*:96 Internet application layer
protocols and standards

Compendium 2:

Allowed during the exam
Last revision: 1 Apr 2003

FTP

RFC 959: File Transfer ProtoCOl (FTP) ..t 253-287
Cookies

RFC 2109: HTTP State Management MechaniSm ... 288-298
Usenet News Message Format

RFC 1036: Standard for Interchange of USENET MESSagES........cccovvemvevrrrenerrensrressnennnns 299-308
HTTP

RFC 2068: Hypertext Transfer Protocol HTTP L1 ...t 309-389
NNTP

RFC 977: Network News Transfer ProtoCOl (NNTP)......ocvoveecrecereceeeeee e 390-403
URL

RFC 2396: Uniform Resource Identifiers (URI): Generic SyntaXccceveveeerrevernennne. 425-444
Port Numbers

IANA Register Of POrt NUMDENS........cccoerereceesesese st ssesassesansns 445-460
Media Types

IANA RegiSter Of MedIA TYPES ...ttt sesasens 461-468

The documents are not ordered in a suitable order for reading them,
see compendium 0 pagel4-17

£Gz abed gz wnipuadwo)

Net wor k Wor ki ng Group J. Postel
Request for Conmments: 959 J. Reynol ds

ISl
bsol etes RFC: 765 (| EN 149) Cct ober 1985

FI LE TRANSFER PROTOCOL (FTP)

Status of this Meno

This nmenp is the official specification of the File Transfer
Protocol (FTP). Distribution of this menp is unlinited.

The fol l owi ng new optional commands are included in this edition of
the specification:

CDUP (Change to Parent Directory), SWMNT (Structure Munt), STOU
(Store Unique), RVD (Renpbve Directory), MKD (Make Directory), PWD
(Print Directory), and SYST (Systen).

Note that this specification is conpatible with the previous edition.
1. 1 NTRODUCTI ON

The objectives of FTP are 1) to pronote sharing of files (conputer
prograns and/or data), 2) to encourage indirect or inplicit (via
prograns) use of renote conputers, 3) to shield a user from
variations in file storage systems anpng hosts, and 4) to transfer
data reliably and efficiently. FTP, though usable directly by a user
at a termnal, is designed mainly for use by prograns.

The attenpt in this specification is to satisfy the diverse needs of
users of maxi-hosts, mni-hosts, personal workstations, and TACs,
with a sinple, and easily inplenmented protocol design.

Thi s paper assunes know edge of the Transmi ssion Control Protocol
(TCP) [2] and the Telnet Protocol [3]. These docunents are contained
in the ARPA-Internet protocol handbook [1].

2. OVERVIEW

In this section, the history, the term nology, and the FTP nodel are
di scussed. The terms defined in this section are only those that
have special significance in FTP. Some of the terminology is very
specific to the FTP nodel; some readers may wish to turn to the
section on the FTP nodel while review ng the term nol ogy.

Postel & Reynol ds [Page 1]

RFC 959 Cct ober 1985
File Transfer Protocol

2.1. HSTORY

FTP has had a I ong evolution over the years. Appendix IIl is a
chronol ogi cal conpilation of Request for Comments docunents
relating to FTP. These include the first proposed file transfer
mechani sns in 1971 that were devel oped for inplenmentation on hosts
at MI.T. (RFC 114), plus coments and di scussion in RFC 141.

RFC 172 provided a user-level oriented protocol for file transfer
bet ween host conputers (including termnal IMPs). A revision of
this as RFC 265, restated FTP for additional review, while RFC 281
suggested further changes. The use of a "Set Data Type"
transaction was proposed in RFC 294 in January 1982.

RFC 354 obsol eted RFCs 264 and 265. The File Transfer Protocol
was now defined as a protocol for file transfer between HOSTs on
the ARPANET, with the primary function of FTP defined as
transfering files efficiently and reliably anpng hosts and

al l owi ng the convenient use of renote file storage capabilities.
RFC 385 further conmented on errors, enphasis points, and
additions to the protocol, while RFC 414 provided a status report
on the working server and user FTPs. RFC 430, issued in 1973,
(anmong ot her RFCs too nunerous to nmention) presented further
comrents on FTP. Finally, an "official" FTP docunment was

publ i shed as RFC 454.

By July 1973, considerable changes fromthe |ast versions of FTP
were made, but the general structure renmined the same. RFC 542
was published as a new "official" specification to reflect these
changes. However, many inpl enentati ons based on the ol der
speci fication were not updated.

In 1974, RFCs 607 and 614 continued conments on FTP. RFC 624
proposed further design changes and mnor nodifications. |In 1975,
RFC 686 entitled, "Leaving Well Enough Al one", discussed the

di fferences between all of the early and later versions of FTP.
RFC 691 presented a mnor revision of RFC 686, regarding the
subject of print files.

Motivated by the transition fromthe NCP to the TCP as the
under | yi ng protocol, a phoenix was born out of all of the above
efforts in RFC 765 as the specification of FTP for use on TCP.

This current edition of the FTP specification is intended to
correct some mnor docunentation errors, to inprove the

expl anati on of some protocol features, and to add sone new
optional commands.

Postel & Reynol ds [Page 2]

Gz abed ¢z wnipuadwo)

RFC 959 Cct ober 1985

File

2.

Post el

Transfer Protocol

In particular, the follow ng new optional conmands are included in
this edition of the specification:

CDUP - Change to Parent Directory
SMNT - Structure Munt

STQU - Store Uni que

RVD - Renove Directory

MKD - Make Directory

PWD - Print Directory

SYST - System

This specification is conpatible with the previous edition. A
program i npl emented in conformance to the previous specification
shoul d automatically be in confornance to this specification.

2. TERM NOLOGY

ASCI |

The ASCI| character set is as defined in the ARPA-Internet
Prot ocol Handbook. In FTP, ASCI| characters are defined to be
the lower half of an eight-bit code set (i.e., the nost
significant bit is zero).

access controls

Access controls define users' access privileges to the use of a
system and to the files in that system Access controls are
necessary to prevent unauthorized or accidental use of files.

It is the prerogative of a server-FTP process to invoke access
controls.

byte size

There are two byte sizes of interest in FTP: the |ogical byte
size of the file, and the transfer byte size used for the
transm ssion of the data. The transfer byte size is always 8
bits. The transfer byte size is not necessarily the byte size
in which data is to be stored in a system nor the |ogical byte
size for interpretation of the structure of the data.

& Reynol ds [Page 3]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

control connection

The conmuni cati on path between the USER-PlI and SERVER-PI for
the exchange of commands and replies. This connection follows
the Tel net Protocol.

data connection

A full duplex connection over which data is transferred, in a
specified node and type. The data transferred nay be a part of
a file, an entire file or a nunber of files. The path may be
between a server-DTP and a user-DTP, or between two
server - DTPs.

data port

The passive data transfer process "listens" on the data port
for a connection fromthe active transfer process in order to
open the data connection.

DTP

The data transfer process establishes and manages the data
connection. The DTP can be passive or active.

End- of - Li ne

The end-of -1ine sequence defines the separation of printing
lines. The sequence is Carriage Return, followed by Line Feed.

EOF

The end-of-file condition that defines the end of a file being
transferred.

ECR

The end-of-record condition that defines the end of a record
bei ng transferred.

error recovery
A procedure that allows a user to recover fromcertain errors
such as failure of either host systemor transfer process. In

FTP, error recovery nay involve restarting a file transfer at a
gi ven checkpoi nt.

& Reynol ds [Page 4]

GGz abed z wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

FTP commands

A set of commands that conprise the control information flow ng
fromthe user-FTP to the server-FTP process.

file

An ordered set of conputer data (including programs), of
arbitrary length, uniquely identified by a pathnane.

node

The npde in which data is to be transferred via the data
connection. The node defines the data format during transfer
including EOR and EOF. The transfer nodes defined in FTP are
described in the Section on Transm ssion Mdes.

NVT

The Network Virtual Termnal as defined in the Tel net Protocol.

NVFS

The Network Virtual File System A concept which defines a
standard network file systemw th standard conmmands and
pat hname conventi ons.

page

A file may be structured as a set of independent parts called
pages. FTP supports the transm ssion of discontinuous files as
i ndependent i ndexed pages.

pat hname

Pat hname is defined to be the character string which nust be
input to a file systemby a user in order to identify a file.
Pat hname nornal |y contains device and/or directory nanmes, and
file name specification. FTP does not yet specify a standard
pat hname convention. Each user nust follow the file nam ng
conventions of the file systems involved in the transfer.

Pl
The protocol interpreter. The user and server sides of the
protocol have distinct roles inplenmented in a user-Pl and a
server-Pl.

& Reynol ds [Page 5]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

record

A sequential file nay be structured as a nunber of contiguous
parts called records. Record structures are supported by FTP
but a file need not have record structure.

reply

A reply is an acknow edgnent (positive or negative) sent from
server to user via the control connection in response to FTP
commands. The general formof a reply is a conpletion code
(including error codes) followed by a text string. The codes
are for use by prograns and the text is usually intended for
human users.

server-DTP

The data transfer process, in its normal "active" state,

establishes the data connection with the "listening" data port.
It sets up paraneters for transfer and storage, and transfers
data on command fromits PI. The DTP can be placed in a

"passive" state to listen for, rather than initiate a
connection on the data port.

server-FTP process

A process or set of processes which performthe function of
file transfer in cooperation with a user-FTP process and,
possi bly, another server. The functions consist of a protocol
interpreter (PI) and a data transfer process (DTP).

server- Pl
The server protocol interpreter "listens" on Port L for a
connection froma user-Pl and establishes a control
communi cation connection. It receives standard FTP commands

fromthe user-Pl, sends replies, and governs the server-DTP.
type

The data representation type used for data transfer and
storage. Type inplies certain transformations between the tinme
of data storage and data transfer. The representation types
defined in FTP are described in the Section on Establishing
Dat a Connecti ons.

& Reynol ds [Page 6]

RFC 959
File Transfer Protocol

user

A person or a process on behalf of a person wishing to obtain
file transfer service. The human user may interact directly
with a server-FTP process, but use of a user-FTP process is
preferred since the protocol design is weighted towards

Cct ober 1985

RFC 959
File Transfer Protocol

2.3. THE FTP MODEL

Wth the above definit

Cct ober 1985

ions in mnd, the followi ng nodel (shown in
Figure 1) may be di agramed for an FTP service.

96z abed g wnipuadwo)

aut omat a. [FEEEEEEEEE \
[l User || --------
user - DTP ||I'nterface|<--->| User |
A B
The data transfer process "listens" on the data port for a e | | |
connection froma server-FTP process. |f two servers are | [------ \| FTP Commands |/----V----\]|
transferring data between them the user-DTP is inactive. || Server| <---------uoo---- >| User ||
I PL] FTP Replies || PI |
user - FTP process J\--n---] ARy |
[| | | |
A set of functions including a protocol interpreter, a data o------- | /--V---\]| Dat a | [----V---=\| eeme---
transfer process and a user interface which together perform | File |<--->Server|<---------c-nn--- >l User |<---> File |
the function of file transfer in cooperation with one or nore | Syst em || DTP || Connection | DTP 1 | Systemn
server-FTP processes. The user interface allows a local — —ooo--nn J\------ /| J\-emeee - A
| anguage to be used in the command-reply dial ogue with the — eeeeaaao e
user.
Server-FTP USER- FTP
user - Pl

NOTES: 1. The data connection nay be used in either direction.

The user protocol interpreter initiates the control connection 2. The data connection need not exist all of the tine.

fromits port Uto the server-FTP process, initiates FTP
commands, and governs the user-DTP if that process is part of

Figure 1 Mdel for FTP Use
the file transfer.

I'n the nodel described in Figure 1, the user-protocol interpreter
initiates the control connection. The control connection follows
the Tel net protocol. At the initiation of the user, standard FTP
conmands are generated by the user-Pl and transnitted to the
server process via the control connection. (The user may
establish a direct control connection to the server-FTP, froma
TAC termnal for exanple, and generate standard FTP conmands

i ndependent |y, bypassing the user-FTP process.) Standard replies
are sent fromthe server-Pl to the user-Pl over the control
connection in response to the comuands.

The FTP commands specify the paraneters for the data connection
(data port, transfer node, representation type, and structure) and
the nature of file systemoperation (store, retrieve, append,
delete, etc.). The user-DIP or its designate should "listen" on
the specified data port, and the server initiate the data
connection and data transfer in accordance with the specified
paraneters. It should be noted that the data port need not be in

Post el & Reynol ds [Page 7] Post el & Reynol ds [Page 8]

1 Gz abed z wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

the sanme host that initiates the FTP commands via the control
connection, but the user or the user-FTP process nust ensure a
"listen" on the specified data port. It ought to also be noted
that the data connection may be used for sinultaneous sendi ng and
recei vi ng.

In another situation a user mght wish to transfer files between
two hosts, neither of which is a local host. The user sets up
control connections to the two servers and then arranges for a
data connection between them In this manner, control information
is passed to the user-Pl but data is transferred between the
server data transfer processes. Following is a nodel of this
server-server interaction.

Control ------------ Control

—————————— > User-FTP | <-----------

| | User-PI | |

| [| |

Vo e \%
| Server-FTP | Dat a Connecti on | Server-FTP |
| "A | <emmm s >| "B |
-------------- Port (A) Port (B) --------------

Figure 2

The protocol requires that the control connections be open while
data transfer is in progress. |t is the responsibility of the
user to request the closing of the control connections when
finished using the FTP service, while it is the server who takes
the action. The server nmay abort data transfer if the control
connections are closed w thout command.

The Rel ationship between FTP and Tel net:

The FTP uses the Tel net protocol on the control connection.
This can be achieved in two ways: first, the user-Pl or the
server-Pl may inplenent the rules of the Tel net Protocol
directly in their own procedures; or, second, the user-Pl or
the server-Pl may make use of the existing Telnet npdule in the
system

Ease of inplenmentaion, sharing code, and nodul ar progranm ng
argue for the second approach. Efficiency and i ndependence

& Reynol ds [Page 9]

RFC 959 Cct ober 1985
File Transfer Protocol

3.

argue for the first approach. |In practice, FTP relies on very
little of the Telnet Protocol, so the first approach does not
necessarily involve a | arge ambunt of code.

DATA TRANSFER FUNCTI ONS

Files are transferred only via the data connection. The control
connection is used for the transfer of commands, which describe the
functions to be performed, and the replies to these commands (see the
Section on FTP Replies). Several commands are concerned with the
transfer of data between hosts. These data transfer commands include
the MODE command whi ch specify how the bits of the data are to be
transnmitted, and the STRUcture and TYPE commands, which are used to
define the way in which the data are to be represented. The

transm ssion and representation are basically independent but the
"Streant transm ssion nobde is dependent on the file structure
attribute and if "Conpressed" transm ssion node is used, the nature
of the filler byte depends on the representation type.

3.1. DATA REPRESENTATI ON AND STORAGE

Data is transferred froma storage device in the sending host to a
storage device in the receiving host. Oten it is necessary to
performcertain transfornations on the data because data storage
representations in the two systens are different. For exanple,
NVT-ASCI | has different data storage representations in different
systens. DEC TOPS-20s's generally store NVT-ASCI| as five 7-bit
ASCI| characters, left-justified in a 36-bit word. |BM Mainfrane's
store NVT-ASCI| as 8-bit EBCDIC codes. Miltics stores NVT-ASC |
as four 9-bit characters in a 36-bit word. It is desirable to
convert characters into the standard NVT-ASCI| representati on when
transmtting text between dissinmlar systenms. The sending and
receiving sites would have to performthe necessary

transformati ons between the standard representation and their
internal representations.

A different problemin representation arises when transmtting
binary data (not character codes) between host systens with
different word lengths. It is not always clear how the sender
shoul d send data, and the receiver store it. For exanple, when
transmtting 32-bit bytes froma 32-bit word-length systemto a
36-bit word-length system it may be desirable (for reasons of
efficiency and useful ness) to store the 32-bit bytes
right-justified in a 36-bit word in the latter system In any
case, the user should have the option of specifying data
representation and transformation functions. |t should be noted

Postel & Reynol ds [Page 10]

86z abed z wnipuadwo)

RFC 959 Cct ober 1985

File Transfer Protocol

that FTP provides for very limted data type representations.
Transformati ons desired beyond this limted capability should be
performed by the user directly.

3.1.1. DATA TYPES

Data representations are handled in FTP by a user specifying a
representation type. This type may inplicitly (as in ASC| or
EBCDIC) or explicitly (as in Local byte) define a byte size for
interpretation which is referred to as the "logical byte size."
Note that this has nothing to do with the byte size used for
transmi ssion over the data connection, called the "transfer
byte size", and the two should not be confused. For exanple,
NVT-ASCI | has a logical byte size of 8 bits. |If the type is
Local byte, then the TYPE conmand has an obligatory second
paraneter specifying the |ogical byte size. The transfer byte
size is always 8 bits.

3.1.1.1. ASC | TYPE

This is the default type and nust be accepted by all FTP
inplementations. It is intended primarily for the transfer
of text files, except when both hosts would find the EBCDI C
type nore convenient.

The sender converts the data froman internal character
representation to the standard 8-bit NVT-ASCI I
representation (see the Tel net specification). The receiver
will convert the data fromthe standard formto his own
internal form

In accordance with the NVT standard, the <CRLF> sequence
shoul d be used where necessary to denote the end of a line
of text. (See the discussion of file structure at the end
of the Section on Data Representation and Storage.)

Using the standard NVT-ASCI| representation neans that data
must be interpreted as 8-bit bytes.

The Format paranmeter for ASCI|I and EBCDIC types is discussed
bel ow.

Post el & Reynol ds [Page 11]

Cct ober 1985

File Transfer Protocol

3.1.1.2. EBCDI C TYPE

This type is intended for efficient transfer between hosts
whi ch use EBCDIC for their internal character
representation.

For transmi ssion, the data are represented as 8-bit EBCDI C
characters. The character code is the only difference
between the functional specifications of EBCDIC and ASCI |
types.

End- of -1ine (as opposed to end-of-record--see the discussion
of structure) will probably be rarely used with EBCDI C type
for purposes of denoting structure, but where it is
necessary the <NL> character should be used.

3.1.1.3. | MAGE TYPE

The data are sent as contiguous bits which, for transfer,
are packed into the 8-bit transfer bytes. The receiving
site nust store the data as contiguous bits. The structure
of the storage system might necessitate the paddi ng of the
file (or of each record, for a record-structured file) to
sone conveni ent boundary (byte, word or block). This

paddi ng, which nust be all zeros, may occur only at the end
of the file (or at the end of each record) and there nust be
a way of identifying the padding bits so that they nay be
stripped off if the file is retrieved. The padding
transformati on should be well publicized to enable a user to
process a file at the storage site.

Image type is intended for the efficient storage and
retrieval of files and for the transfer of binary data. |t
is recommended that this type be accepted by all FTP

i mpl enent ati ons.

3.1.1.4. LOCAL TYPE

The data is transferred in logical bytes of the size
specified by the obligatory second paraneter, Byte size.
The value of Byte size nust be a decimal integer; there is
no default value. The logical byte size is not necessarily
the sane as the transfer byte size. |If thereis a
difference in byte sizes, then the |ogical bytes should be
packed contiguously, disregarding transfer byte boundaries
and wi th any necessary padding at the end.

& Reynol ds [Page 12]

652 abed z wnipuadwo)

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985

File Transfer Protocol File Transfer Protocol
When the data reaches the receiving host, it will be The file need contain no vertical format information. |If
transformed in a nmanner dependent on the |ogical byte size it is passed to a printer process, this process my
and the particular host. This transformation nust be assune standard val ues for spacing and nmargins.
invertible (i.e., an identical file can be retrieved if the
sane paraneters are used) and should be well publicized by Normal ly, this format will be used with files destined
the FTP i npl ementors. for processing or just storage.
For exanple, a user sending 36-bit floating-point nunbers to 3.1.1.5.2. TELNET FORVAT CONTROLS
a host with a 32-bit word could send that data as Local byte
with a logical byte size of 36. The receiving host would The file contains ASCI|/EBCDI C vertical format controls
then be expected to store the logical bytes so that they (i.e., <CR», <LF> <NL> <VT> <FF>) which the printer
could be easily nanipulated; in this exanple putting the process will interpret appropriately. <CRLF> in exactly
36-bit logical bytes into 64-bit double words should this sequence, also denotes end-of-Iine.
suffice.

3.1.1.5.2. CARRI AGE CONTROL (ASA)
I'n anot her exanple, a pair of hosts with a 36-bit word size

may send data to one another in words by using TYPE L 36. The file contains ASA (FORTRAN) vertical format control

The data would be sent in the 8-bit transmnission bytes characters. (See RFC 740 Appendi x C; and Conmuni cati ons

packed so that 9 transmission bytes carried two host words. of the ACM Vol. 7, No. 10, p. 606, Cctober 1964.) In a
line or arecord fornatted according to the ASA Standard,

3.1.1.5. FORVAT CONTROL the first character is not to be printed. Instead, it

shoul d be used to deternmine the vertical novenment of the

The types ASCI|I and EBCDI C al so take a second (optional) paper which shoul d take place before the rest of the

paraneter; this is to indicate what kind of vertical format record is printed.

control, if any, is associated with a file. The follow ng

data representation types are defined in FTP: The ASA Standard specifies the follow ng control

characters:
A character file may be transferred to a host for one of

three purposes: for printing, for storage and | ater Char act er Vertical Spacing

retrieval, or for processing. |If afile is sent for

printing, the receiving host nmust know how the vertical bl ank Move paper up one line

format control is represented. |In the second case, it nust 0 Move paper up two |ines

be possible to store a file at a host and then retrieve it 1 Move paper to top of next page

later in exactly the same form Finally, it should be + No novenent, i.e., overprint

possible to nove a file fromone host to another and process

the file at the second host w thout undue trouble. A single Clearly there must be sone way for a printer process to

ASCI| or EBCDIC format does not satisfy all these di stinguish the end of the structural entity. |If a file

conditions. Therefore, these types have a second paraneter has record structure (see below) this is no problem

speci fying one of the followi ng three formats: records will be explicitly marked during transfer and
storage. |If the file has no record structure, the <CRLF>

3.1.1.5.1. NON PRINT end-of -1ine sequence is used to separate printing |lines,
but these format effectors are overridden by the ASA

This is the default format to be used if the second controls.

(format) paraneter is onmtted. Non-print format nust be
accepted by all FTP inplenmentations.

Post el & Reynol ds [Page 13] Postel & Reynol ds [Page 14]

09z abed z wnipuadwo)

RFC 959

Cct ober 1985

File Transfer Protocol

Post el

.1.2. DATA STRUCTURES

In addition to different representation types, FTP allows the

structure of a file to be specified. Three file structures are

defined in FTP:
file-structure, where there is no internal structure and

the file is considered to be a

conti nuous sequence of data bytes,

record-structure, where the file is nade up of sequential
records,

and page-structure, where the file is made up of independent
i ndexed pages.

File-structure is the default to be assuned if the STRUcture
command has not been used but both file and record structures
must be accepted for "text" files (i.e., files with TYPE ASCl |
or EBCDIC) by all FTP inplenmentations. The structure of a file
will affect both the transfer node of a file (see the Section
on Transm ssion Mddes) and the interpretati on and storage of
the file.

The "natural" structure of a file will depend on which host
stores the file. A source-code file will usually be stored on
an | BM Mainfrane in fixed I ength records but on a DEC TOPS- 20
as a stream of characters partitioned into lines, for exanple
by <CRLF>. If the transfer of files between such disparate
sites is to be useful, there nust be some way for one site to
recogni ze the other's assunptions about the file.

Wth sonme sites being naturally file-oriented and others
naturally record-oriented there may be problems if a file with
one structure is sent to a host oriented to the other. |If a
text file is sent with record-structure to a host which is file
oriented, then that host should apply an internal
transformation to the file based on the record structure.
Obviously, this transformation should be useful, but it mnust

al so be invertible so that an identical file may be retrieved
using record structure.

In the case of a file being sent with file-structure to a
record-oriented host, there exists the question of what
criteria the host should use to divide the file into records
whi ch can be processed locally. |If this division is necessary,
the FTP inpl ementati on shoul d use the end-of-Iline sequence,

& Reynol ds [Page 15]

RFC 959

Cct ober 1985

File Transfer Protocol

Post el

<CRLF> for ASCI|, or <NL> for EBCDIC text files, as the
delimter. |f an FTP inplenentati on adopts this technique, it
must be prepared to reverse the transformation if the file is
retrieved with file-structure.

3.1.2.1. FILE STRUCTURE

File structure is the default to be assuned if the STRUcture
command has not been used.

In file-structure there is no internal structure and the
file is considered to be a continuous sequence of data
bytes.

3.1.2.2. RECORD STRUCTURE

Record structures nust be accepted for "text" files (i.e.,
files with TYPE ASCI| or EBCDIC) by all FTP inpl enentations.

In record-structure the file is made up of sequential
records.

3.1.2.3. PAGE STRUCTURE

To transmit files that are discontinuous, FTP defines a page
structure. Files of this type are soneti mes known as
"random access files" or even as "holey files". In these
files there is sonetines other infornation associated with
the file as a whole (e.g., a file descriptor), or with a
section of the file (e.g., page access controls), or both.
In FTP, the sections of the file are called pages.

To provide for various page sizes and associ at ed
informati on, each page is sent with a page header. The page
header has the follow ng defined fields:

Header Length

The nunber of |ogical bytes in the page header
including this byte. The m nimum header length is 4.

Page | ndex

The 1 ogical page nunber of this section of the file.

This is not the transm ssion sequence nunber of this

page, but the index used to identify this page of the
file.

& Reynol ds [Page 16]

T9Z abed gz wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol
Data Length

The nunber of |ogical bytes in the page data. The
m nimumdata length is O.

Page Type

The type of page this is. The follow ng page types
are defined:

0 = Last Page
This is used to indicate the end of a paged
structured transm ssion. The header |ength nust
be 4, and the data |length nust be 0.

1 = Sinple Page
This is the normal type for sinple paged files
with no page | evel associated control
information. The header |ength nust be 4.

2 = Descriptor Page

This type is used to transnmit the descriptive
information for the file as a whole.

3 = Access Controll ed Page
This type includes an additional header field
for paged files with page | evel access control
informati on. The header |ength nust be 5.
Optional Fields
Further header fields may be used to supply per page
control information, for exanple, per page access
control .
Al fields are one logical byte in length. The |ogical byte
size is specified by the TYPE command. See Appendix | for
further details and a specific case at the page structure.

A note of caution about paranmeters: a file nust be stored and
retrieved with the sane parameters if the retrieved versionis to

Post el & Reynol ds [Page 17]

RFC 959 Cct ober 1985
File Transfer Protocol

be identical to the version originally transmtted. Conversely,
FTP i nmpl ementations nmust return a file identical to the original
if the paraneters used to store and retrieve a file are the sane.

3.2. ESTABLI SHI NG DATA CONNECTI ONS

The nechanics of transferring data consists of setting up the data
connection to the appropriate ports and choosing the paraneters
for transfer. Both the user and the server-DIPs have a default
data port. The user-process default data port is the sanme as the
control connection port (i.e., U. The server-process default
data port is the port adjacent to the control connection port
(i.e., L-1).

The transfer byte size is 8-bit bytes. This byte size is relevant
only for the actual transfer of the data; it has no bearing on
representation of the data within a host's file system

The passive data transfer process (this may be a user-DTP or a
second server-DTP) shall "listen" on the data port prior to
sending a transfer request command. The FTP request conmand
determnes the direction of the data transfer. The server, upon
receiving the transfer request, will initiate the data connection
to the port. Wen the connection is established, the data
transfer begins between DIP's, and the server-Pl sends a
confirmng reply to the user-Pl.

Every FTP inpl ementation nust support the use of the default data
ports, and only the USER-PI can initiate a change to non-default
ports.

It is possible for the user to specify an alternate data port by
use of the PORT command. The user may want a file dunped on a TAC
line printer or retrieved froma third party host. In the latter
case, the user-Pl sets up control connections with both
server-Pl's. One server is then told (by an FTP command) to
"listen" for a connection which the other will initiate. The
user-Pl sends one server-Pl a PORT command indicating the data
port of the other. Finally, both are sent the appropriate
transfer commands. The exact sequence of conmmands and replies
sent between the user-controller and the servers is defined in the
Section on FTP Replies.

In general, it is the server's responsibility to naintain the data
connection--to initiate it and to close it. The exception to this

Postel & Reynol ds [Page 18]

RFC 95

9 Cct ober 1985

File Transfer Protocol

3.3.

29z abed z wnipuadwo)

Post el

is when the user-DTP is sending the data in a transfer node that
requires the connection to be closed to indicate EOF. The server
MUST cl ose the data connection under the followi ng conditions:

1. The server has conpleted sending data in a transfer node
that requires a close to indicate ECF.

2. The server receives an ABORT conmand fromthe user.

3. The port specification is changed by a command fromthe
user.

4. The control connection is closed legally or otherwi se.
5. An irrecoverable error condition occurs.

O herwi se the close is a server option, the exercise of which the
server nust indicate to the user-process by either a 250 or 226
reply only.

DATA CONNECTI ON MANAGEMENT

Default Data Connection Ports: Al FTP inplenentations nust
support use of the default data connection ports, and only the
User-Pl may initiate the use of non-default ports.

Negotiating Non-Default Data Ports: The User-Pl may specify a
non-default user side data port with the PORT cormand. The
User-Pl may request the server side to identify a non-default
server side data port with the PASV command. Since a connection
is defined by the pair of addresses, either of these actions is
enough to get a different data connection, still it is permtted
to do both commands to use new ports on both ends of the data
connecti on.

Reuse of the Data Connection: Wen using the stream node of data
transfer the end of the file nust be indicated by closing the
connection. This causes a problemif nultiple files are to be
transfered in the session, due to need for TCP to hold the
connection record for a time out period to guarantee the reliable
communi cation. Thus the connection can not be reopened at once.

There are two solutions to this problem The first is to
negotiate a non-default port. The second is to use another
transfer node.

A comment on transfer npbdes. The streamtransfer node is

& Reynol ds [Page 19]

RFC 95

9 Cct ober 1985

File Transfer Protocol

Post el

inherently unreliable, since one can not determne if the
connection closed prematurely or not. The other transfer npdes
(Bl ock, Conpressed) do not close the connection to indicate the
end of file. They have enough FTP encoding that the data
connection can be parsed to determ ne the end of the file.

Thus using these nodes one can | eave the data connection open
for multiple file transfers.

TRANSM SSI ON MODES

The next consideration in transferring data is choosing the
appropri ate transm ssion node. There are three nbdes: one which
formats the data and allows for restart procedures; one which also
conpresses the data for efficient transfer; and one which passes

the data with little or no processing. In this |ast case the node
interacts with the structure attribute to deternmine the type of
processing. In the conpressed node, the representation type

determ nes the filler byte.

Al'l data transfers nust be conpleted with an end-of-file (EOF)

whi ch may be explicitly stated or inplied by the closing of the
data connection. For files with record structure, all the

end-of -record markers (EOR) are explicit, including the final one.
For files transmitted in page structure a "l ast-page" page type is
used.

NOTE: In the rest of this section, byte nmeans "transfer byte"
except where explicitly stated otherw se.

For the purpose of standardi zed transfer, the sending host will
translate its internal end of line or end of record denotation
into the representation prescribed by the transfer node and file
structure, and the receiving host will performthe inverse
translation to its internal denotation. An |IBM Mainfrane record
count field may not be recogni zed at another host, so the

end-of -record information may be transferred as a two byte control
code in Stream node or as a flagged bit in a Block or Conpressed
nmode descriptor. End-of-line in an ASCII or EBCDIC file with no
record structure should be indicated by <CRLF> or <NL>,
respectively. Since these transformations inply extra work for
sone systens, identical systenms transferring non-record structured
text files mght wish to use a binary representati on and stream
node for the transfer.

& Reynol ds [Page 20]

£9¢ abed z wnipuadwo)

RFC 959

File Transfer Protocol

Post el

The fol l owi ng transm ssion nodes are defined in FTP:

3.4.1. STREAM MODE
The data is transnitted as a streamof bytes. There is no
restriction on the representation type used; record structures
are all oned.

In a record structured file EOR and EOF will each be indicated

by a two-byte control code. The first byte of the control code

will be all ones, the escape character. The second byte will
have the | ow order bit on and zeros el sewhere for EOR and the
second | ow order bit on for EOF;, that is, the byte will have
value 1 for EOR and value 2 for EOF. EOR and ECF may be

indicated together on the |ast byte transmitted by turning both

low order bits on (i.e., the value 3). |If a byte of all ones
was intended to be sent as data, it should be repeated in the
second byte of the control code.

If the structure is a file structure, the ECOF is indicated by
the sending host closing the data connection and all bytes are
data bytes.

3.4.2. BLOCK MODE

The file is transmitted as a series of data bl ocks preceded by
one or nore header bytes. The header bytes contain a count
field, and descriptor code. The count field indicates the
total length of the data block in bytes, thus marking the

begi nning of the next data block (there are no filler bits).
The descriptor code defines: last block in the file (ECF) |ast
block in the record (EOR), restart marker (see the Section on
Error Recovery and Restart) or suspect data (i.e., the data
being transferred is suspected of errors and is not reliable).
This last code is NOT intended for error control wthin FTP.

It is notivated by the desire of sites exchanging certain types
of data (e.g., seismic or weather data) to send and receive all
the data despite local errors (such as "magnetic tape read
errors"), but to indicate in the transm ssion that certain
portions are suspect). Record structures are allowed in this
node, and any representation type may be used.

The header consists of the three bytes. O the 24 bits of
header infornmation, the 16 |ow order bits shall represent byte
count, and the 8 high order bits shall represent descriptor
codes as shown bel ow.

& Reynol ds [Page 21]

Cct ober 1985

RFC 959 Cct ober 1985
File Transfer Protocol

Bl ock Header

| Descriptor | Byt e Count |
| 8 bits | 16 bits |

The descriptor codes are indicated by bit flags in the
descriptor byte. Four codes have been assigned, where each
code nunber is the decinal value of the corresponding bit in

the byte.
Code Meani ng
128 End of data block is EOR
64 End of data block is EOF
32 Suspected errors in data bl ock
16 Data block is a restart marker

Wth this encoding, nore than one descriptor coded condition
may exist for a particular block. As many bits as necessary
may be flagged.

The restart marker is ermbedded in the data streamas an
integral nunber of 8-bit bytes representing printable
characters in the |l anguage bei ng used over the control
connection (e.g., default--NVT-ASCII). <SP> (Space, in the
appropri ate | anguage) nust not be used WTHI N a restart marker.

For exanple, to transmt a six-character marker, the follow ng
woul d be sent:

Hoeeeeean Foeeeaean Fececanann +
| Descrptr| Byte count |
| code= 16| =6 |
Fommmman- Fommmma Fommma +
ommmmaa Fommmmaa Femmmma +

Postel & Reynol ds [Page 22]

#9¢ abed gz wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

3.4.3. COWPRESSED MODE

There are three kinds of information to be sent: regular data,
sent in a byte string; conpressed data, consisting of
replications or filler; and control infornation, sent in a

two- byte escape sequence. |If n>0 bytes (up to 127) of regul ar
data are sent, these n bytes are preceded by a byte with the
left-nost bit set to 0 and the right-nmpst 7 bits containing the
nunber n.

Byte string:

1 7 8 8

T e R e i T S S e s e e o

[0l n [d(1) [d(n)

T o e e e i i R e o B e R e e
N N
|---n bytes---

of data

String of n data bytes d(1),..
Count n nust be positive.

., d(n)

To conpress a string of n replications of the data byte d, the
following 2 bytes are sent:

Repl i cated Byte:

2 6 8
B e e o o T I N A S
|1 0] n [d |

B ik e S S S S S S S S S

A string of n filler bytes can be conpressed into a single
byte, where the filler byte varies with the representation
type. If the type is ASCII or EBCDIC the filler byte is <SP>
(Space, ASCI| code 32, EBCDIC code 64). |If the type is |nage
or Local byte the filler is a zero byte.

Filler String:

2 6
B EE T
[1 1] n |

B o ey

The escape sequence is a double byte, the first of which is the

& Reynol ds [Page 23]

Post el

RFC 959 Cct ober 1985
File Transfer Protocol

escape byte (all zeros) and the second of which contains
descriptor codes as defined in Block node. The descriptor
codes have the sanme neaning as in Block node and apply to the
succeedi ng string of bytes.

Conpressed node is useful for obtaining increased bandw dth on
very large network transmssions at a little extra CPU cost.
It can be nost effectively used to reduce the size of printer
files such as those generated by RIJE hosts.

.5, ERROR RECOVERY AND RESTART

There is no provision for detecting bits lost or scranbled in data
transfer; this level of error control is handled by the TCP.
However, a restart procedure is provided to protect users from
gross systemfailures (including failures of a host, an
FTP-process, or the underlying network).

The restart procedure is defined only for the block and conpressed
nmodes of data transfer. It requires the sender of data to insert
a special marker code in the data streamw th some narker
information. The marker information has neaning only to the
sender, but nust consist of printable characters in the default or
negoti ated | anguage of the control connection (ASCII or EBCD C).
The marker could represent a bit-count, a record-count, or any
other information by which a systemnay identify a data
checkpoint. The receiver of data, if it inplements the restart
procedure, would then mark the corresponding position of this
marker in the receiving system and return this information to the
user.

In the event of a systemfailure, the user can restart the data
transfer by identifying the marker point with the FTP restart
procedure. The followi ng exanple illustrates the use of the
restart procedure.

The sender of the data inserts an appropriate marker block in the
data stream at a convenient point. The receiving host marks the
corresponding data point inits file systemand conveys the |ast
known sender and receiver marker information to the user, either
directly or over the control connection in a 110 reply (depending
on who is the sender). In the event of a systemfailure, the user
or controller process restarts the server at the |ast server

mar ker by sending a restart command with server's narker code as
its argument. The restart command is transmitted over the control

& Reynol ds [Page 24]

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985
File Transfer Protocol File Transfer Protocol

connection and is immediately followed by the command (such as PASSWORD (PASS)
RETR, STOR or LIST) which was being executed when the system

failure occurred. The argument field is a Telnet string specifying the user's

password. This comrand nust be inmmediately preceded by the

user nane conmand, and, for some sites, conpletes the user's

identification for access control. Since password

The communi cation channel fromthe user-Pl to the server-Pl is information is quite sensitive, it is desirable in general

established as a TCP connection fromthe user to the standard server to "mask" it or suppress typeout. It appears that the

port. The user protocol interpreter is responsible for sending FTP server has no fool proof way to achieve this. It is

commands and interpreting the replies received; the server-Pl therefore the responsibility of the user-FTP process to hide

interprets conmmands, sends replies and directs its DIP to set up the the sensitive password information.

data connection and transfer the data. |f the second party to the

data transfer (the passive transfer process) is the user-DTP, then it ACCOUNT (ACCT)

is governed through the internal protocol of the user-FTP host; if it

is a second server-DTP, then it is governed by its Pl on conmand from The argunent field is a Telnet string identifying the user's

the user-Pl. The FTP replies are discussed in the next section. In account. The command is not necessarily related to the USER

the description of a few of the commands in this section, it is conmand, as sone sites may require an account for |ogin and

hel pful to be explicit about the possible replies. others only for specific access, such as storing files. In
the latter case the conmand may arrive at any tine.

4. FILE TRANSFER FUNCTI ONS

4.1. FTP COMVANDS
There are reply codes to differentiate these cases for the

4.1.1. ACCESS CONTROL COMVANDS aut omati on: when account information is required for |ogin,
the response to a successful PASSword command is reply code
The fol Il owi ng commands specify access control identifiers 332. On the other hand, if account information is NOT
(comand codes are shown in parentheses). required for login, the reply to a successful PASSword

command is 230; and if the account information is needed for
a command issued |later in the dialogue, the server shoul d
return a 332 or 532 reply depending on whether it stores

USER NAME (USER)

G9gz abed z wnipuadwo)

The argunent field is a Telnet string identifying the user.
The user identification is that which is required by the
server for access to its file system This command will
normally be the first command transmtted by the user after
the control connections are nmade (sonme servers may require
this). Additional identification information in the form of
a password and/or an account comrand nay al so be required by
sone servers. Servers may allow a new USER comrand to be
entered at any point in order to change the access control
and/ or accounting information. This has the effect of
flushing any user, password, and account information already
supplied and begi nning the | ogin sequence again. All
transfer paranmeters are unchanged and any file transfer in
progress is conpleted under the old access control
paraneters.

Post el & Reynol ds [Page 25]

(pendi ng recei pt of the ACCounT command) or discards the
conmand, respectively.

CHANGE WORKI NG DI RECTORY (CWD)

This command all ows the user to work with a different
directory or dataset for file storage or retrieval wthout
altering his login or accounting information. Transfer
paraneters are simlarly unchanged. The argunent is a
pat hnane specifying a directory or other system dependent
file group designator.

CHANGE TO PARENT DI RECTORY (CDUP)

This command is a special case of CAD, and is included to
sinmplify the inplenentation of prograns for transferring
directory trees between operating systens having different

& Reynol ds [Page 26]

99¢ abed z wnipuadwo)

RFC 959

Cct ober 1985

File Transfer Protocol

Post el

syntaxes for naming the parent directory. The reply codes
shall be identical to the reply codes of CWD. See
Appendi x Il for further details.

STRUCTURE MOUNT (SIMNT)

This command allows the user to nount a different file
systemdata structure without altering his login or
accounting information. Transfer parameters are similarly
unchanged. The argunent is a pathname specifying a
directory or other system dependent file group designator.

REI' NI TI ALI ZE (REI N)

This conmand termi nates a USER, flushing all 1/0 and account
information, except to allow any transfer in progress to be
conpleted. All paraneters are reset to the default settings
and the control connection is left open. This is identical
to the state in which a user finds hinself imediately after
the control connection is opened. A USER command nay be
expected to foll ow

LOGOUT (QUIT)

This command termnates a USER and if file transfer is not
in progress, the server closes the control connection. |If
file transfer is in progress, the connection will remain
open for result response and the server will then close it.
If the user-process is transferring files for several USERs
but does not wish to close and then reopen connections for
each, then the REIN conmand shoul d be used instead of QUIT.

An unexpected close on the control connection will cause the
server to take the effective action of an abort (ABOR) and a
logout (QUIT).

.1.2. TRANSFER PARAMETER COMVANDS

Al data transfer parameters have default values, and the
commands specifying data transfer paraneters are required only
if the default paraneter values are to be changed. The default
value is the last specified value, or if no value has been
specified, the standard default value is as stated here. This
inplies that the server nust "renenber" the applicable default
val ues. The conmands may be in any order except that they nust
precede the FTP service request. The follow ng conmands

speci fy data transfer paraneters:

& Reynol ds [Page 27]

Cct ober 1985

File Transfer Protocol

DATA PORT (PORT)

The argument is a HOST- PORT specification for the data port
to be used in data connection. There are defaults for both
the user and server data ports, and under normal
circunstances this coomand and its reply are not needed. |f
this command is used, the argunent is the concatenation of a
32-bit internet host address and a 16-bit TCP port address.
This address information is broken into 8-bit fields and the
value of each field is transnmitted as a decinal nunber (in
character string representation). The fields are separated
by commas. A port comnmand woul d be:

PORT h1, h2, h3, h4, p1, p2

where hl is the high order 8 bits of the internet host
addr ess.

PASSI VE (PASV)

This command requests the server-DIP to "listen" on a data
port (which is not its default data port) and to wait for a
connection rather than initiate one upon receipt of a
transfer command. The response to this command includes the
host and port address this server is listening on.

REPRESENTATI ON TYPE (TYPE)

The argunent specifies the representation type as descri bed
in the Section on Data Representation and Storage. Several
types take a second paraneter. The first paraneter is
denoted by a single Telnet character, as is the second
Format paraneter for ASCI|I and EBCDI C, the second paraneter
for local byte is a decimal integer to indicate Bytesize.
The paraneters are separated by a <SP> (Space, ASCI| code
32).

The follow ng codes are assigned for type:

\ /
A - ASCI | | N - Non-print
|-><-| T - Telnet format effectors
E - EBCDI C | C- Carriage Control (ASA)
/ \
I - lmage

L <byte size> - Local byte Byte size

& Reynol ds [Page 28]

19z abed gz wnipuadwo)

RFC 959
File Transfer Protocol

Post el

4.1.3.

Cct ober 1985

The default representation type is ASCII Non-print.
Format paraneter is changed, and later just the first
argunent is changed, Format then returns to the Non-print
defaul t.

If the

FI LE STRUCTURE (STRU)

The argunment is a single Telnet character code specifying
file structure described in the Section on Data
Representation and Storage.

The foll owi ng codes are assigned for structure:

F - File (no record structure)
R - Record structure
P - Page structure

The default structure is File.
TRANSFER MODE (MODE)

The argument is a single Telnet character code specifying
the data transfer nodes described in the Section on
Transm ssi on Mdes.

The following codes are assigned for transfer nodes:

S - Stream
B - Block
C - Conpressed
The default transfer node is Stream
FTP SERVI CE COMVANDS

The FTP service commands define the file transfer or the file
system function requested by the user. The argunent of an FTP
service command will normally be a pathnanme. The syntax of
pat hnames nust conformto server site conventions (with
standard defaults applicable), and the | anguage conventions of
the control connection. The suggested default handling is to
use the |ast specified device, directory or file name, or the
standard default defined for |ocal users. The commands may be
in any order except that a "renane froni command nust be
followed by a "rename to" command and the restart command nust
be foll owed by the interrupted service conmand (e.g., STOR or
RETR). The data, when transferred in response to FTP service

& Reynol ds [Page 29] Post el

RFC 959
File Transfer Protocol

Cct ober 1985

conmands, shall always be sent over the data connection, except
for certain infornative replies. The follow ng commands
speci fy FTP service requests:

RETRI EVE (RETR)

Thi s command causes the server-DTP to transfer a copy of the
file, specified in the pathname, to the server- or user-DTP
at the other end of the data connection. The status and

contents of the file at the server site shall be unaffected.

STORE (STOR)

Thi s command causes the server-DTP to accept the data
transferred via the data connection and to store the data as
a file at the server site. |If the file specified in the

pat hname exists at the server site, then its contents shall
be replaced by the data being transferred. A newfile is
created at the server site if the file specified in the

pat hnane does not al ready exist.

STORE UNI QUE (STOU)

Thi s command behaves |ike STOR except that the resultant
file is to be created in the current directory under a nane
unique to that directory. The 250 Transfer Started response
must include the name generat ed.

APPEND (wi th create) (APPE)

Thi s command causes the server-DTP to accept the data
transferred via the data connection and to store the data in
a file at the server site. |If the file specified in the

pat hname exists at the server site, then the data shall be
appended to that file; otherwise the file specified in the
pat hnane shall be created at the server site.

ALLOCATE (ALLO)

This command may be required by sone servers to reserve
sufficient storage to accommodate the new file to be
transferred. The argument shall be a decimal integer
representing the nunber of bytes (using the |ogical byte
size) of storage to be reserved for the file. For files
sent with record or page structure a maxi rumrecord or page
size (in logical bytes) mght also be necessary; this is
indicated by a decimal integer in a second argunent field of

& Reynol ds [Page 30]

89¢ abed z wnipuadwo)

RFC 959 Cct ober 1985

File Transfer Protoco

the command. This second argunent is optional, but when
present should be separated fromthe first by the three

Tel net characters <SP> R <SP>. This command shall be
followed by a STORe or APPEnd command. The ALLO command
shoul d be treated as a NOOP (no operation) by those servers
which do not require that the maxi mum size of the file be
decl ared beforehand, and those servers interested in only
the maxi mum record or page size should accept a dummy val ue
inthe first argument and ignore it

RESTART (REST)

The argunent field represents the server marker at which
file transfer is to be restarted. This command does not
cause file transfer but skips over the file to the specified
data checkpoint. This conmand shall be imediately followed
by the appropriate FTP service command which shall cause
file transfer to resume

RENAVE FROM (RNFR)

This command specifies the old pathname of the file which is
to be renamed. This command nust be i mediately foll owed by
a "renanme to" command specifying the new file pathnane

RENAMVE TO (RNTO)

Thi s conmand specifies the new pathnanme of the file
specified in the inmrediately preceding "renane front
command. Together the two commands cause a file to be
renaned.

ABORT (ABOR)

This command tells the server to abort the previous FTP
service command and any associ ated transfer of data. The
abort conmand may require "special action", as discussed in
the Section on FTP Commands, to force recognition by the
server. No action is to be taken if the previous command
has been conpleted (including data transfer). The contro
connection is not to be closed by the server, but the data
connection nmust be closed

There are two cases for the server upon receipt of this

command: (1) the FTP service command was al ready conpl eted
or (2) the FTP service conmand is still in progress

Post el & Reynol ds [Page 31]

RFC 959 Cct ober 1985
File Transfer Protoco

Post el

In the first case, the server closes the data connection
(if it is open) and responds with a 226 reply, indicating
that the abort command was successful |y processed

In the second case, the server aborts the FTP service in
progress and closes the data connection, returning a 426
reply to indicate that the service request term nated
abnornal ly. The server then sends a 226 reply
indicating that the abort command was successful ly
processed

DELETE (DELE)

Thi s command causes the file specified in the pathnane to be
del eted at the server site. |f an extra level of protection
is desired (such as the query, "Do you really w sh to

del ete?"), it should be provided by the user-FTP process

REMOVE DI RECTCRY (RVD)

Thi s command causes the directory specified in the pathnanme
to be renoved as a directory (if the pathnanme is absol ute)
or as a subdirectory of the current working directory (if
the pathname is relative). See Appendix |1

MAKE DI RECTORY (NKD)

Thi s conmand causes the directory specified in the pathnane
to be created as a directory (if the pathnane is absol ute)
or as a subdirectory of the current working directory (if
the pathname is relative). See Appendix |1

PRI NT VWORKI NG DI RECTORY (PWD)

Thi s command causes the name of the current working
directory to be returned in the reply. See Appendix |1

LI ST (LIST)

This command causes a list to be sent fromthe server to the
passive DIP. |f the pathnane specifies a directory or other
group of files, the server should transfer a list of files
in the specified directory. |[If the pathnane specifies a
file then the server should send current infornmation on the
file. A null argunent inplies the user's current working or
default directory. The data transfer is over the data
connection in type ASCII or type EBCDIC. (The user nust

& Reynol ds [Page 32]

69¢ abed z wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

ensure that the TYPE is appropriately ASCII or EBCDI C).
Since the information on a file may vary widely fromsystem
to system this information may be hard to use autonatically
in a program but may be quite useful to a human user.

NAME LI ST (NLST)

This command causes a directory listing to be sent from
server to user site. The pathnane should specify a
directory or other systemspecific file group descriptor; a
nul | argument inplies the current directory. The server
will return a streamof nanes of files and no other
information. The data will be transferred in ASCII or
EBCDI C type over the data connection as valid pathnanme
strings separated by <CRLF> or <NL>. (Again the user nust
ensure that the TYPE is correct.) This command is intended
to return information that can be used by a programto
further process the files automatically. For exanple, in
the inplementation of a "multiple get" function.

SI TE PARAVETERS (S| TE)

This command is used by the server to provide services
specific to his systemthat are essential to file transfer
but not sufficiently universal to be included as comands in
the protocol. The nature of these services and the
specification of their syntax can be stated in a reply to
the HELP SI TE conmand.

SYSTEM (SYST)

This command is used to find out the type of operating
systemat the server. The reply shall have as its first
word one of the systemnanes listed in the current version
of the Assigned Nunbers document [4].

STATUS (STAT)

This command shall cause a status response to be sent over
the control connection in the formof a reply. The command
may be sent during a file transfer (along with the Telnet |IP
and Synch signal s--see the Section on FTP Commands) in which
case the server will respond with the status of the
operation in progress, or it may be sent between file

transfers. |In the latter case, the command nay have an

argunent field. |If the argument is a pathnane, the conmand

is anal ogous to the "list" command except that data shall be
& Reynol ds [Page 33]

RFC 959 Cct ober 1985
File Transfer Protocol

transferred over the control connection. |f a partial
pathnane is given, the server may respond with a list of
file names or attributes associated with that specification.
If no argunent is given, the server should return general
status information about the server FTP process. This
shoul d include current values of all transfer paranmeters and
the status of connections.

HELP (HELP)

Thi s command shall cause the server to send hel pful
information regarding its inplenentation status over the
control connection to the user. The command may take an
argunent (e.g., any conmand nane) and return nore specific
information as a response. The reply is type 211 or 214.

It is suggested that HELP be all owed before entering a USER
conmmand. The server may use this reply to specify

si t e-dependent paraneters, e.g., in response to HELP SITE.

NOCP (NOCP)

Thi s command does not affect any paraneters or previously
entered commands. It specifies no action other than that the
server send an K reply.

The File Transfer Protocol follows the specifications of the Tel net
protocol for all communications over the control connection. Since
the | anguage used for Tel net communication nay be a negoti ated
option, all references in the next two sections will be to the

"Tel net | anguage" and the corresponding "Tel net end-of-Iline code".
Currently, one may take these to nmean NVT-ASCI| and <CRLF>. No other
speci fications of the Tel net protocol wll be cited.

FTP commands are "Tel net strings" termi nated by the "Tel net end of
line code". The command codes thensel ves are al phabetic characters
term nated by the character <SP> (Space) if paranmeters follow and

Tel net- EOL ot herwi se. The command codes and the semantics of
comands are described in this section; the detailed syntax of
commands is specified in the Section on Commands, the reply sequences
are discussed in the Section on Sequenci ng of Commands and Repli es,
and scenarios illustrating the use of commands are provided in the
Section on Typical FTP Scenari os.

FTP commands may be partitioned as those specifying access-control
identifiers, data transfer paraneters, or FTP service requests.
Certain commands (such as ABOR, STAT, QUIT) may be sent over the
control connection while a data transfer is in progress. Sonme

Postel & Reynol ds [Page 34]

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985

File Transfer Protocol File Transfer Protocol
servers may not be able to nonitor the control and data connections <SP>, followed by one line of text (where some maxi mumline |ength
simul taneously, in which case sone special action will be necessary has been specified), and ternminated by the Tel net end-of-Iline
to get the server's attention. The followi ng ordered format is code. There will be cases however, where the text is |onger than
tentatively recommended: a single line. |In these cases the conplete text nmust be bracketed

so the User-process knows when it nay stop reading the reply (i.e.

1. User systeminserts the Telnet "Interrupt Process" (IP) signal stop processing input on the control connection) and go do other

in the Tel net stream things. This requires a special format on the first line to
indicate that nore than one line is comng, and another on the
2. User system sends the Tel net "Synch" signal. last line to designate it as the last. At |east one of these nust
contain the appropriate reply code to indicate the state of the
3. User systeminserts the command (e.g., ABOR) in the Tel net transaction. To satisfy all factions, it was decided that both
stream the first and last |ine codes should be the same.
4. Server Pl, after receiving "I P', scans the Tel net stream for Thus the format for multi-line replies is that the first line
EXACTLY ONE FTP conmand. will begin with the exact required reply code, followed
imedi ately by a Hyphen, "-" (also known as M nus), followed by
(For other servers this may not be necessary but the actions listed text. The last line will begin with the sane code, followed

above shoul d have no unusual effect.) i medi ately by Space <SP>, optionally sone text, and the Tel net
end-of -1ine code.
4.2. FTP REPLIES

For exanpl e:

Replies to File Transfer Protocol commands are devised to ensure 123-First line

the synchroni zation of requests and actions in the process of file Second |ine

transfer, and to guarantee that the user process always knows the 234 A line beginning with nunbers
state of the Server. Every command nust generate at |east one 123 The last line

reply, although there may be nore than one; in the latter case,

the multiple replies nust be easily distinguished. |In addition, The user-process then sinply needs to search for the second

sonme commands occur in sequential groups, such as USER, PASS and
ACCT, or RNFR and RNTO The replies show the exi stence of an the beginning of a line, and ignore all internediary lines. |If
internmediate state if all precedi ng conmands have been successful . an intermediary line begins with a 3-digit nunber, the Server
A failure at any point in the sequence necessitates the repetition must pad the front to avoid confusion.

of the entire sequence fromthe beginning.

occurrence of the sanme reply code, followed by <SP> (Space), at

This schenme all ows standard systemroutines to be used for

0.2 abed z wnipuadwo)

The details of the command-reply sequence are made explicit in
a set of state diagrans bel ow.

An FTP reply consists of a three digit nunber (transmtted as
three al phanuneric characters) followed by some text. The nunber
is intended for use by automata to deternmine what state to enter
next; the text is intended for the human user. It is intended
that the three digits contain enough encoded infornation that the
user-process (the User-Pl) will not need to exanine the text and
may either discard it or pass it on to the user, as appropriate.
In particular, the text may be server-dependent, so there are
likely to be varying texts for each reply code.

Areply is defined to contain the 3-digit code, followed by Space

& Reynol ds [Page 35]

reply information (such as for the STAT reply), with
"artificial" first and last lines tacked on. In rare cases
where these routines are able to generate three digits and a
Space at the beginning of any line, the beginning of each
text line should be offset by sone neutral text, |ike Space.

This scheme assunes that nmulti-line replies may not be nested.

The three digits of the reply each have a special significance.
This is intended to allow a range of very sinple to very

sophi sticated responses by the user-process. The first digit
denot es whether the response is good, bad or inconplete.
(Referring to the state diagran), an unsophisticated user-process
will be able to determine its next action (proceed as planned,

& Reynol ds [Page 36]

T.,2 9bed z wnipuadwo)

RFC 959 Cct ober 1985

File Transfer Protocol

redo, retrench, etc.) by sinply examning this first digit. A
user-process that wants to know approxi nately what kind of error
occurred (e.g. file systemerror, conmand syntax error) may

exam ne the second digit, reserving the third digit for the finest
gradation of information (e.g., RNTO command w thout a preceding
RNFR) .

There are five values for the first digit of the reply code:
lyz Positive Prelimnary reply

The requested action is being initiated; expect another
reply before proceeding with a new command. (The
user-process sendi ng anot her conmand before the

conpl etion reply would be in violation of protocol; but
server-FTP processes shoul d queue any commands that
arrive while a preceding command is in progress.) This
type of reply can be used to indicate that the comand
was accepted and the user-process nay now pay attention
to the data connections, for inplenentations where
sinul taneous nonitoring is difficult. The server-FTP
process nay send at nost, one 1lyz reply per conmand.

2yz Posi tive Conpletion reply

The requested action has been successfully conpleted. A
new request nay be initiated.

3yz Positive Internmediate reply

The conmand has been accepted, but the requested action
is being held in abeyance, pending receipt of further
information. The user should send another command
specifying this information. This reply is used in
conmand sequence groups.

4yz Transi ent Negative Conpletion reply

The conmand was not accepted and the requested action did
not take place, but the error condition is tenporary and
the action may be requested again. The user shoul d
return to the beginning of the coomand sequence, if any.
It is difficult to assign a neaning to "transient",
particularly when two distinct sites (Server- and

User - processes) have to agree on the interpretation.

Each reply in the 4yz category m ght have a slightly
different tinme value, but the intent is that the

Post el & Reynol ds [Page 37]

RFC 959 Cct ober 1985
File Transfer Protocol

user-process is encouraged to try again. A rule of thunmb
in determining if areply fits into the 4yz or the 5yz
(Permanent Negative) category is that replies are 4yz if
the conmands can be repeated w thout any change in
comrmand formor in properties of the User or Server
(e.g., the command is spelled the same with the sane
argunents used; the user does not change his file access
or user name; the server does not put up a new

inpl enentation.)

5yz Per manent Negative Conpl etion reply

The conmand was not accepted and the requested action did
not take place. The User-process is discouraged from
repeating the exact request (in the same sequence). Even
sonme "permanent" error conditions can be corrected, so
the human user may want to direct his User-process to
reinitiate the command sequence by direct action at sone
point in the future (e.g., after the spelling has been
changed, or the user has altered his directory status.)

The follow ng function groupings are encoded in the second
digit:

x0z Syntax - These replies refer to syntax errors,
syntactically correct commands that don't fit any
functional category, uninplenented or superfluous
commands.

x1z Information - These are replies to requests for
informati on, such as status or help.

X2z Connections - Replies referring to the control and
data connecti ons.

x3z Aut henti cation and accounting - Replies for the login
process and accounting procedures.

x4z Unspecified as yet.
x5z File system- These replies indicate the status of the
Server file systemvis-a-vis the requested transfer or
other file system action.
The third digit gives a finer gradation of neaning in each of

the function categories, specified by the second digit. The
list of replies beloww Il illustrate this. Note that the text

Postel & Reynol ds [Page 38]

Z2/,z 9bed z wnipuadwo)

RFC 959
File Tran

Postel &

Cct ober 1985
sfer Protocol

associated with each reply is reconmended, rather than

mandat ory, and may even change according to the command with
which it is associated. The reply codes, on the other hand,
must strictly follow the specifications in the |last section;
that is, Server inplenentations should not invent new codes for
situations that are only slightly different fromthe ones
descri bed here, but rather should adapt codes already defined.

A command such as TYPE or ALLO whose successful execution
does not offer the user-process any new infornation will
cause a 200 reply to be returned. |If the conmand is not
inpl enented by a particular Server-FTP process because it
has no relevance to that conputer system for exanple ALLO
at a TOPS20 site, a Positive Conpletion reply is still
desired so that the sinple User-process knows it can proceed
with its course of action. A 202 reply is used in this case
with, for exanple, the reply text: "No storage allocation
necessary." |f, on the other hand, the command requests a
non-site-specific action and is uninplenented, the response
is 502. A refinement of that is the 504 reply for a comand
that is inplemented, but that requests an uninpl enented
paraneter.

.1 Reply Codes by Function G oups

200 Conmmand okay.
500 Syntax error, comrand unrecogni zed.
This may include errors such as conmand |ine too |ong.
501 Syntax error in paraneters or arguments.
202 Command not inplenented, superfluous at this site.
502 Command not i npl enent ed.
503 Bad sequence of conmmands.
504 Command not inplenented for that paraneter.

Reynol ds [Page 39]

Cct ober 1985

File Transfer Protocol

110 Restart marker reply.
In this case, the text is exact and not left to the
particular inplementation; it nust read:

MARK yyyy = nmmm

Were yyyy is User-process data stream marker, and nmmm
server's equival ent marker (note the spaces between nmarkers
and "=").

211 System status, or systemhelp reply.

212 Directory status.

213 File status.

214 Hel p nmessage.
On how to use the server or the neaning of a particular
non-standard command. This reply is useful only to the
hurman user.

215 NAME system type.
Where NAME is an official systemnanme fromthe list in the
Assi gned Nunbers docunent .

120 Service ready in nnn mnutes.

220 Service ready for new user.

221 Service closing control connection.

Logged out if appropriate.

421 Service not avail able, closing control connection.
This nmay be a reply to any command if the service knows it
nust shut down.

125 Data connection already open; transfer starting.

225 Data connection open; no transfer in progress.

425 Can't open data connection.

226 dosing data connection.

Requested file action successful (for exanple, file
transfer or file abort).

426 Connection closed; transfer aborted.

227 Entering Passive Mde (hl, h2, h3, h4, pl, p2).

230 User |ogged in, proceed.

530 Not | ogged in.

331 User nane okay, need password.
332 Need account for |ogin.

532 Need account for storing files.

& Reynol ds [Page 40]

ez abed g wnipuadwo)

RFC 959

Cct ober 1985

File Transfer Protocol

Post el

150
250
257
350
450

550
451
551
452

552

553

File status okay; about to open data connection.
Requested file action okay, conpleted.

" PATHNAME" cr eat ed.

Requested file action pending further information.
Requested file action not taken.

File unavailable (e.g., file busy).

Request ed action not taken.

File unavailable (e.g., file not found, no access).
Requested action aborted. Local error in processing.
Request ed action aborted. Page type unknown.
Request ed action not taken.

Insufficient storage space in system

Requested file action aborted.

Exceeded storage allocation (for current directory or
dat aset) .

Request ed action not taken.

File name not all owed.

4.2.2 Nunmeric Order List of Reply Codes

110 Restart nmarker reply.
In this case, the text is exact and not left to the
particular inplenmentation; it nust read:
MARK yyyy = nmmm
Where yyyy is User-process data stream marker, and nmmm
server's equival ent marker (note the spaces between narkers
and "=").
120 Service ready in nnn mnutes.
125 Data connection already open; transfer starting.
150 File status okay; about to open data connection.
& Reynol ds [Page 41]

RFC 959

Cct ober 1985

File Transfer Protocol

200
202
211
212
213
214

215

220
221

225
226

227
230
250
257

331
332
350

421
425
426
450

451
452

Postel & Reynol ds

Conmand okay.

Command not i npl enmented, superfluous at this site.
System status, or systemhelp reply.

Directory status.

File status.

Hel p nessage.

On how to use the server or the nmeaning of a particular
non-standard command. This reply is useful only to the
hurman user.

NAME system type.

Where NAME is an official systemname fromthe list in the
Assi gned Numbers docunent.

Service ready for new user.

Service closing control connection.

Logged out if appropriate.

Dat a connection open; no transfer in progress.

Cl osing data connecti on.

Requested file action successful (for exanple, file
transfer or file abort).

Entering Passive Mde (hl, h2, h3, h4, p1, p2).

User | ogged in, proceed.

Requested file action okay, conpleted.

" PATHNAME" cr eat ed.

User nane okay, need password.
Need account for [ogin.
Requested file action pending further information.

Service not avail able, closing control connection.

This nmay be a reply to any command if the service knows it
nust shut down.

Can't open data connection.

Connection closed; transfer aborted.

Requested file action not taken.

File unavailable (e.g., file busy).

Requested action aborted: l|ocal error in processing.
Request ed action not taken.

Insufficient storage space in system

[Page 42]

/¢ abed g wnipuadwo)

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985

File Transfer Protocol File Transfer Protocol
500 Syntax error, command unrecogni zed. 5.2. CONNECTI ONS
This may include errors such as command |ine too |ong.
501 Syntax error in paraneters or argunents. The server protocol interpreter shall "listen" on Port L. The
502 Command not i npl ement ed. user or user protocol interpreter shall initiate the full-duplex
503 Bad sequence of commands. control connection. Server- and user- processes should followthe
504 Command not inplenented for that paraneter. conventions of the Telnet protocol as specified in the
530 Not | ogged in. ARPA- I nternet Protocol Handbook [1]. Servers are under no
532 Need account for storing files. obligation to provide for editing of command lines and nay require
550 Requested action not taken. that it be done in the user host. The control connection shall be
File unavailable (e.g., file not found, no access). closed by the server at the user's request after all transfers and
551 Requested action aborted: page type unknown. replies are conpl et ed.
552 Requested file action aborted.
Exceeded storage allocation (for current directory or The user-DTP nust "listen" on the specified data port; this may be
dat aset) . the default user port (U) or a port specified in the PORT conmand.
553 Requested action not taken. The server shall initiate the data connection fromhis own default
Fil e name not all owed. data port (L-1) using the specified user data port. The direction

of the transfer and the port used will be determ ned by the FTP
servi ce command.
5. DECLARATI VE SPECI FI CATI ONS
Note that all FTP inplenentation nmust support data transfer using
5.1. M N MM | MPLEMENTATI ON the default port, and that only the USER-PI may initiate the use
of non-default ports.
In order to make FTP workabl e without needl ess error nessages, the

following mninmuminplenentation is required for all servers: When data is to be transferred between two servers, A and B (refer
to Figure 2), the user-Pl, C, sets up control connections with
TYPE - ASCII Non-print both server-Pl's. One of the servers, say A is then sent a PASV
MODE - Stream command telling himto "listen" on his data port rather than
STRUCTURE - File, Record initiate a connection when he receives a transfer service conmand.
COMVANDS - USER, QUI T, PORT, When the user-Pl receives an acknow edgnment to the PASV command,
TYPE, MODE, STRU, which includes the identity of the host and port being |istened
for the default val ues on, the user-Pl then sends A's port, a, to Bin a PORT command; a
RETR, STOR reply is returned. The user-Pl may then send the corresponding
NOCOP. service commands to A and B. Server B initiates the connection

and the transfer proceeds. The command-reply sequence is |isted
The default values for transfer paraneters are: bel ow where the nmessages are vertically synchronous but
hori zontal Iy asynchronous:
TYPE - ASCI| Non-print
MODE - Stream
STRU - File

Al'l hosts nust accept the above as the standard defaults.

Post el & Reynol ds [Page 43] Postel & Reynol ds [Page 44]

G/z abed z wnipuadwo)

Post el

RFC 959
File Transfer

The data connection shall

Pr ot ocol

227 Entering Passive Mde.

STOR

Cct ober 1985

C->B : Connect

Al, A2, A3, A4, al, a2

C->B : PORT Al, A2, A3, A4, al, a2
B->C : 200 Ckay

C->B : RETR

B->A : Connect to HOST-A, PORT-a

Figure 3

be closed by the server under the

conditions described in the Section on Establishing Data
ons. |If the data connection is to be closed follow ng a
data transfer where closing the connection is not required to

Connect i

indicate the end-of-file,

Wi ting
because
connecti

user must
transfer

connecti
and the
i ssui ng

the server nust do so imediately.

until after a new transfer command is not permtted
the user-process will have already tested the data
on to see if it needs to do a "listen"; (remenber that the

"listen" on a closed data port BEFORE sending the

request). To prevent a race condition here, the server
sends a reply (226) after closing the data connection (or if the
on is left open, a "file transfer conpleted" reply (250)
user-Pl should wait for one of these replies before

a new transfer command).

Any tine either the user or server see that the connection is
osed by the other side, it should pronptly read any

renmi ni ng data queued on the connection and issue the close on its
own side.

bei ng cl

5.3. COMMANDS

The conmands are Tel net character strings transmtted over the
connections as described in the Section on FTP Commands.
The command functions and semantics are described in the Section
on Access Control Commands, Transfer Paraneter Commands, FTP
Commands, and M scel | aneous Commands. The command synt ax

control

Service
is speci

fied here.

The commands begin with a command code followed by an argunent
The command codes are four or fewer al phabetic characters.
Upper and | ower case al phabetic characters are to be treated
identically. Thus, any of the follow ng nay represent the

retri eve command:

field.

& Reynol ds

[Page 45]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

RETR Retr retr ReTr rETr

This also applies to any synbols representing paraneter val ues,
such as A or a for ASCII TYPE. The conmand codes and the argunent
fields are separated by one or nore spaces.

The argunent field consists of a variable length character string
ending with the character sequence <CRLF> (Carriage Return, Line
Feed) for NVT-ASCI| representation; for other negotiated |anguages
a different end of line character m ght be used. It should be
noted that the server is to take no action until the end of line
code is received.

The syntax is specified belowin NVT-ASCII. All characters in the
argunent field are ASCII characters including any ASCl I
represented decimal integers. Square brackets denote an optional
argunent field. |If the option is not taken, the appropriate
default is inplied.

& Reynol ds [Page 46]

9/ abed z wnipuadwo)

RFC 959
File Transfer Protoco

5.3.1. FTP COMVANDS
The followi ng are the FTP commands

USER <SP> <user name> <CRLF>
PASS <SP> <password> <CRLF>
ACCT <SP> <account -i nf ormati on> <CRLF>
CWD <SP> <pat hname> <CRLF>
CDUP <CRLF>
SWNT <SP> <pat hname> <CRLF>
QU T <CRLF>
REI' N <CRLF>
PORT <SP> <host - port> <CRLF>
PASV <CRLF>
TYPE <SP> <type-code> <CRLF>
STRU <SP> <struct ure-code> <CRLF>
MODE <SP> <node- code> <CRLF>
RETR <SP> <pat hname> <CRLF>
STOR <SP> <pat hnanme> <CRLF>
STQU <CRLF>
APPE <SP> <pat hnane> <CRLF>
ALLO <SP> <deci nmal -i nt eger >

[<SP> R <SP> <deci mal -i nteger>] <CRLF>
REST <SP> <narker> <CRLF>
RNFR <SP> <pat hnane> <CRLF>
RNTO <SP> <pat hname> <CRLF>
ABOR <CRLF>
DELE <SP> <pat hnane> <CRLF>
RVMD <SP> <pat hnane> <CRLF>
MKD <SP> <pat hname> <CRLF>
PW <CRLF>
LI ST [<SP> <pat hnane>] <CRLF>
NLST [<SP> <pat hnane>] <CRLF>
SI TE <SP> <string> <CRLF>
SYST <CRLF>
STAT [<SP> <pat hnanme>] <CRLF>
HELP [<SP> <string>] <CRLF>
NOOP <CRLF>

Post el & Reynol ds

Cct ober 1985 RFC 959

File Transfer Protoco

Cct ober 1985

5.3.2. FTP COMVAND ARGUMENTS

The syntax of the
wher e applicabl e)

above argunment fields (using BNF notation
is:

<usernanme> ::= <string>

<password> ::= <string>

<account-information> ::= <string>

<string> ::= <char> | <char><string>

<char> ::= any of the 128 ASCI| characters except <CR> and
<LF>

<marker> ::= <pr-string>

<pr-string> ::= <pr-char> | <pr-char><pr-string>
<pr-char> ::= printable characters, any

ASCI | code 33 through 126

<byt e-size> :
<host-port> ::=

<host - nunber > :
<port-nunber> :

<nunber >

<host - nunber >, <por t - nunber >

<nunber >, <nunber >, <nunber >, <nunber >
<nunber >, <nunber >

<nunber> ::= any decimal integer 1 through 255

<f orm code> :
<t ype-code> :

|
|
|
<structure-code
<npde-code> :: =
<pat hname> :: =
<deci mal -i nt ege

[Page 47] Postel & Reynol ds

N| T|] C

A [<sp> <form code>]
E [<sp> <form code>]
|
L

<byt e-si ze>

> | | P
I
<stri

r> ::= any deci mal integer

[Page 48]

12z 9@bed z wnipuadwo)

RFC 9

File
5.
Post el

59 Cct ober 1985
Transfer Protocol

4. SEQUENCI NG OF COMVANDS AND REPLI ES

The communi cati on between the user and server is intended to be an
alternating dial ogue. As such, the user issues an FTP command and
the server responds with a pronpt primary reply. The user should
wait for this initial primary success or failure response before
sendi ng further commands.

Certain commands require a second reply for which the user should
al so wait. These replies nay, for exanple, report on the progress
or conpletion of file transfer or the closing of the data

connection. They are secondary replies to file transfer commands.

One inportant group of informational replies is the connection
greetings. Under normal circunstances, a server will send a 220
reply, "awaiting input", when the connection is conpleted. The
user should wait for this greeting nessage before sending any
commands. |f the server is unable to accept input right away, a
120 "expected del ay" reply should be sent imediately and a 220
reply when ready. The user will then know not to hang up if there
is a delay.

Spont aneous Replies

Sonetinmes "the systeni’ spontaneously has a nessage to be sent
to a user (usually all users). For exanple, "System going down
in 15 mnutes". There is no provision in FTP for such

spont aneous information to be sent fromthe server to the user.
It is recommended that such information be queued in the
server-Pl and delivered to the user-Pl in the next reply
(possibly making it a nulti-line reply).

The table below lists alternative success and failure replies for
each command. These nust be strictly adhered to; a server may
substitute text in the replies, but the nmeaning and action inplied
by the code nunbers and by the specific conmand reply sequence
cannot be altered.

Command- Repl y Sequences

In this section, the command-reply sequence is presented. Each
command is listed with its possible replies; command groups are
listed together. Prelimnary replies are listed first (with
their succeeding replies indented and under them, then
positive and negative conpletion, and finally internediary

& Reynol ds [Page 49]

RFC 959
File Transfer Protocol

Post el

Cct ober 1985

replies with the remaining conmands fromthe sequence
This listing forns the basis for the state

fol I owi ng.

di agrans, which wll

Connection Establishnment

120
220
220
421
Login
USER
230
530
500
331
PASS
230
202
530
500
332
ACCT
230
202
530
500
[eY's)
250
500
CDUP
200
500
SMNT
202
500
Logout
REI'N
120

220
421
500

QT
221
500

& Reynol ds

, 501,
, 332

, 501,

, 501,

, 501,

, 501,

, 250
, 501,

220

, 502

421

503,

503,

502,

502,

502,

421

421

421,

421,

421,

be presented separately.

530, 550
530, 550
530, 550

[Page 50]

8/ ¢ abed z wnipuadwo)

RFC 959
File Transfer Protocol

Transfer paraneters
PORT
200
500, 501, 421, 530
PASV
227

500, 501, 502, 421, 530

MODE
200

500, 501, 504, 421, 530

TYPE
200

500, 501, 504, 421, 530

STRU
200

500, 501, 504, 421, 530

File action commands
ALLO
200
202

500, 501, 504, 421, 530

REST

500, 501, 502, 421, 530

350
STOR
125, 150
(110)
226, 250

425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530
STQU
125, 150
(110)
226, 250

425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530
RETR
125, 150
(110)
226, 250
425, 426, 451
450, 550
500, 501, 421, 530

Post el & Reynol ds

Cct ober 1985

[Page 51]

RFC 959
File Transfer Protoco

LI ST
125

450
500

125

450

500
APPE

125

532
500
RNFR
450
500
350
RNTO
250
532
500
DELE
250
450
500
RVD
250
500
MKD
257
500
PWD
257
500
ABOR
225
500

Postel & Reynol ds

, 150
226, 250
425, 426, 451

, 501, 502, 421, 530
, 150

226, 250

425, 426, 451

, 501, 502, 421, 530

, 150

(110)

226, 250

425, 426, 451, 551, 552
, 450, 550, 452, 553

, 501, 502, 421, 530

, 550
, 501, 502, 421, 530

, 553
, 501, 502, 503, 421, 530

, 550
, 501, 502, 421, 530

, 501, 502, 421, 530, 550

, 501, 502, 421, 530, 550

, 501, 502, 421, 550

, 226
, 501, 502, 421

Cct ober 1985

[Page 52]

RFC 959
File Transfer Protocol

I nf or mati onal commands
SYST
215
500, 501, 502, 421
STAT
211, 212, 213
450

500, 501, 502, 421, 530

HELP

211, 214

500, 501, 502, 421

M scel | aneous commands

SITE

200

202

500, 501, 530
NOOP

200

500 421

6.2 abed z wnipuadwo)

Post el & Reynol ds

Cct ober 1985

RFC 959 Cct ober 1985
File Transfer Protocol

STATE DI AGRAMS

Here we present state diagrans for a very sinple mnded FTP
inplementation. Only the first digit of the reply codes is used.
There is one state diagramfor each group of FTP commands or comrand
sequences.

The conmand groupi ngs were determ ned by constructing a nodel for
each command then collecting together the commands with structurally
identical nodels.

For each command or command sequence there are three possible

out cones: success (S), failure (F), and error (E). In the state

di agrans bel ow we use the synbol B for "begin", and the synmbol Wfor
"wait for reply".

We first present the diagramthat represents the |argest group of FTP
commands:

----------- > E|
| +-- -+
|

+-- -+ cmd +--- 4+ 2 +--- 4+

| Bl-mommeee > W[-ooeeeee > s |

oo o o -4

Thi s di agram nodel s the commands:

ABOR, ALLO, DELE, CWD, CDUP, SMWNT, HELP, MODE, NOOP, PASYV,
QUIT, SITE, PORT, SYST, STAT, RVD, MKD, PWD, STRU, and TYPE.

Postel & Reynol ds [Page 54]

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985

File Transfer Protocol File Transfer Protocol
The other |arge group of commands is represented by a very simlar The next diagramis a sinple nodel of the Restart command:
di agram

+---+ REST +---+ 1,2 +---+

3 N | Bl--mmmmee- > W[-eeeeeeee > E|
----------- > E | +-- -+ +-- -+ -- >4 - -+
| +---+ |
| 3 145 |
+-- -+ cnd oo -+ 2 -+ ke eeemeaaas emaaaa |
| Bl--mmmmee UBLAREEREEEEEE > S| | I
+-- -+ —e e >4 - o+ -+ | T P > S|
| || | I3 1 1 o+
| || 4,5 4o+ | 2| oo
A > F | | || |
----- et v | |
+-- -+ cmd +---+ 4,5 ----- S+---+
I UBLAREEEEEREES > F |
Thi s di agram nodel s the comrands: +---+ -->4-- -+ +---+
| |
APPE, LIST, NLST, REIN, RETR, STOR and STOU. | 1 |
@) Note that this second nodel could also be used to represent the first
o group of commands, the only difference being that in the first group
3 the 100 series replies are unexpected and therefore treated as error, Wiere "cmd" is APPE, STOR, or RETR
S whil e the second group expects (some nay require) 100 series replies.
D Renenber that at nost, one 100 series reply is allowed per command. W note that the above three nodels are simlar. The Restart differs
> fromthe Renanme two only in the treatnment of 100 series replies at
o The renuini ng di agrans nodel conmand sequences, perhaps the sinplest the second stage, while the second group expects (sone nay require)
c of these is the renanme sequence: 100 series replies. Renenber that at npbst, one 100 series reply is
3 al | oned per command.
'I(\J) +---+ RNFR +---+ 1,2 +---+
o | Bl---mmme- S NAAREEEEEREES > E |
(o) +---+ +---+ -S>t --+
@ |1 |
N 3 | | 4,5 |
(o R T LT T |
© | [B
I s > s |
| I N
| 2| oo
| || |
v || |
+o- -+ RNTO +---+ 4,5 ----- S4-- -+
I S BAAREEEEEEEE > F |
+---+ +---+ +---+

Post el & Reynol ds [Page 55] Postel & Reynol ds [Page 56]

182 9bed z wnipuadwo)

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985
File Transfer Protocol File Transfer Protocol

The npst conplicated diagramis for the Login sequence: Finally, we present a generalized diagramthat could be used to nodel

the conmand and reply interchange:

1
+-- -+ USER R O SH---+ e e e e m o
| Bl--meoeoee- > w2 -3 E | ! |
R f | -4+ Begi n | |
[1] | \ I
31145 ||| [+---+ cmd +---+ 2 +e-- I
------------------- []| R B e N R R R I
| L] [| W | S|----- I
| Ll --> | SR I EE [I
I | | +---+ | +---+ 4,5 | +---+ |
| 1 [| | | I I I
v I [| | [1|3 I +e--t I
+---+ PASS +---+ 2 | ------ >+-- -+ | | | [I I I
[> W-emmmeeo e > S| | | EEEEE -ee-> Fol-----
+---+ LR >4-- -+ | | | | |
[I | | I +o- -t
31 14,5 | e
---------------------- I |
| [|
| [\
| T T T End
| L3
v 20]
+--- 4+ ACCT E e e S+---+
| | EEEEE R > W| 4,5 -------- > F |
+--- 4+ e S S+---+

Post el & Reynol ds [Page 57] Postel & Reynol ds [Page 58]

28z abed z wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

7. TYPICAL FTP SCENARI O
User at host U wanting to transfer files to/fromhost S
In general, the user will comunicate to the server via a nediating
user-FTP process. The following may be a typical scenario. The
user- FTP pronpts are shown in parentheses, '---->' represents
commands fromhost Uto host S, and '<----' represents replies from
host S to host U
LOCAL COMMANDS BY USER ACTI ON | NVOLVED
ftp (host) nultics<CR> Connect to host S, port L,
establ i shing control connections.
<---- 220 Service ready <CRLF>.
user name Doe <CR> USER Doe<CRLF>---->
<---- 331 User nane ok,
need passwor d<CRLF>.
password nunbl e <CR> PASS munbl e<CRLF>---->
<---- 230 User |ogged in<CRLF>.
retrieve (local type) ASClI<CR>
(l ocal pathnane) test 1 <CR> User - FTP opens local file in ASCII.
(for. pathnane) test.pl 1<CR> RETR test.pl 1<CRLF> ---->
<---- 150 File status okay;
about to open data
connect i on<CRLF>.
Server makes data connection
to port U
<---- 226 Cosing data connection,
file transfer successful <CRLF>.
type | mage<CrR> TYPE | <CRLF> ---->
<---- 200 Command OK<CRLF>
store (local type) inmge<CR>
(l ocal pathname) file dunp<CR> User-FTP opens local file in | mge.
(for.pathnane) >udd>cn>f d<CR> STOR >udd>cn>f d<CRLF> ---->
<---- 550 Access deni ed<CRLF>
term nate QUT <CRLF> ---->
Server closes all
connecti ons.
8. CONNECTI ON ESTABLI SHVENT
The FTP control connection is established via TCP between the user
process port U and the server process port L. This protocol is
assigned the service port 21 (25 octal), that is L=21.
Post el & Reynol ds [Page 59]

RFC 959 Cct ober 1985
File Transfer Protocol

APPENDI X | - PAGE STRUCTURE

The need for FTP to support page structure derives principally from
the need to support efficient transmi ssion of files between TOPS-20
systens, particularly the files used by NLS.

The file systemof TOPS-20 is based on the concept of pages. The
operating systemis nost efficient at nmanipulating files as pages.
The operating systemprovides an interface to the file systemso that
many applications view files as sequential streams of characters.
However, a few applications use the underlying page structures
directly, and sone of these create holey files.

A TOPS-20 disk file consists of four things: a pathnane, a page
table, a (possibly enpty) set of pages, and a set of attributes.

The pathname is specified in the RETR or STOR command. It includes
the directory nanme, file nanme, file name extension, and generation
nunber .

The page table contains up to 2**18 entries. Each entry may be
EMPTY, or may point to a page. If it is not enpty, there are al so
sone page-specific access bits; not all pages of a file need have the
sane access protection.

A page is a contiguous set of 512 words of 36 bits each.

The attributes of the file, in the File Descriptor Block (FDB),
contain such things as creation tine, wite tine, read tinme, witer's
byt e-si ze, end-of-file pointer, count of reads and wites, backup
system tape nunbers, etc.

Note that there is NO requirenent that entries in the page table be
contiguous. There may be enpty page table slots between occupi ed
ones. Also, the end of file pointer is sinply a nunber. There is no
requirenent that it in fact point at the "last" datumin the file.

O dinary sequential I/Ocalls in TOPS-20 will cause the end of file
pointer to be left after the last datumwitten, but other operations
may cause it not to be so, if a particular programming system so
requires.

In fact, in both of these special cases, "holey" files and
end-of -file pointers NOT at the end of the file, occur with NLS data
files.

Postel & Reynol ds [Page 60]

£g8g abed z wnipuadwo)

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985
File Transfer Protocol File Transfer Protocol

The TOPS-20 paged files can be sent with the FTP transfer paraneters: APPENDI X 11 - DI RECTORY COMVANDS
TYPE L 36, STRUP, and MODE S (in fact, any node coul d be used).

Since UNIX has a tree-like directory structure in which directories

Each page of information has a header. Each header field, which is a are as easy to manipulate as ordinary files, it is useful to expand

logical byte, is a TOPS-20 word, since the TYPE is L 36. the FTP servers on these machi nes to include conmands which deal with
the creation of directories. Since there are other hosts on the

The header fields are: ARPA- I nternet which have tree-like directories (including TOPS-20 and

Mil tics), these conmands are as general as possible.
Wrd 0: Header Length.

Four directory commands have been added to FTP:
The header length is 5.

MKD pat hnane
Word 1. Page | ndex.

Make a directory with the nane "pat hnane".
If the data is a disk file page, this is the nunber of that

page in the file's page map. Enpty pages (holes) in the file RMD pat hnane
are sinply not sent. Note that a hole is NOT the sane as a
page of zeros. Renove the directory with the name "pathname".
Word 2: Data Length. PVWD
The nunber of data words in this page, followi ng the header. Print the current working directory nane.
Thus, the total length of the transmission unit is the Header
Length plus the Data Length. CDUP
Wrd 3: Page Type. Change to the parent of the current working directory.
A code for what type of chunk this is. A data page is type 3, The "pathname" argunment shoul d be created (renoved) as a
the FDB page is type 2. subdirectory of the current working directory, unless the "pathnane"
string contains sufficient information to specify otherwi se to the
Word 4: Page Access Control. server, e.g., "pathnanme" is an absolute pathname (in UN X and
Mul tics), or pathnane is sonething |ike "<abso.lute.path>" to
The access bits associated with the page in the file's page TOPS- 20.
map. (This full word quantity is put into AC2 of an SPACS by
the programreading fromnet to disk.) REPLY CODES
After the header are Data Length data words. Data Length is The CDUP command is a special case of CAD, and is included to
currently either 512 for a data page or 31 for an FDB. Trailing sinplify the inplenentation of prograns for transferring directory
zeros in a disk file page nay be discarded, neking Data Length |ess trees between operating systems having different syntaxes for
than 512 in that case. nam ng the parent directory. The reply codes for CDUP be

identical to the reply codes of CWD.

The reply codes for RVD be identical to the reply codes for its
file anal ogue, DELE.

The reply codes for MKD, however, are a bit nore conplicated. A
freshly created directory will probably be the object of a future

Post el & Reynol ds [Page 61] Postel & Reynol ds [Page 62]

8¢ abed z wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

CAD command. Unfortunately, the argunent to MKD nay not al ways be
a suitable argument for CAD. This is the case, for exanple, when
a TOPS-20 subdirectory is created by giving just the subdirectory
name. That is, with a TOPS-20 server FTP, the command sequence

MKD MYDI R

QWD MYDI R
will fail. The new directory may only be referred to by its
"absol ute" nane; e.g., if the MKD command above were issued while

connected to the directory <DFRANKLI N>, the new subdirectory
could only be referred to by the nane <DFRANKLI N. M\YDI R>.

Even on UNI X and Miltics, however, the argunent given to MKD may
not be suitable. |If it is a "relative" pathnanme (i.e., a pathnanme
which is interpreted relative to the current directory), the user
woul d need to be in the sanme current directory in order to reach
the subdirectory. Depending on the application, this may be
inconvenient. It is not very robust in any case.

To sol ve these problens, upon successful conpletion of an MKD
command, the server should return a line of the form

257<space>"<di r ect or y- nane>" <space><comment ar y>

That is, the server will tell the user what string to use when
referring to the created directory. The directory name can
contain any character; enbedded doubl e- quotes shoul d be escaped by
doubl e- quot es (the "quote-doubling" convention).

For exanple, a user connects to the directory /usr/dm and creates
a subdirectory, nanmed pathnane:

CWD /usr/dm

200 directory changed to /usr/dm

MKD pat hnane

257 "/usr/dm pat hname" directory created

An exanpl e with an enbedded doubl e quote:
MKD f 00" bar
257 "/usr/dm foo""bar" directory created

CWD /usr/dm foo"bar
200 directory changed to /usr/dnlfoo"bar

& Reynol ds [Page 63]

RFC 959

Cct ober 1985

File Transfer Protocol

The pri
error,

in that

D
200
MKD

521-

521

The fai
cousin,
nane w

or existence of a subdirectory with the sane name is an
and the server nust return an "access denied" error reply
case.

/usr/dm

directory changed to /usr/dm

pat hname

"/usr/dn pat hname" directory already exists;
taking no action.

lure replies for MKD are anal ogous to its file creating
STOR. Also, an "access denied" return is given if a file
th the sane nanme as the subdirectory will conflict with the

creation of the subdirectory (this is a problemon UN X, but
shoul dn't be one on TOPS-20).

Essenti

al ly because the PW command returns the sane type of

informati on as the successful MKD command, the successful PWD
comrand uses the 257 reply code as well.

SUBTLETI ES

Because these commands will be nost useful in transferring
subtrees fromone machine to another, carefully observe that the
argunent to MKDis to be interpreted as a sub-directory of the

current

working directory, unless it contains enough information

for the destination host to tell otherwi se. A hypothetical
exanple of its use in the TOPS-20 worl d:

CWD <sone. wher e>

200 Working directory changed

MKD overrai nbow

257 "<sone. where. overrai nbow>" directory created

CWD over r ai nbow

431 No such directory

CWD <sone. wher e. overr ai nbow>

200 Working directory changed

CWD <sorme. wher e>

200 Working directory changed to <sone. where>

MKD <unanbi guous>

257 "<unanbi guous>" directory created

CWD <unanbi guous>
Note that the first exanple results in a subdirectory of the
connected directory. In contrast, the argunent in the second

exanpl e contains enough information for TOPS-20 to tell that the

Postel & Reynol ds [Page 64]

Ggz abed gz wnipuadwo)

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

<unanbi guous> directory is a top-level directory. Note also that
in the first exanple the user "violated" the protocol by
attenpting to access the freshly created directory with a nanme
other than the one returned by TOPS-20. Problenms could have
resulted in this case had there been an <overrai nbow> directory;
this is an anmbiguity inherent in sone TOPS-20 inplenentations.

Sim |l ar considerations apply to the RVMD conmand. The point is
this: except where to do so would violate a host's conventions for
denoting relative versus absol ute pathnanes, the host should treat
the operands of the MKD and RVD commands as subdirectories. The
257 reply to the MKD conmmand nust al ways contain the absolute

pat hname of the created directory.

& Reynol ds [Page 65]

RFC 959 Cct ober
File Transfer Protocol
APPENDI X I Il - RFCs on FTP

Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (N C 5823),
M T-Proj ect MAC, 16 April 1971.

Harslem Eric, and John Heafner, "Coments on RFC 114 (A File
Transfer Protocol)", RFC 141 (NI C 6726), RAND, 29 April 1971.

Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172
(NIC 6794), M T-Project MAC, 23 June 1971.

1985

Braden, Bob, "Comments on DTP and FTP Proposal s", RFC 238 (NI C 7663),

UCLA/ CCN, 29 Septenber 1971.

Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265
(NIC 7813), MT-Project MAC, 17 Novenber 1971.

McKenzie, Alex, "A Suggested Addition to File Transfer Protocol",

RFC 281 (NI C 8163), BBN, 8 December 1971.

Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File
Transfer Protocol"”, RFC 294 (N C 8304), M T-Project MAC
25 January 1972.

Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (N C 10596),

M T- Project MAC, 8 July 1972.

Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)",

RFC 385 (NI C 11357), MT-Project MAC, 18 August 1972.

Hi cks, Greg, "User FTP Docunentation", RFC 412 (N C 12404), U ah,

27 Novenber 1972.

Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further

Comment s", RFC 414 (NI C 12406), M T-Project MAC, 20 Novenber 1972.

Braden, Bob, "Comments on File Transfer Protocol", RFC 430
(NIC 13299), UCLA/ CCN, 7 February 1973.

Thomas, Bob, and Bob O enents, "FTP Server-Server Interaction”,
RFC 438 (NI C 13770), BBN, 15 January 1973.

Braden, Bob, "Print Files in FTP", RFC 448 (N C 13299), UCLA/ CCN,

27 February 1973.

McKenzie, Alex, "File Transfer Protocol", RFC 454 (N C 14333), BBN,

16 February 1973.

Postel & Reynol ds [Page 66]

08¢ abed ¢z wnipuadwo)

RFC 959 Cct ober 1985 RFC 959 Cct ober 1985

File Transfer Protocol File Transfer Protocol
Bressler, Bob, and Bob Thomas, "Miil Retrieval via FTP', RFC 458 McKenzie, Alex, and Jon Postel, "Telnet and FTP Inpl enentation -
(NI C 14378), BBN-NET and BBN- TENEX, 20 February 1973. Schedul e Change", RFC 593 (NI C 20615), BBN and M TRE,

29 Novenber 1973.

Nei gus, Nancy, "File Transfer Protocol", RFC 542 (NI C 17759), BBN,

12 July 1973. Sussman, Julie, "FTP Error Code Usage for Mre Reliable Muil
Service", RFC 630 (NI C 30237), BBN, 10 April 1974.

Kril anovich, Mark, and George Gregg, "Comments on the File Transfer

Protocol ", RFC 607 (NI C 21255), UCSB, 7 January 1974. Postel, Jon, "Revised FTP Reply Codes", RFC 640 (N C 30843),
UCLA/ NMC, 5 June 1974.

Pogran, Ken, and Nancy Nei gus, "Response to RFC 607 - Comments on the

File Transfer Protocol", RFC 614 (N C 21530), BBN, 28 January 1974. Harvey, Brian, "Leaving Well Enough Al one", RFC 686 (N C 32481),
SU-Al, 10 May 1975.

Krilanovich, Mark, George G egg, Wayne Hat haway, and Jim Wite,

"Comments on the File Transfer Protocol", RFC 624 (N C 22054), UCSB, Harvey, Brian, "One More Try on the FTP', RFC 691 (NI C 32700), SU Al,
Ames Research Center, SRI-ARC, 28 February 1974. 28 May 1975.
Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463 Lieb, J., "CWD Command of FTP", RFC 697 (NI C 32963), 14 July 1975.

(NI C 14573), M T-DMCG, 21 February 1973.

Harrenstien, Ken, "FTP Extension: XSEN', RFC 737 (N C 42217), SRI-KL,
Braden, Bob, "FTP Data Conpression", RFC 468 (NI C 14742), UCLA/ CCN, 31 COct ober 1977.
8 March 1973.

Harrenstien, Ken, "FTP Extension: XRSQ XRCP", RFC 743 (N C 42758),
Bhushan, Abhay, "FTP and Network Mail Systeni, RFC 475 (N C 14919), SRI - KL, 30 Decenber 1977.
M T-DMCG, 6 March 1973.

Lebling, P. David, "Survey of FTP Mail and M.FL", RFC 751, MT,
Bressl er, Bob, and Bob Thomas "FTP Server-Server Interaction - II", 10 Decenber 1978.
RFC 478 (NI C 14947), BBN- NET and BBN TENEX, 26 March 1973.

Postel, Jon, "File Transfer Protocol Specification", RFC 765, |SI,
White, Jim "Use of FTP by the NIC Journal", RFC 479 (N C 14948), June 1980.
SRI - ARC, 8 March 1973.

Manki ns, David, Dan Franklin, and Buzz Onen, "Directory Oriented FTP
White, Jim "Host-Dependent FTP Paraneters”, RFC 480 (NI C 14949), Commands", RFC 776, BBN, Decenber 1980.
SRI - ARC, 8 March 1973.

Padl i psky, M chael, "FTP Uni que- Naned Store Command", RFC 949, M TRE,
Padl i psky, M ke, "An FTP Conmand- Nam ng Probl ent, RFC 506 July 1985.
(NI C 16157), M T-Miltics, 26 June 1973.

Day, John, "Meno to FTP Group (Proposal for File Access Protocol)",
RFC 520 (NIC 16819), Illinois, 25 June 1973.

Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532
(NI C 17451), UCSD-CC, 22 June 1973.

Braden, Bob, "TENEX FTP Problenf, RFC 571 (NI C 18974), UCLA/ CCN,
15 Novenber 1973.

Post el & Reynol ds [Page 67] Postel & Reynol ds [Page 68]

/8¢ abed z wnipuadwo)d

RFC 959

File Transfer Protocol

COct ober 1985

REFERENCES

[1

[2]

Postel & Reynol ds

Feinler, Elizabeth, "Internet Protocol Transition Wrkbook",
Network Information Center, SRl International, March 1982.

Postel, Jon, "Transm ssion Control Protocol - DARPA Internet
Program Prot ocol Specification", RFC 793, DARPA, Septenber 1981.

Postel, Jon, and Joyce Reynolds, "Tel net Protocol
Speci fication", RFC 854, IS, My 1983.

Reynol ds, Joyce, and Jon Postel, "Assigned Nunmbers", RFC 943,
I'Sl, April 1985.

[Page 69]

88z abed z wnipuadwo)

Net wor k Wor ki ng Group D. Kristol
Request for Comments: 2109 Bel | Laboratories, Lucent Technol ogies
Category: Standards Track L. Montulli

Net scape Conmuni cati ons
February 1997

HTTP State Managenent Mechani sm
Status of this Menp

Thi s document specifies an Internet standards track protocol for the
Internet comunity, and requests discussion and suggestions for
improvenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenp is unlinmited.

1. ABSTRACT

Thi s docunment specifies a way to create a stateful session with HTTP
requests and responses. It describes two new headers, Cookie and
Set - Cooki e, which carry state information between participating
origin servers and user agents. The nethod described here differs
from Netscape's Cookie proposal, but it can interoperate with

HTTP/ 1.0 user agents that use Netscape's nethod. (See the H STORI CAL
section.)

2. TERM NOLOGY

The terns user agent, client, server, proxy, and origin server have
the same neaning as in the HTTP/ 1.0 specification.

Ful l'y-qualified host nane (FQHN) neans either the fully-qualified
domai n name (FQDN) of a host (i.e., a conpletely specified domain
name ending in a top-level domain such as .comor .uk), or the
nuneric Internet Protocol (IP) address of a host. The fully
qualified domain name is preferred; use of nuneric |P addresses is
strongly di scouraged.

The terns request-host and request-URl refer to the values the client
woul d send to the server as, respectively, the host (but not port)
and abs_path portions of the absoluteURl (http_URL) of the HTTP
request line. Note that request-host nmust be a FQHN.

Kristol & Montulli St andar ds Track [Page 1]

RFC 2109 HTTP State Managenent Mechani sm February 1997

Hosts nanes can be specified either as an | P address or a FQHN
string. Sonetimes we conpare one host name with another. Host A's
nane domai n-natches host B's if

* both host nanes are | P addresses and their host nane strings natch
exactly; or

* both host nanes are FQDN strings and their host nane strings nmatch
exactly; or

* Ais a FQDN string and has the form NB, where Nis a non-enpty name
string, B has the form.B, and B' is a FQDN string. (So, x.y.com
domai n- mat ches .y.com but not y.com)

Note that donmin-match is not a conmutative operation: a.b.c.com
domai n- mat ches .c.com but not the reverse.

Because it was used in Netscape's original inplenentation of state
managerment, we will use the termcookie to refer to the state
information that passes between an origin server and user agent, and
that gets stored by the user agent.

STATE AND SESSI ONS

Thi s docunment describes a way to create stateful sessions with HTTP
requests and responses. Currently, HTTP servers respond to each
client request without relating that request to previous or
subsequent requests; the technique allows clients and servers that
wi sh to exchange state infornation to place HITP requests and
responses within a larger context, which we terma "session". This
context might be used to create, for exanple, a "shopping cart", in
whi ch user selections can be aggregated before purchase, or a

magazi ne browsi ng system in which a user's previous reading affects
which offerings are presented.

There are, of course, many different potential contexts and thus nmany

different potential types of session. The designers' paradigm for

sessions created by the exchange of cookies has these key attributes:
1. Each session has a beginning and an end.

2. Each session is relatively short-1ived.

3. Either the user agent or the origin server may termnate a
sessi on.

4. The session is inplicit in the exchange of state information.

Kristol & Montulli St andar ds Track [Page 2]

68z abed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm

4.

4.

Kristol & Montulli

QUTLI NE

We outline here a way for an origin server to send state information
to the user agent, and for the user agent to return the state
information to the origin server. The goal is to have a m ninal

i npact on HTTP and user agents. Only origin servers that need to
mai ntai n sessions would suffer any significant inpact, and that

i npact can largely be confined to Common Gateway |nterface (Cd)
programs, unless the server provides nore sophisticated state
managenent support. (See |nplenentation Considerations, below)

1 Syntax: Ceneral

The two state managenent headers, Set-Cookie and Cookie, have comon
syntactic properties involving attribute-value pairs. The follow ng
grammar uses the notation, and tokens DIG T (decimal digits) and
token (informally, a sequence of non-special, non-white space
characters) fromthe HTTP/ 1.1 specification [RFC 2068] to describe
their syntax.

av-pairs = av-pair *(";" av-pair)

av-pair = attr ["=" val ue] ; optional value
attr = t oken

val ue = wor d

wor d = token | quoted-string

Attributes (nanes) (attr) are case-insensitive. Wiite space is
perm tted between tokens. Note that while the above syntax
description shows value as optional, npbst attrs require them

NOTE: The syntax above all ows whitespace between the attribute and
the = sign.

4.2 Oigin Server Role

4.2.1 General

The origin server initiates a session, if it so desires. (Note that
"session" here does not refer to a persistent network connection but
to a logical session created fromHTTP requests and responses. The
presence or absence of a persistent connection should have no effect
on the use of cookie-derived sessions). To initiate a session, the
origin server returns an extra response header to the client, Set-
Cookie. (The details follow later.)

A user agent returns a Cookie request header (see below) to the

origin server if it chooses to continue a session. The origin server
may ignore it or use it to deternmine the current state of the

St andar ds Track [Page 3]

February 1997

Kristol & Montulli

RFC 2109 HTTP State Managenent Mechani sm February 1997
session. It may send back to the client a Set-Cookie response header
with the sane or different information, or it may send no Set- Cookie
header at all. The origin server effectively ends a session by

sending the client a Set-Cookie header w th Max- Age=0.

Servers may return a Set-Cooki e response headers with any response.
User agents shoul d send Cooki e request headers, subject to other
rules detailed below, with every request.

An origin server may include nultiple Set-Cookie headers in a
response. Note that an intervening gateway could fold multiple such
headers into a single header.

4.2.2 Set-Cookie Syntax

The syntax for the Set-Cookie response header is

set - cooki e = " Set - Cooki e: " cooki es
cooki es = 1#cooki e
cooki e = NAME "=" VALUE *(";" cooki e-av)
NAMVE = attr
VALUE = val ue
cooki e-av = "Comment" "=" val ue

| "Donmi n" "=" val ue

| " Max- Age" "=" val ue

| "Path" "=" val ue

| " Secur e"

| "Version" "=" 1*DIGT

Informally, the Set-Cookie response header conprises the token Set-
Cooki e:, followed by a conma-separated |ist of one or nore cookies.
Each cookie begins with a NAME=VALUE pair, followed by zero or nore
semi -col on-separated attribute-value pairs. The syntax for
attribute-value pairs was shown earlier. The specific attributes and
the senantics of their values follows. The NAME=VALUE attribute-

val ue pair nmust come first in each cookie. The others, if present,
can occur in any order. If an attribute appears nore than once in a
cooki e, the behavior is undefined.

NAME=VAL UE
Required. The nane of the state information ("cookie") is NAME,
and its value is VALUE. NAMEs that begin with $ are reserved for
ot her uses and nust not be used by applications.

St andards Track [Page 4]

062 9@bed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm February 1997

The VALUE is opaque to the user agent and may be anything the
origin server chooses to send, possibly in a server-selected
printable ASCI| encoding. "Opaque" inplies that the content is of
interest and rel evance only to the origin server. The content
may, in fact, be readable by anyone that exam nes the Set- Cookie
header .

Commrent =comment
Optional. Because cookies can contain private information about a
user, the Cookie attribute allows an origin server to docunent its
intended use of a cookie. The user can inspect the information to
decide whether to initiate or continue a session with this cookie.

Donai n=domai n
Optional. The Donmain attribute specifies the domain for which the
cookie is valid. An explicitly specified donmain nust always start
with a dot.

Max- Age=del t a- seconds
Optional. The Max-Age attribute defines the lifetine of the
cooki e, in seconds. The delta-seconds value is a decinal non-
negative integer. After delta-seconds seconds el apse, the client
shoul d discard the cookie. A value of zero neans the cookie
shoul d be di scarded i nmedi ately.

Pat h=pat h
Optional. The Path attribute specifies the subset of URLs to
whi ch this cookie applies.

Secure
Optional. The Secure attribute (with no value) directs the user
agent to use only (unspecified) secure nmeans to contact the origin
server whenever it sends back this cookie.

The user agent (possibly under the user's control) may determnne
what |evel of security it considers appropriate for "secure"
cookies. The Secure attribute should be considered security
advice fromthe server to the user agent, indicating that it is in
the session's interest to protect the cookie contents.

Ver si on=ver si on
Required. The Version attribute, a decimal integer, identifies to
whi ch version of the state nmanagenent specification the cookie
conforms. For this specification, Version=1 applies.

Kristol & Montulli St andar ds Track [Page 5]

RFC 2109 HTTP State Managenent Mechani sm February 1997

4.2.3 Controlling Caching

An origin server nust be cognizant of the effect of possible caching
of both the returned resource and the Set-Cookie header. Caching
"public" docunments is desirable. For exanple, if the origin server
wants to use a public docunment such as a "front door" page as a
sentinel to indicate the beginning of a session for which a Set-
Cooki e response header nust be generated, the page shoul d be stored
in caches "pre-expired" so that the origin server will see further
requests. "Private docunents", for exanple those that contain
information strictly private to a session, should not be cached in
shared caches.

If the cookie is intended for use by a single user, the Set-cookie
header should not be cached. A Set-cookie header that is intended to
be shared by multiple users may be cached.

The origin server should send the follow ng additional HTTP/ 1.1
response headers, depending on circunstances:

* To suppress caching of the Set-Cookie header: Cache-control: no-
cache="set - cooki e".

and one of the follow ng:

* To suppress caching of a private docunment in shared caches: Cache-
control: private.

* To allow caching of a docunent and require that it be validated
before returning it to the client: Cache-control: nust-revalidate.

* To allow caching of a document, but to require that proxy caches
(not user agent caches) validate it before returning it to the
client: Cache-control: proxy-revalidate.

* To allow caching of a docurment and request that it be validated
before returning it to the client (by "pre-expiring" it):
Cache-control : nmax-age=0. Not all caches will revalidate the
docunent in every case.

HTTP/ 1.1 servers nust send Expires: old-date (where old-date is a
date long in the past) on responses containing Set-Cookie response
headers unl ess they know for certain (by out of band nmeans) that
there are no downsteam HTTP/ 1.0 proxies. HITP/1.1 servers may send
ot her Cache-Control directives that permt caching by HTTP/ 1.1
proxies in addition to the Expires: old-date directive; the Cache-
Control directive will override the Expires: old-date for HITP/ 1.1
proxi es.

Kristol & Montulli St andards Track [Page 6]

162 9bed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm February 1997 RFC 2109 HTTP State Managenent Mechani sm February 1997

4.3 User Agent Role * A Set-Cookie fromrequest-host x.foo.comfor Domain=.foo.com woul d
be accept ed.
4.3.1 Interpreting Set-Cookie
* A Set-Cookie with Domai n=.com or Dormai n=.com, wll always be

The user agent keeps separate track of state information that arrives rej ected, because there is no enbedded dot.

via Set-Cooki e response headers fromeach origin server (as

di stingui shed by name or |IP address and port). The user agent * A Set-Cookie with Domai n=aj ax.comwi || be rejected because the
applies these defaults for optional attributes that are m ssing: val ue for Domain does not begin with a dot.

Ver si onDefaults to "ol d cookie" behavior as originally specified by 4.3.3 Cooki e Managenent

Net scape. See the HI STORI CAL secti on.
If a user agent receives a Set-Cookie response header whose NAME is

Domain Defaults to the request-host. (Note that there is no dot at the sane as a pre-existing cookie, and whose Domain and Path
t he begi nning of request-host.) attribute values exactly (string) natch those of a pre-existing
cooki e, the new cookie supersedes the old. However, if the Set-
Max- AgeThe default behavior is to discard the cookie when the user Cooki e has a value for Max-Age of zero, the (old and new) cookie is
agent exits. di scarded. O herwi se cooki es accunulate until they expire (resources

permtting), at which tine they are discarded.
Pat h Defaults to the path of the request URL that generated the

Set - Cooki e response, up to, but not including, the Because user agents have finite space in which to store cookies, they
right-nost /. may al so discard ol der cookies to make space for newer ones, using,
for exanple, a least-recently-used algorithm along with constraints
Secure |f absent, the user agent may send the cookie over an on the maxi mum nunber of cookies that each origin server may set.

i nsecure channel .
If a Set-Cookie response header includes a Cooment attribute, the

4.3.2 Rejecting Cookies user agent should store that information in a human-readable form
with the cookie and should display the coment text as part of a
To prevent possible security or privacy violations, a user agent cooki e inspection user interface.
rejects a cookie (shall not store its information) if any of the
following is true: User agents should allow the user to control cookie destruction. An
infrequently-used cookie may function as a "preferences file" for
* The value for the Path attribute is not a prefix of the request- network applications, and a user may wish to keep it even if it is
URI . the least-recently-used cookie. One possible inplenentation would be
an interface that allows the pernmanent storage of a cookie through a
* The value for the Domain attribute contains no enbedded dots or checkbox (or, conversely, its inmmediate destruction).

does not start with a dot.
Privacy considerations dictate that the user have considerable

* The val ue for the request-host does not donmin-match the Donmain control over cookie managenent. The PRI VACY section contains nore
attribute. information.
* The request-host is a FQDN (not |P address) and has the form HD, 4.3.4 Sending Cookies to the Origin Server
where D is the value of the Domain attribute, and His a string
that contains one or nore dots. When it sends a request to an origin server, the user agent sends a
Cooki e request header to the origin server if it has cookies that are
Exanpl es: applicable to the request, based on
* A Set-Cookie fromrequest-host y.x.foo.com for Donai n=.fo0.com * the request-host;

woul d be rejected, because His y.x and contains a dot.

Kristol & Montulli St andar ds Track [Page 7] Kristol & Montulli St andards Track [Page 8]

262 9bed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm February 1997

* the request-URl;
* the cookie's age.

The syntax for the header is:

cooki e = " Cooki e: " cooki e-version
1*((";" | ",") cookie-value)
cooki e-val ue = NAME "=" VALUE [";" path] [";" domain]
cooki e-version = "$Version" "=" val ue
NAVE = attr
VALUE = val ue
pat h = "$Pat h" "=" val ue
domai n = "$Dommi n" "=" val ue

The val ue of the cookie-version attribute nust be the value fromthe
Version attribute, if any, of the corresponding Set-Cookie response
header. QO herw se the value for cookie-version is 0. The value for
the path attribute nust be the value fromthe Path attribute, if any,
of the correspondi ng Set-Cooki e response header. Qherw se the
attribute should be onmitted fromthe Cookie request header. The
value for the domain attribute nust be the value fromthe Domain
attribute, if any, of the corresponding Set-Cooki e response header.
O herwi se the attribute should be omtted fromthe Cookie request
header .

Note that there is no Comment attribute in the Cookie request header
corresponding to the one in the Set-Cookie response header. The user
agent does not return the comrent information to the origin server.

The follow ng rules apply to choosing applicabl e cookie-val ues from
anmong all the cookies the user agent has.

Donmi n Sel ecti on
The origin server's fully-qualified host name nmust domai n-match
the Donmin attribute of the cookie.

Path Sel ection
The Path attribute of the cookie nmust match a prefix of the
request-URI .

Max- Age Sel ection
Cooki es that have expired should have been discarded and thus
are not forwarded to an origin server.

Kristol & Montulli St andar ds Track [Page 9]

RFC 2109 HTTP State Managenent Mechani sm February 1997

If multiple cookies satisfy the criteria above, they are ordered in
the Cooki e header such that those with nore specific Path attributes
precede those with less specific. Ordering with respect to other
attributes (e.g., Domain) is unspecified.

Not e: For backward conpatibility, the separator in the Cookie header
is sem-colon (;) everywhere. A server should also accept comma (,)
as the separator between cookie-values for future conpatibility.

4.3.5 Sending Cookies in Unverifiable Transactions

Users nust have control over sessions in order to ensure privacy.
(See PRI VACY section below.) To sinplify inplenmentation and to
prevent an additional |ayer of conplexity where adequate safeguards
exi st, however, this docunment distinguishes between transactions that
are verifiable and those that are unverifiable. A transaction is
verifiable if the user has the option to review the request-UR prior
toits use in the transaction. A transaction is unverifiable if the
user does not have that option. Unverifiable transactions typically
arise when a user agent automatically requests inlined or enbedded
entities or when it resolves redirection (3xx) responses from an
origin server. Typically the origin transaction, the transaction
that the user initiates, is verifiable, and that transacti on may
directly or indirectly induce the user agent to make unverifiable
transactions.

When it mekes an unverifiable transaction, a user agent nust enable a
session only if a cookie with a donain attribute D was sent or
received in its origin transaction, such that the host nane in the
Request-URI of the unverifiable transaction domai n-matches D.

This restriction prevents a malicious service author from using
unverifiable transactions to induce a user agent to start or continue
a session with a server in a different domain. The starting or
continuation of such sessions could be contrary to the privacy
expectations of the user, and could also be a security problem

User agents nmay offer configurable options that allow the user agent,
or any autononous prograns that the user agent executes, to ignore
the above rule, so long as these override options default to "off".

Many current user agents already provide a review option that would
render many links verifiable. For instance, sonme user agents display
the URL that would be referenced for a particular |ink when the nouse
pointer is placed over that Iink. The user can therefore determ ne
whether to visit that site before causing the browser to do so.
(Though not inplenmented on current user agents, a simlar technique
could be used for a button used to subnmit a form-- the user agent

Kristol & Montulli St andar ds Track [Page 10]

£6¢ 9bed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm February 1997

could display the action to be taken if the user were to select that
button.) However, even this would not make all links verifiable; for
exanple, links to automatically |oaded i mages would not normally be
subj ect to "nmouse pointer" verification.

Many user agents al so provide the option for a user to view the HTM.
source of a docunent, or to save the source to an external file where
it can be viewed by another application. Wile such an option does
provide a crude revi ew nmechani sm sonme users m ght not consider it
acceptabl e for this purpose.

4.4 How an Oigin Server Interprets the Cooki e Header

A user agent returns nmuch of the information in the Set-Cookie header
to the origin server when the Path attribute natches that of a new
request. Wen it receives a Cookie header, the origin server should
treat cookies with NAMEs whose prefix is $ specially, as an attribute
for the adjacent cookie. The value for such a NAME is to be
interpreted as applying to the lexically (left-to-right) npst recent
cooki e whose name does not have the $ prefix. |If there is no
previous cookie, the value applies to the cookie nechanismas a

whol e. For exanpl e, consider the cookie

Cooki e: $Version="1"; Custoner="W LE_E COYOTE";
$Pat h="/ acne"

$Version applies to the cookie nechanismas a whole (and gives the
version nunber for the cookie nechanism. $Path is an attribute
whose val ue (/acne) defines the Path attribute that was used when the
Cust omer cooki e was defined in a Set-Cookie response header.

4.5 Caching Proxy Role

One reason for separating state information fromboth a URL and
document content is to facilitate the scaling that caching pernits.
To support cookies, a caching proxy nust obey these rules already in
the HTTP specification:

* Honor requests fromthe cache, if possible, based on cache validity
rul es.

* Pass al ong a Cooki e request header in any request that the proxy
nust nmeke of another server.

* Return the response to the client. Include any Set-Cookie response
header .
Kristol & Montulli St andar ds Track [Page 11]

RFC 2109 HTTP State Managenent Mechani sm February 1997

* Cache the received response subject to the control of the usual
headers, such as Expires, Cache-control: no-cache, and Cache-
control: private,

* Cache the Set-Cookie subject to the control of the usual header,
Cache-control : no-cache="set-cookie". (The Set-Cookie header
shoul d usual |y not be cached.)

Proxi es nust not introduce Set-Cookie (Cookie) headers of their own
in proxy responses (requests).

5. EXAMPLES
5.1 Exanple 1

Most detail of request and response headers has been omitted. Assune
the user agent has no stored cookies.

1. User Agent -> Server

POST /acne/login HITP/ 1.1
[form dat a]

User identifies self via a form
2. Server -> User Agent

HTTP/ 1.1 200 OK
Set - Cooki e: Custoner="WLE_E COYOTE"; Version="1"; Path="/acme"

Cookie reflects user's identity.
3. User Agent -> Server
POST /acne/ pi ckitem HTTP/ 1. 1
Cooki e: $Version="1"; Custoner="WLE_E COYOTE'; $Path="/acme"
[form dat a]
User selects an itemfor "shopping basket."
4. Server -> User Agent
HTTP/ 1.1 200 K
Set - Cooki e: Part_Nunber =" Rocket _Launcher_0001"; Version="1";

Pat h="/acne"

Shoppi ng basket contains an item

Kristol & Montulli St andards Track [Page 12]

62 abed ¢z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm February 1997

5. User Agent -> Server

PCST /acne/ shi pping HTTP/ 1.1
Cooki e: $Version="1";

Cust onmer ="W LE_E_COYOTE"; $Pat h="/acne";

Part _Nunber =" Rocket _Launcher _0001"; $Pat h="/acne"
[form dat a]

User selects shipping nmethod fromform
6. Server -> User Agent

HTTP/ 1.1 200 K
Set - Cooki e: Shi ppi ng="FedEx"; Version="1"; Path="/acne"

New cooki e refl ects shipping nethod.
7. User Agent -> Server
POST /acne/ process HTTP/ 1.1
Cooki e: $Version="1";
Cust onmer ="W LE_E_COYOTE"; $Pat h="/acne";
Part _Nunber =" Rocket _Launcher _0001"; $Pat h="/acne";
Shi ppi ng="FedEx"; $Path="/acne"
[form dat a]
User chooses to process order.
8. Server -> User Agent
HTTP/ 1.1 200 K
Transaction is conplete.
The user agent nekes a series of requests on the origin server, after
each of which it receives a new cookie. Al the cookies have the
same Path attribute and (default) donmin. Because the request URLs
all have /acne as a prefix, and that matches the Path attribute, each
request contains all the cookies received so far.
5.2 Exanple 2
This exanple illustrates the effect of the Path attribute. All
detail of request and response headers has been omtted. Assune the
user agent has no stored cookies.

I magi ne the user agent has received, in response to earlier requests,
the response headers

Kristol & Montulli St andar ds Track [Page 13]

RFC 2109 HTTP State Managenent Mechani sm February 1997

Set - Cooki e: Part_Nunber =" Rocket _Launcher _0001"; Version="1";
Pat h="/acme"

and

Set - Cooki e: Part_Nunber ="Ri di ng_Rocket _0023"; Version="1";
Pat h="/acne/ amm"

A subsequent request by the user agent to the (same) server for URLs
of the form/acnme/amm/... would include the follow ng request
header :

Cooki e: $Version="1";
Part _Nunber ="Ri di ng_Rocket _0023"; $Pat h="/acnme/ ammp";
Part _Nunber =" Rocket _Launcher _0001"; $Pat h="/acne"

Note that the NAME=VALUE pair for the cookie with the nore specific
Path attribute, /acne/amp, cones before the one with the |ess
specific Path attribute, /acme. Further note that the same cookie
nane appears nore than once.

A subsequent request by the user agent to the (same) server for a URL
of the form/acne/parts/ would include the follow ng request header:

Cooki e: $Version="1"; Part_Nunber="Rocket_Launcher_0001"; $Path="/acme"
Here, the second cookie's Path attribute /acme/anmp is not a prefix

of the request URL, /acne/parts/, so the cookie does not get

forwarded to the server.

| MPLEMENTATI ON CONSI DERATI ONS

Here we speculate on likely or desirable details for an origin server
that inplenments state managenent.

6.1 Set-Cookie Content

An origin server's content should probably be divided into disjoint
application areas, sone of which require the use of state

informati on. The application areas can be distinguished by their
request URLs. The Set-Cooki e header can incorporate information
about the application areas by setting the Path attribute for each
one.

The session information can obviously be clear or encoded text that
describes state. However, if it grows too large, it can becone

unwi el dy. Therefore, an inplenmentor night choose for the session
information to be a key to a server-side resource. O course, using

Kristol & Montulli St andar ds Track [Page 14]

G6¢Z 9bed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm

6.3

Kristol & Montulli

February 1997
a dat abase creates sone problens that this state nanagenent
speci fication was neant to avoid, nanely:

1. keeping real state on the server side;

2. how and when to garbage-collect the database entry, in case the
user agent termnates the session by, for exanple, exiting.

6.2 Statel ess Pages

Caching benefits the scalability of WAWNV Therefore it is inportant
to reduce the nunber of documents that have state enbedded in them
inherently. For exanple, if a shopping-basket-style application

al ways displays a user's current basket contents on each page, those
pages cannot be cached, because each user's basket's contents woul d
be different. On the other hand, if each page contains just a |ink
that allows the user to "Look at My Shopping Basket", the page can be
cached.

I npl ementation Linmts

Practical user agent inplenentations have linmts on the nunber and
size of cookies that they can store. In general, user agents' cookie
support should have no fixed limts. They should strive to store as
many frequently-used cooki es as possible. Furthernore, general-use
user agents shoul d provide each of the follow ng m ni mum capabilities
i ndividual ly, although not necessarily sinultaneously:

* at |east 300 cookies
* at | east 4096 bytes per cookie (as neasured by the size of the
characters that conprise the cookie non-ternminal in the syntax
description of the Set-Cookie header)
* at |east 20 cookies per unique host or donmain name
User agents created for specific purposes or for |limited-capacity
devi ces should provide at |east 20 cooki es of 4096 bytes, to ensure
that the user can interact with a session-based origin server.
The information in a Set-Cookie response header nust be retained in
its entirety. |If for sonme reason there is inadequate space to store
the cookie, it nust be discarded, not truncated.

Applications should use as few and as small cookies as possible, and
they should cope gracefully with the |l oss of a cookie.

St andards Track [Page 15]

RFC 2109 HTTP State Managenent Mechani sm

6.

7.

7.

Kristol & Montulli

February 1997

3.1 Denial of Service Attacks

User agents may choose to set an upper bound on the nunber of cookies
to be stored froma given host or donmin nane or on the size of the
cookie information. Otherwi se a nalicious server could attenpt to
flood a user agent with many cookies, or |arge cookies, on successive
responses, which would force out cookies the user agent had received
fromother servers. However, the mnim specified above should still
be supported.

PRI VACY
1 User Agent Control

An origin server could create a Set-Cookie header to track the path
of a user through the server. Users nay object to this behavior as
an intrusive accurmulation of information, even if their identity is
not evident. (ldentity m ght becone evident if a user subsequently
fills out a formthat contains identifying information.) This state
managenent specification therefore requires that a user agent give
the user control over such a possible intrusion, although the
interface through which the user is given this control is left
unspeci fied. However, the control mechani sns provided shall at |east
al | ow the user

* to conpletely disable the sending and saving of cookies.
* to determ ne whether a stateful session is in progress.

* to control the saving of a cookie on the basis of the cookie's
Donmin attribute.

Such control could be provided by, for exanple, nechanisns

* to notify the user when the user agent is about to send a cookie
to the origin server, offering the option not to begin a session.

* to display a visual indication that a stateful session is in
progress.

* to let the user decide which cookies, if any, should be saved
when the user concludes a wi ndow or user agent session.

* to let the user exam ne the contents of a cookie at any tine.
A user agent usually begins execution with no renenbered state

information. |t should be possible to configure a user agent never
to send Cooki e headers, in which case it can never sustain state with

St andar ds Track [Page 16]

96¢ 9bed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm

7.

8.

8.

Kristol & Montulli

February 1997

an origin server. (The user agent woul d then behave like one that is
unawar e of how to handl e Set- Cooki e response headers.)

When the user agent term nates execution, it should let the user
discard all state information. Alternatively, the user agent nay ask
the user whether state infornmation should be retained; the default
shoul d be "no". If the user chooses to retain state information, it
woul d be restored the next tine the user agent runs.

NOTE: User agents shoul d probably be cautious about using files to

store cookies long-term If a user runs nore than one instance of

the user agent, the cookies could be conmmi ngled or otherw se nessed
up.

2 Protocol Design

The restrictions on the value of the Domain attribute, and the rules
concerning unverifiable transactions, are neant to reduce the ways
that cookies can "leak" to the "wong" site. The intent is to
restrict cookies to one, or a closely related set of hosts.
Therefore a request-host is limted as to what values it can set for
Donein. W consider it acceptable for hosts host1.foo.com and

host 2. f oo. comto share cookies, but not a.comand b.com

Simlarly, a server can only set a Path for cookies that are related
to the request-URl.

SECURI TY CONSI DERATI ONS
1 Cear Text

The information in the Set-Cookie and Cooki e headers is unprotected.
Two consequences are:

1. Any sensitive information that is conveyed in themis exposed
to intruders.

2. A mlicious internediary could alter the headers as they travel
in either direction, with unpredictable results.

These facts inply that information of a personal and/or financial
nature should only be sent over a secure channel. For |ess sensitive
information, or when the content of the header is a database key, an
origin server should be vigilant to prevent a bad Cookie value from
causing failures.

St andards Track [Page 17]

RFC 2109 HTTP State Managenent Mechani sm

Kristol & Montulli

February 1997

8.2 Cookie Spoofing

Proper application design can avoid spoofing attacks fromrel ated
donai ns. Consi der:

1. User agent makes request to victimcracker.edu, gets back
cooki e session_id="1234" and sets the default domain
victimcracker. edu.

2. User agent nekes request to spoof.cracker.edu, gets back
cooki e session-id="1111", with Donai n=".cracker. edu".

3. User agent nmmkes request to victimcracker.edu again, and
passes

Cooki e: $Version="1";
session_i d="1234";
session_id="1111"; $Domai n=".cracker. edu"

The server at victimcracker.edu shoul d detect that the second
cooki e was not one it originated by noticing that the Domain
attribute is not for itself and ignore it.

8.3 Unexpected Cooki e Sharing

A user agent should nmake every attenpt to prevent the sharing of
session infornation between hosts that are in different domains.
Enbedded or inlined objects nay cause particularly severe privacy
problens if they can be used to share cookies between disparate
hosts. For exanple, a nalicious server could enbed cookie
information for host a.comin a URI for a Cd on host b.com User
agent inplenmentors are strongly encouraged to prevent this sort of
exchange whenever possible.

OTHER, SIM LAR, PROPGCSALS

Three ot her proposals have been made to acconplish sinmilar goals.
This specification is an anmal gam of Kristol's State-Info proposal and
Net scape' s Cooki e proposal .

Bri an Behl endorf proposed a Session-1D header that woul d be user-
agent-initiated and could be used by an origin server to track
"clicktrails". It would not carry any origin-server-defined state,
however. Phillip Hallam Baker has proposed another client-defined
session | D nmechanismfor simlar purposes.

St andards Track [Page 18]

162 abed z wnipuadwo)

RFC 2109 HTTP State Managenent Mechani sm

10.

10.

10.

10.

Kristol & Montulli

February 1997

Wil e both session IDs and cookies can provide a way to sustain
stateful sessions, their intended purpose is different, and,
consequently, the privacy requirenents for themare different. A
user initiates session IDs to allow servers to track progress through
them or to distinguish multiple users on a shared machi ne. Cookies
are server-initiated, so the cookie nechani smdescribed here gives
users control over sonething that woul d otherw se take place without
the users' awareness. Furthernore, cookies convey rich, server-

sel ected information, whereas session |Ds conprise user-sel ected,
simpl e information.

HI STORI CAL
1 Conpatibility Wth Netscape's |nplenentation

HTTP/ 1.0 clients and servers may use Set-Cooki e and Cooki e headers
that reflect Netscape's original cookie proposal. These notes cover
inter-operation between "old" and "new' cooki es.

1.1 Extended Cooki e Header

This proposal adds attribute-value pairs to the Cookie request header
in a conpatible way. An "old" client that receives a "new' cookie
will ignore attributes it does not understand; it returns what it
does understand to the origin server. A "new' client always sends
cookies in the new form

An "ol d" server that receives a "new' cookie will see what it thinks
are many cookies with nanes that begin with a $, and it will ignore
them (The "ol d" server expects these cookies to be separated by
senmi -colon, not comma.) A "new' server can detect cookies that have
passed through an "ol d" client, because they lack a $Version
attribute.

1.2 Expires and Max-Age

Net scape' s original proposal defined an Expires header that took a
date value in a fixed-length variant format in place of Max-Age:

Wy, DD-Mon-YY HH: MM SS GV

Note that the Expires date format contains enbedded spaces, and that
"ol d" cooki es did not have quotes around values. Cients that
inplement to this specification should be aware of "ol d' cookies and
Expires.

St andar ds Track [Page 19]

RFC 2109 HTTP State Managenent Mechani sm

10.

10.

11.

Kristol & Montulli

February 1997

1.3 Punctuation

I'n Netscape's original proposal, the values in attribute-value pairs
did not accept "-quoted strings. Origin servers should be cautious
about sending values that require quotes unless they know the

recei ving user agent understands them (i.e., "new' cookies). A
("new') user agent should only use quotes around val ues in Cookie
headers when the cookie's version(s) is (are) all conpliant with this
specification or later.

I'n Netscape's original proposal, no whitespace was pernitted around
the = that separates attribute-value pairs. Therefore such
whi t espace should be used with caution in new inplenmentations.

2 Caching and HTTP/ 1.0

Sone caches, such as those conforming to HTTP/1.0, will inevitably
cache the Set-Cookie header, because there was no nechanismto
suppress caching of headers prior to HTTP/1.1. This caching can |ead
to security problenms. Docunents transmitted by an origin server
along with Set-Cookie headers will usually either be uncachable, or
will be "pre-expired". As long as caches obey instructions not to
cache docunents (follow ng Expires: <a date in the past> or Pragna:
no-cache (HTTP/1.0), or Cache-control: no-cache (HTTP/1.1))

uncachabl e docunments present no problem However, pre-expired
docunents may be stored in caches. They require validation (a
conditional GET) on each new request, but sone cache operators |oosen
the rules for their caches, and sonetines serve expired docunments
without first validating them This conbination of factors can |ead
to cookies neant for one user |ater being sent to another user. The
Set - Cooki e header is stored in the cache, and, although the docunent
is stale (expired), the cache returns the docunment in response to
later requests, including cached headers.

ACKNONLEDGEMENTS
Thi s docunment really represents the collective efforts of the

followi ng people, in addition to the authors: Roy Fielding, Marc
Hedl und, Ted Hardi e, Koen Hol t man, Shel Kaphan, Rohit Khare.

St andards Track [Page 20]

86¢ abed gz wnipuadwo)d

RFC 2109

12.

Kristol & Montulli

AUTHORS' ADDRESSES

David M Kristol

Bel | Laboratories, Lucent Technol ogi es
600 Mountain Ave. Room 2A-227

Mirray HIl, NJ 07974

Phone: (908) 582-2250
Fax: (908) 582-5809
EMai | : dnk@el | -1 abs. com

Lou Montul l'i

Net scape Communi cati ons Corp.
501 E. Mddlefield Rd.
Mountain View, CA 94043

Phone: (415) 528-2600
EMai | : nontul | i @etscape. com

St andards Track

HTTP State Managenent Mechani sm

February 1997

[Page 21]

66¢ 9bed z wnipuadwo)

Net wor k Wor ki ng Group M Horton
Request for Comments: 1036 AT&T Bel | Laboratories
osol etes: RFC- 850 R Adans

Center for Seismic Studies
Decenber 1987

Standard for Interchange of USENET Messages

STATUS OF TH S MEMO

Thi s docunent defines the standard format for the interchange of
network News nmessages anmong USENET hosts. It updates and repl aces
RFC-850, reflecting version B2.11 of the News program This nenp is
disributed as an RFC to nake this information easily accessible to
the Internet conmunity. |t does not specify an Internet standard.
Distribution of this nenmo is unlimted.

1. Introduction

Thi s docunent defines the standard format for the interchange of

net work News nessages anong USENET hosts. It describes the format
for messages thensel ves and gives partial standards for transm ssion
of news. The news transmission is not entirely in order to give a
good deal of flexibility to the hosts to choose transm ssion
hardware and software, to batch news, and so on.

There are five sections to this docunent. Section two defines the
format. Section three defines the valid control nessages. Section
four specifies sone valid transm ssion nethods. Section five
descri bes the overall news propagation algorithm

2. Message Format

The primary consideration in choosing a nmessage format is that it
fit inwith existing tools as well as possible. Existing tools
include inplenentations of both mail and news. (The notesfiles
systemfromthe University of Illinois is considered a news

i npl ementation.) A standard format for mail nessages has existed
for many years on the Internet, and this format neets nost of the
needs of USENET. Since the Internet format is extensible,
extensions to neet the additional needs of USENET are easily made
within the Internet standard. Therefore, the rule is adopted that
al | USENET news nessages must be fornatted as valid Internet mail
messages, according to the Internet standard RFC-822. The USENET
News standard is nore restrictive than the Internet standard,

Horton & Adans [Page 1]

RFC 1036 Standard for USENET Messages Decenber 1987

pl aci ng additional requirements on each nessage and forbiddi ng use
of certain Internet features. However, it should always be possible
to use a tool expecting an Internet nessage to process a news
nmessage. In any situation where this standard conflicts with the

I nternet standard, RFC-822 shoul d be considered correct and this
standard in error.

Here is an exanpl e USENET nessage to illustrate the fields.

From jerry@agle. ATT. COM (Jerry Schwar z)

Pat h: cbosgd! mhuxj ! mhuxt ! eagle!jerry

Newsgr oups: news. announce

Subj ect: Usenet Etiquette -- Please Read

Message- | D <642@agl e. ATT. COW>

Date: Fri, 19 Nov 82 16:14:55 GVl

Fol | owup- To: news. m sc

Expires: Sat, 1 Jan 83 00:00: 00 -0500

Organi zation: AT&T Bell Laboratories, Miurray Hill

The body of the nessage cones here, after a blank |ine.

Here is an exanple of a nmessage in the old format (before the

exi stence of this standard). It is recomended that

i npl enentations al so accept nmessages in this format to ease upward
conver si on.

From cbosgd! mhuxj ! mhuxt!eagle!jerry (Jerry Schwarz)
Newsgr oups: news. m sc

Title: Usenet Etiquette -- Please Read

Article-1.D.: eagle.642

Posted: Fri Nov 19 16:14:55 1982

Received: Fri Nov 19 16:59:30 1982

Expires: Mn Jan 1 00: 00: 00 1990

The body of the nessage conmes here, after a blank line.

Sone news systenms transmit news in the A format, which |ooks like
this:

Aeagl e. 642

news. m sc

cbosgd! mhuxj ! mhuxt!eagle!jerry

Fri Nov 19 16:14:55 1982

Usenet Etiquette - Please Read

The body of the nessage cones here, with no blank |ine.

A standard USENET nessage consists of several header lines, followed
by a blank line, followed by the body of the nessage. Each header

Horton & Adams [Page 2]

00¢€ abed z wnipuadwo)

RFC 1036 Standard for USENET Messages

2. 1.

2. 1.

Decenber 1987

l'ine consist of a keyword, a colon, a blank, and sone additional
information. This is a subset of the Internet standard, sinplified
to allow sinpler software to handle it. The "Fron |ine nay
optionally include a full name, in the fornat above, or use the
Internet angle bracket syntax. To keep the inplenentations sinple,
other formats (for exanple, with part of the machine address after
the close parenthesis) are not allowed. The Internet convention of
continuati on header lines (beginning with a blank or tab) is

al | oned.

Certain headers are required, and certain other headers are
optional. Any unrecognized headers are allowed, and will be passed
t hrough unchanged. The required header lines are "Froni, "Date",
"Newsgroups", "Subject", "Message-ID', and "Path". The optional
header |ines are "Foll owp-To", "Expires", "Reply-To", "Sender",
"References", "Control", "Distribution", "Keywords", "Summary",
"Approved", "Lines", "Xref", and "Organi zation". Each of these
header lines will be described bel ow.

Requi red Header |ines
1. From

The "Front' line contains the electronic mailing address of the
person who sent the nessage, in the Internet syntax. |t may
optionally also contain the full name of the person, in parentheses,
after the electronic address. The electronic address is the same as
the entity responsible for originating the message, unless the
"Sender" header is present, in which case the "Fron' header m ght
not be verified. Note that in all host and domai n names, upper and
| ower case are considered the same, thus "mark@bosgd. ATT. COM',
"mark@bosgd. att. conl', and "mark@BosgD. ATt. COnf are all equivalent.
User names may or may not be case sensitive, for exanple,

"Bi |l y@bosgd. ATT. COM' ni ght be different from

"Bi || Y&bosgd. ATT. COM'. Prograns shoul d avoi d changing the case of
el ectroni c addresses when forwardi ng news or mail.

RFC- 822 specifies that all text in parentheses is to be interpreted
as a comment. It is conmon in Internet mail to place the full name
of the user in a cooment at the end of the "Front line. This
standard specifies a nore rigid syntax. The full nane is not

consi dered a comment, but an optional part of the header |ine.
Either the full name is omtted, or it appears in parentheses after
the el ectronic address of the person posting the nessage, or it
appears before an el ectronic address which is enclosed in angle
brackets. Thus, the three permissible forns are:

Horton & Adans [Page 3]

RFC 1036 Standard for USENET Messages

2.1.

2. 1.

Decenber 1987

From mark@bosgd. ATT. COM
From mark@bosgd. ATT. COM (Mar k Hort on)
From Mark Horton <mark@bosgd. ATT. COV>

Ful | names nmay contain any printing ASCI| characters from space
through tilde, except that they may not contain "(" (left
parenthesis), ")" (right parenthesis), "<" (left angle bracket), or
">" (right angle bracket). Additional restrictions nay be placed on
full nanes by the mail standard, in particular, the characters ","

(comma), ":" (colon), "@ (at), "!" (bang), "/" (slash), "="
(equal), and ";" (semicolon) are inadvisable in full nanes.

2. Date

The "Date" line (fornerly "Posted") is the date that the nessage was
originally posted to the network. Its format nust be acceptable

both in RFC-822 and to the getdate(3) routine that is provided with
the Usenet software. This date remai ns unchanged as the nessage is
propagat ed throughout the network. One format that is acceptable to
both is:

Wiy, DD Mon YY HH MM SS TI MEZONE

Several exanples of valid dates appear in the sanple nessage above.
Note in particular that ctime(3) format:

Wly Mon DD HH MM SS YYYY

is not acceptable because it is not a valid RFC-822 date. However,
since ol der software still generates this format, news

i mpl ement ations are encouraged to accept this format and translate
it into an acceptable fornat.

There is no hope of having a conplete list of timezones. Universal
Time (GMIN, the North Anerican tinezones (PST, PDT, MST, MDT, CST,
CDT, EST, EDT) and the +/-hhmm of fset specifed in RFC 822 should be
supported. It is recormended that times in nessage headers be
transmtted in GVMI and displayed in the local tine zone.

3. Newsgroups

The "Newsgroups" |ine specifies the newsgroup or newsgroups in which
the nmessage bel ongs. Miltiple newsgroups may be specified,
separated by a comma. Newsgroups specified nust all be the nanes of
exi sting newsgroups, as no new newsgroups will be created by sinply
posting to them

Horton & Adams [Page 4[

TOg abed z wnipuadwo)

RFC 1036 Standard for USENET Messages

2. 1.

2.1.

Decenber 1987

Wl dcards (e.g., the word "all") are never allowed in a "News-
groups” line. For exanple, a newsgroup conp.all is illegal,
al t hough a newsgroup rec.sport.football is permtted.

If a nmessage is received with a "Newsgroups" line listing sone valid
newsgroups and sone invalid newsgroups, a host should not renove
invalid newsgroups fromthe list. |Instead, the invalid newsgroups
shoul d be ignored. For exanple, suppose host A subscribes to the
classes btl.all and conp.all, and exchanges news nessages w th host
B, which subscribes to conp.all but not btl.all. Suppose A receives
a message with Newsgroups: conp. unix, btl.general.

This message is passed on to B because B receives conp.unix, but B
does not receive btl.general. A nust |eave the "Newsgroups" |ine
unchanged. If it were to renove btl.general, the edited header
could eventually re-enter the btl.all class, resulting in a nmessage
that is not shown to users subscribing to btl.general. Al so,
followups fromoutside btl.all would not be shown to such users.

4. Subj ect

The "Subject” line (formerly "Title") tells what the nmessage is
about. It should be suggestive enough of the contents of the
nessage to enabl e a reader to nake a decision whether to read the
nessage based on the subject alone. |f the nessage is subnmitted in
response to another nessage (e.g., is a followup) the default

subj ect should begin with the four characters "Re:", and the
"References" line is required. For follow ups, the use of the
"Summary" line is encouraged.

5. Message-ID

The "Message-ID' line gives the nessage a unique identifier. The
Message- I D nay not be reused during the lifetine of any previous
nessage with the sane Message-1D. (It is recommended that no
Message-1 D be reused for at |east two years.) Message-1D s have the
synt ax:

<string not containing blank or ">">
In order to conformto RFC-822, the Message-|D nust have the format:
<uni que@ ul | _domai n_nane>
where full _domain_nane is the full name of the host at which the
message entered the network, including a donain that host is in, and

unique is any string of printing ASCII characters, not including "<"
(left angle bracket), ">" (right angle bracket), or "@ (at sign).

Horton & Adans [Page 5]

RFC 1036 Standard for USENET Messages

Decenber 1987

For exanple, the unique part could be an integer representing a
sequence nunber for messages submitted to the network, or a short
string derived fromthe date and tinme the nmessage was created. For
exanple, a valid Message-1D for a nessage submitted from host ucbvax
in domain "Berkel ey. EDU' woul d be "<4123@cbvax. Ber kel ey. EDU>".
Programrers are urged not to nake assunptions about the content of
Message-1 D fields fromother hosts, but to treat them as unknown
character strings. It is not safe, for exanple, to assume that a
Message-1 D wi Il be under 14 characters, that it is unique in the
first 14 characters, nor that is does not contain a "/".

The angl e brackets are considered part of the Message-1D. Thus, in
references to the Message-1D, such as the ihave/ sendme and cancel
control nessages, the angle brackets are included. Wite space
characters (e.g., blank and tab) are not allowed in a Message-ID.
Slashes ("/") are strongly discouraged. All characters between the
angl e brackets nmust be printing ASCI| characters.

.6. Path

This line shows the path the nmessage took to reach the current
system When a systemforwards the nessage, it should add its own
nane to the list of systems in the "Path" line. The nanes nay be
separated by any punctuation character or characters (except "."
which is considered part of the hostnane). Thus, the follow ng are
valid entries:

cbosgd! mhuxj ! mhuxt

cbosgd, mhuxj, mhuxt

@bosgd. ATT. COM @rhuxj . ATT. COM @rhuxt . ATT. COM
t ekl abs, zehntel, sri-uni x@ca! decvax

(The latter path indicates a nessage that passed through decvax,
cca, sri-unix, zehntel, and teklabs, in that order.) Additional
nanes should be added fromthe left. For exanple, the nobst recently
added narme in the fourth exanple was teklabs. Letters, digits,
periods and hyphens are considered part of host nanes; other
punctuation, including blanks, are considered separators.

Normal Iy, the rightnost name will be the name of the originating
system However, it is also permssible to include an extra entry
on the right, which is the name of the sender. This is for upward
conmpatibility with ol der systens.

The "Path" line is not used for replies, and should not be taken as
a mailing address. It is intended to show the route the nessage
traveled to reach the local host. There are several uses for this
information. One is to nonitor USENET routing for perfornance

Horton & Adamns [Page 6]

20¢g abed z wnipuadwo)

RFC 1036

2.2.

Horton & Adans

Standard for USENET Messages Decenber 1987

reasons. Another is to establish a path to reach new hosts.

Per haps the nost inportant use is to cut down on redundant USENET
traffic by failing to forward a nessage to a host that is known to
have already received it. |In particular, when host A sends a
nessage to host B, the "Path" line includes A so that host B wll
not inmmedi ately send the nessage back to host A The nanme each host
uses to identify itself should be the sane as the name by which its
nei ghbors know it, in order to nmake this optim zation possible.

A host adds its own nanme to the front of a path when it receives a
nessage from another host. Thus, if a nessage with path "Al X Y!Z"
is passed fromhost Ato host B, Bwll add its own nanme to the path
when it receives the message fromA, e.g., "BIAIX Y Z". If B then
passes the nessage on to C, the nessage sent to Cwll contain the
path "BIAIXIY!'Z", and when C receives it, Cwll change it to
"CIBIA XY Z".

Speci al upward conpatibility note: Since the "Fronf', "Sender", and
"Reply-To" lines are in Internet format, and since many USENET hosts
do not yet have nmilers capable of understanding Internet format, it
woul d break the reply capability to conpletely sever the connection
bet ween the "Path" header and the reply function. It is recognized
that the path is not always a valid reply string in ol der

i npl erentations, and no requirenent to fix this problemis placed on
i npl erentations. However, the existing convention of placing the
host name and an "!" at the front of the path, and of starting the
path with the host nane, an "!", and the user nane, should be

mai nt ai ned when possi bl e.

Optional Headers

.1. Reply-To

This line has the sane format as "Froni. [|f present, mailed replies
to the author should be sent to the nane given here. O herw se,
replies are nailed to the name on the "Front line. (This does not
prevent additional copies frombeing sent to recipients naned by the
replier, or on "To" or "Cc" lines.) The full nane may be optionally
given, in parentheses, as in the "Fronm' |ine.

2. Sender

This field is present only if the submitter manually enters a "Front
line. It is intended to record the entity responsible for
subnmitting the message to the network. It should be verified by the

software at the subnitting host.

[Page 7]

RFC 1036

2.

Horton & Adans

. 2.

2.

Standard for USENET Messages Decenber 1987

For exanple, if John Smth is visiting CCA and wi shes to post a
message to the network, using friend Sarah Jones' account, the
nmessage might read:

From smith@cbvax. Berkel ey. EDU (John Smith)
Sender: jones@ca. COM (Sarah Jones)

If a gateway programenters a mail nessage into the network at host
uni x. SRI. COM the lines mght read:

From John. Doe@\. CS. CMJ. EDU
Sender: network@ni x. SRI . COM

The primary purpose of this field is to be able to track down
messages to determine how they were entered into the network. The
full name may be optionally given, in parentheses, as in the "Fron{
I'i ne.

3. Fol I omup-To

This line has the same format as "Newsgroups". |f present, follow
up nessages are to be posted to the newsgroup or newsgroups |isted
here. If this line is not present, followups are posted to the
newsgroup or newsgroups listed in the "Newsgroups" |ine.

If the keyword poster is present, follow up nmessages are not
permtted. The nessage should be mailed to the submitter of the
message via nail .

4. Expires
This line, if present, is in a legal USENET date fornmat. It
specifies a suggested expiration date for the nmessage. |f not

present, the local default expiration date is used. This field is
intended to be used to clean up nessages with a linmited useful ness,
or to keep inportant messages around for |onger than usual. For
exanpl e, a message announci ng an upcom ng semi nar could have an
expiration date the day after the sem nar, since the nessage is not
useful after the seminar is over. Since |local hosts have | ocal
policies for expiration of news (depending on avail abl e di sk space,
for instance), users are discouraged from providing expiration dates
for messages unless there is a natural expiration date associated
with the topic. System software should al nbst never provide a
default "Expires" line. Leave it out and allow |local policies to be
used unless there is a good reason not to.

[Page 8]

e0¢g abed z wnipuadwo)

RFC 1036 Standard for USENET Messages Decenber 1987

.5. References

This field lists the Message-1D s of any nmessages pronpting the
subm ssion of this message. It is required for all follow up
nessages, and forbi dden when a new subject is raised.

I npl ement ati ons should provide a followup command, which allows a
user to post a followup nmessage. This command shoul d generate a

"Subject” line which is the same as the original nmessage, except
that if the original subject does not begin with "Re:" or "re:", the
four characters "Re:" are inserted before the subject. If thereis
no "References" line on the original header, the "References" |ine
shoul d contain the Message-1D of the original message (including the
angl e brackets). |If the original nmessage does have a "References"
line, the foll ow up message shoul d have a "References" |ine
containing the text of the original "References" line, a blank, and

the Message-ID of the original nessage.

The purpose of the "References” header is to allow nessages to be
grouped into conversations by the user interface program This

al l ows conversations within a newsgroup to be kept together, and
potentially users mght shut off entire conversations w thout
unsubscribing to a newsgroup. User interfaces need not make use of
this header, but all automatically generated follow ups shoul d
generate the "References" line for the benefit of systens that do
use it, and manual ly generated fol |l owups (e.g., typed in well after
the original nmessage has been printed by the nachine) should be
encouraged to include themas well.

It is pernmissible to not include the entire previous "References"
line if it is too long. An attenpt should be made to include a
reasonabl e nunber of backwards references.

.6. Control

If a message contains a "Control" line, the message is a control
nessage. Control nessages are used for conmunication anong USENET
host machi nes, not to be read by users. Control nessages are
distributed by the same newsgroup nechani smas ordi nary nessages.
The body of the "Control" header line is the nessage to the host.

For upward conpatibility, nmessages that match the newsgroup pattern
"all.all.ctl" should also be interpreted as control nessages. If no
"“Control" header is present on such nessages, the subject is used as
the control nessage. However, nessages on newsgroups matching this
pattern do not conformto this standard.

Horton & Adans [Page 9]

RFC 1036 Standard for USENET Messages Decenber 1987

Al'so for upward conpatibility, if the first 4 characters of the
"Subject:" line are "cnsg", the rest of the "Subject:" line should
be interpreted as a control nessage.

.7. Distribution

This line is used to alter the distribution scope of the nessage.

It is a comm separated list simlar to the "Newsgroups" line. User
subscriptions are still controlled by "Newsgroups", but the nessage
is sent to all systens subscribing to the newsgroups on the
"Distribution” line in addition to the "Newsgroups" line. For the
message to be transmtted, the receiving site nmust normally receive
one of the specified newsgroups AND nust receive one of the
specified distributions. Thus, a nessage concerning a car for sale
in New Jersey might have headers including:

Newsgroups: rec.auto, m sc.forsale
Di stribution: nj,ny

so that it would only go to persons subscribing to rec.auto or misc.
for sale within New Jersey or New York. The intent of this header
is torestrict the distribution of a newsgroup further, not to
increase it. A local newsgroup, such as nj.crazy-eddie, wll
probably not be propagated by hosts outside New Jersey that do not
show such a newsgroup as valid. A follow up nessage shoul d defaul t
to the same "Distribution" line as the original nessage, but the
user can change it to a nore limted one, or escalate the
distribution if it was originally restricted and a nore w dely
distributed reply is appropriate.

.8. Organization

The text of this line is a short phrase describing the organization
to which the sender belongs, or to which the nmachine belongs. The
intent of this line is to help identify the person posting the
nmessage, since host nanes are often cryptic enough to make it hard
to recogni ze the organi zation by the el ectronic address.

.9. Keywords

A few wel | -sel ected keywords identifying the nessage should be on
this line. This is used as an aid in determining if this nessage is
interesting to the reader.

.10. Summary

This line should contain a brief summary of the nessage. It is
usual |y used as part of a followup to another message. Again, it

Horton & Adams [Page 10]

¥0¢ abed ¢z wnipuadwo)

2.2.

2.2.

2.2.

1036 Standard for USENET Messages Decenber 1987

is very useful to the reader in determ ning whether to read the
message.

11. Approved

This line is required for any nmessage posted to a noderated
newsgroup. It should be added by the noderator and consist of his
mail address. It is also required with certain control nessages.

12. Lines

This contains a count of the nunber of lines in the body of the
nessage.

13. Xref

This line contains the name of the host (with donains omtted) and a
white space separated |ist of colon-separated pairs of newsgroup
nanes and nessage nunbers. These are the newsgroups listed in the
"Newsgroups" line and the correspondi ng message nunbers fromthe
spool directory.

This is only of value to the |ocal system so it should not be
transmtted. For exanple, in:

Path: seismo!lll-crg!'lll-lcc!pyramd!decwl!reid
From reid@ecw | .DEC. COM (Bri an Reid)

Newsgr oups: news.|lists, news. groups

Subj ect: USENET READERSH P SUMVARY REPORT FOR SEP 86
Message- | D <5658@ecw | . DEC. COW>

Date: 1 Oct 86 11:26:15 GMI

Organi zation: DEC Western Research Laboratory

Li nes: 441

Approved: reid@ecw | .UUCP

Xref: seisnmd news.lists:461 news.groups: 6378

the "Xref" line shows that the nmessage is nmessage nunber 461 in the
newsgroup news.|lists, and nmessage nunber 6378 in the newsgroup
news. groups, on host seisnmp. This infornation may be used by
certain user interfaces.

Control Messages

This section lists the control nmessages currently defined. The body
of the "Control" header line is the control nmessage. Messages are a
sequence of zero or nore words, separated by white space (bl anks or
tabs). The first word is the nane of the control nessage, renaining
words are paraneters to the nessage. The renminder of the header

Horton & Adans [Page 11]

RFC 1036 Standard for USENET Messages

3. 2.

Decenber 1987

and the body of the nessage are al so potential paraneters; for
exanple, the "Fronm line mght suggest an address to which a
response is to be mailed.

I mpl ementors and admini strators may choose to allow control nessages
to be carried out automatically, or to queue them for annual
processing. However, nanually processed nessages shoul d be deal t
with pronptly.

Fail ed control nessages should NOT be mailed to the originator of
the nessage, but to the local "usenet" account.

Cancel

cancel <Message-|D>

If a message with the given Message-1D is present on the |ocal
system the message is cancelled. This mechanismallows a user to
cancel a nmessage after the nessage has been distributed over the
net wor k.

If the systemis unable to cancel the nessage as requested, it
shoul d not forward the cancellation request to its neighbor systens.

Only the author of the nessage or the |ocal news adm nistrator is
allowed to send this nmessage. The verified sender of a nmessage is
the "Sender" line, or if no "Sender" line is present, the "Froni
line. The verified sender of the cancel nessage nust be the sanme as
either the "Sender" or "Froml field of the original nessage. A
verified sender in the cancel nessage is allowed to match an
unverified "Fron in the original nmessage.

I have/ Sendne

i have <Message-ID |ist> [<renptesys>]
sendne <Message-ID |ist> [<renptesys>]

This nessage is part of the ihave/sendme protocol, which allows one
host (say A) to tell another host (B) that a particular nmessage has
been received on A Suppose that host A receives nessage
"<1234@icbvax. Ber kel ey. edu>", and wi shes to transnit the nessage to
host B.

A sends the control message "ihave <1234@icbvax. Ber kel ey. edu> A" to
host B (by posting it to newsgroup to.B). B responds with the

control nessage "sendne <l1234@icbvax. Berkel ey. edu> B" (on newsgroup
to.A), if it has not already received the nmessage. Upon receiving

Horton & Adams [Page 12]

Gog abed z wnipuadwo)

RFC 1036 Standard for USENET Messages Decenber 1987 RFC 1036 Standard for USENET Messages Decenber 1987
the sendnme message, A sends the nessage to B. 3.5. Sendsys
sendsys (no argunents)
This protocol can be used to cut down on redundant traffic between
hosts. It is optional and should be used only if the particular The sys file, listing all neighbors and the newsgroups to be sent to
situation makes it worthwhile. Frequently, the outcone is that, each neighbor, will be nailed to the author of the control message
since nost original messages are short, and since there is a high ("Reply-To", if present, otherwise "Fron'). This information is

overhead to start sending a new nessage with UUCP, it costs as nuch
to send the ihave as it would cost to send the nessage itself.

One possible solution to this overhead problemis to batch requests.
Several Message-1D s may be announced or requested in one nessage.
If no Message-1D s are listed in the control nessage, the body of
the nmessage shoul d be scanned for Message-ID s, one per line.

considered public information, and it is a requirenment of menbership
in USENET that this information be provided on request, either
automatically in response to this control nessage, or nmnually, by
mai ling the requested information to the author of the nessage.

This information is used to keep the map of USENET up to date, and
to determi ne where netnews is sent.

The format of the file mailed back to the author should be the sane

3.3 Newgr oup as that of the sys file. This format has one |ine per neighboring
host (plus one line for the local host), containing four colon
newgr oup <groupname> [noder at ed] separated fields. The first field has the host name of the
nei ghbor, the second field has a newsgroup pattern describing the
This control nessage creates a new newsgroup with the given nane. newsgroups sent to the neighbor. The third and fourth fields are
Since no nessages may be posted or forwarded until a newsgroup is not defined by this standard. The sys file is not the sane as the
created, this nessage is required before a newsgroup can be used. UUCP L.sys file. A sanple response is:
The body of the nessage is expected to be a short paragraph
descri bing the intended use of the newsgroup. From cbosgd! mark (Mark Horton)
Date: Sun, 27 Mar 83 20:39:37 -0500
If the second argunent is present and it is the keyword noderated, Subj ect: response to your sendsys request
the group should be created noderated instead of the default of To: mark@bosgd. ATT. COM
unnoder ated. The newgroup nessage should be ignored unless there is
an "Approved" line in the same nessage header. Respondi ng- Syst em cbosgd. ATT. COM
chosgd: osg, cb, btl, bel | , worl d, conp, sci, rec, tal k, m sc, news, soc, to,
3.4. Rngroup test

rngroup <gr oupname>

Thi s message renpves a newsgroup with the given nane. Since the
newsgroup is renoved fromevery host on the network, this comand
shoul d be used carefully by a responsible adm nistrator. The
rngroup nessage should be ignored unless there is an "Approved:"
line in the same message header.

ucbvax: wor | d, conp, t 0. ucbvax: L:
cbosg: worl d, conp, bel I, btl, cb, 0osg, to. cbosg: F: / usr/ spool / out news
/ cbosg
cbosgb: 0sg, t 0. cbosgb: F: / usr/ spool / out news/ cbosgb
sescent:worl d, conp, bel |, btl, cb,to.sescent:F:/usr/spool /out news
/ sescent
npoi s: wor | d, conp, bel |, btl, ug, to. npoi s: F:/usr/ spool / out news/ npoi s
mhuxi : wor | d, conp, bel |, btl, ug, to. mhuxi : F: / usr/ spool / out news/ nhuxi

Ver si on
version (no argunents)
The nanme and version of the software running on the |ocal systemis

to be mailed back to the author of the nmessage ("Reply-to" if
present, otherw se "Front).

3.7. Checkgroups

Horton & Adans [Page 13] Horton & Adans [Page 14]

90¢ abed z wnipuadwo)

RFC 1036 St andard for USENET Messages

Decenber 1987

The message body is a list of "official" newsgroups and their
description, one group per line. They are conpared against the |ist
of active newsgroups on the current host. The names of any obsolete
or new newsgroups are nuiled to the user "usenet" and descriptions
of the new newsgroups are added to the help file used when posting
news.

Transmi ssi on Met hods

USENET is not a physical network, but rather a |ogical network
resting on top of several existing physical networks. These
networks include, but are not limted to, UUCP, the Internet, an

Et hernet, the BLICN network, an NSC Hyperchannel, and a BERKNET.
What is inportant is that two neighboring systens on USENET have
sone nethod to get a new nessage, in the format listed here, from
one systemto the other, and once on the receiving system processed
by the netnews software on that system (On UNI X systens, this
usual |y nmeans the rnews program being run with the nessage on the
standard input. <1>)

It is not a requirenent that USENET hosts have mail systens capabl e
of understanding the Internet mail syntax, but it is strongly
recommended. Since "Front, "Reply-To", and "Sender" |ines use the
Internet syntax, replies will be difficult or inpossible without an
Internet mailer. A host without an Internet mailer can attenpt to
use the "Path" header line for replies, but this field is not
guaranteed to be a working path for replies. In any event, any host
generating or forwardi ng news nmessages nust have an |Internet address
that allows themto receive mail fromhosts with Internet mailers,
and they must include their Internet address on their Fromline.

Rerot e Executi on
Sone networks permt direct renmote command execution. On these
networ ks, news may be forwarded by spooling the rnews command with
the message on the standard input. For exanple, if the renote
systemis called renpte, news would be sent over a UUCP |ink
with the command:

uux - renote!rnews

and on a Berknet:

net -nrenote rnews

Horton & Adans [Page 15]

RFC 1036 Standard for USENET Messages

Decenber 1987

It is inportant that the message be sent via a reliable nechanism
nornmal Iy involving the possibility of spooling, rather than direct
real -time renpte execution. This is because, if the renpte system
is down, a direct execution command will fail, and the message wl|l
never be delivered. |If the message is spooled, it will eventually
be delivered when both systens are up.

Transfer by Mail
On sone systens, direct renote spool ed execution is not possible.
However, npbst systens support electronic mail, and a news nessage
can be sent as mail. One approach is to send a mail nessage which

is identical to the news nessage: the nail headers are the news
headers, and the mail body is the news body. By convention, this
mail is sent to the user newsmail on the renote machine.

One problemw th this nethod is that it nmay not be possible to
convince the mail systemthat the "From' |ine of the nessage is
valid, since the nail nmessage was generated by a programon a
systemdifferent fromthe source of the news message. Another
problemis that error nessages caused by the mail transm ssion
woul d be sent to the originator of the news nessage, who has no
control over news transnmi ssion between two cooperating hosts
and does not know whomto contact. Transm ssion error nessages
shoul d be directed to a responsible contact person on the

sendi ng machi ne.

A solution to this problemis to encapsul ate the news nessage into a
mai | message, such that the entire nessage (headers and body) are
part of the body of the nmil nessage. The convention here is that
such nail is sent to user rnews on the rempte system A mail
message body is generated by prepending the letter Nto each line of
the news nessage, and then attaching whatever nmil headers are
convenient to generate. The N s are attached to prevent any special
lines in the news nmessage frominterfering with mail transm ssion,
and to prevent any extra lines inserted by the nailer (headers,

bl ank lines, etc.) frombecom ng part of the news nessage. A
program on the receiving machine receives nmail to rnews, extracting
the message itself and invoking the rnews program An exanple in
this format mght | ook like this:

Horton & Adams [Page 16]

,0¢€ abed z wnipuadwo)

RFC 1036 St andard for USENET Messages

Decenber 1987

Date: Mon, 3 Jan 83 08:33:47 MST
From news@bosgd. ATT. COM

Subj ect: network news nessage
To: rnews@poi s. ATT. COM

NPat h: cbosgd! mhuxj ! har po! ut ah- cs! sask! der ek
NFrom derek@ask. UUCP (Der ek Andrew)

NNewsgr oups: misc.test

NSubj ect: necessary test

NMessage- |1 D. <176@ask. UUCP>

NDat e: Mbn, 3 Jan 83 00:59: 15 MST

N

NThis really is a test. |If anyone out there nore than 6
Nhops away woul d kindly confirmthis note | would
Nappreciate it. W suspect that our news postings
Nare not getting out into the world.

N

Using mai |l solves the spooling problem since mail nust always be
spool ed if the destination host is down. However, it adds nore
overhead to the transm ssion process (to encapsul ate and extract the
nessage) and mekes it harder for software to give different
priorities to news and mail.

4.3 Bat chi ng
Since news nessages are usually short, and since a | arge nunber of
messages are often sent between two hosts in a day, it may nake
sense to batch news nessages. Several nessages can be conbined into
one | arge nessage, using conventions agreed upon in advance by the
two hosts. One such batching schene is described here; its use is
hi ghly recommended.
News nmessages are conbined into a script, separated by a header of
the form

#! rnews 1234

where 1234 is the length of the nmessage in bytes. Each such line is
followed by a message containing the given nunber of bytes. (The
new i ne at the end of each line of the nessage is counted as one
byte, for purposes of this count, even if it is stored as <CARRI AGE
RETURN><LI NE FEED>.) For exanple, a batch of nmessage m ght | ook
l'ike this:

Horton & Adans [Page 17]

RFC 1036 Standard for USENET Messages

Decenber 1987

#! rnews 239

From jerry@agle. ATT. COM (Jerry Schwar z)
Pat h: cbosgd! mhuxj ! mhuxt!eagle!jerry
Newsgr oups: news. announce

Subj ect: Usenet Etiquette -- Please Read
Message- | D. <642@agl e. ATT. COW>

Date: Fri, 19 Nov 82 16:14:55 EST
Approved: nmark@bosgd. ATT. COM

Here is an inportant nessage about USENET Etiquette.
#! rnews 234

From jerry@agle. ATT. COM (Jerry Schwar z)

Pat h: cbosgd! mhuxj ! mhuxt!eagle!jerry

Newsgr oups: news. announce

Subj ect: Notes on Etiquette nessage

Message- | D: <643@agl e. ATT. COW>

Date: Fri, 19 Nov 82 17:24:12 EST

Approved: mar k@bosgd. ATT. COM

There was sonmething | forgot to nention in the |ast
nmessage.

Bat ched news is recognized because the first character in the
nessage is #. The nessage is then passed to the unbatcher for
interpretation.

The second argunment (in this exanple rnews) deternines which
bat chi ng schene is being used. Cooperating hosts may use whatever
schene is appropriate for them

The News Propagation Al gorithm

This section describes the overall schene of USENET and the
al gorithm foll owed by hosts in propagating news to the entire
logical network. Since all hosts are affected by incorrectly
formatted nessages and by propagation errors, it is inportant
for the nethod to be standardized.

USENET is a directed graph. Each node in the graph is a host
conputer, and each arc in the graph is a transm ssion path from
one host to another host. Each arc is |labeled with a newsgroup
pattern, specifying which newsgroup classes are forwarded al ong
that link. Mst arcs are bidirectional, that is, if host A
sends a cl ass of newsgroups to host B, then host B usually sends
the same cl ass of newsgroups to host A This bidirectionality
is not, however, required.

USENET is nade up of many subnetworks. Each subnet has a nane, such

Horton & Adams [Page 18]

80¢ abed gz wnipuadwo)d

RFC 1036 Standard for USENET Messages Decenber 1987

as conp or btl. Each subnet is a connected graph, that is, a path
exists fromevery node to every other node in the subnet. In
addition, the entire graph is (theoretically) connected. (In
practice, sone political considerations have caused sonme hosts to be
unabl e to post nessages reaching the rest of the network.)

A nmessage is posted on one nmachine to a |list of newsgroups. That
machi ne accepts it locally, then forwards it to all its neighbors
that are interested in at |east one of the newsgroups of the
message. (Site A deens host B to be "interested" in a newsgroup if
the newsgroup matches the pattern on the arc fromA to B. This
pattern is stored in a file on the A nachine.) The hosts receiving
the incom ng message examne it to nake sure they really want the
message, accept it locally, and then in turn forward the nessage to
all their interested neighbors. This process continues until the
entire network has seen the nessage.

An inportant part of the algorithmis the prevention of l|oops. The
above process woul d cause a nmessage to |loop along a cycle forever.
In particular, when host A sends a nmessage to host B, host B wll
send it back to host A which will send it to host B, and so on.
One solution to this is the history mechanism Each host keeps
track of all messages it has seen (by their Message-1D) and
whenever a nessage cones in that it has already seen, the incomng
message i s discarded i nmediately. This solution is sufficient to
prevent | oops, but additional optimzations can be nade to avoid
sendi ng nessages to hosts that will sinply throw them away.

One optimzation is that a nessage should never be sent to a machine
listed in the "Path" line of the header. When a machine nane is

in the "Path" line, the nessage is known to have passed through the
machi ne. Another optimization is that, if the nmessage origi nated
on host A, then host A has already seen the nessage. Thus, if a
message is posted to newsgroup msc.misc, it will match the pattern
msc.all (where all is a netasynbol that natches any string), and
will be forwarded to all hosts that subscribe to misc.all (as
determ ned by what their neighbors send thenm). These hosts nake up
the m sc subnetwork. A nessage posted to btl.general will reach all
hosts receiving btl.all, but will not reach hosts that do not get
btl.all. 1In effect, the nmessages reaches the btl subnetwork. A
messages posted to newsgroups msc.msc,btl.general will reach all
hosts subscribing to either of the two classes.

Not es

<1> UNIX is a registered trademark of AT&T.

Horton & Adans [Page 19]

60¢€ abed z wnipuadwo)

Net wor k Wor ki ng Group R Fi
Request for Comments: 2068 uc
Cat egory: Standards Track J.

J.

el ding
Irvine
Cettys
Mogul
DEC

H Frystyk
T. Berners-Lee
M T/ LCS

Januar

Hypertext Transfer Protocol -- HITP/1.1
Status of this Meno

Thi s docurment specifies an Internet standards track protocol

Internet comunity, and requests discussion and suggestions f
inprovenments. Please refer to the current edition of the "In
O ficial Protocol Standards" (STD 1) for the standardization
and status of this protocol. Distribution of this menp is un

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-|eve
protocol for distributed, collaborative, hypernedia informati
systens. It is a generic, stateless, object-oriented protocol
can be used for many tasks, such as nane servers and distribu

y 1997

for the
or

t er net
state
limted.

|

on

whi ch
ted

obj ect managenent systens, through extension of its request nethods.

A feature of HTTP is the typing and negotiation of data
representation, allowi ng systenms to be built independently of
data being transferred.

HTTP has been in use by the Wirld-Wde Wb gl obal infornation
initiative since 1990. This specification defines the protoco
referred to as "HTTP/ 1. 1".

Tabl e of Contents

1 INtroduCti ON. . ..ot 7
1.1 PUMPOSE ottt 7
1.2 ReqQUI FTEMBNES oot e 7
1.3 Termnol ogy 8
1.4 Overall Operation 11

2 Notational Conventions and Generic Gamar.............. 13
2.1 Augnented BNF 13
2.2 BasiC RUl @S 15

3 Protocol Parameters..............iiiiiii 17
3.1 HTTP VersSi ON ..ot e e e e 17

Fielding, et. al. St andar ds Track

t he

[Page 1]

RFC 2068 HTTP/ 1.1

3.2 Uniform Resource ldentifiers 18
3.2.1 General Syntaxiiiii 18
3.2.2 http URL .. 19
3.2.3 URI ConpariSONouiiiiiiiiinninann e 20

3.3 Date/Time Formats ...t 21
3.3.1 Full Date 21
3.83.2 Delta Secondscuiiiiiiii 22

3.4 Character Setsttt 22

3.5 Content Codi NGS . ..o vt 23

3.6 Transfer Codings 24

3.7 Medi@ TYPES ittt 25
3.7.1 Canonicalization and Text Defaults 26
3.7.2 Multipart TYpeSt 27

3.8 Product Tokens 28

3.9 Quality Values 28

3.10 Language TagS . ..ot vttt e 28

3,11 Entity TagsS . .vvvi it 29

3.12 Range Units ... 30

4 HTTP MBSSa0E. . . o it ittt e e e e e 30

4.1 MESSAGE TYPES vt ittt et 30

4.2 Message Headers it 31

4.3 Message Body 32

4.4 Message Length 32

4.5 General Header Fields 34

5 REQUEST . . .o 34

5.1 Request-Line 34
5.1.1 Method 35
5.1.2 Request-URl 35

5.2 The Resource Identified by a Request 37

5.3 Request Header Fields 37

B RESPONSE. . o ittt 38

6.1 Status-Line 38
6.1.1 Status Code and Reason Phrase 39

6.2 Response Header Fields 41

T BNt ity e 41

7.1 Entity Header Fields 41

7.2 ENtity BOAY ot 42
7.2, L TYPe o 42
T.2.2 Length .. 43

8 CONNECLI ONS. ..ottt 43

8.1 Persistent Connectionsouiiun... 43
8. 1.1 PUrPOSE ..\ 43
8.1.2 Overall Operation, 44
8.1.3 ProXy Serversoiiiii i, 45
8.1.4 Practical Considerations 45

8.2 Message Transmission Requirements 46

9 Method Definitions............. i, 48

9.1 Safe and Idenpotent Methods 48

Fielding, et. al. St andar ds Track

January 1997

[Page 2]

0TE abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997
9.1.1 Safe Methods 48
9.1.2 Idenpotent Methods 49

9.2 OPTIONS .. 49
9.8 GET oo 50
9.4 HEAD . ..o 50
9.5 POST . 51
9.6 PUT L. 52
9.7 DELETE ..ot 53
9.8 TRACE . .ot 53
10 Status Code Definitions........ ..., 53
10.1 Informational IXXii 54
10.1.1 100 CoNtinNUE .. ov ettt e e 54
10.1.2 101 Switching Protocols 54
10.2 Successful 2XX ... 54
10.2.1 200 OK ..ttt 54
10.2.2 201 Createdt 55
10.2.3 202 Accepted 55
10.2.4 203 Non-Authoritative Information 55
10.2.5 204 No Content i 55
10.2.6 205 Reset Contentuiininnnennnn. 56
10.2.7 206 Partial Content uiiiinnnn. 56
10.3 Redi reCti ON 3BXX vttt ettt 56
10.3.1 300 Multiple Choicesc.. .. 57
10.3.2 301 Moved Permanently 57
10.3.3 302 Moved Tenporarily i 58
10.3.4 303 See X her 58
10.3.5 304 Not Modified 58
10.3.6 305 USE ProXy ...t 59
10.4 Adient Error 4XX ... 59
10.4.1 400 Bad Requestt 60
10.4.2 401 Unauthorized 60
10.4.3 402 Payment Required 60
10.4.4 403 Forbidden i 60
10.4.5 404 Not Foundt 60
10.4.6 405 Method Not Allowed 61
10.4.7 406 Not Acceptable i 61
10. 4.8 407 Proxy Authentication Required 61
10.4.9 408 Request TiMBOULoiiiiiiunanniinnnn 62
10.4.10 409 Conflict i 62
10.4.11 410 GONE ..ottt et 62
10.4.12 411 Length Required 63
10.4.13 412 Precondition Failed 63
10. 4. 14 413 Request Entity Too Large 63
10.4.15 414 Request-URl Too Long 63
10.4.16 415 Unsupported Media Typeoooiiio... 63
10.5 Server Error 5XX ... 64
10.5.1 500 Internal Server Error 64
10.5.2 501 Not Inplemented 64
Fielding, et. al. St andar ds Track [Page 3]

Fielding, et. al.

RFC 2068 HTTP/ 1.1

10.5.3 502 Bad GAtEWAY . ..ottt 64
10.5.4 503 Service Unavailable 64
10.5.5 504 Gateway Ti MBOUL ... o.vv it et 64
10.5.6 505 HTTP Version Not Supported 65
11 Access Authentication............... 65
11.1 Basic Authentication Schene 66
11.2 Digest Authentication Scheme 67
12 Content Negotiation........... ... 67
12.1 Server-driven Negotiation 68
12.2 Agent-driven Negotiation viuiuo.. 69
12.3 Transparent Negotiation 70
13 Caching in HITP. e 70
13.1.1 Cache Correctness, 72
13.1.2 VNI NS o oot teeeee 73
13.1.3 Cache-control Mechanisns 74
13.1.4 Explicit User Agent Vrnings 74
13.1.5 Exceptions to the Rules and Warnings 75
13.1.6 Cient-controlled Behavior 75
13.2 Expiration Mudel i 75
13.2.1 Server-Specified Expiration 75
13.2.2 Heuristic Expiration 76
13.2.3 Age Calculationsouuiiinanninnn 77
13.2.4 Expiration Calculations 79
13.2.5 Di sanbiguating Expiration Values 80
13.2.6 Disanbiguating Multiple Responses 80
13.3 Validation Mudel 81
13.3.1 Last-nodified Datesoiiiiiinn.nnn 82
13.3.2 Entity Tag Cache Validators 82
13.3.3 Weak and Strong Validators 82

13.3.4 Rules for Wen to Use Entity Tags and Last-
nodified Dates. 85
13.3.5 Non-validating Conditionals 86
13.4 Response Cachability 86
13.5 Constructing Responses From Caches 87
13.5.1 End-to-end and Hop-by-hop Headers 88
13.5.2 Non-nodi fiable Headers 88
13.5.3 Conmbining Headers 89
13.5.4 Conbining Byte Rangescoo .. 90
13.6 Caching Negotiated Responses 90
13.7 Shared and Non-Shared Caches 91
13.8 Errors or Inconplete Response Cache Behavior 91
13.9 Side Effects of GET and HEAD 92
13.10 Invalidation After Updates or Deletions 92
13.11 Wite-Through Mandatory iuo.. 93
13.12 Cache Replacementiiiiiinnaninnn. 93
13.13 History Lists ... 93
14 Header Field Definitions............ 94
14,1 ACCEPL oot 95

St andards Track

January 1997

[Page 4]

TTE abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

Fielding, et. al.

14.2 Accept-Charsetttt 97
14.3 Accept-Encoding i 97
14.4 Accept-Languageiiitiiii 98
14.5 Accept-Ranges i 99
14,6 AGE ..o 99
14.7 ALTOW .o 100
14.8 Authorizationt 100
14.9 Cache-Control i 101

14.9.1 What is Cachable 103

14.9.2 What May be Stored by Caches 103

14.9.3 Modifications of the Basic Expiration Mechani sm 104

14.9.4 Cache Revalidation and Rel oad Controls 105

14.9.5 No-TransformDirective 107

14.9.6 Cache Control Extensions 108
14.10 Connection 109
14.11 CoNtent-Basettt 109
14.12 Content-Encoding i 110
14.13 Content-Languageouiiiiiinnenninnn 110
14.14 Content-Length 111
14.15 Content-Locationt 112
14.16 Content-MD5 it 113
14.17 Content-RaNgettt 114
14.18 Content-TYPe ...t 116
14.19 DAt e ..ottt 116
14.20 ETAQ . oottt et e 117
14,21 EXPi TS ottt 117
14.22 From ... 118
14.23 HOSE oottt 119
14.24 If-Mdified-Since 119
14.25 [f-Match 121
14.26 If-None-Match 122
14.27 1f-RANGE . ..ttt 123
14.28 If-Unnodified-Since i, 124
14.29 Last-Modified ... 124
14.30 LOCAti ON ..ottt 125
14.31 Max-Forwardst 125
14.32 PragimBl . ..ottt e e 126
14.33 Proxy-Authenticate 127
14.34 Proxy-Authorization 127
14.35 Public 127
14.36 RANGE . . oottt 128

14.36.1 Byte RanNgest 128

14.36.2 Range Retrieval Requests 130
14.37 Referer 131
14.38 Retry-After ... 131
14.39 ServVer 132
14.40 Transfer-Encoding 132
14.41 Upgrade 132

St andards Track

January 1997

[Page 5]

Fielding, et. al.

RFC 2068 HTTP/ 1.1
14.42 User- Agent 134
14,43 Vary o 134
14,44 Vi@ ..o 135
14,45 VAF NI NG« 137
14.46 WAWW Authenticate 139
15 Security Considerations.............uuiiiiunanninnn 139
15.1 Authentication of Cients 139
15.2 O fering a Choice of Authentication Schemes 140
15. 3 Abuse of Server Log Information 141
15.4 Transfer of Sensitive Information 141
15.5 Attacks Based On File and Path Nanes 142
15.6 Personal Information 143
15.7 Privacy |ssues Connected to Accept Headers 143
15.8 DNS Spoofingoiii 144
15.9 Location Headers and Spoofing 144
16 Acknow edgments. 144
17 References. 146
18 Authors' Addresses............ ... 149
19 ApPendi CeS.t 150
19.1 Internet Media Type message/http 150
19.2 Internet Media Type nultipart/byteranges 150
19.3 Tolerant Applications 151
19.4 Differences Between HITP Entities and
MME Entities. i 152
19.4.1 Conversion to Canonical Form................... 152
19.4.2 Conversion of Date Formats 153
19.4.3 Introduction of Content-Encoding 153
19.4.4 No Content-Transfer-Encoding 153
19.4.5 HTTP Header Fields in Miltipart Body-Parts 153
19.4.6 Introduction of Transfer-Encoding 154
19.4.7 MME-VErsion ... 154
19.5 Changes fromHTTP/ 1.0 154
19.5.1 Changes to Sinplify Milti-homed Wb Servers and
Conserve [P Addresses 155
19.6 Additional Features 156
19.6.1 Additional Request Methods 156
19.6.2 Additional Header Field Definitions 156
19.7 Conpatibility with Previous Versions 160
19.7.1 Conpatibility with HTTP/ 1.0 Persi stent
CONNECE T ONS. . .ttt 161

St andards Track

January 1997

[Page 6]

Z21€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

1 Introduction

1.1 Purpose

The Hypertext Transfer Protocol (HTTP) is an application-I|evel
protocol for distributed, collaborative, hypernedia information
systens. HITP has been in use by the Wrld-Wde Wb gl obal
information initiative since 1990. The first version of HITP,
referred to as HTTP/0.9, was a sinple protocol for raw data transfer
across the Internet. HTTP/ 1.0, as defined by RFC 1945 [6], inproved
the protocol by allowi ng nmessages to be in the format of M ME-1ike
messages, containing nmetainformation about the data transferred and
nmodi fiers on the request/response semantics. However, HTTP/ 1.0 does
not sufficiently take into consideration the effects of hierarchical
proxi es, caching, the need for persistent connections, and virtual
hosts. In addition, the proliferation of inconpletely-inplenented
applications calling thensel ves "HTTP/ 1. 0" has necessitated a
protocol version change in order for two conmunicating applications
to determ ne each other's true capabilities.

This specification defines the protocol referred to as "HTTP/1.1".
This protocol includes nore stringent requirenents than HTTP/1.0 in
order to ensure reliable inplenmentation of its features.

Practical information systens require nore functionality than sinple
retrieval, including search, front-end update, and annotation. HTTP
al l ows an open-ended set of methods that indicate the purpose of a
request. It builds on the discipline of reference provided by the
Uni f orm Resource ldentifier (URI) [3][20], as a location (URL) [4] or
name (URN) , for indicating the resource to which a nmethod is to be
applied. Messages are passed in a format simlar to that used by
Internet nail as defined by the Multipurpose Internet Mil Extensions
(M ME).

HTTP is al so used as a generic protocol for communication between
user agents and proxies/gateways to other Internet systens, including
those supported by the SMIP [16], NNTP [13], FTP [18], Gopher [2],
and WAIS [10] protocols. In this way, HTTP allows basic hypernedia
access to resources available fromdiverse applications.

1.2 Requirenents

This specification uses the sanme words as RFC 1123 [8] for defining
the significance of each particular requirenent. These words are:

MJST
This word or the adjective "required" neans that the itemis an
absol ute requirenent of the specification.

Fielding, et. al. St andar ds Track [Page 7]

RFC 2068 HTTP/ 1.1 January 1997

SHOULD
This word or the adjective "recommended"” neans that there may
exist valid reasons in particular circunmstances to ignore this
item but the full inplications should be understood and the case
carefully wei ghed before choosing a different course.

MAY
This word or the adjective "optional" means that this itemis
truly optional. One vendor may choose to include the item because
a particular marketplace requires it or because it enhances the
product, for exanple; another vendor may omit the sanme item

An inplementation is not conpliant if it fails to satisfy one or nore
of the MJUST requirenents for the protocols it inplenents. An
inplementation that satisfies all the MUST and all the SHOULD
requirenents for its protocols is said to be "unconditionally
conpliant”; one that satisfies all the MJST requirenents but not all
the SHOULD requirenments for its protocols is said to be
"conditionally conpliant."”

1.3 Term nol ogy

This specification uses a nunber of ternms to refer to the roles
pl ayed by participants in, and objects of, the HITP communi cati on.

connection
A transport layer virtual circuit established between two prograns
for the purpose of conmunication.

nmessage
The basic unit of HTTP communi cation, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmtted via the connection.

request
An HTTP request nessage, as defined in section 5.

response
An HTTP response nessage, as defined in section 6.

resource
A network data object or service that can be identified by a URI,
as defined in section 3.2. Resources may be available in miltiple
representations (e.g. nultiple | anguages, data formats, size,
resolutions) or vary in other ways.

Fielding, et. al. St andards Track [Page 8]

e1¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

entity
The information transferred as the payl oad of a request or
response. An entity consists of netainfornation in the form of
entity-header fields and content in the formof an entity-body, as
described in section 7.

representation
An entity included with a response that is subject to content
negotiation, as described in section 12. There may exist multiple
representations associated with a particular response status.

content negotiation
The nechani smfor selecting the appropriate representation when
servicing a request, as described in section 12. The
representation of entities in any response can be negoti ated
(including error responses).

vari ant
A resource may have one, or nore than one, representation(s)
associated with it at any given instant. Each of these
representations is terned a “variant.' Use of the term variant'
does not necessarily inply that the resource is subject to content
negoti ation.

client
A program that establishes connections for the purpose of sending
requests.

user agent

The client which initiates a request. These are often browsers,
editors, spiders (web-traversing robots), or other end user tools.

server
An application programthat accepts connections in order to
service requests by sending back responses. Any given program nmay
be capabl e of being both a client and a server; our use of these
terms refers only to the role being perfornmed by the programfor a
particul ar connection, rather than to the progranis capabilities
in general. Likew se, any server may act as an origin server,
proxy, gateway, or tunnel, swi tching behavior based on the nature
of each request.

origin server
The server on which a given resource resides or is to be created.

Fielding, et. al. St andar ds Track [Page 9]

RFC 2068 HTTP/ 1.1 January 1997

pr oxy
An internediary program which acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing themon, with
possible translation, to other servers. A proxy nust inplenent
both the client and server requirenments of this specification.

gat enay
A server which acts as an internediary for sone other server.
Unli ke a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is comrunicating with a gateway.

tunnel
An intermediary programwhich is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP communi cation, though the tunnel nay have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are closed.

cache
A programts |local store of response nessages and the subsystem
that controls its nessage storage, retrieval, and deletion. A
cache stores cachabl e responses in order to reduce the response
time and network bandw dth consunption on future, equivalent
requests. Any client or server may include a cache, though a cache
cannot be used by a server that is acting as a tunnel.

cachabl e
A response is cachable if a cache is allowed to store a copy of
the response nmessage for use in answering subsequent requests. The
rules for determining the cachability of HTTP responses are
defined in section 13. Even if a resource is cachable, there may
be additional constraints on whether a cache can use the cached
copy for a particular request

first-hand
A response is first-hand if it cones directly and w t hout
unnecessary delay fromthe origin server, perhaps via one or nore
proxies. A response is also first-hand if its validity has just
been checked directly with the origin server.

explicit expiration time
The tinme at which the origin server intends that an entity should
no | onger be returned by a cache w thout further validation.

Fielding, et. al. St andards Track [Page 10]

1€ abed g wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

heuristic expiration tine
An expiration time assigned by a cache when no explicit expiration
tine is avail abl e.

age
The age of a response is the time since it was sent by, or
successfully validated with, the origin server.

freshness lifetinme
The length of tinme between the generation of a response and its
expiration tine.

fresh
A response is fresh if its age has not yet exceeded its freshness
lifetinme.

stal e
A response is stale if its age has passed its freshness lifetine.

semantical ly transparent
A cache behaves in a "senantically transparent” manner, wth
respect to a particular response, when its use affects neither the
requesting client nor the origin server, except to inprove
performance. Wien a cache is senmantically transparent, the client
receives exactly the sane response (except for hop-by-hop headers)
that it would have received had its request been handled directly
by the origin server.

val i dat or
A protocol elenent (e.g., an entity tag or a Last-Mdified ting)
that is used to find out whether a cache entry is an equival ent
copy of an entity.

1.4 Overall Operation

The HTTP protocol is a request/response protocol. A client sends a
request to the server in the formof a request method, URl, and
protocol version, followed by a M ME-1ike nessage containing request
nodifiers, client information, and possible body content over a
connection with a server. The server responds with a status |ine,
including the nessage's protocol version and a success or error code,
followed by a M MeE-1i ke nmessage containing server information, entity
nmet ai nf ormati on, and possible entity-body content. The relationship
bet ween HTTP and M ME is described in appendi x 19. 4.

Fielding, et. al. St andar ds Track [Page 11]

RFC 2068 HTTP/ 1.1 January 1997

Most HTTP communication is initiated by a user agent and consists of
a request to be applied to a resource on sone origin server. In the
sinpl est case, this may be acconplished via a single connection (v)
bet ween the user agent (UA) and the origin server (O.

A nore conplicated situation occurs when one or nore internediaries
are present in the request/response chain. There are three comon
forns of intermediary: proxy, gateway, and tunnel. A proxy is a
forwardi ng agent, receiving requests for a URI in its absolute form
rewiting all or part of the message, and forwarding the reformatted
request toward the server identified by the URI. A gateway is a
recei ving agent, acting as a |layer above sone other server(s) and, if
necessary, translating the requests to the underlying server's
protocol. A tunnel acts as a relay point between two connections

wi t hout changi ng the nessages; tunnels are used when the

conmuni cati on needs to pass through an internediary (such as a
firewal) even when the intermediary cannot understand the contents
of the nessages.

The figure above shows three internediaries (A B, and C) between the
user agent and origin server. A request or response nessage that
travel s the whole chain will pass through four separate connections.
This distinction is inportant because some HTTP communi cati on options
may apply only to the connection with the nearest, non-tunnel

nei ghbor, only to the end-points of the chain, or to all connections
along the chain. Al though the diagramis linear, each participant
may be engaged in nmultiple, sinultaneous communications. For exanple,
B may be receiving requests frommany clients other than A and/or
forwardi ng requests to servers other than C, at the sane time that it
is handling A's request.

Any party to the communication which is not acting as a tunnel nmay
enpl oy an internal cache for handling requests. The effect of a cache
is that the request/response chain is shortened if one of the
participants along the chain has a cached response applicable to that
request. The following illustrates the resulting chain if B has a
cached copy of an earlier response fromO (via C for a request which
has not been cached by UA or A

Fielding, et. al. St andards Track [Page 12]

GTE abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

request chain ---------- > name = definition
UA ----- V=== A----- V----- B------C------0 The nane of a rule is sinply the nane itself (without any enclosing
<e-m----- response chain "<" and ">") and is separated fromits definition by the equal "="
character. Witespace is only significant in that indentation of

Not all responses are usefully cachable, and sonme requests nay continuation lines is used to indicate a rule definition that spans
contain nodifiers which place special requirenents on cache behavior. nore than one line. Certain basic rules are in uppercase, such as
HTTP requirenents for cache behavior and cachabl e responses are SP, LWS, HT, CRLF, DIG@T, ALPHA, etc. Angle brackets are used
defined in section 13. wi thin definitions whenever their presence will facilitate

di scerning the use of rule nanes.
In fact, there are a wide variety of architectures and configurations

of caches and proxies currently being experinmented with or depl oyed “literal"

across the Wrld Wde Web; these systens include national hierarchies Quotation marks surround literal text. Unless stated otherw se, the

of proxy caches to save transoceani c bandw dth, systens that text is case-insensitive.

broadcast or multicast cache entries, organizations that distribute

subsets of cached data via CD-ROM and so on. HTTP systens are used rulel | rule2

in corporate intranets over high-bandwidth Iinks, and for access via El ements separated by a bar ("|") are alternatives, e.g., "yes |

PDAs with [ow power radio links and internmittent connectivity. The no" wll accept yes or no.

goal of HTTP/1.1 is to support the wide diversity of configurations

al ready depl oyed while introducing protocol constructs that neet the (rulel rule2)

needs of those who build web applications that require high El ements enclosed in parentheses are treated as a single elenent.

reliability and, failing that, at |east reliable indications of Thus, "(elem (foo | bar) elem" allows the token sequences "elem

failure. foo elent and "el em bar el ent'.

HTTP communi cati on usual ly takes place over TCP/IP connections. The *rule

default port is TCP 80, but other ports can be used. This does not The character "*" preceding an el enent indicates repetition. The

preclude HTTP from being i npl enented on top of any other protocol on full formis "<n>*<npel enent” indicating at |east <n> and at nost

the Internet, or on other networks. HTTP only presunes a reliable <nm> occurrences of elenent. Default values are 0 and infinity so

transport; any protocol that provides such guarantees can be used; that "*(element)" allows any nunber, including zero; "1*el ement"

the mapping of the HTTP/ 1.1 request and response structures onto the requires at |east one; and "1*2element” allows one or two.

transport data units of the protocol in question is outside the scope

of this specification. [rule]

Squar e brackets encl ose optional elenents; "[foo bar]" is

In HTTP/ 1.0, nost inplenmentations used a new connection for each equivalent to "*1(foo bar)".

request/response exchange. In HTTP/ 1.1, a connection may be used for

one or nore request/response exchanges, although connections may be N rule

closed for a variety of reasons (see section 8.1). Specific repetition: "<n>(elenment)" is equivalent to

"<n>*<n>(elenent)"; that is, exactly <n> occurrences of (elenent).

2 Notational Conventions and Generic G anmar Thus 2DIG T is a 2-digit nunber, and 3ALPHA is a string of three

al phabeti c characters.
2.1 Augnented BNF

#rule
Al'l of the mechanisns specified in this document are described in A construct "#" is defined, simlar to "*", for defining lists of
both prose and an augnented Backus-Naur Form (BNF) similar to that elenents. The full formis "<n>#<npel enent " indicating at |east
used by RFC 822 [9]. Inplenmenters will need to be familiar with the <n> and at npbst <m> el enents, each separated by one or nore conmmas
notation in order to understand this specification. The augnented BNF (",") and optional l|inear whitespace (LWS). This makes the usual
includes the follow ng constructs: formof lists very easy; a rule such as "(*LWS elenent *(*LWs ","

*LWS el ement)) " can be shown as "1#el ement". Wherever this
construct is used, null elenents are allowed, but do not contribute

Fielding, et. al. St andar ds Track [Page 13] Fielding, et. al. St andards Track [Page 14]

9T¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

to the count of elements present. That is, "(element), , (elenent)

" is permtted, but counts as only two elenents. Therefore, where
at | east one elenment is required, at |east one non-null elenent
must be present. Default values are 0 and infinity so that

"#el enent” allows any nunber, including zero; "1#elenent" requires

at | east one; and "1#2el ement" allows one or two.

; comment
A semi-col on, set off sone distance to the right of rule text,
starts a coment that continues to the end of line. This is a
sinmple way of including useful notes in parallel with the
speci fications.

inmplied *LWS
The grammar described by this specification is word-based. Except
where noted otherwi se, |inear whitespace (LWS) can be included

bet ween any two adj acent words (token or quoted-string), and
bet ween adj acent tokens and delinmiters (tspecials), wthout
changing the interpretation of a field. At least one deliniter
(tspecial s) nust exist between any two tokens, since they would
otherwi se be interpreted as a single token.

2.2 Basic Rules
The followi ng rules are used throughout this specification to

descri be basic parsing constructs. The US-ASCI| coded character set
is defined by ANSI X3.4-1986 [21].

COCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCI| character (octets 0 - 127)>
UPALPHA = <any US-ASCl| uppercase letter "A".."Z">
LOALPHA = <any US-ASCI| |owercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DAT = <any US-AsCl| digit "0".."9">
CTL = <any US-ASCI| control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCIl CR, carriage return (13)>
LF = <US-ASCI| LF, linefeed (10)>
SP = <US-ASCI| SP, space (32)>
HT = <US-ASCI| HT, horizontal-tab (9)>
<"> = <US-ASCI | doubl e-quote mark (34)>
Fielding, et. al. St andar ds Track [Page 15]

RFC 2068 HTTP/ 1.1 January 1997

HTTP/ 1.1 defines the sequence CR LF as the end-of-line marker for all
protocol elenents except the entity-body (see appendix 19.3 for

tol erant applications). The end-of-line marker within an entity-body
is defined by its associated nedia type, as described in section 3.7.

CRLF = CR LF

HTTP/ 1.1 headers can be folded onto multiple lines if the
continuation line begins with a space or horizontal tab. Al Iinear
white space, including folding, has the same senmantics as SP.

LS = [CRLF] 1*(SP | HT)

The TEXT rule is only used for descriptive field contents and val ues
that are not intended to be interpreted by the message parser. Wrds
of *TEXT may contain characters fromcharacter sets other than | SO
8859-1 [22] only when encoded according to the rules of RFC 1522
[14].

TEXT = <any OCTET except CILs,
but including LWs>

Hexadeci mal numeric characters are used in several protocol elenents.

HEX A | "B | "C' | "D | "E' | "F
| "a" | "b" | "c¢" | "d" | "e" | "f" | DQT
Many HTTP/ 1.1 header field values consist of words separated by LWS

or special characters. These special characters MJST be in a quoted
string to be used within a paraneter val ue.

t oken = 1*<any CHAR except CTLs or tspecial s>
tspecial s ="M @

I O N i

| n/u | n[u I] I ’) | =

"1 "y | SP| HT

Conments can be included in sone HTTP header fields by surrounding
the comment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition.
In all other fields, parentheses are considered part of the field
val ue.

coment
ct ext

"(" *(ctext | comment) ")"
<any TEXT excluding "(" and ")">

Fielding, et. al. St andar ds Track [Page 16]

RFC 2068 HTTP/ 1.1 January 1997

A string of text is parsed as a single word if it is quoted using
doubl e- quot e marks.

quoted-string = (<"> *(qdtext) <">)
qdt ext = <any TEXT except <">>

The backsl ash character ("\") may be used as a single-character quoting
mechani smonly w thin quoted-string and conment constructs.

quot ed- pai r = "\" CHAR
3 Protocol Paraneters
3.1 HTTP Version

HTTP uses a "<maj or>. <m nor>" nunbering scheme to indicate versions
of the protocol. The protocol versioning policy is intended to allow
the sender to indicate the format of a nmessage and its capacity for
under st andi ng further HTTP communication, rather than the features
obtai ned via that comrunication. No change is nade to the version
nunber for the addition of message conponents which do not affect
conmmuni cati on behavi or or which only add to extensible field val ues.
The <mi nor> nunber is increnented when the changes made to the
protocol add features which do not change the general nmessage parsing
al gorithm but which may add to the nessage semantics and inply

addi ti onal capabilities of the sender. The <nmmjor> nunber is
incremented when the fornmat of a nmessage within the protocol is
changed.

The version of an HTTP nessage is indicated by an HTTP-Version field
inthe first line of the nessage.

HTTP- Ver si on = "HITP" /" 1*DIGT "." 1*DIAT

Note that the major and minor nunmbers MJUST be treated as separate
integers and that each nay be increnmented higher than a single digit.
Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turnis

| ower than HTTP/12.3. Leading zeros MJST be ignored by recipients and
MUST NOT be sent.

LT€ abed z wnipuadwo)

Appl i cations sending Request or Response nessages, as defined by this
speci fication, MJST include an HTTP-Version of "HTTP/1.1". Use of
this version nunber indicates that the sending application is at

| east conditionally conpliant with this specification.

The HTTP version of an application is the highest HTTP version for
which the application is at |east conditionally conpliant.

Fielding, et. al. St andards Track [Page 17]

RFC 2068 HTTP/ 1.1 January 1997

Proxy and gateway applications nust be careful when forwarding
nessages in protocol versions different fromthat of the application.
Since the protocol version indicates the protocol capability of the
sender, a proxy/gateway MJST never send a nmessage with a version
indicator which is greater than its actual version; if a higher
version request is received, the proxy/gateway MJST either downgrade
the request version, respond with an error, or switch to tunnel
behavi or. Requests with a version |ower than that of the

proxy/ gateway's versi on MAY be upgraded before being forwarded; the
proxy/ gateway's response to that request MJST be in the same ngjor
version as the request.

Not e: Converting between versions of HTTP nay involve nodification
of header fields required or forbidden by the versions involved.

3.2 Uniform Resource Identifiers

URI's have been known by many nanmes: WAV addresses, Universal Docunent
Identifiers, Universal Resource Identifiers , and finally the

conbi nation of Uniform Resource Locators (URL) and Nanes (URN). As
far as HTTP is concerned, Uniform Resource ldentifiers are sinply
formatted strings which identify--via name, |ocation, or any other
characteristic--a resource.

3.2.1 General Syntax
URI's in HTTP can be represented in absolute formor relative to sone
known base URI, depending upon the context of their use. The two
forns are differentiated by the fact that absolute URI s al ways begin
with a schenme nane followed by a col on.
URI = (absoluteURl | relativeURl) ["#" fragnent]

absol ut eURI = scherme ":" *(uchar | reserved)

relativeURl net _path | abs_path | rel_path

net _path ="//" net_loc [abs_path]

abs_pat h ="/" rel_path

rel _path =[path] [";" parans] ["?" query]
path = fsegnment *("/" segnent)

f segnent = 1*pchar

segnent = *pchar

par anms = param *(";" param)

param = *(pchar | "/"

Fielding, et. al. St andar ds Track [Page 18]

8T¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

schene = 1*(C ALPHA | DIGT | "+" | "-"] ".")
net _| oc = *(pchar | ";" | "?")

query = *(uchar | reserved)

fragment = *(uchar | reserved)

pchar = uchar | ":" | "@ | "& | "= | "+
uchar = unreserved | escape

unr eser ved ALPHA | DIG T | safe | extra | national

escape = "% HEX HEX

reserved ="ttt e | &
extra N N I L G D I B

safe =gttt

unsaf e =S CTL | SP| <"> | "#" | "% | "<" | ">

nat i onal = <any OCTET excluding ALPHA, DIA T,

reserved, extra, safe, and unsafe>

For definitive information on URL syntax and semantics, see RFC 1738
[4] and RFC 1808 [11]. The BNF above includes national characters not
allowed in valid URLs as specified by RFC 1738, since HTTP servers
are not restricted in the set of unreserved characters allowed to
represent the rel _path part of addresses, and HITP proxi es nay
receive requests for URI's not defined by RFC 1738.

The HTTP protocol does not place any a priori limt on the length of
a URI. Servers MJST be able to handle the URI of any resource they
serve, and SHOULD be able to handle URI s of unbounded length if they
provi de GET-based fornms that coul d generate such URI's. A server
SHOULD return 414 (Request-URl Too Long) status if a URl is |onger
than the server can handl e (see section 10. 4. 15).

Not e: Servers should be cautious about depending on URl |engths
above 255 bytes, because sone older client or proxy inplenentations
may not properly support these |engths.
3.2.2 http URL
The "http" schene is used to | ocate network resources via the HTTP

protocol. This section defines the schene-specific syntax and
semantics for http URLs.

Fielding, et. al. St andar ds Track [Page 19]

RFC 2068 HTTP/ 1.1 January 1997
http_URL = "http:" "//" host [":" port] [abs_path]
host = <A legal Internet host domain name

or | P address (in dotted-deciml form,
as defined by Section 2.1 of RFC 1123>

port *DAT

If the port is enpty or not given, port 80 is assunmed. The semantics
are that the identified resource is located at the server |istening
for TCP connections on that port of that host, and the Request-URI
for the resource is abs_path. The use of |P addresses in URL's SHOULD
be avoi ded whenever possible (see RFC 1900 [24]). If the abs_path is
not present in the URL, it MJST be given as "/" when used as a
Request-URI for a resource (section 5.1.2).

3.2.3 URI Conparison
When conparing two URIs to decide if they match or not, a client
SHOULD use a case-sensitive octet-by-octet conparison of the entire
URI's, with these exceptions:

o A port that is enpty or not given is equivalent to the default
port for that URI;

o Conparisons of host names MJST be case-insensitive;
o Conparisons of schene names MJST be case-insensitive;
0 An enpty abs_path is equivalent to an abs_path of "/"

Characters other than those in the "reserved" and "unsafe" sets (see
section 3.2) are equivalent to their ""% HEX HEX" encodi ngs.

For exanple, the following three URIs are equivalent:
http://abc. com 80/ ~sm t h/ hone. ht ni

http://ABC. com %Esni t h/ hore. ht ni
http://ABC. com /% esm t h/ home. ht n

Fielding, et. al. St andar ds Track [Page 20]

RFC 2068 HTTP/ 1.1 January 1997

3.3 Date/ Time Formats
3.3.1 Full Date

HTTP applications have historically allowed three different formats
for the representation of date/tinme stanps:

Sun, 06 Nov 1994 08:49:37 GMI ; RFC 822, updated by RFC 1123
Sunday, 06- Nov-94 08:49:37 GMI ; RFC 850, obsol eted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctinme() format

The first format is preferred as an Internet standard and represents
a fixed-1ength subset of that defined by RFC 1123 (an update to RFC
822). The second format is in comon use, but is based on the

obsol ete RFC 850 [12] date format and | acks a four-digit year.

HTTP/ 1.1 clients and servers that parse the date val ue MJUST accept

all three formats (for conmpatibility with HITP/1.0), though they MJST
only generate the RFC 1123 format for representing HITP-date val ues
in header fields.

Not e: Reci pients of date values are encouraged to be robust in

accepting date values that may have been sent by non-HTTP
applications, as is sonmetimes the case when retrieving or posting
o
3 nmessages via proxi es/ gateways to SMIP or NNTP.
-8 Al HTTP date/time stamps MJUST be represented in G eenwich Mean Tine
=] (GMT), without exception. This is indicated in the first two formats
9—_ by the inclusion of "GMI" as the three-letter abbreviation for time
5 zone, and MJUST be assuned when reading the asctinme fornmat.
N HTTP- dat e = rfcll23-date | rfc850-date | asctine-date
g rfcl123-date = wkday "," SP datel SP tinme SP "GV
© rfc850-date = weekday "," SP date2 SP tine SP "GV
® asctinme-date = wkday SP date3 SP tine SP 4DIG T
w
= datel =2DIGT SP nonth SP 4DIG T
© day nonth year (e.g., 02 Jun 1982)
dat e2 =2DIGT "-" nonth "-" 2DIGT
; day-nont h-year (e.g., 02-Jun-82)
dat e3 =nmonth SP (2DIGT | (SP 1IDIGT))
; month day (e.g., Jun 2)
tine =2DIGT ":" 2DIGT ":" 2DIGA T
; 00:00:00 - 23:59:59
wkday = "Mn" | "Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"
Fielding, et. al. St andar ds Track [Page 21]

RFC 2068 HTTP/ 1.1 January 1997
weekday = "Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"
nont h = "Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun® | "Jul" | "Aug"
| "Sep" | "Oct" | "Nov" | "Dec"

Note: HTTP requirenents for the date/tine stanp format apply only
to their usage within the protocol stream Cients and servers are
not required to use these formats for user presentation, request

| oggi ng, etc.

3.3.2 Delta Seconds

Sonme HTTP header fields allow a tinme value to be specified as an
integer nunber of seconds, represented in decimal, after the tinme
that the message was received.

delta-seconds = 1*DIGT
3.4 Character Sets

HTTP uses the sanme definition of the term"character set" as that
described for MM

The term "character set" is used in this docunent to refer to a

net hod used with one or nore tables to convert a sequence of octets
into a sequence of characters. Note that unconditional conversion
in the other direction is not required, in that not all characters
may be available in a given character set and a character set may
provide nore than one sequence of octets to represent a particular
character. This definition is intended to allow various kinds of
character encodings, fromsinple single-table mappi ngs such as US-
ASCI| to conplex table sw tching nmethods such as those that use |1SO
2022' s techni ques. However, the definition associated with a MM
character set name MJUST fully specify the mapping to be perforned
fromoctets to characters. In particular, use of external profiling
information to determ ne the exact mapping is not permtted.

Note: This use of the term"character set" is nmobre comonly
referred to as a "character encoding." However, since HTTP and M ME
share the sane registry, it is inportant that the termnol ogy al so
be shared.

Fielding, et. al. St andards Track [Page 22]

0z¢g abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

HTTP character sets are identified by case-insensitive tokens. The Note: Use of program names for the identification of encoding
conpl ete set of tokens is defined by the | ANA Character Set registry formats is not desirable and should be di scouraged for future
[19]. encodi ngs. Their use here is representative of historical practice,
not good design. For conpatibility with previous inplenentations of
charset = token HTTP, applications shoul d consider "x-gzip" and "x-conpress" to be

equi val ent to "gzip" and "conpress" respectively.
Al though HTTP allows an arbitrary token to be used as a charset

val ue, any token that has a predefined value within the | ANA deflate The "zlib" format defined in RFC 1950[31] in conbination with
Character Set registry MIST represent the character set defined by the "defl ate" conpression nechani smdescribed in RFC 1951[29].
that registry. Applications SHOULD limt their use of character sets
to those defined by the | ANA registry. New cont ent - codi ng val ue tokens should be registered; to allow
interoperability between clients and servers, specifications of the
3.5 Content Codi ngs content coding algorithms needed to inplenment a new val ue shoul d be
publicly availabl e and adequate for independent inplenentation, and
Cont ent coding val ues indicate an encoding transformation that has conformto the purpose of content coding defined in this section.
been or can be applied to an entity. Content codings are prinarily
used to allow a docunent to be conpressed or otherw se usefully 3.6 Transfer Codings
transforned without losing the identity of its underlying nedia type
and without loss of infornation. Frequently, the entity is stored in Transfer coding values are used to indicate an encoding
coded form transmitted directly, and only decoded by the recipient. transformati on that has been, can be, or may need to be applied to an
entity-body in order to ensure "safe transport” through the network.
content-codi ng = token This differs froma content coding in that the transfer coding is a

property of the message, not of the original entity.
Al'l content-coding values are case-insensitive. HITP/ 1.1 uses

content-coding values in the Accept-Encoding (section 14.3) and transfer-codi ng = "chunked" | transfer-extension
Cont ent - Encodi ng (section 14.12) header fields. Although the val ue
descri bes the content-coding, what is nore inportant is that it transfer-extension = token
i ndi cat es what decodi ng nechanismw || be required to renove the
encodi ng. Al'l transfer-coding values are case-insensitive. HITP/1.1 uses
transfer coding values in the Transfer-Encoding header field (section
The Internet Assigned Nunmbers Authority (1 ANA) acts as a registry for 14. 40).
content-coding value tokens. Initially, the registry contains the
foll ow ng tokens: Transfer codings are anal ogous to the Content-Transfer-Encoding
values of MME , which were designed to enable safe transport of
gzi p An encoding format produced by the file conpression program "gzip" bi nary data over a 7-bit transport service. However, safe transport
(G\U zip) as described in RFC 1952 [25]. This format is a Lenpel - has a different focus for an 8bit-clean transfer protocol. In HTTP,
Ziv coding (LZ77) with a 32 bit CRC the only unsafe characteristic of nessage-bodies is the difficulty in
determ ning the exact body length (section 7.2.2), or the desire to
conpr ess encrypt data over a shared transport.
The encoding fornmat produced by the common UNI X file conpression
program "conpress”. This format is an adaptive Lenpel -Ziv-Wlch The chunked encoding nodifies the body of a nessage in order to
coding (LZW. transfer it as a series of chunks, each with its own size indicator,

followed by an optional footer containing entity-header fields. This
al | ows dynami cal | y-produced content to be transferred along with the
information necessary for the recipient to verify that it has
received the full nmessage.

Fielding, et. al. St andar ds Track [Page 23] Fielding, et. al. St andar ds Track [Page 24]

T2E abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

Chunked- Body = *chunk
"0" CRLF
f oot er
CRLF
chunk = chunk-si ze [chunk-ext] CRLF

chunk-data CRLF

hex- no- zero <HEX excl uding "0">

hex- no-zero *HEX

*(";" chunk-ext-nane ["=" chunk-ext-value])
t oken

token | quoted-string

chunk- si ze(OCTET)

chunk-si ze
chunk- ext
chunk- ext - name
chunk- ext - val
chunk-dat a

f oot er = *entity-header

The chunked encoding is ended by a zero-sized chunk foll owed by the
footer, which is termnated by an enpty line. The purpose of the
footer is to provide an efficient way to supply information about an
entity that is generated dynam cally; applications MJUST NOT send
header fields in the footer which are not explicitly defined as being
appropriate for the footer, such as Content-MD5 or future extensions
to HTTP for digital signatures or other facilities.

An exanpl e process for decoding a Chunked-Body is presented in
appendi x 19. 4. 6.

Al HTTP/ 1.1 applications MIST be able to receive and decode the
"chunked" transfer coding, and MJST ignore transfer coding extensions
they do not understand. A server which receives an entity-body with a
transfer-coding it does not understand SHOULD return 501

(Uni npl enented), and cl ose the connection. A server MJST NOT send
transfer-codings to an HTTP/ 1.0 client.

3.7 Media Types

HTTP uses Internet Media Types in the Content-Type (section 14.18)
and Accept (section 14.1) header fields in order to provide open and
extensi ble data typing and type negoti ation.

nedi a-type = type "/" subtype *(";" paraneter)
type = token
subt ype = token

Paranmeters may follow the type/subtype in the formof attribute/val ue
pairs.

Fielding, et. al. St andar ds Track [Page 25]

RFC 2068 HTTP/ 1.1 January 1997
par anet er = attribute "=" val ue
attribute = token
val ue = token | quoted-string

The type, subtype, and paraneter attribute nanes are case-
insensitive. Paranmeter values nay or may not be case-sensitive,
dependi ng on the semantics of the paranmeter nane. Linear white space
(LWB) MUST NOT be used between the type and subtype, nor between an
attribute and its value. User agents that recogni ze the nedia-type
MUST process (or arrange to be processed by any external applications
used to process that type/subtype by the user agent) the paraneters
for that M ME type as described by that type/subtype definition to
the and i nformthe user of any problens discovered.

Note: sonme ol der HTTP applications do not recognize nedia type
paraneters. Wien sending data to ol der HTTP applications,

inmpl enent ations should only use nedia type paraneters when they are
required by that type/subtype definition.

Medi a-type values are registered with the Internet Assigned Number
Authority (I ANA). The nedia type registration process is outlined in
RFC 2048 [17]. Use of non-registered nedia types is discouraged.

3.7.1 Canonicalization and Text Defaults

Internet nedia types are registered with a canonical form In
general, an entity-body transferred via HITP nessages MJST be
represented in the appropriate canonical formprior toits

transm ssion; the exception is "text" types, as defined in the next
par agr aph.

When in canonical form nmedia subtypes of the "text" type use CRLF as
the text line break. HTTP rel axes this requirement and allows the
transport of text media with plain CR or LF alone representing a line
break when it is done consistently for an entire entity-body. HTTP
appl i cations MUST accept CRLF, bare CR, and bare LF as being
representative of a line break in text nmedia received via HITP. In
addition, if the text is represented in a character set that does not
use octets 13 and 10 for CR and LF respectively, as is the case for
sonme nulti-byte character sets, HITP allows the use of whatever octet
sequences are defined by that character set to represent the

equi val ent of CR and LF for line breaks. This flexibility regarding
line breaks applies only to text nedia in the entity-body; a bare CR
or LF MUST NOT be substituted for CRLF within any of the HTTP control
structures (such as header fields and nultipart boundaries).

If an entity-body is encoded with a Content-Encoding, the underlying
data MJUST be in a formdefined above prior to being encoded.

Fielding, et. al. St andar ds Track [Page 26]

z2zs abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

The "charset" paraneter is used with sone nmedia types to define the
character set (section 3.4) of the data. Wen no explicit charset
paraneter is provided by the sender, nmedia subtypes of the "text"
type are defined to have a default charset value of "ISO 8859-1" when
received via HTTP. Data in character sets other than "I SO 8859-1" or
its subsets MJUST be | abeled with an appropriate charset val ue.

Sonme HTTP/ 1.0 software has interpreted a Content-Type header without
charset paraneter incorrectly to nean "recipient should guess."
Senders wi shing to defeat this behavior MAY include a charset

par anet er even when the charset is | SO 8859-1 and SHOULD do so when
it is known that it will not confuse the recipient.

Unfortunately, sonme older HTTP/1.0 clients did not deal properly with
an explicit charset parameter. HTTP/ 1.1 recipients MJST respect the
charset |abel provided by the sender; and those user agents that have
a provision to "guess" a charset MJUST use the charset fromthe
content-type field if they support that charset, rather than the
recipient's preference, when initially displaying a docunent.

3.7.2 Miultipart Types

M ME provides for a nunber of "nultipart" types -- encapsul ations of
one or nore entities within a single nmessage-body. Al nultipart
types share a commobn syntax, as defined in MME [7], and MJST
include a boundary paraneter as part of the nmedia type value. The
message body is itself a protocol el enment and MJST therefore use only
CRLF to represent |ine breaks between body-parts. Unlike in MME, the
epi l ogue of any nultipart message MJUST be enpty; HTTP applications
MUST NOT transmit the epilogue (even if the original multipart
contains an epil ogue).

I'n HTTP, nultipart body-parts MAY contain header fields which are
significant to the meaning of that part. A Content-Location header
field (section 14.15) SHOULD be included in the body-part of each
encl osed entity that can be identified by a URL.

I'n general, an HTTP user agent SHOULD follow the same or simlar
behavi or as a M ME user agent woul d upon receipt of a nmultipart type.
If an application receives an unrecogni zed nultipart subtype, the
application MJST treat it as being equivalent to "multipart/mxed".

Note: The "nultipart/formdata" type has been specifically defined
for carrying formdata suitable for processing via the POST request
met hod, as described in RFC 1867 [15].

Fielding, et. al. St andar ds Track [Page 27]

RFC 2068 HTTP/ 1.1 January 1997

3.8 Product Tokens

Product tokens are used to allow comunicating applications to
identify thensel ves by software name and version. Mst fields using
product tokens al so allow sub-products which forma significant part
of the application to be listed, separated by whitespace. By
convention, the products are listed in order of their significance
for identifying the application.

product
product - ver si on

= token ["/" product-version]
= token
Exanpl es:

User - Agent : CERN-Li neMbde/ 2. 15 | i bww/ 2. 17b3
Server: Apache/0.8.4

Product tokens should be short and to the point -- use of themfor
advertising or other non-essential information is explicitly
forbidden. Although any token character may appear in a product-
version, this token SHOULD only be used for a version identifier
(i.e., successive versions of the same product SHOULD only differ in
the product-version portion of the product val ue).

3.9 Qality Val ues

HTTP content negotiation (section 12) uses short "floating point"
nunbers to indicate the relative inportance ("weight") of various
negoti abl e paranmeters. A weight is nornalized to a real nunber in the
range O through 1, where O is the mininmumand 1 the maxi num val ue.
HTTP/ 1.1 applications MJUST NOT generate nore than three digits after
the deci mal point. User configuration of these values SHOULD al so be
limted in this fashion.

gval ue =("0" ["." 0*3DIGT])
| (2 [0t3(700))

"Quality values" is a misnoner, since these values nerely represent
rel ative degradation in desired quality.

3. 10 Language Tags

A | anguage tag identifies a natural |anguage spoken, witten, or

ot herwi se conveyed by human bei ngs for communication of information
to other human beings. Conputer |anguages are explicitly excluded.
HTTP uses | anguage tags wi thin the Accept-Language and Content -
Language fi el ds.

Fielding, et. al. St andards Track [Page 28]

eze abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

The syntax and registry of HTTP | anguage tags is the sane as that
defined by RFC 1766 [1]. In sunmmary, a |language tag i s conposed of 1
or nore parts: A primary |anguage tag and a possibly enpty series of

subt ags:
| anguage-tag = primary-tag *("-" subtag)
prinmary-tag = 1*8ALPHA
subt ag = 1*8ALPHA

Wi tespace is not allowed within the tag and all tags are case-
insensitive. The name space of |anguage tags is adm nistered by the
| ANA. Exanpl e tags include:

en, en-US, en-cockney, i-cherokee, x-pig-latin

where any two-letter primary-tag i s an | SO 639 | anguage abbreviation
and any two-letter initial subtag is an |1SO 3166 country code. (The
last three tags above are not registered tags; all but the last are
exanpl es of tags which could be registered in future.)

3.11 Entity Tags

Entity tags are used for conparing two or nore entities fromthe sanme
requested resource. HTTP/1.1 uses entity tags in the ETag (section
14.20), |f-Match (section 14.25), If-None-Match (section 14.26), and
I f-Range (section 14.27) header fields. The definition of how they
are used and conpared as cache validators is in section 13.3.3. An
entity tag consists of an opaque quoted string, possibly prefixed by
a weakness indicator.

entity-tag = [weak] opaque-tag
weak ="W"
opaque-tag = quoted-string

A "strong entity tag" may be shared by two entities of a resource
only if they are equivalent by octet equality.

A "weak entity tag," indicated by the "W" prefix, may be shared by
two entities of a resource only if the entities are equival ent and
coul d be substituted for each other with no significant change in
semantics. A weak entity tag can only be used for weak conparison.

An entity tag MJST be unique across all versions of all entities
associated with a particular resource. A given entity tag val ue nay
be used for entities obtained by requests on different URIs wi thout
i mpl yi ng anyt hi ng about the equival ence of those entities.

Fielding, et. al. St andar ds Track [Page 29]

RFC 2068 HTTP/ 1.1 January 1997

3.12 Range Units

HTTP/1.1 allows a client to request that only part (a range of) the
response entity be included within the response. HTTP/ 1.1 uses range
units in the Range (section 14.36) and Content-Range (section 14.17)
header fields. An entity may be broken down into subranges according
to various structural units.

range- uni t = bytes-unit | other-range-unit

byt es-uni t
ot her-range-unit

The only range unit defined by HTTP/1.1 is "bytes". HITP/ 1.1
inpl ementations may ignore ranges specified using other units.
HTTP/ 1.1 has been designed to allow inplenmentations of applications
that do not depend on know edge of ranges.

4 HTTP Message
4.1 Message Types

HTTP nmessages consi st of requests fromclient to server and responses
fromserver to client.

HTTP- message = Request | Response ; HTTP/ 1.1 nessages

Request (section 5) and Response (section 6) nessages use the generic
message format of RFC 822 [9] for transferring entities (the payl oad
of the nmessage). Both types of nmessage consist of a start-line, one
or nore header fields (also known as "headers"), an enpty line (i.e.,
a line with nothing preceding the CRLF) indicating the end of the
header fields, and an optional nessage-body.

generic-nmessage = start-line
*message- header
CRLF
[nessage- body]

start-line = Request-Line | Status-Line
In the interest of robustness, servers SHOULD i gnore any enpty
line(s) received where a Request-Line is expected. In other words, if

the server is reading the protocol streamat the beginning of a
message and receives a CRLF first, it should ignore the CRLF.

Fielding, et. al. St andards Track [Page 30]

yz¢ abed ¢z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

Note: certain buggy HTTP/ 1.0 client inplenentations generate an
extra CRLF's after a POST request. To restate what is explicitly
forbidden by the BNF, an HTTP/ 1.1 client nust not preface or follow
a request with an extra CRLF.

4.2 Message Headers

HTTP header fields, which include general-header (section 4.5),
request - header (section 5.3), response-header (section 6.2), and
entity-header (section 7.1) fields, follow the same generic format as
that given in Section 3.1 of RFC 822 [9]. Each header field consists
of a name followed by a colon (":") and the field value. Field nanes
are case-insensitive. The field value may be preceded by any anount
of LWS, though a single SP is preferred. Header fields can be
extended over nmultiple lines by preceding each extra line with at

| east one SP or HT. Applications SHOULD follow "comron forn when
generating HTTP constructs, since there mght exist sone
inplementations that fail to accept anything beyond the common forns.

nmessage- header = field-name ":" [field-value] CRLF

t oken
*(field-content | LWS)

fiel d-nane
field-val ue

field-content = <the OCTETs neking up the field-value
and consisting of either *TEXT or conbinations
of token, tspecials, and quoted-string>

The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
general -header fields first, followed by request-header or response-
header fields, and ending with the entity-header fields.

Mul ti pl e nessage- header fields with the same field-name nay be
present in a nessage if and only if the entire field-value for that
header field is defined as a comma-separated list [i.e., #(values)].
It MUST be possible to conbine the multiple header fields into one
"field-name: field-value" pair, without changing the semantics of the
nmessage, by appending each subsequent field-value to the first, each
separated by a comma. The order in which header fields with the sanme
field-name are received is therefore significant to the
interpretation of the conbined field value, and thus a proxy MJST NOT
change the order of these field val ues when a nessage is forwarded.

Fielding, et. al. St andar ds Track [Page 31]

RFC 2068 HTTP/ 1.1 January 1997

4.3 Message Body

The message-body (if any) of an HTTP nessage is used to carry the
entity-body associated with the request or response. The nmessage- body
differs fromthe entity-body only when a transfer coding has been
applied, as indicated by the Transfer-Encoding header field (section
14. 40) .

message- body = entity-body
| <entity-body encoded as per Transfer-Encodi ng>

Transfer-Encodi ng MJST be used to indicate any transfer codings
applied by an application to ensure safe and proper transfer of the
message. Transfer-Encoding is a property of the nmessage, not of the
entity, and thus can be added or renoved by any application along the
request/response chain.

The rules for when a nessage-body is allowed in a nessage differ for
requests and responses.

The presence of a nessage-body in a request is signaled by the
inclusion of a Content-Length or Transfer-Encoding header field in
the request's nessage- headers. A nessage-body MAY be included in a
request only when the request nethod (section 5.1.1) allows an
entity-body.

For response nessages, whether or not a nessage-body is included with
a message is dependent on both the request nethod and the response
status code (section 6.1.1). Al responses to the HEAD request nethod
MUST NOT include a nmessage-body, even though the presence of entity-
header fields mght |ead one to believe they do. Al 1xx
(informational), 204 (no content), and 304 (not nodified) responses
MUST NOT include a nmessage-body. All other responses do include a
message- body, although it nay be of zero Iength.

4.4 Message Length

When a nessage-body is included with a message, the length of that
body is determi ned by one of the following (in order of precedence):

1. Any response nmessage whi ch MUST NOT include a nessage-body
(such as the 1xx, 204, and 304 responses and any response to a HEAD
request) is always termnated by the first enpty line after the
header fields, regardless of the entity-header fields present in the
message.

2. If a Transfer-Encoding header field (section 14.40) is present and
indicates that the "chunked" transfer coding has been applied, then

Fielding, et. al. St andar ds Track [Page 32]

Gze abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

the length is defined by the chunked encoding (section 3.6). 4.5 General Header Fields
3. If a Content-Length header field (section 14.14) is present, its There are a few header fields which have general applicability for
value in bytes represents the |ength of the nessage-body. both request and response nmessages, but which do not apply to the
entity being transferred. These header fields apply only to the
4. |f the nmessage uses the nedia type "nultipart/byteranges", which is nmessage being transmitted.
self-delimting, then that defines the length. This nedia type MJST
NOT be used unl ess the sender knows that the recipient can parse it; gener al - header = Cache- Control ; Section 14.9

the presence in a request of a Range header with multiple byte-range Connecti on Section 14. 10

| ;
specifiers inplies that the client can parse nultipart/byteranges | Date ; Section 14.19
responses. | Pragma ; Section 14.32
| Transfer-Encodi ng ; Section 14.40
5. By the server closing the connection. (d osing the connection | Upgrade ; Section 14.41
cannot be used to indicate the end of a request body, since that | Via ; Section 14.44

woul d | eave no possibility for the server to send back a response.)
Gener al - header field nanes can be extended reliably only in

For conpatibility with HTTP/ 1.0 applications, HTTP/ 1.1 requests conbi nation wth a change in the protocol version. However, new or
contai ning a nessage-body MUST include a valid Content-Length header experinental header fields may be given the semantics of general
field unless the server is known to be HTTP/1.1 conpliant. If a header fields if all parties in the comunication recognize themto
request contains a nmessage-body and a Content-Length is not given, be general - header fields. Unrecognized header fields are treated as
the server SHOULD respond with 400 (bad request) if it cannot entity-header fields.
determine the length of the message, or with 411 (length required) if
it wishes to insist on receiving a valid Content-Length. 5 Request
Al HTTP/ 1.1 applications that receive entities MIST accept the A request nmessage froma client to a server includes, within the
"chunked" transfer coding (section 3.6), thus allow ng this mechani sm first line of that nmessage, the nmethod to be applied to the resource,
to be used for nmessages when the nessage | ength cannot be deterni ned the identifier of the resource, and the protocol version in use.
in advance.

Request = Request - Li ne ; Section 5.1
Messages MUST NOT include both a Content-Length header field and the *(general - header ; Section 4.5
"chunked" transfer coding. If both are received, the Content-Length | request - header ; Section 5.3
MUST be ignored. | entity-header) ; Section 7.1

CRLF

When a Content-Length is given in a nmessage where a nessage-body is [message- body] ; Section 7.2
allowed, its field value MIST exactly match the nunmber of OCTETs in
the message-body. HTTP/ 1.1 user agents MJST notify the user when an 5.1 Request-Line

invalid length is received and detected.
The Request-Line begins with a nmethod token, followed by the
Request - URI and the protocol version, and ending with CRLF. The
el ements are separated by SP characters. No CR or LF are allowed
except in the final CRLF sequence.

Request - Li ne = Method SP Request-URI SP HTTP- Versi on CRLF

Fielding, et. al. St andar ds Track [Page 33] Fielding, et. al. St andards Track [Page 34]

9z¢g abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

5.1.1 Method froma valid cache, and return the response. Note that the proxy MAY
forward the request on to another proxy or directly to the server
The Met hod token indicates the method to be performed on the resource specified by the absoluteURI. In order to avoid request |oops, a
identified by the Request-URI. The nmethod is case-sensitive. proxy MUST be able to recognize all of its server nanes, including

any aliases, local variations, and the numeric IP address. An exanple

Met hod = "OPTI ONS" ; Section 9.2 Request - Li ne woul d be:

| "CGET" ; Section 9.3

| "HEAD' ; Section 9.4 GET http://ww. w3. or g/ pub/ WAV TheProj ect. html HTTP/ 1.1

| "POST" ; Section 9.5

| "PUT" ; Section 9.6 To allow for transition to absoluteURIs in all requests in future

| " DELETE" ; Section 9.7 versions of HITP, all HITP/ 1.1 servers MJST accept the absol uteURI

| " TRACE" ; Section 9.8 formin requests, even though HTTP/1.1 clients will only generate

| extension-nethod themin requests to proxies.

ext ensi on- nmet hod = token The nost common form of Request-URlI is that used to identify a
resource on an origin server or gateway. In this case the absolute

The list of nmethods allowed by a resource can be specified in an path of the URI MJUST be transmtted (see section 3.2.1, abs_path) as
Al l ow header field (section 14.7). The return code of the response the Request-URI, and the network location of the URI (net_loc) MJST
always notifies the client whether a method is currently allowed on a be transnmitted in a Host header field. For exanple, a client wi shing
resource, since the set of allowed nmethods can change dynamcally. to retrieve the resource above directly fromthe origin server would
Servers SHOULD return the status code 405 (Method Not Allowed) if the create a TCP connection to port 80 of the host "www w3.org" and send
nmet hod is known by the server but not allowed for the requested the lines:
resource, and 501 (Not Inplenmented) if the nmethod is unrecognized or
not inplemented by the server. The |ist of nmethods known by a server GET / pub/ WNN TheProj ect. html HTTP/ 1.1
can be listed in a Public response-header field (section 14.35). Host: www. w3. org
The net hods GET and HEAD MUST be supported by all general - purpose followed by the remai nder of the Request. Note that the absolute path
servers. Al other nethods are optional; however, if the above cannot be enpty; if none is present in the original UR, it MJST be
met hods are inplenmented, they MJST be inplenented with the same given as "/" (the server root).

senmantics as those specified in section 9.
If a proxy receives a request without any path in the Request-URl and

5.1.2 Request-URI the met hod specified is capabl e of supporting the asterisk form of
request, then the last proxy on the request chain MJUST forward the
The Request-URI is a Uniform Resource ldentifier (section 3.2) and request with "*" as the final Request-URI. For exanple, the request

identifies the resource upon which to apply the request.
OPTIONS http://ww.ics.uci.edu:8001 HTTP/ 1.1
Request - URI = "*" | absoluteURl | abs_path
woul d be forwarded by the proxy as
The three options for Request-URl are dependent on the nature of the

request. The asterisk "*" nmeans that the request does not apply to a OPTIONS * HTTP/ 1.1
particul ar resource, but to the server itself, and is only allowed Host: www. i cs. uci.edu: 8001
when the nethod used does not necessarily apply to a resource. One
exanpl e woul d be after connecting to port 8001 of host "www. ics.uci.edu".

OPTIONS * HTTP/1.1 The Request-URl is transmitted in the format specified in section

3.2.1. The origin server MJIST decode the Request-URl in order to

The absoluteURI formis required when the request is being made to a properly interpret the request. Servers SHOULD respond to invalid
proxy. The proxy is requested to forward the request or service it Request-URI's with an appropriate status code.

Fielding, et. al. St andar ds Track [Page 35] Fielding, et. al. St andar ds Track [Page 36]

12€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

In requests that they forward, proxies MJUST NOT rewite the equi valent to the paraneters on a progranm ng | anguage net hod
"abs_path" part of a Request-URl in any way except as noted above to i nvocati on.
replace a null abs_path with "*", no matter what the proxy does in
its internal inplenmentation. request - header = Accept ; Section 14.1
Accept - Char set ; Section 14.2
Note: The "no rewrite" rule prevents the proxy from changing the Accept - Encodi ng ; Section 14.3
meani ng of the request when the origin server is inproperly using a Accept - Language ; Section 14.4
non-reserved URL character for a reserved purpose. |nplenenters Aut hori zati on ; Section 14.8
shoul d be aware that some pre-HTTP/ 1.1 proxies have been known to From ; Section 14.22
rewite the Request-URI. Host Section 14.23
| f-Mbdi fied-Since Section 14.24

| f - None- Mat ch Section 14. 26
HTTP/ 1.1 origin servers SHOULD be aware that the exact resource | f - Range ; Section 14.27
identified by an Internet request is determ ned by exami ning both the ;

Request-URI and the Host header field.

I f-Unnodi fi ed-Si nce Section 14.28
Max- For war ds Section 14.31

|
|
|
|
|
I
5.2 The Resource ldentified by a Request | If-Match Section 14.25
|
|
|
| Proxy-Authorization Section 14.34
|
|
|

An origin server that does not allow resources to differ by the Range Section 14. 36
request ed host MAY ignore the Host header field value. (But see Ref erer Section 14.37
section 19.5.1 for other requirenents on Host support in HTTP/1.1.) User - Agent Section 14.42
An origin server that does differentiate resources based on the host Request - header field names can be extended reliably only in
requested (sonetinmes referred to as virtual hosts or vanity conbi nation with a change in the protocol version. However, new or
host names) MJST use the following rules for determning the requested experinmental header fields MAY be given the semantics of request-
resource on an HITP/ 1.1 request: header fields if all parties in the comunication recognize themto
be request-header fields. Unrecognized header fields are treated as
1. If Request-URl is an absoluteURl, the host is part of the entity-header fields.
Request-URI. Any Host header field value in the request MJST be
i gnored. 6 Response
2. If the Request-URI is not an absoluteURl, and the request After receiving and interpreting a request nessage, a server responds
includes a Host header field, the host is determ ned by the Host with an HTTP response nessage.
header field value.
Response = Status-Line ; Section 6.1
3. If the host as deternmined by rule 1 or 2 is not a valid host on *(general - header ; Section 4.5
the server, the response MJST be a 400 (Bad Request) error | response-header ; Section 6.2
nmessage. | entity-header) ; Section 7.1
CRLF
Reci pi ents of an HTTP/ 1.0 request that |acks a Host header field MAY [nessage- body] ; Section 7.2
attenpt to use heuristics (e.g., exam nation of the UR path for
sonet hing unique to a particular host) in order to determ ne what 6.1 Status-Line

exact resource is being requested.
The first line of a Response nessage is the Status-Line, consisting

5.3 Request Header Fields of the protocol version followed by a nuneric status code and its
associ ated textual phrase, with each el ement separated by SP
The request-header fields allow the client to pass additional characters. No CR or LF is allowed except in the final CRLF
information about the request, and about the client itself, to the sequence.

server. These fields act as request nodifiers, with semantics

Fielding, et. al. St andar ds Track [Page 37] Fielding, et. al. St andar ds Track [Page 38]

gze abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

St atus-Line = HITP-Version SP Status-Code SP Reason- Phrase CRLF

6.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the
attenpt to understand and satisfy the request. These codes are fully
defined in section 10. The Reason-Phrase is intended to give a short
textual description of the Status-Code. The Status-Code is intended
for use by automata and the Reason-Phrase is intended for the human
user. The client is not required to exam ne or display the Reason-
Phr ase.

The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5
values for the first digit:

o 1xx: Informational - Request received, continuing process

0 2xx: Success - The action was successfully received, understood,
and accepted

0 3xx: Redirection - Further action nust be taken in order to
conpl ete the request

o 4xx: Cient Error - The request contains bad syntax or cannot be
fulfilled

o b5xx: Server Error - The server failed to fulfill an apparently
valid request

The individual values of the numeric status codes defined for
HTTP/ 1.1, and an exanpl e set of correspondi ng Reason-Phrase's, are
presented bel ow. The reason phrases listed here are only recommended
-- they may be replaced by local equivalents w thout affecting the
protocol .

St at us- Code = "100" ; Continue
| "101" ; Switching Protocols
| "200" ;o K
| "201" ;. Created
| "202" ; Accepted
| "203" ; Non-Aut horitative Information
| "204" ; No Content
| "205" ; Reset Content
| "206" ; Partial Content
| "300" ; Miltiple Choices
| "301" ; Moved Permanent!y
| "302" ; Moved Tenporarily

Fielding, et. al. St andar ds Track [Page 39]

RFC 2068 HTTP/ 1.1 January 1997

ext ensi on- code

| "303" ; See Cther

| "304" ; Not Modified

| "305" ; Use Proxy

| "400" ; Bad Request

| "401" ; Unaut hori zed

| "402" ; Payment Required

| "403" ; Forbi dden

| "404" ; Not Found

| "405" ;. Method Not All owed

| "406" ; Not Acceptable

| "407" ; Proxy Authentication Required
| "408" ; Request Ti ne-out

| "409" ; Conflict

| "410" ; Gone

| "411" ; Length Required

| 412" ; Precondition Failed

| "413" ; Request Entity Too Large
| "414" ; Request-URI Too Large

| "415" ; Unsupported Media Type

| "500" ; Internal Server Error

| "501" ; Not | npl enent ed

| "502" ; Bad Gat eway

| "503" ; Service Unavail abl e

| "504" ; Gateway Time-out

| "505" ; HTTP Version not supported
|

extension-code = 3DIG T
Reason- Phrase = *<TEXT, excluding CR, LF>

HTTP status codes are extensible. HTTP applications are not required
to understand the neaning of all registered status codes, though such
under standing i s obviously desirable. However, applications MJST
understand the class of any status code, as indicated by the first
digit, and treat any unrecogni zed response as being equivalent to the
x00 status code of that class, with the exception that an

unrecogni zed response MJST NOT be cached. For exanple, if an
unrecogni zed status code of 431 is received by the client, it can
safely assume that there was sonmething wong with its request and
treat the response as if it had received a 400 status code. |In such
cases, user agents SHOULD present to the user the entity returned
with the response, since that entity is likely to include human-
readabl e informati on which will explain the unusual status.

Fielding, et. al. St andar ds Track [Page 40]

62< abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

6.2 Response Header Fields entity-header Al | ow ; Section 14.7

Cont ent - Base Section 14.11
Cont ent - Encodi ng Section 14.12
Cont ent - Language Section 14.13

Content - Lengt h Section 14. 14

The response-header fields allow the server to pass additional
informati on about the response which cannot be placed in the Status-
Li ne. These header fields give information about the server and about

further access to the resource identified by the Request-URI. Cont ent - Locat i on ; Section 14.15
response- header = Age ; Section 14.6 Cont ent - Range ; Section 14.17
Location Section 14. 30 Cont ent - Type Section 14.18

Section 14.20
Section 14.21
Section 14.29

Pr oxy- Aut henti cat e Section 14. 33
Publ i c Section 14.35

| ;

I ; ETag
| Retry-After Section 14. 38

| ;

| ;

| ;

| ;

Expires
Last - Modi fi ed

|
|
|
|
| Content- M5 ; Section 14.16
|
|
|
|
I
I

Ser ver Section 14. 39 ext ensi on- header
Vary Section 14.43
VMr ni ng Section 14. 45 ext ensi on- header = nessage- header

WAWM Aut hent i cat e Section 14. 46

The ext ensi on-header nechani smallows additional entity-header fields

Response- header field names can be extended reliably only in to be defined without changing the protocol, but these fields cannot
conbination with a change in the protocol version. However, new or be assumed to be recogni zabl e by the recipient. Unrecogni zed header
experinental header fields MAY be given the semantics of response- fields SHOULD be ignored by the recipient and forwarded by proxies.
header fields if all parties in the comunication recognize themto

be response-header fields. Unrecognized header fields are treated as 7.2 Entity Body

entity-header fields.
The entity-body (if any) sent with an HTTP request or response is in

7 Entity a format and encodi ng defined by the entity-header fields.
Request and Response nessages MAY transfer an entity if not otherw se entity-body = *OCTET
restricted by the request nethod or response status code. An entity
consists of entity-header fields and an entity-body, although sone An entity-body is only present in a message when a nmessage-body is
responses will only include the entity-headers. present, as described in section 4.3. The entity-body is obtained
fromthe message-body by decodi ng any Transfer-Encoding that may have
In this section, both sender and recipient refer to either the client been applied to ensure safe and proper transfer of the nmessage.

or the server, depending on who sends and who receives the entity.
7.2.1 Type
7.1 Entity Header Fields
Wien an entity-body is included with a nessage, the data type of that
Entity-header fields define optional metainformation about the body is determined via the header fields Content-Type and Content-
entity-body or, if no body is present, about the resource identified Encodi ng. These define a two-layer, ordered encodi ng nodel :
by the request.
entity-body := Content-Encodi ng(Content-Type(data))

Cont ent - Type specifies the nedia type of the underlying data.
Cont ent - Encodi ng may be used to indicate any additional content
codings applied to the data, usually for the purpose of data
conpression, that are a property of the requested resource. There is
no default encoding.

Fielding, et. al. St andar ds Track [Page 41] Fielding, et. al. St andards Track [Page 42]

0g£g abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

Any HTTP/ 1.1 nessage containing an entity-body SHOULD include a
Content - Type header field defining the nedia type of that body. If
and only if the nedia type is not given by a Content-Type field, the
reci pient MAY attenpt to guess the nmedia type via inspection of its
content and/or the name extension(s) of the URL used to identify the
resource. |If the nmedia type renmins unknown, the recipient SHOULD
treat it as type "application/octet-streant.

7.2.2 Length

The length of an entity-body is the | ength of the nmessage-body after
any transfer codings have been renoved. Section 4.4 defines how the
I ength of a nessage-body is determn ned.

8 Connections
8.1 Persistent Connections
8. 1.1 Purpose

Prior to persistent connections, a separate TCP connection was
established to fetch each URL, increasing the | oad on HTTP servers
and causi ng congestion on the Internet. The use of inline inmges and
other associated data often requires a client to make nultiple
requests of the same server in a short anpunt of tine. Analyses of
these performance probl ens are available [30][27]; analysis and
results froma prototype inplenentation are in [26].

Persi stent HTTP connections have a nunber of advantages:

o By opening and closing fewer TCP connections, CPU tine is saved,

and nenory used for TCP protocol control blocks is also saved.
0 HTTP requests and responses can be pipelined on a connection.
Pipelining allows a client to nake nmultiple requests w thout

waiting for each response, allowing a single TCP connection to be

used nuch nore efficiently, with much |ower el apsed tine.

o Network congestion is reduced by reducing the nunber of packets
caused by TCP opens, and by allowing TCP sufficient tinme to
determ ne the congestion state of the network.

0o HTTP can evolve nore gracefully; since errors can be reported

wi thout the penalty of closing the TCP connection. Clients using

future versions of HTTP might optim stically try a new feature,
if communicating with an ol der server, retry with old semantics
after an error is reported.

HTTP i npl enent ati ons SHOULD i npl ement persi stent connections.

Fielding, et. al. St andar ds Track [Page 43]

RFC 2068 HTTP/ 1.1 January 1997

8.1.2 Overall Operation

A significant difference between HTTP/ 1.1 and earlier versions of
HTTP is that persistent connections are the default behavior of any
HTTP connection. That is, unless otherw se indicated, the client may
assune that the server will mmintain a persistent connection.

Persi stent connections provide a nmechanismby which a client and a
server can signal the close of a TCP connection. This signaling takes
pl ace using the Connection header field. Once a close has been

signal ed, the client MJST not send any nore requests on that

connecti on.

8.1.2.1 Negotiation

An HTTP/ 1.1 server MAY assune that a HTTP/1.1 client intends to

mai ntain a persistent connection unless a Connection header including
the connection-token "close" was sent in the request. If the server
chooses to close the connection imrediately after sending the
response, it SHOULD send a Connection header including the

connecti on-token cl ose.

An HTTP/ 1.1 client MAY expect a connection to remain open, but would
decide to keep it open based on whether the response froma server
contains a Connection header with the connection-token close. In case
the client does not want to mamintain a connection for nore than that
request, it SHOULD send a Connection header including the
connection-token cl ose.

If either the client or the server sends the close token in the
Connection header, that request beconmes the |ast one for the
connecti on.

Cients and servers SHOULD NOT assume that a persistent connection is
nmai ntained for HITP versions less than 1.1 unless it is explicitly
signal ed. See section 19.7.1 for nore infornmation on backwards
conpatibility with HTTP/1.0 clients.

In order to remain persistent, all messages on the connection nust
have a self-defined nessage length (i.e., one not defined by closure
of the connection), as described in section 4.4.

8.1.2.2 Pipelining

A client that supports persistent connections MAY "pipeline" its
requests (i.e., send nultiple requests without waiting for each
response). A server MJST send its responses to those requests in the
sane order that the requests were received.

Fielding, et. al. St andar ds Track [Page 44]

Te€ abed z wnipuadwo)

Fielding, et. al.

RFC 2068 HTTP/ 1.1 January 1997

Clients which assune persistent connections and pipeline i mediately
after connection establishment SHOULD be prepared to retry their
connection if the first pipelined attempt fails. If a client does
such a retry, it MJUST NOT pipeline before it knows the connection is
persistent. Cients MJST al so be prepared to resend their requests if
the server closes the connection before sending all of the
correspondi ng responses.

8.1.3 Proxy Servers

It is especially inportant that proxies correctly inplenent the
properties of the Connection header field as specified in 14.2. 1.

The proxy server MJST signal persistent connections separately with
its clients and the origin servers (or other proxy servers) that it
connects to. Each persistent connection applies to only one transport
1'i nk.

A proxy server MJST NOT establish a persistent connection with an
HTTP/ 1.0 client.

8.1.4 Practical Considerations

Servers wi |l usually have some tine-out value beyond which they wll
no | onger maintain an inactive connection. Proxy servers m ght make
this a higher value since it is likely that the client will be making
nore connections through the sanme server. The use of persistent
connections places no requirenments on the length of this time-out for
either the client or the server.

When a client or server wishes to time-out it SHOULD i ssue a graceful
close on the transport connection. Cients and servers SHOULD both
constantly watch for the other side of the transport close, and
respond to it as appropriate. If a client or server does not detect
the other side's close pronptly it could cause unnecessary resource
drain on the network.

A client, server, or proxy MAY close the transport connection at any
time. For exanple, a client MAY have started to send a new request at
the sane tine that the server has decided to close the "idle"
connection. Fromthe server's point of view, the connection is being
closed while it was idle, but fromthe client's point of view, a
request is in progress.

This neans that clients, servers, and proxi es MJUST be able to recover
from asynchronous close events. Cient software SHOULD reopen the

transport connection and retransmt the aborted request w thout user
interaction so long as the request nethod is idenpotent (see section

St andar ds Track [Page 45]

RFC 2068 HTTP/ 1.1 January 1997

9.1.2); other methods MJUST NOT be autonmtically retried, although
user agents MAY offer a human operator the choice of retrying the
request .

However, this autonmatic retry SHOULD NOT be repeated if the second
request fails.

Servers SHOULD al ways respond to at | east one request per connection,
if at all possible. Servers SHOULD NOT close a connection in the
mddle of transmitting a response, unless a network or client failure
i's suspected.

Cients that use persistent connections SHOULD |imt the nunber of
simul t aneous connections that they maintain to a given server. A
singl e-user client SHOULD mai ntain AT MOST 2 connections with any
server or proxy. A proxy SHOULD use up to 2*N connections to another
server or proxy, where N is the nunber of sinultaneously active
users. These guidelines are intended to inprove HTTP response tines
and avoi d congestion of the Internet or other networks.

8.2 Message Transmi ssion Requirenents

General requirenents:

(0]

Fielding, et. al.

HTTP/ 1.1 servers SHOULD mai ntain persistent connections and use
TCP's flow control mechanisns to resolve tenporary overl oads,
rather than termi nating connections with the expectation that
clients will retry. The latter technique can exacerbate network
congesti on.

An HTTP/1.1 (or later) client sending a nessage-body SHOULD nonitor
the network connection for an error status while it is transmtting
the request. If the client sees an error status, it SHOULD

imredi ately cease transnitting the body. If the body is being sent
using a "chunked" encoding (section 3.6), a zero |length chunk and
enpty footer MAY be used to prematurely mark the end of the
message. |f the body was preceded by a Content-Length header, the
client MJUST close the connection.

An HTTP/ 1.1 (or later) client MJST be prepared to accept a 100
(Continue) status followed by a regul ar response.

An HTTP/ 1.1 (or later) server that receives a request froma
HTTP/ 1.0 (or earlier) client MUST NOT transnmt the 100 (continue)
response; it SHOULD either wait for the request to be conpleted
normal |y (thus avoiding an interrupted request) or close the
connection prematurely.

St andar ds Track [Page 46]

zZeg abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

1.

Fie

January 1997

Upon receiving a nethod subject to these requirenments from an

HTTP/ 1.1 (or later) client, an HTTP/1.1 (or later) server MJST either
respond with 100 (Continue) status and continue to read fromthe
input stream or respond with an error status. If it responds with an
error status, it MAY close the transport (TCP) connection or it MAY
continue to read and discard the rest of the request. It MJST NOT
performthe requested nethod if it returns an error status.

Cients SHOULD renenber the version nunber of at |east the nost
recently used server; if an HITP/ 1.1 client has seen an HITP/ 1.1 or

| ater response fromthe server, and it sees the connection close

bef ore receiving any status fromthe server, the client SHOULD retry
the request without user interaction so long as the request nethod is
i dempotent (see section 9.1.2); other nethods MJST NOT be
autonatically retried, although user agents MAY of fer a human
operator the choice of retrying the request.. If the client does
retry the request, the client

o MJST first send the request header fields, and then

0 MJST wait for the server to respond with either a 100 (Continue)
response, in which case the client should continue, or with an
error status.

If an HTTP/ 1.1 client has not seen an HTTP/1.1 or |ater response from
the server, it should assune that the server inplenments HTTP/ 1.0 or

ol der and will not use the 100 (Continue) response. If in this case
the client sees the connection close before receiving any status from
the server, the client SHOULD retry the request. If the client does
retry the request to this HTTP/ 1.0 server, it should use the

follow ng "binary exponential backoff" algorithmto be assured of
obtaining a reliable response:

Initiate a new connection to the server
Transmt the request-headers
Initialize a variable Rto the estimated round-trip time to the
server (e.g., based on the time it took to establish the
connection), or to a constant value of 5 seconds if the round-trip
tine is not avail able.
Conpute T = R* (2**N), where N is the nunber of previous retries
of this request.
Wit either for an error response fromthe server, or for T seconds
(whi chever cones first)

Iding, et. al. St andar ds Track [Page 47]

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

6. If no error response is received, after T seconds transnmt the body
of the request.

7. 1f client sees that the connection is closed prenaturely, repeat
fromstep 1 until the request is accepted, an error response is
received, or the user becones inpatient and term nates the retry
process.

No matter what the server version, if an error status is received,
the client

o MJST NOT continue and

0 MJIST close the connection if it has not conpleted sending the
nmessage.

An HTTP/ 1.1 (or later) client that sees the connection close after
receiving a 100 (Continue) but before receiving any other status
SHOULD retry the request, and need not wait for 100 (Conti nue)
response (but MAY do so if this sinplifies the inplenentation).

9 Met hod Definitions

The set of common nethods for HTTP/ 1.1 is defined bel ow. Al though
this set can be expanded, additional nethods cannot be assuned to
share the sanme semantics for separately extended clients and servers.

The Host request-header field (section 14.23) MJST acconpany all
HTTP/ 1.1 requests.

9.1 Safe and |denpotent Methods

9.1.1 Safe Methods

I npl ementers should be aware that the software represents the user in
their interactions over the Internet, and should be careful to allow
the user to be aware of any actions they may take which may have an
unexpect ed significance to thenselves or others.

In particular, the convention has been established that the GET and
HEAD net hods shoul d never have the significance of taking an action
other than retrieval. These nmethods shoul d be considered "safe." This
al l ows user agents to represent other methods, such as POST, PUT and
DELETE, in a special way, so that the user is nade aware of the fact
that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not
generate side-effects as a result of performng a GET request; in

St andards Track [Page 48]

eee abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

fact, sonme dynamic resources consider that a feature. The inportant 9.3 CET
distinction here is that the user did not request the side-effects,
so therefore cannot be held accountable for them The GET nmethod means retrieve whatever information (in the formof an
entity) is identified by the Request-URI. |If the Request-URl refers
9.1.2 I denpotent Methods to a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
Met hods may al so have the property of "idenpotence" in that (aside process, unless that text happens to be the output of the process.
fromerror or expiration issues) the side-effects of N > 0 identical
requests is the same as for a single request. The nethods GET, HEAD, The semantics of the GET nethod change to a "conditional GET" if the
PUT and DELETE share this property. request nessage includes an |f-Mdified-Since, |f-Unnodified-Since,
I f-Match, |f-None-Match, or |f-Range header field. A conditional GET
9.2 OPTIONS met hod requests that the entity be transferred only under the
circunstances described by the conditional header field(s). The
The OPTIONS nethod represents a request for infornmation about the conditional GET nethod is intended to reduce unnecessary network
conmuni cation options available on the request/response chain usage by allowi ng cached entities to be refreshed without requiring
identified by the Request-URI. This nmethod allows the client to mul tiple requests or transferring data already held by the client.
determ ne the options and/or requirenents associated with a resource,
or the capabilities of a server, without inplying a resource action The senmantics of the GET nethod change to a "partial GET" if the
or initiating a resource retrieval. request message includes a Range header field. A partial GET requests
that only part of the entity be transferred, as described in section
Unl ess the server's response is an error, the response MJST NOT 14.36. The partial GET nethod is intended to reduce unnecessary
include entity information other than what can be considered as network usage by allowing partially-retrieved entities to be
conmuni cation options (e.g., Allow is appropriate, but Content-Type conpl eted without transferring data already held by the client.

is not). Responses to this nethod are not cachable.
The response to a CET request is cachable if and only if it nmeets the

If the Request-URI is an asterisk ("*"), the OPTIONS request is requirements for HTTP cachi ng described in section 13.
intended to apply to the server as a whole. A 200 response SHOULD
include any header fields which indicate optional features 9.4 HEAD
i mpl emented by the server (e.g., Public), including any extensions
not defined by this specification, in addition to any applicable The HEAD nethod is identical to CGET except that the server MJUST NOT
general or response-header fields. As described in section 5.1.2, an return a nessage-body in the response. The netainformation contained
"OPTIONS *" request can be applied through a proxy by specifying the in the HTTP headers in response to a HEAD request SHOULD be identical
destination server in the Request-UR wi thout any path information. to the information sent in response to a GET request. This nmethod can

be used for obtaining netainfornmation about the entity inplied by the
If the Request-URI is not an asterisk, the OPTIONS request applies request wthout transferring the entity-body itself. This nmethod is
only to the options that are avail abl e when communi cating with that often used for testing hypertext links for validity, accessibility,
resource. A 200 response SHOULD include any header fields which and recent nodification.
indi cate optional features inplenented by the server and applicable
to that resource (e.g., Allow), including any extensions not defined The response to a HEAD request may be cachable in the sense that the
by this specification, in addition to any applicable general or information contained in the response may be used to update a
response- header fields. If the OPTIONS request passes through a previously cached entity fromthat resource. If the new field val ues
proxy, the proxy MJST edit the response to exclude those options indicate that the cached entity differs fromthe current entity (as
which apply to a proxy's capabilities and which are known to be woul d be indicated by a change in Content-Length, Content-M5, ETag
unavai | abl e t hrough that proxy. or Last-Mdified), then the cache MIST treat the cache entry as

stal e.

Fielding, et. al. St andar ds Track [Page 49] Fielding, et. al. St andards Track [Page 50]

yee abed ¢z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

9.5 POST 9.6 PUT
The POST nmethod is used to request that the destination server accept The PUT nethod requests that the enclosed entity be stored under the
the entity enclosed in the request as a new subordi nate of the supplied Request-URI. |If the Request-URl refers to an already
resource identified by the Request-URl in the Request-Line. POST is exi sting resource, the enclosed entity SHOULD be considered as a
designed to allow a uniformmethod to cover the follow ng functions: nodi fied version of the one residing on the origin server. |If the
Request - URI does not point to an existing resource, and that URl is
o Annotation of existing resources; capabl e of being defined as a new resource by the requesting user
agent, the origin server can create the resource with that URI. If a
o Posting a nessage to a bulletin board, newsgroup, mailing list, new resource is created, the origin server MUST informthe user agent
or simlar group of articles; via the 201 (Created) response. |f an existing resource is nodified,
either the 200 (OK) or 204 (No Content) response codes SHOULD be sent
o Providing a block of data, such as the result of subnitting a to indicate successful conpletion of the request. If the resource
form to a data-handling process; could not be created or nodified with the Request-URI, an appropriate
error response SHOULD be given that reflects the nature of the
o Extending a database through an append operation. problem The recipient of the entity MJUST NOT ignore any Content-*
(e.g. Content-Range) headers that it does not understand or inplenent
The actual function perforned by the POST nethod is determ ned by the and MUST return a 501 (Not I|nplenented) response in such cases.
server and is usually dependent on the Request-URI. The posted entity
is subordinate to that URI in the same way that a file is subordinate If the request passes through a cache and the Request-URl identifies
to a directory containing it, a news article is subordinate to a one or nore currently cached entities, those entries should be
newsgroup to which it is posted, or a record is subordinate to a treated as stale. Responses to this nethod are not cachabl e.
dat abase.
The fundanmental difference between the POST and PUT requests is
The action performed by the POST nethod might not result in a reflected in the different nmeaning of the Request-URI. The URl in a
resource that can be identified by a URI. In this case, either 200 POST request identifies the resource that will handl e the encl osed
(OK) or 204 (No Content) is the appropriate response status, entity. That resource may be a data-accepting process, a gateway to
dependi ng on whether or not the response includes an entity that sone ot her protocol, or a separate entity that accepts annotations.
describes the result. In contrast, the URI in a PUT request identifies the entity encl osed
with the request -- the user agent knows what URI is intended and the
If a resource has been created on the origin server, the response server MJUST NOT attenpt to apply the request to sone other resource.
SHOULD be 201 (Created) and contain an entity which describes the If the server desires that the request be applied to a different URI,
status of the request and refers to the new resource, and a Location it MUST send a 301 (Mbved Permanently) response; the user agent MAY
header (see section 14.30). then nake its own decision regarding whether or not to redirect the
request .
Responses to this method are not cachable, unless the response
includes appropriate Cache-Control or Expires header fields. However, A single resource MAY be identified by many different URI's. For
the 303 (See Orher) response can be used to direct the user agent to exanple, an article may have a URI for identifying "the current
retrieve a cachabl e resource. version" which is separate fromthe URH identifying each particular
version. In this case, a PUT request on a general URl may result in
POST requests nust obey the message transmi ssion requirenents set out several other URIs being defined by the origin server.

in section 8.2.
HTTP/ 1.1 does not define how a PUT nmethod affects the state of an
origin server.

PUT requests nust obey the nessage transmi ssion requirenments set out
in section 8.2.

Fielding, et. al. St andar ds Track [Page 51] Fielding, et. al. St andards Track [Page 52]

Ggee abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

January 1997

9.7 DELETE

The DELETE method requests that the origin server delete the resource
identified by the Request-URI. This nmethod MAY be overridden by human
intervention (or other neans) on the origin server. The client cannot
be guaranteed that the operation has been carried out, even if the
status code returned fromthe origin server indicates that the action
has been conpl eted successfully. However, the server SHOULD not

i ndi cate success unless, at the time the response is given, it
intends to delete the resource or nobve it to an inaccessible

| ocati on.

A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not
yet been enacted, or 204 (No Content) if the response is OK but does
not include an entity.

If the request passes through a cache and the Request-URl identifies
one or nore currently cached entities, those entries should be
treated as stale. Responses to this nethod are not cachable.

9.8 TRACE

10

Fielding, et. al.

The TRACE nethod is used to invoke a renote, application-|ayer |oop-
back of the request nessage. The final recipient of the request
SHOULD refl ect the nmessage received back to the client as the
entity-body of a 200 (OK) response. The final recipient is either the
origin server or the first proxy or gateway to receive a Max-Forwards
val ue of zero (0) in the request (see section 14.31). A TRACE request
MUST NOT include an entity.

TRACE allows the client to see what is being received at the other
end of the request chain and use that data for testing or diagnostic
information. The value of the Via header field (section 14.44) is of
particular interest, since it acts as a trace of the request chain.
Use of the Max-Forwards header field allows the client to limt the
length of the request chain, which is useful for testing a chain of
proxi es forwarding nmessages in an infinite |oop.

If successful, the response SHOULD contain the entire request nessage
in the entity-body, with a Content-Type of "nmessage/http". Responses
to this method MUST NOT be cached.

Status Code Definitions

Each Status-Code is described below, including a description of which

method(s) it can follow and any netainformation required in the
response.

St andar ds Track [Page 53]

RFC 2068 HTTP/ 1.1

10.

10.

10.

10.

10.

Fielding, et. al.

January 1997

1 Informational 1xx

This class of status code indicates a provisional response,
consisting only of the Status-Line and optional headers, and is
termnated by an enpty line. Since HTTP/1.0 did not define any 1xx
status codes, servers MJST NOT send a 1xx response to an HTTP/ 1.0
client except under experinental conditions.

1.1 100 Conti nue

The client may continue with its request. This interimresponse is
used to informthe client that the initial part of the request has
been received and has not yet been rejected by the server. The client
SHOULD conti nue by sending the remai nder of the request or, if the
request has al ready been conpleted, ignore this response. The server
MUST send a final response after the request has been conpl et ed.

1.2 101 Switching Protocols

The server understands and is willing to conply with the client's
request, via the Upgrade nessage header field (section 14.41), for a
change in the application protocol being used on this connection. The
server will switch protocols to those defined by the response's
Upgrade header field inmmediately after the enpty |ine which

term nates the 101 response.

The protocol should only be swi tched when it is advantageous to do
so. For exanple, switching to a newer version of HTTP is

advant ageous over ol der versions, and switching to a real -tine,
synchronous protocol nmay be advant ageous when delivering resources
that use such features.

2 Successful 2xx

This class of status code indicates that the client's request was
successful ly received, understood, and accepted.

2.1 200

The request has succeeded. The information returned with the response
is dependent on the nethod used in the request, for exanple:

GET an entity corresponding to the requested resource is sent in the
response;

HEAD t he entity-header fields corresponding to the requested resource
are sent in the response without any nessage-body;

St andards Track [Page 54]

ogg abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

10.

10.

10.

10.

Fielding, et. al.

January 1997

POST an entity describing or containing the result of the action;

TRACE an entity containing the request nmessage as received by the end
server.

2.2 201 Created

The request has been fulfilled and resulted in a new resource being
created. The newly created resource can be referenced by the URI(s)
returned in the entity of the response, with the npst specific URL
for the resource given by a Location header field. The origin server
MUST create the resource before returning the 201 status code. |If the
action cannot be carried out inmrediately, the server should respond
with 202 (Accepted) response instead.

2.3 202 Accepted

The request has been accepted for processing, but the processing has
not been conpleted. The request MAY or MAY NOT eventual ly be acted
upon, as it MAY be disall owed when processing actually takes place.
There is no facility for re-sending a status code from an
asynchronous operation such as this.

The 202 response is intentionally non-conmttal. Its purpose is to
allow a server to accept a request for some other process (perhaps a
bat ch-oriented process that is only run once per day) w thout
requiring that the user agent's connection to the server persist

until the process is conpleted. The entity returned with this
response SHOULD include an indication of the request's current status
and either a pointer to a status nonitor or sonme estinmate of when the
user can expect the request to be fulfilled.

2.4 203 Non-Authoritative Information

The returned netainformation in the entity-header is not the
definitive set as available fromthe origin server, but is gathered
froma local or a third-party copy. The set presented MAY be a subset
or superset of the original version. For exanple, including |ocal
annotation infornmati on about the resource MAY result in a superset of
the netai nformati on known by the origin server. Use of this response
code is not required and is only appropriate when the response woul d
ot herwi se be 200 (OK).

2.5 204 No Content
The server has fulfilled the request but there is no new information

to send back. If the client is a user agent, it SHOULD NOT change its
docunent view fromthat which caused the request to be sent. This

St andar ds Track [Page 55]

RFC 2068 HTTP/ 1.1

10.

10.

10.

Fielding, et. al.

January 1997

response is primarily intended to allow input for actions to take
pl ace wi thout causing a change to the user agent's active docunent
view. The response MAY include new netainformation in the form of
entity-headers, which SHOULD apply to the docunent currently in the
user agent's active view

The 204 response MJUST NOT include a nessage-body, and thus is always
terminated by the first enpty line after the header fields.

2.6 205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset
t he docunment vi ew which caused the request to be sent. This response
is primarily intended to allow input for actions to take place via
user input, followed by a clearing of the formin which the input is
given so that the user can easily initiate another input action. The
response MUST NOT include an entity.

2.7 206 Partial Content

The server has fulfilled the partial CET request for the resource.
The request nmust have included a Range header field (section 14.36)
indicating the desired range. The response MJST include either a
Cont ent - Range header field (section 14.17) indicating the range
included with this response, or a nultipart/byteranges Content-Type
including Content-Range fields for each part. |f nultipart/byteranges
is not used, the Content-Length header field in the response MJST
mat ch the actual number of OCTETs transnitted in the nmessage-body.

A cache that does not support the Range and Content-Range headers
MUST NOT cache 206 (Partial) responses.

3 Redirection 3xx

This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request. The action
required MAY be carried out by the user agent wi thout interaction
with the user if and only if the nmethod used in the second request is
GET or HEAD. A user agent SHOULD NOT autonmtically redirect a request
nore than 5 tines, since such redirections usually indicate an
infinite | oop.

St andards Track [Page 56]

,€¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

10.

10.

Fielding, et. al.

January 1997

3.1 300 Multiple Choices

The requested resource corresponds to any one of a set of
representations, each with its own specific |ocation, and agent-
driven negotiation information (section 12) is being provided so that
the user (or user agent) can select a preferred representati on and
redirect its request to that |ocation.

Unless it was a HEAD request, the response SHOULD include an entity
containing a list of resource characteristics and |ocation(s) from
whi ch the user or user agent can choose the one nost appropriate. The
entity format is specified by the nedia type given in the Content-
Type header field. Depending upon the format and the capabilities of
the user agent, selection of the npst appropriate choice may be
performed automatically. However, this specification does not define
any standard for such automatic sel ection.

If the server has a preferred choice of representation, it SHOULD
include the specific URL for that representation in the Location
field; user agents MAY use the Location field value for automatic
redirection. This response is cachable unless indicated otherw se.

3.2 301 Moved Pernanently

The requested resource has been assigned a new permanent URl and any
future references to this resource SHOULD be done using one of the
returned URIs. Cients with link editing capabilities SHOULD
automatically re-link references to the Request-URl to one or nore of
the new references returned by the server, where possible. This
response is cachabl e unl ess indicated otherw se.

If the new URI is a location, its URL SHOULD be given by the Location
field in the response. Unless the request nethod was HEAD, the entity
of the response SHOULD contain a short hypertext note with a
hyperlink to the new URI(s).

If the 301 status code is received in response to a request other
than GET or HEAD, the user agent MJST NOT autonmtically redirect the
request unless it can be confirned by the user, since this mght
change the conditions under which the request was issued.

Not e: When automatically redirecting a POST request after receiving

a 301 status code, sone existing HTTP/ 1.0 user agents wll
erroneously change it into a GET request.

St andards Track [Page 57]

RFC 2068 HTTP/ 1.1

10.

10.

10.

Fielding, et. al.

January 1997

3.3 302 Moved Tenporarily

The requested resource resides tenporarily under a different URI.
Since the redirection nay be altered on occasion, the client SHOULD
continue to use the Request-URI for future requests. This response is
only cachable if indicated by a Cache-Control or Expires header
field.

If the new URI is a location, its URL SHOULD be given by the Location
field in the response. Unless the request nethod was HEAD, the entity
of the response SHOULD contain a short hypertext note with a
hyperlink to the new URI(S).

If the 302 status code is received in response to a request other
than GET or HEAD, the user agent MJUST NOT automatically redirect the
request unless it can be confirned by the user, since this m ght
change the conditions under which the request was issued.

Note: Wien autonatically redirecting a POST request after receiving
a 302 status code, some existing HTTP/ 1.0 user agents wll
erroneously change it into a GET request.

3.4 303 See O her

The response to the request can be found under a different URl and
SHOULD be retrieved using a GET nethod on that resource. This nethod
exists primarily to allow the output of a POST-activated script to
redirect the user agent to a selected resource. The new URl is not a
substitute reference for the originally requested resource. The 303
response is not cachable, but the response to the second (redirected)
request MAY be cachabl e.

If the new URI is a location, its URL SHOULD be given by the Location
field in the response. Unless the request nmethod was HEAD, the entity
of the response SHOULD contain a short hypertext note with a
hyperlink to the new URI(s).

3.5 304 Not Modified
If the client has performed a conditional GET request and access is
al | owed, but the docunent has not been nodified, the server SHOULD

respond with this status code. The response MJUST NOT contain a
nmessage- body.

St andar ds Track [Page 58]

gee abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

10.

10.

Fielding, et. al.

January 1997

The response MJST include the follow ng header fields:

o Date

o ETag and/or Content-Location, if the header woul d have been sent in

a 200 response to the sane request

o Expires, Cache-Control, and/or Vary, if the field-value m ght

differ fromthat sent in any previous response for the same variant

If the conditional GET used a strong cache validator (see section
13.3.3), the response SHOULD NOT include other entity-headers.

Q herwise (i.e., the conditional CET used a weak validator), the

response MJUST NOT include other entity-headers; this prevents

i nconsi stenci es between cached entity-bodi es and updated headers.

If a 304 response indicates an entity not currently cached, then the
cache MUST disregard the response and repeat the request wi thout the
condi tional.

If a cache uses a received 304 response to update a cache entry, the
cache MJST update the entry to reflect any new field values given in
the response.

The 304 response MUST NOT include a nessage-body, and thus is always
termnated by the first enpty line after the header fields.

3.6 305 Use Proxy

The requested resource MJST be accessed through the proxy given by
the Location field. The Location field gives the URL of the proxy.
The recipient is expected to repeat the request via the proxy.

4 dient Error 4xx

The 4xx class of status code is intended for cases in which the
client seems to have erred. Except when responding to a HEAD request,
the server SHOULD include an entity containing an explanation of the
error situation, and whether it is a tenporary or pernanent
condition. These status codes are applicable to any request nethod.
User agents SHOULD di splay any included entity to the user.

Note: If the client is sending data, a server inplenentation using
TCP shoul d be careful to ensure that the client acknow edges

recei pt of the packet(s) containing the response, before the server
cl oses the input connection. If the client continues sending data
to the server after the close, the server's TCP stack will send a
reset packet to the client, which may erase the client's

St andar ds Track [Page 59]

RFC 2068 HTTP/ 1.1

10.

10.

10.

10.

10.

Fielding, et. al.

January 1997

unacknow edged i nput buffers before they can be read and
interpreted by the HTTP application.

4.1 400 Bad Request

The request could not be understood by the server due to mal forned
syntax. The client SHOULD NOT repeat the request wi thout
nodi fications.

4.2 401 Unauthori zed

The request requires user authentication. The response MJST include a
WA Aut henti cate header field (section 14.46) containing a challenge
applicable to the requested resource. The client MAY repeat the
request with a suitable Authorization header field (section 14.8). If
the request already included Authorization credentials, then the 401
response indicates that authorization has been refused for those
credentials. If the 401 response contains the sane chall enge as the
prior response, and the user agent has already attenpted
authentication at |east once, then the user SHOULD be presented the
entity that was given in the response, since that entity MAY include
rel evant di agnostic information. HTTP access authentication is

expl ained in section 11.

4.3 402 Paynent Required
This code is reserved for future use.
4.4 403 Forbi dden

The server understood the request, but is refusing to fulfill it.

Aut horization will not help and the request SHOULD NOT be repeat ed.
If the request method was not HEAD and the server w shes to make
public why the request has not been fulfilled, it SHOULD describe the
reason for the refusal in the entity. This status code is commonly
used when the server does not wish to reveal exactly why the request
has been refused, or when no other response is applicable.

4.5 404 Not Found
The server has not found anything nmatching the Request-URI. No

indication is given of whether the condition is tenporary or
per manent .

St andar ds Track [Page 60]

6£€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

10.

10.

10.

Fielding, et. al.

January 1997

If the server does not wish to make this information available to the
client, the status code 403 (Forbidden) can be used instead. The 410
(CGone) status code SHOULD be used if the server knows, through sone
internally configurable mechanism that an old resource is
permanent |y unavail abl e and has no forwardi ng address.

4.6 405 Method Not All owed

The nethod specified in the Request-Line is not allowed for the
resource identified by the Request-URI. The response MJST include an
Al'l ow header containing a list of valid methods for the requested
resource.

4.7 406 Not Acceptable

The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request.

Unless it was a HEAD request, the response SHOULD include an entity
containing a list of available entity characteristics and | ocation(s)
fromwhich the user or user agent can choose the one nost
appropriate. The entity format is specified by the nedia type given
in the Content-Type header field. Depending upon the format and the
capabilities of the user agent, selection of the npbst appropriate
choice may be perfornmed automatically. However, this specification
does not define any standard for such automatic selection.

Note: HTTP/ 1.1 servers are allowed to return responses which are
not acceptable according to the accept headers sent in the request.
In some cases, this may even be preferable to sending a 406
response. User agents are encouraged to inspect the headers of an
incom ng response to determine if it is acceptable. If the response
coul d be unacceptable, a user agent SHOULD tenporarily stop receipt
of nore data and query the user for a decision on further actions.

4.8 407 Proxy Authentication Required

This code is simlar to 401 (Unauthorized), but indicates that the
client MUST first authenticate itself with the proxy. The proxy MJST
return a Proxy-Authenticate header field (section 14.33) containing a
chal | enge applicable to the proxy for the requested resource. The
client MAY repeat the request with a suitable Proxy-Authorization
header field (section 14.34). HITP access authentication is explained
in section 11.

St andards Track [Page 61]

RFC 2068 HTTP/ 1.1

10.

10.

10.

Fielding, et. al.

January 1997

4.9 408 Request Ti neout

The client did not produce a request within the time that the server
was prepared to wait. The client MAY repeat the request without
nodi fications at any later tine.

4.10 409 Conflict

The request could not be conpleted due to a conflict with the current
state of the resource. This code is only allowed in situations where
it is expected that the user might be able to resolve the conflict
and resubnmit the request. The response body SHOULD i ncl ude enough
information for the user to recognize the source of the conflict.
Ideally, the response entity would include enough information for the
user or user agent to fix the problem however, that nmay not be
possible and is not required.

Conflicts are nost likely to occur in response to a PUT request. If
versioning is being used and the entity being PUT includes changes to
a resource which conflict with those made by an earlier (third-party)
request, the server MAY use the 409 response to indicate that it
can't conplete the request. In this case, the response entity SHOULD
contain a list of the differences between the two versions in a
format defined by the response Content- Type.

4.11 410 Cone

The requested resource is no | onger available at the server and no
forwardi ng address is known. This condition SHOULD be consi dered
permanent. Cients with link editing capabilities SHOULD del ete
references to the Request-URlI after user approval. If the server does
not know, or has no facility to determ ne, whether or not the
condition is permanent, the status code 404 (Not Found) SHOULD be
used instead. This response is cachable unless indicated otherw se.

The 410 response is primarily intended to assist the task of web

mai nt enance by notifying the recipient that the resource is
intentionally unavail able and that the server owners desire that
remote links to that resource be renoved. Such an event is conmon for
limted-time, pronotional services and for resources belonging to

i ndividuals no | onger working at the server's site. It is not
necessary to mark all permanently unavail abl e resources as "gone" or
to keep the mark for any length of time -- that is left to the

di scretion of the server owner.

St andards Track [Page 62]

otre abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

10.

10.

10.

10.

10.

Fielding, et. al.

January 1997

4.12 411 Length Required

The server refuses to accept the request w thout a defined Content-
Length. The client MAY repeat the request if it adds a valid

Cont ent -Length header field containing the | ength of the message- body
in the request nessage.

4.13 412 Precondition Failed

The precondition given in one or nore of the request-header fields
evaluated to false when it was tested on the server. This response
code allows the client to place preconditions on the current resource
met ai nfornation (header field data) and thus prevent the requested
met hod from being applied to a resource other than the one intended.

4.14 413 Request Entity Too Large

The server is refusing to process a request because the request
entity is larger than the server is willing or able to process. The
server nmay close the connection to prevent the client from continuing
the request.

If the condition is tenporary, the server SHOULD include a Retry-
After header field to indicate that it is tenporary and after what
time the client may try again.

4.15 414 Request-UR Too Long

The server is refusing to service the request because the Request-URI
is longer than the server is willing to interpret. This rare
condition is only likely to occur when a client has inproperly
converted a POST request to a GET request with | ong query
information, when the client has descended into a URL "black hol e" of
redirection (e.g., a redirected URL prefix that points to a suffix of
itself), or when the server is under attack by a client attenpting to
exploit security holes present in sone servers using fixed-length
buffers for reading or nanipulating the Request-URI.

4.16 415 Unsupported Media Type
The server is refusing to service the request because the entity of

the request is in a format not supported by the requested resource
for the requested nethod.

St andar ds Track [Page 63]

RFC 2068 HTTP/ 1.1

10.

10.

10.

10.

10.

10.

Fielding, et. al.

January 1997

5 Server Error 5xx

Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
perform ng the request. Except when responding to a HEAD request, the
server SHOULD include an entity containing an expl anation of the
error situation, and whether it is a tenporary or pernanent
condition. User agents SHOULD display any included entity to the
user. These response codes are applicable to any request nethod.

5.1 500 Internal Server Error

The server encountered an unexpected condition which prevented it
fromfulfilling the request.

5.2 501 Not | npl enented

The server does not support the functionality required to fulfill the
request. This is the appropriate response when the server does not
recogni ze the request method and is not capable of supporting it for
any resource.

5.3 502 Bad Gat eway

The server, while acting as a gateway or proxy, received an invalid
response fromthe upstream server it accessed in attenpting to
fulfill the request.

5.4 503 Service Unavail abl e

The server is currently unable to handl e the request due to a
tenporary overl oadi ng or mai ntenance of the server. The inplication
is that this is a tenporary condition which will be alleviated after
sonme delay. |If known, the Iength of the delay nmay be indicated in a
Retry-After header. |If no Retry-After is given, the client SHOULD
handl e the response as it would for a 500 response.

Not e: The exi stence of the 503 status code does not inply that a
server nust use it when becom ng overl oaded. Sonme servers may wi sh
to sinply refuse the connection.

5.5 504 Gateway Ti neout

The server, while acting as a gateway or proxy, did not receive a

tinely response fromthe upstream server it accessed in attenpting to
conpl ete the request.

St andards Track [Page 64]

T7e abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

10.

11

Fielding, et. al.

January 1997

5.6 505 HTTP Version Not Supported

The server does not support, or refuses to support, the HTTP protocol
version that was used in the request nessage. The server is
indicating that it is unable or unwilling to conplete the request
using the sane mmjor version as the client, as described in section
3.1, other than with this error nessage. The response SHOULD contain
an entity describing why that version is not supported and what other
protocol s are supported by that server.

Access Aut hentication

HTTP provides a sinple challenge-response authentication nechani sm
whi ch MAY be used by a server to challenge a client request and by a
client to provide authentication information. It uses an extensible,
case-insensitive token to identify the authentication schene,
followed by a comma-separated list of attribute-value pairs which
carry the paranmeters necessary for achieving authentication via that
schene.

aut h- scheme = token

aut h- param = token "=" quoted-string

The 401 (Unauthorized) response nessage is used by an origin server
to challenge the authorization of a user agent. This response MJST
include a WAW Aut henti cate header field containing at |east one
chal l enge applicable to the requested resource.

chal | enge aut h-schene 1*SP realm*("," auth-param)

"realnf "=" real mval ue
quot ed-string

real m =
real mval ue =
The realmattribute (case-insensitive) is required for all

aut henti cati on schemes which issue a challenge. The real mval ue
(case-sensitive), in conbination with the canonical root URL (see
section 5.1.2) of the server being accessed, defines the protection
space. These realns allow the protected resources on a server to be
partitioned into a set of protection spaces, each with its own

aut henti cati on scheme and/or authorization database. The real mval ue
is a string, generally assigned by the origin server, which may have
addi tional semantics specific to the authentication schene.

A user agent that wishes to authenticate itself with a server--
usual |y, but not necessarily, after receiving a 401 or 411 response-
-MAY do so by including an Authorization header field with the
request. The Authorization field value consists of credentials

St andar ds Track [Page 65]

RFC 2068 HTTP/ 1.1

11.

Fielding, et. al.

January 1997
contai ning the authentication information of the user agent for the
real m of the resource being requested.

= basic-credentials
| aut h-schene #aut h-param

credential s

The donmi n over which credentials can be autonatically applied by a
user agent is determined by the protection space. |If a prior request
has been authorized, the sane credentials MAY be reused for all other
requests within that protection space for a period of tinme determ ned
by the authentication scheme, paraneters, and/or user preference.

Unl ess ot herwi se defined by the authentication scheme, a single
protection space cannot extend outside the scope of its server.

If the server does not wish to accept the credentials sent with a
request, it SHOULD return a 401 (Unauthorized) response. The response
MUST i nclude a WAV Aut henti cate header field containing the (possibly
new) challenge applicable to the requested resource and an entity
expl ai ning the refusal.

The HTTP protocol does not restrict applications to this sinple

chal | enge-response nmechani sm for access authentication. Additional
mechani sms MAY be used, such as encryption at the transport |evel or
via nmessage encapsul ation, and wi th additional header fields

speci fying authentication information. However, these additional
mechani snms are not defined by this specification.

Proxi es MJUST be conpletely transparent regardi ng user agent
authentication. That is, they MUST forward the WAV Aut henticate and
Aut hori zation headers untouched, and follow the rules found in
section 14.8.

HTTP/1.1 allows a client to pass authentication information to and
froma proxy via the Proxy-Authenticate and Proxy-Authorization
headers.

1 Basic Authentication Scheme

The "basic" authentication scheme is based on the nodel that the user
agent nust authenticate itself with a user-1D and a password for each
realm The real mval ue should be considered an opaque string which
can only be conpared for equality with other realnms on that server.
The server will service the request only if it can validate the
user-1D and password for the protection space of the Request-URI.
There are no optional authentication paraneters.

St andar ds Track [Page 66]

Zye abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

11.

12

Fielding, et. al.

January 1997

Upon recei pt of an unauthorized request for a URl within the
protection space, the server MAY respond with a challenge |like the
foll ow ng:

WAV Aut hent i cate: Basic real n¥"Val | yWrl d"

where "Wl lywrld" is the string assigned by the server to identify
the protection space of the Request-URI.

To receive authorization, the client sends the userid and password,
separated by a single colon (":") character, within a base64 encoded
string in the credentials.

basic-credentials = "Basic" SP basic-cookie

basi c- cooki e = <base64 [7] encodi ng of user-pass,
except not limted to 76 char/line>

user - pass = userid ":" password

userid = *<TEXT excluding ":">

passwor d = *TEXT

Userids might be case sensitive.

If the user agent wishes to send the userid "Al addin" and password
"open sesane", it would use the follow ng header field:

Aut hori zati on: Basi c QAhZGRpbj pvcGVul HNI c2Ft ZQ==

See section 15 for security considerations associated with Basic
aut henti cation.

2 Digest Authentication Schene
A digest authentication for HTTP is specified in RFC 2069 [32].
Cont ent Negoti ati on

Mbst HTTP responses include an entity which contains information for
interpretation by a human user. Naturally, it is desirable to supply
the user with the "best available" entity corresponding to the
request. Unfortunately for servers and caches, not all users have
the same preferences for what is "best," and not all user agents are
equal |y capable of rendering all entity types. For that reason, HTTP
has provisions for several nechanisnms for "content negotiation" --
the process of selecting the best representation for a given response

St andar ds Track [Page 67]

RFC 2068 HTTP/ 1.1

12.

Fielding, et. al.

January 1997

when there are nultiple representations avail able.

Note: This is not called "format negotiation" because the alternate
representations may be of the same nedia type, but use different
capabilities of that type, be in different |anguages, etc.

Any response containing an entity-body MAY be subject to negotiation,
including error responses.

There are two kinds of content negotiation which are possible in
HTTP: server-driven and agent-driven negotiation. These two ki nds of
negotiation are orthogonal and thus may be used separately or in
conbi nati on. One nethod of conbination, referred to as transparent
negoti ation, occurs when a cache uses the agent-driven negotiation
information provided by the origin server in order to provide
server-driven negotiation for subsequent requests.

1 Server-driven Negotiation

If the selection of the best representation for a response is made by
an algorithmlocated at the server, it is called server-driven
negotiation. Selection is based on the avail able representations of
the response (the dinmensions over which it can vary; e.g. |anguage,
content-coding, etc.) and the contents of particular header fields in
the request message or on other information pertaining to the request
(such as the network address of the client).

Server-driven negotiation is advantageous when the al gorithmfor
selecting fromanong the avail able representations is difficult to
describe to the user agent, or when the server desires to send its
"best guess" to the client along with the first response (hoping to
avoid the round-trip delay of a subsequent request if the "best
guess" is good enough for the user). In order to inprove the server's
guess, the user agent MAY include request header fields (Accept,
Accept - Language, Accept-Encoding, etc.) which describe its
preferences for such a response.

Server-driven negotiation has di sadvant ages:

It is inpossible for the server to accurately determ ne what m ght be
"best" for any given user, since that would require conplete

know edge of both the capabilities of the user agent and the intended
use for the response (e.g., does the user want to view it on screen

or print it on paper?).

Havi ng the user agent describe its capabilities in every request can
be both very inefficient (given that only a small percentage of
responses have nultiple representations) and a potential violation of

St andards Track [Page 68]

ee abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

3.

4.

12.

Fi

January 1997

the user's privacy.

It conplicates the inplenmentation of an origin server and the
algorithms for generating responses to a request.

It may limt a public cache's ability to use the same response for
mul tiple user's requests.

HTTP/ 1.1 includes the follow ng request-header fields for enabling
server-driven negotiation through description of user agent
capabilities and user preferences: Accept (section 14.1), Accept-
Charset (section 14.2), Accept-Encoding (section 14.3), Accept-
Language (section 14.4), and User-Agent (section 14.42). However, an
origin server is not limted to these di mensions and MAY vary the
response based on any aspect of the request, including information
outsi de the request-header fields or within extension header fields
not defined by this specification.

HTTP/ 1.1 origin servers MJST include an appropriate Vary header field
(section 14.43) in any cachabl e response based on server-driven
negoti ation. The Vary header field describes the dinensions over

whi ch the response might vary (i.e. the dinmensions over which the
origin server picks its "best guess" response fromnmultiple
representations).

HTTP/ 1.1 public caches MJST recogni ze the Vary header field when it
is included in a response and obey the requirenents described in
section 13.6 that describes the interactions between caching and
content negotiation.

2 Agent-driven Negotiation

Wth agent-driven negotiation, selection of the best representation
for a response is perfornmed by the user agent after receiving an
initial response fromthe origin server. Selection is based on a |ist
of the available representations of the response included within the
header fields (this specification reserves the field-name Alternates,
as described in appendix 19.6.2.1) or entity-body of the initial
response, with each representation identified by its own URI.

Sel ection from anong the representati ons nmay be perfornmed
automatically (if the user agent is capable of doing so) or manually
by the user selecting froma generated (possibly hypertext) nenu.

Agent -driven negotiation is advantageous when the response would vary
over commonl y-used di nensions (such as type, |anguage, or encoding),
when the origin server is unable to determ ne a user agent's
capabilities fromexanm ning the request, and generally when public
caches are used to distribute server |oad and reduce network usage.

elding, et. al. St andar ds Track [Page 69]

RFC 2068 HTTP/ 1.1

12.

13

Fielding, et. al.

January 1997

Agent -driven negotiation suffers fromthe di sadvantage of needing a
second request to obtain the best alternate representation. This
second request is only efficient when caching is used. In addition,
this specification does not define any mechani smfor supporting
automatic selection, though it also does not prevent any such
mechani sm from bei ng devel oped as an extension and used wthin
HTTP/ 1. 1.

HTTP/ 1.1 defines the 300 (Miltiple Choices) and 406 (Not Acceptable)
status codes for enabling agent-driven negotiation when the server is
unwi | ling or unable to provide a varying response using server-driven
negoti ati on.

3 Transparent Negotiation

Transparent negotiation is a conbination of both server-driven and
agent-driven negotiation. Wien a cache is supplied with a formof the
list of available representations of the response (as in agent-driven
negotiation) and the dinensions of variance are conpl etely understood
by the cache, then the cache becones capable of perform ng server-
driven negotiation on behalf of the origin server for subsequent
requests on that resource.

Transparent negotiation has the advantage of distributing the
negotiation work that woul d otherw se be required of the origin
server and al so renoving the second request delay of agent-driven
negoti ati on when the cache is able to correctly guess the right
response.

This specification does not define any mechani smfor transparent
negotiation, though it also does not prevent any such nechani smfrom
bei ng devel oped as an extension and used within HITP/1.1. An HTTP/1.1
cache perform ng transparent negotiation MJST include a Vary header
field in the response (defining the dinmensions of its variance) if it
is cachable to ensure correct interoperation with all HTTP/ 1.1
clients. The agent-driven negotiation infornmation supplied by the
origin server SHOULD be included with the transparently negoti ated
response.

Caching in HTTP

HTTP is typically used for distributed information systens, where
performance can be inproved by the use of response caches. The
HTTP/ 1.1 protocol includes a nunber of elenents intended to make
caching work as well as possible. Because these elenents are
inextricable fromother aspects of the protocol, and because they
interact with each other, it is useful to describe the basic caching
design of HITP separately fromthe detail ed descriptions of nethods,

St andards Track [Page 70]

€ abed g wnipuadwo)

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

headers, response codes, etc.

Caching would be useless if it did not significantly inprove
performance. The goal of caching in HTTP/1.1 is to elim nate the need
to send requests in nmany cases, and to elimnate the need to send
full responses in nmany other cases. The former reduces the nunber of
network round-trips required for many operations; we use an
"expiration" mechanismfor this purpose (see section 13.2). The
latter reduces network bandw dth requirenents; we use a "validation"
mechani smfor this purpose (see section 13.3).

Requi renents for performance, availability, and di sconnected
operation require us to be able to relax the goal of semantic
transparency. The HTTP/ 1.1 protocol allows origin servers, caches,
and clients to explicitly reduce transparency when necessary.
However, because non-transparent operation may confuse non-expert
users, and nmay be inconpatible with certain server applications (such
as those for ordering nerchandise), the protocol requires that
transparency be rel axed

only by an explicit protocol-level request when rel axed by client
or origin server

only with an explicit warning to the end user when rel axed by cache
or client

St andar ds Track [Page 71]

RFC 2068 HTTP/ 1.1

1.

13.

Fielding, et. al.

1.

January 1997

Therefore, the HTTP/ 1.1 protocol provides these inportant el enents:

Protocol features that provide full senantic transparency when this
is required by all parties.

Protocol features that allow an origin server or user agent to
explicitly request and control non-transparent operation.

Protocol features that allow a cache to attach warnings to
responses that do not preserve the requested approxi mation of
semantic transparency.

A basic principle is that it nust be possible for the clients to
detect any potential relaxation of semantic transparency.

Note: The server, cache, or client inplenenter may be faced with
desi gn decisions not explicitly discussed in this specification. If
a decision may affect semantic transparency, the inplenenter ought
to err on the side of maintaining transparency unless a careful and
conpl ete anal ysis shows significant benefits in breaking
transparency.

1.1 Cache Correctness

A correct cache MJST respond to a request with the npbst up-to-date
response held by the cache that is appropriate to the request (see
sections 13.2.5, 13.2.6, and 13.12) which neets one of the follow ng
condi tions:

It has been checked for equival ence with what the origin server
woul d have returned by revalidating the response with the origin
server (section 13.3);

It is "fresh enough” (see section 13.2). In the default case, this
neans it meets the least restrictive freshness requirenment of the
client, server, and cache (see section 14.9); if the origin server
so specifies, it is the freshness requirenent of the origin server
al one.

It includes a warning if the freshness demand of the client or the
origin server is violated (see section 13.1.5 and 14.45).

It is an appropriate 304 (Not Modified), 305 (Proxy Redirect), or
error (4xx or 5xx) response nessage.

If the cache can not communicate with the origin server, then a

correct cache SHOULD respond as above if the response can be
correctly served fromthe cache; if not it MJST return an error or

St andards Track [Page 72]

Gire abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

Fi el ding, et. al

January 1997

warni ng indicating that there was a communi cation failure

If a cache receives a response (either an entire response, or a 304
(Not Modified) response) that it would nornally forward to the
requesting client, and the received response is no |onger fresh, the
cache SHOULD forward it to the requesting client wthout adding a new
Warni ng (but w thout renoving any existing Warning headers). A cache
SHOULD NOT attenpt to revalidate a response sinply because that
response becane stale in transit; this mght lead to an infinite

| oop. An user agent that receives a stale response wi thout a Warning
MAY display a warning indication to the user.

1.2 Wrnings

Whenever a cache returns a response that is neither first-hand nor
"fresh enough" (in the sense of condition 2 in section 13.1.1), it
must attach a warning to that effect, using a Warni ng response-
header. This warning allows clients to take appropriate action

Warni ngs nay be used for other purposes, both cache-related and
otherwi se. The use of a warning, rather than an error status code
di stinguish these responses fromtrue failures

Warni ngs are al ways cachabl e, because they never weaken the
transparency of a response. This neans that warnings can be passed to
HTTP/ 1.0 caches wi thout danger; such caches will sinply pass the
war ni ng al ong as an entity-header in the response

War ni ngs are assigned nunbers between 0 and 99. This specification
defines the code nunbers and neani ngs of each currently assigned
warni ngs, allowing a client or cache to take automated action in sonme
(but not all) cases

Warnings also carry a warning text. The text may be in any
appropriate natural |anguage (perhaps based on the client's Accept
headers), and include an optional indication of what character set is
used

Mil tiple warnings may be attached to a response (either by the origin
server or by a cache), including nultiple warnings with the sane code
nunber. For exanple, a server nay provide the same warning with texts
in both English and Basque

When mul tiple warnings are attached to a response, it may not be
practical or reasonable to display all of themto the user. This
version of HTTP does not specify strict priority rules for deciding
whi ch warnings to display and in what order, but does suggest some
heuri sti cs.

St andar ds Track [Page 73]

RFC 2068 HTTP/ 1.1

13.

13.

Fielding, et. al

January 1997

The Warni ng header and the currently defined warnings are descri bed
in section 14.45

1.3 Cache-control Mechani snms

The basic cache nechanisns in HITP/ 1.1 (server-specified expiration
times and validators) are inplicit directives to caches. In sone
cases, a server or client may need to provide explicit directives to
the HTTP caches. W use the Cache-Control header for this purpose

The Cache-Control header allows a client or server to transnit a
variety of directives in either requests or responses. These
directives typically override the default caching algorithms. As a
general rule, if there is any apparent conflict between header

val ues, the nost restrictive interpretation should be applied (that
is, the one that is nbst likely to preserve semantic transparency)
However, in some cases, Cache-Control directives are explicitly
speci fied as weakening the approxi nation of semantic transparency
(for exanple, "nax-stale" or "public")

The Cache-Control directives are described in detail in section 14.9
1.4 Explicit User Agent Warnings

Many user agents nmake it possible for users to override the basic
cachi ng mechani sms. For exanple, the user agent may allow the user to
specify that cached entities (even explicitly stale ones) are never
validated. O the user agent m ght habitually add "Cache- Control

max- st al e=3600" to every request. The user should have to explicitly
request either non-transparent behavior, or behavior that results in
abnormal |y ineffective caching.

If the user has overridden the basic caching nechani snms, the user
agent should explicitly indicate to the user whenever this results in
the display of information that might not nmeet the server's
transparency requirenents (in particular, if the displayed entity is
known to be stale). Since the protocol nornally allows the user agent
to determine if responses are stale or not, this indication need only
be displ ayed when this actually happens. The indication need not be a
dial og box; it could be an icon (for exanple, a picture of a rotting
fish) or some other visual indicator.

If the user has overridden the caching nechanisns in a way that would
abnornmal |y reduce the effectiveness of caches, the user agent shoul d
continually display an indication (for exanple, a picture of currency
in flames) so that the user does not inadvertently consune excess
resources or suffer from excessive |atency

St andards Track [Page 74]

otre abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

13.

13.

13.

Fi el ding, et. al

January 1997

1.5 Exceptions to the Rules and Warnings

In some cases, the operator of a cache may choose to configure it to
return stal e responses even when not requested by clients. This
deci sion should not be nade |ightly, but may be necessary for reasons
of availability or perfornmance, especially when the cache is poorly
connected to the origin server. \Wenever a cache returns a stale
response, it MJUST mark it as such (using a Warning header). This
allows the client software to alert the user that there may be a
potential problem

It also allows the user agent to take steps to obtain a first-hand or
fresh response. For this reason, a cache SHOULD NOT return a stale
response if the client explicitly requests a first-hand or fresh one,
unless it is inpossible to conply for technical or policy reasons.

1.6 dient-controlled Behavior

While the origin server (and to a | esser extent, intermediate caches,
by their contribution to the age of a response) are the prinary
source of expiration information, in some cases the client may need
to control a cache's decision about whether to return a cached
response without validating it. Cients do this using several
directives of the Cache-Control header.

A client's request may specify the maxinmumage it is willing to
accept of an unvalidated response; specifying a value of zero forces
the cache(s) to revalidate all responses. A client may al so specify
the mnimumtine remaining before a response expires. Both of these
options increase constraints on the behavior of caches, and so cannot
further relax the cache's approxi mati on of senmantic transparency.

A client may also specify that it will accept stale responses, up to
some nmexi mum anount of stal eness. This | oosens the constraints on the
caches, and so nay violate the origin server's specified constraints
on senmantic transparency, but may be necessary to support

di sconnect ed operation, or high availability in the face of poor
connectivity.

2 Expiration Model

2.1 Server-Specified Expiration

HTTP cachi ng works best when caches can entirely avoid naking
requests to the origin server. The prinmary nechani smfor avoiding
requests is for an origin server to provide an explicit expiration

time in the future, indicating that a response nay be used to satisfy
subsequent requests. In other words, a cache can return a fresh

St andar ds Track [Page 75]

RFC 2068 HTTP/ 1.1

13.

Fielding, et. al.

January 1997

response w thout first contacting the server.

Qur expectation is that servers will assign future explicit
expiration times to responses in the belief that the entity is not
likely to change, in a semantically significant way, before the
expiration time is reached. This nornally preserves senantic
transparency, as long as the server's expiration times are carefully
chosen.

The expiration nechani smapplies only to responses taken froma cache
and not to first-hand responses forwarded i mediately to the
requesting client.

If an origin server wishes to force a semantically transparent cache
to validate every request, it may assign an explicit expiration tine
in the past. This nmeans that the response is always stale, and so the
cache SHOULD validate it before using it for subsequent requests. See
section 14.9.4 for a nore restrictive way to force revalidation.

If an origin server wishes to force any HTTP/ 1.1 cache, no matter how
it is configured, to validate every request, it should use the
"nmust-reval i date" Cache-Control directive (see section 14.9).

Servers specify explicit expiration times using either the Expires
header, or the max-age directive of the Cache-Control header.

An expiration time cannot be used to force a user agent to refresh
its display or reload a resource; its semantics apply only to caching
mechani sns, and such mechani sms need only check a resource's
expiration status when a new request for that resource is initiated.
See section 13.13 for explanation of the difference between caches
and hi story nechani sns.

2.2 Heuristic Expiration

Since origin servers do not always provide explicit expiration tines,
HTTP caches typically assign heuristic expiration tinmes, enploying

al gorithnms that use other header values (such as the Last-Mdified
time) to estimate a plausible expiration tine. The HITP/ 1.1

speci fication does not provide specific algorithms, but does inpose
wor st -case constraints on their results. Since heuristic expiration
times may conprom se semantic transparency, they should be used
cautiously, and we encourage origin servers to provide explicit
expiration times as much as possible.

St andar ds Track [Page 76]

L€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

13.2.3 Age Cal cul ations

In order to know if a cached entry is fresh, a cache needs to know if
its age exceeds its freshness lifetinme. W discuss how to calcul ate
the latter in section 13.2.4; this section describes how to calculate
the age of a response or cache entry.

In this discussion, we use the term"now' to nean "the current val ue
of the clock at the host performing the calculation. " Hosts that use
HTTP, but especially hosts running origin servers and caches, should
use NTP [28] or sone similar protocol to synchronize their clocks to
a globally accurate tine standard.

Al'so note that HTTP/1.1 requires origin servers to send a Date header
with every response, giving the tine at which the response was
generated. We use the term "date_value" to denote the value of the
Date header, in a formappropriate for arithmetic operations.

HTTP/ 1.1 uses the Age response-header to hel p convey age information
bet ween caches. The Age header value is the sender's estimte of the
anmount of time since the response was generated at the origin server.
In the case of a cached response that has been revalidated with the
origin server, the Age value is based on the tinme of revalidation,
not of the original response.

In essence, the Age value is the sumof the tine that the response
has been resident in each of the caches along the path fromthe
origin server, plus the amount of tine it has been in transit al ong
net wor k pat hs.

We use the term "age_value" to denote the value of the Age header, in
a formappropriate for arithmetic operations.

A response's age can be calculated in two entirely independent ways:
1. now minus date_value, if the local clock is reasonably well
synchroni zed to the origin server's clock. If the result is
negative, the result is replaced by zero.

2. age_value, if all of the caches along the response path
i mpl enent HTTP/ 1. 1.

G ven that we have two independent ways to conpute the age of a
response when it is received, we can conbine these as

corrected_recei ved_age = max(now - date_val ue, age_val ue)

and as long as we have either nearly synchroni zed clocks or all-

Fielding, et. al. St andar ds Track [Page 77]

RFC 2068 HTTP/ 1.1 January 1997

HTTP/ 1.1 paths, one gets a reliable (conservative) result.

Note that this correction is applied at each HTTP/ 1.1 cache al ong the
path, so that if there is an HITP/ 1.0 cache in the path, the correct
received age is conputed as long as the receiving cache's clock is
nearly in sync. W don't need end-to-end clock synchronization
(although it is good to have), and there is no explicit clock
synchroni zation step.

Because of network-inposed del ays, sone significant interval may pass
fromthe time that a server generates a response and the tinme it is
recei ved at the next outbound cache or client. If uncorrected, this
delay could result in inproperly |ow ages.

Because the request that resulted in the returned Age val ue nust have
been initiated prior to that Age value's generation, we can correct
for delays inposed by the network by recording the tine at which the
request was initiated. Then, when an Age value is received, it MJST
be interpreted relative to the time the request was initiated, not
the tine that the response was received. This algorithmresults in
conservative behavior no natter how nuch delay is experienced. So, we
conput e:

corrected_initial _age = corrected_received_age
+ (now - request_tine)

where "request_tinme" is the tinme (according to the |local clock) when
the request that elicited this response was sent.

Summary of age cal cul ation al gorithm when a cache receives a
response:

/
age_val ue
is the value of Age: header received by the cache with
this response
dat e_val ue
is the value of the origin server's Date: header
request _time
is the (local) time when the cache nmade the request
that resulted in this cached response
response_tine
is the (local) time when the cache received the
response
now
is the current (local) tine

EE T T I

/
apparent _age = max(0, response_tine - date_val ue);

Fielding, et. al. St andar ds Track [Page 78]

8¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

Fielding, et. al.

January 1997

corrected_recei ved_age = max(apparent _age, age_val ue);
response_del ay = response_tinme - request_tine;

corrected_initial _age = corrected_recei ved_age + response_del ay;
resident_tine = now - response_tine;

current _age = corrected_initial_age + resident_tinme;

When a cache sends a response, it nmust add to the

corrected_initial _age the amount of time that the response was
resident locally. It nust then transmt this total age, using the Age
header, to the next recipient cache.

Note that a client cannot reliably tell that a response is first-
hand, but the presence of an Age header indicates that a response
is definitely not first-hand. Also, if the Date in a response is
earlier than the client's local request tinme, the response is
probably not first-hand (in the absence of serious clock skew).

2.4 Expiration Cal cul ations

In order to decide whether a response is fresh or stale, we need to
conmpare its freshness lifetime to its age. The age is cal culated as

described in section 13.2.3; this section describes how to calculate
the freshness lifetine, and to deternmine if a response has expired.

I'n the discussion below, the values can be represented in any form

appropriate for arithmetic operations.

We use the term "expires_value" to denote the value of the Expires
header. W use the term "nax_age_val ue" to denote an appropriate
val ue of the nunber of seconds carried by the nax-age directive of
the Cache-Control header in a response (see section 14.10.

The nax-age directive takes priority over Expires, so if max-age is
present in a response, the calculation is sinply:

freshness_lifetine = max_age_val ue
O herwise, if Expires is present in the response, the calculation is:
freshness_lifetine = expires_val ue - date_val ue

Not e that neither of these calculations is vulnerable to clock skew,
since all of the information comes fromthe origin server.

If neither Expires nor Cache-Control: max-age appears in the
response, and the response does not include other restrictions on
caching, the cache MAY compute a freshness lifetine using a
heuristic. If the value is greater than 24 hours, the cache nust
attach Warning 13 to any response whose age is nore than 24 hours if

St andar ds Track [Page 79]

RFC 2068 HTTP/ 1.1

13.

13.

Fielding, et. al.

January 1997

such warni ng has not already been added.

Al'so, if the response does have a Last-Mdified time, the heuristic
expiration value SHOULD be no nore than sone fraction of the interval
since that time. A typical setting of this fraction m ght be 10%

The calculation to deternmine if a response has expired is quite
si npl e:

response_is_fresh = (freshness_lifetime > current_age)
2.5 Disanbi guating Expiration Val ues

Because expiration values are assigned optinmistically, it is possible
for two caches to contain fresh values for the sane resource that are
different.

If aclient performing a retrieval receives a non-first-hand response
for a request that was already fresh in its own cache, and the Date
header in its existing cache entry is newer than the Date on the new
response, then the client MAY ignore the response. If so, it MAY
retry the request with a "Cache-Control: nax-age=0" directive (see
section 14.9), to force a check with the origin server.

If a cache has two fresh responses for the sane representation with
different validators, it MJST use the one with the nore recent Date
header. This situation may arise because the cache is pooling
responses from other caches, or because a client has asked for a
reload or a revalidation of an apparently fresh cache entry.

2.6 Disanbiguating Multiple Responses

Because a client may be receiving responses via nultiple paths, so
that some responses flow through one set of caches and other
responses flow through a different set of caches, a client nmay

recei ve responses in an order different fromthat in which the origin
server sent them We would like the client to use the npst recently
generated response, even if ol der responses are still apparently
fresh.

Neither the entity tag nor the expiration value can inpose an
ordering on responses, since it is possible that a |later response
intentionally carries an earlier expiration tinme. However, the
HTTP/ 1.1 specification requires the transm ssion of Date headers on
every response, and the Date values are ordered to a granularity of
one second.

St andar ds Track [Page 80]

617€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

Fielding, et. al.

January 1997

Wien a client tries to revalidate a cache entry, and the response it
receives contains a Date header that appears to be ol der than the one
for the existing entry, then the client SHOULD repeat the request
uncondi tionally, and include

Cache- Control : nax- age=0

to force any internediate caches to validate their copies directly
with the origin server, or

Cache- Control : no-cache

to force any internedi ate caches to obtain a new copy fromthe origin
server.

If the Date values are equal, then the client nay use either response
(or may, if it is being extrenmely prudent, request a new response).
Servers MJST NOT depend on clients being able to choose
deterministically between responses generated during the same second,
if their expiration times overlap.

3 Validation Mdel

When a cache has a stale entry that it would like to use as a
response to a client's request, it first has to check with the origin
server (or possibly an internmediate cache with a fresh response) to
see if its cached entry is still usable. W call this "validating"
the cache entry. Since we do not want to have to pay the overhead of
retransmitting the full response if the cached entry is good, and we
do not want to pay the overhead of an extra round trip if the cached
entry is invalid, the HTTP/1.1 protocol supports the use of

condi tional nethods.

The key protocol features for supporting conditional nethods are
those concerned with "cache validators."” Wen an origin server
generates a full response, it attaches some sort of validator to it,
which is kept with the cache entry. Wien a client (user agent or
proxy cache) nekes a conditional request for a resource for which it
has a cache entry, it includes the associated validator in the
request .

The server then checks that validator against the current validator
for the entity, and, if they match, it responds with a special status
code (usually, 304 (Not Mbdified)) and no entity-body. Otherw se, it
returns a full response (including entity-body). Thus, we avoid
transmtting the full response if the validator matches, and we avoid
an extra round trip if it does not nmatch.

St andards Track [Page 81]

RFC 2068 HTTP/ 1.1

13.

13

13.

Fielding, et. al.

January 1997

Note: the conparison functions used to decide if validators match
are defined in section 13.3.3.

In HTTP/ 1.1, a conditional request |ooks exactly the sane as a nornal
request for the same resource, except that it carries a special
header (which includes the validator) that inplicitly turns the

met hod (usually, GET) into a conditional.

The protocol includes both positive and negative senses of cache-

val idating conditions. That is, it is possible to request either that
a nmethod be performed if and only if a validator matches or if and
only if no validators match.

Note: a response that |acks a validator may still be cached, and
served fromcache until it expires, unless this is explicitly

prohi bited by a Cache-Control directive. However, a cache cannot do
a conditional retrieval if it does not have a validator for the
entity, which neans it will not be refreshable after it expires.

3.1 Last-nodified Dates
The Last-Mdified entity-header field value is often used as a cache

validator. In sinple ternms, a cache entry is considered to be valid
if the entity has not been nodified since the Last-Mdified val ue.

.3.2 Entity Tag Cache Validators

The ETag entity-header field value, an entity tag, provides for an
"opaque" cache validator. This may allow nore reliable validation in
situations where it is inconvenient to store nodification dates,
where the one-second resolution of HTTP date values is not
sufficient, or where the origin server wishes to avoid certain
paradoxes that may arise fromthe use of nodification dates.

Entity Tags are described in section 3.11. The headers used with
entity tags are described in sections 14.20, 14.25, 14.26 and 14.43.

3.3 Weak and Strong Validators

Since both origin servers and caches will conpare two validators to
decide if they represent the same or different entities, one nornally
woul d expect that if the entity (the entity-body or any entity-
headers) changes in any way, then the associ ated validator would
change as well. If this is true, then we call this validator a
"strong validator."

However, there may be cases when a server prefers to change the
validator only on senmantically significant changes, and not when

St andards Track [Page 82]

0G¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

insignificant aspects of the entity change. A validator that does not CGET requests. The strong conparison function MJST be used in all
al ways change when the resource changes is a "weak validator." ot her cases.

Entity tags are normally "strong validators," but the protocol An entity tag is strong unless it is explicitly tagged as weak.
provides a nechanismto tag an entity tag as "weak." One can think of Section 3.11 gives the syntax for entity tags.

a strong validator as one that changes whenever the bits of an entity

changes, while a weak val ue changes whenever the neaning of an entity A Last-Modified tinme, when used as a validator in a request, is
changes. Alternatively, one can think of a strong validator as part inplicitly weak unless it is possible to deduce that it is strong,
of an identifier for a specific entity, while a weak validator is using the follow ng rules:

part of an identifier for a set of semantically equivalent entities.
o The validator is being conpared by an origin server to the actual

Note: One exanple of a strong validator is an integer that is current validator for the entity and,

increnented in stable storage every tine an entity is changed. o That origin server reliably knows that the associated entity did
not change twi ce during the second covered by the presented

An entity's nodification tinme, if represented with one-second val i dat or.

resolution, could be a weak validator, since it is possible that or

the resource may be nodified twi ce during a single second.
o The validator is about to be used by a client in an If-Mdified-

Support for weak validators is optional; however, weak validators Since or |f-Unnodified-Since header, because the client has a cache
allow for nore efficient caching of equival ent objects; for entry for the associated entity, and
exanple, a hit counter on a site is probably good enough if it is o That cache entry includes a Date val ue, which gives the tine when
updat ed every few days or weeks, and any value during that period the origin server sent the original response, and
is likely "good enough" to be equival ent. 0o The presented Last-Mdified tine is at | east 60 seconds before the
Dat e val ue.
A "use" of a validator is either when a client generates a request or
and includes the validator in a validating header field, or when a
server conpares two validators. o The validator is being conpared by an internedi ate cache to the
validator stored in its cache entry for the entity, and
Strong validators are usable in any context. Wak validators are only o That cache entry includes a Date val ue, which gives the time when
usabl e in contexts that do not depend on exact equality of an entity. the origin server sent the original response, and
For exanple, either kind is usable for a conditional GET of a full o The presented Last-Mdified time is at | east 60 seconds before the
entity. However, only a strong validator is usable for a sub-range Dat e val ue.
retrieval, since otherwise the client may end up with an internally
inconsistent entity. This nethod relies on the fact that if two different responses were
sent by the origin server during the same second, but both had the
The only function that the HTTP/ 1.1 protocol defines on validators is sane Last-Mdified tine, then at |east one of those responses woul d
conparison. There are two validator conparison functions, depending have a Date value equal to its Last-Mdified time. The arbitrary 60-
on whet her the conparison context allows the use of weak validators second limt guards against the possibility that the Date and Last-
or not: Modi fied values are generated fromdifferent clocks, or at somewhat
different times during the preparation of the response. An
o The strong conparison function: in order to be considered equal, i npl enentation may use a value larger than 60 seconds, if it is
both validators nust be identical in every way, and neither nay be bel i eved that 60 seconds is too short.
weak.
o The weak conparison function: in order to be considered equal, both If a client wishes to performa sub-range retrieval on a value for
validators nmust be identical in every way, but either or both of which it has only a Last-Mdified time and no opaque validator, it
them may be tagged as "weak" w thout affecting the result. may do this only if the Last-Mddified tine is strong in the sense

descri bed here.
The weak conparison function MAY be used for sinple (non-subrange)

Fielding, et. al. St andar ds Track [Page 83] Fielding, et. al. St andards Track [Page 84]

TG€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

Fielding, et. al.

January 1997

A cache or origin server receiving a cache-conditional request, other
than a full-body GET request, MJST use the strong conparison function
to evaluate the condition.

These rules allow HTTP/ 1.1 caches and clients to safely perform sub-
range retrievals on values that have been obtained fromHITP/ 1.0
servers.

3.4 Rules for Wien to Use Entity Tags and Last-nodified Dates

We adopt a set of rules and recomendations for origin servers,
clients, and caches regardi ng when various validator types should be
used, and for what purposes.

HTTP/ 1.1 origin servers:

0 SHOULD send an entity tag validator unless it is not feasible to

generate one.

MAY send a weak entity tag instead of a strong entity tag, if
performance considerations support the use of weak entity tags, or
if it is unfeasible to send a strong entity tag.

SHOULD send a Last-Mdified value if it is feasible to send one,
unl ess the risk of a breakdown in semantic transparency that coul d
result fromusing this date in an If-Mdified-Since header woul d
lead to serious problens.

In other words, the preferred behavior for an HTTP/1.1 origin server
is to send both a strong entity tag and a Last-Mdified val ue.

In order to be legal, a strong entity tag MJUST change whenever the
associated entity value changes in any way. A weak entity tag SHOULD
change whenever the associated entity changes in a senmantically
signi ficant way.

Note: in order to provide semantically transparent caching, an
origin server nust avoid reusing a specific strong entity tag val ue
for two different entities, or reusing a specific weak entity tag
value for two senmantically different entities. Cache entries may
persist for arbitrarily long periods, regardl ess of expiration
times, so it may be inappropriate to expect that a cache will never
again attenpt to validate an entry using a validator that it

obt ai ned at sonme point in the past.

HTTP/ 1.1 clients:
o If an entity tag has been provided by the origin server, MJST

use that entity tag in any cache-conditional request (using
If-Match or |f-None-Match).

St andar ds Track [Page 85]

RFC 2068 HTTP/ 1.1

13.

13.

Fielding, et. al.

January 1997

o If only a Last-Mdified value has been provided by the origin
server, SHOULD use that val ue in non-subrange cache-conditional
requests (using |f-Mdified-Since).

o |If only a Last-Mdified value has been provided by an HTTP/ 1.0
origin server, MAY use that value in subrange cache-conditional
requests (using |f-Unnodified-Since:). The user agent should
provide a way to disable this, in case of difficulty.

o |f both an entity tag and a Last-Modified val ue have been
provi ded by the origin server, SHOULD use both validators in
cache-conditional requests. This allows both HTTP/ 1.0 and
HTTP/ 1.1 caches to respond appropriately.

An HTTP/ 1.1 cache, upon receiving a request, MJST use the nost
restrictive validator when deciding whether the client's cache entry
mat ches the cache's own cache entry. This is only an issue when the
request contains both an entity tag and a | ast-nodified-date

val idator (If-Mdified-Since or |f-Unnodified-Since).

A note on rationale: The general principle behind these rules is
that HTTP/ 1.1 servers and clients should transmit as much non-
redundant information as is available in their responses and
requests. HTTP/ 1.1 systens receiving this information will neke the
nost conservative assunptions about the validators they receive.

HTTP/ 1.0 clients and caches will ignore entity tags. Generally,

| ast-nodi fied val ues received or used by these systems w |l support
transparent and efficient caching, and so HITP/ 1.1 origin servers
shoul d provide Last-Mdified values. In those rare cases where the
use of a Last-Mddified value as a validator by an HTTP/ 1.0 system
could result in a serious problem then HTTP/1.1 origin servers
shoul d not provide one.

3.5 Non-validating Conditionals

The principle behind entity tags is that only the service author
knows the semantics of a resource well enough to select an
appropriate cache validation nmechanism and the specification of any
val i dator conparison function nore conplex than byte-equality would
open up a can of worms. Thus, conparisons of any other headers
(except Last-Modified, for conpatibility with HTTP/1.0) are never
used for purposes of validating a cache entry.

4 Response Cachability

Unl ess specifically constrained by a Cache-Control (section 14.9)
directive, a caching system may al ways store a successful response
(see section 13.8) as a cache entry, may return it w thout validation
if it is fresh, and may return it after successful validation. If

St andar ds Track [Page 86]

26¢ abed z wnipuadwo)

RFC 2068

13.

Fielding, et. al.

HTTP/ 1.1 January 1997

there is neither a cache validator nor an explicit expiration tine
associated with a response, we do not expect it to be cached, but
certain caches may violate this expectation (for exanple, when little
or no network connectivity is available). A client can usually detect
that such a response was taken froma cache by conparing the Date
header to the current tine.

Note that some HTTP/ 1.0 caches are known to violate this
expectati on without providing any Wrning.

However, in sonme cases it may be inappropriate for a cache to retain
an entity, or to return it in response to a subsequent request. This
may be because absol ute semantic transparency is deemed necessary by
the service author, or because of security or privacy considerations.
Certain Cache-Control directives are therefore provided so that the
server can indicate that certain resource entities, or portions
thereof, may not be cached regardl ess of other considerations.

Note that section 14.8 normally prevents a shared cache from saving
and returning a response to a previous request if that request
included an Authorization header.

A response received with a status code of 200, 203, 206, 300, 301 or
410 may be stored by a cache and used in reply to a subsequent
request, subject to the expiration nmechanism unless a Cache-Control
directive prohibits caching. However, a cache that does not support
the Range and Content-Range headers MJST NOT cache 206 (Parti al
Content) responses.

A response received with any other status code MJST NOT be returned
in areply to a subsequent request unless there are Cache-Control
directives or another header(s) that explicitly allowit. For

exanpl e, these include the follow ng: an Expires header (section
14.21); a "nmax-age", "nust-revalidate", "proxy-revalidate", "public"
or "private" Cache-Control directive (section 14.9).

5 Constructing Responses From Caches

The purpose of an HTTP cache is to store information received in
response to requests, for use in responding to future requests. In
many cases, a cache sinply returns the appropriate parts of a
response to the requester. However, if the cache holds a cache entry
based on a previous response, it may have to conbine parts of a new
response with what is held in the cache entry.

St andards Track [Page 87]

RFC 2068

HTTP/ 1.1 January 1997

13.5.1 End-to-end and Hop-by-hop Headers

o]

13.

Fielding, et. al.

For the purpose of defining the behavior of caches and non-caching
proxi es, we divide HTTP headers into two categories:

End-t o-end headers, which nust be transmitted to the
ultinmate recipient of a request or response. End-to-end
headers in responses nust be stored as part of a cache entry
and transmtted in any response formed froma cache entry.
Hop- by- hop headers, which are neaningful only for a single
transport-|evel connection, and are not stored by caches or
forwarded by proxies.

The followi ng HTTP/ 1.1 headers are hop-by-hop headers:

Connecti on

Keep- Al i ve

Public

Proxy- Aut henti cat e
Transfer-Encodi ng
Upgr ade

Al'l other headers defined by HTTP/1.1 are end-to-end headers.

Oo0O0OO0OO0O0

Hop- by- hop headers introduced in future versions of HTTP MJUST be
listed in a Connection header, as described in section 14.10.

5.2 Non-nodi fi abl e Headers

Sonme features of the HTTP/ 1.1 protocol, such as Digest

Aut henti cati on, depend on the value of certain end-to-end headers. A
cache or non-caching proxy SHOULD NOT nodify an end-to-end header

unl ess the definition of that header requires or specifically allows
that.

A cache or non-caching proxy MJUST NOT nodify any of the follow ng
fields in a request or response, nor may it add any of these fields
if not already present:

Cont ent - Locat i on
ETag
Expi res

s}
s}
s}
o Last-Mdified

St andards Track [Page 88]

eGe abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

Fielding, et. al.

January 1997

A cache or non-caching proxy MJST NOT nodify or add any of the
following fields in a response that contains the no-transform Cache-
Control directive, or in any request:

Cont ent - Encodi ng
Cont ent - Lengt h
Cont ent - Range
Cont ent - Type

O o0oo

A cache or non-caching proxy MAY nodify or add these fields in a
response that does not include no-transform but if it does so, it
MUST add a Warning 14 (Transformation applied) if one does not

al ready appear in the response.

War ni ng: unnecessary nodi fication of end-to-end headers may cause
authentication failures if stronger authentication nechanisns are
introduced in later versions of HTTP. Such authentication

mechani sns may rely on the values of header fields not listed here.

5. 3 Conbi ni ng Headers

When a cache makes a validating request to a server, and the server
provides a 304 (Not Mbdified) response, the cache nust construct a
response to send to the requesting client. The cache uses the
entity-body stored in the cache entry as the entity-body of this

out goi ng response. The end-to-end headers stored in the cache entry
are used for the constructed response, except that any end-to-end
headers provided in the 304 response MJST replace the correspondi ng
headers fromthe cache entry. Unless the cache decides to renpve the
cache entry, it MJIST al so replace the end-to-end headers stored with
the cache entry with correspondi ng headers received in the incom ng
response.

In other words, the set of end-to-end headers received in the
incoming response overrides all correspondi ng end-to-end headers
stored with the cache entry. The cache may add \Warni ng headers (see
section 14.45) to this set.

If a header field-nanme in the inconing response natches nore than one
header in the cache entry, all such old headers are repl aced.

Note: this rule allows an origin server to use a 304 (Not Modified)
response to update any header associated with a previous response
for the same entity, although it mght not always be neaningful or
correct to do so. This rule does not allow an origin server to use
a 304 (not Modified) response to entirely delete a header that it
had provided with a previous response.

St andar ds Track [Page 89]

RFC 2068 HTTP/ 1.1

13.

13.

Fielding, et. al.

January 1997

5.4 Conbi ni ng Byte Ranges

A response may transfer only a subrange of the bytes of an entity-
body, either because the request included one or nore Range

speci fications, or because a connection was broken prenaturely. After
several such transfers, a cache may have received several ranges of
the sane entity-body.

If a cache has a stored non-enpty set of subranges for an entity, and
an incom ng response transfers another subrange, the cache MAY

conbi ne the new subrange with the existing set if both the follow ng
conditions are net:

o Both the incom ng response and the cache entry nust have a cache
val i dat or.

o The two cache validators nmust match using the strong conparison
function (see section 13.3.3).

If either requirement is not meant, the cache nust use only the nost
recent partial response (based on the Date values transmtted with
every response, and using the inconmi ng response if these values are
equal or mssing), and nust discard the other partial information.

6 Caching Negoti ated Responses

Use of server-driven content negotiation (section 12), as indicated
by the presence of a Vary header field in a response, alters the
conditions and procedure by which a cache can use the response for
subsequent requests.

A server MJST use the Vary header field (section 14.43) to informa
cache of what header field dinmensions are used to select anong

mul tiple representations of a cachabl e response. A cache may use the
sel ected representation (the entity included with that particul ar
response) for replying to subsequent requests on that resource only
when the subsequent requests have the same or equival ent val ues for
all header fields specified in the Vary response-header. Requests
with a different value for one or nore of those header fields would
be forwarded toward the origin server.

If an entity tag was assigned to the representation, the forwarded
request SHOULD be conditional and include the entity tags in an If-
None- Mat ch header field fromall its cache entries for the Request-
URI. This conveys to the server the set of entities currently held by
the cache, so that if any one of these entities natches the requested
entity, the server can use the ETag header in its 304 (Not Modified)
response to tell the cache which entry is appropriate. If the
entity-tag of the new response matches that of an existing entry, the

St andards Track [Page 90]

¥G¢ abed ¢z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

13.

Fielding, et. al.

January 1997

new response SHOULD be used to update the header fields of the
existing entry, and the result MJST be returned to the client.

The Vary header field may also informthe cache that the
representation was selected using criteria not limted to the
request - headers; in this case, a cache MJST NOT use the response in a
reply to a subsequent request unless the cache relays the new request
to the origin server in a conditional request and the server responds
with 304 (Not Modified), including an entity tag or Content-Location
that indicates which entity shoul d be used.

If any of the existing cache entries contains only partial content
for the associated entity, its entity-tag SHOULD NOT be included in
the |f-None-Match header unless the request is for a range that woul d
be fully satisfied by that entry.

If a cache receives a successful response whose Content-Location
field matches that of an existing cache entry for the sane Request-
URI, whose entity-tag differs fromthat of the existing entry, and
whose Date is nore recent than that of the existing entry, the
existing entry SHOULD NOT be returned in response to future requests,
and shoul d be del eted fromthe cache.

7 Shared and Non- Shared Caches

For reasons of security and privacy, it is necessary to make a

di stinction between "shared" and "non-shared" caches. A non-shared
cache is one that is accessible only to a single user. Accessibility
in this case SHOULD be enforced by appropriate security nechanismns.
Al'l other caches are considered to be "shared." Qther sections of
this specification place certain constraints on the operation of
shared caches in order to prevent |oss of privacy or failure of
access controls.

8 Errors or |nconpl ete Response Cache Behavi or

A cache that receives an inconplete response (for exanple, with fewer
bytes of data than specified in a Content-Length header) may store
the response. However, the cache MJST treat this as a partial
response. Partial responses may be conbined as described in section
13.5.4; the result might be a full response or might still be
partial. A cache MJST NOT return a partial response to a client

wi thout explicitly marking it as such, using the 206 (Partial
Content) status code. A cache MJUST NOT return a partial response
using a status code of 200 (OK).

If a cache receives a 5xx response while attenpting to revalidate an
entry, it may either forward this response to the requesting client,

St andards Track [Page 91]

RFC 2068 HTTP/ 1.1

13.

13.

Fielding, et. al.

January 1997

or act as if the server failed to respond. In the latter case, it MAY
return a previously received response unless the cached entry
includes the "nust-revalidate" Cache-Control directive (see section
14.9).

9 Side Effects of GET and HEAD

Unl ess the origin server explicitly prohibits the caching of their
responses, the application of GET and HEAD nethods to any resources
SHOULD NOT have side effects that would | ead to erroneous behavior if
these responses are taken froma cache. They may still have side
effects, but a cache is not required to consider such side effects in
its caching decisions. Caches are always expected to observe an
origin server's explicit restrictions on caching.

W note one exception to this rule: since some applications have
traditionally used GETs and HEADs with query URLs (those containing a
"?" in the rel _path part) to performoperations with significant side
effects, caches MJUST NOT treat responses to such URLs as fresh unless
the server provides an explicit expiration time. This specifically
means that responses fromHITP/ 1.0 servers for such URI's shoul d not
be taken froma cache. See section 9.1.1 for related information.

10 Invalidation After Updates or Deletions

The effect of certain methods at the origin server may cause one or
nore existing cache entries to become non-transparently invalid. That
is, although they may continue to be "fresh,” they do not accurately
reflect what the origin server would return for a new request.

There is no way for the HTTP protocol to guarantee that all such
cache entries are narked invalid. For exanple, the request that
caused the change at the origin server may not have gone through the
proxy where a cache entry is stored. However, several rules help
reduce the likelihood of erroneous behavior.

In this section, the phrase "invalidate an entity" means that the
cache shoul d either remove all instances of that entity fromits
storage, or should mark these as "invalid" and in need of a mandatory
reval i dation before they can be returned in response to a subsequent
request .

St andards Track [Page 92]

GGe abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

13.

13.

13.

Fielding, et. al.

January 1997

Sonme HTTP nethods may invalidate an entity. This is either the entity
referred to by the Request-URI, or by the Location or Content-
Location response-headers (if present). These nethods are:

o PUT
o DELETE
o POST

In order to prevent denial of service attacks, an invalidation based
on the URI in a Location or Content-Locati on header MJST only be
performed if the host part is the same as in the Request-URI.

11 Wite-Through Mandatory

Al methods that may be expected to cause nodifications to the origin
server's resources MJST be witten through to the origin server. This
currently includes all nethods except for GET and HEAD. A cache MJST
NOT reply to such a request froma client before having transnitted
the request to the inbound server, and having received a

correspondi ng response fromthe inbound server. This does not prevent
a cache fromsending a 100 (Continue) response before the inbound
server has replied.

The alternative (known as "wite-back" or "copy-back" caching) is not
allowed in HITP/ 1.1, due to the difficulty of providing consistent
updates and the problens arising fromserver, cache, or network
failure prior to wite-back.

12 Cache Repl acenent

If a new cachabl e (see sections 14.9.2, 13.2.5, 13.2.6 and 13.8)
response is received froma resource while any existing responses for
the same resource are cached, the cache SHOULD use the new response
to reply to the current request. It may insert it into cache storage
and may, if it neets all other requirements, use it to respond to any
future requests that would previously have caused the old response to
be returned. If it inserts the new response into cache storage it
should follow the rules in section 13.5.3.

Note: a new response that has an ol der Date header val ue than
exi sting cached responses is not cachable.

13 History Lists
User agents often have history mechani sns, such as "Back" buttons and

history lists, which can be used to redisplay an entity retrieved
earlier in a session.

St andar ds Track [Page 93]

RFC 2068 HTTP/ 1.1

14

Fielding, et. al.

January 1997

Hi story nechani sms and caches are different. In particular history
nmechani sns SHOULD NOT try to show a semantical ly transparent view of
the current state of a resource. Rather, a history nechanismis neant
to show exactly what the user saw at the tine when the resource was
retrieved.

By default, an expiration tine does not apply to history nechanisns.
If the entity is still in storage, a history mechani smshoul d di spl ay
it even if the entity has expired, unless the user has specifically
configured the agent to refresh expired history docunents.

This should not be construed to prohibit the history nechani smfrom
telling the user that a view may be stale.

Note: if history Iist mechani sns unnecessarily prevent users from
viewi ng stale resources, this will tend to force service authors to
avoi d using HTTP expiration controls and cache controls when they
woul d otherwi se like to. Service authors may consider it inportant
that users not be presented with error nessages or warning nmessages
when they use navigation controls (such as BACK) to view previously
fetched resources. Even though sonetines such resources ought not
to cached, or ought to expire quickly, user interface
considerations may force service authors to resort to other neans
of preventing caching (e.g. "once-only" URLS) in order not to
suffer the effects of inproperly functioning history nechani sns.

Header Field Definitions
This section defines the syntax and semantics of all standard
HTTP/ 1.1 header fields. For entity-header fields, both sender and

recipient refer to either the client or the server, depending on who
sends and who receives the entity.

St andards Track [Page 94]

9G¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

14.1 Accept

The Accept request-header field can be used to specify certain nedia
types which are acceptable for the response. Accept headers can be
used to indicate that the request is specifically linmted to a small
set of desired types, as in the case of a request for an in-line

i mage.

Accept = "Accept" ":"
#(medi a-range [accept-parans |)

medi a- r ange = (
| (type "/" "')

| (type "/" subtype)

) *

(";" paranmeter)
accept-paranms = ";" "q" "=" qgvalue *(accept-extension)
accept-extension = ";" token ["=" (token | quoted-string)]

The asterisk "*" character is used to group nedia types into ranges,
with "*/*" indicating all nedia types and "type/*" indicating all
subtypes of that type. The nedi a-range MAY include nedia type
paraneters that are applicable to that range.

Each nedi a-range MAY be foll owed by one or nore accept-parans,

begi nning with the "q" paraneter for indicating a relative quality
factor. The first "q" paraneter (if any) separates the nedia-range
paraneter(s) fromthe accept-parans. Quality factors allow the user
or user agent to indicate the relative degree of preference for that
medi a-range, using the qvalue scale fromO to 1 (section 3.9). The
default value is g=1.

Note: Use of the "qg" parameter nanme to separate nedia type
paraneters from Accept extension paranmeters is due to historical
practice. Although this prevents any nedia type paraneter naned
"q" frombeing used with a nmedia range, such an event is believed
to be unlikely given the lack of any "q" paraneters in the | ANA
medi a type registry and the rare usage of any nedia type paraneters
in Accept. Future nedia types shoul d be discouraged from

regi stering any paraneter naned "q".

The exanpl e
Accept: audio/*; g=0.2, audio/basic

SHOULD be interpreted as "I prefer audio/basic, but send ne any audio
type if it is the best available after an 80% nark-down in quality."

Fielding, et. al. St andar ds Track [Page 95]

RFC 2068 HTTP/ 1.1 January 1997

If no Accept header field is present, then it is assumed that the
client accepts all nmedia types. |If an Accept header field is present,
and if the server cannot send a response which is acceptable
according to the conbined Accept field value, then the server SHOULD
send a 406 (not acceptable) response.

A nore el aborate exanple is

Accept: text/plain; g=0.5, text/html,
text/x-dvi; g=0.8, text/x-c

Verbally, this would be interpreted as "text/htm and text/x-c are
the preferred nmedia types, but if they do not exist, then send the
text/x-dvi entity, and if that does not exist, send the text/plain
entity."

Medi a ranges can be overridden by nore specific media ranges or
specific nmedia types. |If nore than one nedia range applies to a given
type, the nost specific reference has precedence. For exanple,

Accept: text/*, text/htm, text/htm;level =1, */*
have the follow ng precedence:

1) text/htnm;level =1

2) text/htm

3) text/*

4) */*
The nedia type quality factor associated with a given type is
determined by finding the nmedia range with the highest precedence
whi ch matches that type. For exanple,

Accept: text/*;q=0.3, text/htm;qg=0.7, text/htnl;level =1,
text/htnl;level =2;q=0.4, */*;q=0.5

woul d cause the follow ng values to be associ ated:

text/htnl ;| evel =2
text/htnl ;| evel =3

text/htnm ;level =1 =1
text/htm =0.7
text/plain =0.3
i mage/ j peg =0.5
=0.4
=0.7

Note: A user agent may be provided with a default set of quality
values for certain nedia ranges. However, unless the user agent is
a closed system which cannot interact with other rendering agents,

Fielding, et. al. St andards Track [Page 96]

1G¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

14.

14.

this default set should be configurable by the user.
2 Accept - Char set

The Accept - Charset request-header field can be used to indicate what
character sets are acceptable for the response. This field allows
clients capabl e of understanding nore conprehensive or special -
purpose character sets to signal that capability to a server which is
capabl e of representing docunments in those character sets. The | SO
8859-1 character set can be assunmed to be acceptable to all user
agent s.

Accept - Charset = "Accept - Charset"
1#(charset [";" "qg" "=" qvalue])

Character set values are described in section 3.4. Each charset my
be given an associated quality value which represents the user's
preference for that charset. The default value is g=1. An exanple is

Accept - Charset: iso-8859-5, unicode-1-1;q=0.8

If no Accept-Charset header is present, the default is that any
character set is acceptable. If an Accept-Charset header is present,
and if the server cannot send a response which is acceptable
according to the Accept-Charset header, then the server SHOULD send
an error response with the 406 (not acceptable) status code, though
the sending of an unacceptabl e response is also all owed.

3 Accept - Encodi ng

The Accept - Encodi ng request-header field is simlar to Accept, but
restricts the content-coding values (section 14.12) which are
acceptable in the response.

Accept - Encodi ng = "Accept-Encoding" ":"
#(content-coding)

An exanple of its use is
Accept - Encodi ng: conpress, gzip

If no Accept-Encoding header is present in a request, the server MAY
assune that the client will accept any content coding. If an Accept-
Encodi ng header is present, and if the server cannot send a response
whi ch is acceptable according to the Accept-Encodi ng header, then the
server SHOULD send an error response with the 406 (Not Acceptable)
status code.

Fielding, et. al. St andar ds Track [Page 97]

RFC 2068

HTTP/ 1.1 January 1997

An enpty Accept-Encodi ng val ue indicates none are acceptable.

14. 4 Accept - Language

The Accept-Language request-header field is simlar to Accept, but
restricts the set of natural |anguages that are preferred
response to the request.

Accept - Language = "Accept - Language" ":"
1#(| anguage-range [;" "q" "="
| anguage-range = ((1*8ALPHA *("-" 1*8ALPHA))

as a

gvalue])

[")

Each | anguage-range MAY be given an associ ated quality val ue which
represents an estimate of the user's preference for the | anguages
specified by that r
exanpl e,

ange. The quality value defaults to "q=

Accept - Language: da, en-gb;g=0.8, en;q=0.7

woul d nmean: "I pref
other types of English." A |anguage-range matches a | anguage-tag if
it exactly equals the tag, or if it exactly equals a prefi
tag such that the first tag character following the prefix is "-".

The special range "

er Danish, but will accept British Engl

1". For

ish and

x of the

*" if present in the Accept-Language field,

mat ches every tag not matched by any other range present in the
Accept - Language fi el d.
This use of a prefix matching rule does not inply that

Not e:

| anguage tags are assigned to | anguages in such a way that it is

al ways true that

tag,

for which this tag is a prefix.

if a user understands a | anguage with a certain
then this user will also understand all |anguages with tags

use of prefix tags if this is the case.

The prefix rule sinply allows the

The | anguage quality factor assigned to a | anguage-tag by the
Accept - Language field is the quality value of the |ongest
range in the field that matches the | anguage-tag. |If no | anguage-

range in the field matches the tag,
assigned is 0.

request,

accept abl e.

the server

| anguage-

the language quality factor

If no Accept-Language header is present in the

SHOULD assune that all |anguages are equally

If an Accept-Language header is present, then

al |

| anguages which are assigned a quality factor greater than 0 are
accept abl e.

It may be contrary to the privacy expectations of the user to send an
Accept - Language header with the conplete linguistic preferences of
the user

Fi el di ng,

et.

in every r

al .

equest. For a discussion of this issue,

St andards Track

see

[Page 98]

8G¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

January 1997

section 15.7.

Note: As intelligibility is highly dependent on the individual

user, it is recomended that client applications make the choice of
linguistic preference available to the user. If the choice is not
made avail abl e, then the Accept-Language header field nust not be
given in the request.

14.5 Accept - Ranges

14.

Fielding, et. al.

The Accept - Ranges response-header field allows the server to indicate
its acceptance of range requests for a resource:

Accept - Ranges = "Accept - Ranges" accept abl e-ranges
accept abl e-ranges = 1#range-unit | "none"

Oigin servers that accept byte-range requests MAY send
Accept - Ranges: bytes

but are not required to do so. Cients MAY generate byte-range

requests w thout having received this header for the resource

i nvol ved.

Servers that do not accept any kind of range request for a resource
MAY send

Accept - Ranges: none
to advise the client not to attenpt a range request.
6 Age
The Age response-header field conveys the sender's estinmate of the
anmount of time since the response (or its revalidation) was generated
at the origin server. A cached response is "fresh" if its age does
not exceed its freshness lifetine. Age values are cal cul ated as
specified in section 13.2.3.

Age = "Age" ":" age-val ue

age-val ue = del ta-seconds

Age val ues are non-negative decinmal integers, representing tine in
seconds.

St andar ds Track [Page 99]

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

If a cache receives a value larger than the |argest positive integer
it can represent, or if any of its age calculations overflows, it
MUST transmit an Age header with a value of 2147483648 (2"31).
HTTP/ 1.1 caches MJUST send an Age header in every response. Caches
SHOULD use an arithmetic type of at least 31 bits of range.

7 Al ow

The Allow entity-header field lists the set of nmethods supported by
the resource identified by the Request-URI. The purpose of this field
is strictly to informthe recipient of valid nmethods associated with
the resource. An All ow header field MJST be present in a 405 (Method
Not Al | owed) response.

Al | ow = "Alow ":" 1#method
Exanpl e of use:
Al l ow. GET, HEAD, PUT

This field cannot prevent a client fromtrying other nethods.

However, the indications given by the Al ow header field val ue SHOULD
be foll owed. The actual set of allowed nethods is defined by the
origin server at the tinme of each request.

The All ow header field MAY be provided with a PUT request to
recomrend the nethods to be supported by the new or nodified
resource. The server is not required to support these nethods and
SHOULD i ncl ude an Al l ow header in the response giving the actual
supported mnet hods.

A proxy MUST NOT nodify the Allow header field even if it does not
understand all the methods specified, since the user agent MAY have
ot her neans of communicating with the origin server.

The All ow header field does not indicate what nethods are inplenented
at the server level. Servers MAY use the Public response-header field
(section 14.35) to describe what nethods are inplenented on the
server as a whol e.

8 Aut horization

A user agent that wishes to authenticate itself with a server--
usual 'y, but not necessarily, after receiving a 401 response--MAY do
so by including an Authorization request-header field with the
request. The Authorization field value consists of credentials
containing the authentication information of the user agent for the
real m of the resource being requested.

St andar ds Track [Page 100]

6G€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

Aut hori zation = "Authorization" ":" credentials

HTTP access authentication is described in section 11. |If a request
is authenticated and a real mspecified, the same credentials SHOULD
be valid for all other requests within this realm

When a shared cache (see section 13.7) receives a request containing
an Aut horization field, it MJUST NOT return the correspondi ng response
as areply to any other request, unless one of the follow ng specific
exceptions hol ds:

1. If the response includes the "proxy-revalidate" Cache-Control
directive, the cache MAY use that response in replying to a

subsequent request, but a proxy cache MUST first revalidate it with

the origin server, using the request-headers fromthe new request
to allow the origin server to authenticate the new request.

2. |If the response includes the "nust-revalidate" Cache-Control
directive, the cache MAY use that response in replying to a
subsequent request, but all caches MJUST first revalidate it with
the origin server, using the request-headers fromthe new request
to allow the origin server to authenticate the new request.

3. If the response includes the "public" Cache-Control directive, it
may be returned in reply to any subsequent request.

9 Cache- Control

The Cache- Control general -header field is used to specify directives
that MJUST be obeyed by all caching nechani snms al ong the
request/response chain. The directives specify behavior intended to
prevent caches from adversely interfering with the request or
response. These directives typically override the default caching
algorithms. Cache directives are unidirectional in that the presence
of a directive in a request does not inply that the sane directive
shoul d be given in the response.

Note that HTTP/ 1.0 caches may not inplenent Cache-Control and may
only inplement Pragma: no-cache (see section 14.32).

Cache directives nust be passed through by a proxy or gateway
application, regardless of their significance to that application,
since the directives may be applicable to all recipients along the
request/response chain. It is not possible to specify a cache-
directive for a specific cache.

Cache- Control = "Cache-Control" ":" 1#cache-directive

cache-directive = cache-request-directive
| cache-response-directive

St andar ds Track [Page 101]

RFC 2068 HTTP/ 1.1

January 1997

cache-request-directive =

"no-cache" ["=" <"> 1#field-nane <">]
"no-store"

"max-age" "=" delta-seconds
"max-stale" ["=" delta-seconds]

[

|

|

| "mn-fresh" " del t a- seconds
| "only-if-cached"

| cache- extension

cache-response-directive =

“public"

"private" ["=" <"> 1#field-name <">]
"no-cache" ["=" <"> 1#field-name <">]
"no- st ore"

|

|

|

| "no-transfornt
| "must-revalidate"

| "proxy-revalidate"

| "max-age" "=" delta-seconds
| cache-extension

cache-extension = token ["=" (token | quoted-string)]

When a directive appears without any 1#fiel d-nane paraneter, the
directive applies to the entire request or response. Wen such a
directive appears with a 1#field-nane paraneter, it applies only to
the naned field or fields, and not to the rest of the request or
response. This nmechani sm supports extensibility; inplenmentations of
future versions of the HITP protocol may apply these directives to
header fields not defined in HTTP/1.1.

The cache-control directives can be broken down into these general
categories:

[o]

(0]

o

Fielding, et. al.

Restrictions on what is cachable; these nay only be inposed by the
origin server.

Restrictions on what nay be stored by a cache; these may be inposed
by either the origin server or the user agent.

Modi fications of the basic expiration nechanism these may be

i nposed by either the origin server or the user agent.

Control s over cache revalidation and reload; these nay only be

i nposed by a user agent.

Control over transformation of entities.

Ext ensions to the caching system

St andards Track [Page 102]

09¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

14.9.1 What is Cachable

By default, a response is cachable if the requirenents of the request
met hod, request header fields, and the response status indicate that
it is cachable. Section 13.4 sunmarizes these defaults for
cachability. The follow ng Cache-Control response directives allow an
origin server to override the default cachability of a response:

public
I ndicates that the response is cachable by any cache, even if it
woul d normal |y be non-cachabl e or cachable only within a non-shared
cache. (See also Authorization, section 14.8, for additional
details.)

private
Indicates that all or part of the response nessage is intended for a
single user and MUST NOT be cached by a shared cache. This allows an
origin server to state that the specified parts of the response are
intended for only one user and are not a valid response for requests
by other users. A private (non-shared) cache may cache the response.

Note: This usage of the word private only controls where the
response may be cached, and cannot ensure the privacy of the
nessage content.

no- cache
Indicates that all or part of the response nessage MUST NOT be cached
anywhere. This allows an origin server to prevent caching even by
caches that have been configured to return stale responses to client
requests.

Note: Mpst HTTP/ 1.0 caches will not recognize or obey this
directive.

14.9.2 What May be Stored by Caches

The purpose of the no-store directive is to prevent the inadvertent
rel ease or retention of sensitive information (for exanple, on backup
tapes). The no-store directive applies to the entire nmessage, and nay
be sent either in a response or in a request. |If sent in a request, a
cache MJUST NOT store any part of either this request or any response
toit. If sent in a response, a cache MUST NOT store any part of
either this response or the request that elicited it. This directive
applies to both non-shared and shared caches. "MJST NOT store" in
this context neans that the cache MJUST NOT intentionally store the
information in non-volatile storage, and MJST make a best-effort
attenpt to renove the information fromvolatile storage as pronptly
as possible after forwarding it.

Fielding, et. al. St andar ds Track [Page 103]

RFC 2068 HTTP/ 1.1 January 1997

14.

Even when this directive is associated with a response, users nay
explicitly store such a response outside of the caching system(e.g.,
with a "Save As" dialog). Hstory buffers may store such responses as
part of their normal operation.

The purpose of this directive is to neet the stated requirenments of
certain users and service authors who are concerned about accidental
rel eases of information via unanticipated accesses to cache data
structures. Wiile the use of this directive nmay inprove privacy in
sone cases, we caution that it is NOT in any way a reliable or
sufficient mechanismfor ensuring privacy. In particular, malicious
or conproni sed caches may not recognize or obey this directive; and
communi cati ons networks may be vul nerabl e to eavesdroppi ng.

9.3 Modifications of the Basic Expiration Mechani sm

The expiration tine of an entity nay be specified by the origin
server using the Expires header (see section 14.21). Alternatively,
it may be specified using the nax-age directive in a response.

If a response includes both an Expires header and a max-age
directive, the nax-age directive overrides the Expires header, even
if the Expires header is nore restrictive. This rule allows an origin
server to provide, for a given response, a longer expiration tine to
an HTTP/ 1.1 (or later) cache than to an HITP/ 1.0 cache. This may be
useful if certain HITP/ 1.0 caches inproperly cal cul ate ages or
expiration times, perhaps due to desynchronized cl ocks.

Not e: nost ol der caches, not conpliant with this specification, do
not inplenment any Cache-Control directives. An origin server

wi shing to use a Cache-Control directive that restricts, but does
not prevent, caching by an HTTP/ 1. 1-conpliant cache may exploit the
requi rement that the nmax-age directive overrides the Expires
header, and the fact that non-HTTP/ 1. 1-conpliant caches do not
observe the max-age directive.

Gt her directives allow an user agent to nodify the basic expiration
mechani sm These directives may be specified on a request:

mex- age
Indicates that the client is willing to accept a response whose age
is no greater than the specified tinme in seconds. Unless max-stale
directive is also included, the client is not willing to accept a
stal e response.

m n-fresh
Indicates that the client is willing to accept a response whose
freshness lifetine is no less than its current age plus the

Fielding, et. al. St andards Track [Page 104]

T9¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

specified time in seconds. That is, the client wants a response
that will still be fresh for at |east the specified nunber of
seconds.

nax-stal e
Indicates that the client is willing to accept a response that has
exceeded its expiration time. |If nax-stale is assigned a val ue,
then the client is willing to accept a response that has exceeded
its expiration time by no nore than the specified nunber of
seconds. If no value is assigned to max-stale, then the client is
willing to accept a stale response of any age.

If a cache returns a stale response, either because of a max-stale
directive on a request, or because the cache is configured to
override the expiration time of a response, the cache MUST attach a
Warni ng header to the stale response, using Warning 10 (Response is
stale).

9.4 Cache Revalidation and Rel oad Controls

Sonetimes an user agent may want or need to insist that a cache
revalidate its cache entry with the origin server (and not just with
the next cache along the path to the origin server), or toreload its
cache entry fromthe origin server. End-to-end revalidation may be
necessary if either the cache or the origin server has overestimted
the expiration tine of the cached response. End-to-end rel oad may be
necessary if the cache entry has beconme corrupted for sone reason.

End-to-end revalidation nay be requested either when the client does
not have its own | ocal cached copy, in which case we call it
"unspeci fied end-to-end revalidation", or when the client does have a
l ocal cached copy, in which case we call it "specific end-to-end
revalidation.”

The client can specify these three kinds of action using Cache-
Control request directives:

End-to-end rel oad
The request includes a "no-cache" Cache-Control directive or, for
conpatibility with HTTP/1.0 clients, "Pragma: no-cache". No field
nanes may be included with the no-cache directive in a request. The
server MJST NOT use a cached copy when responding to such a
request .

Specific end-to-end revalidation
The request includes a "max-age=0" Cache-Control directive, which
forces each cache along the path to the origin server to revalidate
its own entry, if any, with the next cache or server. The initial

St andar ds Track [Page 105]

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

request includes a cache-validating conditional with the client's
current validator.

Unspeci fied end-to-end revalidation
The request includes "max-age=0" Cache-Control directive, which
forces each cache along the path to the origin server to revalidate
its own entry, if any, with the next cache or server. The initial
request does not include a cache-validating conditional; the first
cache along the path (if any) that holds a cache entry for this
resource includes a cache-validating conditional with its current
val i dator.

Wien an internedi ate cache is forced, by nmeans of a nax-age=0
directive, to revalidate its own cache entry, and the client has
supplied its own validator in the request, the supplied validator nay
differ fromthe validator currently stored with the cache entry. In
this case, the cache may use either validator in making its own
request w thout affecting semantic transparency.

However, the choice of validator may affect performance. The best
approach is for the internediate cache to use its own validator when
making its request. If the server replies with 304 (Not Mdified),
then the cache should return its now validated copy to the client
with a 200 (OK) response. |If the server replies with a new entity and
cache validator, however, the internediate cache should conpare the
returned validator with the one provided in the client's request,
using the strong conparison function. If the client's validator is
equal to the origin server's, then the internediate cache sinply
returns 304 (Not Modified). Gtherwise, it returns the newentity with
a 200 (OK) response.

If a request includes the no-cache directive, it should not include
m n-fresh, max-stale, or nax-age.

In some cases, such as tinmes of extrenely poor network connectivity,
a client may want a cache to return only those responses that it
currently has stored, and not to reload or revalidate with the origin
server. To do this, the client may include the only-if-cached
directive in a request. If it receives this directive, a cache SHOULD
either respond using a cached entry that is consistent with the other
constraints of the request, or respond with a 504 (Gateway Ti neout)
status. However, if a group of caches is being operated as a unified
systemwi th good internal connectivity, such a request MAY be
forwarded within that group of caches.

Because a cache may be configured to ignore a server's specified

expiration time, and because a client request may include a max-stale
directive (which has a simlar effect), the protocol also includes a

St andar ds Track [Page 106]

29¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

mechani smfor the origin server to require revalidation of a cache
entry on any subsequent use. When the nust-revalidate directive is
present in a response received by a cache, that cache MUST NOT use
the entry after it becomes stale to respond to a subsequent request
without first revalidating it with the origin server. (l.e., the
cache nust do an end-to-end revalidation every time, if, based solely
on the origin server's Expires or nax-age value, the cached response
is stale.)

The nust-revalidate directive is necessary to support reliable
operation for certain protocol features. In all circunstances an
HTTP/ 1.1 cache MJUST obey the nust-revalidate directive; in
particular, if the cache cannot reach the origin server for any
reason, it MJST generate a 504 (Gateway Tineout) response.

Servers should send the nust-revalidate directive if and only if
failure to revalidate a request on the entity could result in
incorrect operation, such as a silently unexecuted financial
transaction. Recipients MIST NOT take any autonated action that
violates this directive, and MUST NOT automatically provide an
unval i dated copy of the entity if revalidation fails.

Al though this is not recormended, user agents operating under severe
connectivity constraints may violate this directive but, if so, MJST
explicitly warn the user that an unvalidated response has been
provided. The warning MIUST be provi ded on each unvalidated access,
and SHOULD require explicit user confirmtion.

The proxy-revalidate directive has the same nmeaning as the nust-
reval idate directive, except that it does not apply to non-shared
user agent caches. It can be used on a response to an authenticated
request to pernmt the user's cache to store and later return the
response w thout needing to revalidate it (since it has already been
authenticated once by that user), while still requiring proxies that
service many users to revalidate each tine (in order to make sure
that each user has been authenticated). Note that such authenticated
responses al so need the public cache control directive in order to
allow themto be cached at all.

9.5 No-Transform Directive

I npl ementers of internmediate caches (proxies) have found it useful to
convert the nmedia type of certain entity bodies. A proxy mght, for
exanpl e, convert between inmage formats in order to save cache space
or to reduce the amount of traffic on a slow link. HTTP has to date
been silent on these transformations.

St andards Track [Page 107]

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

Serious operational problens have al ready occurred, however, when
these transformations have been applied to entity bodies intended for
certain kinds of applications. For exanple, applications for medical

i magi ng, scientific data analysis and those using end-to-end
authentication, all depend on receiving an entity body that is bit
for bit identical to the original entity-body.

Therefore, if a response includes the no-transformdirective, an
internmedi ate cache or proxy MJST NOT change those headers that are
listed in section 13.5.2 as being subject to the no-transform
directive. This inplies that the cache or proxy nmust not change any
aspect of the entity-body that is specified by these headers.

9.6 Cache Control Extensions

The Cache-Control header field can be extended through the use of one
or nore cache-extension tokens, each with an optional assigned val ue.
I nformati onal extensions (those which do not require a change in
cache behavior) nay be added w thout changing the semantics of other
directives. Behavioral extensions are designed to work by acting as
nodifiers to the existing base of cache directives. Both the new
directive and the standard directive are supplied, such that
applications which do not understand the new directive will default
to the behavior specified by the standard directive, and those that
understand the new directive will recognize it as nodifying the
requirements associated with the standard directive. In this way,
extensions to the Cache-Control directives can be nade without
requiring changes to the base protocol.

Thi s extensi on mechani sm depends on a HTTP cache obeying all of the
cache-control directives defined for its native HTTP-version, obeying
certain extensions, and ignoring all directives that it does not
under st and.

For exanpl e, consider a hypothetical new response directive called
"comuni ty" which acts as a nodifier to the "private" directive. W
define this new directive to mean that, in addition to any non-shared
cache, any cache which is shared only by menbers of the community
naned within its value nay cache the response. An origin server

wi shing to allow the "UCI" community to use an otherw se private
response in their shared cache(s) may do so by including

Cache-Control : private, community="UC"

A cache seeing this header field will act correctly even if the cache
does not understand the "community" cache-extension, since it wll

al so see and understand the "private" directive and thus default to
the safe behavior.

St andar ds Track [Page 108]

£9¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

Unr ecogni zed cache-directives MIST be ignored; it is assuned that any
cache-directive likely to be unrecognized by an HTTP/ 1.1 cache wll
be conbined with standard directives (or the response's default
cachability) such that the cache behavior will remain minimlly
correct even if the cache does not understand the extension(s).

10 Connection

The Connection general -header field allows the sender to specify
options that are desired for that particular connection and MJST NOT
be communi cated by proxies over further connections.

The Connection header has the followi ng granmar:

"Connection"
t oken

Connect i on- header
connecti on-token

1#(connecti on-t oken)

HTTP/ 1.1 proxies MJST parse the Connection header field before a
message is forwarded and, for each connection-token in this field,
renove any header field(s) fromthe message with the same nane as the
connection-token. Connection options are signaled by the presence of
a connection-token in the Connection header field, not by any
correspondi ng additi onal header field(s), since the additional header
field may not be sent if there are no paraneters associated with that
connection option. HITP/ 1.1 defines the "close" connection option
for the sender to signal that the connection will be closed after
conpl etion of the response. For exanple,

Connection: close

in either the request or the response header fields indicates that
the connection should not be considered “persistent' (section 8.1)
after the current request/response is conplete.

HTTP/ 1.1 applications that do not support persistent connections MJST
include the "close" connection option in every nmessage.

11 Content - Base

The Content-Base entity-header field may be used to specify the base

URI for resolving relative URLs within the entity. This header field

is described as Base in RFC 1808, which is expected to be revised.
Cont ent - Base = "Cont ent - Base" absol ut eURI

If no Content-Base field is present, the base URI of an entity is

defined either by its Content-Location (if that Content-Location URI

is an absolute URI) or the URI used to initiate the request, in that

St andards Track [Page 109]

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

order of precedence. Note, however, that the base URI of the contents
within the entity-body nmay be redefined within that entity-body.

12 Content - Encodi ng

The Content-Encoding entity-header field is used as a nodifier to the
nmedi a-type. Wen present, its value indicates what additional content
codi ngs have been applied to the entity-body, and thus what decoding
mechani sms MUST be applied in order to obtain the nedia-type
referenced by the Content-Type header field. Content-Encoding is
primarily used to allow a docunent to be conpressed without |osing
the identity of its underlying nmedia type.

Cont ent - Encodi ng = "Cont ent - Encodi ng" 1#cont ent - codi ng

Content codings are defined in section 3.5. An exanple of its use is
Cont ent - Encodi ng: gzip

The Content-Encoding is a characteristic of the entity identified by
the Request-URI. Typically, the entity-body is stored with this
encoding and is only decoded before rendering or anal ogous usage.

If multiple encodings have been applied to an entity, the content
codings MUST be listed in the order in which they were applied.

Addi tional information about the encoding paraneters MAY be provided
by other entity-header fields not defined by this specification.

13 Cont ent - Language

The Content-Language entity-header field describes the natural

| anguage(s) of the intended audience for the enclosed entity. Note
that this may not be equivalent to all the |Ianguages used within the
entity-body.

Cont ent - Language = "Content-Language" ":" 1#l anguage-tag

Language tags are defined in section 3.10. The primary purpose of
Cont ent - Language is to allow a user to identify and differentiate
entities according to the user's own preferred | anguage. Thus, if the
body content is intended only for a Danish-literate audi ence, the
appropriate field is

Cont ent - Language: da

If no Content-Language is specified, the default is that the content
is intended for all |anguage audi ences. This may nmean that the sender

St andards Track [Page 110]

¥9¢ abed ¢z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

does not consider it to be specific to any natural |anguage, or that
the sender does not know for which |anguage it is intended.

Mil tipl e | anguages MAY be listed for content that is intended for

mul tipl e audi ences. For exanple, a rendition of the "Treaty of

Wi tangi," presented sinultaneously in the original Maori and English
versions, would call for

Cont ent - Language: m, en

However, just because nultiple | anguages are present within an entity
does not mean that it is intended for nultiple linguistic audiences.
An exanpl e woul d be a begi nner's | anguage priner, such as "A First
Lesson in Latin," which is clearly intended to be used by an
English-literate audience. In this case, the Content-Language shoul d
only include "en".

Cont ent - Language nmay be applied to any nedia type -- it is not
limted to textual docunents.

14 Content-Length

The Content-Length entity-header field indicates the size of the
nmessage- body, in deci mal nunber of octets, sent to the recipient or,
in the case of the HEAD nethod, the size of the entity-body that
woul d have been sent had the request been a GET.

Cont ent - Lengt h = "Content-Length" ":" 1*DIAT
An exanple is
Content - Lengt h: 3495

Appl i cati ons SHOULD use this field to indicate the size of the
message-body to be transferred, regardless of the nedia type of the
entity. It nmust be possible for the recipient to reliably determine
the end of HTTP/ 1.1 requests containing an entity-body, e.g., because
the request has a valid Content-Length field, uses Transfer-Encoding:
chunked or a nultipart body.

Any Content-Length greater than or equal to zero is a valid val ue.

Section 4.4 describes how to determne the | ength of a nessage-body
if a Content-Length is not given.

St andards Track [Page 111]

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

Note: The neaning of this field is significantly different fromthe
corresponding definition in MM where it is an optional field
used within the "nessage/ external -body" content-type. In HITP, it
SHOULD be sent whenever the nmessage's |length can be determn ned
prior to being transferred.

14. 15 Content-Location

The Content-Location entity-header field may be used to supply the
resource location for the entity enclosed in the nessage. In the case
where a resource has nultiple entities associated with it, and those
entities actually have separate | ocations by which they m ght be
individually accessed, the server should provide a Content-Location
for the particular variant which is returned. In addition, a server
SHOULD provide a Content-Location for the resource corresponding to
the response entity.

Content - Locati on = "Content-Location" ":
(absoluteURl | relativeURl)

If no Content-Base header field is present, the value of Content-
Location also defines the base URL for the entity (see section
14.11).

The Content-Location value is not a replacenent for the original
requested URI; it is only a statenent of the |ocation of the resource
corresponding to this particular entity at the time of the request.
Future requests MAY use the Content-Location URI if the desire is to
identify the source of that particular entity.

A cache cannot assume that an entity with a Content-Location
different fromthe URI used to retrieve it can be used to respond to
later requests on that Content-Location URI. However, the Content-
Location can be used to differentiate between nultiple entities
retrieved froma single requested resource, as described in section
13. 6.

If the Content-Location is arelative URI, the URl is interpreted
relative to any Content-Base URI provided in the response. |If no
Content-Base is provided, the relative URI is interpreted relative to
the Request-URI.

St andards Track [Page 112]

Gog abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

14. 16 Content - MD5

The Content-MD5 entity-header field, as defined in RFC 1864 [23], is
an MD5 digest of the entity-body for the purpose of providing an
end-to-end nmessage integrity check (MC) of the entity-body. (Note: a
MC is good for detecting accidental nodification of the entity-body
intransit, but is not proof against malicious attacks.)

Cont ent - MD5 = "Content-M»5" ":" nd5-digest
md5- di gest = <base64 of 128 bit MD5 digest as per RFC 1864>

The Content-MD5 header field may be generated by an origin server to
function as an integrity check of the entity-body. Only origin
servers may generate the Content-MD5 header field; proxies and
gateways MUST NOT generate it, as this would defeat its value as an
end-to-end integrity check. Any recipient of the entity-body,

i ncludi ng gateways and proxies, MAY check that the digest value in
this header field natches that of the entity-body as received.

The MD5 digest is conputed based on the content of the entity-body,

i ncludi ng any Content-Encoding that has been applied, but not

i ncluding any Transfer-Encoding that may have been applied to the
nmessage-body. If the nessage is received with a Transfer-Encoding,
that encodi ng nmust be renoved prior to checking the Content-NMD5 val ue
agai nst the received entity.

This has the result that the digest is conputed on the octets of the
entity-body exactly as, and in the order that, they would be sent if
no Transfer-Encodi ng were being applied.

HTTP extends RFC 1864 to pernit the digest to be conputed for MM
conposite nedi a-types (e.g., multipart/* and nessage/rfc822), but
this does not change how the digest is conmputed as defined in the
precedi ng paragraph.

Note: There are several consequences of this. The entity-body for
conposite types may contain many body-parts, each with its own MM
and HTTP headers (including Content-MD5, Content-Transfer-Encoding,
and Content-Encodi ng headers). |If a body-part has a Content-
Transfer-Encodi ng or Content-Encoding header, it is assuned that
the content of the body-part has had the encoding applied, and the
body-part is included in the Content-MD5 digest as is -- i.e.,
after the application. The Transfer-Encodi ng header field is not

all owed within body-parts.

Note: while the definition of Content-MD5 is exactly the sane for
HTTP as in RFC 1864 for M ME entity-bodies, there are several ways

Fielding, et. al. St andar ds Track [Page 113]

RFC 2068 HTTP/ 1.1 January 1997

14.

in which the application of Content-MD5 to HTTP entity-bodies
differs fromits application to MM entity-bodies. One is that
HTTP, unlike M ME, does not use Content-Transfer-Encoding, and does
use Transfer-Encoding and Content-Encoding. Another is that HTTP
nore frequently uses binary content types than MME, so it is worth
noting that, in such cases, the byte order used to conpute the
digest is the transm ssion byte order defined for the type. Lastly,

HTTP al l ows transmi ssion of text types with any of several line
break conventions and not just the canonical formusing CRLF.
Conversion of all line breaks to CRLF should not be done before

conputing or checking the digest: the line break convention used in
the text actually transmtted should be left unaltered when
conputing the digest.

17 Cont ent - Range

The Content-Range entity-header is sent with a partial entity-body to
specify where in the full entity-body the partial body should be
inserted. It also indicates the total size of the full entity-body.
Wien a server returns a partial response to a client, it nust

descri be both the extent of the range covered by the response, and
the length of the entire entity-body.

Cont ent - Range = "Cont ent - Range" ":" content-range-spec
cont ent - range- spec = byte-content-range-spec

byt e- content -range-spec = bytes-unit SP first-byte-pos "-"
| ast-byte-pos "/" entity-length

entity-length 1*DIA T

Unl i ke byte-ranges-specifier values, a byte-content-range-spec may
only specify one range, and nust contain absolute byte positions for
both the first and last byte of the range.

A byt e-cont ent-range-spec whose | ast-byte-pos value is less than its
first-byte-pos value, or whose entity-length value is I ess than or
equal to its last-byte-pos value, is invalid. The recipient of an
invalid byte-content-range-spec MIST ignore it and any content
transferred along with it.

Fielding, et. al. St andards Track [Page 114]

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

Exanpl es of byte-content-range-spec val ues, assumng that the entity did not exist. (Normally, this nmeans return a 200 response contai ning
contains a total of 1234 bytes: the full entity). The reason is that the only time a client will nake
such an invalid request is when the entity is smaller than the entity
o The first 500 bytes: retrieved by a prior request.
bytes 0-499/1234 14. 18 Content-Type
o The second 500 bytes: The Content-Type entity-header field indicates the nmedia type of the
entity-body sent to the recipient or, in the case of the HEAD net hod,
byt es 500- 999/ 1234 the nedia type that woul d have been sent had the request been a CET.
o Al except for the first 500 bytes: Cont ent - Type = "Content-Type" ":" nedia-type

Medi a types are defined in section 3.7. An exanple of the field is
byt es 500-1233/ 1234

Content - Type: text/htm; charset=I SO 8859-4
o The last 500 bytes:

Further discussion of nmethods for identifying the nmedia type of an

bytes 734-1233/1234 entity is provided in section 7.2.1.
When an HTTP nmessage includes the content of a single range (for 14.19 Date
exanpl e, a response to a request for a single range, or to a request
'®) for a set of ranges that overlap w thout any holes), this content is The Date general -header field represents the date and tinme at which
o transmitted with a Content-Range header, and a Content-Length header the nessage was originated, having the same senmantics as orig-date in
3 showi ng the nunber of bytes actually transferred. For exanple, RFC 822. The field value is an HITP-date, as described in section
3.3.1.
-8 HTTP/ 1.1 206 Partial content
> Date: Wed, 15 Nov 1995 06:25:24 GVI Date = "Date" ":" HITP-date
9—_ Last-nmodi fied: Wed, 15 Nov 1995 04:58: 08 GVl
c Cont ent - Range: bytes 21010-47021/ 47022 An exanple is
3 Content - Lengt h: 26012
N Cont ent - Type: image/gif Date: Tue, 15 Nov 1994 08:12:31 GVI
8 When an HTTP nessage includes the content of nultiple ranges (for If a message is received via direct connection with the user agent
© exanpl e, a response to a request for nultiple non-overl apping (in the case of requests) or the origin server (in the case of
D ranges), these are transmtted as a nultipart M ME nessage. The responses), then the date can be assumed to be the current date at
w mul tipart M ME content-type used for this purpose is defined in this the receiving end. However, since the date--as it is believed by the
(o)} specification to be "nmultipart/byteranges". See appendix 19.2 for its origin--is inmportant for evaluating cached responses, origin servers
o2} definition. MJST include a Date header field in all responses. Cients SHOULD
only send a Date header field in nessages that include an entity-
A client that cannot decode a M ME nultipart/byteranges nessage body, as in the case of the PUT and POST requests, and even then it
shoul d not ask for multiple byte-ranges in a single request. is optional. A received nessage which does not have a Date header
field SHOULD be assigned one by the recipient if the nessage will be
When a client requests multiple byte-ranges in one request, the cached by that recipient or gatewayed via a protocol which requires a
server SHOULD return themin the order that they appeared in the Dat e.

request .

If the server ignores a byte-range-spec because it is invalid, the
server should treat the request as if the invalid Range header field

Fielding, et. al. St andar ds Track [Page 115] Fielding, et. al. St andar ds Track [Page 116]

19¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

In theory, the date SHOULD represent the nmonent just before the
entity is generated. In practice, the date can be generated at any
time during the message origination without affecting its senmantic
val ue.

The format of the Date is an absolute date and tinme as defined by
HTTP-date in section 3.3; it MJST be sent in RFC1123 [8]-date format.

20 ETag

The ETag entity-header field defines the entity tag for the

associ ated entity. The headers used with entity tags are described in
sections 14.20, 14.25, 14.26 and 14.43. The entity tag may be used
for conparison with other entities fromthe sane resource (see
section 13.3.2).

ETag = "ETag" entity-tag
Exanpl es:

ETag: "xyzzy"

ETag: W"xyzzy"

ETag: ""
21 Expires

The Expires entity-header field gives the date/tinme after which the
response shoul d be considered stale. A stale cache entry nay not
normal |y be returned by a cache (either a proxy cache or an user
agent cache) unless it is first validated with the origin server (or
with an internediate cache that has a fresh copy of the entity). See
section 13.2 for further discussion of the expiration nodel.

The presence of an Expires field does not inply that the original
resource will change or cease to exist at, before, or after that
tinme.

The format is an absolute date and tinme as defined by HTTP-date in
section 3.3; it MJST be in RFC1123-date fornat:

Expires = "Expires" ":" HITP-date

St andar ds Track [Page 117]

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

An exanple of its use is
Expires: Thu, 01 Dec 1994 16:00: 00 GMI

Note: if a response includes a Cache-Control field with the nax-age
directive, that directive overrides the Expires field.

HTTP/ 1.1 clients and caches MJST treat other invalid date formats,
especially including the value "0", as in the past (i.e., "already
expired").

To mark a response as "already expired," an origin server should use
an Expires date that is equal to the Date header value. (See the
rules for expiration calculations in section 13.2.4.)

To mark a response as "never expires," an origin server should use an
Expires date approxinately one year fromthe tine the response is
sent. HITP/ 1.1 servers should not send Expires dates nore than one
year in the future.

The presence of an Expires header field with a date value of sone
time in the future on an response that otherw se would by default be
non-cacheabl e indicates that the response is cachable, unless

i ndi cated otherwi se by a Cache-Control header field (section 14.9).

22 From

The From request-header field, if given, SHOULD contain an |nternet
e-nui|l address for the human user who controls the requesting user

agent. The address SHOULD be machi ne-usabl e, as defined by mail box
in RFC 822 (as updated by RFC 1123):

From = "Froni ":" mail box
An exanple is:
From webnaster @B3. org

This header field MAY be used for |ogging purposes and as a neans for
identifying the source of invalid or unwanted requests. |t SHOULD NOT
be used as an insecure formof access protection. The interpretation
of this field is that the request is being performed on behalf of the
person given, who accepts responsibility for the nethod perfornmed. In
particul ar, robot agents SHOULD include this header so that the
person responsi ble for running the robot can be contacted if problens
occur on the receiving end.

St andar ds Track [Page 118]

89¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

The Internet e-mail address in this field MAY be separate fromthe
I nternet host which issued the request. For exanple, when a request
is passed through a proxy the original issuer's address SHOULD be
used.

Note: The client SHOULD not send the From header field wthout the
user's approval, as it may conflict with the user's privacy
interests or their site's security policy. It is strongly
recomended that the user be able to disable, enable, and nodify
the value of this field at any time prior to a request.

23 Host

The Host request-header field specifies the Internet host and port
nunber of the resource being requested, as obtained fromthe original
URL given by the user or referring resource (generally an HTTP URL,
as described in section 3.2.2). The Host field value MJST represent
the network location of the origin server or gateway given by the
original URL. This allows the origin server or gateway to
differentiate between internally-anbiguous URLs, such as the root "/"
URL of a server for nmultiple host names on a single | P address.

Host = "Host" ":" host [":" port] Section 3.2.2
A "host" wi thout any trailing port information inplies the default
port for the service requested (e.g., "80" for an HTTP URL). For
exanpl e, a request on the origin server for
<http://ww. w3. or g/ pub/ WW > MJUST i ncl ude:

GET / pub/ WMV HTTP/ 1.1
Host: www. w3. org

A client MUST include a Host header field in all HITP/ 1.1 request
messages on the Internet (i.e., on any nessage corresponding to a
request for a URL which includes an Internet host address for the
service being requested). If the Host field is not already present,
an HTTP/ 1.1 proxy MUST add a Host field to the request nessage prior
to forwarding it on the Internet. Al Internet-based HTTP/ 1.1 servers
MJST respond with a 400 status code to any HTTP/ 1.1 request nessage
which lacks a Host header field.

See sections 5.2 and 19.5.1 for other requirements relating to Host.
24 | f-Modified-Since
The | f-Mdified-Since request-header field is used with the GET

method to nake it conditional: if the requested variant has not been
nmodi fied since the tinme specified in this field, an entity will not

St andar ds Track [Page 119]

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

be returned fromthe server; instead, a 304 (not nodified) response
will be returned w thout any nessage-body.

If-Mdified-Since = "If-Mdified-Since" ":" HITP-date
An exanple of the field is:
I f-Mdified-Since: Sat, 29 Oct 1994 19:43:31 GMI

A GET nethod with an I|f-Mdified-Since header and no Range header
requests that the identified entity be transferred only if it has
been nodified since the date given by the |f-Mdified-Since header.
The algorithmfor determning this includes the follow ng cases:

a)lf the request would nornmally result in anything other than a 200
(OK) status, or if the passed If-Mdified-Since date is invalid, the
response is exactly the sane as for a nornal GET. A date which is
later than the server's current time is invalid.

b)If the variant has been nodified since the If-Mdified-Since date,
the response is exactly the same as for a nornal CET.

c)If the variant has not been nodified since a valid If-Mdified-Since
date, the server MUST return a 304 (Not Modified) response.

The purpose of this feature is to allow efficient updates of cached
information with a mni num anbunt of transacti on overhead.

Not e that the Range request-header field nodifies the meaning of
| f-Mdified-Since; see section 14.36 for full details.

Note that |f-Mdified-Since tines are interpreted by the server,
whose cl ock may not be synchronized with the client.

Note that if a client uses an arbitrary date in the |f-Modified-Since
header instead of a date taken fromthe Last-Mdified header for the
same request, the client should be aware of the fact that this date
is interpreted in the server's understanding of tine. The client
shoul d consi der unsynchroni zed cl ocks and roundi ng probl ens due to
the different encodings of time between the client and server. This
includes the possibility of race conditions if the document has
changed between the tine it was first requested and the I|f-Mdified-
Since date of a subsequent request, and the possibility of clock-
skewrel ated problenms if the If-Mdified-Since date is derived from
the client's clock without correction to the server's clock.
Corrections for different time bases between client and server are at
best approxi mate due to network |atency.

St andar ds Track [Page 120]

69¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

14.25 [f-Match

The | f-Match request-header field is used with a method to nake it
conditional. A client that has one or nore entities previously

obtai ned fromthe resource can verify that one of those entities is
current by including a list of their associated entity tags in the
I f-Match header field. The purpose of this feature is to allow
efficient updates of cached information with a m ni mum anmount of
transaction overhead. It is also used, on updating requests, to
prevent inadvertent nodification of the wong version of a resource.
As a special case, the value "*" matches any current entity of the
resource.

If-Match = "If-Match" ":" ("*" | 1l#entity-tag)

If any of the entity tags match the entity tag of the entity that
woul d have been returned in the response to a simlar GET request
(without the If-Match header) on that resource, or if "*" is given
and any current entity exists for that resource, then the server MAY
performthe requested nethod as if the If-Match header field did not
exi st.

A server MJST use the strong conparison function (see section 3.11)
to conpare the entity tags in If-Match.

If none of the entity tags match, or if "*" is given and no current
entity exists, the server MUST NOT performthe requested nethod, and
MUST return a 412 (Precondition Failed) response. This behavior is
nmost useful when the client wants to prevent an updating nethod, such
as PUT, fromnodifying a resource that has changed since the client
last retrieved it.

If the request would, without the If-Match header field, result in
anything other than a 2xx status, then the |f-Match header MJST be
i gnor ed.

The neaning of "If-Match: *" is that the method SHOULD be perforned
if the representation selected by the origin server (or by a cache,
possi bly using the Vary nmechani sm see section 14.43) exists, and
MUST NOT be performed if the representation does not exist.

St andards Track [Page 121]

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

A request intended to update a resource (e.g., a PUT) MAY include an
I f-Match header field to signal that the request nethod MJST NOT be
applied if the entity corresponding to the If-Match value (a single
entity tag) is no longer a representation of that resource. This
allows the user to indicate that they do not wish the request to be
successful if the resource has been changed without their know edge.
Exanpl es:

I f-Match: "xyzzy"
I f-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
I f-Match: *

26 | f-None-Match

The |1 f-None-Match request-header field is used with a nethod to make
it conditional. A client that has one or nore entities previously
obtained fromthe resource can verify that none of those entities is
current by including a list of their associated entity tags in the

I f-None-Mat ch header field. The purpose of this feature is to allow
efficient updates of cached information with a m ni rum anount of
transaction overhead. It is also used, on updating requests, to
prevent inadvertent nodification of a resource which was not known to
exi st.

As a special case, the value "*" matches any current entity of the
resource.

I f-None-Match = "If-None-Match" ":" ("*" | 1#entity-tag)

If any of the entity tags match the entity tag of the entity that
woul d have been returned in the response to a simlar GET request

(wi thout the If-None-Match header) on that resource, or if "*" is
given and any current entity exists for that resource, then the
server MUST NOT performthe requested nmethod. Instead, if the request
met hod was GET or HEAD, the server SHOULD respond with a 304 (Not
Modi fi ed) response, including the cache-related entity-header fields
(particularly ETag) of one of the entities that matched. For all

ot her request nethods, the server MJUST respond with a status of 412
(Precondition Fail ed).

See section 13.3.3 for rules on howto determine if two entity tags
mat ch. The weak conparison function can only be used with GET or HEAD
requests.

If none of the entity tags match, or if "*" is given and no current

entity exists, then the server MAY performthe requested nethod as if
the 1f-None-Match header field did not exist.

St andards Track [Page 122]

0.€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

If the request would, w thout the |f-None-Match header field, result
in anything other than a 2xx status, then the |f-None-Match header
MUST be ignored.

The neaning of "If-None-Match: *" is that the nmethod MJUST NOT be
performed if the representation selected by the origin server (or by
a cache, possibly using the Vary nechani sm see section 14.43)

exi sts, and SHOULD be performed if the representati on does not exist.
This feature may be useful in preventing races between PUT

oper ations.

Exanpl es:

| f-None-Match: "xyzzy"

I f-None- Match: W"xyzzy"

I f-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

| f-None-Match: W"xyzzy", W"r2d2xxxx", W "c3piozzzz"
| f - None- Match: *

27 1f-Range

If a client has a partial copy of an entity in its cache, and w shes
to have an up-to-date copy of the entire entity in its cache, it

coul d use the Range request-header with a conditional GET (using
either or both of If-Unnodified-Since and |If-Match.) However, if the
condition fails because the entity has been nodified, the client

woul d then have to make a second request to obtain the entire current
entity-body.

The |f-Range header allows a client to "short-circuit" the second
request. Informally, its nmeaning is "if the entity is unchanged, send
me the part(s) that | am mi ssing; otherw se, send nme the entire new
entity.'

If-Range = "If-Range" ":" (entity-tag | HTTP-date)

If the client has no entity tag for an entity, but does have a Last-
Modi fied date, it may use that date in a |f-Range header. (The server
can distinguish between a valid HTTP-date and any formof entity-tag
by exam ning no nore than two characters.) The |f-Range header should
only be used together with a Range header, and nust be ignored if the
request does not include a Range header, or if the server does not
support the sub-range operation.

St andar ds Track [Page 123]

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

If the entity tag given in the If-Range header nmatches the current
entity tag for the entity, then the server should provide the
specified sub-range of the entity using a 206 (Partial content)
response. |If the entity tag does not match, then the server shoul d
return the entire entity using a 200 (OK) response.

28 | f-Unnodified-Since

The |f-Unnodified-Since request-header field is used with a method to
make it conditional. If the requested resource has not been nodified
since the time specified in this field, the server should performthe
requested operation as if the |f-Unnodified-Since header were not
present.

If the requested variant has been nodified since the specified tine,
the server MJUST NOT performthe requested operation, and MJST return
a 412 (Precondition Failed).

I f-Unnodi fied-Since = "If-Unnodi fied-Since" ":" HITP-date
An exanple of the field is:

I f-Unnmodi fied-Since: Sat, 29 Oct 1994 19:43:31 GV
If the request nornally (i.e., without the If-Unnodified-Since
header) would result in anything other than a 2xx status, the If-
Unnodi fi ed- Si nce header should be ignored.
If the specified date is invalid, the header is ignored.

29 Last-Modified

The Last-Mdified entity-header field indicates the date and tine at
which the origin server believes the variant was |ast nodified.

Last-Mdified = "Last-Mdified" ":" HITP-date
An exanple of its use is
Last-Modified: Tue, 15 Nov 1994 12:45:26 GMI

The exact meaning of this header field depends on the inplenentation
of the origin server and the nature of the original resource. For
files, it may be just the file systemlast-nodified tine. For
entities with dynanmically included parts, it may be the nost recent
of the set of last-nodify times for its conponent parts. For database
gateways, it may be the |last-update tinme stanp of the record. For
virtual objects, it nay be the last tine the internal state changed.

St andards Track [Page 124]

T.,€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

An origin server MJST NOT send a Last-Mdified date which is later
than the server's tine of nessage origination. In such cases, where
the resource's last nodification would indicate some tine in the
future, the server MIST replace that date with the nmessage
origination date.

An origin server should obtain the Last-Mdified value of the entity
as close as possible to the time that it generates the Date val ue of
its response. This allows a recipient to make an accurate assessnent
of the entity's nodification time, especially if the entity changes
near the tine that the response is generated.

HTTP/ 1.1 servers SHOULD send Last-Modified whenever feasible.
30 Location

The Location response-header field is used to redirect the recipient
to a location other than the Request-UR for conpletion of the
request or identification of a new resource. For 201 (Created)
responses, the Location is that of the new resource which was created
by the request. For 3xx responses, the |ocation SHOULD indicate the
server's preferred URL for automatic redirection to the resource. The
field value consists of a single absolute URL.

Locati on = "Location" ":" absol uteURl
An exanple is
Location: http://ww. w3. or g/ pub/ WAV Peopl e. ht m

Note: The Content-Locati on header field (section 14.15) differs
fromLocation in that the Content-Location identifies the original
location of the entity enclosed in the request. It is therefore
possible for a response to contain header fields for both Location
and Content-Location. Al so see section 13.10 for cache requirenents
of sone net hods.

31 Max- Forwar ds

The Max- Forwards request-header field may be used with the TRACE

nmet hod (section 14.31) to limt the nunber of proxies or gateways
that can forward the request to the next inbound server. This can be
useful when the client is attenpting to trace a request chain which
appears to be failing or |ooping in md-chain.

Max- For war ds = "Max- Forwards" ":" 1*DIA T

St andar ds Track [Page 125]

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

The Max- Forwards value is a decimal integer indicating the remaining
nunber of tines this request nmessage may be forwarded.

Each proxy or gateway recipient of a TRACE request containing a Mx-
Forwards header field SHOULD check and update its value prior to
forwarding the request. If the received value is zero (0), the

reci pi ent SHOULD NOT forward the request; instead, it SHOULD respond
as the final recipient with a 200 (OK) response containing the

recei ved request nessage as the response entity-body (as described in
section 9.8). If the received Max-Forwards value is greater than
zero, then the forwarded nessage SHOULD contain an updated Max-
Forwards field with a value decremented by one (1).

The Max- Forwards header field SHOULD be ignored for all other nethods
defined by this specification and for any extension nethods for which
it is not explicitly referred to as part of that nethod definition.

32 Pragma

The Pragma general -header field is used to include inplenentation-
specific directives that nay apply to any recipient along the
request/response chain. Al pragne directives specify optional
behavi or fromthe viewpoint of the protocol; however, some systens
MAY require that behavior be consistent with the directives.

Pragma = "Pragma" ":" 1#pragna-directive
pragma-directive = "no-cache" | extension-pragnma
extension-pragma = token ["=" (token | quoted-string)]

When the no-cache directive is present in a request nessage, an
application SHOULD forward the request toward the origin server even
if it has a cached copy of what is being requested. This pragma
directive has the sane semantics as the no-cache cache-directive (see
section 14.9) and is defined here for backwards conpatibility with
HTTP/1.0. dients SHOULD include both header fields when a no-cache
request is sent to a server not known to be HTTP/ 1.1 conpliant.

Pragma directives MJST be passed through by a proxy or gateway
application, regardl ess of their significance to that application,
since the directives may be applicable to all recipients along the
request/response chain. It is not possible to specify a pragna for a
specific recipient; however, any pragma directive not relevant to a
reci pi ent SHOULD be ignored by that recipient.

St andar ds Track [Page 126]

z2.,€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

14.

14.

Fielding, et. al.

January 1997

HTTP/ 1.1 clients SHOULD NOT send the Pragne request-header. HTTP/1.1
caches SHOULD treat "Pragnma: no-cache" as if the client had sent
"Cache-Control: no-cache". No new Pragma directives will be defined
in HTTP.

33 Proxy- Aut henticate

The Proxy- Aut henticate response-header field MIST be included as part
of a 407 (Proxy Authentication Required) response. The field val ue
consists of a challenge that indicates the authentication schene and
paraneters applicable to the proxy for this Request-URI.

Proxy- Aut henticate = "Proxy-Authenticate" chal | enge
The HTTP access authentication process is described in section 11.
Unl i ke WAW Aut henticate, the Proxy-Authenticate header field applies
only to the current connection and SHOULD NOT be passed on to
downstream clients. However, an internmediate proxy may need to obtain
its own credentials by requesting themfromthe downstreamclient,
which in some circunstances will appear as if the proxy is forwarding
the Proxy-Authenticate header field.

34 Proxy- Aut hori zati on

The Proxy- Aut horization request-header field allows the client to
identify itself (or its user) to a proxy which requires
aut hentication. The Proxy-Authorization field value consists of
credentials containing the authentication information of the user
agent for the proxy and/or real mof the resource being requested.
Proxy- Aut hori zati on = "Proxy-Aut hori zati on" credentials
The HTTP access authentication process is described in section 11.
Unli ke Authorization, the Proxy-Authorization header field applies
only to the next outbound proxy that demanded authentication using
the Proxy-Authenticate field. Wien nmultiple proxies are used in a
chain, the Proxy-Authorization header field is consuned by the first
out bound proxy that was expecting to receive credentials. A proxy MAY
relay the credentials fromthe client request to the next proxy if
that is the mechani sm by which the proxies cooperatively authenticate
a given request.

35 Public

The Public response-header field lists the set of nethods supported
by the server. The purpose of this field is strictly to informthe
reci pient of the capabilities of the server regardi ng unusual

met hods. The nethods |listed may or may not be applicable to the

St andards Track [Page 127]

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997
Request-URI; the Allow header field (section 14.7) MAY be used to
indicate methods allowed for a particular URI.

Public = "Public" ":" 1#nethod
Exanpl e of use:

Public: OPTIONS, MGET, MHEAD, GET, HEAD
This header field applies only to the server directly connected to
the client (i.e., the nearest neighbor in a chain of connections). If
the response passes through a proxy, the proxy MJST either renove the
Public header field or replace it with one applicable to its own
capabilities.
36 Range
36.1 Byte Ranges
Since all HITP entities are represented in HTTP nessages as sequences
of bytes, the concept of a byte range is neaningful for any HTTP
entity. (However, not all clients and servers need to support byte-

range operations.)

Byte range specifications in HTTP apply to the sequence of bytes in
the entity-body (not necessarily the same as the nessage- body).

A byte range operation may specify a single range of bytes, or a set
of ranges within a single entity.

ranges-speci fier = byte-ranges-specifier

byt e-ranges-specifier = bytes-unit "=" byte-range-set
byt e-range-set = 1#(byte-range-spec | suffix-byte-range-spec)
byt e-range-spec = first-byte-pos "-" [l ast-byte-pos]

first-byte-pos = 1*DIG T

| ast - byt e- pos =1*DIA T

The first-byte-pos value in a byte-range-spec gives the byte-offset
of the first byte in a range. The | ast-byte-pos val ue gives the
byte-of fset of the last byte in the range; that is, the byte
positions specified are inclusive. Byte offsets start at zero.

St andards Track [Page 128]

e/¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997

If the last-byte-pos value is present, it nust be greater than or
equal to the first-byte-pos in that byte-range-spec, or the byte-
range-spec is invalid. The recipient of an invalid byte-range-spec
must ignore it.

If the | ast-byte-pos value is absent, or if the value is greater than
or equal to the current length of the entity-body, |ast-byte-pos is
taken to be equal to one less than the current length of the entity-
body in bytes.

By its choice of last-byte-pos, a client can linmt the nunber of
bytes retrieved w thout knowi ng the size of the entity.

suf fi x-byte-range-spec = "-" suffix-length

suffix-length = 1*DIG T
A suffix-byte-range-spec is used to specify the suffix of the
entity-body, of a length given by the suffix-length value. (That is,
this formspecifies the last N bytes of an entity-body.) If the
entity is shorter than the specified suffix-length, the entire
entity-body is used.

Exanpl es of byte-ranges-specifier values (assumng an entity-body of
| engt h 10000) :

o The first 500 bytes (byte offsets 0-499, inclusive):
byt es=0- 499

o The second 500 bytes (byte offsets 500-999, inclusive):
byt es=500- 999

o The final 500 bytes (byte offsets 9500-9999, inclusive):
byt es=- 500

o O
byt es=9500-

o The first and | ast bytes only (bytes 0 and 9999):

byt es=0-0, -1

Fielding, et. al. St andar ds Track [Page 129]

RFC 2068 HTTP/ 1.1 January 1997

o Several legal but not canonical specifications of the second
500 bytes (byte offsets 500-999, inclusive):

byt es=500- 600, 601- 999

byt es=500- 700, 601- 999

14.36. 2 Range Retrieval Requests

HTTP retrieval requests using conditional or unconditional CET

met hods may request one or nore sub-ranges of the entity, instead of
the entire entity, using the Range request header, which applies to
the entity returned as the result of the request:

Range = "Range" ":" ranges-specifier

A server MAY ignore the Range header. However, HTTP/1.1 origin
servers and internedi ate caches SHOULD support byte ranges when
possi bl e, since Range supports efficient recovery frompartially
failed transfers, and supports efficient partial retrieval of large
entities.

If the server supports the Range header and the specified range or
ranges are appropriate for the entity:

o The presence of a Range header in an unconditional CET nodifies
what is returned if the GET is otherw se successful. In other
words, the response carries a status code of 206 (Partial
Content) instead of 200 (OK).

o The presence of a Range header in a conditional GET (a request
usi ng one or both of I|f-Modified-Since and If-None-Mtch, or
one or both of If-Unnodified-Since and If-Match) nodifies what
is returned if the GET is otherw se successful and the condition
is true. It does not affect the 304 (Not Modified) response
returned if the conditional is false.

In some cases, it nay be nore appropriate to use the |f-Range header
(see section 14.27) in addition to the Range header.

If a proxy that supports ranges receives a Range request, forwards
the request to an inbound server, and receives an entire entity in
reply, it SHOULD only return the requested range to its client. It
SHOULD store the entire received response in its cache, if that is
consistent with its cache allocation policies.

Fielding, et. al. St andar ds Track [Page 130]

¥,¢€ abed g wnipuadwo)

RFC 2068 HTTP/ 1.1

January 1997

14. 37 Referer

14.

Fielding, et. al.

The Referer[sic] request-header field allows the client to specify,
for the server's benefit, the address (URI) of the resource from

whi ch the Request-UR was obtained (the "referrer”, although the
header field is msspelled.) The Referer request-header allows a
server to generate |lists of back-links to resources for interest,

| oggi ng, optimzed caching, etc. It also allows obsolete or m styped
links to be traced for nmintenance. The Referer field MUST NOT be
sent if the Request-URl was obtained froma source that does not have
its own URI, such as input fromthe user keyboard.

Ref erer = "Referer" (absoluteURl | relativeURl)

Exanpl e:
Referer: http://ww. w3. org/ hypert ext/ Dat aSour ces/ Over vi ew. ht n

If the field value is a partial URI, it SHOULD be interpreted
relative to the Request-URI. The URI MJUST NOT include a fragnent.

Not e: Because the source of a link may be private information or
may reveal an otherw se private information source, it is strongly
recommended that the user be able to select whether or not the
Referer field is sent. For exanple, a browser client could have a
toggle switch for browsing openly/anonynmously, which would
respectively enabl e/ di sabl e the sending of Referer and From
information.

38 Retry-After
The Retry-After response-header field can be used with a 503 (Service
Unavai | abl e) response to indicate how long the service is expected to
be unavailable to the requesting client. The value of this field can
be either an HTTP-date or an integer nunber of seconds (in decimal)
after the time of the response.

Retry-After = "Retry-After" ":" (HITP-date | delta-seconds)
Two exanpl es of its use are

Retry-After: Fri, 31 Dec 1999 23:59:59 GMI
Retry-After: 120

In the latter exanple, the delay is 2 mnutes.

St andards Track [Page 131]

RFC 2068 HTTP/ 1.1 January 1997

14. 39 Server

The Server response-header field contains infornmation about the
software used by the origin server to handle the request. The field
can contain nmultiple product tokens (section 3.8) and conments
identifying the server and any significant subproducts. The product
tokens are listed in order of their significance for identifying the
appl i cation.

Ser ver = "Server" ":" 1*(product | conment)
Exanpl e:
Server: CERN/ 3.0 |ibww 2.17

If the response is being forwarded through a proxy, the proxy
application MIUST NOT nodify the Server response-header. Instead, it
SHOULD include a Via field (as described in section 14.44).

Not e: Reveal ing the specific software version of the server nay
al l ow the server nachine to becone nore vulnerable to attacks
agai nst software that is known to contain security holes. Server
i npl ementers are encouraged to neke this field a configurable
option.

14. 40 Transfer-Encodi ng
The Transfer-Encodi ng general -header field indicates what (if any)
type of transformation has been applied to the message body in order
to safely transfer it between the sender and the recipient. This
differs fromthe Content-Encoding in that the transfer coding is a
property of the nmessage, not of the entity.

Transf er - Encodi ng = "Transfer-Encoding" ":" 1#transfer-
codi ng

Transfer codings are defined in section 3.6. An exanple is:
Transf er- Encodi ng: chunked

Many ol der HTTP/ 1.0 applications do not understand the Transfer-
Encodi ng header.

14. 41 Upgrade
The Upgrade general -header allows the client to specify what

addi tional communication protocols it supports and would |ike to use
if the server finds it appropriate to switch protocols. The server

Fielding, et. al. St andards Track [Page 132]

G/¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

MUST use the Upgrade header field within a 101 (Switching Protocols)
response to indicate which protocol (s) are being switched.

Upgr ade = "Upgr ade" 1#pr oduct

For exanpl e,
Upgrade: HTTP/ 2.0, SHTTP/1.3, IRC/ 6.9, RTA/ x11

The Upgrade header field is intended to provide a sinple mechanism
for transition fromHTTP/1.1 to sone other, inconpatible protocol. It
does so by allowing the client to advertise its desire to use another
protocol, such as a later version of HTTP with a higher najor version
nunber, even though the current request has been made using HTTP/ 1. 1.
This eases the difficult transition between inconpatible protocols by
allowing the client to initiate a request in the nore commonly
supported protocol while indicating to the server that it would |like
to use a "better" protocol if available (where "better" is determ ned
by the server, possibly according to the nature of the nmethod and/ or
resource being requested).

The Upgrade header field only applies to switching application-layer
protocol s upon the existing transport-layer connection. Upgrade
cannot be used to insist on a protocol change; its acceptance and use
by the server is optional. The capabilities and nature of the
application-layer communication after the protocol change is entirely
dependent upon the new protocol chosen, although the first action
after changing the protocol MJST be a response to the initial HTTP
request containing the Upgrade header field.

The Upgrade header field only applies to the inmredi ate connection.
Therefore, the upgrade keyword MJUST be supplied within a Connection
header field (section 14.10) whenever Upgrade is present in an
HTTP/ 1.1 message.

The Upgrade header field cannot be used to indicate a switch to a
protocol on a different connection. For that purpose, it is nore
appropriate to use a 301, 302, 303, or 305 redirection response.

This specification only defines the protocol name "HTTP" for use by
the fam |y of Hypertext Transfer Protocols, as defined by the HITP
version rules of section 3.1 and future updates to this

speci fication. Any token can be used as a protocol nane; however, it
will only be useful if both the client and server associate the nane
with the sane protocol.

St andar ds Track [Page 133]

RFC 2068 HTTP/ 1.1

14.

14.

Fielding, et. al.

January 1997

42 User - Agent

The User-Agent request-header field contains infornmation about the
user agent originating the request. This is for statistical purposes,
the tracing of protocol violations, and autonated recognition of user
agents for the sake of tailoring responses to avoid particul ar user
agent limtations. User agents SHOULD include this field with
requests. The field can contain nultiple product tokens (section 3.8)
and comments identifying the agent and any subproducts which forma
significant part of the user agent. By convention, the product tokens
are listed in order of their significance for identifying the
application.

User - Agent = "User-Agent" ":" 1*(product | comment)
Exanpl e:

User - Agent : CERN-Li neMbde/ 2. 15 | i bwmww/ 2. 17b3
43 Vary

The Vary response-header field is used by a server to signal that the
response entity was selected fromthe available representations of
the response using server-driven negotiation (section 12). Field-
nanes |listed in Vary headers are those of request-headers. The Vary
field value indicates either that the given set of header fields
enconpass the di mensions over which the representation mght vary, or
that the dinensions of variance are unspecified ("*") and thus may
vary over any aspect of future requests.

Vary = "Vary" ":" ("*" | 1l#field-nane)

An HTTP/ 1.1 server MJST include an appropriate Vary header field with
any cachabl e response that is subject to server-driven negotiation.
Doing so allows a cache to properly interpret future requests on that
resource and informs the user agent about the presence of negotiation
on that resource. A server SHOULD include an appropriate Vary header
field with a non-cachabl e response that is subject to server-driven
negotiation, since this mght provide the user agent w th useful
informati on about the dinensions over which the response mnight vary.

The set of header fields named by the Vary field value is known as
the "sel ecting" request-headers.

Wien the cache receives a subsequent request whose Request- URI

speci fies one or nore cache entries including a Vary header, the
cache MUST NOT use such a cache entry to construct a response to the
new request unless all of the headers naned in the cached Vary header

St andar ds Track [Page 134]

9/¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14.

Fielding, et. al.

January 1997

are present in the new request, and all of the stored selecting
request - headers fromthe previous request natch the correspondi ng
headers in the new request.

The sel ecting request-headers fromtwo requests are defined to natch
if and only if the selecting request-headers in the first request can
be transforned to the sel ecting request-headers in the second request
by adding or renoving |inear whitespace (LWS) at places where this is
al | owed by the correspondi ng BNF, and/or conbining multiple nmessage-
header fields with the same field name follow ng the rul es about
message headers in section 4.2.

A Vary field value of "*" signals that unspecified paraneters,
possibly other than the contents of request-header fields (e.g., the
network address of the client), play a role in the selection of the
response representation. Subsequent requests on that resource can
only be properly interpreted by the origin server, and thus a cache
MUST forward a (possibly conditional) request even when it has a
fresh response cached for the resource. See section 13.6 for use of
the Vary header by caches.

A Vary field value consisting of a list of field-nanmes signals that
the representation selected for the response is based on a sel ection
al gorithm whi ch considers ONLY the |isted request-header field val ues
in selecting the nost appropriate representation. A cache MAY assune
that the same selection will be made for future requests with the
sanme values for the listed field nanes, for the duration of tine in
whi ch the response is fresh.

The field-names given are not limted to the set of standard
request - header fields defined by this specification. Field nanes are
case-insensitive.

44 Via

The Via general -header field MUST be used by gateways and proxies to
indicate the intermediate protocols and recipients between the user
agent and the server on requests, and between the origin server and
the client on responses. It is anal ogous to the "Received" field of
RFC 822 and is intended to be used for tracking nessage forwards,
avoi di ng request |oops, and identifying the protocol capabilities of
al | senders along the request/response chain.

St andar ds Track [Page 135]

Fielding, et. al.

RFC 2068 HTTP/ 1.1 January 1997
Via = "Via" ":" 1#(received-protocol received-by [cooment])
recei ved-protocol = [protocol-nane "/"] protocol-version
protocol - nane = token
protocol -version = token
recei ved- by = (host [":" port]) | pseudonym
pseudonym = token

The received-protocol indicates the protocol version of the nmessage
received by the server or client along each segnent of the
request/response chain. The received-protocol version is appended to
the Via field value when the nmessage is forwarded so that information
about the protocol capabilities of upstream applications remains
visible to all recipients.

The protocol-nane is optional if and only if it would be "HTTP". The
received-by field is nornally the host and optional port nunber of a
reci pient server or client that subsequently forwarded the nessage.

However, if the real host is considered to be sensitive information,
it MAY be replaced by a pseudonym If the port is not given, it MAY
be assumed to be the default port of the received-protocol.

Multiple Via field values represent each proxy or gateway that has
forwarded the nessage. Each recipient MIUST append its information
such that the end result is ordered according to the sequence of

f orwar di ng applications.

Conments MAY be used in the Via header field to identify the software
of the recipient proxy or gateway, anal ogous to the User-Agent and
Server header fields. However, all comments in the Via field are
optional and MAY be renpved by any recipient prior to forwarding the
nessage.

For exanple, a request nessage could be sent froman HTTP/ 1.0 user
agent to an internal proxy code-naned "fred", which uses HTTP/1.1 to
forward the request to a public proxy at nowhere.com which conpletes
the request by forwarding it to the origin server at ww.ics. uci.edu.
The request received by ww. ics.uci.edu woul d then have the follow ng
Vi a header field:

Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

Proxi es and gateways used as a portal through a network firewall
SHOULD NOT, by default, forward the names and ports of hosts within
the firewall region. This information SHOULD only be propagated if
explicitly enabled. If not enabled, the received-by host of any host
behind the firewall SHOULD be replaced by an appropriate pseudonym
for that host.

St andar ds Track [Page 136]

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

For organi zations that have strong privacy requirenents for hiding
internal structures, a proxy MAY conbi ne an ordered subsequence of War ni ng headers shoul d be added after any existing Warni ng headers. A
Via header field entries with identical received-protocol values into cache MUST NOT del ete any Warning header that it received with a

a single such entry. For exanple, response. However, if a cache successfully validates a cache entry,

it SHOULD renpve any Warning headers previously attached to that
entry except as specified for specific Warning codes. It MJST then
add any Warning headers received in the validating response. In other
coul d be collapsed to wor ds, Warning headers are those that woul d be attached to the nost

recent relevant response.

Any server or cache may add Warning headers to a response. New

Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

Via: 1.0 ricky, 1.1 nmertz, 1.0 lucy
When mul tiple Warning headers are attached to a response, the user
Appl i cations SHOULD NOT conbine nultiple entries unless they are all agent SHOULD display as many of them as possible, in the order that
under the same organizational control and the hosts have al ready been they appear in the response. If it is not possible to display all of
repl aced by pseudonyns. Applications MJST NOT conbi ne entries which the warnings, the user agent should follow these heuristics:
have different received-protocol values.
o Warnings that appear early in the response take priority over those
appearing later in the response.
o Warnings in the user's preferred character set take priority over

14. 45 V\rni ng

1€ abed z wnipuadwo)d

Fielding, et. al.

The Wrni ng response-header field is used to carry additional
informati on about the status of a response which may not be reflected
by the response status code. This information is typically, though
not exclusively, used to warn about a possible lack of semantic
transparency from cachi ng operations.

Warni ng headers are sent with responses using:

War ni ng = "War ni ng" 1#war ni ng- val ue
war ni ng-val ue = warn-code SP warn-agent SP war n-text
warn-code = 2DIAT
warn-agent = (host [":" port]) | pseudonym
; the name or pseudonym of the server adding
; the Warning header, for use in debugging
warn-text = quoted-string

A response may carry nore than one Warning header.

The warn-text should be in a natural |anguage and character set that
is nost likely to be intelligible to the hunman user receiving the
response. This decision may be based on any avail abl e know edge,
such as the location of the cache or user, the Accept-Language field
in a request, the Content-Language field in a response, etc. The
default |anguage is English and the default character set is |ISO
8859- 1.

If a character set other than 1SO 8859-1 is used, it MJST be encoded
in the warn-text using the method described in RFC 1522 [14].

St andar ds Track [Page 137]

warnings in other character sets but with identical warn-codes and

war n- agents.

Systens that generate nultiple Warning headers should order themw th
this user agent behavior in mnd.

This is a list of the currently-defined warn-codes, each with a
recommended warn-text in English, and a description of its neaning.

10 Response is stale
MUST be included whenever the returned response is stale. A cache may
add this warning to any response, but may never renopve it until the
response is known to be fresh.

11 Revalidation failed
MUST be included if a cache returns a stale response because an
attenpt to revalidate the response failed, due to an inability to
reach the server. A cache may add this warning to any response, but
may never renopve it until the response is successfully revalidated.

12 Di sconnected operation
SHOULD be included if the cache is intentionally disconnected from
the rest of the network for a period of tine.

13 Heuristic expiration
MUST be included if the cache heuristically chose a freshness
lifetime greater than 24 hours and the response's age is greater than
24 hours.

Fielding, et. al. St andards Track [Page 138]

8/ ¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

14

99

14

15

15.

Fi

January 1997

Transformati on applied

MJUST be added by an internediate cache or proxy if it applies any
transfornmati on changi ng the content-coding (as specified in the
Cont ent - Encodi ng header) or nedia-type (as specified in the
Cont ent - Type header) of the response, unless this Warning code

al ready appears in the response. MJUST NOT be deleted froma response
even after revalidation.

M scel | aneous war ni ng

The warning text may include arbitrary infornation to be presented to
a human user, or |ogged. A systemreceiving this warning MJST NOT
take any automated action.

.46 WNM Aut henti cate

The WAW Aut henti cate response-header field MJST be included in 401
(Unaut hori zed) response nessages. The field val ue consists of at

| east one chal l enge that indicates the authentication schene(s) and
paraneters applicable to the Request-URI.

WAV Aut henti cate = "WMWM Aut henticate" ":" 1#chal |l enge

The HTTP access authentication process is described in section 11.
User agents MJST take special care in parsing the WAV Aut henticate
field value if it contains nore than one challenge, or if nore than
one WAW Aut henticate header field is provided, since the contents of
a challenge may itself contain a comma-separated |ist of

aut hentication paraneters.

Security Considerations

This section is neant to informapplication devel opers, information
providers, and users of the security limtations in HTTP/1.1 as
described by this docunent. The di scussion does not include
definitive solutions to the problens reveal ed, though it does nake
sone suggestions for reducing security risks.

1 Authentication of dients

The Basic authentication scheme is not a secure nethod of user
authentication, nor does it in any way protect the entity, which is
transmtted in clear text across the physical network used as the
carrier. HTTP does not prevent additional authentication schenes and
encryption nechani sms from being enployed to increase security or the
addi tion of enhancenents (such as schenes to use one-tine passwords)
to Basic authentication.

elding, et. al. St andar ds Track [Page 139]

RFC 2068 HTTP/ 1.1

15.

Fielding, et. al.

January 1997

The nost serious flaw in Basic authentication is that it results in

the essentially clear text transmission of the user's password over

the physical network. It is this problemwhich Digest Authentication
attenpts to address.

Because Basic authentication involves the clear text transm ssion of
passwords it SHOULD never be used (w thout enhancenents) to protect
sensitive or valuabl e information.

A common use of Basic authentication is for identification purposes
-- requiring the user to provide a user nane and password as a neans
of identification, for exanple, for purposes of gathering accurate
usage statistics on a server. Wen used in this way it is tenpting to
think that there is no danger in its use if illicit access to the
protected docunments is not a major concern. This is only correct if
the server issues both user nanme and password to the users and in
particul ar does not allow the user to choose his or her own password.
The danger arises because naive users frequently reuse a single
password to avoid the task of maintaining nultiple passwords.

If a server pernmits users to select their own passwords, then the
threat is not only illicit access to docunments on the server but also
illicit access to the accounts of all users who have chosen to use
their account password. |If users are allowed to choose their own
password that al so nmeans the server nust nmintain files containing
the (presumably encrypted) passwords. Many of these may be the
account passwords of users perhaps at distant sites. The owner or
admi ni strator of such a system could conceivably incur liability if
this information is not nmaintained in a secure fashion.

Basi ¢ Authentication is also vulnerable to spoofing by counterfeit
servers. |If a user can be led to believe that he is connecting to a
host containing information protected by basic authentication when in
fact he is connecting to a hostile server or gateway then the
attacker can request a password, store it for later use, and feign an
error. This type of attack is not possible with D gest Authentication
[32]. Server inplenmenters SHOULD guard agai nst the possibility of
this sort of counterfeiting by gateways or Cd scripts. In particular
it is very dangerous for a server to sinply turn over a connection to
a gateway since that gateway can then use the persistent connection
mechanismto engage in nultiple transactions with the client while

i npersonating the original server in a way that is not detectable by
the client.

2 Ofering a Choice of Authentication Schenes

An HTTP/ 1.1 server may return nultiple challenges with a 401
(Aut henticate) response, and each chall enge may use a different

St andar ds Track [Page 140]

6.€ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

15.

15.

Fielding, et. al.

January 1997

schene. The order of the challenges returned to the user agent is in
the order that the server would prefer they be chosen. The server
shoul d order its challenges with the "npst secure" authentication
schene first. A user agent should choose as the challenge to be nade
to the user the first one that the user agent understands.

When the server offers choices of authentication schemes using the
WAV Aut hent i cat e header, the "security" of the authentication is only
as malicious user could capture the set of challenges and try to

aut henticate hinm herself using the weakest of the authentication
schenes. Thus, the ordering serves nore to protect the user's
credentials than the server's infornation.

A possible man-in-the-mddle (MTM attack would be to add a weak

aut hentication schene to the set of choices, hoping that the client
wi Il use one that exposes the user's credentials (e.g. password). For
this reason, the client should al ways use the strongest schene that
it understands fromthe choices accepted.

An even better MTM attack woul d be to renpve all offered choices,
and to insert a challenge that requests Basic authentication. For
this reason, user agents that are concerned about this kind of attack
coul d renmenber the strongest authentication scheme ever requested by
a server and produce a warning nessage that requires user

confirmati on before using a weaker one. A particularly insidious way
to mount such a MTM attack would be to offer a "free" proxy caching
service to gullible users.

3 Abuse of Server Log Information

A server is in the position to save personal data about a user's
requests which may identify their reading patterns or subjects of
interest. This information is clearly confidential in nature and its
handl i ng may be constrained by law in certain countries. People using
the HTTP protocol to provide data are responsible for ensuring that
such material is not distributed without the perm ssion of any
individuals that are identifiable by the published results.

4 Transfer of Sensitive Information

Li ke any generic data transfer protocol, HTTP cannot regul ate the
content of the data that is transferred, nor is there any a priori
nmet hod of determining the sensitivity of any particul ar piece of
information within the context of any given request. Therefore,

appl i cations SHOULD supply as much control over this information as
possible to the provider of that information. Four header fields are
worth special nention in this context: Server, Via, Referer and From

St andards Track [Page 141]

RFC 2068 HTTP/ 1.1

15.

Fielding, et. al.

January 1997

Reveal ing the specific software version of the server may allow the
server machine to becone nore vul nerable to attacks agai nst software
that is known to contain security holes. |Inplementers SHOULD make the
Server header field a configurable option.

Proxi es which serve as a portal through a network firewall SHOULD
take special precautions regarding the transfer of header infornation
that identifies the hosts behind the firewall. In particular, they
SHOULD renpve, or replace with sanitized versions, any Via fields
generated behind the firewall.

The Referer field allows reading patterns to be studied and reverse
links drawn. Although it can be very useful, its power can be abused
if user details are not separated fromthe information contained in
the Referer. Even when the personal information has been renoved, the
Referer field may indicate a private docunment's URl whose publication
woul d be i nappropriate.

The information sent in the Fromfield mght conflict with the user's
privacy interests or their site's security policy, and hence it
SHOULD NOT be transmitted wi thout the user being able to disable,
enabl e, and nodify the contents of the field. The user MJUST be able
to set the contents of this field within a user preference or
application defaults configuration.

W suggest, though do not require, that a convenient toggle interface
be provided for the user to enable or disable the sending of From and
Ref erer information.

5 Attacks Based On File and Path Names

I npl ement ati ons of HTTP origin servers SHOULD be careful to restrict
t he docunents returned by HTTP requests to be only those that were
intended by the server adm nistrators. If an HTTP server translates
HTTP URIs directly into file systemcalls, the server MIST take
special care not to serve files that were not intended to be
delivered to HTTP clients. For exanple, UNIX, M crosoft Wndows, and
other operating systems use ".." as a path conponent to indicate a
directory | evel above the current one. On such a system an HITP
server MJST disallow any such construct in the Request-URl if it

woul d ot herwi se all ow access to a resource outside those intended to
be accessible via the HTTP server. Simlarly, files intended for
reference only internally to the server (such as access control
files, configuration files, and script code) MJUST be protected from
inappropriate retrieval, since they might contain sensitive
information. Experience has shown that minor bugs in such HTTP server
inpl ementations have turned into security risks.

St andards Track [Page 142]

08¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

15.

15.

Fielding, et. al.

January 1997

6 Personal |nformation

HTTP clients are often privy to large anpunts of personal information
(e.g. the user's nanme, location, nmail address, passwords, encryption
keys, etc.), and SHOULD be very careful to prevent unintentional

| eakage of this information via the HITP protocol to other sources.
We very strongly recomrend that a convenient interface be provided
for the user to control dissenination of such information, and that
designers and inplementers be particularly careful in this area.

Hi story shows that errors in this area are often both serious
security and/or privacy problens, and often generate highly adverse
publicity for the inplenenter's conpany.

7 Privacy |ssues Connected to Accept Headers

Accept request-headers can reveal information about the user to all
servers which are accessed. The Accept-Language header in particular
can reveal infornation the user would consider to be of a private
nature, because the understanding of particular |anguages is often
strongly correlated to the nmenbership of a particular ethnic group.
User agents which offer the option to configure the contents of an
Accept - Language header to be sent in every request are strongly
encouraged to let the configuration process include a nessage which
makes the user aware of the loss of privacy involved.

An approach that limts the loss of privacy would be for a user agent
to omt the sending of Accept-Language headers by default, and to ask
the user whether it should start sending Accept-Language headers to a
server if it detects, by looking for any Vary response-header fields
generated by the server, that such sending could inprove the quality
of service.

El aborate user-custom zed accept header fields sent in every request,
in particular if these include quality values, can be used by servers
as relatively reliable and long-lived user identifiers. Such user
identifiers would allow content providers to do click-trail tracking,
and woul d al | ow col | aborating content providers to match cross-server
click-trails or form subnissions of individual users. Note that for
many users not behind a proxy, the network address of the host
running the user agent will also serve as a |long-lived user
identifier. In environnents where proxies are used to enhance
privacy, user agents shoul d be conservative in offering accept header
configuration options to end users. As an extreme privacy neasure,
proxies could filter the accept headers in relayed requests. GCeneral
purpose user agents which provide a high degree of header
configurability should warn users about the | oss of privacy which can
be invol ved.

St andards Track [Page 143]

RFC 2068 HTTP/ 1.1

15.

15.

16

Fielding, et. al.

January 1997

8 DNS Spoofing

Cients using HTITP rely heavily on the Domain Name Service, and are
thus generally prone to security attacks based on the deliberate

m s-associ ati on of |P addresses and DNS nanes. Clients need to be
cautious in assuming the continuing validity of an | P nunber/DNS name
associ ation.

In particular, HTTP clients SHOULD rely on their name resol ver for
confirmation of an | P nunber/DNS nane associ ation, rather than
caching the result of previous host name | ookups. Many platforns

al ready can cache host nane | ookups | ocally when appropriate, and

t hey SHOULD be configured to do so. These | ookups shoul d be cached,
however, only when the TTL (Time To Live) information reported by the
nanme server nakes it likely that the cached information will remain
useful .

If HTTP clients cache the results of host nane | ookups in order to
achi eve a perfornance inprovenent, they MJST observe the TTL
information reported by DNS.

If HTTP clients do not observe this rule, they could be spoofed when
a previously-accessed server's | P address changes. As network
renunbering is expected to becone increasingly common, the
possibility of this formof attack will grow. Observing this
requirement thus reduces this potential security vulnerability.

This requirenent also inproves the |oad-bal anci ng behavior of clients
for replicated servers using the sane DNS nanme and reduces the
likelihood of a user's experiencing failure in accessing sites which
use that strategy.

9 Location Headers and Spoofing

If a single server supports multiple organizations that do not trust
one another, then it nust check the values of Location and Content-
Location headers in responses that are generated under control of
said organi zations to nmake sure that they do not attenpt to
invalidate resources over which they have no authority.

Acknowl edgment s

Thi s specification makes heavy use of the augnmented BNF and generic
constructs defined by David H Crocker for RFC 822. Similarly, it
reuses nmany of the definitions provided by Nathaniel Borenstein and
Ned Freed for MME. W hope that their inclusion in this
specification will help reduce past confusion over the relationship
between HTTP and Internet mail nmessage formats.

St andards Track [Page 144]

T8¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

January 1997

The HTTP protocol has evol ved considerably over the past four years.
It has benefited froma large and active devel oper conmunity--the
many peopl e who have participated on the wwtalk nailing Iist--and
it is that comunity which has been nost responsible for the success
of HTTP and of the World-Wde Web in general. Marc Andreessen, Robert

Cailliau, Daniel W Connolly,

Goff, Phillip M Hallam Baker,
McCool , Lou Montulli, Dave Raggett,

Bob Denny, John Franks, Jean-Francois
Hakon W Lie, Ari Luotonen, Rob

Tony Sanders, and Marc

VanHeyni ngen deserve special recognition for their efforts in
defining early aspects of the protocol.

Thi s document has benefited greatly fromthe comrents of all those

participating in the HTTP- WG

In addition to those already nentioned,

the follow ng individuals have contributed to this specification:

Gary Adans

Haral d Tveit Alvestrand
Keith Ball

Bri an Behl endor f
Paul Burchard
Mauri zi o Codogno
M ke Cow i shaw
Roman Czyborra
M chael A. Dol an
David J. Fiander
Al an Freier

Mar ¢ Hedl und
Geg Herlihy
Koen Hol t man

Al ex Hopmann

Bob Jer ni gan
Shel Kaphan
Rohit Khare
John Kl ensin
Martijn Koster

Al exei Kosut
David M Kristol
Dani el LaLi berte
Ben Laurie

Paul J. Leach
Dani el DuBoi s

Al bert Lunde

John C. Mallery
Jean- Philippe Martin-Flatin
Larry Masinter
Mtra

David Morris

Gavin Nicol

Bill Perry

Jeffrey Perry
Scott Powers

Oonen Rees

Luigi Rizzo

Davi d Robi nson
Mar ¢ Sal onpn

Rich Sal z

Allan M Schiffnman
Ji m Sei dman

Chuck Shotton

Eric W Sink

Sinon E. Spero
Richard N. Tayl or
Robert S. Thau
Bill (BearHeart) Weinnman
Francoi s Yergeau
Mary Ell en Zurko

Mich of the content and presentation of the caching design is due to
suggestions and comrents fromindividuals including: Shel Kaphan,
Paul Leach, Koen Holtman, David Mrris, and Larry Masinter.

Fielding, et. al.

St andards Track [Page 145]

RFC 2068 HTTP/ 1.1

17

Fielding, et. al.

January 1997

Most of the specification of ranges is based on work originally done
by Ari Luotonen and John Franks, with additional input from Steve
Zilles.

Thanks to the "cave men" of Palo Alto. You know who you are.

JimGettys (the current editor of this docunent) wi shes particularly
to thank Roy Fielding, the previous editor of this docunent, along
with John Klensin, Jeff Mgul, Paul Leach, Dave Kristol, Koen
Hol t man, John Franks, Al ex Hopmann, and Larry Masinter for their

hel p.

Ref er ences

[1] Alvestrand, H, "Tags for the identification of |anguages", RFC
1766, UNI NETT, March 1995.

[2] Anklesaria, F., McCahill, M, Lindner, P., Johnson, D., Torrey,
D., and B. Alberti. "The Internet Gopher Protocol: (a distributed
document search and retrieval protocol)", RFC 1436, University of
M nnesota, March 1993.

[3] Berners-Lee, T., "Universal Resource ldentifiers in WW, A

Uni fying Syntax for the Expression of Nanes and Addresses of Objects
on the Network as used in the Wrld-Wde Wb", RFC 1630, CERN, June
1994.

[4] Berners-Lee, T., Masinter, L., and M MCahill, "Uniform Resource
Locators (URL)", RFC 1738, CERN, Xerox PARC, University of M nnesota,
Decenber 1994.

[5] Berners-Lee, T., and D. Connolly, "HyperText Markup Language
Specification - 2.0", RFC 1866, M T/LCS, Novenber 1995.

[6] Berners-Lee, T., Fielding, R, and H Frystyk, "Hypertext
Transfer Protocol -- HTTP/1.0.", RFC 1945 MT/LCS, UC Irvine, My
1996.

[7] Freed, N., and N. Borenstein, "Miltipurpose |Internet Mail
Extensions (M ME) Part One: Format of Internet Message Bodies", RFC
2045, Innosoft, First Virtual, Novenber 1996.

[8] Braden, R, "Requirenments for Internet hosts - application and
support”, STD 3, RFC 1123, |ETF, Cctober 1989.

[9] Crocker, D., "Standard for the Fornmat of ARPA Internet Text
Messages", STD 11, RFC 822, UDEL, August 1982.

St andards Track [Page 146]

Z28¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

[10] Davis, F., Kahle, B., Mrris, H, Salem J., Shen, T., Wang, R, Part 5: Latin/Cyrillic al phabet, |1SO 8859-5, 1988.
Sui, J., and M Ginbaum "WAIS Interface Protocol Prototype Part 6: Latin/Arabic al phabet, |SO 8859-6, 1987.
Functional Specification", (v1.5), Thinking Machi nes Corporation, Part 7: Latin/Geek al phabet, |1SO 8859-7, 1987.
April 1990. Part 8: Latin/Hebrew al phabet, |SO 8859-8, 1988.
Part 9: Latin al phabet No. 5, |1SO 8859-9, 1990.

[11] Fielding, R, "Relative Uniform Resource Locators", RFC 1808, UC

Irvine, June 1995. [23] Meyers, J., and M Rose "The Content-M5 Header Field", RFC
1864, Carnegie Mellon, Dover Beach Consulting, October, 1995.

[12] Horton, M, and R Adans. "Standard for interchange of USENET

nmessages”, RFC 1036, AT&T Bell Laboratories, Center for Seismc [24] Carpenter, B., and Y. Rekhter, "Renunbering Needs Work", RFC
St udi es, Decenber 1987. 1900, | AB, February 1996.

[13] Kantor, B., and P. Lapsley. "Network News Transfer Protocol." A [25] Deutsch, P., "&ZIP file format specification version 4.3." RFC
Proposed Standard for the Stream Based Transmi ssion of News", RFC 1952, Al addin Enterprises, My 1996.

977, UC San Diego, UC Berkeley, February 1986.
[26] Venkata N. Padmanabhan and Jeffrey C. Mgul. Inproving HTTP

[14] Moore, K., "M ME (Miltipurpose Internet Mail Extensions) Part Latency. Conputer Networks and | SDN Systens, v. 28, pp. 25-35, Dec.

Three: Message Header Extensions for Non-ASCI|I Text", RFC 2047, 1995. Slightly revised version of paper in Proc. 2nd International

University of Tennessee, Novenber 1996. WAV Conf. '94: Mosaic and the Wb, Cct. 1994, which is available at
http://ww. ncsa. ui uc. edu/ SDG | T94/ Pr oceedi ngs/ DDay/ nogul /

[15] Nebel, E., and L. Masinter. "Formbased File Upload in HTM.", HTTPLat ency. htmi .

RFC 1867, Xerox Corporation, Novenber 1995.
[27] Joe Touch, John Hei demann, and Katia Cbraczka, "Analysis of HITP

[16] Postel, J., "Sinple Mail Transfer Protocol", STD 10, RFC 821, Per f ormance”, <URL: http://wwvisi.edu/lsanmib/http-perf/>,

USC/ I SI, August 1982. USC/ I nformation Sciences Institute, June 1996

[17] Postel, J., "Media Type Registration Procedure", RFC 2048, [28] MIls, D, "Network Tinme Protocol, Version 3, Specification,

USC/ | SI, Novenber 1996. I npl enent ati on and Anal ysis", RFC 1305, University of Del aware, March
1992.

[18] Postel, J., and J. Reynolds, "File Transfer Protocol (FTP)", STD

9, RFC 959, USC/ISI, Cctober 1985. [29] Deutsch, P., "DEFLATE Conpressed Data Format Specification
version 1.3." RFC 1951, Aladdin Enterprises, May 1996.

[19] Reynolds, J., and J. Postel, "Assigned Nunbers", STD 2, RFC

1700, USC/1Sl, Cctober 1994. [30] Spero, S., "Analysis of HTTP Perfornmance Probl ens"
<URL: http://sunsite.unc. edu/ mdna-rel ease/ htt p- prob. ht m >.

[20] Sollins, K, and L. Masinter, "Functional Requirenents for

Uni f orm Resource Nanes", RFC 1737, M T/LCS, Xerox Corporation, [31] Deutsch, P., and J-L. Gailly, "ZLIB Conpressed Data Fornat

Decenber 1994. Speci fication version 3.3", RFC 1950, Al addin Enterprises, Info-2ZIP,
May 1996.

[21] US-ASCI|I. Coded Character Set - 7-Bit American Standard Code for

Information Interchange. Standard ANSI X3.4-1986, ANSI, 1986. [32] Franks, J., Hallam Baker, P., Hostetler, J., Leach, P.,
Luotonen, A, Sink, E., and L. Stewart, "An Extension to HTTP :

[22] 1SO8859. International Standard -- Information Processing -- Di gest Access Authentication", RFC 2069, January 1997.

8-bit Single-Byte Coded G aphic Character Sets --

Part 1: Latin al phabet No. 1, |SO 8859-1:1987.

Part 2: Latin al phabet No. 2, |1SO 8859-2, 1987.
Part 3: Latin al phabet No. 3, 1SO 8859-3, 1988.
Part 4: Latin al phabet No. 4, 1SO 8859-4, 1988.

Fielding, et. al. St andards Track [Page 147] Fielding, et. al. St andards Track [Page 148]

eg¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

18 Aut hors' Addresses

Roy T. Fielding

Department of Information and Conputer Science
Uni versity of California

Irvine, CA 92717-3425, USA

Fax: +1 (714) 824-4056
EMui | : fielding@cs. uci.edu

JimCettys

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbri dge, MA 02139, USA

Fax: +1 (617) 258 8682
EMail: jg@a8.org

Jeffrey C. Mgul

West ern Research Laboratory

Di gi tal Equi pnent Corporation

250 University Avenue

Palo Alto, California, 94305, USA

EMui | : nogul @w | . dec. com

Henrik Frystyk Niel sen

W38 Consortium

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbri dge, MA 02139, USA

Fax: +1 (617) 258 8682
EMui | : frystyk@?3. org

Ti m Berners- Lee

Director, WB Consortium

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbri dge, MA 02139, USA

Fax: +1 (617) 258 8682
EMai |l : tinbl @B3.org

Fielding, et. al. St andards Track

January 1997

[Page 149]

RFC 2068 HTTP/ 1.1

19 Appendi ces
19.1 Internet Media Type nessage/ http

In addition to defining the HTTP/1.1 protocol, this

January 1997

docunent serves

as the specification for the Internet nmedia type "nmessage/ http". The

following is to be registered with | ANA

Medi a Type nane: nmessage

Medi a subtype nane: http

Requi red paraneters: none

Optional paraneters: version, megtype

version: The HTTP-Version nunber of the encl osed nessage

(e.g., "1.1"). If not present, the version can be
determined fromthe first line of the body.
nsgtype: The message type -- "request" or "response". If not

present, the type can be deternmined fromthe first

l'ine of the body.

Encodi ng considerations: only "7bit", "8bit", or "binary" are

permtted
Security considerations: none
19.2 Internet Media Type multipart/byteranges

Wien an HTTP nmessage includes the content of multipl

e ranges (for

exanpl e, a response to a request for nultiple non-overl apping
ranges), these are transnitted as a nultipart M ME nessage. The

mul tipart media type for this purpose is called
"mul tipart/byteranges”.

The mul tipart/byteranges nedia type includes two or
with its own Content-Type and Content-Range fields.
separated using a M ME boundary paraneter.

Medi a Type nane: mul ti part

Medi a subtype nane: byt er anges

Requi red paraneters: boundary

Optional paraneters: none

Encodi ng considerations: only "7bit", "8bit",
permtted

Security considerations: none

Fielding, et. al. St andards Track

nore parts, each
The parts are

or "binary" are

[Page 150]

8¢ abed ¢z wnipuadwo)

RFC 2068 HTTP/ 1.1

Fo

19.

Fielding, et. al.

January 1997

r exanpl e:

HTTP/ 1.1 206 Partial content

Date: Wed, 15 Nov 1995 06: 25:24 GMTI

Last-nodi fied: Wed, 15 Nov 1995 04:58:08 GVl

Content-type: nultipart/byteranges; boundary=TH S_STRI NG_SEPARATES

--TH S_STRI NG_SEPARATES
Cont ent -type: application/ pdf
Cont ent -range: bytes 500- 999/ 8000

...the first range...

--TH S_STRI NG_SEPARATES
Content-type: application/ pdf

Cont ent -range: bytes 7000- 7999/ 8000

...the second range
--TH S_STRI NG_SEPARATES- -

3 Tol erant Applications

Al t hough this docunent specifies the requirements for the generation
of HTTP/ 1.1 messages, not all applications will be correct in their

i npl ementation. We therefore recomrend that operational applications
be tol erant of deviations whenever those deviations can be
interpreted unanbi guously.

Cients SHOULD be tolerant in parsing the Status-Line and servers
tol erant when parsing the Request-Line. In particular, they SHOULD
accept any ampbunt of SP or HT characters between fields, even though
only a single SP is required.

The line term nator for nmessage-header fields is the sequence CRLF.
However, we recommend that applications, when parsing such headers,
recogni ze a single LF as a line terninator and ignore the |eading CR

The character set of an entity-body should be | abeled as the |owest
common denomni nator of the character codes used within that body, with
the exception that no |abel is preferred over the |abels US-ASCI| or
| SO 8859- 1.

Addi tional rules for requirenments on parsing and encodi ng of dates
and ot her potential problens with date encodings include:

o HITP/1.1 clients and caches should assune that an RFC- 850 date

whi ch appears to be nore than 50 years in the future is in fact
in the past (this helps solve the "year 2000" problen).

St andards Track [Page 151]

RFC 2068 HTTP/ 1.1 January 1997

0 An HTTP/1.1 inplenentation may internally represent a parsed
Expires date as earlier than the proper value, but MJST NOT
internally represent a parsed Expires date as later than the
proper val ue.

o Al expiration-related cal cul ati ons nmust be done in GMI. The
| ocal time zone MJUST NOT influence the cal culation or conparison
of an age or expiration tine.

o |f an HITP header incorrectly carries a date value with a tine
zone other than GMI, it nust be converted into GMI using the nost
conservative possible conversion.

19.4 Differences Between HTTP Entities and M ME Entities

HTTP/ 1.1 uses many of the constructs defined for Internet Mail (RFC
822) and the Miltipurpose Internet Mail Extensions (MME) to allow
entities to be transmitted in an open variety of representations and
wi th extensibl e mechani sms. However, M ME [7] discusses nuil, and
HTTP has a few features that are different fromthose described in
M ME. These differences were carefully chosen to optinize
performance over binary connections, to allow greater freedomin the
use of new nedia types, to nmake date conparisons easier, and to
acknowl edge the practice of some early HTTP servers and clients.

Thi s appendi x describes specific areas where HTTP differs from M M.
Proxi es and gateways to strict M ME environnents SHOULD be aware of
these differences and provide the appropriate conversions where
necessary. Proxies and gateways from M ME environnments to HTTP al so
need to be aware of the differences because sonme conversions may be
required.

19.4.1 Conversion to Canonical Form

M ME requires that an Internet mail entity be converted to canonical
formprior to being transferred. Section 3.7.1 of this document
describes the forns allowed for subtypes of the "text" nedia type
when transmitted over HTTP. M ME requires that content with a type of
"text" represent line breaks as CRLF and forbids the use of CR or LF
outside of line break sequences. HITP allows CRLF, bare CR and bare
LF to indicate a line break within text content when a nessage is
transnmitted over HTTP.

Where it is possible, a proxy or gateway fromHITP to a strict MM
environment SHOULD translate all line breaks within the text nedia
types described in section 3.7.1 of this document to the MM
canoni cal formof CRLF. Note, however, that this nay be conplicated
by the presence of a Content-Encoding and by the fact that HTTP

Fielding, et. al. St andar ds Track [Page 152]

Gge abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

19.

19.

19.

19.

Fielding, et. al.

January 1997

allows the use of some character sets which do not use octets 13 and
10 to represent CR and LF, as is the case for some nulti-byte
character sets.

4.2 Conversion of Date Fornats

HTTP/ 1.1 uses a restricted set of date formats (section 3.3.1) to
simplify the process of date conparison. Proxies and gateways from
ot her protocols SHOULD ensure that any Date header field present in a
message confornms to one of the HTTP/1.1 formats and rewite the date
if necessary.

4.3 Introduction of Content-Encoding

M ME does not include any concept equivalent to HITP/1.1's Content-
Encodi ng header field. Since this acts as a nodifier on the nedia
type, proxies and gateways from HTTP to M ME-conpliant protocols MJST
ei ther change the value of the Content-Type header field or decode
the entity-body before forwarding the nmessage. (Some experinental
applications of Content-Type for Internet mail have used a nedia-type
paraneter of ";conversions=<content-coding>" to perform an equival ent
function as Content-Encoding. However, this paraneter is not part of
M ME.)

4.4 No Content-Transfer-Encodi ng

HTTP does not use the Content-Transfer-Encoding (CTE) field of MME
Proxi es and gateways from M ME-conpliant protocols to HTTP MJST
renmove any non-identity CTE ("quoted-printable" or "base64") encoding
prior to delivering the response nessage to an HITP client.

Proxi es and gateways from HTTP to M ME-conpliant protocols are
responsi ble for ensuring that the message is in the correct format
and encoding for safe transport on that protocol, where "safe
transport” is defined by the limtations of the protocol being used.
Such a proxy or gateway SHOULD | abel the data with an appropriate
Cont ent - Transfer-Encoding if doing so will inprove the |ikelihood of
safe transport over the destination protocol.

4.5 HITP Header Fields in Multipart Body-Parts

In MME, nost header fields in multipart body-parts are generally
ignored unless the field name begins with "Content-". In HITP/ 1.1,
mul tipart body-parts may contain any HTTP header fields which are
significant to the neaning of that part.

St andar ds Track [Page 153]

RFC 2068 HTTP/ 1.1

January 1997

19. 4.6 Introduction of Transfer-Encoding

19.

19.

Fielding, et. al.

HTTP/ 1.1 introduces the Transfer-Encoding header field (section
14.40). Proxies/ gateways MJST renpve any transfer coding prior to
forwarding a message via a M MeE-conpliant protocol.

A process for decoding the "chunked" transfer coding (section 3.6)
can be represented in pseudo-code as:

length := 0
read chunk-size, chunk-ext (if any) and CRLF
whil e (chunk-size > 0) {
read chunk-data and CRLF
append chunk-data to entity-body
length := length + chunk-size
read chunk-size and CRLF
}
read entity-header
while (entity-header not enpty) {
append entity-header to existing header fields
read entity-header

}
Content-Length := length
Renpve "chunked" from Transfer-Encodi ng

4.7 M ME- Version

HTTP is not a M ME-conpliant protocol (see appendix 19.4). However,
HTTP/ 1.1 messages may include a single M M- Version general - header
field to indicate what version of the MM protocol was used to
construct the nmessage. Use of the M ME-Version header field indicates
that the message is in full conpliance with the M ME protocol.

Proxi es/ gat eways are responsible for ensuring full conpliance (where
possi bl) when exporting HTTP nessages to strict M ME environnents.

M ME- Ver si on = "M ME-Version" ":" 1*DIAT "." 1*DIGA T
M ME version "1.0" is the default for use in HTTP/1.1. However,
HTTP/ 1.1 nessage parsing and semantics are defined by this docunment
and not the M ME specification.

5 Changes from HTTP/ 1.0

This section sunmarizes major differences between versions HITP/ 1.0
and HTTP/ 1. 1.

St andards Track [Page 154]

98¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

Fielding, et. al.

January 1997

19.5.1 Changes to Sinplify Milti-homed Web Servers and Conserve |P

Addr esses

The requirements that clients and servers support the Host request-
header, report an error if the Host request-header (section 14.23) is
m ssing froman HTTP/ 1.1 request, and accept absolute URI's (section
5.1.2) are anpbng the nost inportant changes defined by this

speci fication.

O der HTTP/ 1.0 clients assumed a one-to-one relationship of IP
addresses and servers; there was no ot her established nechanismfor
di stinguishing the intended server of a request than the |P address
to which that request was directed. The changes outlined above will
allow the Internet, once older HITP clients are no | onger conmon, to
support nultiple Wb sites froma single | P address, greatly
sinmplifying |large operational Wb servers, where allocation of nany

I P addresses to a single host has created serious problens. The
Internet will also be able to recover the I P addresses that have been
allocated for the sole purpose of allow ng special - purpose domain
nanes to be used in root-level HTTP URLs. G ven the rate of growth of
the Web, and the nunber of servers already deployed, it is extrenely
inportant that all inplenmentations of HTTP (including updates to
existing HTTP/ 1.0 applications) correctly inplenment these
requirenents:

o Both clients and servers MJST support the Host request-header.
0 Host request-headers are required in HTTP/ 1.1 requests.

0 Servers MIST report a 400 (Bad Request) error if an HTTP/ 1.1
request does not include a Host request-header.

0 Servers MJST accept absolute URIs.

St andar ds Track [Page 155]

RFC 2068 HTTP/ 1.1

19.

19.

19.

19.

Fielding, et. al.

January 1997

6 Additional Features

Thi s appendi x docunents protocol elenents used by sone existing HTTP
i npl enentati ons, but not consistently and correctly across npst

HTTP/ 1.1 applications. |Inplenenters should be aware of these
features, but cannot rely upon their presence in, or interoperability
with, other HTTP/ 1.1 applications. Sone of these describe proposed
experinental features, and some describe features that experinental
depl oynent found | acking that are now addressed in the base HTTP/ 1.1
speci fication.

6.1 Additional Request Methods
6.1.1 PATCH

The PATCH nmethod is simlar to PUT except that the entity contains a
list of differences between the original version of the resource
identified by the Request-URl and the desired content of the resource
after the PATCH action has been applied. The list of differences is
in a format defined by the nmedia type of the entity (e.g.,
"application/diff") and MJST include sufficient infornmation to allow
the server to recreate the changes necessary to convert the original
version of the resource to the desired version.

If the request passes through a cache and the Request-URl identifies
a currently cached entity, that entity MJST be renoved fromthe
cache. Responses to this nethod are not cachabl e.

The actual nethod for determ ning how the patched resource is placed,
and what happens to its predecessor, is defined entirely by the
origin server. If the original version of the resource being patched
included a Content-Version header field, the request entity MJST
include a Derived-From header field corresponding to the value of the
original Content-Version header field. Applications are encouraged to
use these fields for constructing versioning relationships and

resol ving version conflicts.

PATCH requests nust obey the nessage transm ssion requirenents set
out in section 8.2.

Caches that inplement PATCH shoul d invalidate cached responses as
defined in section 13.10 for PUT.

6.1.2 LINK
The LINK nmethod establishes one or nore Link rel ationships between

the existing resource identified by the Request-URH and other
exi sting resources. The difference between LINK and ot her nethods

St andar ds Track [Page 156]

/8¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1

19.

19

19

Fielding, et. al.

allowing links to be established between resources is that the LINK
nmet hod does not allow any nessage-body to be sent in the request and
does not directly result in the creation of new resources.

If the request passes through a cache and the Request-URl identifies
a currently cached entity, that entity MJST be renoved fromthe
cache. Responses to this nethod are not cachable.

Caches that inplenment LINK should invalidate cached responses as
defined in section 13.10 for PUT.

6.1.3 UNLI NK

The UNLI NK net hod renpves one or nore Link relationships fromthe
existing resource identified by the Request-URI. These rel ationships
may have been established using the LINK nethod or by any other

met hod supporting the Link header. The renpval of a link to a
resource does not inply that the resource ceases to exist or becones
inaccessible for future references.

If the request passes through a cache and the Request-URl identifies
a currently cached entity, that entity MJST be renoved fromthe
cache. Responses to this nethod are not cachable.

Caches that inplenment UNLINK shoul d invalidate cached responses as
defined in section 13.10 for PUT.

.6.2 Additional Header Field Definitions

.6.2.1 Alternates

The Alternates response-header field has been proposed as a nmeans for
the origin server to informthe client about other avail able
representations of the requested resource, along with their

di stinguishing attributes, and thus providing a nore reliable neans
for a user agent to perform subsequent sel ection of another
representation which better fits the desires of its user (described
as agent-driven negotiation in section 12).

St andards Track [Page 157]

January 1997

RFC 2068 HTTP/ 1.1

19.

19.

Fielding, et. al.

January 1997

The Alternates header field is orthogonal to the Vary header field in
that both may coexist in a nmessage without affecting the
interpretation of the response or the available representations. It
is expected that Alternates will provide a significant inprovenent
over the server-driven negotiation provided by the Vary field for
those resources that vary over common di mensions |ike type and

| anguage.

The Alternates header field will be defined in a future
speci fication.

6.2.2 Content-Version

The Content-Version entity-header field defines the version tag
associated with a rendition of an evolving entity. Together with the
Derived-Fromfield described in section 19.6.2.3, it allows a group
of people to work sinultaneously on the creation of a work as an
iterative process. The field should be used to allow evolution of a
particular work along a single path rather than derived works or
renditions in different representations.

Content-Version = "Content-Version" ":" quoted-string
Exanpl es of the Content-Version field include:

Content - Version: "2.1.2"
Cont ent - Versi on: "Fred 19950116-12: 26: 48"
Cont ent - Ver si on: "2.5a4-onega7"

6.2.3 Derived-From

The Derived-Fromentity-header field can be used to indicate the
version tag of the resource fromwhich the enclosed entity was
derived before nodifications were nade by the sender. This field is
used to hel p nanage the process of merging successive changes to a
resource, particularly when such changes are being nade in parallel
and fromnultiple sources.

Derived-From = "Derived-Front' ":" quoted-string
An exanpl e use of the field is:

Derived-From "2.1.1"
The Derived-Fromfield is required for PUT and PATCH requests if the
entity being sent was previously retrieved fromthe same URI and a

Cont ent - Ver si on header was included with the entity when it was |ast
retrieved.

St andar ds Track [Page 158]

8g8¢ abed z wnipuadwo)

RFC 2068

HTTP/ 1.1 January 1997

19.6.2.4 Link

19.

Fielding, et. al.

The Link entity-header field provides a nmeans for describing a

rel ationship between two resources, generally between the requested
resource and some other resource. An entity MAY include multiple Link
val ues. Links at the nmetainformation |evel typically indicate

rel ationships like hierarchical structure and navigation paths. The
Link field is semantically equivalent to the <LINK> el enent in

HTML. [5]

Li nk =" URI ">" *(";" |ink-param)
I'i nk- param = (rel ationship)

| (rel ationship)

| (=" quoted-string)

| ("anchor" "=" <"> URl <">)

| (link-extension))
l'ink-extension = token ["=" (token | quoted-string)]
rel ati onship = sgni - nanme

| (<"> sgnl-name *(SP sgn -nanme) <">)

sgni - name = ALPHA *(ALPHA | DIGT | "." | "-")

Rel ati onshi p val ues are case-insensitive and MAY be extended within
the constraints of the sgm -name syntax. The title paraneter MAY be
used to | abel the destination of a link such that it can be used as
identification within a human-readabl e nenu. The anchor paraneter NMAY
be used to indicate a source anchor other than the entire current
resource, such as a fragnent of this resource or a third resource.

Exanpl es of usage incl ude:

Li nk: <http://ww. cern. ch/ TheBook/ chapter2>; rel ="Previous"

Link: <mailto:tinmbl @3.org> rev="Made"; title="Ti mBerners-Lee"
The first exanple indicates that chapter2 is previous to this
resource in a |logical navigation path. The second indicates that the
person responsi bl e for meking the resource available is identified by
the given e-mail address.
6.2.5 URI
The URI header field has, in past versions of this specification,

been used as a conbi nation of the existing Location, Content-
Location, and Vary header fields as well as the future Alternates

St andar ds Track [Page 159]

RFC 2068

19.

HTTP/ 1.1 January 1997

field (above). Its primary purpose has been to include a |ist of
additional URIs for the resource, including nanmes and mirror
locations. However, it has becone clear that the conbination of many
different functions within this single field has been a barrier to
consistently and correctly inplenmenting any of those functions.
Furthernore, we believe that the identification of nanes and mirror
| ocations would be better perforned via the Link header field. The
URlI header field is therefore deprecated in favor of those other
fields.

URI - header ="URI" "M 1#("<" UR ">")
7 Conpatibility with Previous Versions

It is beyond the scope of a protocol specification to mandate
conpliance with previous versions. HTTP/1.1 was deliberately

desi gned, however, to nake supporting previous versions easy. It is
worth noting that at the tine of conposing this specification, we
woul d expect commercial HTTP/ 1.1 servers to:

o recognize the format of the Request-Line for HITP/0.9, 1.0, and 1.1

requests;

o understand any valid request in the format of HTTP/0.9, 1.0, or

(o]

Fielding, et. al.

1.1;

respond appropriately with a nessage in the same major version used
by the client.

And we woul d expect HTTP/1.1 clients to:

recogni ze the format of the Status-Line for HTTP/1.0 and 1.1
responses;

under stand any valid response in the format of HTTP/0.9, 1.0, or
1.1.

For nost inplenmentations of HTTP/ 1.0, each connection is established
by the client prior to the request and closed by the server after
sendi ng the response. A few inplenentations inplenment the Keep-Alive
versi on of persistent connections described in section 19.7.1.1.

St andards Track [Page 160]

68¢ abed z wnipuadwo)

RFC 2068 HTTP/ 1.1 January 1997 RFC 2068 HTTP/ 1.1 January 1997

19.7.1 Conpatibility with HTTP/ 1.0 Persistent Connections 19.7.1.1 The Keep-Alive Header
Sone clients and servers may wi sh to be conpatible with sone previous When the Keep-Alive connection-token has been transmtted with a
i npl ement ati ons of persistent connections in HITP/1.0 clients and request or a response, a Keep-Alive header field MAY al so be
servers. Persistent connections in HTTP/1.0 nust be explicitly included. The Keep-Alive header field takes the follow ng form
negoti ated as they are not the default behavior. HTTP/1.0
experinental inplenmentations of persistent connections are faulty, Keep- Al i ve- header = "Keep-Alive" ":" 0# keepalive-param
and the new facilities in HTTP/1.1 are designed to rectify these
probl ems. The problemwas that sone existing 1.0 clients may be keepal i ve- param = param nanme "=" val ue
sendi ng Keep-Alive to a proxy server that doesn't understand
Connection, which would then erroneously forward it to the next The Keep-Alive header itself is optional, and is used only if a
i nbound server, which would establish the Keep-Alive connection and paraneter is being sent. HTTP/ 1.1 does not define any paraneters.
result in a hung HTTP/ 1.0 proxy waiting for the close on the
response. The result is that HTTP/1.0 clients nust be prevented from If the Keep-Alive header is sent, the correspondi ng connection token
usi ng Keep-Alive when tal king to proxies. MUST be transnmitted. The Keep-Alive header MJST be ignored if

received w thout the connection token.

However, talking to proxies is the nost inportant use of persistent

connections, so that prohibition is clearly unacceptable. Therefore,

we need sone ot her mechanismfor indicating a persistent connection

is desired, which is safe to use even when talking to an old proxy

that ignores Connection. Persistent connections are the default for

HTTP/ 1.1 messages; we introduce a new keyword (Connection: close) for

decl ari ng non- persi st ence.

The fol | owi ng describes the original HTTP/1.0 form of persistent
connecti ons.

When it connects to an origin server, an HTTP client MAY send the
Keep- Al i ve connection-token in addition to the Persist connection-
t oken:

Connection: Keep-Alive

An HTTP/ 1.0 server would then respond with the Keep-Alive connection
token and the client nay proceed with an HTTP/ 1.0 (or Keep-Alive)
persi stent connection.

An HTTP/ 1.1 server may al so establish persistent connections with
HTTP/ 1.0 clients upon recei pt of a Keep-Alive connection token.
However, a persistent connection with an HTTP/ 1.0 client cannot make
use of the chunked transfer-coding, and therefore MJST use a
Content-Length for marking the ending boundary of each nessage.

A client MUST NOT send the Keep-Alive connection token to a proxy

server as HTTP/ 1.0 proxy servers do not obey the rules of HITP/1.1
for parsing the Connection header field.

Fielding, et. al. St andar ds Track [Page 161] Fielding, et. al. St andards Track [Page 162]

06¢& abed z wnipuadwo)

Net wor k Wor ki ng Group Bri an Kantor (U.C. San Di ego)
Request for Comments: 977 Phil Lapsley (U C. Berkeley) RFC 977 February 1986
February 1986 Net wor k News Transfer Protocol

Net wor k News Transfer Protocol
1.2. The USENET News System
A Proposed Standard for the Stream Based

Transmi ssion of News Clearly, a worthwhile reduction of the anpunt of these resources used
can be achieved if articles are stored in a central database on the
Status of This Meno recei ving host instead of in each subscriber's mailbox. The USENET
news system provi des a nethod of doing just this. There is a central
NNTP specifies a protocol for the distribution, inquiry, retrieval, repository of the news articles in one place (customarily a spool
and posting of news articles using a reliable stream based directory of sone sort), and a set of prograns that allow a
transmni ssion of news anmpng the ARPA-Internet community. NNTP is subscriber to select those itenms he wishes to read. |ndexing,
designed so that news articles are stored in a central database cross-referencing, and expiration of aged nmessages are al so provided.
al l owing a subscriber to select only those itenms he wi shes to read.
I ndexi ng, cross-referencing, and expiration of aged nmessages are al so 1.3. Central Storage of News
provi ded. This RFC suggests a proposed protocol for the ARPA-Internet
comuni ty, and requests discussion and suggestions for inprovenents. For clusters of hosts connected together by fast l|ocal area networks
Distribution of this nmenp is unlimted. (such as Ethernet), it nakes even nore sense to consolidate news
distribution onto one (or a very few) hosts, and to allow access to
1. Introduction these news articles using a server and client nodel. Subscribers may
then request only the articles they wish to see, wthout having to
For many years, the ARPA-Internet community has supported the wasteful |y duplicate the storage of a copy of each itemon each host.
distribution of bulletins, information, and data in a tinmely fashion
to thousands of participants. W collectively refer to such itens of 1.4. A Central News Server
information as "news". Such news provides for the rapid
di ssemi nation of itenms of interest such as software bug fixes, new A way to achieve these economies is to have a central conputer system
product reviews, technical tips, and progranm ng pointers, as well as that can provide news service to the other systems on the |ocal area
rapid-fire discussions of matters of concern to the working conputer network. Such a server woul d manage the col |l ection of news articles
prof essional. News is very popular anong its readers. and index files, with each person who desires to read news bulletins
doing so over the LAN. For a large cluster of conputer systens, the
There are popularly two nethods of distributing such news: the savings in total disk space is clearly worthwhile. Also, this allows
Internet method of direct mailing, and the USENET news system workstations with limted disk storage space to participate in the
news w thout incomng items consuning oppressive anounts of the
1.1. Internet Mailing Lists wor kstation's di sk storage.
The Internet comunity distributes news by the use of nailing lists. We have heard runors of sonewhat successful attenpts to provide
These are lists of subscriber's mailbox addresses and remailing centralized news service using IBl'S and other shared or distributed
sublists of all intended recipients. These nailing |ists operate by file systems. Wiile it is possible that such a distributed file
renmailing a copy of the information to be distributed to each systeminpl ementation mght work well with a group of simlar
subscriber on the mailing list. Such remailing is inefficient when a conputers running nearly identical operating systems, such a schene
mai ling list grows beyond a dozen or so people, since sending a is not general enough to offer service to a wi de range of client
separate copy to each of the subscribers occupies |arge quantities of systens, especially when nmany diverse operating systens may be in use
networ k bandwi dth, CPU resources, and significant amounts of disk anong a group of clients. There are few (if any) shared or networked
storage at the destination host. There is also a significant problem file systems that can offer the generality of service that stream
in maintenance of the list itself: as subscribers nove fromone job connections using Internet TCP provide, particularly when a w de
to another; as new subscribers join and ol d ones |eave; and as hosts range of host hardware and operating systens are considered.

cone in and out of service.
NNTP specifies a protocol for the distribution, inquiry, retrieval,
and posting of news articles using a reliable stream (such as TCP)
server-client nodel. NNTP is designed so that news articles need only

Kantor & Lapsl ey [Page 1]
Kantor & Lapsley [Page 2]

T6£ abed z wnipuadwo)

RFC 977 February 1986
Net wor k News Transfer Protocol

1.

1.

be stored on one (presumably central) host, and subscribers on other
hosts attached to the LAN may read news articles using stream
connections to the news host.

NNTP i s nodel | ed upon the news article specifications in RFC 850,

whi ch describes the USENET news system However, NNTP nmakes few
demands upon the structure, content, or storage of news articles, and
thus we believe it easily can be adapted to other non- USENET news
systens.

Typically, the NNTP server runs as a background process on one host,
and woul d accept connections fromother hosts on the LAN. This works
wel | when there are a nunber of small conputer systems (such as

wor kstations, with only one or at nost a few users each), and a |large
central server.

5. Internedi ate News Servers

For clusters of machines with many users (as mght be the case in a
university or large industrial environnent), an internediate server
m ght be used. This internediate or "slave" server runs on each
conputer system and is responsible for nediating news readi ng
requests and perform ng | ocal caching of recently-retrieved news
articles.

Typically, a client attenpting to obtain news service would first
attenpt to connect to the news service port on the local machine. |[f
this attenpt were unsuccessful, indicating a failed server, an
installation mght choose to either deny news access, or to permt
connection to the central "master" news server.

For workstations or other small systens, direct connection to the
mast er server woul d probably be the normal manner of operation.

This specification does not cover the operation of slave NNTP
servers. W nerely suggest that slave servers are a |logical addition
to NNTP server usage whi ch woul d enhance operation on |arge |ocal
area networKks.

6. News Distribution

NNTP has commands which provide a straightforward nethod of
exchanging articles between cooperating hosts. Hosts which are well
connected on a local area or other fast network and who wi sh to
actually obtain copies of news articles for |ocal storage m ght well
find NNTP to be a nore efficient way to distribute news than nore
traditional transfer methods (such as UUCP).

Kantor & Lapsl ey [Page 3]

RFC 977 February 1986
Net wor k News Transfer Protocol

In the traditional nethod of distributing news articles, news is
propagated fromhost to host by flooding - that is, each host wll
send all its new news articles on to each host that it feeds. These
hosts will then in turn send these new articles on to other hosts
that they feed. dearly, sending articles that a host already has
obtai ned a copy of fromanother feed (many hosts that receive news
are redundantly fed) again is a waste of time and communi cati ons
resources, but for transport mechanisms that are single-transaction
based rather than interactive (such as UUCP in the UNI X-world <1>),
distribution time is dimnished by sending all articles and having
the receiving host sinply discard the duplicates. This is an
especially true when communi cations sessions are linmted to once a
day.

Usi ng NNTP, hosts exchanging news articles have an interactive
mechani sm for deciding which articles are to be transmtted. A host
desiring new news, or which has new news to send, will typically
contact one or nore of its neighbors using NNTP. First it wll
inquire if any new news groups have been created on the serving host
by means of the NEWGROUPS conmand. |f so, and those are appropriate
or desired (as established by |ocal site-dependent rules), those new
newsgroups can be created.

The client host will then inquire as to which new articles have
arrived in all or some of the newsgroups that it desires to receive,
using the NEWNEWS command. It will receive a list of new articles
fromthe server, and can request transm ssion of those articles that
it desires and does not already have.

Finally, the client can advise the server of those new articles which
the client has recently received. The server will indicate those
articles that it has already obtai ned copies of, and which articles
shoul d be sent to add to its collection.

In this manner, only those articles which are not duplicates and
which are desired are transferred.

Kant or & Lapsl ey [Page 4]

RFC 977 February 1986 RFC 977

February 1986
Net wor k News Transfer Protocol Net wor k News Transfer Protocol

2. The NNTP Specification 2.4. Responses

2.1. Overview Responses are of two kinds, textual and status.

The news server specified by this docunent uses a stream connection 2.4.1. Text Responses
(such as TCP) and SMIP-1li ke conmmands and responses. It is designed
to accept connections fromhosts, and to provide a sinple interface Text is sent only after a numeric status response |ine has been sent

to the news database.

This server is only an interface between programs and the news

that indicates that text will follow Text is sent as a series of
successive lines of textual matter, each ternminated with CR-LF pair.
A single line containing only a period (.) is sent to indicate the

Z26¢& abed z wnipuadwo)

dat abases. |t does not perform any user interaction or presentation- end of the text (i.e., the server will send a CR-LF pair at the end
I evel functions. These "user-friendly" functions are better left to of the last line of text, a period, and another CR-LF pair).
the client prograns, which have a better understanding of the

envi ronnent in which they are operating. If the text contained a period as the first character of the text

line in the original, that first period is doubled. Therefore, the
client nust exanine the first character of each line received, and
for those beginning with a period, determne either that this is the

end of the text or whether to collapse the doubl ed period to a single
2.2. Character Codes one.

When used via Internet TCP, the contact port assigned for this
service is 119.

Commands and replies are conposed of characters fromthe ASClI
character set. Wen the transport service provides an 8-bit byte
(octet) transm ssion channel, each 7-bit character is transmtted
right justified in an octet with the high order bit cleared to zero.

The intention is that text nmessages will usually be displayed on the
user's termnal whereas command/ status responses will be interpreted
by the client program before any possible display is done.

2.4.2. Status Responses
2.3. Commands
These are status reports fromthe server and indicate the response to
Conmands consi st of a command word, which in some cases may be the last command received fromthe client.
followed by a paraneter. Conmands with paranmeters nust separate the
paraneters from each other and fromthe command by one or nobre space
or tab characters. Command |ines nust be conplete with all required
paraneters, and may not contain nore than one command.

Status response lines begin with a 3 digit numeric code which is
sufficient to distinguish all responses. Sone of these may herald
the subsequent transm ssion of text.

Conmands and conmmand paraneters are not case sensitive. That is, a The first digit of the response broadly indicates the success,
comand or paraneter word may be upper case, |ower case, or any failure, or progress of the previous command.
m xture of upper and | ower case.
1xx - Informative nmessage
Each comand |line nust be termnated by a CR-LF (Carriage Return - 2xx - Command ok
Li ne Feed) pair. 3xx - Command ok so far, send the rest of it.
4xx - Command was correct, but couldn't be perforned for
Conmmand |ines shall not exceed 512 characters in length, counting all Sone reason.
characters including spaces, separators, punctuation, and the 5xx - Command uni npl emented, or incorrect, or a serious
trailing CR-LF (thus there are 510 characters naxi mum all owed for the program error occurred.
command and its paranmeters). There is no provision for continuation
command |i nes.

Kantor & Lapsley [Page 5] Kant or & Lapsl ey [Page 6]

e6¢ abed z wnipuadwo)

RFC 977 February 1986 RFC 977 February 1986

Net wor k News Transfer Protocol Net wor k News Transfer Protocol
The next digit in the code indicates the function response category. 2.4.3. General Responses
x0x - Connection, setup, and m scel | aneous nmessages The following is a list of general response codes that may be sent by
x1x - Newsgroup sel ection the NNTP server. These are not specific to any one conmand, but may
x2x - Article selection be returned as the result of a connection, a failure, or sone unusual
x3x - Distribution functions condi tion.
x4x - Posting
x8x - Nonstandard (private inplenentation) extensions In general, 1xx codes may be ignored or displayed as desired; code
x9x - Debuggi ng out put 200 or 201 is sent upon initial connection to the NNTP server
dependi ng upon posting perm ssion; code 400 will be sent when the
The exact response codes that should be expected from each comand NNTP server discontinues service (by operator request, for exanple);
are detailed in the description of that coomand. |n addition, below and 5xx codes indicate that the conmand could not be performed for
is listed a general set of response codes that may be received at any sonme unusual reason.
tine.
100 hel p text
Certain status responses contain paraneters such as nunbers and 190
nanes. The nunber and type of such paraneters is fixed for each t hr ough
response code to sinplify interpretation of the response. 199 debug out put
Paranmeters are separated fromthe nunmeric response code and from each 200 server ready - posting allowed
other by a single space. All nuneric paraneters are deci mal, and may 201 server ready - no posting allowed
have | eading zeros. Al string paraneters begin after the separating
space, and end before the foll owi ng separating space or the CRLF 400 service discontinued
pair at the end of the line. (String paraneters may not, therefore,
contain spaces.) Al text, if any, in the response which is not a 500 command not recogni zed
paraneter of the response nust follow and be separated fromthe | ast 501 conmmand syntax error
paraneter by a space. Also, note that the text follow ng a response 502 access restriction or perm ssion denied
nunber may vary in different inplenmentations of the server. The 503 program fault - conmand not perfornmed
3-digit numeric code should be used to determi ne what response was
sent. 3. Command and Response Details
Response codes not specified in this standard may be used for any On the followi ng pages are descriptions of each conmand recogni zed by
instal |l ati on-specific additional commands al so not specified. These the NNTP server and the responses which will be returned by those
shoul d be chosen to fit the pattern of x8x specified above. (Note conmands.
that debugging is provided for explicitly in the x9x response codes.)
The use of unspecified response codes for standard conmands is Each command is shown in upper case for clarity, although case is
pr ohi bi t ed. ignored in the interpretation of comrands by the NNTP server. Any
paraneters are shown in |ower case. A paraneter shown in [square
We have provided a response pattern x9x for debugging. Since nuch brackets] is optional. For exanple, [GMI] indicates that the
debuggi ng out put nmay be classed as "informative nessages”, we would triglyph GMUI' may present or omtted.
expect, therefore, that responses 190 through 199 woul d be used for
vari ous debugging outputs. There is no requirenent in this Every command described in this section nust be inplenmented by all
speci fication for debugging output, but if such is provided over the NNTP servers.
connected stream it nust use these response codes. |f appropriate

to a specific inplenentation, other x9x codes nay be used for
debuggi ng. (An exanple nmight be to use e.g., 290 to acknow edge a
renot e debuggi ng request.)

Kantor & Lapsley [Page 7] Kant or & Lapsl ey [Page 8]

¥6€ abed g wnipuadwo)

RFC 977 February 1986 RFC 977 February 1986

Net wor k News Transfer Protocol Net wor k News Transfer Protocol
There is no prohibition against additional commands bei ng added; bei ng read, and because of the semantic difficulties of determning
however, it is recomrended that any such unspecified comand begin the proper sequence and nmenbership of an article which may have been
with the letter "X" to avoid conflict with later revisions of this posted to nore than one newsgroup.

speci fication.
3.1.2. ARTICLE (sel ection by nunber)
I npl ementors are reninded that such additional commands nay not
redefine specified status response codes. Using additional ARTI CLE [nnn]
unspeci fied responses for standard commands is al so prohibited.
Di spl ays the header, a blank line, then the body (text) of the

3.1. The ARTICLE, BODY, HEAD, and STAT commands current or specified article. The optional parameter nnn is the
There are two fornms to the ARTICLE command (and the rel ated BODY, nuneric id of an article in the current newsgroup and nust be chosen
HEAD, and STAT conmmands), each using a different nethod of specifying fromthe range of articles provided when the newsgroup was sel ected.
which article is to be retrieved. Wen the ARTICLE command is If it is omtted, the current article is assuned.
foll owed by a nessage-id in angle brackets ("<" and ">"), the first
formof the command is used; when a nuneric paraneter or no paraneter The internally-naintained "current article pointer" is set by this
is supplied, the second formis invoked. command if a valid article nunber is specified.

The text of the article is returned as a textual response, as [the following applies to both forms of the article conmand.] A
described earlier in this docunent. response indicating the current article nunber, a nmessage-id string,

and that text is to followw Il be returned.
The HEAD and BODY commands are identical to the ARTICLE comrand

except that they respectively return only the header lines or text The nessage-id string returned is an identification string contained
body of the article. wi thin angle brackets ("<" and ">"), which is derived fromthe header
of the article itself. The Message-ID header line (required by
The STAT command is simlar to the ARTICLE command except that no RFC850) fromthe article nust be used to supply this information. If
text is returned. Wen selecting by nessage nunber within a group, the nmessage-id header line is mssing fromthe article, a single
the STAT command serves to set the current article pointer wthout digit "0" (zero) should be supplied within the angle brackets.
sendi ng text. The returned acknow edgenment response will contain the
nmessage-id, which may be of sone value. Using the STAT command to Since the nmessage-id field is unique with each article, it nay be
sel ect by nmessage-id is valid but of questionable value, since a used by a news reading programto skip duplicate displays of articles
sel ection by nessage-id does NOT alter the "current article pointer". that have been posted nobre than once, or to nore than one newsgroup.
3.1.1. ARTICLE (sel ection by nessage-id) 3.1.3. Responses
ARTI CLE <nessage-i d> 220 n <a> article retrieved - head and body foll ow
(n = article nunber, <a> = message-id)
Di spl ay the header, a blank line, then the body (text) of the 221 n <a> article retrieved - head foll ows
specified article. Message-id is the nessage id of an article as 222 n <a> article retrieved - body foll ows
shown in that article's header. It is anticipated that the client 223 n <a> article retrieved - request text separately
will obtain the message-id froma |ist provided by the NEWNEWS 412 no newsgroup has been sel ected
command, fromreferences contained within another article, or from 420 no current article has been sel ected
the nmessage-id provided in the response to sone other commands. 423 no such article nunber in this group

430 no such article found
Pl ease note that the internally-naintained "current article pointer"
is NOT ALTERED by this command. This is both to facilitate the
presentation of articles that nay be referenced within an article

Kantor & Lapsley [Page 9] Kant or & Lapsl ey [Page 10]

G6¢ abed g wnipuadwo)

RFC 977 February 1986 RFC 977 February 1986

Net wor k News Transfer Protocol Net wor k News Transfer Protocol
3.2. The GROUP command 3.3. The HELP command
3.2.1. GROUP 3.3.1. HELP
GROUP ggg HELP
The required paraneter ggg is the nane of the newsgroup to be Provi des a short summary of commands that are understood by this
selected (e.g. "net.news"). A list of valid newsgroups may be inplementation of the server. The help text will be presented as a
obtai ned fromthe LIST command. textual response, terninated by a single period on a line by itself.
The successful selection response will return the article nunbers of 3.3.2. Responses
the first and last articles in the group, and an estimte of the
nunber of articles on file in the group. It is not necessary that 100 help text follows
the estinmate be correct, although that is helpful; it must only be
equal to or larger than the actual nunber of articles on file. (Some 3.4. The I HAVE conmmand
i npl ementations will actually count the nunber of articles on file.
O hers will just subtract first article nunber fromlast to get an 3.4.1. |1HAVE
estimate.)

| HAVE <nessagei d>
When a valid group is selected by neans of this conmand, the

internally maintained "current article pointer” is set to the first The 1 HAVE conmmand informs the server that the client has an article
article in the group. |If an invalid group is specified, the whose id is <nessageid> |If the server desires a copy of that
previously selected group and article renain selected. I1f an enpty article, it wll return a response instructing the client to send the
newsgroup is selected, the "current article pointer" is in an entire article. If the server does not want the article (if, for
indeterm nate state and should not be used. exanpl e, the server already has a copy of it), a response indicating
that the article is not wanted will be returned.
Note that the name of the newsgroup is not case-dependent. It nust
ot herwi se match a newsgroup obtained fromthe LIST conmand or an If transmi ssion of the article is requested, the client should send
error will result. the entire article, including header and body, in the nmanner
specified for text transm ssion fromthe server. A response code
3.2.2. Responses indicating success or failure of the transferral of the article wll
be returned.
211 n f | s group selected
(n = estimated nunmber of articles in group, This function differs fromthe POST command in that it is intended
f = first article nunber in the group, for use in transferring already-posted articles between hosts.
| =last article nunber in the group, Normally it will not be used when the client is a personal
s = nane of the group.) newsreadi ng program In particular, this function will invoke the
411 no such news group server's news posting programw th the appropriate settings (flags,

options, etc) to indicate that the forthcomng article is being
forwarded from another host.

The server may, however, elect not to post or forward the article if

after further exami nation of the article it deenms it inappropriate to
do so. The 436 or 437 error codes nay be returned as appropriate to

the situation.

Reasons for such subsequent rejection of an article may include such

Kantor & Lapsley [Page 11] Kant or & Lapsl ey [Page 12]

96¢ abed gz wnipuadwo)

RFC 977 February 1986 RFC 977 February 1986

Net wor k News Transfer Protocol Net wor k News Transfer Protocol
probl ems as i nappropriate newsgroups or distributions, disk space 412 no newsgroup sel ected
limtations, article |lengths, garbled headers, and the like. These 420 no current article has been sel ected
are typically restrictions enforced by the server host's news 422 no previous article in this group

sof tware and not necessarily the NNTP server itself.
3.6. The LIST comuand
3.4.2. Responses
3.6.1. LIST
235 article transferred ok

335 send article to be transferred. End with <CR LF>. <CR-LF> LI ST
435 article not wanted - do not send it
436 transfer failed - try again later Returns a list of valid newsgroups and associated information. Each
437 article rejected - do not try again newsgroup is sent as a line of text in the follow ng format:
An i npl enentation note: group last first p
Because sone host news posting software may not be able to decide where <group> is the nanme of the newsgroup, <last> is the nunber of
imediately that an article is inappropriate for posting or the last known article currently in that newsgroup, <first>is the
forwarding, it is acceptable to acknow edge the successful transfer nunber of the first article currently in the newsgroup, and <p> is
of the article and to later silently discard it. Thus it is either '"y' or 'n' indicating whether posting to this newsgroup is
permtted to return the 235 acknow edgenent code and | ater discard allowed ('y') or prohibited ('n').
the received article. This is not a fully satisfactory solution to
the problem Perhaps sonme inplenmentations will wish to send mail to The <first> and <last> fields will always be numeric. They may have
the author of the article in certain of these cases. l eading zeros. |If the <last> field evaluates to |less than the
<first> field, there are no articles currently on file in the
3.5. The LAST command newsgr oup.
3.5.1. LAST Note that posting nmay still be prohibited to a client even though the
LI ST command indicates that posting is permtted to a particul ar
LAST newsgroup. See the POST command for an explanation of client
prohi bitions. The posting flag exists for each newsgroup because
The internally nmaintained "current article pointer" is set to the sonme newsgroups are noderated or are digests, and therefore cannot be
previous article in the current newsgroup. |If already positioned at posted to; that is, articles posted to themnust be nailed to a
the first article of the newsgroup, an error nessage is returned and moderator who will post themfor the submitter. This is independent
the current article remains selected. of the posting perm ssion granted to a client by the NNTP server.
The internally-maintained "current article pointer" is set by this Pl ease note that an enpty list (i.e., the text body returned by this
comand. comand consists only of the terminating period) is a possible valid

response, and indicates that there are currently no valid newsgroups.
A response indicating the current article nunber, and a nessage-id
string will be returned. No text is sent in response to this 3.6.2. Responses
conmmand.
215 list of newsgroups follows
3.5.2. Responses

223 n a article retrieved - request text separately
(n = article nunber, a = unique article id)

Kantor & Lapsley [Page 13] Kant or & Lapsl ey [Page 14]

16€ abed z wnipuadwo)

RFC 977 February 1986
Net wor k News Transfer Protocol

3.7. The NEWGROUPS command
3.7.1. NEWGROUPS
NEWGROUPS date tinme [GMI] [<distributions>]

A list of newsgroups created since <date and tine> will be listed in
the same format as the LI ST command.

The date is sent as 6 digits in the format YYMVDD, where YY is the
last two digits of the year, MMis the two digits of the nmonth (with
| eading zero, if appropriate), and DD is the day of the nmonth (with
| eading zero, if appropriate). The closest century is assuned as
part of the year (i.e., 86 specifies 1986, 30 specifies 2030, 99 is
1999, 00 is 2000).

Time nust al so be specified. It nust be as 6 digits HHWBS with HH
bei ng hours on the 24-hour clock, MM m nutes 00-59, and SS seconds
00-59. The time is assuned to be in the server's tinezone unless the
token "GMI" appears, in which case both tinme and date are eval uated
at the 0 meridian.

The optional paraneter "distributions"” is a list of distribution
groups, enclosed in angle brackets. |If specified, the distribution
portion of a new newsgroup (e.g, 'net' in 'net.wonbat') will be
exam ned for a match with the distribution categories listed, and
only those new newsgroups which match will be listed. If nore than
one distribution group is to be listed, they nust be separated by
conmas within the angle brackets.

Pl ease note that an enpty list (i.e., the text body returned by this

command consists only of the term nating period) is a possible valid

response, and indicates that there are currently no new newsgroups.
3.7.2. Responses

231 list of new newsgroups foll ows

Kantor & Lapsley [Page 15]

RFC 977 February 1986
Net wor k News Transfer Protocol

3.8. The NEWNEWS command
3.8.1. NEWNEWS
NEWNEWS newsgroups date time [GMI] [<distribution>]

A list of message-ids of articles posted or received to the specified
newsgroup since "date" will be listed. The format of the listing will
be one nessage-id per line, as though text were being sent. A single
line consisting solely of one period followed by CR-LF will term nate
the list.

Date and tinme are in the sane format as the NEWGROUPS conmand.

A newsgroup nane containing a "*" (an asterisk) may be specified to
broaden the article search to sonme or all newsgroups. The asterisk
will be extended to match any part of a newsgroup nanme (e.g.,
net.mcro* will match net.m cro.wonbat, net.mcro.apple, etc). Thus
if only an asterisk is given as the newsgroup nanme, all newsgroups
wi |l be searched for new news.

(Pl ease note that the asterisk "*" expansion is a general

replacenment; in particular, the specification of e.g., net.*.unix
shoul d be correctly expanded to enbrace names such as net.wonbat. uni x
and net.whocares. uni x.)

Conversely, if no asterisk appears in a given newsgroup nane, only
the specified newsgroup will be searched for new articles. Newsgroup
nanes nust be chosen fromthose returned in the listing of avail able
groups. Miltiple newsgroup nanmes (including a "*") may be specified
in this coomand, separated by a comma. No comma shall appear after
the | ast newsgroup in the list. [Inplenmentors are cautioned to keep
the 512 character command length limt in mnd.]

The exclamation point ("!") may be used to negate a match. This can
be used to selectively onit certain newsgroups from an otherw se
larger list. For exanple, a newsgroups specification of

"net.*, nmod. *, ! nod. map. *" woul d specify that all net.<anything> and

al | nod. <anyt hi ng> EXCEPT nod. map. <anyt hi ng> newsgroup names woul d be
mat ched. |f used, the exclamation point nust appear as the first
character of the given newsgroup nane or pattern.

The optional paraneter "distributions" is a list of distribution
groups, enclosed in angle brackets. |If specified, the distribution
portion of an article's newsgroup (e.g, 'net' in 'net.wonbat') wll
be exam ned for a match with the distribution categories |isted, and
only those articles which have at | east one newsgroup belonging to

Kant or & Lapsl ey [Page 16]

RFC 977 February 1986
Net wor k News Transfer Protocol

the list of distributions will be listed. If nore than one
distribution group is to be supplied, they nust be separated by
comas within the angle brackets.

The use of the | HAVE, NEWNEWS, and NEWGROUPS commands to distribute
news is discussed in an earlier part of this docunent.

Pl ease note that an enpty list (i.e., the text body returned by this
command consists only of the term nating period) is a possible valid
response, and indicates that there is currently no new news.

3.8.2. Responses
230 list of new articles by message-id foll ows

3.9. The NEXT conmmand

3.9.1. NEXT
NEXT
The internally maintained "current article pointer" is advanced to
the next article in the current newsgroup. |If no nore articles
remain in the current group, an error nessage is returned and the

current article renmins sel ected.

The internally-naintained "current article pointer" is set by this
conmmand.

A response indicating the current article nunber, and the nessage-id
string will be returned. No text is sent in response to this
command.

86¢ abed ¢z wnipuadwo)

3.9.2. Responses

223 n a article retrieved - request text separately
(n = article nunber, a = unique article id)

412 no newsgroup sel ected

420 no current article has been sel ected

421 no next article in this group

Kantor & Lapsley [Page 17]

RFC 977 February 1986
Net wor k News Transfer Protocol

3.10. The PCST conmand
3.10. 1. PCST
PCST

If posting is allowed, response code 340 is returned to indicate that
the article to be posted should be sent. Response code 440 indicates
that posting is prohibited for sone installation-dependent reason.

If posting is permtted, the article should be presented in the
format specified by RFC850, and should include all required header
lines. After the article's header and body have been conpletely sent
by the client to the server, a further response code will be returned
to indicate success or failure of the posting attenpt.

The text forming the header and body of the nessage to be posted
shoul d be sent by the client using the conventions for text received
fromthe news server: A single period (".") on a line indicates the
end of the text, with lines starting with a period in the original
text having that period doubl ed during transm ssion.

No attenpt shall be made by the server to filter characters, fold or
limt lines, or otherw se process incomng text. It is our intent
that the server just pass the incom ng nessage to be posted to the
server installation's news posting software, which is separate from
this specification. See RFC850 for nore details.

Since nost installations will want the client news programto allow
the user to prepare his nessage using sone sort of text editor, and
transmt it to the server for posting only after it is conposed, the
client program shoul d take note of the herald nessage that greeted it
when the connection was first established. This nessage indicates
whet her postings fromthat client are permitted or not, and can be
used to caution the user that his access is read-only if that is the
case. This will prevent the user fromwasting a good deal of tine
conposi ng a nessage only to find posting of the nessage was deni ed.
The nethod and determ nation of which clients and hosts may post is
installation dependent and is not covered by this specification.

3.10.2. Responses
240 article posted ok
340 send article to be posted. End with <CR LF>. <CR-LF>

440 posting not all owed
441 posting failed

Kant or & Lapsl ey [Page 18]

66& abed z wnipuadwo)

RFC 977 February 1986 RFC 977 February 1986

Net wor k News Transfer Protocol Net wor k News Transfer Protocol
(for reference, one of the followi ng codes will be sent upon initial 4. Sanpl e Conversations
connection; the client program should determ ne whether posting is
generally permtted fromthese:) 200 server ready - posting all owed These are sanples of the conversations that m ght be expected with
201 server ready - no posting allowed the news server in hypothetical sessions. The notation C indicates
comands sent to the news server fromthe client program S: indicate
3.11. The QUI T conmmand responses received fromthe server by the client.
3.11.1. QUT 4.1. Exanple 1 - relative access with NEXT
QT S: (listens at TCP port 119)
The server process acknow edges the QU T conmand and then cl oses the C (requests connection on TCP port 119)
connection to the client. This is the preferred nethod for a client S: 200 wonbatvax news server ready - posting ok
to indicate that it has finished all its transactions with the NNTP

server. (client asks for a current newsgroup |ist)
C LI ST

If a client sinply disconnects (or the connection tinmes out, or sone S: 215 list of newsgroups follows

other fault occurs), the server should gracefully cease its attenpts S: net . wonbats 00543 00501 y

to service the client. S: net . uni x-wi zards 10125 10011 y

(rmore information here)
3.11.2. Responses S net.idiots 00100 00001 n
S
205 cl osing connection - goodbye!
(client selects a newsgroup)

3.12. The SLAVE conmmand C GROUP net. uni x-wi zar ds
S: 211 104 10011 10125 net.uni x-w zards group sel ected
3.12.1. SLAVE (there are 104 articles on file, from 10011 to 10125)
SLAVE (client selects an article to read)
(o4 STAT 10110
Indicates to the server that this client connection is to a slave S: 223 10110 <23445@dcsvax. ARPA> article retrieved - statistics
server, rather than a user. only (article 10110 selected, its nessage-id is

<23445@dcsvax. ARPA>)
This command is intended for use in separating connections to single

users fromthose to subsidiary ("slave") servers. |t may be used to (client exam nes the header)
indicate that priority should therefore be given to requests from C HEAD
this client, as it is presumably serving nore than one person. It S: 221 10110 <23445@dcsvax. ARPA> article retrieved - head
m ght al so be used to determ ne which connections to close when follows (text of the header appears here)
system | oad | evels are exceeded, perhaps giving preference to slave S:
servers. The actual use this cormand is put to is entirely
i npl ement ati on dependent, and nay vary fromone host to another. In (client wants to see the text body of the article)
NNTP servers which do not give priority to slave servers, this C BCODY
command nust nonet hel ess be recogni zed and acknow edged. S: 222 10110 <23445@dcsvax. ARPA> article retrieved - body
follows (body text here)
3.12.2. Responses S:
202 sl ave status noted (client selects next article in group)

Kantor & Lapsley [Page 19] Kant or & Lapsl ey [Page 20]

RFC 977

February 1986

Net wor k News Transfer Protocol

wo

(client
C
S:

NEXT
223 10113 <21495@wudebch. uucp> article retrieved - statistics
only (article 10113 was next in group)

fini shes session)
QIT
205 goodbye.

4.2. Exanple 2 - absolute article access with ARTICLE

S:

C

S:

C

S:

0 ¢

3 S:

3 c

> S:

Q. S

c S:
3

C

™ S:

© S

m .

Q S
(9]

i C

o S:
o

(listens at TCP port 119)

(requests connection on TCP port 119)
201 UCB- VAX netnews server ready -- no posting allowed

GROUP nsgs
211 103 402 504 nmsgs Your new group i s negs
(there are 103 articles, from 402 to 504)

ARTI CLE 401
423 No such article in this newsgroup

ARTI CLE 402
220 402 <4105@icbvax. ARPA> Article retrieved, text follows
(article header and body foll ow)

HEAD 403
221 403 <3108@mcvax. UUCP> Article retrieved, header foll ows
(article header follows)

QT

205 UCB- VAX news server closing connection. Goodbye.

4.3. Exanple 3 - NEWGROUPS comand

S: (listens at TCP port 119)
C (requests connection on TCP port 119)
S: 200 Inaginary Institute News Server ready (posting ok)
(client asks for new newsgroups since April 3, 1985)
C NEWGROUPS 850403 020000
S: 231 New newsgroups since 03/04/85 02:00:00 foll ow
Kantor & Lapsley [Page 21]

RFC 977

February 1986

Net wor k News Transfer Protocol

net . musi c. gdead
net. ganes. sour ces

GROUP net . nusi c. gdead

211 0 1 1 net.nusic.gdead Newsgroup sel ected

(there are no articles in that newsgroup, and

the first and last article nunbers shoul d be ignored)

QT

205 Inmginary Institute news server ceasing service. Bye!

Exanple 4 - posting a news article

(listens at TCP port 119)

(requests connection on TCP port 119)
200 BANZAI VAX news server ready, posting allowed.

PCST

340 Continue posting; Period on a line by itself to end
(transmits news article in RFC850 format)

240 Article posted successfully.

QT
205 BANZAI VAX cl osi ng connection. GCoodbye.

Exanple 5 - interruption due to operator request

(listens at TCP port 119)

(requests connection on TCP port 119)
201 genericvax news server ready, no posting all owed.

(assume nornal conversation for some time, and
that a newsgroup has been sel ect ed)

NEXT
223 1013 <5734@rcvax. UUCP> Article retrieved; text separate.

HEAD
221 1013 <5734@rcvax. UUCP> Article retrieved; head follows.

(sends head of article, but hal fway through is
interrupted by an operator request. The follow ng
then occurs, wthout client intervention.)

Kantor & Lapsl ey [Page 22]

TOt @bed z wnipuadwo)

RFC 977

February 1986

Net wor k News Transfer Protocol

(ends current line with a CR-LF pair)

.400 Connection closed by operator. Goodbye.
(cl oses connecti on)

4.6. Exanple 6 - Using the news server to distribute news between
syst ens.

wo o

(client

C
S:
S:
S
S

client

—~

(client

C
S:
S:
S:

(listens at TCP port 119)

(requests connection on TCP port 119)
201 Foobar NNTP server ready (no posting)

asks for new newsgroups since 2 am May 15, 1985)
NEWGROUPS 850515 020000

235 New newsgroups since 850515 foll ow

net.fluff

net.lint

asks for new news articles since 2 am My 15, 1985)
NEWNEWS * 850515 020000

230 New news since 850515 020000 fol | ows

<1772@ oo. UUCP>

<87623@az. UUCP>

<17872@30LD. CSNET>

asks for article <1772@ oo. UUCP>)

ARTI CLE <1772@ oo. UUCP>

220 <1772@o00. UUCP> Al of article follows
(sends entire nessage)

asks for article <87623@az. UUCP>

ARTI CLE <87623@az. UUCP>

220 <87623@az. UUCP> Al of article follows
(sends entire nmessage)

asks for article <17872@30LD. CSNET>

ARTI CLE <17872@B0OLD. CSNET>

220 <17872@30LD. CSNET> All of article follows
(sends entire nessage)

Kantor & Lapsley [Page 23]

RFC 977
Net wor k News Transfer Protocol

(client offers an article it has received recently)
C | HAVE <4105@ichvax. ARPA>
S: 435 Al ready seen that one, where you been?

(client offers another article)

C | HAVE <4106@ichvax. ARPA>

S: 335 News to me! <CRLF.CRLF> to end.
C (sends article)
c
S

235 Article transferred successfully. Thanks.

(or)

S: 436 Transfer failed.

(client is all through with the session)

(o4 QT

S: 205 Foobar NNTP server bids you farewel|.

4.7. Summary of commands and responses.

February 1986

The followi ng are the commands recogni zed and responses returned by

the NNTP server.
4.7.1. Commands

ARTI CLE
BODY
GROUP
HEAD
HELP

| HAVE
LAST

LI ST
NEWGROUPS
NEVWNEWS
NEXT
POST
QT
SLAVE
STAT

4.7.2. Responses

100 hel p text follows
199 debug out put

Kantor & Lapsl ey

[Page 24]

20t abed z wnipuadwo)

RFC 977 February 1986
Net wor k News Transfer Protocol

200 server ready - posting allowed

201 server ready - no posting allowed

202 sl ave status noted

205 cl osing connection - goodbye!

211 n f | s group sel ected

215 list of newsgroups follows

220 n <a> article retrieved - head and body follow 221 n <a> article
retrieved - head follows

222 n <a> article retrieved - body follows

223 n <a> article retrieved - request text separately 230 Ilist of new

articles by message-id foll ows

231 list of new newsgroups follows
235 article transferred ok

240 article posted ok

335 send article to be transferred. End with <CR-LF>. <CR-LF>
340 send article to be posted. End with <CR-LF>. <CR-LF>

400 service discontinued

411 no such news group

412 no newsgroup has been sel ected

420 no current article has been sel ected
421 no next article in this group

422 no previous article in this group
423 no such article nunber in this group
430 no such article found

435 article not wanted - do not send it
436 transfer failed - try again later
437 article rejected - do not try again.
440 posting not all owed

441 posting failed

500 command not recogni zed

501 command syntax error

502 access restriction or perm ssion denied
503 program fault - command not perforned

.8. A Brief Wrd about the USENET News System

In the UNIX world, which traditionally has been |inked by 1200 baud
di al -up tel ephone lines, the USENET News system has evolved to handle
central storage, indexing, retrieval, and distribution of news. Wth
the exception of its underlying transport mechani sm (UUCP), USENET
News is an efficient neans of providing news and bulletin service to
subscribers on UNI X and other hosts worldw de. The USENET News

Kantor & Lapsley [Page 25]

RFC 977 February 1986
Net wor k News Transfer Protocol

systemis discussed in detail in RFC 850. It runs on npbst versions
of UNI X and on many other operating systems, and is customarily
distributed w thout charge.

USENET uses a spooling area on the UNI X host to store news articles,
one per file. Each article consists of a series of heading text,

whi ch contain the sender's identification and organi zati onal
affiliation, timestanps, electronic nail reply paths, subject,
newsgroup (subject category), and the like. A conplete news article
is reproduced in its entirety below. Please consult RFC 850 for nore
details.

Rel ay- Version: version B 2.10.3 4.3bsd-beta 6/6/85; site
sdcsvax. UUCP

Posting-Version: version B 2.10.1 6/24/83 SM; site unitek.uucp
Pat h: sdcsvax! sdcrdcf! hpl abs! gantel !'i hnp4! al bert a! ubc-vi si on! uni t ek
! honnman

From honman@initek. uucp (Man Wong)

Newsgr oups: net.uni x-w zards

Subj ect: foreground -> background ?

Message- | D <167@nit ek. uucp>

Date: 25 Sep 85 23:51:52 GMI

Dat e- Recei ved: 29 Sep 85 09: 54:48 GMI

Repl y- To: honman@ni t ek. UUCP (Hon- Man Wng)

Di stribution: net.all

Organi zation: Unitek Technol ogi es Corporation

Li nes: 12

| have a process (C progran) which generates a child and waits for
it toreturn. Wiat | would like to do is to be able to run the
child process interactively for a while before kicking itself into
the background so | can return to the parent process (while the
child process is RUNNING in the background). Can it be done? And
if it can, how?

Pl ease reply by E-mail. Thanks in advance.

Hon- Man Wng

Kant or & Lapsl ey [Page 26]

ot abed ¢ wnipuadwo)

RFC 977

February 1986
Net wor k News Transfer Protocol

5. References

[1] Crocker, D., "Standard for the Format of ARPA I|nternet Text
Messages", RFC-822, Departnent of Electrical Engineering,
University of Del aware, August, 1982.

[2] Horton, M, "Standard for Interchange of USENET Messages",
RFC- 850, USENET Project, June, 1983.

[3] Postel, J., "Transm ssion Control Protocol- DARPA |nternet
Program Protocol Specification", RFC 793, USC/Infornation
Sci ences Institute, Septenber, 1981.

[4] Postel, J., "Sinple Mail Transfer Protocol", RFC 821,
USC/ I nformation Sciences Institute, August, 1982.

6. Acknow edgenents

The authors wish to express their heartfelt thanks to those many
peopl e who contributed to this specification, and especially to Erik
Fai r and Chuq von Rospach, without whose inspiration this whole thing
woul d not have been necessary.

7. Notes

<1> UNIX is a trademark of Bell Laboratories.

Kantor & Lapsley [Page 27]

Gzy abed g wnipuadwo)d

Network Working Group T. Berners-Lee
Request for Comments: 2396 MIT/LCS
Updates: 1808, 1738 R. Fielding
Category: Standards Track U.C. Irvine

L. Masinter
Xerox Corporation
August 1998

Uniform Resource Identifiers (URI): Generic Syntax
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
IESG Note

This paper describes a "superset" of operations that can be applied
to URI. It consists of both a grammar and a description of basic
functionality for URI. To understand what is a valid URI, both the
grammar and the associated description have to be studied. Some of
the functionality described is not applicable to all URI schemes, and
some operations are only possible when certain media types are
retrieved using the URI, regardless of the scheme used.

Abstract

A Uniform Resource Identifier (URI) is a compact string of characters
for identifying an abstract or physical resource. This document
defines the generic syntax of URI, including both absolute and
relative forms, and guidelines for their use; it revises and replaces
the generic definitions in RFC 1738 and RFC 1808.

This document defines a grammar that is a superset of all valid URI,
such that an implementation can parse the common components of a URI
reference without knowing the scheme-specific requirements of every
possible identifier type. This document does not define a generative
grammar for URI; that task will be performed by the individual
specifications of each URI scheme.

Berners-Lee, et. al. Standards Track [Page 1]

RFC 2396 URI Generic Syntax August 1998

1.

Introduction

Uniform Resource Identifiers (URI) provide a simple and extensible
means for identifying a resource. This specification of URI syntax
and semantics is derived from concepts introduced by the World Wide
Web global information initiative, whose use of such objects dates
from 1990 and is described in "Universal Resource Identifiers in WWW"
[RFC1630]. The specification of URI is designed to meet the
recommendations laid out in "Functional Recommendations for Internet
Resource Locators" [RFC1736] and "Functional Requirements for Uniform
Resource Names" [RFC1737].

This document updates and merges "Uniform Resource Locators"
[RFC1738] and "Relative Uniform Resource Locators" [RFC1808] in order
to define a single, generic syntax for all URI. It excludes those
portions of RFC 1738 that defined the specific syntax of individual
URL schemes; those portions will be updated as separate documents, as
will the process for registration of new URI schemes. This document
does not discuss the issues and recommendation for dealing with
characters outside of the US-ASCII character set [ASCII]; those
recommendations are discussed in a separate document.

All significant changes from the prior RFCs are noted in Appendix G.

1.1 Overview of URI

URI are characterized by the following definitions:

Uniform
Uniformity provides several benefits: it allows different types
of resource identifiers to be used in the same context, even
when the mechanisms used to access those resources may differ;
it allows uniform semantic interpretation of common syntactic
conventions across different types of resource identifiers; it
allows introduction of new types of resource identifiers
without interfering with the way that existing identifiers are
used; and, it allows the identifiers to be reused in many
different contexts, thus permitting new applications or
protocols to leverage a pre-existing, large, and widely-used
set of resource identifiers.

Resource
A resource can be anything that has identity. Familiar
examples include an electronic document, an image, a service
(e.g., "today's weather report for Los Angeles"), and a
collection of other resources. Not all resources are network
"retrievable"; e.g., human beings, corporations, and bound
books in a library can also be considered resources.

Berners-Lee, et. al. Standards Track [Page 2]

oz abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998

The resource is the conceptual mapping to an entity or set of
entities, not necessarily the entity which corresponds to that
mapping at any particular instance in time. Thus, a resource
can remain constant even when its content---the entities to
which it currently corresponds---changes over time, provided
that the conceptual mapping is not changed in the process.

Identifier
An identifier is an object that can act as a reference to
something that has identity. 1In the case of URI, the object is
a sequence of characters with a restricted syntax.

Having identified a resource, a system may perform a variety of
operations on the resource, as might be characterized by such words
as “access', “update', “replace', or “find attributes'.

1.2. URI, URL, and URN

A URI can be further classified as a locator, a name, or both. The
term "Uniform Resource Locator" (URL) refers to the subset of URI
that identify resources via a representation of their primary access
mechanism (e.g., their network "location"), rather than identifying
the resource by name or by some other attribute(s) of that resource.
The term "Uniform Resource Name" (URN) refers to the subset of URI
that are required to remain globally unique and persistent even when
the resource ceases to exist or becomes unavailable.

The URI scheme (Section 3.1) defines the namespace of the URI, and
thus may further restrict the syntax and semantics of identifiers
using that scheme. This specification defines those elements of the
URI syntax that are either required of all URI schemes or are common
to many URI schemes. It thus defines the syntax and semantics that
are needed to implement a scheme-independent parsing mechanism for
URI references, such that the scheme-dependent handling of a URI can
be postponed until the scheme-dependent semantics are needed. We use
the term URL below when describing syntax or semantics that only
apply to locators.

Although many URL schemes are named after protocols, this does not
imply that the only way to access the URL's resource is via the named
protocol. Gateways, proxies, caches, and name resolution services
might be used to access some resources, independent of the protocol
of their origin, and the resolution of some URL may require the use
of more than one protocol (e.g., both DNS and HTTP are typically used
to access an "http" URL's resource when it can't be found in a local
cache).

Berners-Lee, et. al. Standards Track [Page 3]

RFC 2396 URI Generic Syntax August 1998

A URN differs from a URL in that it's primary purpose is persistent
labeling of a resource with an identifier. That identifier is drawn
from one of a set of defined namespaces, each of which has its own
set name structure and assignment procedures. The "urn" scheme has
been reserved to establish the requirements for a standardized URN
namespace, as defined in "URN Syntax" [RFC2141] and its related
specifications.

Most of the examples in this specification demonstrate URL, since
they allow the most varied use of the syntax and often have a
hierarchical namespace. A parser of the URI syntax is capable of
parsing both URL and URN references as a generic URI; once the scheme
is determined, the scheme-specific parsing can be performed on the
generic URI components. In other words, the URI syntax is a superset
of the syntax of all URI schemes.

1.3. Example URI

The following examples illustrate URI that are in common use.

ftp://ftp.is.co.za/rfc/rfcl808.txt
-- ftp scheme for File Transfer Protocol services

gopher://spinaltap.micro.umn.edu/00/Weather/California/Los%20Angeles
-- gopher scheme for Gopher and Gopher+ Protocol services

http://www.math.uio.no/faq/compression-fag/partl.html
-- http scheme for Hypertext Transfer Protocol services

mailto:mduerst@ifi.unizh.ch
-- mailto scheme for electronic mail addresses

news:comp.infosystems.www.servers.unix
-- news scheme for USENET news groups and articles

telnet://melvyl.ucop.edu/
-- telnet scheme for interactive services via the TELNET Protocol

1.4. Hierarchical URI and Relative Forms

An absolute identifier refers to a resource independent of the
context in which the identifier is used. 1In contrast, a relative
identifier refers to a resource by describing the difference within a
hierarchical namespace between the current context and an absolute
identifier of the resource.

Berners-Lee, et. al. Standards Track [Page 4]

, 2y abed z wnipuadwo)

RFC 2396 URI Generic Syntax August 1998

Some URI schemes support a hierarchical naming system, where the
hierarchy of the name is denoted by a "/" delimiter separating the
components in the scheme. This document defines a scheme-independent
“relative' form of URI reference that can be used in conjunction with
a “base' URI (of a hierarchical scheme) to produce another URI. The
syntax of hierarchical URI is described in Section 3; the relative
URI calculation is described in Section 5.

1.5. URI Transcribability

The URI syntax was designed with global transcribability as one of
its main concerns. A URI is a sequence of characters from a very
limited set, i.e. the letters of the basic Latin alphabet, digits,
and a few special characters. A URI may be represented in a variety
of ways: e.g., ink on paper, pixels on a screen, or a sequence of
octets in a coded character set. The interpretation of a URI depends
only on the characters used and not how those characters are
represented in a network protocol.

The goal of transcribability can be described by a simple scenario.
Imagine two colleagues, Sam and Kim, sitting in a pub at an
international conference and exchanging research ideas. Sam asks Kim
for a location to get more information, so Kim writes the URI for the
research site on a napkin. Upon returning home, Sam takes out the
napkin and types the URI into a computer, which then retrieves the
information to which Kim referred.

There are several design concerns revealed by the scenario:

o A URI is a sequence of characters, which is not always
represented as a sequence of octets.

o A URI may be transcribed from a non-network source, and thus
should consist of characters that are most likely to be able to
be typed into a computer, within the constraints imposed by
keyboards (and related input devices) across languages and
locales.

o A URI often needs to be remembered by people, and it is easier
for people to remember a URI when it consists of meaningful
components.

These design concerns are not always in alignment. For example, it
is often the case that the most meaningful name for a URI component
would require characters that cannot be typed into some systems. The
ability to transcribe the resource identifier from one medium to
another was considered more important than having its URI consist of
the most meaningful of components. 1In local and regional contexts

Berners-Lee, et. al. Standards Track [Page 5]

RFC 2396 URI Generic Syntax August 1998

and with improving technology, users might benefit from being able to
use a wider range of characters; such use is not defined in this
document.

1.6. Syntax Notation and Common Elements

This document uses two conventions to describe and define the syntax
for URI. The first, called the layout form, is a general description
of the order of components and component separators, as in

<first>/<second>;<third>?<fourth>

The component names are enclosed in angle-brackets and any characters
outside angle-brackets are literal separators. Whitespace should be
ignored. These descriptions are used informally and do not define
the syntax requirements.

The second convention is a BNF-like grammar, used to define the
formal URI syntax. The grammar is that of [RFC822], except that "|"
is used to designate alternatives. Briefly, rules are separated from
definitions by an equal "=", indentation is used to continue a rule
definition over more than one line, literals are quoted with "",
parentheses "(" and ")" are used to group elements, optional elements
are enclosed in "[" and "]" brackets, and elements may be preceded
with <n>* to designate n or more repetitions of the following
element; n defaults to 0.

Unlike many specifications that use a BNF-like grammar to define the
bytes (octets) allowed by a protocol, the URI grammar is defined in
terms of characters. Each literal in the grammar corresponds to the
character it represents, rather than to the octet encoding of that
character in any particular coded character set. How a URI is
represented in terms of bits and bytes on the wire is dependent upon
the character encoding of the protocol used to transport it, or the
charset of the document which contains it.

The following definitions are common to many elements:

alpha = lowalpha | upalpha
lowalpha = nan | nbu | llc " | ||dn | ueu | " fll | ugu | nhn | " i" |
" j " | uku | " l " | nmu ‘ un " | " ou | up " | nqn | " ru |
" s " | ntn I "u " | uvn ‘ Ilwll | " X“ | ny " I " z "
upalpha = Au | uBu | nc " | " Du | uE " | " F " | uGu | " H " | " I " |
Ju | nKn I nLn | uMn ‘ "N" | uou | nPn | nQu | ||Rn I
n S " | HTH I llUn | uvu ‘ qul I " Xu | HY " I " Z "

Berners-Lee, et. al. Standards Track [Page 6]

gz obed z wnipuadwo)d

Berners-Lee, et. al.

RFC 2396 URI Generic Syntax August 1998

dlglt = "g" I wqn | nom | ngn | g | ngn I " | ngn ‘
ngn | g

alphanum = alpha | digit
The complete URI syntax is collected in Appendix A.
2. URI Characters and Escape Sequences

URI consist of a restricted set of characters, primarily chosen to
aid transcribability and usability both in computer systems and in
non-computer communications. Characters used conventionally as
delimiters around URI were excluded. The restricted set of
characters consists of digits, letters, and a few graphic symbols
were chosen from those common to most of the character encodings and
input facilities available to Internet users.

uric = reserved | unreserved | escaped

Within a URI, characters are either used as delimiters, or to
represent strings of data (octets) within the delimited portions.
Octets are either represented directly by a character (using the US-
ASCII character for that octet [ASCII]) or by an escape encoding.
This representation is elaborated below.

2.1 URI and non-ASCII characters

The relationship between URI and characters has been a source of
confusion for characters that are not part of US-ASCII. To describe
the relationship, it is useful to distinguish between a "character"
(as a distinguishable semantic entity) and an "octet" (an 8-bit

byte). There are two mappings, one from URI characters to octets, and

a second from octets to original characters:
URI character sequence->octet sequence->original character sequence

A URI is represented as a sequence of characters, not as a sequence
of octets. That is because URI might be "transported" by means that

are not through a computer network, e.g., printed on paper, read over

the radio, etc.

A URI scheme may define a mapping from URI characters to octets;
whether this is done depends on the scheme. Commonly, within a

delimited component of a URI, a sequence of characters may be used to

represent a sequence of octets. For example, the character "a"
represents the octet 97 (decimal), while the character sequence "%",
"0", "a" represents the octet 10 (decimal).

Standards Track [Page 7] Berners-Lee, et. al.

RFC 2396 URI Generic Syntax August 1998

There is a second translation for some resources: the sequence of
octets defined by a component of the URI is subsequently used to
represent a sequence of characters. A 'charset' defines this mapping.
There are many charsets in use in Internet protocols. For example,
UTF-8 [UTF-8] defines a mapping from sequences of octets to sequences
of characters in the repertoire of ISO 10646.

In the simplest case, the original character sequence contains only
characters that are defined in US-ASCII, and the two levels of
mapping are simple and easily invertible: each 'original character'
is represented as the octet for the US-ASCII code for it, which is,
in turn, represented as either the US-ASCII character, or else the
"%" escape sequence for that octet.

For original character sequences that contain non-ASCII characters,
however, the situation is more difficult. Internet protocols that
transmit octet sequences intended to represent character sequences
are expected to provide some way of identifying the charset used, if
there might be more than one [RFC2277]. However, there is currently
no provision within the generic URI syntax to accomplish this
identification. An individual URI scheme may require a single
charset, define a default charset, or provide a way to indicate the
charset used.

It is expected that a systematic treatment of character encoding
within URI will be developed as a future modification of this
specification.

2.2. Reserved Characters

Many URI include components consisting of or delimited by, certain
special characters. These characters are called "reserved", since
their usage within the URI component is limited to their reserved

purpose. If the data for a URI component would conflict with the

reserved purpose, then the conflicting data must be escaped before
forming the URI.

reserved = ;" | wym | non | wen | g | g | n_n |] |
" | u,u

The "reserved" syntax class above refers to those characters that are
allowed within a URI, but which may not be allowed within a
particular component of the generic URI syntax; they are used as
delimiters of the components described in Section 3.

Standards Track [Page 8]

62 abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998

Characters in the "reserved" set are not reserved in all contexts.
The set of characters actually reserved within any given URI
component is defined by that component. In general, a character is
reserved if the semantics of the URI changes if the character is
replaced with its escaped US-ASCII encoding.

2.3. Unreserved Characters
Data characters that are allowed in a URI but do not have a reserved
purpose are called unreserved. These include upper and lower case
letters, decimal digits, and a limited set of punctuation marks and
symbols.

unreserved = alphanum | mark

mark n_mn | non | won | nyn | n_mn | " | nan | u(u | u)u

Unreserved characters can be escaped without changing the semantics
of the URI, but this should not be done unless the URI is being used
in a context that does not allow the unescaped character to appear.

2.4. Escape Sequences

Data must be escaped if it does not have a representation using an
unreserved character; this includes data that does not correspond to
a printable character of the US-ASCII coded character set, or that
corresponds to any US-ASCII character that is disallowed, as
explained below.

2.4.1. Escaped Encoding

An escaped octet is encoded as a character triplet, consisting of the

percent character "$" followed by the two hexadecimal digits
representing the octet code. For example, "%20" is the escaped
encoding for the US-ASCII space character.

escaped = "%" hex hex
heX = digit | "A" | nBu | ucu | nDn | uEu ‘ an |
nan | nbu | ncn I ndn | ueu ‘ " f "

2.4.2. When to Escape and Unescape

A URI is always in an "escaped" form, since escaping or unescaping a
completed URI might change its semantics. Normally, the only time
escape encodings can safely be made is when the URI is being created
from its component parts; each component may have its own set of
characters that are reserved, so only the mechanism responsible for
generating or interpreting that component can determine whether or

Berners-Lee, et. al.

Standards Track [Page 9] Berners-Lee, et. al.

RFC 2396 URI Generic Syntax August 1998

not escaping a character will change its semantics. Likewise, a URI
must be separated into its components before the escaped characters
within those components can be safely decoded.

In some cases, data that could be represented by an unreserved
character may appear escaped; for example, some of the unreserved
"mark" characters are automatically escaped by some systems. If the
given URI scheme defines a canonicalization algorithm, then
unreserved characters may be unescaped according to that algorithm.
For example, "%$7e" is sometimes used instead of "~" in an http URL
path, but the two are equivalent for an http URL.

Because the percent "%" character always has the reserved purpose of
being the escape indicator, it must be escaped as "%25" in order to
be used as data within a URI. Implementers should be careful not to
escape or unescape the same string more than once, since unescaping
an already unescaped string might lead to misinterpreting a percent
data character as another escaped character, or vice versa in the
case of escaping an already escaped string.

2.4.3. Excluded US-ASCII Characters

Although they are disallowed within the URI syntax, we include here a
description of those US-ASCII characters that have been excluded and
the reasons for their exclusion.

The control characters in the US-ASCII coded character set are not
used within a URI, both because they are non-printable and because
they are likely to be misinterpreted by some control mechanisms.

control = <US-ASCII coded characters 00-1F and 7F hexadecimal>

The space character is excluded because significant spaces may
disappear and insignificant spaces may be introduced when URI are
transcribed or typeset or subjected to the treatment of word-
processing programs. Whitespace is also used to delimit URI in many
contexts.

space = <US-ASCII coded character 20 hexadecimal>

The angle-bracket "<" and ">" and double-quote (") characters are
excluded because they are often used as the delimiters around URI in
text documents and protocol fields. The character "#" is excluded
because it is used to delimit a URI from a fragment identifier in URI
references (Section 4). The percent character "%" is excluded because
it is used for the encoding of escaped characters.

delims = nen | nsn | g | ngn | <">

Standards Track [Page 10]

o0&y abed z wnipuadwo)d

RFC 2396 URI Generic Syntax

Berners-Lee, et. al.

August 1998

Other characters are excluded because gateways and other transport
agents are known to sometimes modify such characters, or they are
used as delimiters.

unwise = u{n I u}n | qu | ny " I naun | n[n I u]u | nsn

Data corresponding to excluded characters must be escaped in order to
be properly represented within a URI.

URI Syntactic Components

The URI syntax is dependent upon the scheme. In general, absolute
URI are written as follows:

<scheme>:<scheme-specific-part>

An absolute URI contains the name of the scheme being used (<scheme>)
followed by a colon (":") and then a string (the <scheme-specific-
part>) whose interpretation depends on the scheme.

The URI syntax does not require that the scheme-specific-part have
any general structure or set of semantics which is common among all
URI. However, a subset of URI do share a common syntax for
representing hierarchical relationships within the namespace. This
"generic URI" syntax consists of a sequence of four main components:

<scheme>://<authority><path>?<query>

each of which, except <scheme>, may be absent from a particular URI.
For example, some URI schemes do not allow an <authority> component,
and others do not use a <query> component.

absoluteURI = scheme ":" (hier part | opaque part)

URI that are hierarchical in nature use the slash "/" character for
separating hierarchical components. For some file systems, a "/"
character (used to denote the hierarchical structure of a URI) is the
delimiter used to construct a file name hierarchy, and thus the URI
path will look similar to a file pathname. This does NOT imply that
the resource is a file or that the URI maps to an actual filesystem
pathname.

hier part = (net_path | abs_path) ["?" query]
net_path = "//" authority [abs_path]
abs_path = "/" path_segments

Standards Track [Page 11]

RFC 2396 URI Generic Syntax

Berners-Lee, et. al.

August 1998

URI that do not make use of the slash "/" character for separating
hierarchical components are considered opaque by the generic URI
parser.

opaque_part = uric_no_slash *uric
uric_no slash = unreserved | escaped | ";" | "2" | ":" | "e" |
" & " | n_n I Il+ " | " $ " | " , "

We use the term <path> to refer to both the <abs_path> and
<opaque_part> constructs, since they are mutually exclusive for any
given URI and can be parsed as a single component.

3.1. Scheme Component

Just as there are many different methods of access to resources,
there are a variety of schemes for identifying such resources. The
URI syntax consists of a sequence of components separated by reserved
characters, with the first component defining the semantics for the
remainder of the URI string.

Scheme names consist of a sequence of characters beginning with a
lower case letter and followed by any combination of lower case
letters, digits, plus ("+"), period ("."), or hyphen ("-"). For
resiliency, programs interpreting URI should treat upper case letters
as equivalent to lower case in scheme names (e.g., allow "HTTP" as
well as "http").

scheme = alpha *(alpha | digit | "+" | "=" | ".")
Relative URI references are distinguished from absolute URI in that

they do not begin with a scheme name. Instead, the scheme is
inherited from the base URI, as described in Section 5.2.

3.2. Authority Component

Many URI schemes include a top hierarchical element for a naming
authority, such that the namespace defined by the remainder of the
URI is governed by that authority. This authority component is
typically defined by an Internet-based server or a scheme-specific
registry of naming authorities.

authority = server | reg_name
The authority component is preceded by a double slash "//" and is
terminated by the next slash "/", question-mark "?", or by the end of

the URI. Within the authority component, the characters ";", ":",
"@", "?", and "/" are reserved.

Standards Track [Page 12]

TEy abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998

An authority component is not required for a URI scheme to make use
of relative references. A base URI without an authority component
implies that any relative reference will also be without an authority
component.

3.2.1. Registry-based Naming Authority

The structure of a registry-based naming authority is specific to the
URI scheme, but constrained to the allowed characters for an
authority component.

reg_name = 1*(unreserved | escaped | "s" | " |
||;u | n: " | u@u ‘ u&n | n_mn | u+u)

3.2.2. Server-based Naming Authority

URL schemes that involve the direct use of an IP-based protocol to a
specified server on the Internet use a common syntax for the server
component of the URI's scheme-specific data:

<userinfo>@<host>:<port>

where <userinfo> may consist of a user name and, optionally, scheme-
specific information about how to gain authorization to access the
server. The parts "<userinfo>@" and ":<port>" may be omitted.

server = [[userinfo "@"] hostport]

The user information, if present, is followed by a commercial at-sign
nar,

userinfo = *(unreserved | escaped |

R e B I L IV
Some URL schemes use the format "user:password" in the userinfo
field. This practice is NOT RECOMMENDED, because the passing of
authentication information in clear text (such as URI) has proven to
be a security risk in almost every case where it has been used.

The host is a domain name of a network host, or its IPv4 address as a
set of four decimal digit groups separated by ".". Literal IPv6
addresses are not supported.

hostport = host [":" port]

host = hostname | IPv4address

hostname = *(domainlabel ".") toplabel ["."

domainlabel = alphanum | alphanum *(alphanum | "-") alphanum

toplabel = alpha | alpha *(alphanum | "-") alphanum
Berners-Lee, et. al. Standards Track [Page 13]

RFC 2396 URI Generic Syntax August 1998
IPv4address = l*digit "." 1*digit "." 1*digit "." 1l*digit
port = *digit

Hostnames take the form described in Section 3 of [RFC1034] and
Section 2.1 of [RFC1123]: a sequence of domain labels separated by
".", each domain label starting and ending with an alphanumeric
character and possibly also containing "-" characters. The rightmost
domain label of a fully qualified domain name will never start with a
digit, thus syntactically distinguishing domain names from IPv4
addresses, and may be followed by a single "." if it is necessary to
distinguish between the complete domain name and any local domain.

To actually be "Uniform" as a resource locator, a URL hostname should
be a fully qualified domain name. In practice, however, the host
component may be a local domain literal.

Note: A suitable representation for including a literal IPvé6
address as the host part of a URL is desired, but has not yet been
determined or implemented in practice.

The port is the network port number for the server. Most schemes
designate protocols that have a default port number. Another port
number may optionally be supplied, in decimal, separated from the
host by a colon. If the port is omitted, the default port number is
assumed.

3.3. Path Component

The path component contains data, specific to the authority (or the
scheme if there is no authority component), identifying the resource
within the scope of that scheme and authority.

path

[abs_path | opaque_part]

path_segments = segment *("/" segment)

segment = *pchar *(";" param)
param = *pchar
pchar = unreserved | escaped |
II: n | u@n I Il&ll | n_n | |I+Il | I|$l| | H’n

The path may consist of a sequence of path segments separated by a
single slash "/" character. Within a path segment, the characters
"/", ";", "=", and "?" are reserved. Each path segment may include a
sequence of parameters, indicated by the semicolon ";" character.

The parameters are not significant to the parsing of relative
references.

Berners-Lee, et. al. Standards Track [Page 14]

Z2sy abed z wnipuadwo)d

RFC 2396

URI Generic Syntax August 1998

3.4. Query Component

Berners-Lee, et. al.

The query component is a string of information to be interpreted by
the resource.

query = *uric
Within a query component, the characters ";", "/", "2", ":", "@",
e, M=t mgt, MW and "$" are reserved.

URI References

The term "URI-reference" is used here to denote the common usage of a
resource identifier. A URI reference may be absolute or relative,
and may have additional information attached in the form of a
fragment identifier. However, "the URI" that results from such a
reference includes only the absolute URI after the fragment
identifier (if any) is removed and after any relative URI is resolved
to its absolute form. Although it is possible to limit the
discussion of URI syntax and semantics to that of the absolute
result, most usage of URI is within general URI references, and it is
impossible to obtain the URI from such a reference without also
parsing the fragment and resolving the relative form.

URI-reference = [absoluteURI | relativeURI] ["#" fragment]

The syntax for relative URI is a shortened form of that for absolute
URI, where some prefix of the URI is missing and certain path
components ("." and "..") have a special meaning when, and only when,
interpreting a relative path. The relative URI syntax is defined in
Section 5.

4.1. Fragment Identifier

When a URI reference is used to perform a retrieval action on the
identified resource, the optional fragment identifier, separated from
the URI by a crosshatch ("#") character, consists of additional
reference information to be interpreted by the user agent after the
retrieval action has been successfully completed. As such, it is not
part of a URI, but is often used in conjunction with a URI.

fragment = *uric

The semantics of a fragment identifier is a property of the data
resulting from a retrieval action, regardless of the type of URI used
in the reference. Therefore, the format and interpretation of
fragment identifiers is dependent on the media type [RFC2046] of the
retrieval result. The character restrictions described in Section 2

Standards Track [Page 15]

RFC 2396

URI Generic Syntax August 1998

for URI also apply to the fragment in a URI-reference. Individual
media types may define additional restrictions or structure within
the fragment for specifying different types of "partial views" that
can be identified within that media type.

A fragment identifier is only meaningful when a URI reference is
intended for retrieval and the result of that retrieval is a document
for which the identified fragment is consistently defined.

4.2. Same-document References

A URI reference that does not contain a URI is a reference to the
current document. In other words, an empty URI reference within a
document is interpreted as a reference to the start of that document,
and a reference containing only a fragment identifier is a reference
to the identified fragment of that document. Traversal of such a
reference should not result in an additional retrieval action.
However, if the URI reference occurs in a context that is always
intended to result in a new request, as in the case of HTML's FORM
element, then an empty URI reference represents the base URI of the
current document and should be replaced by that URI when transformed
into a request.

4.3. Parsing a URI Reference

Berners-Lee, et. al.

A URI reference is typically parsed according to the four main
components and fragment identifier in order to determine what
components are present and whether the reference is relative or
absolute. The individual components are then parsed for their
subparts and, if not opaque, to verify their wvalidity.

Although the BNF defines what is allowed in each component, it is
ambiguous in terms of differentiating between an authority component
and a path component that begins with two slash characters. The
greedy algorithm is used for disambiguation: the left-most matching
rule soaks up as much of the URI reference string as it is capable of
matching. In other words, the authority component wins.

Readers familiar with regular expressions should see Appendix B for a
concrete parsing example and test oracle.

Relative URI References
It is often the case that a group or "tree" of documents has been

constructed to serve a common purpose; the vast majority of URI in
these documents point to resources within the tree rather than

Standards Track [Page 16]

eey abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998

outside of it. Similarly, documents located at a particular site are
much more likely to refer to other resources at that site than to
resources at remote sites.

Relative addressing of URI allows document trees to be partially
independent of their location and access scheme. For instance, it is
possible for a single set of hypertext documents to be simultaneously
accessible and traversable via each of the "file", "http", and "ftp"
schemes if the documents refer to each other using relative URI.
Furthermore, such document trees can be moved, as a whole, without
changing any of the relative references. Experience within the WWW
has demonstrated that the ability to perform relative referencing is
necessary for the long-term usability of embedded URI.

The syntax for relative URI takes advantage of the <hier part> syntax
of <absoluteURI> (Section 3) in order to express a reference that is
relative to the namespace of another hierarchical URI.

relativeURI = (net_path | abs_path | rel_path) ["?" query]

A relative reference beginning with two slash characters is termed a
network-path reference, as defined by <net path> in Section 3. Such
references are rarely used.

A relative reference beginning with a single slash character is
termed an absolute-path reference, as defined by <abs_path> in
Section 3.

A relative reference that does not begin with a scheme name or a
slash character is termed a relative-path reference.

rel_path = rel_segment [abs_path]
rel segment = 1*(unreserved | escaped |
" ; " | " @ " | " & " ‘ n_mn | n+u | " $ " | " , ")
Within a relative-path reference, the complete path segments "." and

have special meanings: "the current hierarchy level" and "the
level above this hierarchy level", respectively. Although this is
very similar to their use within Unix-based filesystems to indicate
directory levels, these path components are only considered special
when resolving a relative-path reference to its absolute form
(Section 5.2).

Authors should be aware that a path segment which contains a colon
character cannot be used as the first segment of a relative URI path
(e.g., "this:that"), because it would be mistaken for a scheme name.

Berners-Lee, et. al. Standards Track [Page 17]

RFC 2396 URI Generic Syntax August 1998

It is therefore necessary to precede such segments with other
segments (e.g., "./this:that") in order for them to be referenced as
a relative path.

It is not necessary for all URI within a given scheme to be
restricted to the <hier_ part> syntax, since the hierarchical
properties of that syntax are only necessary when relative URI are
used within a particular document. Documents can only make use of
relative URI when their base URI fits within the <hier_ part> syntax.
It is assumed that any document which contains a relative reference
will also have a base URI that obeys the syntax. In other words,
relative URI cannot be used within a document that has an unsuitable
base URI.

Some URI schemes do not allow a hierarchical syntax matching the
<hier part> syntax, and thus cannot use relative references.

5.1. Establishing a Base URI

The term "relative URI" implies that there exists some absolute "base
URI" against which the relative reference is applied. Indeed, the
base URI is necessary to define the semantics of any relative URI
reference; without it, a relative reference is meaningless. In order
for relative URI to be usable within a document, the base URI of that
document must be known to the parser.

The base URI of a document can be established in one of four ways,
listed below in order of precedence. The order of precedence can be
thought of in terms of layers, where the innermost defined base URI
has the highest precedence. This can be visualized graphically as:

| |
| |
| (5.1.1) Base URI embedded in the |
| document's content |

(5.1.2) Base URI of the encapsulating entity
(message, document, or none).

Berners-Lee, et. al. Standards Track [Page 18]

v abed ¢ wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998

5.1.1. Base URI within Document Content

Within certain document media types, the base URI of the document can
be embedded within the content itself such that it can be readily
obtained by a parser. This can be useful for descriptive documents,
such as tables of content, which may be transmitted to others through
protocols other than their usual retrieval context (e.g., E-Mail or
USENET news).

It is beyond the scope of this document to specify how, for each
media type, the base URI can be embedded. It is assumed that user
agents manipulating such media types will be able to obtain the
appropriate syntax from that media type's specification. An example
of how the base URI can be embedded in the Hypertext Markup Language
(HTML) [RFC1866] is provided in Appendix D.

A mechanism for embedding the base URI within MIME container types
(e.g., the message and multipart types) is defined by MHTML
[RFC2110]. Protocols that do not use the MIME message header syntax,
but which do allow some form of tagged metainformation to be included
within messages, may define their own syntax for defining the base
URI as part of a message.

5.1.2. Base URI from the Encapsulating Entity

If no base URI is embedded, the base URI of a document is defined by
the document's retrieval context. For a document that is enclosed
within another entity (such as a message or another document), the
retrieval context is that entity; thus, the default base URI of the
document is the base URI of the entity in which the document is
encapsulated.

5.1.3. Base URI from the Retrieval URI

If no base URI is embedded and the document is not encapsulated
within some other entity (e.g., the top level of a composite entity),
then, if a URI was used to retrieve the base document, that URI shall
be considered the base URI. Note that if the retrieval was the
result of a redirected request, the last URI used (i.e., that which
resulted in the actual retrieval of the document) is the base URI.

5.1.4. Default Base URI

If none of the conditions described in Sections 5.1.1--5.1.3 apply,
then the base URI is defined by the context of the application.
Since this definition is necessarily application-dependent, failing

Berners-Lee, et. al. Standards Track [Page 19]

RFC 2396 URI Generic Syntax August 1998

to define the base URI using one of the other methods may result in
the same content being interpreted differently by different types of
application.

It is the responsibility of the distributor(s) of a document
containing relative URI to ensure that the base URI for that document
can be established. It must be emphasized that relative URI cannot
be used reliably in situations where the document's base URI is not
well-defined.

5.2. Resolving Relative References to Absolute Form

This section describes an example algorithm for resolving URI
references that might be relative to a given base URI.

The base URI is established according to the rules of Section 5.1 and
parsed into the four main components as described in Section 3. Note
that only the scheme component is required to be present in the base
URI; the other components may be empty or undefined. A component is
undefined if its preceding separator does not appear in the URI
reference; the path component is never undefined, though it may be
empty. The base URI's query component is not used by the resolution
algorithm and may be discarded.

For each URI reference, the following steps are performed in order:

1) The URI reference is parsed into the potential four components and
fragment identifier, as described in Section 4.3.

2

If the path component is empty and the scheme, authority, and
query components are undefined, then it is a reference to the
current document and we are done. Otherwise, the reference URI's
query and fragment components are defined as found (or not found)
within the URI reference and not inherited from the base URI.

3) If the scheme component is defined, indicating that the reference
starts with a scheme name, then the reference is interpreted as an
absolute URI and we are done. Otherwise, the reference URI's
scheme is inherited from the base URI's scheme component.

Due to a loophole in prior specifications [RFC1630], some parsers
allow the scheme name to be present in a relative URI if it is the
same as the base URI scheme. Unfortunately, this can conflict
with the correct parsing of non-hierarchical URI. For backwards
compatibility, an implementation may work around such references
by removing the scheme if it matches that of the base URI and the
scheme is known to always use the <hier part> syntax. The parser

Berners-Lee, et. al. Standards Track [Page 20]

Gey abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998

can then continue with the steps below for the remainder of the
reference components. Validating parsers should mark such a
misformed relative reference as an error.

4) If the authority component is defined, then the reference is a
network-path and we skip to step 7. Otherwise, the reference
URI's authority is inherited from the base URI's authority
component, which will also be undefined if the URI scheme does not
use an authority component.

5) If the path component begins with a slash character ("/"), then
the reference is an absolute-path and we skip to step 7.

6) If this step is reached, then we are resolving a relative-path
reference. The relative path needs to be merged with the base
URI's path. Although there are many ways to do this, we will
describe a simple method using a separate string buffer.

a) All but the last segment of the base URI's path component is
copied to the buffer. 1In other words, any characters after the
last (right-most) slash character, if any, are excluded.

b) The reference's path component is appended to the buffer
string.

c) All occurrences of "./", where "." is a complete path segment,
are removed from the buffer string.

d) If the buffer string ends with "." as a complete path segment,
that "." is removed.

e) All occurrences of "<segment>/../", where <segment> is a
complete path segment not equal to "..", are removed from the
buffer string. Removal of these path segments is performed
iteratively, removing the leftmost matching pattern on each
iteration, until no matching pattern remains.

f) If the buffer string ends with "<segment>/..", where <segment>
is a complete path segment not equal to "..", that
"<segment>/.." is removed.

g) If the resulting buffer string still begins with one or more
complete path segments of "..", then the reference is
considered to be in error. Implementations may handle this
error by retaining these components in the resolved path (i.e.,
treating them as part of the final URI), by removing them from
the resolved path (i.e., discarding relative levels above the
root), or by avoiding traversal of the reference.

Berners-Lee, et. al. Standards Track [Page 21]

RFC 2396 URI Generic Syntax August 1998

h) The remaining buffer string is the reference URI's new path
component.

7) The resulting URI components, including any inherited from the
base URI, are recombined to give the absolute form of the URI
reference. Using pseudocode, this would be

result =

if scheme is defined then
append scheme to result

append ":" to result

if authority is defined then
append "//" to result
append authority to result

append path to result

if query is defined then
append "?" to result
append query to result

if fragment is defined then
append "#" to result
append fragment to result

return result

Note that we must be careful to preserve the distinction between a
component that is undefined, meaning that its separator was not
present in the reference, and a component that is empty, meaning
that the separator was present and was immediately followed by the
next component separator or the end of the reference.

The above algorithm is intended to provide an example by which the
output of implementations can be tested -- implementation of the
algorithm itself is not required. For example, some systems may find
it more efficient to implement step 6 as a pair of segment stacks
being merged, rather than as a series of string pattern replacements.

Note: Some WWW client applications will fail to separate the
reference's query component from its path component before merging
the base and reference paths in step 6 above. This may result in
a loss of information if the query component contains the strings
"/../" oxr "/./".

Resolution examples are provided in Appendix C.

Berners-Lee, et. al. Standards Track [Page 22]

ocy abed z wnipuadwo)

RFC 2396

6.

Berners-Lee, et. al.

URI Generic Syntax August 1998

URI Normalization and Equivalence

In many cases, different URI strings may actually identify the
identical resource. For example, the host names used in URL are
actually case insensitive, and the URL <http://www.XEROX.com> is
equivalent to <http://www.xerox.com>. In general, the rules for
equivalence and definition of a normal form, if any, are scheme
dependent. When a scheme uses elements of the common syntax, it will
also use the common syntax equivalence rules, namely that the scheme
and hostname are case insensitive and a URL with an explicit ":port",
where the port is the default for the scheme, is equivalent to one
where the port is elided.

Security Considerations

A URI does not in itself pose a security threat. Users should beware
that there is no general guarantee that a URL, which at one time
located a given resource, will continue to do so. Nor is there any
guarantee that a URL will not locate a different resource at some
later point in time, due to the lack of any constraint on how a given
authority apportions its namespace. Such a guarantee can only be
obtained from the person(s) controlling that namespace and the
resource in question. A specific URI scheme may include additional
semantics, such as name persistence, if those semantics are required
of all naming authorities for that scheme.

It is sometimes possible to construct a URL such that an attempt to
perform a seemingly harmless, idempotent operation, such as the
retrieval of an entity associated with the resource, will in fact
cause a possibly damaging remote operation to occur. The unsafe URL
is typically constructed by specifying a port number other than that
reserved for the network protocol in question. The client
unwittingly contacts a site that is in fact running a different
protocol. The content of the URL contains instructions that, when
interpreted according to this other protocol, cause an unexpected
operation. An example has been the use of a gopher URL to cause an
unintended or impersonating message to be sent via a SMTP server.

Caution should be used when using any URL that specifies a port
number other than the default for the protocol, especially when it is
a number within the reserved space.

Care should be taken when a URL contains escaped delimiters for a
given protocol (for example, CR and LF characters for telnet
protocols) that these are not unescaped before transmission. This
might violate the protocol, but avoids the potential for such

Standards Track [Page 23]

RFC 2396

Berners-Lee, et. al.

URI Generic Syntax August 1998

characters to be used to simulate an extra operation or parameter in
that protocol, which might lead to an unexpected and possibly harmful
remote operation to be performed.

It is clearly unwise to use a URL that contains a password which is
intended to be secret. In particular, the use of a password within
the 'userinfo' component of a URL is strongly disrecommended except
in those rare cases where the 'password' parameter is intended to be
public.

Acknowledgements

This document was derived from RFC 1738 [RFC1738] and RFC 1808
[RFC1808]; the acknowledgements in those specifications still apply.
In addition, contributions by Gisle Aas, Martin Beet, Martin Duerst,
Jim Gettys, Martijn Koster, Dave Kristol, Daniel LaLiberte, Foteos
Macrides, James Marshall, Ryan Moats, Keith Moore, and Lauren Wood
are gratefully acknowledged.

References

[RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.

[RFC1630] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
Unifying Syntax for the Expression of Names and Addresses
of Objects on the Network as used in the World-Wide Web",
RFC 1630, June 1994.

[RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, Editors,
"Uniform Resource Locators (URL)", RFC 1738, December 1994.

[RFC1866] Berners-Lee T., and D. Connolly, "HyperText Markup Language
Specification -- 2.0", RFC 1866, November 1995.

[RFC1123] Braden, R., Editor, "Requirements for Internet Hosts --
Application and Support", STD 3, RFC 1123, October 1989.

[RFC822] Crocker, D., "Standard for the Format of ARPA Internet Text
Messages", STD 11, RFC 822, August 1982.

[RFC1808] Fielding, R., "Relative Uniform Resource Locators", RFC
1808, June 1995.

[RFC2046] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996.

Standards Track [Page 24]

L&y abed z wnipuadwo)d

RFC 2396

[RFC1736]

[RFC2141]

[RFC1034]

[RFC2110]

[RFC1737]

[ASCII]

[UTF-8]

Berners-Lee,

URI Generic Syntax August 1998

Kunze, J., "Functional Recommendations for Internet
Resource Locators", RFC 1736, February 1995.

Moats, R., "URN Syntax", RFC 2141, May 1997.

Mockapetris, P., "Domain Names - Concepts and Facilities",
STD 13, RFC 1034, November 1987.

Palme, J., and A. Hopmann, "MIME E-mail Encapsulation of
Aggregate Documents, such as HTML (MHTML)", RFC 2110, March
1997.

Sollins, K., and L. Masinter, "Functional Requirements for
Uniform Resource Names", RFC 1737, December 1994.

US-ASCII. "Coded Character Set -- 7-bit American Standard
Code for Information Interchange", ANSI X3.4-1986.

Yergeau, F., "UTF-8, a transformation format of ISO 10646",
RFC 2279, January 1998.

et. al. Standards Track [Page 25]

RFC 2396

10.

Berners-Lee, et. al.

URI Generic Syntax August

Authors' Addresses

Tim Berners-Lee

World Wide Web Consortium

MIT Laboratory for Computer Science, NE43-356
545 Technology Square

Cambridge, MA 02139

Fax: +1(617)258-8682
EMail: timbl@w3.org

Roy T. Fielding

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Fax: +1(949)824-1715
EMail: fielding@ics.uci.edu

Larry Masinter

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94034

Fax: +1(415)812-4333
EMail: masinter@parc.xerox.com

Standards Track

1998

[Page 26]

gey abed z wnipuadwo)d

RFC 2396

URI Generic Syntax

A. Collected BNF for URI

URI-reference
absoluteURI
relativeURI

hier_part
opaque_part

uric_no_slash

net_path
abs_path
rel path

rel_segment

scheme
authority

reg_name

server
userinfo

hostport
host
hostname
domainlabel
toplabel
IPv4address
port

path
path_segments
segment
param

pchar

query

fragment

Berners-Lee, et. al.

= host [":"

August 1998

[absoluteURI | relativeURI] ["#" fragment]

scheme

(hier part | opaque part)

(net_path | abs_path | rel_path) ["?" query]

(net_path | abs_path) ["2"

uric_no_slash *uric

unreserved | escaped | ";" | "?"
" & " | n_n | l|+l| | " $ " | " , "

"//" authority [abs_path]
"/" path_segments
rel segment [abs_path]

1*(unreserved | escaped |
|l;|l | I|@l| | |I&|l I n_mn

alpha *(alpha | digit |
server | reg_name

1*(unreserved | escaped |
" ; " | " . " | " @ " I Il&ll | n_n |

[[userinfo "@"] hostport]

*(unreserved | escaped |

won | won I et | won
H :

port]

hostname | IPv4address
*(domainlabel ".
alphanum | alphanum *(alphanum |

g | n_

") toplabel [".

alpha | alpha *(alphanum | "-")
l+digit "." 1*digit "." l*digit ".
*digit

[abs_path | opaque_part]

segment *("/" segment)

*pchar *(";" param)

*pchar

unreserved | escaped |

" . " | Il@ll | H&" | n_n | H+H | VI$H
*uric

*uric

Standards Track

query]

nyn

.

SR

nan |

| L] | g | n,u)

)

ngn | " | n’u)

) alphanum

alphanum
" 1xdigit

[Page 27]

RFC 2396
uric
reserved
unreserved

mark

escaped
hex

alphanum
alpha

lowalpha =

upalpha

digit =

Berners-Lee, et.

al.

URI Generic Syntax

reserved | unreserved | escaped

n ; n | " / " | " ? n | " . " | " @ " | n & " |

ng | "

alphanum | mark

:: - :: ::_:: I " . n | " ! " | nw_n I "y |
"M

"$" hex hex

digit | |IAII | HBH | ch | IIDH | "E"

uau | llbn | ||c|l | Ildll | l|e|| |
= alpha | digit

lowalpha | upalpha
X | e | g I et | [| "Gt
g | wyw | "t | N | o | "p"
e | " | gt | " | [t | "yt
|IBII | I|Cl| | "D" I IIEH | "F" | "G"
"K” I HLH | "M" I IINH | "O" | "P"
|ITII | I|Ul| | |IV|I | Ilwll | "X" | "Y"
|l1|l | l|2l| | |I3|l | II4H | l|5|| | "6"
ngn

Standards Track

August 1998

[Page 28]

6EY abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998 RFC 2396 URI Generic Syntax August 1998

B. Parsing a URI Reference with a Regular Expression C. Examples of Resolving Relative URI References
As described in Section 4.3, the generic URI syntax is not sufficient Within an object with a well-defined base URI of
to disambiguate the components of some forms of URI. Since the
"greedy algorithm" described in that section is identical to the http://a/b/c/d;p?q
disambiguation method used by POSIX regular expressions, it is
natural and commonplace to use a regular expression for parsing the the relative URI would be resolved as follows:

potential four components and fragment identifier of a URI reference.
C.1l. Normal Examples
The following line is the regular expression for breaking-down a URI

reference into its components. g:h = g:th
g = http://a/b/c/g
ML e /2#1+) 2) 2 (/7 (LN /2#]1%))2 ([2#]1%) (\2 (["#]1%))2 (#(.*))? ./g = http://a/b/c/g
12 3 4 5 6 7 8 9 g/ = http://a/b/c/g/
/g = http://al/g
The numbers in the second line above are only to assist readability; //g = http://g
they indicate the reference points for each subexpression (i.e., each 2y = http://a/b/c/?y
paired parenthesis). We refer to the value matched for subexpression g?y = http://a/b/c/g?y
<n> as $<n>. For example, matching the above expression to #s = (current document)#s
g#s = http://a/b/c/g#s
http://www.ics.uci.edu/pub/ietf/uri/#Related g?y#s = http://a/b/c/g?y#s
PP’ = http://a/b/c/;x
results in the following subexpression matches: g;x = http://a/b/c/g;x
g;x?y#s = http://a/b/c/g;x?y#s
$1 = http: . = http://a/b/c/
$2 = http ./ = http://a/b/c/
$3 = //www.ics.uci.edu .. = http://a/b/
$4 = www.ics.uci.edu o/ = http://a/b/
$5 = /pub/ietf/uri/ ../g = http://a/b/g
$6 = <undefined> v/ = http://a/
$7 = <undefined> v = http://a/
$8 = #Related .o/ /g = http://al/g

$9 = Related
C.2. Abnormal Examples
where <undefined> indicates that the component is not present, as is

the case for the query component in the above example. Therefore, we Although the following abnormal examples are unlikely to occur in
can determine the value of the four components and fragment as normal practice, all URI parsers should be capable of resolving them
consistently. Each example uses the same base as above.
scheme = $2
authority = $4 An empty reference refers to the start of the current document.
path = §$5
query = §7 <> = (current document)
fragment = $9
Parsers must be careful in handling the case where there are more
and, going in the opposite direction, we can recreate a URI reference relative path ".." segments than there are hierarchical levels in the
from its components using the algorithm in step 7 of Section 5.2. base URI's path. Note that the ".." syntax cannot be used to change

the authority component of a URI.

Berners-Lee, et. al. Standards Track [Page 29] Berners-Lee, et. al. Standards Track [Page 30]

o abed z wnipuadwo)d

RFC 2396 URI Generic Syntax August 1998 RFC 2396 URI Generic Syntax August 1998

/el l/g = http://a/../g Some parsers allow the scheme name to be present in a relative URI if
wo/e/eo/oo/g = http://a/../../g it is the same as the base URI scheme. This is considered to be a
loophole in prior specifications of partial URI [RFC1630]. Its use
In practice, some implementations strip leading relative symbolic should be avoided.
elements (".", "..") after applying a relative URI calculation, based
on the theory that compensating for obvious author errors is better http:g = http:g ; for validating parsers
than allowing the request to fail. Thus, the above two references | http://a/b/c/g ; for backwards compatibility

will be interpreted as "http://a/g" by some implementations.

Similarly, parsers must avoid treating "." and ".." as special when
they are not complete components of a relative path.

/./9 = http://a/./g
/../g = http://a/../g
g. = http://a/b/c/g.
.g = http://a/b/c/.g
g.. = http://a/b/c/g..

..g = http://a/b/c/..g

Less likely are cases where the relative URI uses unnecessary or

nonsensical forms of the "." and ".." complete path segments.
/g = http://a/b/g
./9/. = http://a/b/c/g/
g/./h = http://a/b/c/g/h
g/../h = http://a/b/c/h
g;x=1/./y = http://a/b/c/g;x=1/y
g;x=1/../y = http://a/b/c/y

All client applications remove the query component from the base URI
before resolving relative URI. However, some applications fail to
separate the reference's query and/or fragment components from a
relative path before merging it with the base path. This error is
rarely noticed, since typical usage of a fragment never includes the
hierarchy ("/") character, and the query component is not normally
used within relative references.

g?y/./x = http://a/b/c/g?y/./x
g?y/../x = http://a/b/c/g?y/../x
g#s/./x = http://a/b/c/g#s/./x
g#s/../x = http://a/b/c/g#s/../x

Berners-Lee, et. al. Standards Track [Page 31] Berners-Lee, et. al. Standards Track [Page 32]

RFC 2396 URI Generic Syntax August 1998 RFC 2396 URI Generic Syntax August 1998

D. Embedding the Base URI in HTML documents E. Recommendations for Delimiting URI in Context

Ty abed z wnipuadwo)d

It is useful to consider an example of how the base URI of a document
can be embedded within the document's content. In this appendix, we
describe how documents written in the Hypertext Markup Language
(HTML) [RFC1866] can include an embedded base URI. This appendix
does not form a part of the URI specification and should not be
considered as anything more than a descriptive example.

HTML defines a special element "BASE" which, when present in the
"HEAD" portion of a document, signals that the parser should use the
BASE element's "HREF" attribute as the base URI for resolving any
relative URI. The "HREF" attribute must be an absolute URI. Note
that, in HTML, element and attribute names are case-insensitive. For
example:

<!doctype html public "-//IETF//DTD HTML//EN">
<HTML><HEAD>

<TITLE>An example HTML document</TITLE>

<BASE href="http://www.ics.uci.edu/Test/a/b/c">
</HEAD><BODY>

... a hypertext anchor ...
</BODY></HTML>

A parser reading the example document should interpret the given
relative URI "../x" as representing the absolute URI

<http://www.ics.uci.edu/Test/a/x>

regardless of the context in which the example document was obtained.

Berners-Lee, et. al. Standards Track [Page 33]

URI are often transmitted through formats that do not provide a clear
context for their interpretation. For example, there are many
occasions when URI are included in plain text; examples include text
sent in electronic mail, USENET news messages, and, most importantly,
printed on paper. In such cases, it is important to be able to
delimit the URI from the rest of the text, and in particular from
punctuation marks that might be mistaken for part of the URI.

In practice, URI are delimited in a variety of ways, but usually
within double-quotes "http://test.com/", angle brackets
<http://test.com/>, or just using whitespace

http://test.com/
These wrappers do not form part of the URI.

In the case where a fragment identifier is associated with a URI
reference, the fragment would be placed within the brackets as well
(separated from the URI with a "#" character).

In some cases, extra whitespace (spaces, linebreaks, tabs, etc.) may
need to be added to break long URI across lines. The whitespace
should be ignored when extracting the URI.

No whitespace should be introduced after a hyphen ("-") character.
Because some typesetters and printers may (erroneously) introduce a
hyphen at the end of line when breaking a line, the interpreter of a
URI containing a line break immediately after a hyphen should ignore
all unescaped whitespace around the line break, and should be aware
that the hyphen may or may not actually be part of the URI.

Using <> angle brackets around each URI is especially recommended as
a delimiting style for URI that contain whitespace.

The prefix "URL:" (with or without a trailing space) was recommended
as a way to used to help distinguish a URL from other bracketed
designators, although this is not common in practice.

For robustness, software that accepts user-typed URI should attempt
to recognize and strip both delimiters and embedded whitespace.

For example, the text:

Berners-Lee, et. al. Standards Track [Page 34]

2y abed z wnipuadwo)

RFC 2396 URI Generic Syntax August 1998

Yes, Jim, I found it under "http://www.w3.org/Addressing/",
but you can probably pick it up from <ftp://ds.internic.
net/rfc/>. Note the warning in <http://www.ics.uci.edu/pub/
ietf/uri/historical.html#WARNING>.

contains the URI references
http://www.w3.org/Addressing/

ftp://ds.internic.net/rfc/
http://www.ics.uci.edu/pub/ietf/uri/historical.html#WARNING

Berners-Lee, et. al. Standards Track [Page 35]

RFC 2396 URI Generic Syntax August 1998

F. Abbreviated URLs

The URL syntax was designed for unambiguous reference to network
resources and extensibility via the URL scheme. However, as URL
identification and usage have become commonplace, traditional media
(television, radio, newspapers, billboards, etc.) have increasingly
used abbreviated URL references. That is, a reference consisting of
only the authority and path portions of the identified resource, such
as

www.w3.0org/Addressing/

or simply the DNS hostname on its own. Such references are primarily
intended for human interpretation rather than machine, with the
assumption that context-based heuristics are sufficient to complete
the URL (e.g., most hostnames beginning with "www" are likely to have
a URL prefix of "http://"). Although there is no standard set of
heuristics for disambiguating abbreviated URL references, many client
implementations allow them to be entered by the user and
heuristically resolved. It should be noted that such heuristics may
change over time, particularly when new URL schemes are introduced.

Since an abbreviated URL has the same syntax as a relative URL path,

abbreviated URL references cannot be used in contexts where relative

URLs are expected. This limits the use of abbreviated URLs to places
where there is no defined base URL, such as dialog boxes and off-line
advertisements.

Berners-Lee, et. al. Standards Track [Page 36]

ey obed z wnipuadwo)

RFC 2396 URI Generic Syntax August 1998

G. Summary of Non-editorial Changes

G.1l. Additions

Section 4 (URI References) was added to stem the confusion regarding
"what is a URI" and how to describe fragment identifiers given that
they are not part of the URI, but are part of the URI syntax and
parsing concerns. In addition, it provides a reference definition
for use by other IETF specifications (HTML, HTTP, etc.) that have
previously attempted to redefine the URI syntax in order to account
for the presence of fragment identifiers in URI references.

Section 2.4 was rewritten to clarify a number of misinterpretations
and to leave room for fully internationalized URI.

Appendix F on abbreviated URLs was added to describe the shortened
references often seen on television and magazine advertisements and
explain why they are not used in other contexts.

G.2. Modifications from both RFC 1738 and RFC 1808

Changed to URI syntax instead of just URL.

Confusion regarding the terms "character encoding", the URI
"character set", and the escaping of characters with %<hex><hex>
equivalents has (hopefully) been reduced. Many of the BNF rule names
regarding the character sets have been changed to more accurately
describe their purpose and to encompass all "characters" rather than
just US-ASCII octets. Unless otherwise noted here, these
modifications do not affect the URI syntax.

Both RFC 1738 and RFC 1808 refer to the "reserved" set of characters
as if URI-interpreting software were limited to a single set of
characters with a reserved purpose (i.e., as meaning something other
than the data to which the characters correspond), and that this set
was fixed by the URI scheme. However, this has not been true in
practice; any character that is interpreted differently when it is
escaped is, in effect, reserved. Furthermore, the interpreting
engine on a HTTP server is often dependent on the resource, not just
the URI scheme. The description of reserved characters has been
changed accordingly.

The plus "+", dollar "$", and comma "," characters have been added to
those in the "reserved" set, since they are treated as reserved
within the query component.

Berners-Lee, et. al. Standards Track [Page 37]

RFC 2396 URI Generic Syntax August 1998

The tilde "~" character was added to those in the "unreserved" set,
since it is extensively used on the Internet in spite of the
difficulty to transcribe it with some keyboards.

The syntax for URI scheme has been changed to require that all
schemes begin with an alpha character.

The "user:password" form in the previous BNF was changed to a
"userinfo" token, and the possibility that it might be
"user:password" made scheme specific. In particular, the use of
passwords in the clear is not even suggested by the syntax.

The question-mark "?" character was removed from the set of allowed
characters for the userinfo in the authority component, since testing
showed that many applications treat it as reserved for separating the
query component from the rest of the URI.

The semicolon ";" character was added to those stated as being
reserved within the authority component, since several new schemes
are using it as a separator within userinfo to indicate the type of
user authentication.

RFC 1738 specified that the path was separated from the authority
portion of a URI by a slash. RFC 1808 followed suit, but with a
fudge of carrying around the separator as a "prefix" in order to
describe the parsing algorithm. RFC 1630 never had this problem,
since it considered the slash to be part of the path. In writing
this specification, it was found to be impossible to accurately
describe and retain the difference between the two URI

<foo:/bar> and <foo:bar>
without either considering the slash to be part of the path (as
corresponds to actual practice) or creating a separate component just
to hold that slash. We chose the former.

G.3. Modifications from RFC 1738

The definition of specific URL schemes and their scheme-specific
syntax and semantics has been moved to separate documents.

The URL host was defined as a fully-qualified domain name. However,
many URLs are used without fully-qualified domain names (in contexts
for which the full qualification is not necessary), without any host
(as in some file URLs), or with a host of "localhost".

The URL port is now *digit instead of 1*digit, since systems are

expected to handle the case where the ":" separator between host and
port is supplied without a port.

Berners-Lee, et. al. Standards Track [Page 38]

i1 abed ¢ wnipuadwo)

RFC 2396 URI Generic Syntax

Berners-Lee, et. al.

August 1998

The recommendations for delimiting URI in context (Appendix E) have
been adjusted to reflect current practice.

G.4. Modifications from RFC 1808

RFC 1808 (Section 4) defined an empty URL reference (a reference
containing nothing aside from the fragment identifier) as being a
reference to the base URL. Unfortunately, that definition could be
interpreted, upon selection of such a reference, as a new retrieval
action on that resource. Since the normal intent of such references
is for the user agent to change its view of the current document to
the beginning of the specified fragment within that document, not to
make an additional request of the resource, a description of how to
correctly interpret an empty reference has been added in Section 4.

The description of the mythical Base header field has been replaced
with a reference to the Content-Location header field defined by
MHTML [RFC2110].

RFC 1808 described various schemes as either having or not having the
properties of the generic URI syntax. However, the only requirement
is that the particular document containing the relative references
have a base URI that abides by the generic URI syntax, regardless of
the URI scheme, so the associated description has been updated to
reflect that.

The BNF term <net_loc> has been replaced with <authority>, since the
latter more accurately describes its use and purpose. Likewise, the
authority is no longer restricted to the IP server syntax.

Extensive testing of current client applications demonstrated that
the majority of deployed systems do not use the ";" character to
indicate trailing parameter information, and that the presence of a
semicolon in a path segment does not affect the relative parsing of
that segment. Therefore, parameters have been removed as a separate
component and may now appear in any path segment. Their influence
has been removed from the algorithm for resolving a relative URI
reference. The resolution examples in Appendix C have been modified
to reflect this change.

Implementations are now allowed to work around misformed relative

references that are prefixed by the same scheme as the base URI, but
only for schemes known to use the <hier part> syntax.

Standards Track [Page 39]

RFC 2396 URI Generic Syntax

H.

Berners-Lee, et. al.

August 1998

Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Standards Track [Page 40]

G abed ¢z wnipuadwo)

PORT NUMBERS
(last updated 2001 Aug 27)

The port numbers are divided into three ranges: the Well Known Ports,
the Registered Ports, and the Dynamic and/or Private Ports.

The Well Known Ports are those from 0 through 1023.
The Registered Ports are those from 1024 through 49151

The Dynamic and/or Private Ports are those from 49152 through 65535

WELL KNOWN PORT NUMBERS

The Well Known Ports are assigned by the IANA and on most systems can
only be used by system (or root) processes or by programs executed by
privileged users.

Ports are used in the TCP [RFC793] to name the ends of logical
connections which carry long term conversations. For the purpose of
providing services to unknown callers, a service contact port is
defined. This list specifies the port used by the server process as
its contact port. The contact port is sometimes called the
"well-known port".

To the extent possible, these same port assignments are used with the
UDP [RFC768].

The range for assigned ports managed by the IANA is 0-1023.

Port Assignments:

Keyword Decimal Description References
0/tcp Reserved
0/udp Reserved
Jon Postel <postel@isi.edu>
tcpmux 1/tcp TCP Port Service Multiplexer
tcpmux 1/udp TCP Port Service Multiplexer
Mark Lottor <MKL@nisc.sri.com>
compressnet 2/tcp Management Utility
compressnet 2/udp Management Utility
compressnet 3/tcp Compression Process
compressnet 3/udp Compression Process
Bernie Volz <VOLZ@PROCESS.COM>
4/tcp Unassigned
4/udp Unassigned
rje 5/tcp Remote Job Entry
rje 5/udp Remote Job Entry
Jon Postel <postel@isi.edu>
6/tcp Unassigned
6/udp Unassigned
echo 7/tcp Echo
echo 7/udp Echo
Jon Postel <postel@isi.edu>
8/tcp Unassigned
8/udp Unassigned
discard 9/tcp Discard
discard 9/udp Discard
Jon Postel <postel@isi.edu>
10/tcp Unassigned
10/udp Unassigned

Registered port numbers

Page 1

chargen
chargen
ftp-data
ftp-data
ftp

ftp

#

ssh

ssh

#

telnet
telnet

#

smtp
smtp

nsw-fe
nsw-fe

msg-icp
msg-icp

msg-auth
msg-auth

dsp
dsp

#
#
#

time

11/tcp
11/udp

12/tcp
12/udp
13/tcp
13/udp

14/tcp
14/udp
15/tcp
15/udp
16/tcp
16/udp
17/tcp
17/udp

18/tcp
18/udp

19/tcp
19/udp
20/tcp
20/udp
21/tcp
21/udp

22/tcp
22/udp

23/tcp
23/udp

24/tcp
24 /udp

25/tcp
25/udp

26/tcp
26/udp
27/tcp
27/udp

28/tcp
28/udp
29/tcp
29/udp

30/tcp
30/udp
31/tcp
31/udp

32/tcp
32/udp
33/tcp
33/udp

34/tcp
34/udp
35/tcp
35/udp

36/tcp
36/udp
37/tcp

Registered port numbers

Active Users

Active Users

Jon Postel <postel@isi.edu>
Unassigned

Unassigned

Daytime (RFC 867)

Daytime (RFC 867)

Jon Postel <postel@isi.edu>
Unassigned

Unassigned

Unassigned [was netstat]
Unassigned

Unassigned

Unassigned

Quote of the Day

Quote of the Day

Jon Postel <postel@isi.edu>
Message Send Protocol
Message Send Protocol

Rina Nethaniel <---none--->
Character Generator
Character Generator

File Transfer [Default Data]
File Transfer [Default Data]
File Transfer [Control]

File Transfer [Control]

Jon Postel <postel@isi.edu>
SSH Remote Login Protocol
SSH Remote Login Protocol
Tatu Ylonen <ylo@cs.hut.fi>
Telnet

Telnet

Jon Postel <postel@isi.edu>
any private mail system

any private mail system
Rick Adams <rick@UUNET.UU.NET>
Simple Mail Transfer

Simple Mail Transfer

Jon Postel <postel@isi.edu>
Unassigned

Unassigned

NSW User System FE

NSW User System FE

Robert Thomas <BThomas@F.BBN.COM>
Unassigned

Unassigned

MSG ICP

MSG ICP

Robert Thomas <BThomas@F.BBN.COM>
Unassigned

Unassigned

MSG Authentication

MSG Authentication

Robert Thomas <BThomas@F.BBN.COM>
Unassigned

Unassigned

Display Support Protocol
Display Support Protocol

Ed Cain <cain@edn-unix.dca.mil>
Unassigned

Unassigned

any private printer server
any private printer server
Jon Postel <postel@isi.edu>
Unassigned

Unassigned

Time

Page 2

o abed ¢z wnipuadwo)

time

rap
rap

#

rlp

rlp

#

#

#
graphics
graphics
name

name
nameserver
nameserver
nicname
nicname
mpm-flags
mpm-flags
mpm

mpm
mpm-snd
mpm-snd
#

ni-ftp
ni-ftp

#

auditd
auditd

#

tacacs
tacacs

#
re-mail-ck
re-mail-ck
#
la-maint
la-maint
#
xns-time
xns-time
#

domain
domain

#

xns-ch
xns-ch

#

isi-gl
isi-gl
xns-auth
xns-auth

#

#
xns-mail
xns-mail

#

ni-mail
ni-mail

37/udp

38/tcp
38/udp

39/tcp
39/udp

40/tcp
40/udp
41/tcp
41/udp
42/tcp
42/udp
42/tcp
42/udp
43/tcp
43/udp
44/tcp
44 /udp
45/tcp
45/udp
46/tcp
46/udp

47/tcp
47/udp

48/tcp
48/udp

49/tcp
49/udp

50/tcp
50/udp

51/tcp
51/udp

52/tcp
52/udp

53/tcp
53/udp

54/tcp
54 /udp

55/tcp
55/udp
56/tcp
56 /udp

57/tcp
57/udp

58/tcp
58/udp

59/tcp
59/udp

60/tcp
60/udp
61/tcp
61/udp

Registered port numbers

Time

Jon Postel <postel@isi.edu>

Route Access Protocol

Route Access Protocol

Robert Ullmann <ariel@world.std.com>
Resource Location Protocol
Resource Location Protocol

Mike Accetta <MIKE.ACCETTA@CMU-CS-A.EDU>
Unassigned

Unassigned

Graphics

Graphics

Host Name Server

Host Name Server

Host Name Server

Host Name Server

Who Is

Who Is

MPM FLAGS Protocol

MPM FLAGS Protocol

Message Processing Module [recv]
Message Processing Module [recvV]
MPM [default send]

MPM [default send]

Jon Postel <postel@isi.edu>

NI FTP

NI FTP

Steve Kille <S.Kille@isode.com>
Digital Audit Daemon

Digital Audit Daemon

Larry Scott <scott@zk3.dec.com>
Login Host Protocol (TACACS)
Login Host Protocol (TACACS)
Pieter Ditmars <pditmars@BBN.COM>
Remote Mail Checking Protocol
Remote Mail Checking Protocol
Steve Dorner <s-dorner@UIUC.EDU>
IMP Logical Address Maintenance
IMP Logical Address Maintenance
Andy Malis <malis_a@timeplex.com>
XNS Time Protocol

XNS Time Protocol

Susie Armstrong <Armstrong.wbstl128@XEROX>
Domain Name Server

Domain Name Server

Paul Mockapetris <PVM@ISI.EDU>
XNS Clearinghouse

XNS Clearinghouse

Susie Armstrong <Armstrong.wbst1l28@XEROX>
ISI Graphics Language

ISI Graphics Language

XNS Authentication

XNS Authentication

Susie Armstrong <Armstrong.wbstl28@XEROX>
any private terminal access

any private terminal access

Jon Postel <postel@isi.edu>

XNS Mail

XNS Mail

Susie Armstrong <Armstrong.wbstl28@XEROX>
any private file service

any private file service

Jon Postel <postel@isi.edu>
Unassigned

Unassigned

NI MAIL

NI MAIL

Page 3

#

acas
acas

#
whois++
whois++
#

covia
covia

#
tacacs-ds
tacacs-ds
#
sgl*net
sgl*net
#

bootps
bootps
bootpc
bootpc
#

tftp
tftp

#

gopher
gopher
#
netrjs-1
netrjs-1
netrjs-2
netrjs-2
netrjs-3
netrjs-3
netrjs-4
netrjs-4

#

deos
deos

#

vettcp
vettcp

#

finger
finger

#

http
http

www

www
www-http
www-http
#
hosts2-ns
hosts2-ns
#

xfer

xfer

#
mit-ml-dev
mit-ml-dev
#

62/tcp
62/udp

63/tcp
63/udp

64/tcp
64/udp

65/tcp
65/udp

66/tcp
66/udp

67/tcp
67/udp
68/tcp
68/udp

69/tcp
69/udp

70/tcp
70/udp

71/tcp
71/udp
72/tcp
72/udp
73/tcp
73/udp
74/tcp
74/udp

75/tcp
75/udp

76/tcp
76/udp

77/tcp
77/udp

78/tcp
78/udp

79/tcp
79/udp

80/tcp
80/udp
80/tcp
80/udp
80/tcp
80/udp

81/tcp
81/udp

82/tcp
82/udp

83/tcp
83/udp

Registered port numbers

Steve Kille <S.Kille@isode.com>

ACA Services

ACA Services

E. Wald <ewald@via.enet.dec.com>
whois++

whois++

Rickard Schoultz <schoultz@sunet.se>
Communications Integrator (CI)
Communications Integrator (CI)

Dan Smith <dan.smith@den.galileo.com>
TACACS-Database Service
TACACS-Database Service

Kathy Huber <khuber@bbn.com>

Oracle SQL*NET

Oracle SQL*NET

Jack Haverty <jhaverty@ORACLE.COM>
Bootstrap Protocol Server

Bootstrap Protocol Server

Bootstrap Protocol Client

Bootstrap Protocol Client

Bill Croft <Croft@SUMEX-AIM.STANFORD.EDU>
Trivial File Transfer

Trivial File Transfer

David Clark <ddc@LCS.MIT.EDU>

Gopher

Gopher

Mark McCahill <mpm@boombox.micro.umn.edu>
Remote Job Service

Remote Job Service

Remote Job Service

Remote Job Service

Remote Job Service

Remote Job Service

Remote Job Service

Remote Job Service

Bob Braden <Braden@ISI.EDU>

any private dial out service

any private dial out service

Jon Postel <postel@isi.edu>
Distributed External Object Store
Distributed External Object Store
Robert Ullmann <ariel@world.std.com>
any private RJE service

any private RJE service

Jon Postel <postel@isi.edu>

vettcp

vettcp

Christopher Leong <leong@kolmod.mlo.dec.com>

Finger

Finger

David Zimmerman <dpz@RUTGERS.EDU>
World Wide Web HTTP

World Wide Web HTTP

World Wide Web HTTP

World Wide Web HTTP

World Wide Web HTTP

World Wide Web HTTP

Tim Berners-Lee <timbl@W3.org>
HOSTS2 Name Server

HOSTS2 Name Server

Earl Killian <EAKE@MORDOR.S1.GOV>
XFER Utility

XFER Utility

Thomas M. Smith <Thomas.M.Smith@lmco.com>
MIT ML Device

MIT ML Device

David Reed <--none--->

Page 4

L 8bed z wnipuadwo)

ctf

ctf

#
mit-ml-dev
mit-ml-dev
#

mfcobol
mfcobol

#

#
kerberos
kerberos
#
su-mit-tg
su-mit-tg
#
AR A ##### PORT
dnsix
dnsix

#

mit-dov
mit-dov

#

npp

npp

#

dcp

dcp

#
objcall
objcall
#

supdup
supdup

#

dixie
dixie

#
swift-rvf
swift-rvf
#

#
tacnews
tacnews
#
metagram
metagram
#
newacct
hostname
hostname
#
iso-tsap
iso-tsap
#
gppitnp
gppitnp
acr-nema
acr-nema
#

cso

cso

#
csnet-ns
csnet-ns

84/tcp
84 /udp

85/tcp
85/udp

86/tcp
86/udp

87/tcp
87/udp

88/tcp
88/udp

89/tcp
89/udp

Common Trace Facility

Common Trace Facility

Hugh Thomas <thomas@oils.enet.dec.com>
MIT ML Device

MIT ML Device

David Reed <--none--->

Micro Focus Cobol

Micro Focus Cobol

Simon Edwards <--none--->

any private terminal link

any private terminal link

Jon Postel <postel@isi.edu>
Kerberos

Kerberos

B. Clifford Neuman <bcn@isi.edu>
SU/MIT Telnet Gateway

SU/MIT Telnet Gateway

Mark Crispin <MRC@PANDA.COM>

90 also being used unofficially by Pointcast #########

90/tcp
90/udp

91/tcp
91/udp

92/tcp
92/udp

93/tcp
93/udp

94/tcp
94 /udp

95/tcp
95/udp

96/tcp
96/udp
Tim Howes
97/tcp
97/udp

DNSIX Securit Attribute Token Map
DNSIX Securit Attribute Token Map
Charles Watt <watt@sware.com>

MIT Dover Spooler

MIT Dover Spooler

Eliot Moss <EBM@XX.LCS.MIT.EDU>
Network Printing Protocol

Network Printing Protocol

Louis Mamakos <louie@sayshell.umd.edu>
Device Control Protocol

Device Control Protocol

Daniel Tappan <Tappan@BBN.COM>
Tivoli Object Dispatcher

Tivoli Object Dispatcher

Tom Bereiter <--none--->

SUPDUP

SUPDUP

Mark Crispin <MRC@PANDA.COM>

DIXIE Protocol Specification

DIXIE Protocol Specification
<Tim.Howes@terminator.cc.umich.edu>
Swift Remote Virtural File Protocol
Swift Remote Virtural File Protocol
Maurice R. Turcotte

<mailrus!uflorida!rml!dnmrt%rmatl@uunet.UU.NET>

98/tcp
98/udp

99/tcp
99/udp

100/tcp
101/tcp
101/udp

102/tcp
102/udp

103/tcp
103/udp
104/tcp
104/udp

105/tcp
105/udp

105/tcp
105/udp

Registered port numbers

TAC News

TAC News

Jon Postel <postel@isi.edu>

Metagram Relay

Metagram Relay

Geoff Goodfellow <Geoff@FERNWOOD.MPK.CA.US>
[unauthorized use]

NIC Host Name Server

NIC Host Name Server

Jon Postel <postel@isi.edu>

ISO-TSAP Class 0

ISO-TSAP Class 0

Marshall Rose <mrose@dbc.mtview.ca.us>
Genesis Point-to-Point Trans Net
Genesis Point-to-Point Trans Net
ACR-NEMA Digital Imag. & Comm. 300
ACR-NEMA Digital Imag. & Comm. 300
Patrick McNamee <--none--->

CCSO name server protocol

CCSO name server protocol

Martin Hamilton <martin@mrrl.lut.as.uk>
Mailbox Name Nameserver

Mailbox Name Nameserver

Page 5

#
3com-tsmux
3com-tsmux
#
liGaaaaaaai
rtelnet
rtelnet

#

snagas
snagas

#

pop2

pop2

#

pop3

pop3

#

sunrpc
sunrpc

#

mcidas
mcidas

#

ident

auth

auth

#
audionews
audionews
#

sftp

sftp

#
ansanotify
ansanotify
#
uucp-path
uucp-path
sglserv
sglserv

#

nntp

nntp

#

cfdptkt
cfdptkt

#

erpc

erpc

#

smakynet
smakynet

#

ntp

ntp

#
ansatrader
ansatrader
#
locus-map
locus-map
#

nxedit
nxedit

#
#HA#HHAHH#HHPOL T
#unitary

Registered port

Marvin Solomon <solomon@CS.WISC.EDU>

106/tcp 3COM-TSMUX
106/udp 3COM-TSMUX
Jeremy Siegel <jzs@NSD.3Com.COM>
106 Unauthorized use by insecure poppassd protocol
107/tcp Remote Telnet Service
107 /udp Remote Telnet Service
Jon Postel <postel@isi.edu>
108/tcp SNA Gateway Access Server
108/udp SNA Gateway Access Server
Kevin Murphy <murphy@sevens.lkg.dec.com>
109/tcp Post Office Protocol - Version 2

109/udp Post Office Protocol - Version 2
Joyce K. Reynolds <jkrey@isi.edu>
110/tcp Post Office Protocol - Version 3
110/udp Post Office Protocol - Version 3
Marshall Rose <mrose@dbc.mtview.ca.us>
111/tcp SUN Remote Procedure Call

111/udp SUN Remote Procedure Call
Chuck McManis <cmcmanis@freegate.net>
112/tcp McIDAS Data Transmission Protocol
112/udp McIDAS Data Transmission Protocol
Glenn Davis <support@unidata.ucar.edu>
113/tcp
113/tcp Authentication Service
113/udp Authentication Service
Mike St. Johns <stjohns@arpa.mil>
114/tcp Audio News Multicast
114/udp Audio News Multicast
Martin Forssen <maf@dtek.chalmers.se>
115/tcp Simple File Transfer Protocol
115/udp Simple File Transfer Protocol

Mark Lottor <MKL@nisc.sri.com>
116/tcp ANSA REX Notify
116/udp ANSA REX Notify

Nicola J. Howarth <njh@ansa.co.uk>
117/tcp UUCP Path Service
117/udp UUCP Path Service
118/tcp SQL Services
118/udp SQL Services

Larry Barnes <barnes@broke.enet.dec.com>
119/tcp Network News Transfer Protocol
119/udp Network News Transfer Protocol

Phil Lapsley <phil@UCBARPA.BERKELEY.EDU>
120/tcp CFDPTKT
120/udp CFDPTKT

John Ioannidis <ji@close.cs.columbia.ed>
121/tcp Encore Expedited Remote Pro.Call
121/udp Encore Expedited Remote Pro.Call

Jack O'Neil <---none--->
122/tcp SMAKYNET
122/udp SMAKYNET

Pierre Arnaud <pierre.arnaud@iname.com>
123/tcp Network Time Protocol
123/udp Network Time Protocol

Dave Mills <Mills@HUEY.UDEL.EDU>
124/tcp ANSA REX Trader
124 /udp ANSA REX Trader

Nicola J. Howarth <njh@ansa.co.uk>
125/tcp Locus PC-Interface Net Map Ser
125/udp Locus PC-Interface Net Map Ser

Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
126/tcp NXEdit
126/udp NXEdit

Don Payette <Don.Payette@unisys.com>
126 Previously assigned to application below#######
126/tcp Unisys Unitary Login

numbers Page 6

87 abed ¢z wnipuadwo)

#unitary

#

#EHHAARHHAAPOLE

locus-con
locus-con
#
gss-xlicen
gss-xlicen
#

pwdgen
pwdgen

#
cisco-fna
cisco-fna
cisco-tna
cisco-tna
cisco-sys
cisco-sys
statsrv
statsrv

#
ingres-net
ingres-net
#

epmap
epmap

#

profile
profile

#
netbios-ns
netbios-ns
netbios-dgm
netbios-dgm
netbios-ssn
netbios-ssn
#
emfis-data
emfis-data
emfis-cntl
emfis-cntl
#

bl-idm
bl-idm

#

imap

imap

#

uma

uma

#

uaac

uaac

#

iso-tp0
iso-tp0
iso-ip
iso-ip

#

jargon
jargon

#

aed-512
aed-512

#

sgl-net
sgl-net

Registered port

126/udp

Unisys Unitary Login
<feil@kronos.nisd.cam.unisys.com>

126 Previously assigned to application above#######

127/tcp
127/udp

128/tcp
128/udp

129/tcp
129/udp

130/tcp
130/udp
131/tcp
131/udp
132/tcp
132/udp
133/tcp
133/udp

134/tcp
134 /udp

135/tcp
135/udp

136/tcp
136/udp

137/tcp
137/udp
138/tcp
138/udp
139/tcp
139/udp

140/tcp
140/udp
141/tcp
141/udp

142/tcp
142/udp

143/tcp
143/udp

144/tcp
144 /udp

145/tcp
145/udp

146/tcp
146/udp
147/tcp
147 /udp

148/tcp
148/udp

149/tcp
149 /udp

150/tcp
150/udp

numbers

Locus PC-Interface Conn Server
Locus PC-Interface Conn Server
Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
GSS X License Verification

GSS X License Verification

John Light <johnl@gssc.gss.com>
Password Generator Protocol
Password Generator Protocol

Frank J. Wacho <WANCHO@WSMR-SIMTEL20.ARMY.MIL>
cisco FNATIVE

cisco FNATIVE

cisco TNATIVE

cisco TNATIVE

cisco SYSMAINT

cisco SYSMAINT

Statistics Service

Statistics Service

Dave Mills <Mills@HUEY.UDEL.EDU>
INGRES-NET Service

INGRES-NET Service

Mike Berrow <---none--->

DCE endpoint resolution

DCE endpoint resolution

Joe Pato <pato@apollo.hp.com>
PROFILE Naming System

PROFILE Naming System

Larry Peterson <llp@ARIZONA.EDU>
NETBIOS Name Service

NETBIOS Name Service

NETBIOS Datagram Service

NETBIOS Datagram Service

NETBIOS Session Service

NETBIOS Session Service

Jon Postel <postel@isi.edu>

EMFIS Data Service

EMFIS Data Service

EMFIS Control Service

EMFIS Control Service

Gerd Beling <GBELING@ISI.EDU>
Britton-Lee IDM

Britton-Lee IDM

Susie Snitzer <---none--->
Internet Message Access Protocol
Internet Message Access Protocol
Mark Crispin <MRC@CAC.Washington.EDU>
Universal Management Architecture
Universal Management Architecture
Jay Whitney <jw@powercenter.com>
UAAC Protocol

UAAC Protocol

David A. Gomberg <gomberg@GATEWAY.MITRE.ORG>
ISO-IPO

ISO-IPO

ISO-IP

ISO-IP

Marshall Rose <mrose@dbc.mtview.ca.us>
Jargon

Jargon

Bill Weinman <wew@bearnet.com>
AED 512 Emulation Service

AED 512 Emulation Service

Albert G. Broscius <broscius@DSL.CIS.UPENN.EDU>
SQL-NET

SQL-NET

Page 7

#
hems
hems
bftp
bftp
#
sgmp
sgmp
#

netsc-prod
netsc-prod
netsc-dev
netsc-dev

#

sglsrv
sqglsrv

#

knet-cmp
knet-cmp

#
pcmail-srv
pcmail-srv
#
nss-routing
nss-routing
#
sgmp-traps
sgmp-traps

snmp
snmp

snmptrap
snmptrap

cmip-man
cmip-man
cmip-agent
cmip-agent
#
xns-courier
xns-courier
#

s-net
s-net

#

namp

namp

#

rsvd

rsvd

#

send

send

#
print-srv
print-srv
#
multiplex
multiplex
cl/1

cl/1

#
xyplex-mux
xyplex-mux

mailg
mailg

151/tcp
151/udp
152/tcp
152 /udp

153/tcp
153/udp

154/tcp
154 /udp
155/tcp
155/udp

156/tcp
156 /udp

157/tcp
157/udp

158/tcp
158/udp

159/tcp
159 /udp

160/tcp
160/udp

161/tcp
161/udp
162/tcp
162/udp

163/tcp
163/udp
164/tcp
164 /udp

165/tcp
165/udp

166/tcp
166/udp

167/tcp
167/udp

168/tcp
168/udp

169/tcp
169/udp

170/tcp
170/udp

171/tcp
171/udp
172/tcp
172/udp

173/tcp
173/udp

174/tcp
174 /udp

Registered port numbers

Martin Picard <<---none--->

HEMS

HEMS

Background File Transfer Program
Background File Transfer Program
Annette DeSchon <DESCHON@ISI.EDU>

SGMP

SGMP

Marty Schoffstahl <schoff@NISC.NYSER.NET>
NETSC

NETSC

NETSC

NETSC

Sergio Heker <heker@JVNCC.CSC.ORG>

SQL Service

SQL Service

Craig Rogers <Rogers@ISI.EDU>

KNET/VM Command/Message Protocol
KNET/VM Command/Message Protocol

Gary S. Malkin <GMALKIN@XYLOGICS.COM>
PCMail Server

PCMail Server

Mark L. Lambert <markl@PTT.LCS.MIT.EDU>
NSS-Routing

NSS-Routing

Yakov Rekhter <Yakov@IBM.COM>
SGMP-TRAPS

SGMP-TRAPS

Marty Schoffstahl <schoff@NISC.NYSER.NET>
SNMP

SNMP

SNMPTRAP

SNMPTRAP

Marshall Rose <mrose@dbc.mtview.ca.us>
CMIP/TCP Manager

CMIP/TCP Manager

CMIP/TCP Agent

CMIP/TCP Agent

Amatzia Ben-Artzi <---none--->

Xerox

Xerox

Susie Armstrong <Armstrong.wbstl28@XEROX.COM>
Sirius Systems

Sirius Systems

Brian Lloyd <brian@lloyd.com>

NAMP

NAMP

Marty Schoffstahl <schoff@NISC.NYSER.NET>
RSVD

RSVD

Neil Todd <mcvax!ist.co.uk!neil@UUNET.UU.NET>
SEND

SEND

William D. Wisner <wisner@HAYES.FAI.ALASKA.EDU>
Network PostScript

Network PostScript

Brian Reid <reid@DECWRL.DEC.COM>
Network Innovations Multiplex

Network Innovations Multiplex

Network Innovations CL/1

Network Innovations CL/1

Kevin DeVault <<---none--->

Xyplex

Xyplex

Bob Stewart <STEWART@XYPLEX.COM>

MAILQ

MAILQ

Page 8

6177 bed z wnipuadwo)

#

vmnet
vmnet

#
genrad-mux
genrad-mux
#

xdmep
xdmep

#

nextstep
nextstep
#

bgp

bgp

#

ris

ris

#

unify
unify

#

audit
audit

#

ocbinder
ocbinder
ocserver
ocserver
#
remote-kis
remote-kis
kis

kis

#

aci

aci

#

mumps
mumps

#

qft

qft

#

gacp

gacp

#

prospero
prospero

#

osu-nms
osu-nms

#

srmp

srmp

#

irc

irc

#
dn6-nlm-aud
dn6-nlm-aud
dn6-smm-red
dn6-smm-red
#

dls

dls
dls-mon

Registered port

175/tcp
175/udp

176/tcp
176 /udp

177/tcp
177/udp

178/tcp
178/udp

179/tcp
179 /udp

180/tcp
180/udp

181/tcp
181/udp

182/tcp
182/udp

183/tcp
183/udp
184 /tcp
184 /udp

185/tcp
185/udp
186/tcp
186/udp

187/tcp
187/udp

188/tcp
188/udp

189/tcp
189/udp

190/tcp
190/udp

191/tcp
191/udp

192/tcp
192/udp

193/tcp
193/udp

194/tcp
194/udp

195/tcp
195/udp
196/tcp
196 /udp

197/tcp
197/udp
198/tcp

numbers

Rayan Zachariassen <rayan@AI.TORONTO.EDU>

VMNET
VMNET

Christopher Tengi <tengi@Princeton.EDU>

GENRAD-MUX
GENRAD-MUX

Ron Thornton <thornton@gm7501.genrad.com>

X Display Manager Control Protocol
X Display Manager Control Protocol

Robert W. Scheifler <RWS@XX.LCS.MIT.EDU>

NextStep Window Server
NextStep Window Server

Leo Hourvitz

<leo@NEXT.COM>

Border Gateway Protocol
Border Gateway Protocol

Kirk Lougheed <LOUGHEED@MATHOM.CISCO.COM>

Intergraph
Intergraph

Dave Buehmann <ingr!daveb@UUNET.UU.NET>

Unify
Unify
Vinod Singh
Unisys Audit
Unisys Audit

Gil Greenbaum <gcole@nisd.cam.unisys.com>

OCBinder
OCBinder
OCServer
OCServer

<--none--->
SITP
SITP

Jerrilynn Okamura <--none--->

Remote-KIS
Remote-KIS
KIS Protocol
KIS Protocol
Ralph Droms
Application
Application
Rick Carlos
Plus Five's
Plus Five's
Hokey Stenn
Queued File
Queued File

Wayne Schroeder <schroeder@SDS.SDSC.EDU>

Gateway Acce
Gateway Acce
C. Philip Wo
Prospero Dir
Prospero Dir
B. Clifford
0OSU Network
OSU Network

Doug Karl <KARL-D@OSU-20.IRCC.OHIO-STATE.EDU>

Spider Remot
Spider Remot
Ted J. Socol
Internet Rel
Internet Rel
Jarkko Oikar
DNSIX Networ
DNSIX Networ
DNSIX Sessio
DNSIX Sessio

Lawrence Lebahn <DIA3@PAXRV-NES.NAVY.MIL>

Directory Lo
Directory Lo
Directory Lo

<rdroms@NRI.RESTON.VA.US>
Communication Interface
Communication Interface
<rick.ticipa.csc.ti.com>
MUMPS

MUMPS

<hokey@PLUS5.COM>
Transport

Transport

ss Control Protocol
ss Control Protocol
od <cpw@LANL.GOV>
ectory Service
ectory Service
Neuman <bcn@isi.edu>
Monitoring System
Monitoring System

e Monitoring Protocol

e Monitoring Protocol
ofsky <Teds@SPIDER.CO.UK>
ay Chat Protocol

ay Chat Protocol

inen <jto@TOLSUN.OULU.FI>
k Level Module Audit

k Level Module Audit

n Mgt Module Audit Redir
n Mgt Module Audit Redir

cation Service
cation Service
cation Service Monitor

Page 9

dls-mon

smux
smux

src
src

at-rtmp
at-rtmp
at-nbp
at-nbp
at-3
at-3
at-echo
at-echo
at-5
at-5
at-zis
at-zis
at-7
at-7
at-8
at-8

amtp
amtp

239.50
239.50
#

#
91l4c/g
9l4c/g
#

anet
anet

#

ipx
ipx

#
vmpwscs
vmpwscs
#
softpc
softpc
#
CAIlic
CAIlic
#
dbase
dbase
#

#

mpp
mpp

#

uarps
uarps

#

imap3
imap3

#
fln-spx
fln-spx
rsh-spx
rsh-spx

198/udp

199/tcp
199/udp

200/tcp
200/udp

201/tcp
201/udp
202/tcp
202/udp
203/tcp
203/udp
204/tcp
204 /udp
205/tcp
205/udp
206/tcp
206/udp
207/tcp
207/udp
208/tcp
208/udp

209/tcp
209/udp

210/tcp
210/udp
211/tcp

211/udp

212/tcp
212/udp

213/tcp
213/udp

214/tcp
214 /udp

215/tcp
215/udp

216/tcp
216/udp

217/tcp
217/udp

<sequent!aero!twinsun!ashtate.A-T.COM!dong@uunet.UU.NET>
Netix Message Posting Protocol

Netix Message Posting Protocol

Shannon Yeh <yeh@netix.com>

218/tcp
218/udp

219/tcp
219/udp

220/tcp
220/udp

221/tcp
221/udp
222/tcp
222/udp

Registered port numbers

Directory Location Service Monitor
Scott Bellew <smb@cs.purdue.edu>

SMUX
SMUX

Marshall Rose <mrose@dbc.mtview.ca.us>
IBM System Resource Controller

IBM System Resource Controller

Gerald McBrearty <---none--->

Routing Maintenance

Routing Maintenance

AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk
AppleTalk

Rob Chandhok <chandhok@gnome.cs.cmu.edu>
The Quick Mail Transfer Protocol

The Quick Mail Transfer Protocol

Dan Bernstein <djb@silverton.berkeley.edu>

ANSTI Z39.
ANSI Z39.
Mark Need

<mhnur%uccmvsa.bitnet@cornell.cit.cornell.edu>
Texas Instruments 914C/G Terminal

Texas Instruments 914C/G Terminal

Bill Harrell <---none--->

ATEXSSTR
ATEXSSTR

Jim Taylor <taylor@heart.epps.kodak.com>

IPX
IPX

Don Provan <donp@xlnvax.novell.com>

VM PWSCS
VM PWSCS

Dan Shia <dset!shia@uunet.UU.NET>

Insignia
Insignia

Martyn Thomas <---none--->

Computer Associates Int'l License Server
Computer Associates Int'l License Server
Chuck Spitz <spichO4@cai.com>

Name Binding
Name Binding
Unused
Unused

Echo

Echo

Unused
Unused

Zone Information
Zone Information

Unused
Unused
Unused
Unused

50
50
leman

Solutions
Solutions

dBASE Unix
dBASE Unix
Don Gibson

Unisys ARPs
Unisys ARPs

Ashok Marwaha <---none--->

Interactive Mail Access Protocol v3
Interactive Mail Access Protocol v3
James Rice <RICE@SUMEX-AIM.STANFORD.EDU>
Berkeley rlogind with SPX auth

Berkeley rlogind with SPX auth

Berkeley rshd with SPX auth

Berkeley rshd with SPX auth

Page 10

0S¥ abed ¢z wnipuadwo)

cdc
cdc
#

Contact for
masqgdialer
masqgdialer

#

#

#

direct

direct

#

sur-meas
sur-meas

#

inbusiness
inbusiness

#

link

link

dsp3270
dsp3270

#
subntbcst_tftp
subntbcst_tftp
#

bhfhs

bhfhs

HH W H

rap
rap

#

set

set

#
yak-chat
yak-chat
#
esro-gen
esro-gen
#
openport
openport

nsiiops 261/tcp

nsiiops

#

arcisdms 262/tcp
arcisdms 262/udp

#
hdap
hdap
#
bgmp
bgmp
#

x-bone-ctl
x-bone-ctl
#

sst

sst

#
td-service
td-service

Registered port

223/tcp
223/udp

Certificate Distribution Center
Certificate Distribution Center

Kannan Alagappan <kannan@sejour.enet.dec.com>
#A##AA##A## Possible Conflict of Port 222 with "Masqdialer"######H##H#H###H#H
Masqgdialer is Charles Wright <cpwright@villagenet.com>###

224/tcp
224/udp

225-241

242/tcp
242/udp

243/tcp
243/udp

244/tcp
244 /udp

245/tcp
245/udp
246/tcp
246/udp

247/tcp
247/udp

248/tcp
248/udp

249-255

256/tcp
256/udp

257/tcp
257/udp

258/tcp
258/udp

259/tcp
259/udp

260/tcp
260/udp

II0P

masqgdialer

masqgdialer

Charles Wright <cpwright@villagenet.com>
Reserved

Jon Postel <postel@isi.edu>

Direct

Direct

Herb Sutter <HerbS@cntc.com>

Survey Measurement

Survey Measurement

Dave Clark <ddc@LCS.MIT.EDU>

inbusiness

inbusiness

Derrick Hisatake <derrick.i.hisatake@intel.com>
LINK

LINK

Display Systems Protocol

Display Systems Protocol

Weldon J. Showalter <Gamma@MINTAKA.DCA.MIL>
SUBNTBCST_TFTP

SUBNTBCST_TFTP

John Fake <fake@us.ibm.com>

bhfhs

bhfhs

John Kelly <johnk@bellhow.com>

Reserved

Jon Postel <postel@isi.edu>

RAP

RAP

J.S. Greenfield <greeny@raleigh.ibm.com>
Secure Electronic Transaction

Secure Electronic Transaction

Donald Eastlake <dee3@torque.pothole.com>
Yak Winsock Personal Chat

Yak Winsock Personal Chat

Brian Bandy <bbandy@swbell.net>
Efficient Short Remote Operations
Efficient Short Remote Operations

Mohsen Banan <mohsen@rostam.neda.com>
Openport

Openport

John Marland <jmarland@dean.openport.com>

Name Service over TLS/SSL

261/udp IIOP Name Service over TLS/SSL
Jeff Stewart <jstewart@netscape.com>
Arcisdms
Arcisdms
Russell Crook (rmc@sni.ca>
263/tcp HDAP
263/udp HDAP
Troy Gau <troy@zyxel.com>
264/tcp BGMP
264 /udp BGMP
Dave Thaler <thalerd@eecs.umich.edu>
265/tcp X-Bone CTL
265/udp X-Bone CTL
Joe Touch <touch@isi.edu>
266/tcp SCSI on ST
266/udp SCSI on ST
Donald D. Woelz <don@genroco.com>
267/tcp Tobit David Service Layer
267/udp Tobit David Service Layer
numbers Page 11

td-replica
td-replica
#

#
http-mgmt
http-mgmt
#

#
personal-link
personal-link
#
cableport-ax
cableport-ax
#

rescap

rescap

#

corerijd
corerijd

#

#

fxp-1

fxp-1

#

k-block
k-block

#

#
novastorbakcup
novastorbakcup
#

entrusttime
entrusttime

#

bhmds

bhmds

#
asip-webadmin
asip-webadmin
#

vslmp

vslmp

#
magenta-logic
magenta-logic
#
opalis-robot
opalis-robot
#

dpsi

dpsi

#

decauth
decauth

#

zannet

zannet

#
pkix-timestamp
pkix-timestamp
#

ptp-event
ptp-event
ptp-general
ptp-general

#

pip
Registered port

268/tcp
268/udp

269-279
280/tcp
280/udp

281/tcp
281/udp

282/tcp
282/udp

283/tcp
283/udp

284/tcp
284 /udp

285
286/tcp
286/udp

287/tcp
287/udp

288-307
308/tcp
308/udp

309/tcp
309/udp

310/tcp
310/udp

311/tcp
311/udp

312/tcp
312/udp

313/tcp
313/udp

314/tcp
314/udp

315/tcp
315/udp

316/tcp
316/udp

317/tcp
317/udp

318/tcp
318/udp

319/tcp
319/udp
320/tcp
320/udp

321/tcp

numbers

Tobit David Replica

Tobit David Replica

Franz-Josef Leuders <development@tobit.com>
Unassigned

http-mgmt

http-mgmt

Adrian Pell
<PELL_ADRIAN/HP-UnitedKingdom om6@hplb.hpl.hp.com>
Personal Link

Personal Link

Dan Cummings <doc@cnr.com>

Cable Port A/X

Cable Port A/X

Craig Langfahl <Craig_J Langfahl@ccm.ch.intel.com>
rescap

rescap

Paul Hoffman <phoffman@imc.org>
corerijd

corerjd

Chris Thornhill <cjt@corenetworks.com>
Unassigned

FXP-1

FXP-1

James Darnall <jim@cennoid.com>
K-BLOCK

K-BLOCK

Simon P Jackson <jacko@kring.co.uk>
Unassigned

Novastor Backup

Novastor Backup

Brian Dickman <brian@novastor.com>
EntrustTime

EntrustTime

Peter Whittaker <pww@entrust.com>
bhmds

bhmds

John Kelly <johnk@bellhow.com>
AppleShare IP WebAdmin

AppleShare IP WebAdmin

Ann Huang <annhuang@apple.com>

VSLMP

VSLMP

Gerben Wierda <Gerben Wierda@RnA.nl>
Magenta Logic

Magenta Logic

Karl Rousseau <kr@netfusion.co.uk>
Opalis Robot

Opalis Robot

Laurent Domenech, Opalis <ldomenech@opalis.com>
DPSI

DPSI

Tony Scamurra <Tony@DesktopPaging.com>
decAuth

decAuth

Michael Agishtein <misha@unx.dec.com>
Zannet

Zannet

Zan Oliphant <zan@accessone.com>

PKIX TimeStamp

PKIX TimeStamp

Robert Zuccherato <robert.zuccherato@entrust.com>
PTP Event

PTP Event

PTP General

PTP General

John Eidson <eidson@hpl.hp.com>

PIP

Page 12

TG abed z wnipuadwo)

pip

rtsps
rtsps

texar

texar

#

#

pdap

pdap

#

pawserv
pawserv
zserv

zZserv
fatserv
fatserv
csi-sgwp
csi-sgwp
mftp

mftp

#
matip-type-a
matip-type-a
matip-type-b
matip-type-b
#

The following
bhoetty

bhoetty

#

dtag-ste-sb
dtag-ste-sb

#

The following
bhoedap4 352/tcp
bhoedap4 352/udp
#

ndsauth

ndsauth

#

bh611

bh611l

#

datex-asn
datex-asn

#

cloanto-net-1
cloanto-net-1

#

bhevent

bhevent

#

shrinkwrap
shrinkwrap

#

nsrmp

nsrmp

#

scoi2odialog
scoi2odialog

#

semantix 361/tcp
semantix 361/udp
#

Registered port

321/udp PIP

Gordon Mohr <gojomo@usa.net>
322/tcp RTSPS
322/udp RTSPS

Anders Klemets <anderskl@microsoft.com>
323-332 Unassigned
333/tcp Texar Security Port
333/udp Texar Security Port

Eugen Bacic <ebacic@texar.com>
334-343 Unassigned
344/tcp Prospero Data Access Protocol
344 /udp Prospero Data Access Protocol

B. Clifford Neuman <bcn@isi.edu>
345/tcp Perf Analysis Workbench
345/udp Perf Analysis Workbench

346/tcp Zebra server

346/udp Zebra server

347/tcp Fatmen Server

347/udp Fatmen Server

348/tcp Cabletron Management Protocol
348/udp Cabletron Management Protocol

349/tcp mftp
349/udp mftp
Dave Feinleib <davefe@microsoft.com>
350/tcp MATIP Type A
350/udp MATIP Type A
351/tcp MATIP Type B
351/udp MATIP Type B
Alain Robert <arobert@par.sita.int>
entry records an unassigned but widespread use
351/tcp bhoetty (added 5/21/97)
351/udp bhoetty
John Kelly <johnk@bellhow.com>
352/tcp DTAG (assigned long ago)
352/udp DTAG
Ruediger Wald <wald@ez-darmstadt.telekom.de>
entry records an unassigned but widespread use
bhoedap4 (added 5/21/97)
bhoedap4
John Kelly <johnk@bellhow.com>
353/tcp NDSAUTH
353/udp NDSAUTH
Jayakumar Ramalingam <jayakumar@novell.com>
354/tcp bh611
354/udp bh611
John Kelly <johnk@bellhow.com>
355/tcp DATEX-ASN
355/udp DATEX-ASN
Kenneth Vaughn <kvaughn@mail.viggen.com>
356/tcp Cloanto Net 1
356/udp Cloanto Net 1
Michael Battilana <mcb@cloanto.com>
357/tcp bhevent
357/udp bhevent
John Kelly <johnk@bellhow.com>
358/tcp Shrinkwrap
358/udp Shrinkwrap
Bill Simpson <wsimpson@greendragon.com>
359/tcp Network Security Risk Management Protocol
359/udp Network Security Risk Management Protocol
Eric Jacksch <jacksch@tenebris.ca>
360/tcp scoi2odialog
360/udp scoi2odialog
Keith Petley <keithp@sco.COM>
Semantix
Semantix
Semantix <xsSupport@semantix.com>

numbers Page 13

srssend
srssend

#
rsvp_tunnel
rsvp_tunnel
#
aurora-cmgr
aurora-cmgr
#

dtk

dtk

#

odmr

odmr

#
mortgageware
mortgageware

gbikgdp
gbikgdp

#
rpc2portmap
rpc2portmap
codaauth2
codaauth2

#

clearcase
clearcase

#

ulistproc
ulistproc

#

legent-1
legent-1
legent-2
legent-2

#

hassle
hassle

#

nip

nip

#

tnETOS
tnETOS
dsETOS
dsETOS

#

is99c

is99c

is99s

is99s

#
hp-collector
hp-collector
hp-managed-node
hp-managed-node
hp-alarm-mgr
hp-alarm-mgr
#

arns

arns

#

ibm-app
ibm-app

#

asa

Registered port

362/tcp
362/udp

363/tcp
363/udp

364/tcp
364/udp

365/tcp
365/udp

366/tcp
366/udp

367/tcp
367/udp

368/tcp
368/udp

369/tcp
369/udp
370/tcp
370/udp

371/tcp
371/udp

372/tcp
372/udp

373/tcp
373/udp
374/tcp
374/udp

375/tcp
375/udp

376/tcp
376/udp

377/tcp
377/udp
378/tcp
378/udp

379/tcp
379/udp
380/tcp
380/udp

381/tcp
381/udp
382/tcp
382/udp
383/tcp
383/udp

384/tcp
384/udp

385/tcp
385/udp

386/tcp

numbers

SRS Send

SRS Send

Curt Mayer <curt@emergent.com>

RSVP Tunnel

RSVP Tunnel

Andreas Terzis <terzis@cs.ucla.edu>
Aurora CMGR

Aurora CMGR

Philip Budne <budne@auroratech.com>
DTK

DTK

Fred Cohen <fc@all.net>

ODMR

ODMR

Randall Gellens <randy@qualcomm.com>
MortgageWare

MortgageWare

Ole Hellevik <oleh@interling.com>
QbikGDP

QbikGDP

Adrien de Croy <adrien@gbik.com>
rpc2portmap

rpc2portmap

codaauth2

codaauth2

Robert Watson <robert@cyrus.watson.org>
Clearcase

Clearcase

Dave LeBlang <leglang@atria.com>
ListProcessor

ListProcessor

Anastasios Kotsikonas <tasos@cs.bu.edu>
Legent Corporation

Legent Corporation

Legent Corporation

Legent Corporation

Keith Boyce <---none--->

Hassle

Hassle

Reinhard Doelz <doelz@comp.bioz.unibas.ch>
Amiga Envoy Network Inquiry Proto
Amiga Envoy Network Inquiry Proto
Heinz Wrobel <hwrobel@gmx.de>

NEC Corporation

NEC Corporation

NEC Corporation

NEC Corporation

Tomoo Fujita <tf@arc.bsl.fc.nec.co.jp>
TIA/EIA/IS-99 modem client
TIA/EIA/IS-99 modem client
TIA/EIA/IS-99 modem server
TIA/EIA/IS-99 modem server

Frank Quick <fquick@qualcomm.com>
hp performance data collector

hp performance data collector

hp performance data managed node

hp performance data managed node

hp performance data alarm manager
hp performance data alarm manager
Frank Blakely <frankb@hpptcl6.rose.hp.com>
A Remote Network Server System

A Remote Network Server System
David Hornsby <djh@munnari.OZ.AU>
IBM Application

IBM Application

Lisa Tomita <---none--->

ASA Message Router Object Def.

Page

14

Z2G1 abed z wnipuadwo)

asa
#

aurp

aurp

#
unidata-1dm
unidata-1ldm
#

#

ldap

#

uis

uis

#

synotics-relay
synotics-relay
synotics-broker
synotics-broker

#

metab
metab

#

embl-ndt
embl-ndt

#

netcp
netcp

#
netware-ip
netware-ip
mptn

mptn

#
kryptolan
kryptolan
#

iso-tsap-c2
iso-tsap-c2
#
work-sol
work-sol
#

ups

ups

#

genie
genie

#

decap
decap
nced
nced
ncld
ncld

#

imsp
imsp

#
timbuktu
timbuktu
#
prm-sm
prm-sm
prm-nm
prm-nm
#
decladebug

386/udp

387/tcp
387/udp

388/tcp
388/udp

389/tcp
389/udp

390/tcp
390/udp

391/tcp
391/udp
392/tcp
392/udp

393/tcp
393/udp

394/tcp
394 /udp

395/tcp
395/udp

396/tcp
396/udp
397/tcp
397/udp

398/tcp
398/udp

399/tcp
399/udp

400/tcp
400/udp

401/tcp
401/udp

402/tcp
402/udp

403/tcp
403/udp
404/tcp
404 /udp
405/tcp
405/udp

406/tcp
406/udp

407/tcp
407/udp

408/tcp
408/udp
409/tcp
409/udp

410/tcp

Registered port numbers

ASA Message Router Object Def.

Steve Laitinen <laitinen@brutus.aa.ab.com>
Appletalk Update-Based Routing Pro.
Appletalk Update-Based Routing Pro.
Chris Ranch <cranch@novell.com>
Unidata LDM

Unidata LDM

Glenn Davis <support@unidata.ucar.edu>
Lightweight Directory Access Protocol
Lightweight Directory Access Protocol
Tim Howes <Tim.Howes@terminator.cc.umich.edu>
UIs

UIs

Ed Barron <---none--->

SynOptics SNMP Relay Port

SynOptics SNMP Relay Port

SynOptics Port Broker Port

SynOptics Port Broker Port

Illan Raab <iraab@synoptics.com>
Meta5

Meta5

Jim Kanzler <jim.kanzler@meta5.com>
EMBL Nucleic Data Transfer

EMBL Nucleic Data Transfer

Peter Gad <peter@bmc.uu.se>

NETscout Control Protocol

NETscout Control Protocol

Anil Singhal <---none--->

Novell Netware over IP

Novell Netware over IP

Multi Protocol Trans. Net.

Multi Protocol Trans. Net.

Soumitra Sarkar <sarkar@vnet.ibm.com>
Kryptolan

Kryptolan

Peter de Laval <pdl@sectra.se>

ISO Transport Class 2 Non-Control over TCP
ISO Transport Class 2 Non-Control over TCP
Yanick Pouffary <pouffary@taec.enet.dec.com>
Workstation Solutions

Workstation Solutions

Jim Ward <jimw@worksta.com>
Uninterruptible Power Supply
Uninterruptible Power Supply

Charles Bennett <chuck@benatong.com>
Genie Protocol

Genie Protocol

Mark Hankin <---none--->

decap

decap

nced

nced

ncld

ncld

Richard Jones <---none--->
Interactive Mail Support Protocol
Interactive Mail Support Protocol
John Myers <jgm+@cmu.edu>

Timbuktu

Timbuktu

Marc Epard <marc@netopia.com>
Prospero Resource Manager Sys. Man.
Prospero Resource Manager Sys. Man.
Prospero Resource Manager Node Man.
Prospero Resource Manager Node Man.
B. Clifford Neuman <bcn@isi.edu>
DECLadebug Remote Debug Protocol

Page 15

decladebug 410/udp
#
rmt 411/tcp
rmt 411/udp
#

synoptics-trap 412/tcp
synoptics-trap 412/udp
#

smsp 413/tcp
smsp 413/udp
#

infoseek 414/tcp
infoseek 414 /udp
#

bnet 415/tcp
bnet 415/udp
#

silverplatter 416/tcp
silverplatter 416/udp
#

onmux 417/tcp
onmux 417/udp
#

hyper-g 418/tcp
hyper-g 418/udp
#

ariell 419/tcp
ariell 419/udp
#

smpte 420/tcp
smpte 420/udp
#

ariel2 421/tcp
ariel2 421/udp
ariel3 422/tcp
ariel3 422 /udp
#

opc-job-start 423/tcp
opc-job-start 423/udp
opc-job-track 424/tcp
opc-job-track 424 /udp
#

icad-el 425/tcp
icad-el 425/udp
#

smartsdp 426/tcp
smartsdp 426/udp
#

svrloc 427/tcp
svrloc 427/udp
#

ocs_cmu 428/tcp
ocs_cmu 428/udp
ocs_amu 429/tcp
ocs_amu 429/udp
#

utmpsd 430/tcp
utmpsd 430/udp
utmpcd 431/tcp
utmpcd 431/udp
iasd 432/tcp
iasd 432/udp
#

nnsp 433/tcp
nnsp 433/udp
#

mobileip-agent 434/tcp

Registered port numbers

DECLadebug Remote Debug Protocol

Anthony Berent <anthony.berent@reo.mts.dec.com>
Remote MT Protocol

Remote MT Protocol

Peter Eriksson <pen@lysator.liu.se>

Trap Convention Port

Trap Convention Port

Illan Raab <iraab@synoptics.com>

Storage Management Services Protocol
Storage Management Services Protocol
Murthy Srinivas <murthy@novell.com>
InfoSeek

InfoSeek

Steve Kirsch <stk@infoseek.com>

BNet

BNet

Jim Mertz <JMertz+RV09@rvdc.unisys.com>
Silverplatter

Silverplatter

Peter Ciuffetti <petec@silverplatter.com>
Onmux

Onmux

Stephen Hanna <hanna@world.std.com>
Hyper-G

Hyper-G

Frank Kappe <fkappe@iicm.tu-graz.ac.at>
Ariel

Ariel

Lennie Stovel <bl.mds@rlg.org>

SMPTE

SMPTE

Si Becker <71362.22@CompuServe.COM>

Ariel

Ariel

Ariel

Ariel

Lennie Stovel <bl.mds@rlg.org>

IBM Operations Planning and Control Start
IBM Operations Planning and Control Start
IBM Operations Planning and Control Track
IBM Operations Planning and Control Track
Conny Larsson <cocke@VNET.IBM.COM>

ICAD

ICAD

Larry Stone <lcs@icad.com>

smartsdp

smartsdp

Alexander Dupuy <dupuy@smarts.com>

Server Location

Server Location

<veizades@ftp.com>

0CS_CMU

0CS_CMU

0CS_AMU

0CS_AMU

Florence Wyman <wyman@peabody.plk.af.mil>
UTMPSD

UTMPSD

UTMPCD

UTMPCD

IASD

IASD

Nir Baroz <nbaroz@encore.com>

NNSP

NNSP

Rob Robertson <rob@gangrene.berkeley.edu>
MobileIP-Agent

Page 16

Gy abed g wnipuadwo)

mobileip-agent
mobilip-mn
mobilip-mn

#

dna-cml
dna-cml

#

comscm
comscm

#

dsfgw

dsfgw

#

dasp

dasp

#

sgcp

sgcp

#
decvms-sysmgt
decvms-sysmgt
#

cve_hostd
cvc_hostd

#

https

https

#

snpp

snpp

#
microsoft-ds
microsoft-ds
#

ddm-rdb
ddm-rdb
ddm-dfm
ddm-dfm

#

ddm-ssl
ddm-ss1

#
as-servermap
as-servermap
#

tserver
tserver

#

sfs-smp-net
sfs-smp-net
sfs-config
sfs-config

#
creativeserver
creativeserver
contentserver
contentserver
creativepartnr
creativepartnr
#

macon-tcp
macon-udp

#

#

scohelp
scohelp

#

434/udp
435/tcp
435/udp

436/tcp
436/udp

437/tcp
437/udp

438/tcp
438/udp

439/tcp
439/udp

440/tcp
440/udp

441/tcp
441/udp

442/tcp
442/udp

443/tcp
443 /udp

444 /tcp
444/udp

445/tcp
445/udp

446/tcp
446 /udp
447/tcp
447 /udp

448/tcp
448/udp

449/tcp
449/udp

450/tcp
450/udp

451/tcp
451/udp
452/tcp
452 /udp

453/tcp
453/udp
454/tcp
454 /udp
455/tcp
455/udp

456/tcp
456/udp

457/tcp
457 /udp

Registered port numbers

MobileIP-Agent

MobilIP-MN

MobilIP-MN

Kannan Alagappan <kannan@sejour.lkg.dec.com>
DNA-CML

DNA-CML

Dan Flowers <flowers@smaug.lkg.dec.com>
comscm

comscm

Jim Teague <teague@zso.dec.com>

dsfgw

dsfgw

Andy McKeen <mckeen@osf.org>

dasp Thomas Obermair

dasp tommy@inlab.m.eunet.de

Thomas Obermair <tommy@inlab.m.eunet.de>
sgcp

sgcp

Marshall Rose <mrose@dbc.mtview.ca.us>
decvms-sysmgt

decvms-sysmgt

Lee Barton <barton@star.enet.dec.com>
cvc_hostd

cvc_hostd

Bill Davidson <billd@equalizer.cray.com>
http protocol over TLS/SSL

http protocol over TLS/SSL

Kipp E.B. Hickman <kipp@mcom.com>
Simple Network Paging Protocol

Simple Network Paging Protocol
[RFC1568]

Microsoft-DS

Microsoft-DS

Pradeep Bahl <pradeepb@microsoft.com>
DDM-RDB

DDM-RDB

DDM-RFM

DDM-RFM

Jan David Fisher <jdfisher@VNET.IBM.COM>
DDM-SSL

DDM-SSL

Steve Ritland <srr@vnet.ibm.com>

AS Server Mapper

AS Server Mapper

Barbara Foss <BGFOSS@rchvmv.vnet.ibm.com>
TServer

TServer

Harvey S. Schultz <hss@mtgzfs3.mt.att.com>
Cray Network Semaphore server

Cray Network Semaphore server

Cray SFS config server

Cray SFS config server

Walter Poxon <wdp@ironwood.cray.com>
CreativeServer

CreativeServer

ContentServer

ContentServer

CreativePartnr

CreativePartnr

Jesus Ortiz <jesus_ortiz@emotion.com>
macon-tcp

macon-udp

Yoshinobu Inoue
<shin@hodaka.mfd.cs.fujitsu.co.jp>
scohelp

scohelp

Faith Zack <faithz@sco.com>

Page 17

applegtc
applegtc
#

#

ampr-rcmd
ampr-rcmd

#

skronk
skronk

#
datasurfsrv
datasurfsrv
datasurfsrvsec
datasurfsrvsec
#

alpes

alpes

#

kpasswd
kpasswd

#

urd
igmpv3lite
#

digital-vrc
digital-vrc
#
mylex-mapd
mylex-mapd
#

photuris
photuris
#

rcp

rcp

#
SCX-Proxy
SCX-proxy

#

mondex
mondex

#
ljk-login
ljk-login
#

#
hybrid-pop
hybrid-pop
#

tn-tl-wl
tn-tl-w2

#
tcpnethaspsrv
tcpnethaspsrv
tn-tl-£fdl
tn-tl-£d1l
#

ss7ns
ss7ns

#

spsc

spsc

#
iafserver
iafserver
iafdbase

458/tcp
458/udp

459/tcp
459/udp

460/tcp
460/udp

461/tcp
461/udp
462/tcp
462/udp

463/tcp
463/udp

464/tcp
464 /udp

465/tcp
465/udp

466/tcp
466/udp

467/tcp
467/udp

468/tcp
468/udp

469/tcp
469/udp

470/tcp
470/udp

471/tcp
471/udp

472/tcp
472/udp

473/tcp
473/udp

474 /tcp
474/udp

475/tcp
475/udp

476/tcp
476/udp

477/tcp
477/udp

478/tcp
478/udp

479/tcp
479/udp
480/tcp

Registered port numbers

apple quick time

apple quick time

Murali Ranganathan

<murali ranganathan@quickmail.apple.com>
ampr-rcmd

ampr-rcmd

Rob Janssen <rob@sys3.pelchl.ampr.org>
skronk

skronk

Henry Strickland <strick@yak.net>
DataRampSrv

DataRampSrv

DataRampSrvSec

DataRampSrvSec

Diane Downie <downie@jibe.MV.COM>
alpes

alpes

Alain Durand <Alain.Durand@imag.fr>
kpasswd

kpasswd

Theodore Ts'o <tytso@MIT.EDU>

URL Rendesvous Directory for SSM

IGMP over UDP for SSM

Toerless Eckert <eckert@cisco.com>
digital-vrc

digital-vrc

Peter Higginson <higginson@mail.dec.com>
mylex-mapd

mylex-mapd

Gary Lewis <GaryL@hg.mylex.com>
proturis

proturis

Bill Simpson <Bill.Simpson@um.cc.umich.edu>
Radio Control Protocol

Radio Control Protocol

Jim Jennings +1-708-538-7241

SCX-Proxy

SCX-Proxy

Scott Narveson <sjn@cray.com>

Mondex

Mondex

Bill Reding <redingb@nwdt.natwest.co.uk>
1jk-login

1jk-login

LJK Software, Cambridge, Massachusetts
<support@ljk.com>

hybrid-pop

hybrid-pop

Rami Rubin <rami@hybrid.com>

tn-tl-wl

tn-tl-w2

Ed Kress <eskress@thinknet.com>
tcpnethaspsrv

tcpnethaspsrv

Charlie Hava <charlie@aladdin.co.il>
tn-tl-£fdl

tn-tl-£d1l

Ed Kress <eskress@thinknet.com>

ss7ns

ss7ns

Jean-Michel URSCH <ursch@taec.enet.dec.com>
spsc

spsc

Mike Rieker <mikea@sp32.com>

iafserver

iafserver

iafdbase

Page

18

G abed ¢ wnipuadwo)

iafdbase

#

ph

ph

#

bgs-nsi
bgs-nsi

#

ulpnet
ulpnet

#
integra-sme
integra-sme
#
powerburst
powerburst
#

avian

avian

#

#

saft

saft

#

gss-http
gss-http

#
nest-protocol
nest-protocol
#

micom-pfs
micom-pfs

#

go-login
go-login

#

ticf-1
ticf-1
ticf-2
ticf-2

#

pov-ray
pov-ray

#

#
intecourier
intecourier
#
pim-rp-disc
pim-rp-disc
#

dantz

dantz

#

siam

siam

#

iso-ill
iso-ill

#

isakmp
isakmp

#

stmf

stmf

#

asa-appl-proto

480/udp

481/tcp
481/udp

482/tcp
482/udp

483/tcp
483/udp

484/tcp
484 /udp

485/tcp
485/udp

486/tcp
486/udp

487/tcp
487/udp

488/tcp
488/udp

489/tcp
489/udp

490/tcp
490/udp

491/tcp
491/udp

492/tcp
492/udp
493/tcp
493/udp

494 /tcp
494 /udp
495/tcp

495/udp

496/tcp
496/udp

497/tcp
497/udp

498/tcp
498/udp

499/tcp
499/udp

500/tcp
500/udp

501/tcp
501/udp

502/tcp

Registered port numbers

iafdbase

ricky@solect.com <Rick Yazwinski>

Ph service

Ph service

Roland Hedberg <Roland.Hedberg@umdac.umu.se>
bgs-nsi

bgs-nsi

Jon Saperia <saperia@bgs.com>

ulpnet

ulpnet

Kevin Mooney <kevinm@bfs.unibol.com>
Integra Software Management Environment
Integra Software Management Environment
Randall Dow <rand@randix.m.isr.de>

Air Soft Power Burst

Air Soft Power Burst

<gary@airsoft.com>

avian

avian

Robert Ullmann
<Robert_Ullmann/CAM/Lotus.LOTUS@crd.lotus.com>
saft Simple Asynchronous File Transfer
saft Simple Asynchronous File Transfer
Ulli Horlacher <framstag@rus.uni-stuttgart.de>
gss-http

gss-http

Doug Rosenthal <rosenthl@krypton.einet.net>
nest-protocol

nest-protocol

Gilles Gameiro <ggameiro@birdland.com>
micom-pfs

micom-pfs

David Misunas <DMisunas@micom.com>
go-login

go-login

Troy Morrison <troy@graphon.com>
Transport Independent Convergence for FNA
Transport Independent Convergence for FNA
Transport Independent Convergence for FNA
Transport Independent Convergence for FNA
Mamoru Ito <Ito@pcnet.ks.pfu.co.jp>
POV-Ray

POV-Ray

POV-Team Co-ordinator
<iana-port.remove-spamguard@povray.org>
intecourier

intecourier

Steve Favor <sfavor@tigger.intecom.com>
PIM-RP-DISC

PIM-RP-DISC

Dino Farinacci <dino@cisco.com>

dantz

dantz

Richard Zulch <richard_zulch@dantz.com>
siam

siam

Philippe Gilbert <pgilbert@cal.fr>

ISO ILL Protocol

ISO ILL Protocol

Mark H. Needleman <Mark.Needleman@ucop.edu>
isakmp

isakmp

Mark Schertler <mjs@tycho.ncsc.mil>

STMF

STMF

Alan Ungar <aungar@farradyne.com>
asa-appl-proto

Page 19

asa-appl-proto
#
intrinsa
intrinsa
#
citadel
citadel
#
mailbox-1m
mailbox-1m
#
ohimsrv
ohimsrv
#

crs

crs

#

xvttp
xvttp

#

snare
snare

#

fcp

fcp

#

passgo
passgo

#

exec

#

#

comsat
biff

syslog
printer
printer
videotex
videotex
#

talk

ntalk
ntalk

502/udp

503/tcp
503/udp

504/tcp
504/udp

505/tcp
505/udp

506/tcp
506/udp

507/tcp
507/udp

508/tcp
508/udp

509/tcp
509/udp

510/tcp
510/udp

511/tcp
511/udp

512/tcp

512/udp
512/udp

513/tcp

513/udp

514/tcp

514 /udp
515/tcp
515/udp
516/tcp
516/udp

517/tcp

517/udp

518/tcp
518/udp

Registered port numbers

asa-appl-proto

Dennis Dube <ddube@modicon.com>
Intrinsa

Intrinsa

Robert Ford <robert@intrinsa.com>
citadel

citadel

Art Cancro <ajc@uncnsrd.mt-kisco.ny.us>
mailbox-1m

mailbox-1m

Beverly Moody <Beverly Moody@stercomm.com>
ohimsrv

ohimsrv

Scott Powell <spowell@openhorizon.com>
crs

crs

Brad Wright <bradwr@microsoft.com>
xvttp

xXvttp

Keith J. Alphonso <alphonso@ncs-ssc.com>
snare

snare

Dennis Batchelder <dennis@capres.com>
FirstClass Protocol

FirstClass Protocol

Mike Marshburn <paul@softarc.com>
PassGo

PassGo

John Rainford <jrainford@passgo.com>
remote process execution;
authentication performed using
passwords and UNIX login names

used by mail system to notify users
of new mail received; currently
receives messages only from
processes on the same machine
remote login a la telnet;

automatic authentication performed
based on priviledged port numbers
and distributed data bases which
identify "authentication domains"
maintains data bases showing who's
logged in to machines on a local
net and the load average of the
machine

cmd

like exec, but automatic authentication
is performed as for login server

spooler

spooler

videotex

videotex

Daniel Mavrakis <system@venus.mctel.fr>
like tenex link, but across

machine - unfortunately, doesn't
use link protocol (this is actually
just a rendezvous port from which a
tcp connection is established)

like tenex link, but across

machine - unfortunately, doesn't
use link protocol (this is actually
just a rendezvous port from which a
tcp connection is established)

Page 20

GG abed ¢z wnipuadwo)

utime
utime
efs
router
#

#
ripng
ripng

ulp

ulp

#

ibm-db2
ibm-db2

#

ncp

ncp

#

timed
timed
tempo
tempo

#

stx

stx

custix
custix

#

irc-serv
irc-serv
#

courier
courier
conference
conference
netnews
netnews
netwall
netwall
mm-admin
mm-admin

#

iiop

iiop

#
opalis-rdv
opalis-rdv
#

nmsp

nmsp

#

gdomap
gdomap

#
apertus-1dp
apertus-1dp
uucp

uucp
uucp-rlogin
uucp-rlogin

commerce
commerce
#

klogin
klogin
kshell

519/tcp
519/udp
520/tcp
520/udp

521/tcp
521/udp

522/tcp
522/udp

523/tcp
523/udp

524/tcp
524 /udp

525/tcp
525/udp
526/tcp
526 /udp

527/tcp
527/udp
528/tcp
528/udp

529/tcp
529/udp

530/tcp
530/udp
531/tcp
531/udp
532/tcp
532/udp
533/tcp
533/udp
534/tcp
534 /udp

535/tcp
535/udp

536/tcp
536/udp

537/tcp
537/udp

538/tcp
538/udp

539/tcp
539/udp
540/tcp
540/udp
541/tcp
541/udp

542/tcp
542/udp

543/tcp
543/udp
544/tcp

Registered port numbers

unixtime

unixtime

extended file name server

local routing process (on site);

uses variant of Xerox NS routing
information protocol - RIP

ripng

ripng

Robert E. Minnear <minnear@ipsilon.com>
ULP

ULP

Max Morris <maxm@MICROSOFT.com>

IBM-DB2

IBM-DB2

Peter Pau <pau@VNET.IBM.COM>

NCP

NCP

Don Provan <donp@sjf.novell.com>
timeserver

timeserver

newdate

newdate

Unknown

Stock IXChange

Stock IXChange

Customer IXChange

Customer IXChange

Ferdi Ladeira <ferdi.ladeira@ixchange.com>
IRC-SERV

IRC-SERV

Brian Tackett <cym@acrux.net>

rpc

rpc

chat

chat

readnews

readnews

for emergency broadcasts

for emergency broadcasts

MegaMedia Admin

MegaMedia Admin

Andreas Heidemann <a.heidemann@ais-gmbh.de>
iiop

iiop

Jeff M.Michaud <michaud@zk3.dec.com>
opalis-rdv

opalis-rdv

Laurent Domenech <ldomenech@opalis.com>
Networked Media Streaming Protocol
Networked Media Streaming Protocol

Paul Santinelli Jr. <psantinelli@narrative.com>
gdomap

gdomap

Richard Frith-Macdonald <richard@brainstorm.co.uk>
Apertus Technologies Load Determination
Apertus Technologies Load Determination
uucpd

uucpd

uucp-rlogin

uucp-rlogin

Stuart Lynne <sl@wimsey.com>

commerce

commerce

Randy Epstein <repstein@host.net>

krcmd

Page 21

kshell
applegtcsrvr
applegtcsrvr

#
dhcpvé-client
dhcpvé6-client
dhcpvé6-server
dhcpvé-server
#

afpovertcp
afpovertcp

idfp

idfp

#
new-rwho
new-rwho
cybercash
cybercash
#
deviceshare
deviceshare
#

pirp

pirp

#

rtsp

rtsp

#

dsf

dsf
remotefs
remotefs

openvms-sysipc
openvms-sysipc

#

sdnskmp
sdnskmp
teedtap
teedtap

#

rmonitor
rmonitor
monitor
monitor
chshell
chshell
nntps
nntps

#

9pfs

9pfs
whoami
whoami
streettalk
streettalk
banyan-rpc
banyan-rpc
#
ms-shuttle
ms-shuttle
#

ms-rome
ms-rome

#

meter

544 /udp
545/tcp
545/udp

546/tcp
546/udp
547/tcp
547/udp

548/tcp
548/udp

549/tcp
549/udp

550/tcp
550/udp
551/tcp
551/udp

552/tcp
552/udp

553/tcp
553/udp

554/tcp
554 /udp

555/tcp
555/udp
556/tcp
556 /udp
557/tcp
557/udp

558/tcp
558/udp
559/tcp
559/udp

560/tcp
560/udp
561/tcp
561/udp
562/tcp
562/udp
563/tcp
563/udp

564/tcp
564 /udp
565/tcp
565/udp
566/tcp
566/udp
567/tcp
567/udp

568/tcp
568/udp

569/tcp
569/udp

570/tcp

Registered port numbers

krcmd

applegtcsrvr

applegtcsrvr

Murali Ranganathan
<Murali_Ranganathan@quickmail.apple.com>
DHCPv6 Client

DHCPv6 Client

DHCPv6 Server

DHCPv6 Server

Jim Bound <bound@zk3.dec.com>

AFP over TCP

AFP over TCP

Leland Wallace <randall@apple.com>

IDFP

IDFP

Ramana Kovi <ramana@kovi.com>

new-who

new-who

cybercash

cybercash

Donald E. Eastlake 3rd <deel@cybercash.com>
deviceshare

deviceshare

Brian Schenkenberger <brians@advsyscon.com>
pirp

pirp

D. J. Bernstein <djb@silverton.berkeley.edu>
Real Time Stream Control Protocol

Real Time Stream Control Protocol

Rob Lanphier <robla@prognet.com>

rfs server

rfs server

openvms-sysipc

openvms-sysipc

Alan Potter <potter@movies.enet.dec.com>
SDNSKMP

SDNSKMP

TEEDTAP

TEEDTAP

Mort Hoffman <hoffman@mail.ndhm.gtegsc.com>
rmonitord

rmonitord

chemd

chemd

nntp protocol over TLS/SSL (was snntp)
nntp protocol over TLS/SSL (was snntp)
Kipp E.B. Hickman <kipp@netscape.com>
plan 9 file service

plan 9 file service

whoami

whoami

streettalk

streettalk

banyan-rpc

banyan-rpc

Tom Lemaire <toml@banyan.com>
microsoft shuttle

microsoft shuttle

Rudolph Balaz <rudolphb@microsoft.com>
microsoft rome

microsoft rome

Rudolph Balaz <rudolphb@microsoft.com>
demon

Page 22

9G¥ abed ¢z wnipuadwo)

meter
meter
meter
sonar
sonar

#
banyan-vip
banyan-vip

ftp-agent
ftp-agent

#

vemmi

vemmi

#

ipcd

ipcd

vnas

vnas

ipdd

ipdd

#

decbsrv
decbsrv

#
sntp-heartbeat
sntp-heartbeat
#

bdp

bdp

#
scc-security
scc-security
#

philips-vc
philips-vc

#

keyserver
keyserver

#

imap4-ssl
imap4-ssl

#

#
password-chg
password-chg
submission
submission

#

cal

cal

#

eyelink
eyelink

#

tns-cml
tns-cml

#

http-alt591/tcp
http-alt591/udp

#

eudora-set
eudora-set

#
http-rpc-epmap
http-rpc-epmap
#

570/udp demon
571/tcp udemon
571/udp udemon
572/tcp sonar
572/udp sonar
Keith Moore <moore@cs.utk.edu>
573/tcp banyan-vip
573/udp banyan-vip
Denis Leclerc <DLeclerc@banyan.com>
574/tcp FTP Software Agent System
574/udp FTP Software Agent System
Michael S. Greenberg <arnoff@ftp.com>
575/tcp VEMMI
575/udp VEMMI
Daniel Mavrakis <mavrakis@mctel.fr>
576/tcp ipcd
576/udp iped
577/tcp vnas
577/udp vnas
578/tcp ipdd
578/udp ipdd
Jay Farhat <jfarhat@ipass.com>
579/tcp decbsrv
579/udp decbsrv
Rudi Martin <movies::martin"@movies.enet.dec.com>
580/tcp SNTP HEARTBEAT
580/udp SNTP HEARTBEAT
Louis Mamakos <louie@uu.net>
581/tcp Bundle Discovery Protocol
581/udp Bundle Discovery Protocol
Gary Malkin <gmalkin@xylogics.com>
582/tcp SCC Security
582/udp SCC Security
Prashant Dholakia <prashant@semaphorecom.com>
583/tcp Philips Video-Conferencing
583/udp Philips Video-Conferencing
Janna Chang <janna@pmc.philips.com>
584/tcp Key Server
584 /udp Key Server
Gary Howland <gary@systemics.com>
585/tcp IMAP4+SSL (use 993 instead)
585/udp IMAP4+SSL (use 993 instead)
Terry Gray <gray@cac.washington.edu>
Use of 585 is not recommended, use 993 instead
586/tcp Password Change
586/udp Password Change
587/tcp Submission
587/udp Submission
Randy Gellens <randy@qualcomm.com>
588/tcp CAL
588/udp CAL
Myron Hattig <Myron_Hattig@ccm.jf.intel.com>
589/tcp EyeLink
589/udp EyeLink
Dave Stampe <dstampe@psych.toronto.edu>
590/tcp TNS CML
590/udp TNS CML
Jerome Albin <albin@taec.enet.dec.com>
FileMaker, Inc. - HTTP Alternate (see Port 80)
FileMaker, Inc. - HTTP Alternate (see Port 80)
Clay Maeckel <clay maeckel@filemaker.com>
592/tcp Eudora Set
592/udp Eudora Set
Randall Gellens <randy@qualcomm.com>
593/tcp HTTP RPC Ep Map
593/udp HTTP RPC Ep Map

Registered port numbers

Edward Reus <edwardr@microsoft.com>

Page 23

tpip
tpip
#

cab-protocol
cab-protocol
#

smsd

smsd

#
ptcnameservice
ptcnameservice
#
sco-websrvrmg3
sco-websrvrmg3
#

acp

acp

#

ipcserver
ipcserver

#

#

urm

urm

ngs

ngs

#

sift-uft
sift-uft

#

npmp-trap
npmp-trap
npmp-local
npmp-local
npmp-gui
npmp-gui

#

hmmp-ind 612/tcp
hmmp-ind 612 /udp

hmmp-op
hmmp-op

#

sshell
sshell

#
sco-inetmgr
sco-inetmgr
sco-sysmgr
Sco-sysmgr
sco-dtmgr
sco-dtmgr

#

dei-icda618/tcp
dei-icda 618/udp

#

digital-evm
digital-evm

#
sco-websrvrmgr
sco-websrvrmgr
#

escp-ip
escp-ip

collaborator
collaborator
#

Registered port

594/tcp TPIP
594 /udp TPIP
Brad Spear <spear@platinum.com>
595/tcp CAB Protocol
595/udp CAB Protocol
Winston Hetherington
596/tcp SMSD
596 /udp SMSD
Wayne Barlow <web@unx.dec.com>
597/tcp PTC Name Service
597/udp PTC Name Service
Yuri Machkasov <yuri@ptc.com>
598/tcp SCO Web Server Manager 3
598/udp SCO Web Server Manager 3
Simon Baldwin <simonb@sco.com>
599/tcp Aeolon Core Protocol
599/udp Aeolon Core Protocol
Michael Alyn Miller <malyn@aeolon.com>
600/tcp Sun IPC server
600/udp Sun IPC server
Bill Schiefelbein <schief@aspen.cray.com>
601-605 Unassigned
606/tcp Cray Unified Resource Manager
606 /udp Cray Unified Resource Manager
607/tcp ngs
607/udp ngs
Bill Schiefelbein <schief@aspen.cray.com>
608/tcp Sender-Initiated/Unsolicited File Transfer
608/udp Sender-Initiated/Unsolicited File Transfer
Rick Troth <troth@rice.edu>
609/tcp npmp-trap
609/udp npmp-trap
610/tcp npmp-local
610/udp npmp-local
611/tcp npmp-gui
611/udp npmp-gui
John Barnes <jbarnes@crl.com>
HMMP Indication
HMMP Indication
613/tcp HMMP Operation
613/udp HMMP Operation
Andrew Sinclair <andrsin@microsoft.com>
614/tcp SSLshell
614 /udp SSLshell
Simon J. Gerraty <sjg@quick.com.au>
615/tcp Internet Configuration Manager
615/udp Internet Configuration Manager
616/tcp SCO System Administration Server
616/udp SCO System Administration Server
617/tcp SCO Desktop Administration Server
617/udp SCO Desktop Administration Server
Christopher Durham <chrisdu@sco.com>
DEI-ICDA
DEI-ICDA
David Turner <digital@Quetico.tbaytel.net>
619/tcp Digital EVM
619/udp Digital EVM
Jem Treadwell <jem@unx.dec.com>
620/tcp SCO WebServer Manager
620/udp SCO WebServer Manager
Christopher Durham <chrisdu@sco.com>
621/tcp ESCP
621/udp ESCP
Lai Zit Seng <lzs@pobox.com>
622/tcp Collaborator
622/udp Collaborator
Johnson Davis <johnsond@opteamasoft.com>
numbers

Page 24

LG abed z wnipuadwo)

aux_bus_shunt
aux_bus_shunt
#
cryptoadmin
cryptoadmin
#

dec_dlm
dec_dlm

#

asia

asia

#
passgo-tivoli
passgo-tivoli
#

qmgp

qmgp

#

3com-amp3
3com-amp3
#

rda

rda

#

ipp

ipp

#

bmpp
bmpp

#

servstat 633/tcp
servstat 633/udp

#

ginad
ginad

#
rlzdbase
rlzdbase
#

ldaps
ldaps

#
lanserver
lanserver

#

mcns-sec 638/tcp
mens-sec 638/udp

#

msdp

msdp

#
entrust-sps
entrust-sps
#

repcmd
repcmd

#
esro-emsdp
esro-emsdp
#

sanity
sanity

#

dwr

dwr

#

pssc

623/tcp Aux Bus Shunt
623/udp Aux Bus Shunt
Steve Williams <Steven D Williams@ccm.jf.intel.com>
624/tcp Crypto Admin
624 /udp Crypto Admin
Tony Walker <tony@cryptocard.com>
625/tcp DEC DLM
625/udp DEC DLM
Rudi Martin <Rudi.Martin@edo.mts.dec.com>
626/tcp ASIA
626/udp ASIA
Michael Dasenbrock <dasenbro@apple.com>
627/tcp PassGo Tivoli
627/udp PassGo Tivoli
Chris Hall <chall@passgo.com>
628/tcp QMQP
628/udp QMQP
Dan Bernstein <djb@cr.yp.to>
629/tcp 3Com AMP3
629/udp 3Com AMP3
Prakash Banthia <prakash_banthia@3com.com>
630/tcp RDA
630/udp RDA
John Hadjioannou <john@minster.co.uk>
631/tcp IPP (Internet Printing Protocol)
631/udp IPP (Internet Printing Protocol)
Carl-Uno Manros <manros@cplO.es.xerox.com>
632/tcp bmpp
632/udp bmpp
Troy Rollo <troy@kroll.corvu.com.au>
Service Status update (Sterling Software)
Service Status update (Sterling Software)
Greg Rose <Greg Rose@sydney.sterling.com>
634/tcp ginad
634/udp ginad
Mark Crother <mark@eis.calstate.edu>
635/tcp RLZ DBase
635/udp RLZ DBase
Michael Ginn <ginn@tyxar.com>
636/tcp ldap protocol over TLS/SSL (was sldap)
636/udp ldap protocol over TLS/SSL (was sldap)
Pat Richard <patr@xcert.com>
637/tcp lanserver
637/udp lanserver
Chris Larsson <clarsson@VNET.IBM.COM>
mcns-sec
mcns-sec
Kaz Ozawa <k.ozawa@cablelabs.com>
639/tcp MSDP
639/udp MSDP
Dino Farinacci <dino@cisco.com>
640/tcp entrust-sps
640/udp entrust-sps
Marek Buchler <Marek.Buchler@entrust.com>
641/tcp repcmd
641/udp repcmd
Scott Dale <scott@Replicase.com>
642/tcp ESRO-EMSDP V1.3
642 /udp ESRO-EMSDP V1.3
Mohsen Banan <mohsen@neda.com>
643/tcp SANity
643/udp SANity
Peter Viscarola <PeterGV@osr.com>
644/tcp dwr
644 /udp dwr
Bill Fenner <fenner@parc.xerox.com>
645/tcp PSSC

Registered port numbers

Page 25

pssc
#

1dp

ldp

#
dhcp-failover
dhcp-failover
#

rrp

rrp

#

aminet

aminet

#

obex

obex

#

ieee-mms 651/tcp
ieee-mms 651/udp

#
hello-port
hello-port
#

repscmd
repscmd

#

aodv

aodv

#

tinc

tinc

#

spmp

spmp

#

rmc

rmc

#

tenfold
tenfold

#

#
mac-srvr-admin
mac-srvr-admin
#

hap

hap

#

pftp

pftp

#
purenoise
purenoise
#
secure-aux-bus
secure-aux-bus
#

sun-dr
sun-dr

#

mdgs

mdgs

doom

doom

#

disclose
disclose

Registered port

645/udp

646/tcp
646/udp

647/tcp
647/udp

648/tcp
648/udp

649/tcp
649/udp

650/tcp
650/udp

IEEE
IEEE

652/tcp
652/udp

653/tcp
653/udp

654/tcp
654/udp

655/tcp
655/udp

656/tcp
656 /udp

657/tcp
657/udp

658/tcp
658/udp

659
660/tcp
660/udp

661/tcp
661/udp

662/tcp
662/udp

663/tcp
663/udp

664/tcp
664/udp

665/tcp
665/udp

666/tcp
666/udp
666/tcp
666/udp

667/tcp
667/udp

numbers

PSSC
Egon Meier-Engelen <egon.meier-engelen@dlr.de>
LDP
LDP
Bob Thomas <rhthomas@cisco.com>
DHCP Failover
DHCP Failover
Bernard Volz <volz@ipworks.com>
Registry Registrar Protocol (RRP)
Registry Registrar Protocol (RRP)
Scott Hollenbeck <shollenb@netsol.com>
Aminet
Aminet
Martin Toeller <mtoeller@adaptivemedia.com>
OBEX
OBEX
Jeff Garbers <FJG030@email.mot.com>
MMS
MMS
Curtis Anderson <canderson@turbolinux.com>
HELLO_PORT
HELLO_PORT
Patrick Cipiere <Patrick.Cipiere@UDcast.com>
RepCmd
RepCmd
Scott Dale <scott@tioga.com>
AODV
AODV
Charles Perkins <cperkins@eng.sun.com>
TINC
TINC
Ivo Timmermans <itimmermans@bigfoot.com>
SPMP
SPMP
Jakob Kaivo <jkaivo@nodomainname.net>
RMC
RMC
Michael Schmidt <mmaass@us.ibm.com>
TenFold
TenFold
Louis Olszyk <lolszyk@lOfold.com>
De-Registered (2001 June 06)
MacOS Server Admin
MacOS Server Admin
Forest Hill <forest@apple.com>
HAP
HAP
Igor Plotnikov <igor@uroam.com>
PFTP
PFTP
Ben Schluricke <pftp@star.trek.org>
PureNoise
PureNoise
Sam Osa <pristine@mailcity.com>
Secure Aux Bus
Secure Aux Bus
Steven Williams <steven.d.williams@intel.com>
Sun DR
Sun DR
Harinder Bhasin <Harinder.Bhasin@Sun.COM>

doom Id Software

doom Id Software

<ddt@idcube.idsoftware.com>

campaign contribution disclosures - SDR Technologies
campaign contribution disclosures - SDR Technologies

Page 26

861 abed ¢z wnipuadwo)

#

mecomm
mecomm
meregister
meregister
#
vacdsm-sws
vacdsm-sws
vacdsm-app
vacdsm-app
vpps-qua
vpps-qua
cimplex
cimplex

#

acap

acap

#

dctp

dctp

#

vpps-via 676/tcp
vpps-via 676/udp
#

vpp
vpp

#
ggf-ncp
ggf-ncp
#

mrm
mrm

#

entrust-aaas
entrust-aaas
entrust-aams
entrust-aams

#

xfr

xfr

#

corba-iiop
corba-iiop
corba-iiop-ssl
corba-iiop-ssl
#
mdc-portmapper
mdc-portmapper
#

hcp-wismar
hcp-wismar

#

asipregistry
asipregistry

realm-rusd
realm-rusd

#

nmap

nmap

#

vatp

vatp

#
msexch-routing
msexch-routing

#

Registered port

668/tcp
668/udp
669/tcp
669/udp

670/tcp
670/udp
671/tcp
671/udp
672/tcp
672/udp
673/tcp
673/udp

674/tcp
674 /udp

675/tcp
675/udp

VPPS
VPPS

677/tcp
677/udp

678/tcp
678/udp

679/tcp
679/udp

680/tcp
680/udp
681/tcp
681/udp

682/tcp
682/udp

683/tcp
683/udp
684 /tcp
684 /udp

685/tcp
685/udp

686/tcp
686/udp

687/tcp
687/udp

688/tcp
688/udp

689/tcp
689/udp

690/tcp
690/udp

691/tcp
691/udp

numbers

Jim Dixon
MeComm
MeComm
MeRegister
MeRegister
Armin Sawusch <armin@esdl.esd.de>
VACDSM-SWS

VACDSM-SWS

VACDSM-APP

VACDSM-APP

VPPS-QUA

VPPS-QUA

CIMPLEX

CIMPLEX

Ulysses G. Smith Jr. <ugsmith@cesi.com>
ACAP

ACAP

Chris Newman <Chris.Newman@innosoft.com>
DCTP

DCTP

Andre Kramer <Andre.Kramer@ansa.co.uk>

<jim@lambda.com>

Via
Via

Ulysses G. Smith Jr. <ugsmith@cesi.com>
Virtual Presence Protocol

Virtual Presence Protocol

Klaus Wolf <wolf@cobrow.com>

GNU Generation Foundation NCP

GNU Generation Foundation NCP

Noah Paul <noahp@altavista.net>

MRM

MRM

Liming Wei <lwei@cisco.com>
entrust-aaas

entrust-aaas

entrust-aams

entrust-aams

Adrian Mancini <adrian.mancini@entrust.com>
XFR

XFR

Noah Paul <noahp@ultranet.com>

CORBA IIOP

CORBA IIOP

CORBA IIOP SSL

CORBA IIOP SSL

Henry Lowe <lowe@omg.org>

MDC Port Mapper

MDC Port Mapper

Noah Paul <noahp@altavista.net>
Hardware Control Protocol Wismar
Hardware Control Protocol Wismar

David Merchant <d.f.merchant@livjm.ac.uk>
asipregistry

asipregistry

Erik Sea <sea@apple.com>

REALM-RUSD

REALM-RUSD

Jerry Knight <jknight@realminfo.com>
NMAP

NMAP

Peter Dennis Bartok <peter@novonyx.com>
VATP

VATP

Atica Software <comercial@aticasoft.es>
MS Exchange Routing

MS Exchange Routing

David Lemson <dlemson@microsoft.com>

Page 27

hyperwave-isp
hyperwave-isp

connendp 693/tcp
connendp 693/udp

#
ha-cluster
ha-cluster
#
ieee-mms-ssl
ieee-mms-ssl
#

rushd

rushd

#

uuidgen
uuidgen

#

olsr

olsr

#
accessnetwork
accessnetwork
#

#

elcsd

elcsd
agentx
agentx

#

silc

silc

#
borland-dsj
borland-dsj
#

#
entrust-kmsh
entrust-kmsh
entrust-ash
entrust-ash
#

cisco-tdp
cisco-tdp

#

#
netviewdml
netviewdml
netviewdm2
netviewdm2
netviewdm3
netviewdm3
#

#

netgw

netgw

#

netrcs
netrcs

#

#

flexlm
flexlm

#

#

#
fujitsu-dev

692/tcp

Hyperwave-ISP

692 /udp Hyperwave-ISP
Gerald Mesaric <gmesaric@hyperwave.com>
connendp
connendp
Ronny Bremer <rbremer@future-gate.com>
694/tcp ha-cluster
694 /udp ha-cluster
Alan Robertson <alanr@unix.sh>
695/tcp IEEE-MMS-SSL
695/udp IEEE-MMS-SSL
Curtis Anderson <ecanderson@turbolinux.com>
696/tcp RUSHD
696/udp RUSHD
Greg Ercolano <erco@netcom.com>
697/tcp UUIDGEN
697/udp UUIDGEN
James Falkner <jhf@eng.sun.com>
698/tcp OLSR
698/udp OLSR
Thomas Clausen <thomas.clausen@inria.fr>
699/tcp Access Network
699/udp Access Network
Yingchun Xu <Yingchun_Xu€@3com.com>
700-703 Unassigned
704/tcp errlog copy/server daemon
704 /udp errlog copy/server daemon
705/tcp AgentX
705/udp AgentX
Bob Natale <natale@acec.com>
706/tcp SILC
706/udp SILC
Pekka Riikonen <priikone@poseidon.pspt.fi>
707/tcp Borland DSJ
707 /udp Borland DSJ
Gerg Cole <gcolelcorp.borland.com>
708 Unassigned
709/tcp Entrust Key Management Service Handler
709/udp Entrust Key Management Service Handler
710/tcp Entrust Administration Service Handler
710/udp Entrust Administration Service Handler
Peter Whittaker <pww@entrust.com>
711/tcp Cisco TDP
711/udp Cisco TDP
Bruce Davie <bsd@cisco.com>
712-728 Unassigned
729/tcp IBM NetView DM/6000 Server/Client
729/udp IBM NetView DM/6000 Server/Client
730/tcp IBM NetView DM/6000 send/tcp
730/udp IBM NetView DM/6000 send/tcp
731/tcp IBM NetView DM/6000 receive/tcp
731/udp IBM NetView DM/6000 receive/tcp
Philippe Binet (phbinet@vnet.IBM.COM)
732-740 Unassigned
741/tcp netGwW
741/udp netGwW
Oliver Korfmacher (okorf@netcs.com)
742/tcp Network based Rev. Cont. Sys.
742/udp Network based Rev. Cont. Sys.
Gordon C. Galligher <gorpong@ping.chi.il.us>
743 Unassigned
744/tcp Flexible License Manager
744 /udp Flexible License Manager
Matt Christiano
<globes@matt@oliveb.atc.olivetti.com>
745-746 Unassigned
747/tcp Fujitsu Device Control

Registered port numbers

Page 28

651 9bed z wnipuadwo)

fujitsu-dev
ris-cm
ris-cm
kerberos-adm
kerberos-adm
rfile
loadav
kerberos-iv
#

pump

pump

grh

grh

rrh

rrh

tell

tell

#

#

nlogin
nlogin

con

con

ns

ns

rxe

rxe

quotad
quotad
cycleserv
cycleserv
omserv
omserv
webster
webster

#

#

phonebook
phonebook
#

#

vid

vid

cadlock
cadlock
rtip

rtip
cycleserv2
cycleserv2
submit
notify
rpasswd
acmaint_dbd
entomb
acmaint_transd
wpages
wpages

#
multiling-http
multiling-http
#

#

wpgs

wpgs

#

#

concert

Registered port

747/udp
748/tcp
748/udp
749/tcp
749/udp
750/tcp
750/udp
750/udp

751/tcp
751/udp
752/tcp
752 /udp
753/tcp
753/udp
754/tcp
754/udp

755-756
758/tcp
758/udp
759/tcp
759/udp
760/tcp
760/udp
761/tcp
761/udp
762/tcp
762/udp
763/tcp
763/udp
764/tcp
764/udp
765/tcp
765/udp

766
767/tcp
767/udp

768

769/tcp
769 /udp
770/tcp
770/udp
771/tcp
771/udp
772/tcp
772/udp
773/tcp
773/udp
774/tcp
774 /udp
775/tcp
775/udp
776/tcp
776/udp

777/tcp
777/udp

778-779
780/tcp
780/udp

781-785
786/tcp

numbers

Fujitsu Device Control

Russell Info Sci Calendar Manager
Russell Info Sci Calendar Manager
kerberos administration

kerberos administration

kerberos version iv
Martin Hamilton <martin@mrrl.lut.as.uk>

send

send

Josyula R. Rao <jrrao@watson.ibm.com>
Unassigned

Josyula R. Rao <jrrao@watson.ibm.com>
Unassigned

phone

phone

Josyula R. Rao <jrrao@watson.ibm.com>
Unassigned

Josyula R. Rao <jrrao@watson.ibm.com>
Multiling HTTP

Multiling HTTP

Alejandro Bonet <babel@ctv.es>
Unassigned

Josyula R. Rao <jrrao@watson.ibm.com>
Unassigned
Concert

Page 29

concert

#

gsc

gsc

#

#
mdbs_daemon
mdbs_daemon
device
device

#

fcp-udp
fcp-udp

#

#

itm-mcell-s
itm-mcell-s

#

pkix-3-ca-ra
pkix-3-ca-ra
#

#
dhcp-failover2
dhcp-failover?2
#

#

rsync

rsync

#

#
iclcnet-locate
iclcnet-locate
#
iclcnet_svinfo
iclcnet_svinfo
#
accessbuilder
accessbuilder
#

The following
cddbp

#

#

#
omginitialrefs
omginitialrefs
#

smpnameres
smpnameres

#
ideafarm-chat
ideafarm-chat
ideafarm-catch
ideafarm-catch
#

#

xact-backup
xact-backup

#

#

ftps-data
ftps-data

ftps

ftps

#

nas

nas

Registered port

786 /udp

787/tcp
787/udp

788-799
800/tcp
800/udp
801/tcp
801/udp
802-809
810/tcp
810/udp

811-827
828/tcp
828/udp

829/tcp
829/udp

830-846
847/tcp
847/udp

848-872
873/tcp
873/udp

874-885
886/tcp
886 /udp

887/tcp
887/udp

888/tcp
888/udp

Concert

Josyula R. Rao <jrrao@watson.ibm.com>
Qsc

QscC

James Furness <furn@bluenews.com>
Unassigned

Unassigned

FCP

FCP Datagram

Paul Whittemore <paul@softarc.com>
Unassigned

itm-mcell-s

itm-mcell-s

Miles O'Neal <meo@us.itmasters.com>
PKIX-3 CA/RA

PKIX-3 CA/RA

Carlisle Adams <Cadams@entrust.com>
Unassigned

dhcp-failover 2

dhcp-failover 2

Bernard Volz <volz@ipworks.com>
Unassigned

rsync

rsync

Andrew Tridgell <tridge@samba.anu.edu.au>
Unassigned

ICL coNETion locate server

ICL coNETion locate server

Bob Lyon <bl@oasis.icl.co.uk>

ICL coNETion server info

ICL coNETion server info

Bob Lyon <bl@oasis.icl.co.uk>
AccessBuilder

AccessBuilder

Steve Sweeney <Steven_ Sweeney@3mail.3com.com>

entry records an unassigned but widespread use

888/tcp

889-899
900/tcp
900/udp

901/tcp
901/udp

902/tcp
902/udp
903/tcp
903/udp

904-910
911/tcp
911/udp

912-988
989/tcp
989/udp
990/tcp
990/udp

991/tcp
991/udp

numbers

CD Database Protocol
Steve Scherf <steve@moonsoft.com>

Unassigned

OMG Initial Refs

OMG Initial Refs

Christian Callsen <Christian.Callsen@eng.sun.com>
SMPNAMERES

SMPNAMERES

Leif Ekblad <leif@rdos.net>
IDEAFARM-CHAT

IDEAFARM-CHAT

IDEAFARM-CATCH

IDEAFARM-CATCH

Wo'o Ideafarm <wo@ideafarm.com>
Unassigned

xact-backup

xact-backup

Bill Carroll <billc@xactlabs.com>
Unassigned

ftp protocol, data, over TLS/SSL
ftp protocol, data, over TLS/SSL
ftp protocol, control, over TLS/SSL
ftp protocol, control, over TLS/SSL
Christopher Allen <ChristopherA@consensus.com>
Netnews Administration System
Netnews Administration System

Page 30

09¥ abed ¢z wnipuadwo)

Vera Heinau <heinau@fu-berlin.de>

Heiko Schlichting <heiko@fu-berlin.de>
telnets 992/tcp telnet protocol over TLS/SSL

telnets 992 /udp telnet protocol over TLS/SSL

imaps 993/tcp imap4 protocol over TLS/SSL

imaps 993/udp imap4 protocol over TLS/SSL

ircs 994 /tcp irc protocol over TLS/SSL

ircs 994 /udp irc protocol over TLS/SSL

Christopher Allen <ChristopherA@consensus.com>
pop3s 995/tcp pop3 protocol over TLS/SSL (was spop3)
pop3s 995/udp pop3 protocol over TLS/SSL (was spop3)
Gordon Mangione <gordm@microsoft.com>
vsinet 996/tcp vsinet

vsinet 996/udp vsinet

Rob Juergens <robj@vsi.com>

maitrd 997/tcp

maitrd 997/udp

busboy 998/tcp

puparp 998/udp

garcon 999/tcp

applix 999/udp Applix ac

puprouter 999/tcp

puprouter 999/udp

cadlock21000/tcp
cadlock2 1000/udp

1001-1009 Unassigned
1008/udp Possibly used by Sun Solaris????
surf 1010/tcp surf
surf 1010/udp surf
Joseph Geer <jgeer@peapod.com>
1011-1022 Reserved
1023/tcp Reserved
1023/udp Reserved
IANA <iana@iana.org>
REGISTERED PORT NUMBERS
The Registered Ports are listed by the IANA and on most systems can be
used by ordinary user processes or programs executed by ordinary
users.

Ports are used in the TCP [RFC793] to name the ends of logical
connections which carry long term conversations. For the purpose of
providing services to unknown callers, a service contact port is
defined. This list specifies the port used by the server process as
its contact port.

The IANA registers uses of these ports as a convenience to the
community.

To the extent possible, these same port assignments are used with the
UDP [RFC768].

The Registered Ports are in the range 1024-49151.

The rest of this document is omitted. The full text can be found at
http://www.iana.org/assignments/port-numbers.

Registered port numbers

Page 31

T91 abed z wnipuadwo)

MEDIA TYPES

(last updated 2001 August 23)

[RFC2045,RFC2046] specifies that Content Types, Content Subtypes, Character

Sets, Access Types, and conversion values for MIME mail will be

assigned and listed by the IANA.

Content Types and Subtypes

Type

text

multipart

message

Media types

plain
richtext
enriched

tab-separated-values

html

sgml
vnd.latex-z
vnd.fmi.flexstor
uri-list
vnd.abc
rfc822-headers
vnd.in3d.3dml
prs.lines.tag
vnd.in3d.spot
css

xml

xml-external-parsed-entity

rtf

directory

calendar
vnd.wap.wml
vnd.wap.wmlscript
vnd.motorola.reflex
vnd. fly

vnd.wap.sl
vnd.wap.si

t140
vnd.ms-mediapackage
vnd.IPTC.NewsML
vnd.IPTC.NITF
vnd.curl
vnd.DMClientScript
parityfec

mixed
alternative
digest
parallel
appledouble
header-set
form-data
related
report
voice-message
signed
encrypted
byteranges

rfc822

Reference
[RFC2646,RFC2046]
[RFC2045,RFC2046]

[RFC1896]

[Paul Lindner]
[RFC2854]
[RFC1874]

[Lubos]

[Hurtta]

[RFC2483]

[Allen]

[RFC1892]
[Powers]
[Lines]

[Powers]

[RFC2318]

[RFC3023]

[RFC3023]

[Lindner]
[RFC2425]
[RFC2445]

[Stark]
[Stark]
[Patton]
[Gurney]
[WAP-Forum]
[WAP-Forum]

[RFC2793]

[Nelson]

[IPTC]
[IPTC]

[Hodge]
[Bradley]
[RFC3009]

[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]

[MacMime,Patrik Faltstrom]

[Dave Crocker]
[RFC2388]
[RFC2387]
[RFC1892]
[RFC2421,RFC2423]
[RFC1847]
[RFC1847]
[RFC2068]

[RFC2045,RFC2046]

Page 1

application

Media types

partial [RFC2045,RFC2046]
external-body [RFC2045,RFC2046]

news [RFC 1036, Henry Spencer]
http [RFC2616]
delivery-status [RFC1894]
disposition-notification [RFC2298]
s-http [RFC2660]

octet-stream [RFC2045,RFC2046]
postscript [RFC2045,RFC2046]
oda [RFC2045,RFC2046]

atomicmail [atomicmail,Borenstein]
andrew-inset [andrew-inset,Borenstein]
slate [slate,terry crowley]
wita [Wang Info Transfer,Larry Campbell]
dec-dx [Digital Doc Trans, Larry Campbell]
dca-rft [IBM Doc Content Arch, Larry Campbell]
activemessage [Ehud Shapiro]
rtf [Paul Lindner]
applefile [MacMime,Patrik Faltstrom]

mac-binhex40
news-message-id
news-transmission

[MacMime,Patrik Faltstrom]
[RFC1036, Henry Spencer]
[RFC1036, Henry Spencer]

wordperfect5.1 [Paul Lindner]
pdf [Paul Lindner]
zip [Paul Lindner]
macwriteii [Paul Lindner]
msword [Paul Lindner]
remote-printing [RFC1486,Rose]
mathematica [Van Nostern]
cybercash [Eastlake]
commonground [Glazer]
iges [Parks]
riscos [Smith]
eshop [Katz]
x400-bp [RFC1494]
sgml [RFC1874]
cals-1840 [RFC1895]
pgp-encrypted [RFC3156]
pgp-signature [RFC3156]
pgp-keys [RFC3156]
vnd. framemaker [Wexler]
vnd.mif [Wexler]
vnd.ms-excel [Gill]
vnd.ms-powerpoint [Gill]
vnd.ms-project [Gill]
vnd.ms-works [Gill]
vnd.ms-tnef [Gill]
vnd.svd [Becker]
vnd.music-niff [Butler]
vnd.ms-artgalry [Slawson]
vnd.truedoc [Chase]
vnd.koan [Cole]
vnd.street-stream [Levitt]
vnd. fdf [Zilles]
set-payment-initiation [Korver]
set-payment [Korver]
set-registration-initiation [Korver]
set-registration [Korver]
vnd.seemail [Webb]
vnd.businessobjects [Imoucha]
vnd.meridian-slingshot [Wedel]
vnd.xara [Matthewman]
sgml-open-catalog [Grosso]
vnd.rapid [Szekely]
vnd.enliven [Santinelli]
vnd. japannet-registration-wakeup [Fujii]

Page 2

29t abed z wnipuadwo)

Media types

vnd. japannet-verification-wakeup [Fujii]
vnd. japannet-payment-wakeup [Fujii]
vnd. japannet-directory-service [Fujii]
vnd.intertrust.digibox [Tomasello]
vnd.intertrust.nncp [Tomasello]
prs.alvestrand.titrax-sheet [Alvestrand]
vnd.noblenet-web [Solomon]
vnd.noblenet-sealer [Solomon]
vnd.noblenet-directory [Solomon]
prs.nprend [Doggett]
vnd.webturbo [Rehem]
hyperstudio [Domino]
vnd.shana.informed. formtemplate [Selzler]
vnd.shana.informed.formdata [Selzler]
vnd.shana.informed.package [Selzler]
vnd.shana.informed.interchange [Selzler]
vnd. $commerce_battelle [Applebaum]
vnd.osa.netdeploy [Klos]
vnd.ibm.MiniPay [Herzberg]
vnd. japannet-jpnstore-wakeup [Yoshitake]
vnd. japannet-setstore-wakeup [Yoshitake]
vnd. japannet-verification [Yoshitake]
vnd.japannet-registration [Yoshitake]
vnd.hp-HPGL [Pentecost]
vnd.hp-PCL [Pentecost]
vnd.hp-PCLXL [Pentecost]
vnd.musician [Adams]
vnd.FloGraphIt [Floersch]
vnd.intercon.formnet [Gurak]
vemmi [RFC2122]
vnd.ms-asf [Fleischman]
vnd.ecdis-update [Buettgenbach]
vnd.powerbuilder6 [Guy]
vnd.powerbuilder6-s [Guy]
vnd.lotus-wordpro [Wattenberger]
vnd.lotus-approach [Wattenberger]
vnd.lotus-1-2-3 [Wattenberger]
vnd.lotus-organizer [Wattenberger]
vnd.lotus-screencam [Wattenberger]
vnd.lotus-freelance [Wattenberger]
vnd.fujitsu.oasys [Togashi]
vnd.fujitsu.oasys2 [Togashi]
vnd.swiftview-ics [Widener]
vnd.dna [Searcy]
prs.cww [Rungchavalnont]
vnd.wt.stf [Wohler]
vnd.dxr [Duffy]
vnd.mitsubishi.misty-guard.trustweb [Tanaka]
vnd.ibm.modcap [Hohensee]
vnd.acucobol [Lubin]
vnd.fujitsu.oasys3 [Okudaira]
marc [RFC2220]
vnd.fujitsu.oasysprs [Ogita]
vnd.fujitsu.oasysgp [Sugimoto]
vnd.visio [Sandal]
vnd.netfpx [Mutz]
vnd.audiograph [Slusanschi]
vnd.epson.salt [Nagatomo]
vnd.3M.Post-it-Notes [O'Brien]
vnd.novadigm.EDX [Swenson]
vnd.novadigm.EXT [Swenson]
vnd.novadigm.EDM [Swenson]
vnd.claymore [Simpson]
vnd.comsocaller [Dellutri]
pkcs7-mime [RFC2311]
pkcs7-signature [RFC2311]
pkcsl0 [RFC2311]

Page 3

Media types

vnd.yellowriver-custom-menu [Yellow]
vnd.ecowin.chart [Olsson]
vnd.ecowin.series [Olsson]
vnd.ecowin.filerequest [Olsson]
vnd.ecowin.fileupdate [Olsson]
vnd.ecowin.seriesrequest [Olsson]
vnd.ecowin.seriesupdate [Olsson]
EDIFACT [RFC1767]
EDI-X12 [RFC1767]
EDI-Consent [RFC1767]
vnd.wrg-hp3000-labelled [Bartram]
vnd.minisoft-hp3000-save [Bartram]
vnd.ffsns [Holstage]
vnd.hp-hps [Aubrey]
vnd. fujixerox.docuworks [Taguchi]
xml [RFC3023]
xml-external-parsed-entity [RFC3023]
xml-dtd [RFC3023]
vnd.anser-web-funds-transfer-initiation [Mori]
vnd.anser-web-certificate-issue-initiation [Mori]
vnd.is-xpr [Natarajan]
vnd.intu.gbo [Scratchley]
vnd.publishare-delta-tree [Ben-Kiki]
vnd.cybank [Helmee]
batch-SMTP [RFC2442]
vnd.uplanet.alert [Martin]
vnd.uplanet.cacheop [Martin]
vnd.uplanet.list [Martin]
vnd.uplanet.listcmd [Martin]
vnd.uplanet.channel [Martin]
vnd.uplanet.bearer-choice [Martin]
vnd.uplanet.signal [Martin]
vnd.uplanet.alert-wbxml [Martin]
vnd.uplanet.cacheop-wbxml [Martin]
vnd.uplanet.list-wbxml [Martin]
vnd.uplanet.listcmd-wbxml [Martin]
vnd.uplanet.channel-wbxml [Martin]
vnd.uplanet.bearer-choice-wbxml [Martin]
vnd.epson.quickanime [Gu]
vnd.commonspace [Chandhok]
vnd. fut-misnet [Pruulmann]
vnd.xfdl [Manning]
vnd.intu.qfx [Scratchley]
vnd.epson.ssf [Hoshina]
vnd.epson.msf [Hoshina]
vnd.powerbuilder?7 [Shilts]
vnd.powerbuilder7-s [Shilts]
vnd.lotus-notes [Laramie]
pkixcmp [RFC2510]
vnd.wap.wmlc [Stark]
vnd.wap.wmlscriptc [Stark]
vnd.motorola.flexsuite [Patton]
vnd.wap.wbxml [Stark]
vnd.motorola.flexsuite.wem [Patton]
vnd.motorola.flexsuite.kmr [Patton]
vnd.motorola.flexsuite.adsi [Patton]
vnd.motorola.flexsuite.fis [Patton]
vnd.motorola.flexsuite.gotap [Patton]
vnd.motorola.flexsuite.ttc [Patton]
vnd.ufdl [Manning]
vnd.accpac.simply.imp [Leow]
vnd.accpac.simply.aso [Leow]
vnd.vex [T.Sugimoto]
ipp [RFC2910]
ocsp-request [RFC2560]
ocsp-response [RFC2560]
vnd.previewsystems.box [Smolgovsky]

Page 4

9y abed ¢z wnipuadwo)

Media types

vnd.mediastation.cdkey
vnd.pg.format
vnd.pg.osasli
vnd.hp-hpid
pkix-cert

pkix-crl
vnd.Mobius.TXF
vnd.Mobius.PLC
vnd.Mobius.DIS
vnd.Mobius.DAF
vnd.Mobius.MSL
vnd.cups-raster
vnd.cups-postscript
vnd.cups-raw

index

index.cmd
index.response
index.obj

index.vnd
vnd.triscape.mxs
vnd.powerbuilder75
vnd.powerbuilder75-s
vnd.dpgraph

http

sdp

vnd.eudora.data

vnd. fujixerox.docuworks.binder

vnd.vectorworks
vnd.grafeq

vnd.bmi
vnd.ericsson.quickcall
vnd.hzn-3d-crossword
vnd.wap.slc
vnd.wap.sic
vnd.groove-injector
vnd.fujixerox.ddd
vnd.groove-account

vnd.groove-identity-message

vnd.groove-tool-message
vnd.groove-tool-template
vnd.groove-vcard
vnd.ctc-posml
vnd.canon-lips
vnd.canon-cpdl
vnd.trueapp

vnd.s3sms

iotp

vnd.mcd

vnd.httphone
vnd.informix-visionary
vnd.msign

vnd.ms-1lrm
vnd.contact.cmsg
vnd.epson.esf
whoispp-query
whoispp-response
vnd.mozilla.xul+xml
parityfec

vnd.palm

vnd. fsc.weblaunch
vnd.tve-trigger

dvcs

sieve
vnd.vividence.scriptfile
vnd.hhe.lesson-player
beep+xml

font-tdpfr

[Flurry]
[Gandert]
[Gandert]

[Gupta]
[RFC2585]
[RFC2585]
[Kabayama]
[Kabayama]
[Kabayama]
[Kabayama]
[Kabayama]

[Sweet]

[Sweet]

[Sweet]
[RFC2652]
[RFC2652]
[RFC2652]
[RFC2652]
[RFC2652]

[Simonoff]

[Shilts]

[Shilts]

[Parker]
[RFC2616]
[RFC2327]

[Resnick]
[Matsumoto]

[Pharr]
[Tupper]

[Gotoh]

[Tidwell]
[Minnis]
[WAP-Forum]
[WAP-Forum]
[Joseph]
[Onda]
[Joseph]
[Joseph]
[Joseph]
[Joseph]
[Joseph]
[Kohlhepp]
[Muto]
[Muto]
[Hepler]
[Tarkkala]
[RFC2935]
[Gotoh]
[Lefevre]
[Gales]
[Borcherding]
[Ledoux]
[Patz]
[Hoshina]
[RFC2957]
[RFC2958]
[McDaniel]
[RFC3009]
[Peacock]
[D.Smith]
[Welsh]
[RFC3029]
[RFC3028]
[Risher]
[Jones]
[RFC3080]
[RFC3073]

Page 5

image

audio

video

Media types

vnd.mseq

vnd.aether.imp
vnd.Mobius.MQY
vnd.Mobius.MBK
vnd.vidsoft.vidconference
vnd.ibm.afplinedata
vnd.irepository.package+xml
vnd.sss-ntf

vnd.sss-dtf

vnd.sss-cod

vnd.pvi.ptidl

isup

gsig

timestamp-query
timestamp-reply

[Le Bodic]
[Moskowitz]
[Devasia]
[Devasia]
[Hess]
[Buis]
[Knowles]
[Bruno]
[Bruno]
[Dani]
[Lamb]
[RFCISUP]
[RFCISUP]
[RFC3161]
[RFC3161]

jpeg [RFC2045,RFC2046]
gif [RFC2045,RFC2046]
ief Image Exchange Format [RFC1314]
g3fax [RFC1494]
tiff Tag Image File Format [RFC2302]
cgm Computer Graphics Metafile [Francis]
naplps [Ferber]
vnd.dwg [Moline]
vnd.svf [Moline]
vnd.dxf [Moline]
png [Randers-Pehrson]
vnd. fpx [Spencer]
vnd.net-£fpx [Spencer]
vnd.xiff [SMartin]

prs.btif [Simon]

vnd.fastbidsheet [Becker]

vnd.wap.wbmp [Stark]
prs.pti [Laun]
vnd.cns.inf2 [McLaughlin]
vnd.mix [Reddy]
vnd.fujixerox.edmics-rlc [Onda]
vnd.fujixerox.edmics-mmr [Onda]
vnd.fst [Fuldseth]

basic

32kadpcm

vnd.gcelp
vnd.digital-winds
vnd.lucent.voice
vnd.octel.sbc
vnd.rhetorex.32kadpcm
vnd.vmx.cvsd
vnd.nortel.vbk
vnd.cns.anpl
vnd.cns.infl

L16

vnd.everad.plj
telephone-event
tone

prs.sid
vnd.nuera.ecelp4800
vnd.nuera.ecelp7470
mpeg

parityfec

MP4A-LATM
vnd.nuera.ecelp9600
G.722.1

mpa-robust
vnd.cisco.nse

mpeg

[RFC2045,RFC2046]
[RFC2421,RFC2422]
[Lundblade]
[Strazds]
[Vaudreuil]
[Vaudreuil]
[Vaudreuil]
[Vaudreuil]
[Parsons]
[McLaughlin]
[McLaughlin]
[RFC2586]
[Cicelsky]
[RFC2833]
[RFC2833]
[Walleij]
[Fox]
[Fox]
[RFC3003]
[RFC3009]
[RFC3016]
[Fox]
[RFC3047]
[RFC3119]
[Kumar]

[RFC2045,RFC2046]

Page 6

quicktime

[Paul Lindner]

vnd.vivo [Wolfe]
vnd.motorola.video [McGinty]
vnd.motorola.videop [McGinty]
vnd. fvt [Fuldseth]
pointer [RFC2862]
parityfec [RFC3009]
vnd.mpegurl [Recktenwald]
MP4V-ES [RFC3016]
vnd.nokia.interleaved-multimedia [Kangaslampi]
model [RFC2077]
iges [Parks]
vrml [RFC2077]
mesh [RFC2077]
vnd.dwf [Pratt]
vnd.gtw [Ozaki]
vnd.flatland.3dml [Powers]
vnd.vtu [Rabinovitch]
vnd.mts [Rabinovitch]
vnd.gdl [Babits]
vnd.gs-gdl [Babits]
vnd.parasolid.transmit.text [Dearnaley,Juckes]
vnd.parasolid.transmit.binary [Dearnaley,Juckes]
The "media-types" directory contains a subdirectory for each content

(@) type and each of those directories contains a file for each content

% subtype.

}% | -application-

-]

Q

5

N

e

QD

%g URL = ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

IS

(o3}

N Character Sets

All of the character sets listed the section on Character Sets are
registered for use with MIME as MIME Character Sets. The
correspondance between the few character sets listed in the MIME
specifications [RFC2045,RFC2046] and the list in that section are:

Type Description Reference
US-ASCII see ANSI_X3.4-1968 below [RFC2045,RFC2046]
IS0-8859-1 see ISO_8859-1:1987 below [RFC2045,RFC2046]
IS0-8859-2 see ISO 8859-2:1987 below [RFC2045,RFC2046]
IS0-8859-3 see ISO _8859-3:1988 below [RFC2045,RFC2046]
IS0-8859-4 see ISO 8859-4:1988 below [RFC2045,RFC2046]
I50-8859-5 see ISO_8859-5:1988 below [RFC2045,RFC2046]
IS0-8859-6 see ISO_8859-6:1987 below [RFC2045,RFC2046]
IS0-8859-7 see ISO_8859-7:1987 below [RFC2045,RFC2046]
IS0-8859-8 see ISO_8859-8:1988 below [RFC2045,RFC2046]
IS0-8859-9 see ISO 8859-9:1989 below [RFC2045,RFC2046]
Access Types

Type Description Reference

Media types

FTP
ANON-FTP
TFTP

AFS
LOCAL-FILE
MAIL-SERVER
content-id

Conversion Values

[RFC2045,RFC2046]

[RFC2045,RFC2046]

Conversion values or Content Transfer Encodings.

Type
7BIT
8BIT
BASE

Description

64

BINARY

QUOT

MIME

MIME

X.40

Medi

ED-PRINTABLE

/ X.400 MAPPING TABLES
to X.400 Table

MIME content-type

text/plain
charset=us-ascii
charset=is0-8859-x

text/richtext

application/oda

application/octet-stream

application/postscript

image/g3fax

image/jpeg

image/gif

audio/basic

video/mpeg

X.400 Body Part

ia5-text

EBP - GeneralText
no mapping defined
EBP - ODA

[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]

[RFC1873]

Reference
[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]
[RFC2045,RFC2046]

Reference

[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]

bilaterally-defined

EBP - mime-postscript-body
g3-facsimile

EBP - mime-jpeg-body

EBP - mime-gif-body

no mapping defined

no mapping defined

Abbreviation: EBP - Extended Body Part

0 to MIME Table

X.400 Basic Body Part
ia5-text

voice

g3-facsimile
g4-classl

teletex

videotex

encrypted
bilaterally-defined
nationally-defined
externally-defined

X.400 Extended Body Part

GeneralText

a types

Basic Body Parts

MIME content-type

[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494)

Reference

text/plain;charset=us-ascii [RFC1494]

No Mapping Defined
image/g3fax

no mapping defined

no mapping defined

no mapping defined

no mapping defined
application/octet-stream
no mapping defined

See Extended Body Parts

MIME content-type

[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]
[RFC1494]

Reference

text/plain;charset=is0-8859-x[RFC1494]

Page 8

Go{ abed ¢z wnipuadwo)

ODA application/oda [RFC1494]
mime-postscript-body application/postscript [RFC1494]
mime-jpeg-body image/jpeg [RFC1494]
mime-gif-body image/gif [RFC1494]

REFERENCES
[MacMime] Work in Progress.

[RFC1036] Horton, M., and R. Adams, "Standard for Interchange of
USENET Messages", RFC 1036, AT&T Bell Laboratories,
Center for Seismic Studies, December 1987.

[RFC1494] Alvestrand, H., and S. Thompson, "Equivalences between 1988
X.400 and RFC-822 Message Bodies", RFC 1494, SINTEF DELAB,
Soft*Switch, Inc., August 1993.

[RFC1563] Borenstien, N., "The text/enriched MIME content-type". RFC
1563, Bellcore, January 1994.

[RFC1767] Crocker, D., "MIME Encapsulation of EDI Objects". RFC 1767,
Brandenburg Consulting, March 1995.

[RFC1866] Berners-Lee, T., and D. Connolly, "Hypertext Markup Language
- 2.0", RFC 1866, MIT/W3C, November 1995.

[RFC1873] Levinson, E., "Message/External-Body Content-ID Access
Type", RFC 1873, Accurate Information Systems, Inc. December
1995.

[RFC1874] Levinson, E., "SGML Media Types", RFC 1874, Accurate

Information Systems, Inc. December 1995.

[RFC1892] Vaudreuil, G., "The Multipart/Report Content Type for the
Reporting of Mail System Administrative Messages", RFC 1892,
Octel Network Services, January 1996.

[RFC1894] Moore, K. and G. Vaudreuil, "An Extensible Message Format
for Delivery Status Notifications", RFC 1894, University of
Tennessee, Octel Network Services, January 1996.

[RFC1895] Levinson, E., "The Application/CALS-1840 Content Type", RFC
1895, Accurate Information Systems, February 1996.

[RFC1896] Resnick, P., and A. Walker, "The Text/Enriched MIME Content
Type", RFC 1896, Qualcomm, Intercon, February 1996.

[RFC1945] Berners-Lee, Y., R. Feilding, and H.Frystyk, "Hypertext
Transfer Protocol -- HTTP/1.0", RFC 1945. MIT/LCS, UC
Irvine, MIT/LCS, May 1996.

[RFC2045] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.

[RFC2046] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046, November
1996.

[RFC2077] Nelson, S., C. Parks, and Mitra, "The Model Primary Content
Type for Multipurpose Internet Mail Extensions", RFC 2077,
LLNL, NIST, WorldMaker, January 1997.

[RFC2122] Mavrakis, D., Layec, H., and K. Kartmann, "VEMMI URL

Specification", RFC 2122, Monaco Telematique MC-TEL,
ETSI, Telecommunication+Multimedia, March 1997.

Media types

Page 9

[RFC2220]

[RFC2298]

[RFC2302]

[RFC2311]

[RFC2318]

[RFC2327]

[RFC2387]

[RFC2388]

[RFC2421]

[RFC2422]

[RFC2423]

[RFC2425]

[RFC2442]

[RFC2445]

[RFC2483]

[RFC2510]

[RFC2560]

[RFC2585]

[RFC2586]

[RFC2616]

[RFC2652]

Guenther, R., "The Application/MARC Content-type", RFC 2220,
Library of Congress, Network Devt. & MARC Standards Office,
October 1997.

Fajman, R., "An Extensible Message Format for Message
Disposition Notifications", RFC 2298, March 1998.

Parsons, G., et. al., "Tag Image File Format (TIFF) -
image/tiff", RFC 2302, March 1998.

Dusse, S., et. al., "S/MIME Version 2 Message Specification,
RFC 2311, March 1998.

Lie, H., Bos, B., and C. Lilley, "The text/css Media Type",
RFC 2318, March 1998.

Handley, M., and V. Jacobson, "SDP: Session Description
Protocol", RFC 2327, April 1999.

Levinson, E., "The MIME Multipart/Related Content-type", RFC
2387, XIson Inc, August 1998.

Masinter, L., "Form-based File Upload in HTML",
RFC 2388, Xerox Corporation, August 1998.

Vaudreuil, G., and G. Parsons, "Voice Profile for Internet
Mail - version 2", RFC 2421, September 1998.

Vaudreuil, G., and G. Parsons, "Toll Quality Voice - 32
kbit/s ADPCM MIME Sub-type Registration", RFC 2422,
September 1998.

Vaudreuil, G., and G. Parsons, "VPIM Voice Message MIME
Sub-type Registration", RFC 2423, September 1998.

Howes, T., Smith, M., and F. Dawson, "A MIME Content-Type
for Directory Information", RFC 2425, September 1998.

Freed, N., Newman, D., Belissent, J. and M. Hoy, "The
Batch SMTP Media Type", RFC 2442, November 1998.

Dawson, F., and D. Stenerson, "Internet Calendaring and
Scheduling Core Object Specification (iCalendar)", RFC 2445,
November 1998.

M. Mealling and R. Daniel, "URI resolution services
necessary for URN resolution", RFC 2483, January 1999.

Adams, C., and S. Farrell, "Internet X.509 Public Key
Infrastructure Certificate Management Protocols", RFC 2510,
March 1999.

Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
Adams, "X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP", RFC 2560, June 1999.

Housley, R. and P. Hoffman, "Internet X.509 Public Key
Infrastructure Operational Protocols: FTP and HTTP",

RFC 2585, May 1999.

Salsman, J and H. Alvestrand, "The Audio/L16 MIME content
type", RFC 2586, May 1999.

Fielding, R., et. al., "Hypertext Transfer Protocol --
HTTP/1.1", RFC 2616, June 1999.

Allen, J., and M. Mealling, "MIME Object Definitions for the

Media types Page

10

99¥ abed ¢z wnipuadwo)

[RFC2793]

[RFC2833]

[RFC2854]

[RFC2862]

[RFC2910]

[RFC2935]

[RFC3003]

[RFC3009]

[RFC3016]

[RFC3023]

[RFC3028]

[RFC3029]

[RFC3047]

[RFC3073]

[RFC3080]

[RFC3119]

[RFCISUP]

[RFC3156]

[RFC3161]

Media types

Common Indexing Protocol (CIP)", RFC 2652, August 1999.

Hellstrom, G., "RTP Payload for Text Conversation", RFC
2793, May 2000.

Schulzrinne, H., "RTP Payload for DTMF Digits, Telephony
Tones and Telephony Signals", RFC 2833, May 2000.

Connolly, D., and L. Masinter, "The 'text/html' Media Type",
RFC 2854, June 2000.

Civanlar, M., and G. Cash, "RTP Payload Format for Real-Time
Pointers", RFC 2862, June 2000.

Herriot, R., Editor, Butler, S., Moore, P., Turner, R. and
J. Wenn, "Internet Printing Protocol/1.0: Encoding and
Transport", RFC 2910, September 2000.

Eastlake, D. and C. Smith, "Internet Open Trading Protocol
(IOTP) HTTP Supplement"”, RFC 2935, September 2000.

M. Nilsson, "The audio/mpeg Media Type", RFC 3003,
November 2000.

J.Rosenberg and H.Schulzrinne, "Registration of parityfec
MIME types", RFC 3009, November 2000.

Kikuchi, Y., T. Nomura, S. Fukunaga, Y. Matsui, and
H. Kimata, "RTP payload format for MPEG-4 Audio/Visual
streams", RFC 3016, November 2000.

M. Murata, S. St.Laurent, and D. Kohn, "XML Media Types",
RFC 3023, January 2001.

T. Showalter, "Sieve: A Mail Filtering Language",
RFC 3028, January 2001.

Adams,C. , P. Sylvester, M. Zolotarev, and R. Zuccherato,
"Internet X.509 Public Key Infrastructure Data Validation and
Certification Server Protocols", RFC 3029, January 2001.

Luthi, P. "RTP Payload Format for ITU-T Recommendation
G.772.1", RFC 3047, January 2001.

Collins, J., "Portable Font Resource (PFR) -
application/font-tdpfr MIME Sub-type Registration",
RFC 3073, February 2001.

Rose, M., "The Blocks Extensible Exchange Protocol Core",
RFC 3080, February 2001.

R. Finlayson, "A More Loss-Tolerant RTP Payload Format
for MP3 Audio", RFC 3119, June 2001.

E. Zimmerer, J. Peterson, A. Vemuri, L. Ong, F. Audet,
M. Watson, and M. Zonoun, "MIME media types for ISUP and
QSIG Objects", RFC XXXX, Month Year.

M. Elkins, D. Del Torto, R. Levien, and T. Roessler,
"MIME Security with OpenPGP", RFC 3156, August 2001.

C. Adams, P. Cain, D. Pinkas, and R. Zuccherato,

"Internet X.509 Public Key Infrastructure Time Stamp
Protocol (TSP)", RFC 3161, August 2001.

Page 11

PEOPLE

[Adams] Greg Adams <gadams@waynesworld.ucsd.edu>, March 1997.
[Allen] Steve Allen <sla@ucolick.org>, September 1997.

[Alvestrand] Harald T. Alvestrand <Harald.T.Alvestrand@uninett.no>,
January 1997.

[Applebaum] David Applebaum, <applebau@battelle.org>, February 1997.
[Aubrey] Steve Aubrey, <steve_aubrey@hp.com>, July 1998.

[Babits] Attila Babits, <ababits@graphisoft.hu>, April 2000, May 2000.
[Bartram] Chris Bartram, <RCB@3k.com>, May 1998.

[Becker] Scott Becker, <scottb@bxwa.com>, April 1996, October 1998.
[Ben-Kiki] Oren Ben-Kiki, <oren@capella.co.il>, October 1998.
[Berners-Lee] Tim Berners-Lee, <timbl@w3.org>, May 1996.

[Borcherding] Malte Borcherding, <Malte.Borcherding@brokat.com>,
August 2000.

[Borenstein] Nathaniel Borenstein, <NSB@bellcore.com>, April 1994.
[Bradley] Dan Bradley, <dan@dantom.com>, October 2000.

[Bruno] Eric Bruno, <ebruno@solution-soft.com>, June 2001.
[Buettgenbach] Gert Buettgenbach, <bue@sevencs.com>, May 1997.
[Buis] Roger Buis, <buis@us.ibm.com>, March 2001.

[Butler] Tim Butler, <tim@its.bldrdoc.gov>, April 1996.

[Larry Campbell]

[Chandhok] Ravinder Chandhok, <chandhok@within.com>, December 1998.
[Chase] Brad Chase, <brad chase@bitstream.com>, May 1996.
[Cicelsky] Shay Cicelsky, <shayc@everad.com>, May 2000.

[Cole] Pete Cole, <pcole@sseyod.demon.co.uk>, June 1996.

[Dave Crocker] Dave Crocker <dcrocker@mordor.stanford.edu>

[Terry Crowley]

[Dani] Asang Dani, <adani@solution-soft.com>, June 2001.

[Daniel] Ron Daniel, Jr. <rdaniel@lanl.gov>, June 1997.

[Dearnaley] Roger Dearnaley, <x dearna@ugsolutions.com>, October 2000.
[Dellutri] Steve Dellutri, <sdellutri@cosmocom.com>, March 1998.
[Devasia] Alex Devasia, <adevasia@mobius.com>, March 2001.

[Doggett] Jay Doggett, <jdoggett@tiac.net>, February 1997.

[Domino] Michael Domino, <michaeldomino@mediaone.net>, February 1997.

Media types

Page 12

/91 abed z wnipuadwo)

[Duffy] Michael Duffy, <miked@psiaustin.com>, September 1997.

[Eastlake] Donald E. Eastlake 3rd, <Donald.Eastlake@motorola.com>, April
May 2000.

[Faltstrom] Patrik Faltstrom <paf@nada.kth.se>

[Fleischman] Eric Fleischman <ericfl@MICROSOFT.com>, April 1997.
[Floersch] Dick Floersch <floersch@echo.sound.net>, March 1997.
[Flurry] Henry Flurry <henryf@mediastation.com>, April 1999.
[Fox] Michael Fox, <mfox@nuera.com>, August 2000, January 2001.
[Francis] Alan Francis, A.H.Francis@open.ac.uk, December 1995.
[Fujii] Kiyofusa Fujii <kfujii@japannet.or.jp>, February 1997.
[Fuldseth] Arild Fuldseth, <Arild.Fuldseth@fast.no>, June 2000.

[Gales] Christopher Gales, <christopher.gales@informix.com>,
August 2000.

[Gandert] April Gandert <gandert.am@pg.com>, April 1999.
[Gill] Sukvinder S. Gill, <sukvg@microsoft.com>, April 1996.
[Glazer] David Glazer, <dglazer@best.com>, April 1995.

[Gotoh] Tadashi Gotoh, <tgotoh@cadamsystems.co.jp>, February 2000,
June 2000.

[Gu] Yu Gu, <guyu@rd.oda.epson.co.jp>, December 1998.

[Gupta] Aloke Gupta <Aloke_Gupta@ex.cv.hp.com>, April 1999.

[Gurak] Tom Gurak, <assoc@intercon.roc.servtech.com>, March 1997.
[Gurney] John-Mark Gurney <jmg@flyidea.com>, August 1999.

[Guy] David Guy, <dguy@powersoft.com>, June 1997.

[Helmee] Nor Helmee, <helmeel@my.cybank.net>, November 1998.

[Hepler] J. Scott Hepler, <scott@truebasic.com>, May 2000.
[Herzberg] Amir Herzberg, <amirh@haifa.vnet.ibm.com>, February 1997.
[Hess] Robert Hess, <hess@vidsoft.de>, March 2001.

[Hodge] Tim Hodge, <thodge@curl.com>, August 2000.

[Hohensee] Reinhard Hohensee <rhohensee@VNET.IBM.COM>, September 1997.
[Holstage] Mary Holstage <holstege@firstfloor.com>, May 1998.

[Hoshina] Shoji Hoshina <Hoshina.Shoji@exc.epson.co.jp>, January 1999,
September 2000.

[Hurtta] Kari E. Hurtta <flexstor@ozone.FMI.FI>
[Imoucha] Philippe Imoucha <pimoucha@businessobjects.com>, October 1996.

[IPTC] International Press Telecommunications Council (David Allen),
<m_director_ iptc@dial.pipex.com>, July 2000.

Media types

1995,

Page 13

[Jones] Randy Jones, <randy_ jones@archipelago.com>, January 2001.

[Joseph] Todd Joseph <todd_joseph@groove.net>, February 2000, March 2000,
April 2000.

[Juckes] John Juckes, <johnj@ugsolutions.com>, October 2000.

[Kangaslampi] Petteri Kangaslampi, <petteri.kangaslampi@nokia.com>,
March 2001.

[Katz] Steve Katz, <skatz@eshop.com>, June 1995.

[Klos] Steven Klos, <stevek@osa.com>, February 1997.

[Knowles] Martin Knowles, <mjk@irepository.net>, June 2001.
[Kohlhepp] Bayard Kohlhepp, <bayard@ctcexchange.com>, April 2000.
[Korver] Brian Korver <briank@terisa.com>, October 1996.

[Kumar] Rajesh Kumar, <rkumar@cisco.com>, August 2001.

[Lamb] Charles P. Lamb, <CLamb@pvimage.com>, June 2001.

[Laramie] Michael Laramie <laramiem@btv.ibm.com>, February 1999.
[Laun] Juern Laun <juern.laun@gmx.de>, April 1999.

[Le Bodic] Gwenael Le Bodic <Gwenael.Le Bodic@alcatel.fr>, March 2001.
[Ledoux] Eric Ledoux, <ericle@microsoft.com>, August 2000.
[Lefevre] Franck Lefevre, <franck@klinfo.com>, August 2000.

[Leow] Steve Leow <LeostOl@accpac.com>, April 1999.

[Levitt] Glenn Levitt <streetdl@ix.netcom.com>, October 1996.
[Lines] John Lines <john@paladin.demon.co.uk>, January 1998.
[Lubin] Dovid Lubin <dovid@acucobol.com>, October 1997.

[Lubos] Mikusiak Lubos <lmikusia@blava-s.bratisla.ingr.com>, October 1996.
[Lundblade] Laurence Lundblade <lgl@qualcomm.com>, October 1996.
[Manning] Dave Manning <dmanning@uwi.com>, January, March 1999.
[Martin] Bruce Martin <iana-registrar@uplanet.com>, November 1998.
[Martin] Steven Martin <smartin@xis.xerox.com>, October 1997.

[Matsumoto] Takashi Matsumoto <takashi.matsumoto@fujixerox.co.jp>,
February 2000

[Matthewman] David Matthewman <david@xara.com>, October 1996.
[McDaniel] Braden N. McDaniel, <braden@endoframe.com>, October 2000.
[McGinty] Tom McGinty <tmcginty@dma.isg.mot.com>

[McLaughlin] Ann McLaughlin <amclaughlin@comversens.com>, April 1999.

[Minnis] James Minnis <james-minnis@glimpse-of-tomorrow.com>,
February 2000

[Moline] Jodi Moline, <jodim@softsource.com>, April 1996.

Media types

Page 14

89{ abed ¢z wnipuadwo)

[Mori] Hiroyoshi Mori, <mori@mm.rd.nttdata.co.jp>, August 1998.
[Moskowitz] Jay Moskowitz, <jay@aethersystems.com>, March 2001.
[Muto] Shin Muto, <shinmuto@pure.cpdc.canon.co.jp>, May 2000.

[Mutz] Andy Mutz, <andy mutz@hp.com>, December 1997.

[Nagatomo] Yasuhito Nagatomo <naga@rd.oda.epson.co.jp>, January 1998.
[Natarajan] Satish Natarajan, <satish@infoseek.com>, August 1998.
[Nelson] Jan Nelson, <jann@microsoft.com>, May 2000.

[Nilsson] Martin Nilsson, <nilsson@id3.org>, October 2000.

[0'Brien] Michael O'Brien <meobrienl@mmm.com>, January 1998.

[Ogita] Masumi Ogita, <ogita@oa.tfl.fujitsu.co.jp>, October 1997.
[Okudaira] Seiji Okudaira <okudaira@candy.paso.fujitsu.co.jp>, October 1997.
[Olsson] Thomas Olsson <thomas@vinga.se>, April 1998.

[Onda] Masanori Onda <Masanori.Onda@fujixerox.co.jp>, February 2000.

[Ozaki] Yutaka Ozaki <yutaka_ozaki@gen.co.jp>, January 1999.

[Paul Lindner]

[Parker] David Parker <davidparker@davidparker.com>, August 1999.
[Parks] Curtis Parks, <parks@eeel.nist.gov>, April 1995.

[Parsons] Glenn Parsons <gparsons@nortelnetworks.com>, February 1999.
[Patton] Mark Patton <fmp0Ol4@email.mot.com>, March 1999.

[Patz] Frank Patz, <fp@contact.de>, September 2000.

[Peacock] Gavin Peacock, <gpeacock@palm.com>, November 2000.
[Pentecost] Bob Pentecost, <bpenteco@boi.hp.com>, March 1997.

[Pharr] Paul C. Pharr <pharr@diehlgraphsoft.com>, February 2000.

[Powers] Michael Powers, <powers@insideout.net>, January 1998.
<pow@flatland.com>, January 1999.

[Pratt] Jason Pratt, <jason.pratt@autodesk.com>, August 1997.
[Pruulmann] Jann Pruulmann, <jaan@fut.ee>, December 1998.

[Rabinovitch] Boris Rabinovitch <boris@virtue3d.com>, February 2000.
[Randers-Pehrson] Glenn Randers-Pehrson <glennrp@ARL.MIL>, October 1996.
[Recktenwald] Heiko Recktenwald, <uzsl06@uni-bonn.de>, November 2000.
[Reddy] Saveen Reddy <saveenr@miscrosoft.com>, July 1999.

[Rehem] Yaser Rehem, <yrehem@sapient.com>, February 1997.

[Resnick] Pete Resnick, <presnick@qualcomm.com>, February 2000.

Media types Page 15

[Risher] Mark Risher, <markr@vividence.com>, December 2000.
[Rose] Marshall Rose, <mrose@dbc.mtview.ca.us>, April 1995.
[Rosenberg] Jonathan Rosenberg, <jdrosen@dynamicsoft.com>, October 2000.

[Rungchavalnont] Khemchart Rungchavalnont,
<khemcr@cpu.cp.eng.chula.ac.th>, July 1997.

[Sandal] Troy Sandal <troys@visio.com>, November 1997.

[Santinelli] Paul Santinelli, Jr. <psantinelli@narrative.com>, October 1996.
[Scrathcley] Greg Scratchley <greg_scratchley@intuit.com>, October 1998.
[Searcy] Meredith Searcy, <msearcy@newmoon.com>, June 1997.

[Shapiro] Ehud Shapiro

[Shilts] Reed Shilts <reed.shilts@sybase.com>, February 1999, August 1999.
[Simon] Ben Simon, <BenS@crt.com>, September 1998.

[Simonoff] Steven Simonoff <scs@triscape.com>, August 1999.

[Simpson] Ray Simpson <ray@cnation.com>, January 1998.

[Slawson] Dean Slawson, <deansl@microsoft.com>, May 1996.

[Slusanschi] Horia Cristian Slusanschi <H.C.Slusanschi@massey.ac.nz>,
January 1998.

[D.Smith] Derek Smith, <derek@friendlysoftware.com>, November 2000.
[Smith] Nick Smith, <nas@ant.co.uk>, June 1995.

[Smolgovsky] Roman Smolgovsky <romans@previewsystems.com>, April 1999.
[Solomon] Monty Solomon, <monty@noblenet.com>, February 1997.
[Spencer] Marc Douglas Spencer <marcs@itc.kodak.com>, October 1996.
[Henry Spencer]

[Stark] Peter Stark <stark@uplanet.com>, March 1999.

[Strazds] Armands Strazds <armands.strazds@medienhaus-bremen.de>,
January 1999.

[Sugimoto] Masahiko Sugimoto <sugimoto@sz.sel.fujitsu.co.jp>, October 1997.
[T.Sugimoto] Taisuke Sugimoto <sugimototi@noanet.nttdata.co.jp> April 1999.
[Sweet] Michael Sweet <mike@easysw.com>, July 1999.

[Swenson] Janine Swenson <janine@novadigm.com>, January 1998.

[Szekely] Etay Szekely <etay@emultek.co.il>, October 1996.

[Taguchi] Yasuo Taguchi <yasuo.taguchi@fujixerox.co.jp>, July 1998.
[Tanaka] Manabu Tanaka <mtana@iss.isl.melco.co.jp>, September 1997.
[Tarkkala] Lauri Tarkkala, <Lauri.Tarkkala@sonera.com>, May 2000.

[Tidwell] Paul Tidwell <paul.tidwell@ericsson.com>, February 2000.

Media types Page 16

691 abed z wnipuadwo)

[Togashi] Nobukazu Togashi <togashi@ai.cs.fujitsu.co.jp>, June 1997.
[Tomasello] Luke Tomasello <luket@intertrust.com>

[Tupper] Jeff Tupper <tupper@peda.com>, February 2000.

[Vaudreuil] Greg Vaudreuil <gregv@lucent.com>, January 1999.

[Walleij] Linus Walleij, <triad@df.lth.se>, July 2000.

[WAP-Forum] WAP Forum Ltd. <wap-feedback@mail.wapforum.org>, February 2000.

[Wattenberger] Paul Wattenberger <Paul_ Wattenberger@lotus.com>, June 1997.
[Webb] Steve Webb <steve@wynde.com>, October 1996.

[Wedel] Eric Wedel <ewedel@meridian-data.com>, October 1996.

[Welsh] Linda Welsh, <linda@intel.com>, November 2000.

[Wexler] Mike Wexler, <mwexler@frame.com>, April 1996.

[Widener] Glenn Widener <glennw@ndg.com>, June 1997.

[Wohler] Bill Wohler, <wohler@newt.com>, July 1997.

[Wolfe] John Wolfe, <John Wolfe.VIVO@vivo.com>, April 1996.

[Van Nostern] Gene C. Van Nostern <gene@wri.com>, February 1995.

[Yellow] Mr. Yellow <yellowriversw@yahoo.com>, March 1998.

[Yoshitake] Jun Yoshitake, <yositake@iss.isl.melco.co.jp>, February 1997.
[Zilles] Steve Zilles <szilles@adobe.com>, October 1996.

[1

Media types

Page 17

