
2ca-1

*:96 Overheads
Part 2ca: Extensible Markup Language (XML)

More about this course about Internet application protocols can be
found at URL:
http://dsv.su.se/jpalme/internet-course/Int-app-prot-kurs.html

Last update: 00-03-24 17.24

2ca-2

HTML Example
<h2>False Pretences</h2>
<p>By: Margaret Yorke

ISBN: 0-312-19975-9

Year: 1999</p>

XML Example
<book><author><surname>Yorke</surname>
<given-name>Margaret</given-name></author>
<title>False Pretences</title>
<isbn>0-312-19975-9</isbn>
<year>1999</year></book>

The difference between HTML and XML: In XML you can yourself
decide which tags to use. In HTML, you can only use the built-in
tags specified in HTML. In the example above, I used the tags
<book>, <author>, <surname>, <given-name>, <title>, <isbn> and
<year>. In another application, I could have chosen other tags.
By combining of XML with style sheets, you can still get the
documented printed in the same way as if you had been using
HTML.

2ca-3

Uses of XML
• For transport of information between data bases.
• For sending of information to be displayed to a user, just like with

HTML.
• As a rather readable format in itself (except for encoding of

special characters).
• For encoding of network operations, as an alternative to ABNF or

ASN.1.

Restrictions of XML
• Binary data must be either encoded as BASE64 or sent outside of

the XML document (like in HTML).
• A rather wordy format, but compression can reduce this.

2ca-4

Some acronyms
Standard Generalized Markup Language (SGML)
HTML and XML are both simplifications of SGML.

Application Program Interfaces (APIs)
Document Object Model (DOM) is an API för XML. Supported by newer web
browsers.

Simple API for XML (SAX) standard for API to XML partsers. Streambased - the
XML content is delivered in increments during its interpretation.

Style sheet languages
The same XML document can be shown in different formats, by using different
style sheets.

eXtensible Style Sheet Language (XSL).

eXtensible Style Sheet Language Transformatsions (XSLT).

Cascading Style Sheet, level 1 och 2 (CSS1, CSS2).

2ca-5

Basics of the XML format
XML facility: Example:

User-selected tags. <book>, <songs>, <position> or whatever
you need for your data.

Tags can have attributes. <book author="Margaret Yorke"
title="False Pretences">

Tags which have no embedded
data can be closed in the opening
tag.

<book author="Margaret Yorke"
title="False Pretences"/>

instead of
<book author="Margaret Yorke"
title="False Pretences"></book>

Tags can be nested. <book><author>Margaret
Yorke</author>...</book>

Tags must be closed. Not correct:
<book><author>Margaret Yorke</book>

Certain special character must
be encoded.

<book title="The
"queen"of Sheba"/>

2ca-6

XML is more strict than accepted HTML practice
HTML browsers accept many kinds of formally illegal HTML encodings.
This is not allowed in XML. Examples:
Legal: <p>First paragraph.</p><p>Second paragraph</p>
Accepted: <p>First paragraph.<p>Second paragraph</p>

Legal: <i>Bold and Italics</i>
Accepted: <i>Bold and Italics</i>

Legal:
Accepted:

Tags are case-sensitive in XML

Illegal: <H1>Heading text</h1>
Legal: <H1>Heading text</H1>

White space is sometimes relevant in #PCDATA, but normalized in attributes
<CHRISTMAS>
 X
 XXX
 XXXXX

<CHRISTMAS FATHER="Donald
Duck">

is identical to
<CHRISTMAS FATHER="Donald Duck">

2ca-7

Function HTML XML
Set of tags Built-in,

predefined
set.

Every application can define its own
element types and select their tags.

End tag Not always
required.

Always required.

Case sensitive No, for
example,
<TI TLE> and
<ti tle> are
identical.

Yes, <TI TLE> and <ti tle> are different
and <TI TLE> must end with </T ITLE> ,
not with </t itle> .

Coding errors Often
accepted

Not accepted

Support in
web browsers

Yes. Yes in some newer versions.

Text layout
and style

HTML tags
and style
sheets.

Style sheets and XSLT transformation
code.

2ca-9

Exercise 41
Here is an example of part of an e-mail heading
according to current e-mail standards.

From: Nancy Nice <nnice@good.net>
To: Percy Devil <pdevil@hell.net>
Cc: Mary Clever <mclever@intelligence.net>,
 Rupert Happy <rhappy@fun.net>

How might the same information be encoded using
XML?

Exercise 41 solution

<?xml version="1.0" ?>
<!DOCTYPE header SYSTEM "header.dtd">
<header>

<from>
<person>

<user-friendly-name>Nancy Nice</user-friendly-name>
<local-id>nnice</local-id><domain>good.net</domain>

</person></from>
<to>

<person>
<user-friendly-name>Percy Devil</user-friendly-name>
<local-id>pdevil</local-id><domain>hell.net</domain>

</person></to>
<cc>

<person>
<user-friendly-name>Mary Clever</user-friendly-name>
<local-id>mclever</local-id>
<domain>intelligence.net</domain>

</person><person>
<user-friendly-name>rupert happy</user-friendly-name>
<local-id>rhappy</local-id><domain>fun.net</domain>

</person></cc>
</header>

From: Nancy Nice <nnice@good.net>
To: Percy Devil <pdevil@hell.net>
Cc: Mary Clever <mclever@intelligence.net>,
 Rupert Happy <rhappy@fun.net>

2ca-10

Special Character Encoding in XML

Reserved
character

Predefined entity
to use instead

< <

& &

> >

' '

" "

2ca-11

Document Type Definition (DTD)
An XML document may be connected with a document type definition.
But this is not mandatory, you can send XML data without a DTD.

The DTD describes the allowed syntax, i.e. the tags and their allowed
attributes.

Example of a DTD
<!ELEMENT book (author+)>
<!ATTLIST book
 title CDATA #REQUIRED
 year CDATA #IMPLIED >
<!ELEMENT author (#PCDATA)>

Example of XML using this DTD
<?xml version="1.0" ?>
<!DOCTYPE book SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/book.dtd">
<book title="False Pretences" year="1999" >
<author>Margaret York</author>
</book>

2ca-12

Relation between DTD and XML
Enviroment: “ABNF” “ASN.1” “XML”

Language for
specifying the
encodings for a
particular
application.

ABNF ASN.1 DTD (but not
mandatory,
and not as
strong typing
as in ASN.1)

Language used
to actually
encode data.

Text, often
as a list of
lines begin-
ning with a
name, a
colon, follow-
ed by a
value.

BER (or some
other ASN.1
encoding rule)

XML

2ca-13

How to specify the DTD in the XML using it
< ? xm l ver s i o n= " 1 . 0" ? > Specifies that this is XML-

encoded data
< ! DO C T Y PE pe rs o n

S Y ST E M "p e rs o n . dt d " > Specifies where to find the DTD.
"Person.dtd" can be a complete
URL, which gives a globally
unique reference to this DTD.

< P ER S O N > Here comes the XML encoded
< N AM E > J oh n Smi t h < /N A M E > according to this DTD.

< B IR T H Y EA R > 1 94 1 < / BI R T H YE A R >

< W AG E > 5 70 0 0 < /W A G E >

< / PE R S O N>

2ca-14

DTD ELEMENT with free text content

Example of a DTD
<!ELEMENT author (#PCDATA)>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE author SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/author.dtd">
<author>Margaret York</author>

Example 2 of XML using this DTD
<author>Text containing < special markup ></author>

Example 3 of XML using this DTD
<author>
<![CDATA[
Text containing < special markup > like & and " and '
]]>
</author>

2ca-15

<BOOK><AUTHOR> </AUTHOR></BOOK>

Element BOOK

Content of BOOK=Element AUTHOR

Content of AUTHOR

ELEMENT and TAG
Start tag Start tag End tag End tag

2ca-16

DTD ELEMENT with subelements
(a,b) means the element a followed by the element b.

Example of a DTD
<!ELEMENT author (givenname,surname)>
<!ELEMENT givenname (#PCDATA)>
<!ELEMENT surname (#PCDATA)>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE author SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/author.dtd">
<author>
<givenname>Margaret</givenname>
<surname>York</surname>
</author>

Well-formed = correct XML, but need not have any DTD

Valid = correct XML and in accordance with a specified DTD

2ca-17

DTD ELEMENT with subelements
(a*) means that a is repeated 0, 1 or more times.

Example of a DTD
<!ELEMENT family (father,mother,child*)>
<!ELEMENT father (#PCDATA)>
<!ELEMENT mother (#PCDATA)>
<!ELEMENT child (#PCDATA)>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/family.dtd">
<family>
<father>John</father>
<mother>Margaret</mother>
<child>Eve</child>
<child>Peter</child>
</family>

2ca-18

DTD ELEMENT with subelements
(a+) means that a is repeated 1 or more times.

Example of a DTD
<!ELEMENT child-family (father,mother,child+)>
<!ELEMENT father (#PCDATA)>
<!ELEMENT mother (#PCDATA)>
<!ELEMENT child (#PCDATA)>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE child-family SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/child-
family.dtd">
<child-family>
<father>John</father>
<mother>Margaret</mother>
<child>Eve</child>
<child>Peter</child>
</child-family>

2ca-19

DTD ELEMENT with subelements
(a?) means that the element a is repeated 0 or 1 times.

Example of a DTD
<!ELEMENT basic-family (father?,mother?,child*)>
<!ELEMENT father (#PCDATA)>
<!ELEMENT mother (#PCDATA)>
<!ELEMENT child (#PCDATA)>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE basic-family SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/basic-
family.dtd">
<basic-family>
<father>John</father>
<child>Eve</child>
<child>Peter</child>
</basic-family>

2ca-20

Exercise 42
Write a DTD for an XML-variant of the e-mail header
in Exercise 41.
From: Nancy Nice <nnice@good.net>
To: Percy Devil <pdevil@hell.net>
Cc: Mary Clever
 <mclever@intelligence.net>,
 Rupert Happy <rhappy@fun.net>

Exercise 42 solution
<!ELEMENT header (from, to?, cc?)>
<!ELEMENT from (person)>
<!ELEMENT to (person+)>
<!ELEMENT cc (person+)>
<!ELEMENT person (user-friendly-name,local-id,domain)>
<!ELEMENT user-friendly-name (#PCDATA)>
<!ELEMENT local-id (#PCDATA)>
<!ELEMENT domain (#PCDATA)>

Write a DTD for an XML-variant of the e-mail header
in Exercise 41.
From: Nancy Nice <nnice@good.net>
To: Percy Devil <pdevil@hell.net>
Cc: Mary Clever
 <mclever@intelligence.net>,
 Rupert Happy <rhappy@fun.net>

Exercise 42

2ca-21

DTD ELEMENT with subelements
“|” means either-or ”,” means succession.

EMPTY (without parenthesis) means no contained data.

Example of a DTD
<!ELEMENT operations (((get | put),uri)*)>
<!ELEMENT get EMPTY>
<!ELEMENT put EMPTY>
<!ELEMENT uri (#PCDATA)>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE operations SYSTEM
"http://dsv.su.se/jpalme/internet-course/xml/operations.dtd">
<operations>
<get/><uri>http://cmc.dsv.su.se/file1</uri>
<get/><uri>http://cmc.dsv.su.se/file2</uri>
<put/><uri>http://cmc.dsv.su.se/file3</uri>
</operations>

Note: <get/> is a short form for <get></get>

2ca-22

Exercise 43

Specify DTD and an XML example for a
protocol to send either a name (single
string), a social-security number (another
single string) or both.

2cb-4

Exercise 43 solution page A
DTD specification: XML examples:

<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">
<id><social-security-no>410201-
1410</social-security-no></id>
<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">
<id><both><name>Eliza
Doolittle</name>
<social-security-no>410201-1410
</social-security-no></both></id>

<!ELEMENT id (name |
social-security-no | both)>
<!ELEMENT both (name,
social-security-no)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT social-security-no
(#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">
<id><name>Eliza Doolittle</name>
</id>

Exercise 43

Specify DTD and an XML example for a
protocol to send either a name (single
string), a social-security number (another
single string) or both.

2cb-5

Exercise 43 solution page B

Note: The following will not work:

<!ELEMENT id (name |
social-security-no |
(name, social-security-
no))>
<!ELEMENT name (#PCDATA)>
<!ELEMENT social-
security-no (#PCDATA)>

This will not work, because the receiving program will not

be able to know, when it starts to scan <name> whether

this is the first or the third branch of the choice.

2ca-23

Operators in lists of subelements:

Code: Explanation:

a, b Mandatory a followed by
mandatory b.

a | b Either a or b.

a* 0, 1 or more occurences of a.

a+ 1 or more occurences of a.

a? 0 or one occurences of a.

2ca-24

Any Specification
The ANY specification (example:
< !E LE M EN T mis ce l la ne o us A N Y>)
allows any kind of un-specified XML content.
This specification should in most cases be
avoided, since it makes it difficult for
software to check or interpret the content.

2ca-25

DTD ELEMENT with XML attributes

Example of a DTD
<!ELEMENT book EMPTY>
<!ATTLIST book
 title CDATA #REQUIRED
 author CDATA 'anonymous'
 weight CDATA #IMPLIED
 format (paper-back | hard-back) 'paper-back'
>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE book SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/book.dtd">
<book
 title="False Pretences"
 author="Margaret Yorke"
 format="hard-back"
/>

2ca-26

Default values for XML attributes
DTD term: Example: Description:

A single value
within quotes
at the end of
the attribute.

<!ATTLIST book
binding (hardback |
paperback)
"hardback">

This default value should be
assumed if the attribute is not
specified in the XML text.

#REQUIRED <!ATTLIST book
binding (hardback |
paperback) #REQUIRED>

No default value is allowed, the
attribute must always be
specified in the XML text.

#IMPLIED <!ATTLIST book
binding (hardback |
paperback) #IMPLIED>

No default value, but the
attribute is not required. If the
attribute is not given, this might
mean that it is unknown or not
valid.

#FIXED <!ATTLIST book
binding (hardback |
paperback) #FIXED
"hardback">

The XML can either contain this
attribute or not, but if it is there,
it must always have this
particular value.

2ca-27

Types of XML attributes
Type: Example: Description:
CDATA <!ATTLIST book

title #REQUIRED>
Any character string.

A list of
enumerated
values

<!ATTLIST book
binding (hardback |
paperback)
"hardback">

Restricted to the listed values only.

ID <!ATTLIST book entryno
ID #REQUIRED>

Gives a name to this particular element.
No other element in the XML text can
have the same name. Unique names on
elements are useful in some cases for
programs which manipulate the XML
text.

IDREF <!ATTLIST author
authorid ID #REQUIRED>
<!ATTLIST book
authorid IDREF
#REQUIRED>

Reference to the unique name, which
was given to another element in the
XML text. In the example, every
element of type author has an ID
authorid, and every element of type
book has an IDREF referring to the ID
of the element for the author of that
book.

2ca-28

Type: Example: Description:
IDREFS <!ATTLIST author

authorid ID #REQUIRED>
<!ATTLIST book
authorids IDREFS
#REQUIRED>

Similar to IDREF, but allows a list of
more than one value. Needed in this
example, if a book can have more than
one author.

ENTITY DTD text:
<!ELEMENT LOGO EMPTY>
<!ATTLIST LOGO GIF-
FILE ENTITY #REQUIRED>
<!ENTITY DSV-LOGO
SYSTEM "dsv-logo.gif">

XML text:
<LOGO GIF-FILE="DSV-
LOGO"/>

This is one way to include binary data
in an XML file, by referring to the URI
of the binary data. Just like with
tags in HTML, the actual binary file is
not included, just referenced.

2ca-29

Type: Example: Description:
ENTITIES DTD text:

<!ELEMENT LOGO EMPTY>
<!ATTLIST LOGO GIF-
FILE ENTITIES
#REQUIRED>
<!ENTITY DSV-LOGO
SYSTEM "dsv-logo.gif">
<!ENTITY KTH-LOGO
SYSTEM "kth-logo.gif">

XML text:
<LOGO GIF-FILE="DSV-
LOGO KTH-LOGO"/>

A list of more than one entity.

NMTOKEN <!ATTLIST variable-
name #NMTOKEN>

A name, formatted like a variable name
in a computer program. Useful when
you use XML to generate source
program code.

NMTOKENS <!ATTLIST variables
#NMTOKENS>

A list of names, similar as for
NMTOKEN above.

NOTATION <!ATTLIST SPEECH
PLAYER NOTATION (MP3
| QUICKTIME)
#REQUIRED>

The name of a non-XML encoding.

2ca-30

Elements versus
attributes
<book><author><surname>
Yorke</surname><given-
name>Margaret</given-
name></author></book>

versus
<book author="Margaret
Yorke"/>

Elements are like a tree
with branches, each
branch can split into
new branches.

Attributes are like
leaves or fruits, they are
the end point, cannot be
split further. They also
give some rudimentary
type control.

2ca-31

Exercise 44
Specify DTD and an XML example for a protocol
to send a record describing a movie. The record
contains a title and a list of people. Each person
is identified by the attributes name, and
optionally, the attribute role as either actor,
photographer, director, author or administrator.
As an XML example, use the movie “The
Postman Always Rings Twice”, directed by Tay
Garnet based on a book by James M. Cain with
leading actors Lana Turner and John Garfield.

2cb-6

Exercise 44 solution
DTD specification: XML data:

<!ELEMENT movie (title,
 person+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT person EMPTY>
<!ATTLIST person
 name CDATA #REQUIRED
 role (actor | photographer |
 director | author |
 administrator)
 #IMPLIED
>

<?xml version="1.0" ?>
<!DOCTYPE movie SYSTEM
 "movie.dtd">
<movie>
<title>
The Postman Always Rings
Twice</title>
<person name="Lana Turner"
 role="actor"/>
<person name="John Garfield"
 role="actor"/>
<person name="Tay Garnet"
 role="director"/>
<person name="James M. Cain"
 role="author"/>
</movie>

Exercise 44
Specify DTD and an XML example for a protocol
to send a record describing a movie. The record
contains a title and a list of people. Each person
is identified by the attributes name, and
optionally, the attribute role as either actor,
photographer, director, author or administrator.
As an XML example, use the movie “The
Postman Always Rings Twice”, directed by Tay
Garnet based on a book by James M. Cain with
leading actors Lana Turner and John Garfield.

2ca-32

ENTITIES
Built-in character entities

Example: " &

Internal entities

You can add your own additional entity declarations to represent characters or
sequences of characters. For example:
<!ENTITY KTH "Kungliga Tekniska Högskolan">
<DESCRIPTION>&KTH; is a technical university.</DESCRIPTION>

is identical to
<DESCRIPTION>Kungliga Tekniska Högskolan is a technical
university.</DESCRIPTION>

External entities

<!ENTITY polisvåld SYSTEM
"http://www.palme.nu/free/pv.html">

<!ENTITY comic SYSTEM
"http://www.palme.nu/comics/a-11.gif" NDATA GIF87A>

2ca-33

Use of entities to reference external DTD files

Example of the DTD book.dtd

<!ELEMENT book EMPTY>
<!ATTLIST book
 title CDATA #REQUIRED author CDATA 'anonymous'
 weight CDATA #IMPLIED
 format (paper-back | hard-back) 'paper-back' >

Example of the DTD collection.dtd

<!ENTITY % book SYSTEM "book.dtd">
%book;
<!ELEMENT collection (book+)>
<!ATTLIST collection owner CDATA #REQUIRED >

2ca-34

Example of XML using these DTDs

<?xml version="1.0" standalone="no"?>
<!DOCTYPE collection SYSTEM
"http://www.dsv.su.se/~jpalme/internet-course/xml/collection.d
td">
<collection
 owner="Kungliga Biblioteket"
>
<book
 title="False Pretences"
 author="Margaret Yorke"
 format="hard-back"
/>
<book
 title="Act of Violence"
 author="Margaret Yorke"
 format="paper-back"
/>
</collection>

2ca-35

IDs in XML
Unique names can be used to refer between different places in a document.

XML example:
<author ref="myorke">Margaret Yorke</author>
...
<book author="myorke">False Pretences</book>

Based on the DTD:
<!ELEMENT author (#PCDATA)>
<!ATTLIST author
 ref ID #REQUIRED>
<!ELEMENT book (#PCDATA)>
<!ATTLIST book
 author IDREF #IMPLIED>

Attribute types:
ID = Name of this object
IDREF = One single ID reference
IDREFS = List of names separated by white space
NMTOKEN, NMTOKENS = Single words or lists of words separated by white space

2ca-36

Name Spaces
Part of the war DTD: XML data:
<!ELEMENT war:desert
(deserter*)>
<!ELEMENT war:deserter
(#PCDATA)>
Part of the geography DTD:
<!ELEMENT geography:desert
(#PCDATA)>

Use of these two DTDs in a new DTD
desertaions-in-deserts:

<?xml version="1.0" ?>
<!DOCTYPE desertations-in-deserts
SYSTEM "desertations-in-
deserts.dtd">
<desertations-in-deserts
xmlns:war="http://dsv.su.se/jpalm
e/a-book/xml/war.dtd"
xmlns:geography="http://dsv.su.se
/jpalme/a-
book/xml/geography.dtd">
 <war:desert>
 <deserter>
 John Smith</deserter>
 </war:desert>
 <geography:desert>
 Sahara</geography:desert>
</desertations-in-deserts>

<!ENTITY % war:desert SYSTEM
"war.dtd">
%war;
<!ENTITY % geography:desert
SYSTEM "geography.dtd">
%geography;
<!ELEMENT desertations-in-
deserts (war:desert,
geography:desert)>
<!ATTLIST desertaions-in-deserts
xmlns:war CDATA #IMPLIED
xmlns:geography CDATA #IMPLIED>

The xmlns:war="http://dsv.su.se/jpalme/a-
book/xml/war.dtd" and
xmlns:geography="http://dsv.su.se/jpalme/
a-book/xml/geography.dtd" attributes need not
refer to any real file, but should contain a unique URL for
this name space.

2ca-37

Putting binary data into XML encodings
All textual encodings have a common problem in that they
will not allow binary data, like, for example, a picture in GIF
format. There are three ways of handling this problem in
XML:

① Encode the binary data, using, for example, the BASE64
method.

② Put the binary data in a separate file, like GIF pictures in
HTML:
< IM G SRC =" i ma ge . gi f" >

③ Use method ②, but combine it with the MHTML method to
concatenate all the files into a single compound file.

2ca-38

Putting formatting information into XML pages
CSS = Cascading Style Sheets and XSLT = Extensible Style Language Transformations

XML document

CSS and/or XSL
layout information

Conversion from XML to HTML in the server, before transmission to the PC

Intermediate
HTML document

Converter from
XML to HTML

User Web
Browser

XML document

CSS and/or XSL
layout information

Server
User PC

Sending XML to the PC and conversion in the PC
(often built into the web browser)

Intermediate
HTML document

Converter from
XML to HTML

User Web
Browser

Server
User PC

2ca-39

Putting formatting information into XML pages

Conversion from XML to
HTML before storage in the

server

User Web
Browser

Server
User PC

Converter from
XML to HTML

Intermediate
HTML document

XML document

CSS and/or XSL
layout information

Intermediate
HTML document

Ordinary HTTP server
dispatching web pages

on request
Store of prepared

HTML pages

2ca-40

File ticket.css:
TITLE{ position: absolute; width: 121px; height: 31px; top:25px; left: 86px;

font-family: Verdana, sans-serif; font-size: 24pt; font-weight: bold}
CLASS{ position: absolute; width: 106px; height: 15px; top: 115px; left: 13px;

font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }
FROM { position: absolute; width: 150px; height: 15px; top: 70px; left: 12px;

font-family: Verdana, sans-serif; font-size: 14pt; font-weight: bold }
TO { position: absolute; width: 150px; height: 15px; top: 70px; left: 166px;

font-family: Verdana, sans-serif; font-size: 14pt; font-weight: bold; }
DEPART { position: absolute; width: 142px; height: 15px; top: 95px; left: 11px;

font-family: Verdana, sans-serif; font-size: 10pt }
ARRIVE { position: absolute; width: 128px; height: 15px; top: 95px; left: 167px;

font-family: Verdana, sans-serif; font-size: 10pt }
CABIN{ position: absolute; width: 138px; height: 18px; top: 115px; left: 167px;

font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }
SEAT { position: absolute; width: 138px; height: 18px; top: 115px; left: 247px;

font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }

File ticket.xml: Visual rendering:
< ?x ml ve rs i on =" 1 .0 " ?>
< !D OC T YP E TIC KE T S YS T EM " ticket.dtd" >
< ?X ML : st yl e sh ee t t yp e =" text/css"
h re f= " ticket.css" ? >
<T IC KE T >< TI T LE >T I CK ET < /T IT L E>
< CL AS S >2 Class< /C LA S S>
< FR OM > Oslo< /F RO M >
< TO >Stockholm< /T O>
< DE PA R T> Mon 13 Jan 12:13< /D EP A RT >
< AR RI V E> Mon 13 Jan 18:45< /A RR I VE >
< CA BI N >Cabin 3< /C AB I N>
< SE AT > Seat 55< /S EA T >< /T I CK ET >

TICKET

Oslo Stockholm
Mon 13 Jan 12:13 Mon 13 Jan 18:45

2 Class Cabin 3 Seat 5

2ca-41

XML validation
When you are developing specifications using DTD and
XML, it is essential to be able to check your
specifications for correctness. There is software
available to do this. I have been using the validator on
the net at http://www.stg.brown.edu/service/xmlvalid/ to
validate the examples given in this course.

2ca-42

XHMTL
XHTML is a variant of HTML which is at the same time
also correct XML. The main differences from ordinary
HTML are:

• All tags must be lower case, e.g. <a href> and not <A
HRE F=>

• All tags must be ended, e.g. <p>First
paragraph
second line.</p>

• No syntax errors allowed, e.g. not <p> <stro ng> Strong
text </p ></st rong>

2ca-43

ABNF specification: ASN.1 specification: DTD specification:
Family = "Family"
 CRLF *(Person)
 "End of Family"

Person = "Person" CRLF
 " Name: " 1*A CRLF
 " Birthyear: " 4D
CRLF
 " Gender: "
 ("Male"/"Female") CRLF
 " Status: "
 ("unmarried"/
"married"/
 "divorced"/ "widow"/
 "widower")

Family ::= SEQUENCE OF Person

Person ::= SEQUENCE {
name VisibleString,
birthyear INTEGER,
gender Gender,
status Status }

Gender ::= ENUMERATED {
male(0), female(1) }

Status ::= ENUMERATED {
unmarried(0), married(1),
divorced(2), widow(3), widower(4)
}

<!ELEMENT family
 (person+)>
<!ELEMENT person (name,
 birthyear)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthyear
 (#PCDATA)>
<!ATTLIST person
 gender (male | female)
 #REQUIRED
 status (unmarried |
 married | divorced |
 widow | widower)
 #REQUIRED
>

2ca-44

Example of textual encoding: Example of BER encoding: Example of XML encoding:
Family
Person
 Name: John Smith
 Birthyear: 1958
 Gender: Male
 Status: Married
Person
 Name: Eliza Tennyson
 Birthyear: 1959
 Gender: Female
 Status: Married
End of Family

(Each box represents one octet.
Two-character codes are
hexadecimal numbers, one
character codes are characters)
30 34
30 16
1A 0A J o h n S m i t h
02 02 07 A6
0A 01 00
0A 01 01
30 1A
1A 0E E l i z a T e n n y
s o n
02 02 07 A7
0A 01 01
0A 01 01

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM
"family.dtd">
<family>
 <person gender="male"
 status="married">
 <name>John Smith</name>
 <birthyear>1958
 </birthyear>
 </person>
 <person gender="female"
 status="married">
 <name>Eliza
 Tennyson</name>
 <birthyear>1959
 </birthyear>
 </person>
</family>

169 octets (excluding
newlines)

54 octets 276 octets (excluding
newlines and leading spaces)

18 % efficiency 57 % efficiency 11 % efficiency1

2ca-45

The PER (unaligned variant) encoding of the same ASN.1 and the
same data would be the following 31 octets:
00000010 (number of persons in
family)
00001010 (10 characters)
 1001010 J
1 101111 o
11 01000 h
110 1110 n
0100 000
10100 11 S
110110 1 m
1101001 i
 1110100 t
1 101000 h
00 000010 (2 octets)
00 00011110 100110 (1958)
0 (male)
 0 01 (married)

000011 10 (14 characters)
100010 1 E
1101100 l
 1101001 i
1 111010 z
11 00001 a
010 0000
1010 100 T
11001 01 e
110111 0 n
1101110 n
1111001 y
1 110011 s
11 01111 o
110 1110 n
0000 0010 (2 bytes)
0000 01111010 0111 (1959)
1 (female)
001 (married)

2ca-46

Comparison of ABNF, ASN.1-BER and DTD-XML
ABNF ASN.1 DTD+XML

Level Low level, almost any
text.

High level, strongly typed. High level, but not as
good typing facilities as
ASN.1.

Encoded form. Text. BER,. PER, etc. Text.

Readability of
metalanguage

OK. Good. Acceptable.

Readability of
encoded data

Very good. Very bad unless special
reader program is used.

Very good.

Efficiency of
data packing.

Usually not so good. About 50 % with BER,
almost 100 % with PER.

Not so good.

Binary data Must be encoded, for
example using
BASE64.

Can easily be included as
is.

Must be encoded, for
example using BASE64,
or sent as separate files.

Layout
facilities

None, but the high
freedom allows
specification of rather
readable formats.

None. Can be combined with
layout languages.

2ca-47

Other Encoding Languages
ABNF, ASN.1 and XML are not the only encoding languages.
Some other existing languages are Corba and XDR (External
Data Representation). Corba is more programmer-oriented,
and provides a programming API for transmission of data
between applications running on different hosts. And some
protocols, for example the Domain Naming System (DNS) do
not use any encoding language at all, their encodings are
specified in the form of English-language text and tables.

2ca-48

More information about XML
The official XML standards specification
(rather difficult to read):
http://www.w3.org/TR/REC-xml

Norman Walsh's XML tutorial:
http://www.xml.com/xml/pub/98/10/guide1.html

Rolf Pfeiffer's XML tutorial:
http://www.software.ibm.com/developer/education/tutorial-
prog/abstract.html

Doug Tidwell's XML tutorial:
http://www.software.ibm.com/developer/education/xmlintro/

Validator of DTD/XML encodings:
http://www.stg.brown.edu/service/xmlvalid/

XML books, like for example:

XML Bible, by Eliott Rusty Harold, IDG Books, Foster City, CA, U.S.A., 1999.

