the more traditional proxies, one com-
mon use is to provide a bridge between different
transfer protocols. For example, a web browser
lacking knowledge of the gopher protocol can
access gopher-based material through a proxy.
The proxy acts as a translator, speaking HTTP to
the browser and gopher to the server. Taking this
a step further, a proxy can act as a connection
between fundamentally different environments
such as stationary and mobile environments. One
current example of this approach is the Wireless
Application Protocol [WAP 00] that utilises
proxy servers to adapt standard Web content to
mobile devices through negotiation and transla-
tion. Most traditional techniques assume that the
location of clients and the client-server connec-
tion remains unchanged during communication
sessions, which is obviously not the case in mo-
bile environments [Jing et al 99]. The mobility of
clients, differences in display technology and the
relatively low bandwidth of wireless links are
some of the factors that must be taken into ac-
count when adapting content from stationary
networks to the needs of mobile users.

Adaptation of communication and content can be
made mobile-aware using different techniques, of
which transparent proxy-based adaptation is of
most interest here. The proxies are rarely pure

6

client-side proxies, since stable wireless commu-
nication often requires processing on both the
mobile client and in the stationary network. Cli-
ent-side proxies running on mobile devices still
play an important role, providing an interface to
regular servers and attempting to shield the nega-
tive effects of the mobile environment from ap-
plications and users. Transparent caching, pre-
fetching of requested documents and support for
disconnected operations are among the tasks
performed by mobile client-side proxies.

Transparent adaptation to mobile environments
might be detrimental to overall functionality and
performance, since it is very difficult to meet the
diverse needs of different applications not them-
selves mobile-aware. Allowing the affected ap-
plications to control parts of the adaptation proc-
ess might prove useful. This issue is not specific
to mobile environments, and the benefits and
drawbacks of transparency will be discussed
further.

2.5 A great diversity
The overall impression of the background survey
is that there is a great diversity of choices made
in the design of systems using client-side proxies,
regarding both functionality and fundamental
architecture. Despite this, one possible conclu-
sion is that client-side proxies are most useful
when the task at hand involves monitoring or
altering the communication between clients and
servers. This will serve as a starting-point for
resolving when a proxy approach is appropriate
and when it is not. Supposing such an approach is
preferable, other important issues can be identi-
fied and must be evaluated.

One issue is whether the proxy architecture
should be monolithic or modular. This touches on
the subject of creating sophisticated behaviour by
aggregation and if this should be supported by
chaining, extensibility or not at all. If a proxy is
extensible, how to present the content to devel-
opers of additional functionality is a relevant
issue. Should a developer have access to the
content as a low-level byte stream, or should the
proxy parse the stream to provide a higher level
of abstraction, such as wrapper objects for indi-
vidual HTML elements? How to avoid perform-
ance degradation and the level of transparency
are other issues related to application architec-
ture. Also of interest is if a proxy should be inte-

grated with or independent of browsers and oper-
ating systems and, as a related issue, how to sup-
port user interaction. Privacy concerns and legal,
moral and ethical considerations are also ques-
tions that will be examined in the remainder of
this thesis.

3 Method
The approach of this thesis is qualitative, a me-
thodical stance focusing on the more intangible
qualities of the research topic. The alternative
would be a method focusing on quantification of
research results by using for example extensive
empirical studies and statistical methods. There
are also other differences between qualitative and
quantitative methods [Starrin 94]. In this context,
two main issues regarding the method demand
attention: precision of measurement and objec-
tivity of the results.

3.1 Precision of measurement
Using a qualitative approach mostly means that
results are not easily measurable. This is also true
for this thesis, since the aim is to find the more or
less abstract qualities of client-side proxies under
different conditions.

It might be possible to measure some of the re-
sults with acceptable precision, for example by
providing statistics regarding impact on network
efficiency when using proxies, accuracy of fil-
tering proxies, the number of users of different
applications, etc. If it were the main goal to an-
swer these or other quantifiable questions, a
quantitative approach would be preferable.

However, the goal is to answer questions that are
more general, such as when the examined ap-
proach is preferred over other solutions. Because
of this, a quantitative approach would not suffice.
Inevitably, using a qualitative approach means
that the results will not be thoroughly validated
or invalidated with empirical or statistical meth-
ods, but this is not uncommon for this kind of
research.

3.2 Objectivity
Since the results are not easily measured, there
must also be doubts regarding their objectivity. It
is true that answers to questions about the relative

7

qualities of a specific technique are rarely objec-
tive. The whole field of software design mostly
depends on the notion of good practices, rather
than on fixed truths and objective evidence. Only
in low-level areas of research, such as determin-
ing the efficiency of specific algorithms for par-
ticular tasks, is it possible to obtain truly objec-
tive results.

Obviously, this work does not deal with this kind
of low-level research, so there can be no claim
that the presented results will be truly objective.
Where some kind of conformity with the current
“truths” is desirable, the evaluation will be col-
oured by the generally accepted good practices of
software design. However, a large part of the
work will be dependent on rather subjective in-
terpretations of the design and performance of the
examined systems.

3.3 Method in action
The main part of the work is an open-minded
evaluation of existing client-side proxies aimed at
finding the qualities of the technique. As men-
tioned above, this evaluation will be based partly
on what is accepted as good software design but
mainly on more subjective perceptions of exist-
ing solutions and hypotheses regarding the po-
tential qualities of client-side proxy applications.

Through a comparison of proxy and non-proxy
solutions, the goal of the first phase is to identify
the circumstances when a proxy solution is better
and which factors speak in favour of using them.
Based on the issues raised in the background
survey and the results of the first evaluation
round, the second part of the evaluation will fo-
cus exclusively on existing client-side proxies.
The aim is to investigate to what degree they
realise the potential of the approach and to find
ways to improve them.

Together, these two phases will give some possi-
ble answers to the introductory questions, some
of which will be visualised in the Blueberry
module. In total, this will provide results that
admittedly are not final, but should be a useful
starting-point for further evaluation and serve as
a set of guidelines for those interested in the ap-
proach.

4 Task-oriented evaluation
One of the main objectives of this thesis is to
examine under which circumstances and for
whom proxy-based applications could provide
better results than non-proxy solutions, and when
these other approaches are preferable. The focus
of this section is to gain a better understanding of
this issue, through a comparison of applications
that work as client-side proxies and applications
that do not. This is a task-oriented evaluation in
the sense that the systems evaluated in each sub-
section perform similar tasks using different ap-
proaches. It is not an exhaustive examination of
existing systems, but the covered areas and appli-
cations provide insight into diverse task domains
and implementation techniques. Discovering the
characteristics common to all areas and those
particular to some will help to resolve the issue at
hand.

4.1 Protecting privacy
Applications providing privacy for Internet users
comes in many flavours, secure transactions,
encrypted e-mail, masquerading, etc, helping
Internet users hide personal information from
accessed servers. Without protection, there are
many ways for a keen administrator to monitor
individual users, through environment informa-
tion from clients and servers, placing cookies and
other techniques. So, what use is the client-side
proxy approach to a user trying to protect this
information from prying eyes? This section ex-
amines two approaches to anonymity, the proxy-
based Freedom system [Freedom 00] and the
Web service Anonymizer.com [Anonymizer 00].

Freedom protects user privacy by redirecting
communication through a private network before
releasing it on the Internet (figure 1). Each node
(including the local client) in the private network
adds a layer of encryption to the proxied data
packet before passing it to another node in the
network or out on the Internet. This means that
no single operator has comprehensive knowledge
about the user. The response is then sent back
along the same path, shielding the identity of the
user. This is similar to the approach used by the
Crowds system, described in the background
section of this work. The main difference is that
Freedom uses a static set of dedicated servers
instead of relaying requests through other users'
local proxies. The Anonymizer service has a

8

simpler approach. To be anonymous, a user logs
in at the Anonymizer web-site and enters the
requested URL in a text-field. The Anonymizer
retrieves and processes the document on behalf of
the user (figure 1), thus hiding the user's identity
from the remote server.

4.1.1 Getting started

One of the strengths of web-based services, in-
cluding the Anonymizer, is that there is no need
for installation on the local machine, provided
there is a working network connection and a
compatible browser installed. Freedom requires
installation, which is not trivial but reasonably
easy, since the user is guided through the process.
Freedom uses platform-specific network func-
tionality, automatically enabling proxy function-
ality. Hence, there is no need for manual proxy
configuration of client applications. Regardless
of how easy Freedom is to install, it is harder
than using the Anonymizer for the first time,
since all that is required is to log in at the
Anonymizer web-site. Clearly, all client applica-
tions must be installed on the local machine be-
fore use, and whether it is worth the trouble de-
pends on the additional value of the client-side
application.

Anonymizer, as most web-services, is relatively
independent of both operating system and client
applications, while Freedom integrates closely
with the Windows platform. There are positive
aspects of this platform integration, providing an
easy installation process being one. Using plat-
form-specific functionality to provide a truly
transparent service is another. There is also the
performance issue, since applications written for
a specific platform mostly are faster and more
efficient than platform-independent applications.
An obvious drawback is that a user can not easily
access the functionality from other machines than
the one where the application was installed.

4.1.2 Making the user anonymous

The common function provided by both
Anonymizer and Freedom is to conceal the iden-
tity (that is, the IP address) of a user retrieving
Web content. In addition to this, Freedom pro-
vides anonymity for email, chatting, posting to
newsgroups and telnet sessions. This is clearly a
more sophisticated and exhaustive service. In-
deed, it is common that client-side applications
have more advanced functionality and are more
configurable than web-based services. For exam-

ple, Freedom lets the user decide how to treat
cookies, setting preferred communication routes,
control performance/privacy ratios, etc. In com-
parison, the Anonymizer is a blunt tool, provid-
ing no user-adaptable configuration and simply
blocking cookies together with Java and
JavaScript in web pages. Although these tech-
niques are potential privacy threats, this is not a
very good solution. Many web-sites depend on
these techniques to function properly, and com-
plete blocking prevents access to many sites that
pose no threat to the user's privacy. Freedom
does not address the issue of Java of JavaScript,
leaving it up to the user to configure client appli-
cations for the preferred level of security.

The Anonymizer provides an easy to use and
relatively transparent service. Retrieved docu-
ments are altered so that when a user follows a
link in the document the linked resource is auto-
matically retrieved through the Anonymizer web-
site. Accessing documents not linked from the
retrieved page is not so transparent. As a remote
service, the Anonymizer is unable to intercept
document requests entered directly in the loca-
tion-field of a browser. Instead, the user has to
enter the request in a special text-field embedded
in the processed document. This can be easy to
forget, and if documents are requested directly
through the client application, the user will no
longer be anonymous.

Figure 1. General redirection schemes of Freedom
and Anonymizer.

9

The threshold for Freedom users is higher, partly
because of the installation procedure, partly since
it must be activated before each session. Activa-
tion takes noticeable time, but afterwards it
works completely in the background unless the
user wishes to change the configuration. When
Freedom is up and running, the user can behave
as usual since anything transmitted over the net-
work is intercepted and anonymised by the Free-
dom proxy. Indeed, this is one of the main bene-
fits of the proxy approach.

4.1.3 Increased response time

Both approaches has effects on the response time
experienced by users, since they insert extra
nodes on the path from client to server, nodes
that might become communication bottlenecks. It
seems that this is a smaller problem for Freedom
users, since there are several dedicated Freedom
servers distributed geographically. Because of
this, it is possible to perform some optimisation
of the chosen routes, initiated either by the user
or by the client application. With the
Anonymizer, all requests go through the same
network. On the other hand, that processing per-
formed by the Anonymizer is simpler than within
the Freedom network might lessen the impact on
response times.

Providing anonymity requires introducing an
intermediary, resulting in a longer path between
client and server. Users that want to be anony-
mous must pay this penalty of increased response
times, regardless of the implementation of the
service.

4.1.4 Security considerations

It seems clear that Freedom offers better overall
protection of user privacy than the Anonymizer.
One advantage is that Freedom as a client-side
application has the ability to perform privacy
enhancements before sending information over
the network. Using the Anonymizer leaves the
initial connection vulnerable and open to moni-
toring. It also means that the Anonymizer site has
access to all the information the user wishes to
hide, and the user must rely on the measures
taken by the third-party site to ensure the privacy
of its users. Using a client-side approach, whether
it is implemented as a proxy or not, can make
sure that personal information never leaves the
local machine. There is still the risk of malevo-
lent applications disclosing this information
without user knowledge, but in the end, there is

no such thing as total security. Apart from this,
Freedom also protects communication using
other protocols than HTTP, and since Freedom is
more configurable, it offers levels of protection
more adaptable to the needs of specific users.

4.1.5 The proxy advantage

In conclusion, both systems have their strengths.
The major strengths of the Anonymizer Web
service is that it is easy to use, requires no instal-
lation and is independent of both platform and
client applications and thus available to all com-
puters with Internet access. In contrast, the proxy
approach of Freedom is non-portable and re-
quires more work before use. However, for a
determined user, installing Freedom is probably
worth the trouble. Because it is a proxy, it inter-
cepts and processes all communication before
any information leaves the local machine, an
important advantage if the task is to protect user
privacy. As a client-side application, it provides
more sophisticated functionality and ways to
adapt the behaviour according to user prefer-
ences.

4.2 Collaborative rating
Finding relevant material on the World Wide
Web can be a time-consuming task, and it can be
difficult to establish the value of found docu-
ments. Collaborative rating is one way to ease the
burden of individual users, providing a way to
take advantage of the experiences of others.
When users rate resources, they leave footprints
for others to follow. To find and assess different
resources, following these footprints and be-
coming aware of the opinions of others can be of
help to the user. Two tools that facilitate collabo-
rative rating, Alexa [Alexa 00] and SELECT
[SELECT 00a], are examined in this section.

SELECT is a project funded by the European
Union with the aim "to help Scientific, Technical
and other professional Internet users to get and
find the most reliable, valuable, important and
interesting information" [SELECT 00b]. How-
ever, when speaking of SELECT in the remain-
der of this thesis, it refers to the client-side proxy
server for collaborative rating being developed as
part of the project. Alexa is a commercial navi-
gation service, providing users with information
about sites that they visit, including ratings of
these sites by other users. The version examined
here is implemented as a browser plug-in.

10

4.2.1 The price of independence
Written in Java, and therefore supposedly plat-
form-independent, the SELECT proxy exhibits
one of the possible drawbacks of platform-
independent applications: difficult installation. It
requires a Java installation on the client machine,
manual editing of configuration files and manual
proxy configuration of client applications. Some
of this might be due to the prototype status of the
project, but when compared to the installation
process of Alexa it is a serious disadvantage.
Installation of Alexa is extremely simple; the user
simply follows a link on the Alexa web-site re-
sulting in automatic download and installation.
This simplicity is achieved through close inte-
gration with the latest version of the Internet
Explorer browser.

Again, integration causes dependence to particu-
lar platforms and/or applications. Alexa supports
different browsers with different application ver-
sions, focused on the Windows platform. There is

also an older, more browser-independent version
available, working more like a proxy. The ver-
sion examined here is the one integrated with the
latest version of Internet Explorer. Clearly, using
different versions for different client applications
is not an optimal solution. SELECT, as a proxy,
has the potential to be browser-independent.
However, this potential is not fully realised be-
cause of the use of Java applets and JavaScript,
techniques supported inconsistently or not at all
by different browsers.

4.2.2 The rating mechanism

The aim of Alexa is to provide useful information
about accessed web-sites, user rating being only a
part of the provided information. In SELECT,
document rating is the central functionality. This
difference in focus obviously has impact on the

extent of functionality directly related to docu-
ment rating. Where Alexa is limited to facilitate
rating and display the average rate and number of
votes, SELECT also lets users describe rated
documents with keywords and provides a search-
able database of these documents. In addition, the
rating is more fine-grained since it applies to
individual documents, while Alexa ratings apply
to whole sites. A future goal of the SELECT
proxy project is to provide different rating data-
bases for different user categories. This would
make the ratings even more fine-grained and
information-rich.

As a browser plug-in, Alexa share the browser
with the current document. Without leaving this
environment, the user can rate the document by
using a pull-down menu (figure 2). The average
rating by other users is also in plain sight at all
times. Close integration with the browser envi-
ronment and a simple interface makes Alexa very
easy to use.

The minimal rating interface of SELECT (figure
3) is also straightforward, but to log in and access
additional functionality such as average rating
and the searchable database, this window must be
expanded. Even on fair-sized screens, the ex-
panded window is big enough to be partially
hidden behind the browser window. Since users
are supposed to use SELECT and the browser in
union, an independent application window is not
as easy to use as a more integrated solution. This
and the fact that the user interface of the SE-
LECT prototype is both cruder and more com-
plex speaks in favour of the plug-in approach of
Alexa, at least when ease of use is an important
issue.

Both Alexa and SELECT depend on the perform-
ance of remote servers, with the possible negative

Figure 2. Alexa user interface.

Figure 3. SELECT minimal rating interface.

11

effects of communication bottlenecks and net
congestion, but this is independent of the choice
of implementation architecture.

4.2.3 The proxy disadvantage
Somewhat simplified, the minimal requirements
of a system for collaborative rating is knowledge
of the address of the current document and a con-
nection with a rating-server. These requirements
are fulfilled by the plug-in approach, and since it
also is user-friendlier, it is preferable in this
situation. A proxy approach could be more inde-
pendent of platform and browser, but there is no
additional functionality or greater usability to
justify the additional overhead. A stand-alone
proxy solution is both harder to install and oper-
ate than a more integrated solution. It is true that
the SELECT proxy provides more functionality
related to rating, such as database search, but this
is mainly a result of the focus of the different
approaches. There are simpler and user-friendlier
methods to implement additional functionality.
An example is provided in the SELECT project
itself, letting users add a browser bookmark con-
sisting of JavaScript code which opens a new
browser window with access to a web-based rat-
ing and search interface.

To justify the use of a client-side proxy, it is cru-
cial to provide some functionality that depends
on processing the content stream. Annotation of
hyperlinks depending on the rating of linked
documents is one function that is discussed
within the SELECT project. Other possible func-
tions are automatic extraction of keywords de-
scribing a document and inserting the average
rating into the rated document. If the SELECT
proxy evolves in this direction, it might provide
the functionality needed to justify the extra over-
head.

4.3 Improving performance
The number of World Wide Web users has ex-
ploded since the birth of the medium and docu-
ments on the web have become more complex
and graphic-intensive. Together, these factors
have increased the overall load of the networks,
and many users experience slow connections and
disturbingly long response times. Caching is a
possible method to improve the performance
perceived by the user, another is to acquire faster
connections. A third method is to remove un-
wanted material from requested pages, an ap-

proach examined here. AdWiper [WebWiper 00]
and WebWasher [WebWasher 00] remove ad-
vertisements from Web pages. These ads can be
quite large, especially if animated, and they are
often retrieved from heavily trafficked ad-
servers. Removing them accelerates page re-
trieval by significantly reducing the amount of
data transmitted. Just as Alexa examined above,
AdWiper is a plug-in for Internet Explorer, while
WebWasher is a client-side proxy.

4.3.1 Installation and independence
As most contemporary platform-specific applica-
tions using installation guides, installation of
both WebWasher and AdWiper is easy, done
with a few button-clicks. Unlike AdWiper, but
like many other proxies, WebWasher requires
additional configuration. The user has to edit the
proxy settings of client applications manually,
but coming versions of WebWasher will auto-
mate this so that WebWasher alter browser set-
tings at start-up and restore them at shutdown.

With the platform-independent techniques avail-
able today, providing this kind of simplicity is
not easy. Both WebWasher and AdWiper are
platform-dependent, available only for Microsoft
Windows. AdWiper is also browser-dependent,
since it works only with the Internet Explorer
browser. As other proxies mentioned,
WebWasher has the advantage of being browser-
independent, at least if the browser supports con-
nections through a proxy server.

4.3.2 Functionality and ease of use

The close integration of plug-ins and browser
tend to make the inner workings of a plug-in
transparent to the point of invisibility. It can be
hard to know if the plug-in is functioning cor-
rectly, difficult or impossible to turn it on and off
at user discretion and difficult to configure. This
is partially true for AdWiper. To some extent, it
is configurable and it is also possible to edit the
rules that determine what constitutes an adver-
tisement, but the configuration interface is an
application separated from the plug-in.

WebWasher has a range of functions apart from
blocking image and applet advertisements, such
as filtering popup windows, stopping animated
images, simple privacy enhancements and access
control. WebWasher also has a user interface
separated from the browser, but it is accessible
via an icon in the Windows task-bar, allowing

12

easy configuration and one-click dis-
abling/enabling.

There is no direct relationship between imple-
mentation architecture and the usability differ-
ences of AdWiper and WebWasher. Both are
easy to use, since they do not interfere with the
user's real task. WebWasher has the advantage of
extensive and easy configuration and more func-
tionality, but this would also be possible to im-
plement in a plug-in. However, making a plug-in
as browser-independent as WebWasher is not
feasible.

Introducing additional content processing inevi-
tably raises the issue of performance, but in this
situation the decrease in network transfers
quickly compensates for the additional overhead
introduced by the applications.

4.3.3 Free lunch?
Removing ads from web pages might improve
performance, but it is a potentially controversial
issue. In the words of Milton Friedman: "There's
no such thing as a free lunch." Many sites that
provide useful information and/or services de-
pend on advertising revenues to supply a free
service. If a large number of users decide to
block out these commercial messages, revenues
will probably fall and since somebody must fi-
nance a commercial service, users themselves
might have to pay for what they want to access.

As an alternative, users could decide not to re-
move advertisements completely but stop only
the animation of images. The overhead involved
in connecting to remote ad servers still remains,
but the size of the download will be smaller.
WebWasher allows this, as a user can choose to
break animations without completely removing
advertisements. This could be a way to improve
performance without jeopardising the free avail-
ability of online services.

4.3.4 The proxy advantage
Client independence is one of the strongest ar-
guments in favour of the proxy solution. This
allows WebWasher to deliver the same function-
ality regardless of which client application the
user prefers, while AdWiper is limited to the
Internet Explorer browser. That WebWasher
provides functionality that is more extensive
could also be construed as a benefit of the proxy
approach. A client-side proxy has access to the
full functionality of underlying system services,

and even if some browsers give the same free-
dom to their plug-ins, others do not.

4.4 Filtering news
There are tens of thousands of Usenet news-
groups, containing staggering amounts of posted
messages. Sifting through this to find what is
relevant and interesting is a gargantuan task.
Applications that filter groups and messages to
remove spam and extensive cross-postings and
highlight messages that might be of interest could
be of great value to the user.

This section explores the Agent news and mail
reader [Agent 00] and the filtering proxy
NewsProxy [NewsProxy 99]. Agent is a full-
featured news and mail application with exten-
sive filtering functionality, while NewsProxy is a
client-side proxy server, working as a supple-
mental filtering program to existing newsreaders.
The focus here is on the filtering functionality of
the respective systems.

4.4.1 Potential platform independence
Both Agent and the NewsProxy binary release
are specific to the Windows platform, providing
the simple installation procedure exhibited by
most platform-specific systems examined so far.
NewsProxy requires some additional configura-
tion, but nothing more advanced than configuring
a stand-alone newsreader. NewsProxy also comes
in a source-code release, allowing the inclined
user to compile the application on other platforms
than Windows. However, this kind of porting is
not a trivial undertaking, and most users are re-
stricted to the binary releases available. On the
bright side, open source projects tend to attract
third-party developers, thus increasing the possi-
bility that the application will become available
on different platforms. As all true proxy servers,
NewsProxy looks like a remote server to the cli-
ent application, relying only on standardised net-
work protocols. Ergo, any client application
talking the same language as the proxy can bene-
fit from its functionality. The use of standardised
protocols could also mean that these parts of the
application are easier to port to other platforms,
thus providing at least some platform-
independence.

13

4.4.2 The complexity of filter creation
Because of what it is, Agent provides much more
functionality than NewsProxy. Focusing only on
filtering functionality, the two are more similar.
Before displaying the message headers, both
apply filters that can delete or watch and mark
these messages. Filters can be simple text
matching of various header fields, or built with
more powerful (and less intuitive) regular expres-
sions. These are originally Unix-based expres-
sions for parsing and matching strings of text.
However, how the filters are constructed differ
between the two approaches. As most integrated
applications, Agent is dialog-driven (figure 4),
providing users with a well-known configuration
method, with the additional possibility of using
message-specific information as template for new
filters.

In NewsProxy, the user has to edit the configura-
tion file manually to create and maintain filters
(figure 5). While this is harder for the novice
user, it does give a better understanding and
overview of the filtering language and enables
simple cut-and-paste changes to the filter rules
and the order in which they are applied. The hu-
man readable rules are also easy to import and
export, just copy a rule from a newsgroup mes-
sage, an email or a Web page and insert it into
the configuration file.

Manual creation of expressive filters is never
trivial, and user interfaces for this kind of task
can easily become complex and hard to use. This
is especially true if there also is functionality
unrelated to the task at hand. In Agent, the full
spectrum of news and mail functionality clutters
the user interface, and a user interested in the
filter functionality must navigate through many
menus filled with "irrelevant" options. In con-
trast, the only task of NewsProxy is filtering
news, and the user interface focuses exclusively
on this functionality. This results in cleaner and
more navigable menus. The simplicity of the
NewsProxy interface makes it easier to access the
filtering functions than it is in Agent, a clear
benefit of strongly focused applications.

Agent obviously has the advantage of an inte-
grated environment for all functionality, while an
evaluation of the overall usability of NewsProxy
must take into account both NewsProxy itself and
the newsreader used. One benefit of an integrated
environment is that it is sensitive to the context in
which the user is working. As mentioned, Agent
allows a user to create filters based on specific
messages. In this way, Agent is more flexible and
adaptable to the individual user, but the proxy
solution also has its flexibility gains. One is that
the functionality is portable between different

client applications, meaning
that a user can apply the
same filter configuration
without reinventing the fil-
ters if he decides to use an-
other newsreader.

4.4.3 Disarm security threats by filtering?

Although there are security threats related to
reading news, mainly the risk of catching viruses
through message attachments, these are not as
widely discussed as similar threats concerning
email and malevolent Web pages. Even if this is
not the aim of the examined applications, filter-
ing could be one way to minimise risks. Spam
messages are often distribution channels for vi-
ruses, links to malevolent sites and/or applica-
tions and other potential security threats, and
removing these could improve the overall secu-
rity of the user.

Figure 4. Filter configuration
dialog in Agent.

Figure 5. Excerpt from NewsProxy configuration file.

14

4.4.4 The proxy (dis)advantage
Both Agent and NewsProxy filter messages by
analysing incoming message headers. The main
difference is that Agent integrates filtering with
other news-related functionality, while
NewsProxy access and alter the incoming content
stream before it reaches the client application. It
seems clear that more sophisticated functionality
is not an automatic advantage of the proxy ap-
proach, since the filtering capabilities of Agent
and NewsProxy are roughly equal. The primary
advantage of using a proxy is that it can enhance
the functionality of client applications that lack
the extensive filtering capabilities exhibited by
Agent.

An integrated environment such as Agent might
be beneficial, for example by using contextual
information to simplify the user's task. Building
filters based on specific messages is one opera-
tion, studying the behaviour of a user to auto-
matically create filter rules could be another. It is
difficult to accomplish this using the proxy ap-
proach, since proxies have less detailed knowl-
edge about the interaction. On the other hand, if
functionality is split into several layers, each
layer becomes more focused and perhaps more
easily understood. It also promotes easier update
of different layers of functionality and more free-
dom for users to choose their client applications.
Like many other proxies, NewsProxy visualises
the benefits of a layered solution.

4.5 Blocking content
Content blocking has many similarities with the
filtering task described in the previous section,
especially with "kill filters" that remove a re-
source before the user sees it. The main distinc-
tion is that filters remove unwanted material,
while blocking applications prevent access to
wanted material. That is, someone with authority
decides what is appropriate and not, denying
other users access to inappropriate material. This
could be a parental authority, keeping children
away from pornographic or other unsuitable ma-
terial, or it could be a corporate administrator
making sure employees only access work-related
resources.

Two client-side proxies for content blocking are
examined further, SurfWatch [SurfWatch 00] and
PureSight [PureSight 00]. NetNanny [NetNanny
00] represents an alternative approach, a stand-

alone application monitoring the client applica-
tions themselves rather than the content stream.

4.5.1 Setting up

As the majority of the client-side applications
examined so far, NetNanny, SurfWatch and
PureSight are available only for Microsoft Win-
dows, making extensive use of platform-specific
functionality. Although SurfWatch and PureSight
work as proxies, they do this by low-level inte-
gration with the operating system. The good side
is that manual proxy configuration is unneces-
sary. The bad side is that platform-specific func-
tionality makes the applications even more plat-
form-dependent and lessens the possibility of
availability on other platforms. NetNanny is
equally non-portable, using Windows-specific
mechanisms for inter-process communication. In
addition, the administrator of NetNanny must
manually decide which applications to monitor
for attempts to access unauthorised material.
PureSight is ready for use immediately after in-
stallation, while the other requires download of
additional resources, adding a considerable
amount of time to the installation process.

4.5.2 Running the applications

A common function of all three applications is
blocking of alleged pornographic content.
SurfWatch and NetNanny also has the ability to
block other questionable material, such as gam-
bling, racist web-sites, bad language, etc. They
depend on extensive lists of sites containing this
kind of material, lists of keywords and phrases to
block and lists of unauthorised Usenet news-
groups. PureSight only depends on the requested
material, blocking resources based on content
analysis.

Due to the technologies used in PureSight, this
application is more prone to make errors in
judgement, blocking sites that does not actually
contain pornographic material. NetNanny and
SurfWatch also use technology to find explicit
material, but human reviewers verify the results
before updating site and keyword lists. This
should mean that these lists are more accurate,
although there is always the risk of human error
and misjudgement. On the downside, manual
updating inevitably means that new or unknown
sites slip through, even if blocking would be jus-
tified. The client-side administrator must also
update blocking lists frequently for the applica-
tions to function properly. In SurfWatch, down-

15

loading and installing new lists is easy and
mostly automatic, taking place entirely within the
application environment. However, it can be a
time-consuming task. NetNanny requires the
administrator to manually download updates
using a browser, remove existing lists, import
new lists and then manually configure each of the
imported lists. To say the least, this is unneces-
sarily difficult. In contrast, it is pure joy to use
PureSight, since it does not require any such up-
dates.

All three let the administrator specify additional
sites/addresses that users are allowed or disal-
lowed to access. SurfWatch and NetNanny also
allow editing of keywords and phrases that are
accepted or unaccepted in requested material.
While PureSight focuses primarily on pornogra-
phy, the others are more flexible in that they can
block arbitrary categories of unwanted material,
depending on the wishes of the administrator.
SurfWatch also has the option to block all con-
tent except what is explicitly allowed.

Although configuration and maintenance can be a
hassle, this is supposedly the responsibility of an
administrator. In the eyes of the end-user, the
applications run in the background without need
of user involvement, and business can go on as
usual without the user worrying about the work-
ings of the blocking applications.

4.5.3 Performance and security

Both NetNanny and SurfWatch work with site
lists as a basis for blocking, so there is a similar
impact on performance. Matching is quite simple,
not causing any noticeable communication delay.
PureSight analyses each accessed page to deter-
mine the type of content, resulting in a delay,
more or less noticeable, before displaying or
blocking the page. Introducing demanding proc-
essing in the content stream usually has this ef-
fect, an issue that must be dealt with when client-
side proxies are involved.

There could be indirect security gains by using
blocking applications, as was the case with the
news filtering applications. Blocking access to
and downloads from distrusted sources should
prevent hostile attacks, at least from these spe-
cific sources. In addition, NetNanny can monitor
and protect personal information such as ad-
dresses, credit card numbers, social insurance
numbers, etc. Since NetNanny is not a proxy, this
clearly is not an automatic proxy advantage.

However, a proxy can also be useful in these
matters, as we have seen.

4.5.4 The proxy advantage

Like Freedom, the anonymising proxy described
earlier, one of the major advantages of the proxy
approach in this context is that it is not necessar-
ily HTTP-centric. Although the Web is the most
accessible part of the Internet, material that
someone wants to block might as well reside on
for example ftp servers or in Usenet messages. A
proxy can provide transparent blocking of these
as well as web-based material, and both Pure-
Sight and SurfWatch do this. It is true that Net-
Nanny also can monitor different kinds of com-
munication, but it requires configuration for each
application it should monitor. This is a difficulty
not directly related to the issue at hand, but the
proxy approach provides smoother coverage of
different applications and protocols.

In its simplest form, content blocking is matching
of the address of a requested page with entries in
a database of questionable sites. If this was all, a
proxy approach might not be justifiable. How-
ever, all applications examined here also make a
closer examination of the requested material in
search of trigger keywords or other indications of
unauthorised content. Not relying on site lists,
PureSight works closest to the content stream,
examining the content of requested pages to de-
termine whether they contain unaccepted material
or not. In contrast, the approach of NetNanny is
quite peculiar, since it requires the user to decide
which applications to monitor. This is a round-
about way to achieve the task; a task closely tied
to the actual content stream.

This concludes the task-oriented evaluation.
What has been found regarding the merits of the
client-side proxy approach and when it should
and should not be used will be examined from
other angles in the following sections.

16

5 Exi sting client -side proxies
While the focus of the last section was when and
why someone should use client-side proxies, this
section focuses on how the approach is actually
used. Specifically, the questions examined here
concerns the implementation of available proxies
and, if they do not fully realise the potential of
the approach, how they might have been imple-
mented. As a rough classification, these questions
deal with the external and the internal aspects of
client-side proxies. External is what is visible to
the end-user, mainly the user interface. The spe-
cifics of the internal aspects, including questions
about application architecture and performance,
are mostly of interest to advanced users, admin-
istrators, developers, etc, but also of some inter-
est to the end-user, since they affect the percep-
tion of usability and efficiency.

In addition to those examined in the previous
section, six new proxies enter the field for closer
examination. A4Proxy is a Windows-specific
anonymising proxy, functionally similar to the
Crowds proxy described in section 2 [A4Proxy
00]. Another acquaintance from section 2 is the
WebMate proxy providing browse and search
assistance [WebMate 99], again subject to scru-
tiny. ByProxy [ByProxy 98] and Muffin [Muffin
00] are extensible client-side proxies. Although
they provide predefined modules for different
processing tasks, the main feature is that they
allow third-party developers to extend the func-
tionality of the proxies by implementing modules
of their own. Muffin is limited to processing
HTTP streams, while ByProxy also has support
for the mail (SMTP) and news (NNTP) protocols.
WebMate, ByProxy and Muffin are all written in
Java and supposedly platform-independent.
While not entirely platform-independent, the
privacy-enhancing Junkbuster proxy at least has
open source-code [Junkbuster 99]. It blocks un-
wanted URLs, deletes unauthorised cookies and
removes HTTP headers that might identify the
user. Finally, Proxomitron is a client-side filter-
ing proxy targeted at HTML text and HTTP
headers, with both pre-configured filters and
support for creating additional filters [Proxomi-
tron 00]. Like A4Proxy, it is only available for
the Windows platform.

This examination will not consider every aspect
of every application. Of main interest are the
examples that stand out, for good or bad, and

these will be emphasised in the following sub-
sections.

5.1 User interaction
For many years, the desktop metaphor has been
predominant in computer-user interaction. With
the advent of the Internet, and especially the
World Wide Web, user interaction has partially
changed shape. Today, hypertext documents
viewed with Web browsers is a familiar and well
understood way of user interaction and many
applications and online services embrace this
method to provide advanced functionality. While
interaction is dependent on the relatively limited
expressiveness of the hypertext mark-up lan-
guage, it can provide a simple and consistent
interface to different types of services. In client-
side proxies it is possible to facilitate user inter-
action in several ways, since the proxy is neither
a pure stand-alone application nor a online serv-
ice, but rather a hybrid of the two. This section
explores different models of interaction, their
impact on platform/client independence and the
overall quality of user interfaces.

5.1.1 Interaction models
Apart from giving access to functionality and
configuration, one of the responsibilities of the
user interface is to communicate the state of the
application to the user. In general, this means that
the user interface (or parts thereof) should be
visible near the client application and the proc-
essed content. Despite this, we have seen that
most of the client-side proxies examined rely on
application windows separate from the client
applications for user interaction. In a way, this is
natural, since it visualises the separation of proxy
and client functionality. From another viewpoint,
it is not so natural. Although there is a clear tech-
nological boundary between proxy and client,
this boundary might not seem so obvious to the
end-user. Rather, there is often a close semantic
relationship between the processing of the con-
tent stream performed by the proxy and presenta-
tion in the client application. Possible ways to
visualise this relationship is to integrate the user
interface with the client application or embed it
in the requested document. One obvious require-
ment is that the content protocol or client appli-
cation supports this.

There are exceptions to the principle of visibility,
for example concerning content blocking (Pure-

17

Sight, SurfWatch) and other prohibiting or
monitoring applications. In applications like
these, designed for almost complete transparency,
the end-users have no need (or business) to ac-
cess the inner chambers of the application.
Rather, the users should be more or less unaware
of the fact that the applications are performing
their duties, only revealing themselves when the
user tries to do something unauthorised.

On the next step on the visibility ladder, we find
applications like Freedom and WebWasher. They
work actively with the content stream but without
requiring incessant monitoring and without pro-
ducing any additional information apart from the
processed content. It might be enough for these
kinds of applications to indicate that they are
functioning properly. The Windows-specific
applications show this via icons in the Windows
system tray (figure 6). Granted, this is a highly
platform-specific
feature, but a
user-friendly one
since a simple
mouse click can
give access to the
full user interface.

By necessity, this level of visibility must also
suffice for another class of proxies, for example
ByProxy, A4Proxy and NewsProxy. ByProxy
and A4Proxy work with multiple types of content
and protocols, a diversity that makes it nearly
impossible to use any other model of interaction
than separate application windows or client de-
pendant integration. The same applies to the sin-
gle protocol proxy NewsProxy, since the news
protocol do not support any reasonable way to
incorporate the user interface in the content
stream.

For other proxies, the user interface should be
close to the workspace of the user, providing
immediate feedback and configuration. However,
since most examined applications use their own
windows for interaction, this is not the case. SE-
LECT, Proxomitron and Muffin are examples

that use application windows although the con-
tent they work with makes it possible to use and
adapt the actual content stream for user interac-
tion purposes. The content involved is mainly
HTML documents, where the protocol and the
content language allow applications to interact
with the user through the content stream. Focus-
ing even more on hypertext documents, which
predominantly means Web pages, using the con-
tent stream for user interaction provides three
major alternatives to do this with the aid of Web
browsers. Integration might be supported by pre-
senting the user interface in a separate browser
window, a separate frame or directly in the re-
quested document. Using a separate browser
window has drawbacks similar to those of sepa-
rate application windows - they might not catch
the attention of the user or some other application
might cover them. A covered window is mainly a
problem for novice users, since they are not al-
ways aware that the windows represent a three-
dimensional space. As opposed to integrated
interfaces, with separate proxy windows it is
possible for a user to arrange the desktop freely.
Dedicated windows also ensure that requested
documents are unaltered, as long as the function-
ality of the proxy does not involve content adap-
tation. However, separate windows do not facili-
tate a close union of user interface and content.
Of the possible ways to integration, the only one
utilised by any of the proxies in this examination
is embedding the interface in the requested
document. WebMate inserts a controller applet
(figure 7) at the bottom of each requested page,
allowing the user to access the user interface in a
separate applet window (figure 8). There is also a
stand-alone application window for the admini-
stration of basic proxy functionality, but all func-
tionality directed to the user is accessible via the
controller applet.

Figure 6. WebWasher in
the Windows system tray.

Figure 8. WebMate main interface.

Figure 7. WebMate controller applet.

18

It could be possible to embed the interface in
other types of content. A user might for example
interact with an underlying proxy through e-mail
messages. In situations where it is important that
the user is not interrupted and where interaction
can be asynchronous, this could make sense.
However, direct interaction is preferred in most
cases, and "normal" user interfaces provide a way
of interaction that is undoubtedly more intuitive.

Muffin and ByProxy also use their own windows
but since they are extensible, it is possible for
third-party developers to provide closer integra-
tion of user interface and processed content, at
least for some modules. This is especially true for
Muffin, being an HTTP-only proxy. ByProxy
works as a proxy for multiple protocols, making
it harder to provide interfaces integrated through
the content stream unless the extension module
focuses solely on HTTP processing.

5.1.2 Integration, separation and
independence

The choice of interaction model also has impli-
cations on the client-independence of the appli-
cation. Proxies that integrate their user interface
with the client application are mostly more de-
pendent on the capabilities of specific clients than
those that use their own application windows.
WebMate and SELECT are two examples of this,
since they use Java applets and/or JavaScript
embedded in the requested Web document as part
of their user interface. Although the most popular
browsers available today support these technolo-
gies, other browsers do not. A high degree of
both integration and client independence requires
the user interface to be described in the basic
language supported by the client application.
Fulfilling this demand is most feasible in the
context of the Web and Web browsers, but incon-
sistent support for various HTML features can
still make the user interface unsuitable for some
clients. To achieve complete client independence,
a clear separation of the proxy user interface and
the client application is necessary.

As we have seen, separation is the approach used
by the majority of existing client-side proxies
examined in this work, while none uses pure
HTML interfaces. Junkbuster is a proxy whose
only attempt at a user interface is pure HTML,
but this is merely a summary of version informa-
tion and some variables that has been set during
initialisation. To configure Junkbuster, the user
must edit the configuration files manually.

The choice of interaction model also has impli-
cations on the dependence or independence of
specific operating system platforms. An interface
using native graphical functionality and compo-
nents is not platform-independent. An application
limiting itself to interface components readily
available in the graphical toolkits of diverse plat-
forms might be more portable and less platform-
dependent. For example, applications using the
Windows-specific system tray are probably more
platform-dependant than those that do not. Inter-
faces implemented in languages like Java or
HTML is certainly more independent, but they
are still limited to platforms that support the cho-
sen implementation technique. In reality, all ma-
jor platforms have the ability to display HTML
and, perhaps to a lesser extent, Java interfaces.
However, a decision not to use platform-specific
components and functionality can have other
effects on the overall quality and usability of the
interface.

5.1.3 User interface quality

The quality of the interface has obvious impact
on the usability and perceived complexity of user
interaction. So what is a good interface? One
determinant of a good interface is to what extent
it fulfils the expectations of the user. If an inter-
face complies with the look-and-feel of the un-
derlying operating system, most users will con-
sider it good enough since they are accustomed to
similar environments. The standard interface
components provided by operating systems more
or less force platform-dependent interfaces into
the appearance mainstream, thus introducing an
element of standardisation. While this does not
guarantee a high quality interface, at least it guar-
antees that users will not be completely confused.
Let us consider some aspects of this, borrowed
from Microsoft's user interface guidelines for
Windows applications [Microsoft 00].

The first assumption is that the best interface is
no interface. Instead of relying on interaction, the
application just works, which in the end is what
the user wants. A good example is the pornogra-
phy blocker PureSight. Relying on computation
rather than interaction, there is generally no need
for the user to interact with the application. There
is also the no-interface paradigm used by many
UNIX-style applications, basing interaction on
command-line arguments passed to the program
at start-up, and by manual editing of configura-
tion files. The Junkbuster proxy illustrates the

19

approach. For a user that is familiar with this
milieu, it can be a usable interface, perhaps a
parallel to keyboard short-cuts in graphical envi-
ronments. However, for users accustomed to the
graphical interfaces, these console applications
can be very frustrating to use. They give virtually
no visual aid regarding the functionality of the
application.

If there has to be a user interface, strongly fo-
cused applications are normally easier to manage
and configure, as has already been stated in the
previous examination of the news filtering proxy
NewsProxy. This is also true for other proxies
with tasks limited to a specific area, such as
WebWasher and SurfWatch. A strong focus is
imperative to create a simple interface, concen-
trating on essential functionality and promoting
fast initial learning. To different degrees,

Proxomitron, WebWasher, SurfWatch and Pure-
Sight all live up to this, having focused tasks and
providing familiar environments with default
configurations that allow a user to start use the
application quickly and worry about the details
later. Like WebWasher, A4Proxy provides access
to all functionality in a single window, with a
tabbed dialog to navigate through different con-
figuration windows. However, the contents and
presentation of the different windows are diverse,
lending a certain degree of complexity to the
interface.

The extensible proxies, Muffin and ByProxy, are
generally harder to configure. The main reason
for this is that, apart from configuration of the
base application itself, it also requires installation
and configuration of different third-party exten-
sion modules. Relating to many, possibly very

Figure 9. Interface samples from Muffin and WebWasher.

20

different tasks, it is difficult to maintain a con-
sistent configuration view, thus increasing the
complexity of the process. For example, the Muf-
fin interface is extensive enough, but not as con-
sistent and easily understood as the WebWasher
interface (figure 9). The total amount of configu-
ration needed might not differ that much between
focused and extensible proxies, at least not if the
user wants to create aggregate behaviour with
multiple single-task proxies. In such situations,
the overhead of configuring several different
applications adds to the complexity.

No matter the task, it is important that the user is
in control of what happens. A good example is
the Proxomitron proxy, where the user has easy
access to functionality and can control what the
proxy does to the content stream. Filter rules are
accessible in table-like lists, with checkboxes to
enable or disable them. Clicking on a rule brings
up a dialog where the user can edit the behaviour
of the specified filter. On the other side of the
control spectrum is Junkbuster, allowing no run-
time interaction whatsoever. Command-line ar-
guments, raw text configuration and restarting to
apply changes do not give most users a sense of
control.

PureSight, Proxomitron, WebWasher and the
other operating system-specific proxies use plat-
form-native interfaces, which generally are faster
and more responsive than platform-independent
solutions. Java interfaces suffer from the over-
head of the virtual machine, and the connection
between proxy and client needed for HTML in-
terfaces introduce communication overhead. The
Java-based proxies show this clearly, since the
interfaces of SELECT, WebMate, Muffin and
ByProxy are all slower and less responsive than
their platform-native counterparts.

Another thing that determines the perceived
quality of an interface is the way it handles dif-
ferent modes. An application is in a special mode
when it displays for example a dialog window
that demands user attention before it is possible
to continue normal operation. The ideal solution
is a modeless interface that never interrupts the
user. WebWasher exhibits such an interface,
while the common case is that interfaces occa-
sionally force a switch of mode. If this is neces-
sary, the mode should at least be obvious and
visible, such as file dialogs. A bad example of
modal behaviour is the Muffin proxy. During
configuration, numerous different windows

might be opened, causing confusion as to what
mode the application is currently in and what the
results of an action will be.

For a user to feel in control of application be-
haviour, the interface must also provide direct-
ness. A user should be able to manipulate infor-
mation directly within the application, and the
interface should give access to all of the applica-
tion's functionality and configuration options.
This is normal behaviour for user interfaces,
since their purpose is to be the link between user
and application. Accordingly, a majority of the
examined proxies provide access to the full spec-
trum of relevant information directly through
their interface. However, some proxies store im-
portant information in configuration files separate

Figure 10. Consistent within the operating
environment - PureSight and Proxomitron.

21

from the application and the only way to access
the information is through manual editing. Most
notably, this applies to Junkbuster, having no
interface, and NewsProxy, where the interface
does not facilitate filter configuration. Available
and visible information and presentation of pos-
sible choices reduce the reliance on a user's abil-
ity to recall the right actions. It is easier to recog-
nise the appropriate actions, and directness in an
interface thus alleviates the mental burden of the
user.

That it is easier to recognise something than to
recall it from memory leads to the next ingredient
of a good user interface, consistency. There are
two levels of this, consistency within the appli-
cation and consistency within the operating envi-
ronment. If an application is consistent with the
general look-and-feel of the surrounding operat-
ing system, users already accustomed to this en-
vironment can transfer their existing knowledge
to new software. A familiar and predictable inter-
face facilitates quicker learning, which enables
the user to focus more on the task at hand. Plat-
form-specific proxies generally look and behave
like other applications on the same platform (fig-
ure 10).

Freedom, SurfWatch, A4Proxy, Proxomitron,
PureSight and other applications that are consis-
tent within the operating environment have a
lower learning threshold than for example Java-
based applications. Since the Web also has be-
come a familiar environment for many users,
hypertext interfaces have a similar advantage.
Although the interface does not look like the
surrounding operating system, it looks like other
Web documents. Users that understand the design
of the Web will consider the interface consistent
within its environment. In contrast, consistency is
not a common characteristic of platform-
independent Java applications. The applet inter-
face of WebMate and the stand-alone Java inter-
faces of SELECT, Muffin and ByProxy lack the
common design style that is one of the strengths
of platform-specific applications. Although stan-
dardisation is not the only path to usable inter-
faces, it is de facto very important.

Following general design guidelines, environ-
ment-consistent applications are in general also
consistent within themselves. This level of con-
sistency requires that command names, presenta-
tion style, behaviour of operations, placement of
elements, etc remain the same throughout the

interface. An example of inconsistent behaviour
is the rating buttons of the SELECT proxy. In the
minimal rating interface, the buttons are located
at the top of the window, which is inevitable
since the window contains only these buttons and
a button to expand the interface. When a user
expands the interface, the rating buttons suddenly
are close to the bottom of the window, creating
an unnecessary inconsistency in the interface.

Users also expect some kind of response on the
actions they perform, and application developers
should make the effort to provide noticeable
feedback on user actions. Again, the normal be-
haviour of the examined proxies is to provide
feedback, communicating application status
through messages, animations, etc. As usual,
there are also exceptions. Editing filter rules in
NewsProxy does not result in immediate re-
sponse, since editing is separate from the appli-
cation. To detect syntactical errors in the edited
rules, the user has to restart the application. An-
other "feature" of systems with lacking feedback
is frozen screens. The SELECT proxy demon-
strates this. Whenever network communication
takes place, the interface dies and is not resur-
rected until (and if) the communication is fin-
ished. Another annoying detail is that when a
user switches between the minimal and the com-
plete interface, the interface completely disap-
pears for quite a while before it appears again.

The major determinant of a good interface is
simplicity, providing smooth access to the com-
plete functionality of an application. Extensive
functionality might work against simplicity, and
interfaces that maintains a strong focus and re-
duce the available information to the base re-
quirements are generally simpler and more usable
then more complex interfaces. For a proxy, the
base requirements might be no interface at all,
since proxies mostly run in the background. De-
pending on the task and the additional informa-
tion produced, the interface design is more or less
important to the proxy user. Nevertheless, even
proxies providing completely transparent run-
time services require installation and some con-
figuration. A well-designed interface is always
better than a poorly designed, even if it is seldom
used.

22

5.2 Application architecture
Just like with people, interior qualities are harder
to evaluate than exterior. It requires an in-depth
examination of what happens inside to get a thor-
ough understanding. Gaining such an under-
standing of computer software internals requires
study of application source-code or detailed sys-
tem documentation. This poses a problem, since
sources or documentation might not be readily
available, especially for commercial systems. The
extent and complexity of source-code also makes
the task time-consuming beyond the limits set by
the scope of this work. With this method dis-
qualified, a black-box approach must suffice,
looking at the outer signs to draw conclusions
about the architectural issues regarding client-
side proxies.

5.2.1 Monolithic or modular

One architectural issue is whether the application
is modular or monolithic. Somewhat simplified, a
monolithic application consists of one large ap-
plication file, while a modular application is split
into different modules with specialised function-
ality. Modular applications create links to exter-
nal modules dynamically, while running. Appli-
cations built with statically linked modules at
compilation time are not modular. In the context
of this section, a modular application is one that
uses dynamic linking. Among other things, the
choice between static and dynamic linking has
impact on application efficiency and ease of up-
dating.

Of the examined client-side proxies, Junkbuster
seems to be the only monolithic application, al-
though built from modular source-code. Other
applications might seem monolithic at a glance,
but they probably use dynamic linking of plat-
form-specific libraries, for example to gain ac-
cess to graphics and network functionality. It is
difficult to be certain of this using a black-box
approach, but it is standard behaviour for modern
platform-dependent applications. What is certain
is that the Java applications SELECT, WebMate,
Muffin and ByProxy are modular. All linking is
dynamic in Java.

A modular approach could facilitate run-time
loading and unloading of functional modules. By
loading only basic functionality at start-up, appli-
cation initialisation might be considerably faster.
Loading additional functionality only when de-
manded could lessen the application's overall use

of memory and processing power. However, the
overhead introduced by dynamic loading might
have negative effects on performance, and
monolithic applications are generally faster. For
Java applications, with both completely dynamic
linking and dependence on the virtual machine,
performance is often a problem. On the good
side, a modular, dynamically linked application
might be easier to update, since it does not need
complete reconstruction after every update. This
is particularly apparent in Java environments.
Simply replace a class file containing a certain
module with an updated version, restart the ap-
plication, and the changes take effect. Easy up-
dates of individual modules can improve the
overall stability of an application. Of course, an
updated module can also introduce new problems
resulting in serious errors in dynamically linked
environments, while the compiler might have
discovered the problem at compile time in a
monolithic application.

5.2.2 Transparency

Designed as invisible middlemen working to
improve the perceived performance of network
communication, a major feature of the original
proxy servers is transparency. Transparent serv-
ice is also a trademark of the more versatile cli-
ent-side proxies examined in this thesis. To be-
have as was originally intended, a proxy should
perform its duties without drawing attention to
itself. Monitoring and adaptation of the content
stream should be invisible or appear as part of the
functionality of the client application or operating
environment. Ideally, the user should forget
about the proxy once it is started.

Freedom, PureSight and SurfWatch provide the
most transparent service, working with the low-
level network functionality of Microsoft Win-
dows. They access the content stream directly
through the operating system, offering easy in-
stallation and complete transparency. There is no
need to configure specific client applications
since the operating system automatically moni-
tors all communication on behalf of the registered
proxies. The obvious gain is that no communica-
tion can bypass the proxy, but the downside is
that a user can not decide to exclude some par-
ticular client application from proxy interference.
Due to the smooth low-level integration with the
operating system and the fact that these applica-
tions do not produce additional information sepa-
rate from the content stream, a user can normally

23

ignore their existence. After installation and con-
figuration, the single-task filtering proxies
WebWasher, Proxomitron, A4Proxy, Junkbuster
and NewsProxy are equally unobtrusive. How-
ever, they rely on intra-machine communication
for their functionality, which normally requires
manual configuration of different client applica-
tions to make them send their requests through
the proxy. While making installation slightly
more complex, it lets the user decide which cli-
ents to subject to proxy processing.

In the end, the task performed by the proxy de-
termines whether true transparency is possible.
The basic architecture of a proxy server provides
transparency, but if a developer builds function-
ality that requires user interaction on top of the
proxy, there is no guarantee for transparency. The
extensible proxies Muffin and ByProxy exem-
plify this. The basic proxy functionality is run-
ning in the background, invisible to the user. An
extension module has the option to be as trans-
parent as the surrounding application, but it can
also supply functionality that demands the user's
attention. For example, the SELECT proxy for
collaborative rating is built on top of Muffin.
However, since this task clearly demands user
interaction, the SELECT proxy is less transparent
than Muffin and the average proxy. Although
WebMate also requires interaction, it is more
transparent. By providing interaction through the
client application, it might seem to the user that
the client environment and not a separate appli-
cation provide the functionality. However, confu-
sion might arise if the user moves to a machine
where the proxy is not installed. Contrary to ex-
pectations, the client application does not provide
the anticipated functionality. This is a problem
common to all transparent services and applica-
tions, whether they are proxies or not.

5.2.3 Sophistication through aggregation

Most proxies focus on a specific task, such as
breaking animation, removing personal informa-
tion from requests, filtering, etc. A user might
want to submit the content stream to many types
of processing before it reaches the client applica-
tion and for this, the proxies must have some
support for aggregation.

Chaining is one way to support this, meaning that
the output from one proxy is the input for an-
other. Communication passes through multiple
proxies on the way between client and server
(figure 11), making the aggregate functionality of

all proxies available to the user. This is the most
common way to support aggregation, probably
because the basic requirement is simply to
change the network port (and optionally, the
host) through which communication flows. All
examined proxies except ByProxy and
NewsProxy support chaining. SELECT does not
seem to support chaining either, although it is
based on Muffin which has chaining support.
A4Proxy is not so straightforward regarding
chaining, since its task involves relaying requests
through external, privatising proxies. With the
option to set a default relay proxy, chaining of
local proxies is possible, but not a wise choice.
To ensure privacy, the A4Proxy must be last in
the chain, applied to communication just before it
leaves the local machine. In this way, the proxy
can relay communication through any remote,
anonymising proxy it wishes.

Order could be important in proxy chains. A pri-
vacy-enhancing proxy should be the last stop
between the client and the remote network. It also
makes sense that a content blocking proxy per-
forms its task before the document is processed
by other proxies. Normally, users can control the
chaining order by configuring the individual
proxies. Although Freedom, PureSight and
SurfWatch support chaining, close platform inte-
gration hides this aspect of configuration from
the user. It is not possible for a user to decide in
which order to apply these proxies to the content
stream.

Chaining of proxies is a simple and well-
supported way of aggregating behaviour. It does
require configuration of multiple applications and
it could be bad for performance, as will be dis-
cussed later. An alternative is to support aggre-
gation through extensibility, an approach we
recognise from the Pavilion framework in section

Figure 11. Proxy chain between client and server.

24

2. An extensible proxy allows developers to im-
plement plug-in modules to extend proxy func-
tionality. This supports aggregate behaviour
without configuration of multiple applications
and without the overhead of communication be-
tween chained proxies. It is also possible to apply
extensions in a user-defined order, and since
configuration is limited to one application,
changing the order is probably simpler in exten-
sible environments. Apart from some client-side
proxies, many different applications use this ap-
proach to enable third-party developers to extend
the basic functionality of the application.

What distinguishes an extensible application is
that it allows dynamic loading of extension mod-
ules, modules possibly developed long after the
first release of the application. A developer only
needs to know about the application's program-
ming interface and nothing about implementation
particulars. With this knowledge, the developer
can develop functionality extensions using the
full expressiveness of supported programming
languages. ByProxy and Muffin are the only
extensible proxies in this examination, and their
support for third-party extensions is the topic of
the next subsection.

5.2.4 Development of third-party extensions

The extensible proxies Muffin and ByProxy are
both implemented in Java, which is probably no
coincidence. A basic requirement for extensibil-
ity is dynamic loading of extension modules, and
Java has built-in support for run-time loading of
classes. In addition, Java interfaces make it easy
to enforce that an object provides the methods
required of an extension module, regardless of
module internals.

In Muffin, a developer must provide a FilterFac-
tory that among other things maintain the state of
the application between sessions, with the help of
configuration functionality supplied by Muffin.
As the name implies, the factory also supplies
Muffin with Filter instances that receive and
process content. What aspects of the content a
filter can access depends on what interface(s) it
implements. A ContentFilter can process re-
quested documents directly through the stream
flowing between client and server. A HttpFilter
can intercept requests and send anything back to
the client and a RedirectFilter intercepts a request
and redirects the client to another resource. A
ReplyFilter filter replies from remote servers, and
finally, a RequestFilter does the same with client

requests. Muffin pre-parses the content stream to
give developers easy access to the information of
the stream, creating Reply and Request objects
that encapsulate header information from client
requests and server replies. The content stream is
transformed from the original byte-stream format
to a stream of specialised objects providing high-
level access to the HTML content, such as tags,
tag attributes, character data, etc.

Instead of using internal streams, ByProxy reads
the stream into byte-buffer objects. For reading
and writing header information, ByProxy pro-
vides high-level reply and request objects, named
BrowserRequestHeader and ServerDocument-
Header. In addition, ByProxy provides Incom-
ingEmail and OutgoingEmail objects, encapsu-
lating mail-specific information. Through these
objects, an email filter can easily access message
headers, content body, server information, etc.
There are no news-specific objects. Instead of
using predefined interfaces, a ByProxy extension
specifies the types of objects it is interested in
processing. For example, a filter can specify that
it wants access only to IncomingEmail objects,
and when the proxy receives an email, it calls the
sniff method of extensions with registered inter-
est in the object. The sniff method should be
available in an object called a sniffer. The sniffer
is responsible for acting on or manipulating the
data it receives from a so-called proxy agent. The
agent handles communication monitoring, and
notifies the sniffer when it encounters something
of interest. There is no interface to enforce the
existence of the sniff method, but it must be
available for ByProxy to function properly.

One of the major arguments for extensible solu-
tions is to increase the productivity of third-party
developers. Since the basic proxy functionality is
available through the base application, a devel-
oper does not have to worry about the miscellany
of the underlying technology. Indeed, this is a
trademark of all layered solutions, such as oper-
ating systems, network protocols, etc. It also
means that the overall application can evolve and
become more attractive without constant in-
volvement of the original developers. To increase
the productivity of third-party developers, there
must be a stable and understandable framework
in which to develop extensions. Muffin's consis-
tent use of interfaces ensure some degree of sta-
bility, while ByProxy's lax approach could result
in serious run-time errors. Well-documented
interfaces also visualise what is required of an

25

extension module and because of this, it is proba-
bly quicker and easier for a third-party developer
to produce extensions for Muffin than for By-
Proxy. The strength of ByProxy is that it is multi-
lingual, allowing developers to process several
types of content within the same application envi-
ronment.

Neither Muffin nor ByProxy provide a user inter-
face specialised for presentation of processing
results. They do provide a graphical interface for
configuration, but the extension module itself
must supply any other interface. Although a
module that process HTML content easily can
display what it wants in the processed docu-
ments, the lack of interface support has potential
negative effects. Several filters adding their in-
formation will clutter the requested document,
developers creating their own interface will expe-
rience productivity loss, and modules without
interface could be less user-friendly.

5.2.5 Platform independence
The client-side proxy architecture is not inher-
ently platform-independent. A proxy relies on the
same more or less platform-dependent program-
ming languages and operating environment func-
tionality as other solutions. Nonetheless, there are
four discernible levels of platform-independence
exhibited by the proxies in this examination.

On the first and most independent level, we find
the Java applications. SELECT, WebMate, Muf-
fin and ByProxy can run virtually unchanged on
any machine with a proper virtual machine in-
stalled. In theory, they are platform-independent,
but in reality, they are dependent on platforms
with Java support. Despite this, they are more
independent than any application targeted at a
specific platform, since the virtual machine
shields them from the particulars of the underly-
ing operating system. On the next level, Junk-
buster and NewsProxy are more platform-
dependent, but since their source-code is avail-
able, they are at least portable to different plat-
forms. As already discussed, porting is not a
trivial undertaking and most users are limited to
the pre-ported versions. However, as the Linux
operating system and the GNU software has
shown, open source projects tend to attract third-
party developers whose effort results in avail-
ability for more platforms than the commercial
alternatives.

The third level houses Proxomitron, WebWasher
and A4Proxy. Although tied to the Windows
platform, they behave as standard proxies and
communicate through local network ports. This
kind of network functionality is common across
different platforms, and these applications should
be portable without extensive structural changes.
This is probably not the case with Freedom,
SurfWatch and PureSight, all depending on plat-
form-specific network functionality provided by
the Windows operating system. They access the
content stream directly through the operating
system, a possibility that is not as common, or at
least not as consistent, as the socket communica-
tion used by other proxies. Freedom, SurfWatch
and PureSight constitute the fourth level, being
thoroughly platform-dependent.

Regardless of the platform-independence of a
specific proxy application, proxies are mobile.
They can be located on the client machine, on a
local network or anywhere on the Internet, and
still be accessible to the user. Therefore, moving
a proxy to a computer on the network where it is
executable makes a platform-dependent proxy
independent, at least in the eyes of the user. An
obvious requirement is that the proxy has no user
interface or the ability to display the interface
through the content stream, such as Junkbuster or
WebMate. However, moving the proxy to the
network has negative side effects. Some of the
benefits of a local proxy are lost, such as the
ability to enhance user privacy before communi-
cation leaves the client machine, and the possi-
bility to utilise local processing power for de-
manding tasks. In addition, network-based prox-
ies will probably be multi-user systems, adding
the complexity of multi-user environments to
development and administration.

5.2.6 Performance impact

The introduction of proxies between server and
client will have impact on performance, primarily
through increased response times. Several factors
influence the degree of performance degradation.
If the goal of the proxy is to improve perform-
ance, the gains of processing should obviously
compensate for the cost. The only proxy for per-
formance enhancement in this examination is
WebWasher. By removing advertisements from
requested Web pages, WebWasher clearly im-
proves the overall performance. The proxy elimi-
nates requests for ads from busy servers, result-
ing in faster retrieval of Web documents.

26

Another factor is the simplicity of the task. Sim-
ple processing has less impact on performance.
One example is the relatively straightforward text
matching used by Proxomitron, SurfWatch,
Junkbuster and NewsProxy. While simplicity is a
way to minimise performance loss, it generally
leads to less sophisticated behaviour. In cases
where the processing is more demanding, asyn-
chronous processing might be a way to alleviate
the performance impact. This is the approach
used by SELECT and WebMate, since they only
need a quick glance at document-specific infor-
mation. After extracting this information, the
proxy releases the content stream to the client
application and continues its processing. Obvi-
ously, there is a period of waiting before the
processing results are available, but it allows the
user to view the document while waiting. Al-
though the overall loss in performance might be
considerable, it is not as noticeable as when all
processing must be finished before the document
can be displayed.

Where asynchronous processing is not possible,
performance could certainly be a problem. Ex-
amples are Freedom and A4Proxy, since they
encrypt communication and/or introduce privacy-
enhancing detours from the optimal path between
client and server. The porn blocker PureSight can
not use asynchronous processing either, since the
content analysis must be done before deciding
whether to show or to block the requested docu-
ment.

Chaining multiple proxies for aggregate behav-
iour might have considerable impact on perform-
ance, since chaining requires socket communica-
tion between different proxies and all content
processing is lost at each movement along the
chain. For example, a proxy could adapt the
content to simplify processing. Before sending it
to the next proxy in the chain, the application
must restore the content to its original state, and
every proxy in the chain might repeat this proce-
dure of parsing and restoring. From the perform-
ance viewpoint, the extensible approach of Muf-
fin and ByProxy could be preferred, since it only
performs pre- and post-processing of the content
once. However, most client-side proxies do not
support extensibility, and even those that do
might maintain the view of the content as a data-
stream. Such a proxy uses internal streams to
give extension modules access to the content.
This means that a stream is sent to a module,
which parses it and writes the result to another

stream that is passed to the next module, and so
on, until all modules has had access to the con-
tent. This is clearly inefficient compared to
building a higher-level data structure from the
stream and passing pointers to the structure to the
interested modules.

Apart from simplifying the task and use extensi-
bility rather than chaining, there are other ways to
minimise the performance impact. Caching of
documents comes to mind, since it is a function
many ordinary proxies provide, but none of the
examined proxies use internal caches of any so-
phistication. Moving ahead of the user to fetch
documents that has not yet been requested is
another way to improve at least the perceived
performance. Pre-fetching increases the overall
network traffic, but performance will probably
improve for users following links in Web docu-
ments. WebMate provides pre-fetching of docu-
ments.

While caching, pre-fetching and other perform-
ance-enhancing methods could be valuable in a
single-proxy environment, they might cause
problems in multi-proxy chains. If several prox-
ies attempt to cache or pre-fetch documents the
results are likely to be confusing and inconsis-
tent. From this viewpoint, it is understandable
that the performance-enhancing functionality
provided by some of the examined proxies is
limited to maximise the performance of the indi-
vidual proxy. For example, the Freedom proxy
allows the user to set the length of the privacy-
enhancing detour in favour of either performance
or security, and PureSight has the ability to re-
member previous processing results so that the
same page does not have to be processed every
time it is accessed.

Up to this point, we have mapped out the terri-
tory of client-side proxies. Now it is time to leave
already trodden paths, and step into hitherto un-
known domains. The next section introduces
Blueberry, a prototype proxy extension. Al-
though deeply rooted in the proxy environment, it
stretches the boundaries set by other client-side
proxies appearing in this work.

27

6 Blueberry
Developed as a part of this thesis, Blueberry is a
framework for processing the content of Web
documents. Building on the proxy functionality
of the extensible Muffin proxy, Blueberry pro-
vides an environment for swift and simple devel-
opment of extension modules. This section also
introduces BackLink, an example extension
module. Blueberry is provided to visualise ideas
about the implementation of client-side proxies,
and not as an exercise in imaginative algorithms
or a showcase for pretty programming. Hence,
this section merely gives an overview of compo-
nents and functionality. Readers interested in the
details are invited to review the application,
source-code and package documentation, avail-
able online [Blueberry 00].

6.1 Goals and design choices
As noted in the previous section, the extensible
proxies Muffin and ByProxy do not provide an
interface close to the content. Since an extensible
proxy can contain modules with diverse func-
tionality, a consistent and intuitive user interface
is important. The first goal of Blueberry is to
provide such an interface, a decision that rests on
the assumption that content processing requires
user interaction. A common look-and-feel for the
proxy environment both helps and forces devel-
opers to provide user interaction that is consistent
within the Blueberry environment. Consistent
interaction helps users manage the configuration
of multiple extension modules. Another assump-
tion is that content processing produces addi-
tional information of interest to the user, and
hence requires an interface that can display the
information.

The second goal is to provide a solution that is
both integrated with the client application and
effectively client-independent. The choice of
integration rather than separation follows from
the decision to provide an interface. Since there is
an interface, this should be close to the work-
space of the user, visualising the relationship
between processing and presentation. In the con-
text of Web documents, the workspace is the
browser. The common denominator of all brows-
ers is HTML and Blueberry will provide a pure
hypertext interface. The next choice is whether to
display the interface in a separate browser win-
dow, a separate frame or embedded in the docu-

ment. Separate browser windows have similar
drawbacks as stand-alone application windows,
and probably require Java or JavaScript to func-
tion properly. Inserting the interface in the origi-
nal document is the easiest way to integration,
but it destroys the intended layout of the docu-
ment. What remains is to present the interface in
a separate browser frame. This minimises the
impact on the original document, makes it easy to
distinguish the requested document from the
interface, and it is still close to the user's working
environment.

The third goal is to increase the productivity of
third-party developers. Providing a ready-to-use
interface is one way to do this, high-level access
to the content is another. Muffin works with
streams of high-level objects, and ByProxy
works with byte-buffers. Both these approaches
require extension modules to perform additional
parsing to access the required content elements.
The approach of Blueberry is to build a high-
level data structure from the content stream,
maintaining the internal hierarchy exhibited by
HTML documents. Extension modules access the
structure through object references, references
that point directly to the type of content the mod-
ules are interested in. There is no need for addi-
tional parsing, and it is easy to navigate the
nested hierarchy of each structure element. This
should also prove beneficial to the overall per-
formance of the application, but to some extent,
the more demanding parse algorithm and the
complex data structure lessen the gains.

As a side effect of these design choices, Blue-
berry is practically platform-independent, since it
relies only on Java and HTML.

6.2 Limitations
An obvious limitation is that Blueberry only sup-
ports processing of Web content. Request and
reply headers, request redirection, and other de-
tails of HTTP communication are not accessible
through Blueberry. However, the underlying
Muffin proxy supplies this functionality. A Blue-
berry extension could choose to also implement
the interfaces required by Muffin and register
itself as a Muffin filter, thereby gaining access to
these parts of the communication. Neither Blue-
berry nor Muffin supports non-HTTP communi-
cation.

28

The most notable deficiency is that Blueberry
does not handle framesets or internal frames well.
In the context of content processing, the content
of framed documents is more interesting than the
enclosing frameset document. At this point, there
is no solution to the problem of treating framed
documents as a single entity. In a best-case sce-
nario, frame documents display correctly but will
not be subject to processing. Following links in
framed documents will probably cause problems,
and nested framesets are never displayed cor-
rectly. Until this is resolved, behaviour regarding
frames is unspecified and unstable.

Since Blueberry is a prototype implementation
and not a production-quality release, there are
inevitably other limitations. The functionality is
not thoroughly tested, and there might be bugs
and inconsistencies in the basic application and
the programming interface for third-party devel-
opers. The code is not optimised for performance,
although it should run well on most contempo-
rary machines.

6.3 Blueberry architecture
The Blueberry framework uses the extensible
proxy Muffin to provide its own extensible envi-
ronment. The major architectural components,
depicted in figure 12, are Blueberry itself, an
SGML parser and the programming interface for

extension modules.

6.3.1 Blueberry, a Muffin filter

Blueberry is an extension to the Muffin proxy.
The Blueberry class, implementing Muffin's Fil-
terFactory interface, the BlueberryFilter class that
implements the HttpFilter and ReplyFilter inter-
faces, and various helper classes constitute an
environment for content processing and user
interaction. The basic tasks are extension han-
dling, content parsing and user interface creation.

At initialisation, Blueberry loads all registered
extension modules into memory. As a module is
instantiated, it is queried for the element types it
is interested in processing. This decides what the
modules will get access to during the processing
phase. Through the ReplyFilter interface, Blue-
berry intercepts replies from remote servers. Re-
ply objects provided by Muffin give access to the
raw content stream, which is processed by the
SGML parser described below. The next step is
to traverse the hierarchical tree structure created
by the parser. For each HTML element in the
structure, extensions that have registered interest
in the element type are called upon to perform
processing before the tree traversal continues.

When the requested document is processed,
Blueberry transforms it to a frameset document;
the left frame contains the user interface and the
right frame the original document. The interface

Figure 12. Blueberry architecture.

29

gives the user control over the available function-
ality. Individual modules can be enabled, dis-
abled and configured (figure 13). Naturally, the
interface is re-created for each requested docu-
ment, and Blueberry collects the processing re-
sults of all enabled modules and presents them to
the user. General configuration of Blueberry is
also accessible from the interface frame; most
important is the extension administration. Exist-
ing modules can be re-ordered, enabled, disabled
or completely shut down, and new modules can
be loaded and configured (figure 14). It is also
possible to edit configuration files manually, but
all functionality is accessible from within the
client environment.

The interface is quite
large, as shown in fig-
ures 13 and 16. This
could be a problem,
especially with small
screens. The assumption
is that the information
provided is valuable
enough to justify this,
but it might be neces-
sary to reconsider this
choice or at least make
it possible to minimise
the interface. In addi-
tion, the vertical frame
might force users to
scroll horizontally to
view the main docu-
ment. This is clearly an
unwanted situation, and
a future enhancement

could be to let the user choose if the interface
frame should be horizontal or vertical. Finally,
Blueberry is not a transparent solution, at least
where transparency is equal to invisibility. How-
ever, it is transparent in the sense that it inte-
grates all its functionality within the browser
environment, making it appear as part of the en-
closing application.

Blueberry uses a simple protocol to support user
interaction through hyperlinks, HTML forms, etc.
All requests to a "magic URL" are intercepted
through the HttpFilter interface of Muffin. The
magic URL is http://blueberry.muffin/ by default,
but it is user-definable. To decide what should
happen, additional information is appended to the

URL. This information has syntax similar to
the queries created by the GET method of
HTML forms. Blueberry parses the informa-
tion and performs the desired action, either
directly or by delegating it to the extension
that initiated the interaction. This enables
specific modules to provide interaction of
their own, and it is also the method used to
communicate directly with the Blueberry
framework.

That Blueberry provides an environment for
both processing and presentation can give
third-party developers a sense of freedom,
since they can focus entirely on the specific
processing task performed by the extension.
Other developers might feel that the frame-

Figure 13. Blueberry user interface.

Figure 14. Blueberry configuration interface.

30

work is too prohibitive, since it forces extensions
to behave in a certain way, especially regarding
presentation of processing results. Indeed, it is
limiting to demand that modules present their
results as part of the enclosing Blueberry inter-
face, but this is a conscious choice. It is necessary
to circumscribe the freedom of individual devel-
opers to maintain a consistent interface.

6.3.2 SGML parser

The main vehicle for providing high-level ab-
straction and access to the content stream is a
SGML parser (figure 15), responsible for trans-
forming the content from a low-level byte-stream
to a high-level hierarchical data structure.

The basic building block of the structure is an
Element, encapsulating content elements and
their associated attributes. An element can encap-
sulate standard mark-up elements, comments,
character data, whitespace, and other types of
content that appears in an SGML document.
Since the structure is hierarchical, an element can
also contain any number of other elements nested
within its structure. The Element class provides
methods for navigating the nested elements,
finding specific elements, displaying elements,
etc. It is also possible to create Element objects
manually, for example by passing a string to the
constructor or by using the element and attribute
access methods.

While Element objects represent the actual con-
tent, a DTD object represents the data type defi-
nition, i.e. the grammar, applying to a certain
document. The DTD enforces these rules by
splitting the content into the components pre-
scribed by the grammar, and by making sure
nesting of elements is done according to the
rules.

The abstract DTD class supplies all functionality
for parsing and rule enforcement, making it easy
to tailor the parser for other languages derived
from SGML. A subclass must define nesting
rules and characteristics of tags, comments and
attributes in the specific mark-up language. The
HtmlDTD class extends the DTD class to provide
support for parsing HTML documents. At this
point, there is no strict enforcement of the HTML
data type definition, but rather a liberal parsing.
The goal is to preserve the look of the original
document, not to force it into syntactic correct-
ness.

Although the structure created by the parser gives
efficient access to individual elements, it makes
progressive processing impossible. In a stream-
based solution, already processed parts of the
content can be progressively delivered to another
proxy or to the user's client application before the
processing is complete. In the high-level tree
structure used here, the top-level elements are the
last to be completed. This means that Blueberry
must process the content completely before it can
be restored to its original shape and released,
which could have impact on the performance of
proxy chains.

6.3.3 Additional processors

A module wishing to process content within the
Blueberry framework must implement the Blue-
berryProcessor interface. This interface defines
the methods that a module must provide, of
which the most important are described here.

The handleElements method returns an array of
strings containing the types of HTML elements
the module wants to process. If a module regis-
ters interest in the anchor tag (A), the process
method of the module is called every time an
anchor appears in the content stream, with an
Element instance and the address of the proc-
essed page as arguments.

When a document is completely processed, the
hasDisplay method is called on all modules that
are enabled and showing, to see if they have
anything to display. If they have, Blueberry gath-
ers the resulting Element objects by calling the
display method of the modules, and displays the
Elements as part of the user interface.

The methods for module configuration have a
similar structure. If a module indicates that it is
configurable, through the hasOptions method,
Blueberry will display the name of the module as

Figure 15. Overview class diagram of the
SGML parser.

31

a hyperlink in the user interface. Clicking on the
link will result in a call to the options method of
the module, returning an Element object that
Blueberry displays. Finally, the message method
of the BlueberryProcessor interface is the me-
dium for direct interaction between user and ex-
tension module. For example, a developer can
use HTML forms to handle module configura-
tion. When the user submits the form data, the
module receives it through the message method.
The BlueberryLink class encapsulates the spe-
cific format of these messages.

6.4 BackLink
BackLink is an example Blueberry extension. For
each visited page, it displays the "back-links" of
that page, i.e. links to other Web pages that con-
tain hyperlinks to the current document (figure
16). In its own right, BackLink would hardly
qualify as a client-side proxy candidate. The only
information it needs is the URL of the current
document, and it could as easily be implemented
as a browser plug-in. However, it takes advantage
of the functionality of the Blueberry framework
to gain access to content and to display results,
visualising how easy it is to extend functionality
without losing the consistent look-and-feel of the

extensible framework.

BackLink consists of three classes. The BackLink
class implements the BlueberryProcessor inter-
face, acting as the link between the Blueberry
framework and the BackLink functionality. The
BackLinkDocument class is the abstract base
class for queries to different search engines. It
extends the Element class, inheriting the capabil-
ity to build high-level data structures from the
content. It provides BackLink with results to
display, and it supports navigation of queries
resulting in multiple-page replies. The Evreka
class extends BackLinkDocument to provide
specialised querying functionality. It handles
queries to the online search engine Evreka
(www.evreka.com), and parsing of query results.
These classes can query remote search engines,
parse replies and interact with the user, with less
than 200 lines of (spacious) code.

If many people should use BackLink, it would
probably have to use more of the content proc-
essing functionality provided by Blueberry. In the
current version, it queries online search engines,
parses the reply and displays the result. On a
small scale, this is acceptable, but on a larger
scale, there should probably be a dedicated
BackLink server handling these queries. One way
to maintain the server's database could be to let

individual BackLink processors
extract link information from vis-
ited pages and report the results to
the server. In its simplest form and
by using the processing functional-
ity of Blueberry, implementing this
function should not require more
than a few lines of code. In this
scenario, the proxy extension ap-
proach is better and more scaleable
than browser plug-ins.

The Blueberry framework has
visualised an approach not used by
any of the other proxies examined
in this work. The major difference
is the close integration of user in-
terface and client application. Now,
all that remains is to examine the
results of this and earlier sections,
discuss them from a more general
viewpoint and draw conclusions
regarding the good and bad aspects
of client-side proxies for content
processing.

Figure 16. BackLink in action.

32

7 Conclusions
Before drawing any conclusions from the previ-
ous sections, let us recapitulate the aim and pur-
pose of this thesis. The overall context is the
Internet and its abundance of resources. The pur-
pose here is to investigate the merits of the client-
side proxy approach as a way to help users find
interesting information through content process-
ing, adaptation and information retrieval. From a

general viewpoint, this section focuses on the
questions posed in the introduction: When are
client-side proxies better and when could other
approaches be preferable? Do existing client-side
proxies realise the potential benefits of the ap-
proach? Are there ways to improve them? Table
1 provides parts of the answers, summarising the
characteristics of different approaches for content
processing.

7.1 Use client-side proxies or not?
The first thing to consider is whether to use cli-
ent-side proxies at all. Compared to other solu-
tions, is there anything that gives a proxy the
upper hand?

7.1.1 Exhaustive access to content

One of the trademarks of proxies is that they have
direct access to the content stream. Sitting in the
middle of communication, they can easily inter-
cept everything of interest. This is clearly an
advantage compared to client plug-ins and re-
mote Web services. A plug-in is subject to the
good will of its parent environment. It might get
complete access to the content through the client,
but inherits the limitations of an integrated appli-
cation. Web services have only indirect access to
communication between client and server. An

example is the Anonymizer, described in section
4.1. A user must manually request documents on
the Anonymizer site or through a special text-
field in an anonymised document. If the user does
not deliver this information, the Anonymizer has
no access to the content. Was it a proxy, it would
automatically intercept all requests without plac-
ing cognitive demands on the user. Hence, the
proxy approach is more exhaustive than Web
services. It is also more exhaustive in the sense
that it can handle virtually any kind of communi-
cation - Web documents, email, ftp, news, telnet,
etc. Integrated clients also have this ability and
direct access to the content, but they are less ex-
haustive. An integrated application can not proc-
ess content accessed through other client appli-
cations. Since plug-ins rely on their parent appli-
cations for content access, the same limitations
apply to them.

Table 1. Characteristics of different solutions.

Client-side proxy Client plug-in Integrated client1 Web service

Usability2 Medium to low High High to medium High
Performance impact Medium to high Low Low Server-dependent
Access to user’s machine Yes Client-dependent Yes No
Sophistication3 Arbitrary Client-dependent Arbitrary Simple
Supports aggregation Yes Possibly Possibly No
Platform independence Potential Low Low High
Transparency4 High High Low Low
Client independence High Low Low High
Interface integration Medium Medium High High
Access to content Direct Through client Direct Indirect
Exhaustiveness5 High Low Low Low
Privacy6 High Low High Low

1. A platform-specific application, such as stand-alone Web browsers, newsreaders, etc.
2. The level of usability includes installation, configuration and overall ease of use.
3. The sum of implementation language expressiveness, available processing power, access to operating system functionality, etc.
4. A transparent solution runs in the background or as an integrated part of the client environment.
5. An exhaustive solution can handle different types of communication and intercept it before it leaves the local machine.
6. The ability to perform privacy-enhancing processing.

33

Because the proxy in theory can intercept any-
thing from anywhere, it has big potential to per-
form privacy-enhancing processing, such as en-
cryption and anonymisation. That it can apply
this processing before the content leaves the local
machine is a strength it has in common with
stand-alone clients. Again, these applications can
only handle their own communication, while the
proxy can process all communication before re-
leasing it to the network. When Web services are
involved, the initial communication is always
unprotected.

In general, developers should consider the client-
side proxy approach when the task at hand de-
mands direct access to the content stream. If the
task also involves privacy protection and exhaus-
tive interception of different kinds of communi-
cation from different client applications, the
proxy solution is clearly the best choice. The
Freedom proxy of section 4.1 is a good example.

7.1.2 Processing power and sophistication
Since a client-side proxy is located on the end-
user's local machine, it has access to the full
functionality and processing power of the local
operating environment. Like integrated clients
and plug-ins, but unlike Web services, it can
perform demanding tasks close to the destination
of the content, where it is most efficient. An il-
lustrative example is PureSight, described in
section 4.5, that uses demanding artificial intelli-
gence algorithms for content analysis. Even if
Web services run on powerful servers, a large
number of users share the processing power. It is
easier to provide a fast and reliable service if the
functionality is reasonably simple.

Although it is better to perform more advanced
and power-demanding processing locally, dedi-
cated servers are better at relatively simple but
large-scale operations. Web page indexing per-
formed by search engines and online directories
is one example where the local environment is
simply too small to store the information. An
interesting solution would be to use the process-
ing power of client-side proxies in conjunction
with the power of large-scale central servers to
facilitate collaborative processing. A real-world
example of this is the SETI@home project, part
of the Search for Extraterrestrial Intelligence
program at UC Berkeley [SETI 99]. Interested
Internet users download a small part of the mas-
sive amounts of data collected through the SETI
programs, and when their local computer has

processed the data, the results are returned over
the Internet. The project does not use client-side
proxies, but it shows the strength of collaborative
processing. A client-side proxy could download
or gather data, process it and deliver the results to
a central server, utilising the local processing
power.

The processing power available to an application
has obvious impact on what it can do and what
levels of sophistication it can reach. Somewhat
simplified, a local approach has potential to be
more sophisticated than a remote Web service. If
the task involves applying demanding algorithms
to relatively small amounts of data, such as single
Web documents, the local approach is preferable.
It does not matter whether it is a proxy, an inte-
grated client or a plug-in, as long as they have
access to the local machine. In this sense, the
local approach can be more sophisticated. On the
other hand, if the involved algorithms are sim-
pler, but the processed data more extensive, a
high-end Web services could be better. The mas-
sive storage capacity required is better utilised if
many users share the resource.

Since the Web came into being, the major usabil-
ity focus has been on ease of learning for novice
users. Simplicity has been the obvious gain, but
at the cost of sophistication, especially for expe-
rienced users. As an example, the Anonymizer
Web service is simple and straightforward, but
decidedly not as sophisticated as the client-side
proxy approach of Freedom. Although Web
services often are simpler than local applications,
the functionality does not have to be trivial [Niel-
sen 00]. As users become more loyal to specific
web-sites and as they come to depend on web-
based functionality in their daily work, these
services must adapt to the needs of experienced
users. Improving navigation by providing some-
thing similar to keyboard shortcuts in local appli-
cations is one example. As Web services evolve
towards more sophisticated functionality, they
will challenge the client-side applications. A sign
of the times is the propaganda for thin clients and
application service providers.

Sophistication can also be realised by aggregat-
ing the efforts of several actors. Most proxies,
both client-side and others, support aggregation
of behaviour under user control. Non-proxy plug-
ins and applications might also support some
notion of aggregation, but not in the simple and
standardised way of the proxy. Proxies com-

34

monly support aggregation through chaining, or
more rarely, through extensibility. Both these
approaches are described in section 5.2.3.
Through its support for aggregation, the proxy
approach is more flexible and allows individual
users to extend the functionality by simply add-
ing another proxy or proxy extension.

7.1.3 Independence or integration
All the examined proxies have shown, to differ-
ent degrees, that one of the major benefits of the
proxy approach is client independence. By plac-
ing the processing functionality in a layer inde-
pendent of client brands and versions, the proxy
can deliver the same functionality regardless of
user preferences. The proxy has this property in
common with Web services.

On the other hand, an integrated application has a
closer relationship with the user that it can ex-
ploit for detailed monitoring of user behaviour,
down to single mouse movements and keyboard
actions. While it is true that a client-side proxy
can analyse the outer aspects of user behaviour,
such as what resources are requested and time
between requests, a more integrated solution can
create more fine-grained and advanced user pro-
files.

Connected to integration is the question of trans-
parency. An approach is fully transparent if it
works completely in the background or appears
as an integrated part of the functionality of an-
other application. A stand-alone client is obvi-
ously not transparent, and neither are Web serv-
ices. A plug-in is transparent, since it is an exten-
sion to the functionality of the parent application
and appears to be a part of this application. A
client-side proxy can also be fully transparent. It
can run completely in the background, as the
content blocking applications of section 4.5, or it
can integrate both interaction and presentation
with the client application like the WebMate
proxy or the Blueberry framework (sections 5.1.2
and 6, respectively). These approaches integrate
closely with the content, appearing to be part of
the requested documents or the overall function-
ality of the client application.

Although some of the proxies examined in this
work are independent of platform as well as cli-
ent, it is not an inherent quality. Proxies rely on
the same technologies available to stand-alone
applications and plug-ins. If platform independ-
ence is crucial, a web-based service is the natural

choice as the only one providing true independ-
ence. Otherwise, platform-specific applications
have many benefits, whether they are proxies or
not. Integration with a familiar environment can
make the application more visually attractive and
easy to use, as opposed to the sluggish interfaces
exhibited by the independent proxies examined in
this work. Another important benefit is that direct
use of platform-specific functionality can im-
prove the overall performance of the application.

Platform independence could be important for
software developers. That proxies use standard-
ised network protocols and network functionality
common to many operating systems indicates
that this approach could be more platform-
independent than applications with closer plat-
form integration. When an application is devel-
oped for multiple platforms, using independent
solutions can reduce the time, cost and complex-
ity of the development process. An application
developed as a platform-independent proxy is
widely available for testing, with the option to
tailor subsequent production releases to the most
important target platforms to provide the benefits
of platform-specific applications.

For the end-user, platform independence is
probably not an important issue. Client-side
proxies are supposed to run on single machines,
and single machines usually provide a single
operating platform. Of course, some users work
on multiple platforms, and if they want to use the
proxy functionality on every machine, a plat-
form-independent solution is preferred. In gen-
eral, users are presumably more interested in the
gains of platform-dependence - easy installation,
a familiar user interface, better performance, etc -
than in the vision of platform independence.

7.1.4 Performance impact and usability
Even if client-side proxies have several virtues,
as we turn to overall performance and usability
we must acknowledge that other solutions gener-
ally are better. Although content processing al-
ways has negative impact on performance, unless
the processing is explicitly aimed at enhancing
performance, proxies can be even worse than the
other approaches. A major reason is the local
socket communication required for most proxies,
while integrated clients and plug-ins work in the
client application environment. Close platform
integration, as exhibited by for example the Free-
dom and PureSight proxies, could be a way to

35

alleviate the performance impact, since low-level
communication methods are more efficient.

Close integration could also improve usability,
which is a weakness with many proxies. In gen-
eral, they are more difficult to install and config-
ure since they require configuration of both the
proxy itself and the client applications whose
content they want to process. Platform-specific
approaches could alleviate this burden. If ease of
use is crucial, a web-based approach should also
be considered. As already discussed, a major
feature of these services is high usability, and
they require no installation at all.

The ease with which an application can be unin-
stalled is also a usability factor, but proxies are
generally as easy or difficult to uninstall as other
solutions. Most proxies use the same uninstalla-
tion procedures available to all kinds of applica-
tions. However, it is an issue when proxy chains
are involved. If a proxy that is part of a chain is
uninstalled, the chain is broken and the user must
reconfigure the neighbour proxy. When this hap-
pens, uninstalling a client-side proxy is more
complicated than uninstalling an ordinary appli-
cation.

It might seem discrediting to platform-
independent techniques that the independent
proxies of this examination exhibits slower,
clumsier and visually unattractive interfaces
compared to the platform-specific systems. The
lack of common design guidelines for platform-
independent applications is partly to blame, but
such guidelines will probably evolve as the ap-
proach matures.

7.1.5 Legal and ethical considerations
Apart from purely technical considerations, there
might be situations where it is not possible or
desirable to use client-side proxies, due to legal
or ethical considerations. The problem with ad
removers such as WebWasher has already been
mentioned in section 4.3. If many users decide to
remove advertisements, it could become harder
for providers to supply free services. Anonymis-
ers such as Crowds or Freedom might also be
viewed unfavourably. Companies could forbid
their employees to use them, since they make it
difficult for administrators to monitor users' on-
line behaviour. Shopping sites could refuse to
accept orders from anonymised connections,
since anonymisation makes it harder to trace
fraudulent users. Furthermore, it could be irritat-

ing for a information provider if the information
is processed and changed on the way to the user.
All factors combined, there is a risk that online
actors will take steps to inhibit the use of such
applications, unless they handle these issues in a
manner that is acceptable to all parties. Of
course, these concerns apply to any content proc-
essing application, but many of the existing cli-
ent-side proxies focus on this kind of tasks.

7.2 Today and tomorrow
What is most distinguishing of the client-side
proxy approach is the natural and direct access to
the content stream. Several potential benefits that
can make the client-side proxy better at content
processing originate in this closeness. Let us take
a closer look at how the proxies of today utilise
the potential of the approach, and how to make
them better in the future.

The first potential benefit is, obviously, to easily
access, analyse and adapt the content. In the
context of this work, this is what client-side
proxies are all about. The close tie to the network
could also make retrieval of additional informa-
tion a natural part of proxy functionality. Apart
from BackLink in section 6.4 and the SELECT
proxy for collaborative rating (section 4.2) that
provides information about other users' ratings,
this approach is not so common. Through analy-
sis of the communication flow between client and
servers, a client-side proxy could also build mod-
els of the user, that could be used to refine the
behaviour of the proxy to provide support opti-
mised for individual users. WebMate is the only
example of this approach. In general, functional-
ity for building user models and for retrieving
additional information is scarce among the prox-
ies examined in this work. This is an area with
great potential, and it might be good to take fur-
ther advantage of it.

Close to the content but separated from the con-
tent presentation, the proxy approach is basically
client-independent. Although some proxies, for
example WebMate and SELECT, use techniques
that slightly circumscribe this independence, it is
still a strong point in favour of the proxy ap-
proach. A user can take advantage of the func-
tionality of a client-independent proxy regardless
of the application used for presentation, and this
is definitely something that existing and future
proxies should uphold.

36

Related to independence is transparency. With
functionality placed in a layer separate from
presentation, client-side proxies can do their
work in the background in the same manner as
operating systems services. If we leave out in-
stallation and configuration, most proxies per-
form in the background. However, the focus on
content processing poses a problem. It is com-
mon that processing generates information that
should be visible to the user. The standard solu-
tion is that the proxy provides an application
environment of its own, making it less transpar-
ent. An alternative is to provide this information
as part of the content, when the content protocol
allows this. In reality, this kind of integration is
feasible only with HTML content. Blueberry
carries this notion to the extreme, incorporating
the complete user interface in the processed con-
tent. WebMate is more cautious - the interface is
accessible through the content but displayed in its
own windows. That incorporation of content and
interface is possible is also an effect of the direct
access to the content. It is assumed here that
processing creates interesting results, and that
these results should be displayed as close to the
working environment as possible. However, this
is an opportunity that should be used with cau-
tion, since it imposes great structural changes on
the requested document and occupies a largish
part of the client application's workspace.

The potential for sophistication, either by utilis-
ing the local machine for demanding processing
or by aggregation of functionality, is partly ful-
filled by the client-side proxies of today. Most
processing is relatively simple text matching and
filtering, but there are also attempts at more pow-
erful processing, most notably in WebMate and
PureSight. Compared to the simpler approaches,
the content analysis performed by PureSight
minimises the need for user interaction and man-
ual updates, resulting in a more usable applica-
tion. This is an example from which others could
learn. Although most proxies perform relatively
simple processing, they generally support so-
phistication through aggregation. The common
way to combine the functionality of several
proxies is chaining. This is straightforward and
rather flexible, but a well executed extensible
approach might be better for performance and
usability, conducting all processing and user in-
teraction within a single application. The extensi-
ble proxies Muffin and ByProxy (section 5.2.4)
partly live up to this notion, but the higher-level

content abstraction and integrated interface of
Blueberry shows a possible way to utilise the
potential even more.

7.3 Who w ill use a clie nt-side pr oxy?
Compared to other approaches, client-side prox-
ies have architectural strength. The combination
of direct access to the content, client independ-
ence, access to the local operating environment
and the inherent support for aggregate behaviour
is a compelling argument to use proxies for so-
phisticated content processing. The problem is
that even if the architecture has merits, other
solutions generally exhibit better usability and
performance. Most of the examined proxies will
probably be considered only by advanced users,
while the other will prefer the simpler and more
familiar alternatives - integrated clients, plug-ins
and Web services. There are exceptions, such as
WebWasher and PureSight, that combine the
strengths of the proxy with the usability of inte-
grated applications, but this is not the usual case.

There is also the risk that client-side proxies will
not be used, simply because they are not discov-
ered by potential users. Most of the proxies ex-
amined here have a low profile, at least compared
to heavily advertised integrated clients and Web
services. It is more rule than exception that mar-
keting strength is more important than technical
merits in deciding which solution will be com-
monly accepted and used.

On the good side, there is a close and natural tie
between proxy, content and network. As use of
the Internet increases and client-side machines
and applications become more integrated with
networks and remotely hosted services, applica-
tions with network capabilities have the competi-
tive edge. This is clearly an advantage for the
client-side proxy, since networking is the foun-
dation of its existence. If this advantage is util-
ised together with a stronger focus on usability
issues, the future of the client-side proxy might
not be so bleak.

7.4 Further research
The primary focus of this thesis has been the
potential merits of client-side proxies for content
processing, but several related areas should also
receive attention. The legal aspects of content
processing and adaptation are interesting.

37

Changing content provided by others might be a
copyright violation, and displaying retrieved Web
pages within a framework such as Blueberry
might be viewed unfavourable by the information
providers. A survey of the opinions of these pro-
viders regarding client-side proxies and content
processing could be of value. If integration of
user interface in processed documents is better
than clean separation, and how it should be done
to be accepted by users also deserves a more in-
depth answer. As wireless communication be-
comes more important, proxies could be a bridge
between earthbound and ethereal resources.
Whether client-side proxies have anything to
contribute to these mobile environments could be
investigated. Finally, the specific processing
tasks involved need to be continually examined
and improved. There has been much research
regarding these topics, such as methods to re-
trieve information fulfilling the needs of individ-
ual users, building sophisticated user profiles,
making navigation easier, etc. However, due to
the fast pace of technology-changes and growth
of available information, this area requires con-
stant attention.

8 References
[Agent 00]

Agent News and Mail Reader, 2000.
http://www.forteinc.com/agent/index.htm

[Alexa 00]
Alexa Internet, 2000. http://www.alexa.com

[A4Proxy 00]
Anonymous Internet Surfing: Software: Ano-
nymity 4 Proxy, 2000.
http://www.inetprivacy.com/a4proxy/

[Anonymizer 00]
Anonymizer, 2000.
http://www.anonymizer.com

[Blueberry 00]
blueberry : tamasz towers, 2000.
http://www.dsv.su.se/~tomas-
vi/stuff/java/blueberry/

[Brooks et al 96]
Brooks, C., Mazer, M., Meeks, S., and Miller,
J., 1996. Application-specific proxy servers as
HTTP stream transducers. In Proceedings of
the 4th International World Wide Web Confer-
ence.

[ByProxy 98]
ByProxy -- Take Control of the Internet, 1998.
http://www.besiex.org/ByProxy/index.html

[Chen and Sycara 98]
Chen, L., Sycara, K., 1998. WebMate: a per-
sonal agent for browsing and searching. In
Proceedings of the second international con-
ference on Autonomous agents, 1998, pages
132-139.

[Freedom 00]
Freedom, 2000. http://www.freedom.net

[Ganesan 99]
Ganesan, R., 1999. The Messyware Advan-
tage. In Communications of the ACM, Vol. 42,
No. 11, November 1999, pages 68-73.

[Jing et al 99]
Jing, J., Helal, A. S., and Elmagarmid, A.,
1999. Client-Server Computing in Mobile En-
vironments. In ACM Computing Surveys, Vol.
31, No. 2, June 1999, pages 117-157.

[Junkbuster 99]
Internet Junkbuster Headlines, 1999.
http://www.junkbusters.com/ht/en/ijb.html

[McKinley et al 99]
McKinley, P. K., Malenfant, A. M., Arango J.
M., 1999. Pavilion: A Middleware Framework
for Collaborative Web-Based Applications. In
Proceedings of the international ACM SIG-
GROUP conference on Supporting group
work, 1999, pages 179-188.

[Microsoft 00]
Official Guidelines for User Interface Devel-
opers and Designers, MSDN Online Library,
2000.
http://msdn.microsoft.com/isapi/msdnlib.idc?t
heURL=/library/books/winguide/welcome.htm

[Muffin 00]
MUFFIN.DOIT.ORG, 2000.
http://muffin.doit.org

38

[NetNanny 00]
Net Nanny filtering software for your PC,
2000.
http://www.netnanny.com/netnanny/netnanny.
htm

[Neumann and Weinstein 99]
Neumann, P. G., Weinstein, L., 1999. Inside
Risks: Risks of Content Filtering. In Commu-
nications of the ACM, Vol. 42, No. 11, Novem-
ber 1999, page 152.

[NewsProxy 99]
nFilter Home Page, 1999.
http://www.nfilter.org

[Nielsen 00]
Nielsen, J., 2000. Novice vs. Expert Users
(Alertbox Feb. 2000).
http://www.useit.com/alertbox/20000206.html

[Proxomitron 00]
The Proxomitron - Universal Web Filter, 2000.
http://members.tripod.com/Proxomitron/

[PureSight 00]
PureSight - Homepage, 2000.
http://www.puresight.com

[Reiter and Rubin 99]
Reiter, M. K., Rubin, A. D., 1999. Anonymous
Web Transactions with Crowds. In Communi-
cations of the ACM, Vol. 42, No. 2, February
1999, pages 32-48.

[SELECT 00a]
SELECT server at SZTAKI, 2000.
http://samson.aszi.sztaki.hu/SELECT/

[SELECT 00b]
SELECT Project Overview, 2000.
http://cmc.dsv.su.se/select/select.html

[SETI 99]
SETI@home, 1999.
http://setiathome.ssl.berkeley.edu

[Starrin 94]
Starrin, B. 1994., Om distinktionen kvalitativ -
kvantitativ i social forskning. In Kvalitativ
metod och vetenskapsteori. Studentlitteratur,
Lund.

[SurfWatch 00]
SurfWatch, 2000. http://www1.surfwatch.com

[Thaler and Ravishankar 98]
Thaler, D. G., Ravishankar, C. V., 1998. Using
Name-Based Mappings to Increase Hit Rates.
In IEEE/ACM Transactions on Networking,
Vol. 6. No. 1, February 1998, pages 1-14.

[WAP 00]
Wireless Application Protocol, 2000.
http://www.wapforum.org

[Waxman 00]
Waxman, J., 2000. Internet Trends Report, Is-
sue 4Q99, February 2000. Alexa Research,
San Francisco.

[WebMate 99]
Agent: WebMate, 1999.
http://www.cs.cmu.edu/~softagents/webmate/

[WebWasher 00]
webwasher.com, 2000.
http://www.webwasher.com/index.htm

[WebWiper 00]
WebWiper, Inc., 2000.
http://www.webwiper.com/frameset.htm

