
 6c-1

Image maps
It is possible to specify that clicking on different parts of an image has different

effects. Such images are called Image maps. HTML 2.0 had only so-called Server-

side image maps, but in HTML 3.2 also Client-side image maps were added.

The difference between server- and client-side image maps is where the decision is

made what to do.

With server-side image maps, the x- and y-coordinates of the place in the image on

which the user clicked are transferred to the server, and the software in the server

then decides, based on these coordinates, what to return.

With client-side image maps, the HTML markup contains specifications of which

areas of an image will represent different URIs, so that the user's web browser can

deduce which URI to use depending on where in the map the user clicked.

This means that with client-side image maps, no special functionality is needed in

the server to handle such maps. The individual page designer can thus use image

maps without help from the service provider.

More information about image maps see URL
http://www.berkana.com/class2/maps.html

 6c-2

Example of a

client-side

image map.

 6c-3

Example of a server-side image map

The image map below could also have been realized by several

separate graphics, one for each command, and with its own URL, or,

of course, with plain textual URL-s. What are the pros and cons of

these three methods of rendering the same information?

 6c-4

HTML forms makes HTML into a general user interface generation
language

 6c-5

HTML forms example; markup:
At URL: HTTP://www.dsv.su.se/~jpalme/test/form-example-1.html

<FORM ACTION=ordering-script.cgi
ENCTYPE= "application/x-www-form-urlencoded" METHOD=POST>

Your name<INPUT NAME="name" TYPE=TEXT SIZE="43"
MAXLENGTH="60"><P>

Password<INPUT NAME="PW" TYPE=PASSWORD SIZE="30"><P>

Postal address<TEXTAREA NAME="Address" ROWS="7"
COLS="50"></TEXTAREA><P>

Colour: <SELECT SIZE="3" NAME="Colour">
<OPTION SELECTED>Blue <OPTION>Green
<OPTION>Red <OPTION>Yellow
<OPTION>Brown </SELECT>

Extras: <SELECT NAME="Extras" SIZE="3" MULTIPLE>
<OPTION>Sound <OPTION>Light <OPTION>Vibration </SELECT>

 6c-6

Size: <SELECT NAME="Size">
<OPTION SELECTED>Small <OPTION>Medium <OPTION>Large </SELECT><P>

<INPUT TYPE=RADIO VALUE="courier" NAME="delivery">
Courier delivery
<INPUT TYPE= RADIO VALUE="air-mail" NAME="delivery" CHECKED>
 Air mail
<INPUT TYPE= RADIO VALUE="surface" NAME="delivery">
Surface mail<P>

<INPUT TYPE=CHECKBOX NAME="Registered" VALUE="Yes"> Registered
letter

<INPUT TYPE=CHECKBOX NAME="Quality" VALUE="Superior" CHECKED>
Superior quality<P>

<INPUT NAME="submit" TYPE=SUBMIT VALUE="Order">
<INPUT NAME="submit" TYPE=SUBMIT VALUE="Rush order">
<INPUT NAME="reset" TYPE=RESET VALUE="Clear form"><P>

</FORM></BODY></HTML>

 6c-7

HTML form attributes

Start of HTML form
Element Attribute Description

FORM Start of a FORM..

 ACTION The action URI for the form. Default: Base URI of

the document>.

 METHOD GET with no side-effects.

POST has side-effects.

 ENCTYPE Media type for encoding sent data.

 6c-8

One-line text input
INPUT A field for user input.

 TYPE=TEXT A single line text-entry field.

 MAXLENGTH Maximum number of characters.

 SIZE Display space.

 VALUE Initial value.

 TYPE=
PASSWORD

Same as TEXT, but not shown on the screen.

Example:
Your name<INPUT NAME="name" TYPE="text" SIZE="43"
MAXLENGTH="60">

Rendering:

 6c-9

Checkbox
INPUT A field for user input.

 TYPE=
CHECKBOX

A checkbox.

 NAME Symbolic name for group of fields

 VALUE Portion of the value contributed by this element

 CHECKED Initial state

Example:
<INPUT TYPE="checkbox" NAME="Registered" VALUE="Yes">
Registered letter

<INPUT TYPE="checkbox" NAME="Quality" VALUE="Superior"
CHECKED> Superior quality<P>

Rendering:

 6c-10

Radio button
INPUT A field for user input.

 TYPE=
RADIO

A checkbox.

 NAME Symbolic name for group of fields.

 VALUE Portion of the value contributed by this element.

 CHECKED Initial state (can only be set for one in a group).

Example:
<INPUT TYPE=RADIO VALUE="courier" NAME="delivery">
Courier delivery
<INPUT TYPE=RADIO VALUE="air-mail" NAME="delivery" CHECKED>
 Air mail
<INPUT TYPE=RADIO VALUE="surface" NAME="delivery">
Surface mail

Rendering:

 6c-11

HIDDEN field
INPUT A field for user input.

 TYPE=
HIDDEN

Field which is not displayed to the user, but which

returns value when the form is submitted.

 NAME Symbolic name for group of fields.

 VALUE Value submitted.

Example:
<INPUT TYPE=HIDDEN VALUE="xy654zd" NAME="password">

Rendering:

 6c-12

Submit
INPUT A field for user input.

 TYPE=
SUBMIT

A submit button.

 NAME Symbolic name.

 VALUE Value submitted (can be different for different

submit buttons).

Example:
<INPUT NAME="submit" TYPE=SUBMIT VALUE="Order">
<INPUT NAME="submit" TYPE=SUBMIT VALUE="Rush order">

Rendering:

 6c-13

Select
SELECT Start of a selection field.

 MULTIPLE Allow more than one option to be chosen.

 NAME Symbolic name.

 SIZE Number of visible elements.

SIZE=1 gives pop-down menu,

No. of elements > SIZE >1 gives scrolling list,

SIZE=No.of elements gives list.

OPTION Alternative in a selection field.

 SELECTED This option is initially selected, defaults to first.

 VALUE Value returned, defaults to content of element.

Example: Rendering:
Colour:
<SELECT SIZE="3" NAME="Colour">
<OPTION SELECTED>Blue <OPTION>Green
<OPTION>Red <OPTION>Yellow
<OPTION>Brown </SELECT>

SELECTED above was not necessary, since by default the first option is selected.

 6c-14

Textarea
TEXTAREA Multi-line text field.

 COLS Width in characters of visible field.

 NAME Symbolic name.

 ROWS Number of visible rows.

Example:
Postal address<TEXTAREA NAME="Address" ROWS="7"
COLS="50"></TEXTAREA><P>

Rendering:

 6c-15

Submission of filled-in forms
HTTP

method

MIME Content-Type Description

get application/x-www-form-

urlencoded

Very compact single string, appended to

the URL

post multipart/form-data Volumnious format, every field value

becomes its own MIME body part

Example:

<FORM action="mailto:foo@bar"
method="POST">
<P>Name? <INPUT TYPE="text" NAME="name"
VALUE="" SIZE=30 MAXLENGTH=30>
<P>Birth year? <INPUT TYPE="text"
NAME="born" VALUE="" SIZE=5
MAXLENGTH=4> <INPUT
TYPE="submit" NAME="Send" VALUE="Send">
</FORM>

 6c-16

Example:

<FORM action="mailto:foo@bar" method="POST">
<P>Name? <INPUT TYPE="text" NAME="name" VALUE="
SIZE=30 MAXLENGTH=30>
<P>Birth year? <INPUT TYPE="text"
NAME="born" VALUE="" SIZE=5
MAXLENGTH=4> <INPUT TYPE="submit"
NAME="Send" VALUE="Send"> </FORM>

This example will be sent in the following format:

From: Jacob Palme <jpalme@dsv.su.se>
MIME-Version: 1.0
To: foo@bar
Subject: ...
Content-type: application/x-www-form-urlencoded

name=Jacob+Palme&born=1941&Send=Send

If the first line had been

<FORM action="http://www.dsv.su.se/cgi-bin/foo" method="GET">

it would have been sent as

GET /cgi-bin/foo?name=Jacob+Palme&born=1941&Send=Send HTTP/1.1

 6c-17

If the first line had been

<FORM action="mailto:foo@bar" method="POST" enctype="multipart/form-
data">

Then it would have been sent as

From: Jacob Palme <jpalme@dsv.su.se>
MIME-Version: 1.0
To: foo@bar
Subject: ...
Content-type: multipart/form-data; boundary=++218421377

--++218421377911030
Content-Disposition: form-data; name="name"

Jacob Palme

A separate MIME body

part for each field

value

--++218421377911030
Content-Disposition: form-data; name="born"

1941
--++218421377911030
Content-Disposition: form-data; name="Send"

Send
--++218421377911030--

 6c-18

Form-based File Upload in HTML
(RFC 1867 and HTML 4 chapter 17.13.4 Form Content types)

 6c-19

Form-based File Upload in HTML

<FORM ACTION="http://server.dom/cgi/handle"
 ENCTYPE="multipart/form-data"
 METHOD=POST>
What is your name? <INPUT TYPE=TEXT NAME=submitter>
What files are you sending? <INPUT TYPE=FILE NAME=pics>
</FORM>

TYPE=FILE indicates that a file is requested. NAME is to be used when sending the

file to indicate which field in the form it applies to. The ACCEPT attribute can

constrain which file patterns are allowed. The SIZE attribute can indicate a size of

a field where the files the user has selected are listed. The VALUE attribute can be

used to give a default file name.

 6c-20

The client might send back the following data:
Content-type: multipart/form-data, boundary=AaB03x

--AaB03x
content-disposition: form-data; name="field1"

Joe Blow
--AaB03x
content-disposition: form-data; name="pics"

Note that each

field value is

sent as a sepa-

rate MIME body

part

Content-type: multipart/mixed, boundary=BbC04y

--BbC04y
Content-disposition: attachment; filename="file1.txt"
Content-Type: text/plain

... contents of file1.txt ...
--BbC04y

Note: Binary

data must be

encoded

Content-disposition: attachment; filename="file2.gif"
Content-type: image/gif
Content-Transfer-Encoding: binary

 ...contents of file2.gif...
--BbC04y--
--AaB03x--

 6c-21

Building applications based on HTTP
Using the form facility of HTML, it is possible to build application programs based

on HTML and HTTP. Such an application program uses a web browser as client,

and a specially configured HTTP server as server. Almost any computer

application which does not require very fast interaction with the user can be built

in this way.

+ User does not have to install special client software in his personal

computer/workstation.

+ HTML makes it easy to design the user interface.

+ Users may find the web browser interface easy to use because they are

accustomed to it.

+ The web browser provides additional facilities automatically, in particular

that any page can be printed or saved on a file, and the Back and Forward

buttons in the web browser.

� Sometimes less neat user interface than with a custom-built client.

� Response times sometimes less good than with a custom-built client.

� Applications which require a data base in the client computer cannot be built

in this way.

 6c-22

CGI = Common Gateway Interface

CGI is a standard for the interaction between an HTTP server and a

special program. CGI allows the HTTP server to recognize special

input from the user, for example filled-in-forms, and giving them to

an application program. This program can then return a custom-

built HTML page to be sent back to the user.

CGI is not the only possible way of doing this. HTTP servers and

application can communicate using other methods also.

More about CGI will be said in a special lecture in this course, given

by Fredrik Kilander.

Web
browser

Cli-
ent

HTTP
server

Cli-
ent

CGI
server

Cli-
ent

Data base
server

Cli-
ent

 Long response times

 6c-23

HTML/HTTP applications which require server
knowledge of previous interactions
Many application program requires that information is kept between

interactions between a user and the server.

Examples:

� A user logs in, gives his name and password, and can then perform

multiple interactions with the server without having to give his name and

password again.

� A user retrieves data, and then in a later interaction wants to perform

some action based on the data retrieved in the previous interaction.

� A user inputs data, and then in a later interaction wants to perform some

action on the data already input (for example change words in a text, add

recipients to a message, etc.)

� Suppose for example that we designed software for a user to communicate

with his bank. The user might first move some money from one account to

another, and then use the moved money to pay a bill.

 6c-24

HTTP (version 1.0) is a stateless protocol

HTTP 1.0 is a stateless protocol. There is no knowledge of previous

interactions in the protocol. Every request creates a new interaction,

which opens a connection, performs the interaction (for example

retrieving data, och sending in a form which the user has filled in).

After data has been transmitted, the HTTP connection between the

client and the server is broken. Thus, HTTP 1.0 as such is not

suitable for sessions of multiple interactions between user and

server, unless some special trick is used. Also HTTP 1.1 is inpractice

mostly used as a stateless protocol.

Here are some such special tricks:

(1) Store session information in custom-built URLs.

(2) Store session information in hidden fields in a form.

(3) Use cookies.

 6c-25

(1) Store session information in custom-built URLs.

When the server creates the custom-built web page to be sent to the user,

the server can store session information in specially built URLs. When the

user clicks on these URLs, this in formation is sent back to the server.

Example: The server creates a URL like this:

HTTP:/www.dsv.su.se/exam-results?per-nils+sf14ty

where per-nils is the user account and sf14ty is the user password.

It is somewhat dangerous to store passwords in URL-s which other people

might see and use. To reduce this risk, often a special session password is

used, with more limited applicability. For example, the session password

will become invalid if there is no interaction in 10 minutes. Such session

passwords are often named Magic cookie. A Magic cookie is a special

password which gives the user some special rights, often only at a certain

time. A Magic cookie often also gives the server information to identify the

user, so that it can replace both the user name and the user password.

 6c-26

(2) Store session information in hidden fields in a form.
If the interaction is made by the server sending forms to the user, and the user

returning the filled in forms, then the server can store session information in the forms

sent to the user. This can be done in open fields, if the user needs to see the

information sent, or in hidden form fields, if the user would not want to see it. The

contents of the hidden fields are sent back with the filled-in form to the server. Two

common usage of such hidden fields are:

(a) To store user account names, passwords or magic cookies. This information will

help the server to look up the user information.

 Disadvantage: Server has to store information about each concurrent user.

(b) To store full information of what the user has achieved. For example, an

application where the user interactively creates a budget, the whole budget could

be sent back in each interaction. Thus, the server need not remember anything of

previous interactions, all of it is provided in data sent to the server with every

interaction.

 Disadvantage: The amount of information sent back and forward between user

and server must not get too large, or the response times will be less good. If, for

example, a 28800 bps connection is used and a maximum delay of 5 seconds is

acceptable, then a maximum of 28800*5/2*10 = 72 Kbytes is acceptable.

 6c-27

(3) Use cookies

Newer browsers have a cookie facility, with which a server can store

a �cookie�, i.e. some kind of session-ID, in the web browser, which

the server at a later time can query the value of.

(More about cookies in the HTTP lecture.)

Version 1.1 of HTTP has facilities to support persistent connections.

The disadvantage with these methods, is that they are not supported

by all web browsers, and that some users set their browsers to not

accept cookies, because they believe cookies to be an infringement of

their privacy.

 6c-28

HTML tables
A feature in HTML 3.2, which is much used and supported by many browsers, is

HTML tables.

Table example 1:
This example can be found at URL:

HTTP://www.dsv.su.se/~jpalme/test/table-example-1.html

 6c-29

HTML code behind table example 1:
<TABLE>
<CAPTION>Calendar for September 1996</CAPTION>
<TR><TH>Sunday</TH><TH>Monday</TH><TH>Tuesday</TH>
<TH>Wednesday</TH><TH>Thursday</TH><TH>Friday</TH>
<TH>Saturday
</TH></TR>
<TR><TD>1</TD><TD>2</TD><TD>3</TD><TD>4</TD><TD>5</TD>
<TD>6</TD><TD>7
</TR>
<TR><TD>8</TD><TD>9</TD><TD>10</TD><TD>11</TD><TD>12</TD>
<TD>13</TD><TD>14
</TR>
<TR><TD>15</TD><TD>16</TD><TD>17</TD><TD>18</TD><TD>19</TD>
<TD>20</TD><TD>21
</TR>
<TR><TD>22</TD><TD>23</TD><TD>24</TD><TD>25</TD><TD>26</TD>
<TD>27</TD><TD>28
</TR>
<TR><TD>29</TD><TD>30</TD></TR>
</TABLE>
<BR CLEAR=LEFT>

Column width autofit is very useful for tables with lots of

 6c-30

Merging cells
It is possible to merge adjacent cells both horizontally and vertically into arbitrary

rectangular shapes.

<TABLE BORDER=1>
 <CAPTION>A test table with merged cells</CAPTION>
 <TR><TH ROWSPAN=2>Sex<TH COLSPAN=2>Body measures
 <TH ROWSPAN=2>Hair
colour<TH
ROWSPAN=2>Payment
Status
 <TR><TH>height<TH>weight
 <TR><TH>John<TD>185<TD>75<TD>Brown<TD>Paid
 <TR><TH>Mary<TD>175<TD>65<TD>Red<TD>Paid
</TABLE>

 6c-31

Text flowing around a table

 6c-32

HTML markup for text flowing around a table
<TABLE BORDER=1 ALIGN=LEFT>
 <CAPTION>A test table with merged cells</CAPTION>
 <TR><TH ROWSPAN=2>Sex<TH COLSPAN=2>Body measures
 <TH ROWSPAN=2>Hair
colour<TH
ROWSPAN=2>Payment
Status
 <TR><TH>height<TH>weight
 <TR><TH>John<TD>185<TD>75<TD>Brown<TD>Paid
 <TR><TH>Mary<TD>175<TD>65<TD>Red<TD>Paid
</TABLE>

If a table is narrow, and if you specify <TABLE BORDER
ALIGN=LEFT>, the following text will flow around the table,
as is shown by this example. If this is not what you want, put
<BR CLEAR=LEFT> immediately after the end of the table.
The statement <BR CLEAR=LEFT> instructs the web browser
to statement after the end of the table and not at the side of
the table.

To cause text to start below the table and not flow around it, put the element <BR
CLEAR=LEFT> before the text, or do not put ALIGN=LEFT in the <TABLE> element.

 6c-33

Java, Javascript (ECMAScript)
Program (s.k. applets) som laddas ner från nätet samtidigt med websidor. Kan

köras så snart de laddats ner. Exempel på användningar:

� Minska svarstiden genom lokal interaktion istället för server-interaktion

� Rörliga bilder och andra saker som inte så enkelt kan göras med vanlig HTML

� Begränsade av säkerhetsproblem

Skillnaden mellan Java och Javascript

Egenskap Java Javascript

Lagring I separata filer, till vilka det

finns länkar i HTML-texten.

Som del av HTML-texten.

Kompilering Kompileras till bytekod, som

sedan interpreteras, eller till

objetkod som exekveras.

Källkoden interpreteras direkt.

Funktioner Generellt programmerings-

språk. observera dock säker-

hetsbegränsningarna.

Mest kommandon för att styra web-

läsaren. Kan idag inte ändra i redan

visad web-sida (däremot skriva nya

sidor), detta kommer snart att ändras!

