
Can Computers Decide what is Right and Wrong? Jacob Palme Page 2

which makes it impossible for you to drive when your

blood alcohol level is above a certain level. And suppose

there is an exceptional case. John has a heart attack, and

the only person available to drive to the hospital, Mary,

has drunk a little too much. The computer stops Mary

from driving the car, and John dies. They are in remote

cottage without telephone and outside the range of

cellular phone networks.

My argument:  This is an example of a computer making

a decision. The computer decides that Mary is not

allowed to drive the car, and in this particular case, the

decision made by the computer might be ethically wrong.

This is no easy issue, the best may still be to have such a

computer device in the car. But the example illustrates

the problem and the danger of programming computers to

make decisions about right and wrong.

Counter-argument: No, the computer did not make any

decision. The decision was made by the humans who

programmed the computer. They may have weighed pros

and cons, and decided that the advantage with such a

drunk-driving-protection device is worth the risk that in

some exceptional cases the outcome may be wrong.

My counter-counter-argument: This is becoming a

discussion of the meaning of words. You do not accept

that the computer made a decision. OK, let us then say

that the computer made a ruling, or whatever word you

prefer to apply to the case where a computer prohibits

you from doing something. You are avoiding the ethical

issues: In what way should we program computers to

control human beings.

I am not a fanatical liberal who is against all laws and

rules. I am quite willing to accept that in some cases it

may be ethically right to program computers to prohibit

you from drunken driving or stop children from

downloading bomb-making recipes from the Internet. But

I am advocating that in those cases you are programming

the computer into making decisions, or rulings or

whatever word you prefer to use. And this can be

dangerous and you should be aware of the risks.

Solution: In this special case, a solution might be to

allow the driver of the car to communicate with SOS

Alarm, and allow them to send a code to override the

breathanalyzer lock in some very exceptional cases. By

doing this, we are moving the final decision from

computers to humans.

Explanation of Problem

One mode of human communication is the setting of

rules. Some human beings make a list of rules. The rules

may be a law, a local ordinance, ethical rules of a

professional organizations, company rules for employees

or published in other ways. The human beings may also

introduce ways of enforcing the rules, such as courts of

law, committees on ethical conduct, etc. This is

sometimes (not always) necessary even though the

rulings made are sometimes wrong, like convicting

innocent people. But we accept that this risk must be

taken because without law and order society would not

work.

An example: Even if it is forbidden for a pedestrian to

step into the street against a red light, there are special

cases where this rule does not apply. Suppose a child runs

out on the street, and the only way to stop the child from

getting run over by a car is to run out and catch the child.

Such special cases are easily handled by humans. No

human court would sentence a person for running

towards a red light in such a case. But it is not so easy to

teach a computer to understand such exceptions.

The danger is that people do not always understand, that

putting such rules or laws into a computer, and

programming the computer to enforce the rules, is

something very different from having humans implement

the rules by human decisions. Humans can understand the

special conditions of special circumstances. A human

might decide, in the example above, that in this special

case the importance of getting John to a hospital is higher

than the risk of Mary driving while intoxicated.



Can Computers Decide what is Right and Wrong? Jacob Palme Page 3

Counter-argument:  A counter-argument made at

[Martin 1997] was that in this case it was humans who

made the decisions, by programming the car computer,

but their decisions were wrong. They did not take all

circumstances into account. They should have made a

more advanced program, which could take into account

the special circumstance of the heart attack situation.

Counter-counter-argument: What you are doing, with

this kind of argument, is to make the computer program

more advanced and complicated, to reduce the risk that

the decisions/rulings made by the computer are wrong.

The path you are treading may make things worse instead

of better. More complex and advanced computer rulings

may increase the risk of wrong decisions instead of

reducing them. The right solution may sometimes instead

be to accept that the computer is not perfect, and thus that

all rules do not have to be enforced by computers alone.

“Italian Strike” Example

A well-known method for strikes is to continue to work,

but to adhere 100 % to all rules while working. This

rapidly causes many businesses to a complete standstill,

or at least makes them work much slower and less

efficiently before. The reason for this is that even good

and benevolent rules can have disastrous effects if

adhered to 100 %, the way a computer would do if

programmed to enforce them.

Filling in a Form Example

If you  fill in a form manually, you have the option of

adding an accompanying  sheet of paper explaining why

you filled in the form in a particular  way. In most forms,

where there is a ”yes-no” question, it  is quite possible to

omit the checkboxes and write a more nuanced

explanation  below or above. The human who receives

the form will read and understand  and interpret this.

When the form becomes computerized, this freedom  to

not follow the prescribed way of filling in the form often

disappears.

Society Evolves by Many People doing

Things in Better Ways

An important way in which human society is evolving is

that many people make small and large decisions to try

out new and better ways of doing things. If the computer

program stops them from doing things in other ways that

those specifically allowed, this will prevent people from

finding better ways of doing things, and thus stop

imrovements.

Sometimes this may be necessary. For example, there is a

human tendency to stop performing actions which are

necessary only to avoid seldom occurring risks. Example:

A pilot forgets an item on the pre-flight check list, or a

night watchman forgets to go to a normally empty part of

the building. In such cases, it may be necessary to use

technical means to ensure that the human follows the

rules, for example the night watchman must turn a key to

show that he has passed that part of the building. But this

does not forbid the night watchman from disobeying the

rules in special cases, for example skip the empty

corridor if there is a thief in another part of the building.

The danger is when the computer does not allow you to

do things in other ways than those foreseen when

programming it.

Two-sided Communication is Better than

Enforcing one Solution

It is a well-known fact that power is addictive. That is

why we design human societies with so many safe-guards

against giving individual people too much power. We

must understand that the power to control other humans

by design of computer software can also be addictive

[Hoare 1975]. Only by understanding this, can we stop

people from putting too much control of humans into

their software. I am not arguing that there should be no

control of humans by software. The common “Are you

sure?” dialog boxes are often motivated, even though

they are sometimes a nuisance. But those who design

computer software should be aware of the risks of putting

too much control of humans into the software.

This will reduce the possibillities for people to influence

their environment, and will create a feeling of

helplessness, which may cause dissatisfaction and

depression [Seligman 1975]. When two humans

communicate regarding a task, the outcome of their

discussion is usually twosided or so called win-win

solution, a solution where the needs of both are taken into

account [Harris 1969, Gordon 1970]. When the task is

controlled by a computer (even though a human did

originally program the computer) the interaction

necessary  to achieve a win-win solution is often not

possible. It iw well-known that such situations easily

cause frustration and dissatisfaction and also often mean

that a less good way of performing the task has to be

used.



User influence

Human beings hade a need to be able to influence their lifte. They will be more 
happy and satisfied, and will be able to do a better job, if they can influen ce 
their life, and use their abilities to perform their tasks better and better.

Conventional solution: Give the 
users influence on the development 
of the software they are going to 
use.

Alternative solution: Design the 
software so that the users can, 
themselves, modify it according to 
their present and future needs.

Problems with the conventional 
solution:
1. Most software is used by so 
many people that everyone cannot 
influence its development.
2. When starting to user the 
software, users will come up with 
new needs, which they were not 
aware of when the software was 
inititially developed.

Problem with the alternative 
solution:
1. The adjustment of the software to 
the new needs is too complex for a 
non-expert to do.
2. The experts, who can master the 
software, are the only people who 
benefit.

Corrective action: Users require 
new features in the software, 
developers get overloaded with 
work trying to adjust the software, 
there is a huge backload of 
software revision tasks, the 
software gets more and more 
complex through many haphazard 
extensions.

Corrective action: Educate special 
so-called "local experts", who 
work locally in the local user 
groups, and help users with 
extension of the software to their 
needs, using built-in extension 
facilities in the software.

Stopping the Porn

An example of an application area, which illustrates the

problems with computers deciding what is right and

wrong, is the area of the porn-blockers, program modules

meant to prevent use of the Internet for unsuitable

purposes. They are used by parents who do not want their

children to download porn on the net, by schools and

libraries, and also by employers to stop employees

misusing thir office computers, and even by countries to

control the flow of information and stop undesirable

information. The People's republic of China and

Singapore are examples of countries who want to stop

unaccceptable information, such as views by so-called

dissidents.

These programs, however, have severe problems. Either

they permit only access to listed and allowed sites. But

since the developers cannot keep up with all pages on the

Internet, only a small subset is listed. Alternatively, they

try to guess whether a document is suitable or not, this is

done by scanning for certain character strings, like “sex”,

“breast” and “xxx”. This has led to horrendous mistakes,

such as prohibiting information from Middlesex (a local

government in England) or prohibiting information about

breast cancer. A computer user complained that when he



Can Computers Decide what is Right and Wrong? Jacob Palme Page 5

downloaded code in a particular script language from the

Internet, the code was distorted in funny ways. For

example, the following piece of script code:

#define one 1 /* foo menu */
#define two 2 /* bar baz */
Was corrupted in the following way:

#define one 1 /* foo me   */
#  fine two 2 /* bar baz */
I leave it to the reader to compare the scripts and

conclude what “Cybersitter” had done with his script

code and why.

Is the Internet Illegal

Actually, almost all usage of the Internet is illegal

according to the privacy protection laws in many

countries. These laws prohibit all transport of personal

data from one country to another without permission

from the government. If these laws had been programmed

into the computers, then we could not have had the

Internet we have today. We should be happy that the laws

are enforced by humans who understand that the

intention of privacy protection laws are not to prohibit

free speech. You cannot be sure of this. I ran one of the

first Swedish BBS-es in 1978. We were forbidden to run

our BBS by  the Swedish Data Inspection Directorate.

Later on, we were allowed to start it again, provided that

we did not allow anyone to write any political or

religious opinions in forums on the BBS (Since the

Swedish Data Act forbade the creation of registries of

political and religious opinions, except in certain special

cases, but in contradiction to the Swedish constitution,

which specifically says that the right to communicate

freely on political and religiuous issues should be

protected). We continued to use our BBS including some

discussions of political or religious issues. No one

prosecuted us. But what would have happened if the

computer had been programmed to recognize and

automatically prohibit any message with political or

religious content?

The Computer need not Stop all Unwanted

Behavior

The idea that human rulebooks should be programmed

into computers is closely connected to another faulty

idea. This other faulty idea is that anything is legal,

which the computer permits you to do. “The computer

did not stop me from accessing this data”, is the standard

defense from the cracker who breaks into a computer.

If you believe that anything allowed by the computer is

legal, then  obviously you have to program the computer

to prohibit all unpermitted behavior. One can understand

the danger of this by trying to envision a society where

all illegal acts are made impossible to perform. Hammers

are not allowed, since you can kill people with a hammer.

Suppose you need a hammer in woodworking. Tough

luck, this is illegal, hammers are inherently dangerous. In

order to prevent crime, every movement from one place

to another without permission might be prohibited and

monitored. Is this the kind of society we want?

A real example which I have actually seen: A building

where I worked was split into zones. Whenever you

moved from one zone to another, you had to insert a

keycard into a slot to open the door. A person inserted the

keycard, opened the door, then dropped the keycard, bent

to pick it up, while the door closed with the person still in

front of  the door. The door locked automatically, so the

person inserted the keycard again to open the door. This

did not work. The computer obviously reasoned as

follows: “This person has already passed into the new

zone. She cannot be in front of the door. So her keycard

must be falsified or wrongly used.”

Faulty programming of the computer? Perhaps, but you

can never be sure that your program is perfect. And

making the program more complex by taking into

account more special cases in deciding what the

computer allows and prohibits may introduce more bugs,

while removing old bugs in the software. The new bugs

may be more insidous and difficult to find. All problems

are not best solved by making computer software more

complex. Some problems are better solved by letting

humans, instead of computers, make decisions!



Can Computers Decide what is Right and Wrong? Jacob Palme Page 6

Calendar Scheduling

A good example to discuss these issues is the use of

computers to schedule meetings. This may at first seem

like a good way of using computers. But the more you

look at the problem, the more you find that real meeting

scheduling includes so many special cases, where human

judgment is needed, that it becomes very difficult to get

the computer to do this automatically. For example, some

meetings are more important than other meetings, and

may cause other meetings to be rescheduled, but such a

decision cannot be done by a computer. And there are

contextual factors, like knowing that you should never

schedule a meeting with a certain person on a Monday

morning, which everyone knows, but which are difficult

to put into the computer.

Conclusions

 The successes of human society is based on the
flexibility of humans and their willingness to adapt
their activities to different circumstances.

 Humans are most happy and productive if they can
influence their living environment and contribute to
solving problems together.

 Laws and regulation are a form of communication
between humans. They are in reality only guidelines,
people have to adapt to varying circumstances and
interpret and apply the rules with understanding and
human compassion. If everyone had to adhere 100 %
to all laws and regulations, human societies would
not work any more.

 This is usually no problem when the laws and
regulations are written on paper. But if the laws and
regulations are programmed into computers, so that
the computers control what is allowed and not
allowed, serious problems will often occur. In the
best case, people will only be unhappy and
unproductive, in the worst case, major catastrophs
can occur.

 Computer software must be designed to allow
flexibility and human choice. Laws and regulations
should be interpreted by humans, not by machines.

 Making the software more complex, to include in it
more different special handling of special
circumstances, will often only make it worse. Instead

of complex software, software should be flexible and
open-ended.

 There is a human tendency when designing software
to want to include in it “proper procedure” and
“experience how things should be done”. This
tendency can easily produce unusable or unsuitable
software.

 Possible exception: Certain security rules, where
enforcement is needed to overcome human
weaknesses.

References

Gordon

1970:

P. E. T. - Parent Effectiveness Training, by

Thomas Gordon, 1970.

Grip 1974: ADB-system och kommunikation (Data

processing and communication). Hermods-

studentlitteratur, Lund, Sweden, 1974.

Harris

1969:

I'm OK - You're OK, by Thomas A. Harris,

1969.

Hoare

1975:

Software Design: a Parable. In Software

World, vol. 5, No. 9&10, 1975.

Martin

1997:

Empowering Educators and Parents: Content

Advisories for the Internet. By C. Dianne

Martin, Proceeedings of the ITiCSE ACM

conference, June 1997. URL:

http://www.dsv.su.se/~jpalme/reports/iticse-

notes.html#martin

Palme

1975

Interactive Software for Humans. At URL:

(HTML version):

http://info.dsv.su.se/~jpalme/reports/interacti

ve-software.html and URL (Acrobat version):

http://info.dsv.su.se/~jpalme/reports/interacti

ve-software.pdf .

Palme

1975:

Interactive Software for Humans, by Jacob

Palme. An abbreviated version was published

in In Management Informatics vol. 7(1976)

pp 4-16. URL:

http://info.dsv.su.se/~jpalme/reports/interacti

ve-software.html

Seligman

1975:

Helplessness: On depression, development

and death, by Martin E. P. Seligman, W.H.

Freeman, San Francisco1975.


