*:96 Internet application layer
protocols and standards

Compendium 6 - Coding

Not allowed during the exam
Last revision: 11 Aug 2007

>

)

c

=)

B O 0T 14V ' 1= 1 1 1o Yo - UPRRRRN 1-67

m

©

o ABNF

m See this compendium - COAING MEINOASoouuuuuuuuuueeeeeeeeiiee ettt eeeeease e e e s e e e e eeeeeeeaaeaeees 11-16

0

>

2 ASN.1

& A summary of ASN.T types and their USAZE........ccooviiiiiiiiiiiiiiiiii 68

m Example of how you can think when solving an ASN.1 exam qUeStioNuuuieieeeeeeeeeeeerereeeeeeeeees 68-69

2 A Layman's Guide to a Subset of ASN.1, BER and DER ... 71-88

W Ovningsuppgifter pA ASN.T 0Ch BERooooouiiiiiiieeieeeeeeeeeeeeeeeeee ettt ee e eaeeene e 89-98

= See this compendium - COAING MEINOMASoouuuuuuuuuueaeeeeeeiiie ettt eeeeeeee e e e s e e e e eeeeeeeeaeaeees 16-38

=)

S

S HTML

L QUICK HTIML GUIAE ...ttt ettt ettt e e et e e e et e e e e e abetee e e smbateeeeenneeeas 99-101

© Getting started With HTIMLcc.ociiiieicieeieeesceeseceeeesesssesesesessassessesasesessessseseaseesessesseees 102-104

2 Adding @ tOUCRH Of SEYLE e e e e e e e e e e e et ettt ettt ebeeaaseeeeeeeaeeeaaaaaaaaaes 105-109

1%}

‘o The Bare Bones Guide to HTML ... 110-116

MHoc Ten Mistakes 1N WED DESIZI ...uuciiiiiiiiiiiiiieeeeeeeeee e e e e e ettt ettt esenaeaeeaaaaaees 117

O BN StIlguide fOT VAVEN ..ooiiiiiiiiiiii ettt e tnenna e ans 118-124

Ko

W., Font Size Comparisons as SHOWIN ON SCIEEM.....cuuuuuuuuuiiiieieeeeeee e eeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeaeeeeeeeees 125

mluu The Multipart/Related CONENT TYPE ..cceeiiiiiiiiiiiiiiiiiiiiieeeee e eeeeeeee ettt seseeseeseeaeseeeeeeeaeesessnnnnns 126
Why Bitmapped Screen Dumps get Ugly on the Screenoooovvvviiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeees 127-128
See this compendium - COAING MEINOAScoouuuuuuuuuueaeeeeeeiiee ettt seeeeese s e e s e eeaeeeeaeeeeaaeees 38-41
XML
Extensible Markup Lan@UAZEccccoeeiiiiiiiiiiieiieeeeeeeeeeee e e e e e e e e ee ettt e eeeaeeseeeeeeeeeeeeeeeenes 129
See this compendium - COAING MELROMScccoeeeeeeiiiiiiiiiiiiiiee et 41-55

Miscellaneous protocols

(Denna Sida FININS INTE) .uuuiiirieiiiiie e et ee e eeteeeeeaeeeeeeaeesaa e esesaeesstaeeessaeessnnnsssnneesssnaeessrneeessnnneseen 130
T 0] B NP PRURUPRRR 131
RSS and POACASTINE eeviiiiiiiiiieieeeee ettt eeeee e e e e e e e e eeeeee et e e eeeeeeessaasssaaaaaaaeaaaeeeeeeeseesenseeenennn 135
Scalable Vector GraphiCs (SVG) ... ettt e e e e e e e e e e e e e e e et eeeteeeeebeasesnseeeseaeaaaaaaaees 140
D0\ o] 1 < o' U2 U PP UPUURTTR RPN 140

)3T Ke) & 4~ o | SR TR 141-142

Z abed g9 wnipuadwo)

Internet Application
Protocols

For more info see http://dsv.su.se/jpalme/abook/

Copyright © Jacob Palme 2000, 2001, 2002, 2003

Copyright conditions: This document may in the future become part of a
book. Copying for non-commercial purposes is allowed on a temporary basis.
At some time in the future, the copyright owner may withdraw the right to
copy the text. Check for the current copyright conditions at the web site of the
author, http://dsv.su.se/jpalme/abook/.

This document contains quotes from various IETF standards. These stan-
dards are copyright (C) The Internet Society (date). All Rights Reserved. For
those quotes, the following copyright conditions apply:

This document and translations of it may be copied and furnished to oth-
ers, and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and de-
rivative works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to the Internet
Society or other Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for copyrights de-
fined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

Publisher
Not yet published ¢ City

¢ obed 9 wnipuadwo)

1.7 Reference to fragments of an HTML document
Part of the URL?
1.8 URL, URI, URN, URC

Preliminary Table of Contents
1. Introduction to Coding

1.1. Why is coding important?

1.2. Character sets

1.1.1. The UTF-8 encoding of ISO 10646
1.1.2. Limited subsets of character sets

Pr'e/im inarly Tab/e 0 f Con fen 1'5 1.3. Textual and binary encoding

1.1.3. Encoding of information structure
1.1.4. Encoding of the start and end of data

elements
1.1.5. Encoding of binary data with textual
encoding
Contents 1.1.6. More About Encoding of Information
Introduction Structure
Overview of the most common Internet protocols and
services 2. Augmented Backus-Naur Form, ABNF
Understanding layering 1.1.7. Linear White Space
Ports and protocols 1.1.8. Versions of ABNF

Some registered port numbers

Architectures 1.4.

Protocols: Two entities talking to each other using a
controlled language

An overview of ABNF syntax constructs

.9. Either-or construct

1.1.9
Ending a connection 1.1.10. A series of elements of the same kind
Connection retention 1.1.11. Comments in ABNF
Chaining, referral, multicasting 1.1.12. Linear White Space (LWSP)
Protocol extension problem 1.1.13. Comma-separated list
Intermediaries 1.1.14. ABNF syntax rules, parentheses
Replication 1.1.15. Optional elements
IETF standards terminology
The IETF Golden rules 1.5. Examples of use of ABNF
Names in the Interet, the Domain Naming System 1.1.16. Examples of values matching the syntax in
) (DNS)) example 4 above:
Basic security techniques 1.1.17. Example 7 (from RFC822):
11 URL, Uniform Resourqe chator 1.1.18. Examples of value matching the syntax in
1.2 URL schemes standardized in RFC 1738 example 7 above
1.3 Character set in URLs (not in referenced document)
Encoding of unsafe characters in URL-s 1.6. RFC 822 lexical scanner specified in ABNF
1.4 Top-level URL Syntax:
Common Internet Scheme Syntax
}:2 Eﬁtll)vtejgl{{];;ntax 3. Abstract Syntax Notation, ASN.1

Example of an HTTP Query URL

¥ 8bed 9 wnipuadwo)

1.7. ASN.I basic

—— -

S SN Y

POtk =
Wi =900

ASN.1 value notation

ASN.1 terminology

Pre-defined, built-in types in ASN.1
Comments

Format of identifiers

1.8. Simple Types

1
1
1
1
1
1
1
1
1
1
1
1

.1.24.
.1.25.
.1.26.
.1.27.
.1.28.
.1.29.
.1.30.
131
.1.32.
.1.33.
.1.34.
.1.35.

Integer Type

Subtypes

Boolean Type
Enumerated

Real Type

Bit String

Subtypes

Variants of Bit Strings
Octet String Type

Null Type

Examples of the Use of Size
Character String Types

1.9. Structured types

Inner subtyping

Choice Type

Any Type

Tags

Explicit and Implicit tags

1.10. Special types and Concepts

Time Types

Use of Object Identifiers, Any, External
Object Descriptor and External types
Modules

1.11. Encoding Rules

1
1
1
1
1
1
1

.1.45.
.1.46.
.1.47.
.1.48.
.1.49.
.1.50.
151,

Basic Encoding Rules (BER)

The Tag or Identifier field

The Length Field in BER

The BER Value Octet

Variants of the encoding of a string with tag
Example of the coding of a SEQUENCE
Different Encoding Rules for ASN.1

1.12. ASN.1 compilers

4. HTML and CSS

37

37
37
38
39
39

39

39
40
41
2
2
43
43
44
46
46
47
47

48

49
52
53
54
57

61

61
61
64
65

67

67
68
69
70
70
71
73

74

76

1.13. (Hypertext Markup Language)
1.14. Cascading Style Sheets (CSS)

5. Extensible Markup Language, XML
1.15. Extensible Markup Language (XML) Introduction

1.1.52.

XML versus HTML

1.16. Document Type Definition (DTD)
1.17. XML ELEMENT and its contents

1.1.53.
1.1.54.
1.1.55.
1.1.56.
1.1.57.

Reserved characters
Empty Elements

Any Specification
Repeated subelements
Choice subelements

1.18. Attributes of XML elements

1.1.58.

Use attributes or subelements?

1.19. Formatting XML layout when shown to users (CSS
and XLST)
1.20. XML special problems and methods

1.1.59.
1.1.60.
1.1.61.
1.1.62.
1.1.63.
1.1.64.
1.1.65.
1.1.66.
1.1.67.

Putting binary data into XML encodings
Reusing DTD information

Entities

Name Spaces

XLinks and XPointers

Processing instructions

Standalone declarations

XML validation

XHMTL

77
79

82
83
84
85
87
89
90
90
90
92
92
95

97
100
100
100
101
101
102
103
103
103
104

1.21. A comparison of ABNF, ASN.1-BER/PER and DTD-

XML
1.1.68.

Comparion RFC822-style headings versus
XML and ASN.1

1.22. Other Encoding Languages

6. References

7. Acknowledgements
8. Solutions to exercises

104

108
109

110
112
114

G abed 9 wnipuadwon

1. Introduction to Coding

Objectives

This chapter describes why coding is so important, and introduces the
problems which coding attempts to solve

Keywords
coding
records

data structures
characters

1. Introduction to coding

1.1.

Why is coding important?

The underlaying network protocols, like the transport layer of TCP/IP, pro-
vide a way of sending a sequence of octets (containers with 8 bits, also often
called “bytes”) from the sending port to the receiving port. All information
must thus be transformed into a sequence of octets. And the protocol will
probably not work, unless the sending and receiving computer agree on how
to interpret these octets. The procedure of transforming information into a se-
quence of octets, is known as “coding”. The procedure of transforming infor-
mation from this sequence of octets to a data structure easily interpreted by
the receiving application, is the reverse process, “uncoding”.

Well, if you have defined your data using a struct in C or a set of records
in Pascal, like for example the Pascal code below, cannot you just send these

structures as they are from one host to another across the network?
flightpointer = ~“flight;

flight = RECORD
airline : String[2];
flightnumber : Integer;
nextflight : flightpointer;
END;

passenger = RECORD

personalname : String [60];

age : Integer;

weight : Real;

gender : Boolean;

usertexts : ARRAY [1..5] OF flightpointer;

END;

In a Pascal program, you can send a record, like a“passenger” record in tje
code above, to a procedure (= function, method) by just making passenger a
parameter in the procedure call. Why can you not do the same when two pro-
grams on two different computers communicate through the Internet? Well,

there are many reasons why this will not work:

1. The String may not be stored in the same way in the sending and receiving computers.

For example, many computers store four 8-bit characters in one 32-bit word. This means

that the characters are grouped into groups of four characters and stored in a word. But

different computers store characters into words in different order. This means that the

sending computer may send [A[BICIDIE [FKG[H|, but the receiving computer may re-

9 abed 9 wnipuadwo)

1. Introduction to coding 9

B]H]E (this has actually happended to me in a development many

years ago, which used a protocol between a Unix server and an MSDOS-based PC).

ceive |

Table 1: Coding of the character “A”

Character set Representation of “A”
(hexadecimal)

ISO Latin One Cc4

Unicode (ISO 10646), UTF-32 000000C4

Unicode, UTF-8 coding E2C4

CP850 (old MS-DOS) SE

ISO 6937/1 C861

old Mac OS 80

Different computers might store the same character in different ways, i.e. they may use
different bit patterns to represent the same character. As an example, Table 1 shows dif-
ferent ways in which the character “A”, which is common in the German and Scandina-
vian languages, might be represented:

Different computers store integers in different ways. Some use 16, some 32, some 64
bits to store an integer. And negative integers are stored in two common different ways,
the 1-complement and 2-complement notation.

Different computers store floating point numbers in different ways. They assign different
number of bits to the mantissa and the exponent, and some use 2, some 10, some 16 as
the base.

Different computers store Boolean values in different ways. Some computers store Boo-
lean values in an octet, where all non-zero values represent TRUE, other computers use
just 1 and O for TRUE and FALSE.

The receiving computer will have problems with the reference (pointer) “flightpointer”,
since it cannot access data in the sending computer.

Thus, if one computer sends data in its internal representation, and another
computer recieves this, believing it to be in the internal representation of the
receiving computer, the data will obviously be misinterpreted. It may work in
the special case where both computers have the same architecture, which in
some cases might work for some small intranets. But a standard for sending
data between any kind of computer must specify exactly how data is to be
coded.

10

1. Introduction to coding

1.2.

Character sets

The character, as you see it when you read it on paper or on a screen, is called
a glyph. Thus, for example, the glyph for the letter “O” is an vertical ellipse
“0”, and the glyph for the digit “0” is a more narrow vertical ellipse “0”. The
same glyph may look somewhat different in different fonts, but it is still the
same glyph, for example “A”, “A” and “A”. A font might even render a glyph
as quite another graphical form, but it is still the same glyph. The Braggadoco
font will for example render the letter “O” as “@P”.

A character set is a set of glyphs combined with information on how each
glyph is to be coded into one or more octets. In Internet standards, several dif-
ferent character sets are used, and a common cause of error in Internet pro-
grams is that a character is sent using one character set and one encoding, but
received believing it to be another character set and/or another encoding.

Many character sets are variants of the Latin character set, based on the
letters A to Z. But there are also completely different character sets, like Cy-
rillic (*T'z/[D), Arabic (s2>g%l), Hebrew (Xi77), Browallia (©D), Ja-
pananse (i 53), Korean (’ﬂ% °ﬂ) and Chinese (%Eﬁﬂgj).

The same character set can have more than one encoding specified for that
character set. There are also additional encodings which some protocols apply
to the sequence of bytes from any character set.

The most common character sets in Internet standards are listed in Table 2.

Table 2: The most common character sets

Name Included characters Encoding

US-ASCII This set has 128 characters. 95 of these are Each character is en-
printable characters, the rest are control charac- | coded as one 7-bit byte.
ters like Carriage Return and Line Feed. This is usually sent as
an octet, with the first

bit always 0.
ISO 646 This is very similar to US-ASCII, but a few of Same encoding as US-
the characters are called national characters, ASCIL

and can be substituted with other characters in
different national variants of ISO 646.

The following characters may be replaced with
other characters in national sets, and their use
can thus cause problems, especially in text files

/ 9bed 9 wnipuadwo)

1. Introduction to coding

11

Name Included characters Encoding
transported between computers:
E#SE€E@IMN {1~
ISO 8859-1, This set has 256 characters, 190 of them are Each character is en-
also known printable, the rest are control characters. It in- coded as exactly one
under the name | cludes US-ASCII plus a number of additional octet. This makes the
ISO Latin 1 characters suitable for Western European Lan- standard easy to proc-
guages, like A, E and ;. ess, but reduces the
number of possible
characters.
ISO 8859-? There are a number of different variants of ISO Similar encoding to ISO
8859 for different languages or language 8859-1.
groups. For example, ISO 8859-2 is suitable for
most Eastern European Languages using latin
character sets, like Hungarian or Polish. Each
set has 256 characters, 190 of which are print-
able. Many of the sets contain US-ASCII as a
subset.
ISO 10646, This is the character set meant to replace all ISO 10646 has more
also known as other character sets. It has space to hold mil- than one encoding. The
Unicode. lions of characters. Every character needed in basic encoding is called
every language are there, or will be added. UTF-32. It uses two
octets for each charac-
ter. There is also room
for more space, if
needed, through UTF-32,
which uses four octets
for each character.
The mostly used coding
of ISO 10646 in Inter-
net protocols is UTF-8
(see page 12). UTF-8
uses between one and
four octets for each
character. Special for
UTEF-8 is that all the
US-ASCII characters
have exactly the same
coding as in US-ASCII.
This is important, since
many Internet protocols
use syntax containing
US-ASCII characters
and words.
1SO 2022 This is an older solution than ISO 10646 to the ISO 2022 codes a text

problem of including characters from many sets
in the same message, for example putting an
East European name into a text in a West Euro-
pean language, or showing a dictionary be-
tween languages with different sets, such as
between Russian and English.

as segments. Each seg-
ment uses one character
set, usually one of the
ISO 8859 variants or
the ISO 646 variants.
Special so-called es-
cape-sequences are put

12

1.1.1.

1. Introduction to coding

Name Included characters Encoding
In the Internet, ISO 2022 is mostly used by into the text to switch
Asian countries like Japan, China or Korea to between segments.
switch between English and their native charac-
ter sets.

The UTF-8 encoding of ISO 10646

The UTF-8 [RFC 2279] is an encoding of Unicode with the very important
property that all US-ASCII characters have the same coding in UTF-8 as in
US-ASCII. This means that protocols, in which special US-ASCII characters
have special significance, will work, also with UTF-8. They start with the two
or four-octet encodings of ISO 10646 (UTF-32):

UTF-32 range (hex.) UTF-8 octet sequence (binary)
0000 0000-0000 OO7F OXXXXXXX

0000 0080-0000 O7FF 110xxxxX l10XXXXXX

0000 0800-0000 FFFF 1110xxxx 10xxxXxXX 10XXXXXX

0001 0000-001F FFFF 11110xxx 10 xx 10xx 10
0020 0000-03FF FFFF 111110xx 10 10xxx 10
10XXXXXX

0400 0000-7FFF FFFF 1111110x 10XXXXXX ... 1OXXXXXX

The high-order bits are set as specified in the second column above. The rest
of the bits, marked with x in the second column above, are filled with those
bits from the UTF-32 character whose information is not determined by the
high-order bits.

Limited subsets of character sets

In addition to the sets listed in Table 2, many Internet standards use a subset
of these standards, for special purposes. Examples of some such subsets are
shown in Table 3.

g obed 9 wnipuadwon

1. Introduction to coding 13

Table 3: Subsets used in some standards

Name Subset description Where it is used
specials am, o mym, o u<r, a>e, Must be coded when used in e-mail
@ w mwaw wgw addresses.
[A M

u\m, wvw, u'"’ “r7 and

uyn

non-specials All printable US-ASCII charac- | Can be used without special coding
ters except specials and space in e-mail addresses.

Unsafe R R Must be coded when used in URLs

", "] and "

These characters have special mean-
ing in URLs, and must be coded if
used without the reserved meaning.

Reserved P VP
u@w, wu=n and “g”

Safe All printable US-ASCII charac- | Can be used without special coding
ters except Unsafe and Re- in URLs.
served characters and space.

1.3.

Textual and binary encoding

Textual method:

Binary method:

There are two main coding methods, the textual and the binary method.

All information is transformed to text format before transmission. Examples:
A floating point number might be transformed to the textual string of char-
acters: D@, and this string is then coded using some char-
acter set, for example ISO Latin 1, where each character is sent as one octet.
A Boolean value might be transferred as eithenthe textual string @
or the textual string , or as the characters @ or .
Information is transformed to a standardized binary format, not dependent on
the architecture of a particular computer. For a floating point number, the
base, mantissa and exponent are sent as bit strings. Text strings are sent as
text strings also with the binary method.

Examples of Internet protocols which use the textual method are:

14

1. Introduction to coding

SMTP Simple Mail Transfer Protocol
HTTP Hypertext Transfer Protocol

Examples of Internet protocols which use the binary method are:

LDAP Lightweight Directory Access Protocol
DNS Domain Naming System

Encoding of information structure

The information transmitted through networks is not only individual data
elements like a number or a text string. There is also structural information.

Structural information indicates:

Where one data element ends and another begins.
What kind of information is carried by a data element, for example if a num-
ber in a metheorological application represents temperature, wind velocity or

Table 4: Encoding of start and end of elements

Method Description Example of encoding of the name “John
Smith”
Fixed length | A data clement has a FoEN I IsMEITEC
encoding length specified in the
protocol.
Length encod- | The length of the data [1][0]=]JolH|N]_]s|M[T]T|H]
ing element, usually in

number of octets, is sent
before the element it-

self.
Delimeter en- | The end of the data TolEN]]sIMI]TIEI;]
coding element is marked with

some delimiter, some
special code which will
not appear inside the
data element.

Chunked The information is split [4]-]ToJHN]5][=]SIM[T]T|H]
transmission into a number of
chunks, each chunk is
sent using length encod-
ing, but the total length
need not be known
when sending starts.

6 @bed 9 wnipuadwo)

1. Introduction to coding 15

humidity.

¢ Which data elements belong together in structures, for example in a me-
theorological application, a set of one temperature, one wind velocity and one
humidity value may belong together to represent the weather measurements in
a certain place at a certain time.

1.1.4. Encoding of the start and end of data elements

Table 4 shows some methods of encoding the start and end of a data element.
All of these methods have their particular advantages and disadvantages.

Fixed length encoding has the problem that there is a maximum size of the
data (length of the string in the example above). You cannot send data re-
quiring more than the allocated space. An extreme example of the risks with
fixed-length encoding is the so-called Y2K or Year 2000 problems, which has
caused billions of dollars of cost to companies who used a fixed length of 2
digits instead of 4 for storing the year.

Length encoding has problems for very large objects, where it may be dif-
ficult or impossible to compute the size before starting to send. One example
is the sending of live sound or video, where you do not know the length of the
sound when you begin sending it.

Delimeter encoding has the problem that the delimeter or delimeters can-
not be included in the data sent, unless the delimeter is coded in some par-
ticular way. Some common methods in Internet protocols of handling this:

7. Have a special escape character preceding a delimeter. For example, if “ ;” is used as a
delimeter, the string “ABC ; DEF” might be encoded as “ABC\ ; DEF”. Any occurence of
the escape character must also be encoded, so that the string “AB\CD ; DE” will be en-
coded as “AB\ \CD\ ; DE”. This method is used in many Internet standards, for example
in SMTP.

8. Require duplication of the escape character. For example, if the escape character is

FTAIED
>

the string “AB"BC" "DE” is encoded as “AB" "BC"" " "DE”.
9. Surround the data with double-apostrophe, and duplicate any double-apostrophe in the
text. For example, the string “AB"BC" "DE” is encoded as “"AB" "BC" " " "DE"”. This

method is used in many Internet standards, for example in SMTP.
10. Encode the data into a limited character set, and then use as delimeters characters outside
this set. An example of this is the BASE64 and UUENCODE formats.

16

amples:

1. Introduction to coding

Text shown Text shown

to the user to the user 11. Encode

the special

- characters
HTML encoding HTML decoding .
with some
sequence
HTML text HTML text a
of char-
acters
Base 64 encoding Base 64 decoding which
contains
Base64 text Base64 text the nu-
merical
value of
| Mail transport |—>| Mail transport the char-
. o acter
Figure 1: Encoding in several layers code. Ex

The Quoted-Printable encoding method in MIME will encode the
ISO Latin 1 character “A” as “=C4”, since “C4” is the hexadeci-
mal byte value of this character.

The HTML Character Entity encoding method of the character
“A” as “Ä”, where ““196>” is the decimal byte value of
this character.

The MIME header encoding method, where the character “A” is
encodes as “=21s0-8859-12g?=C4?=". Here, “iso-8859-
1” is the ISO identification of the ISO Latin One character set,
“q” indicates that the quoted-printable encoding method is used,
and “=C4” is the quoted-printable encoding of “A”.

The URL encoding method, where the character “A” is encoded
as “%C4”, where “C4” is the hexadecimal value of the ISO Latin
One character “A”.

12. Encode the special characters with some sequence of characters which describe the char-

acter in words. One example is the encoding of the “A” character in HTML (see page 77)

2

as “Ä ; ” where “Auml” means “A with umlaut”, “umlaut” is the German word for

putting two dots on top of a wovel.

0} obed g wnipuadwo)

1. Introduction to coding 17

In some cases, several different character encoding methods are used on top
of each other. They must then be undone in the reverse order to get back the
original text. For example, if HTML text is sent in e-mail with the base64 en-
coding method, then, as shown in Figure 1, the text might first be encoded
with the HTML method, and the resulting text might then be encoded once
more with the BASE64 method, before it is sent through e-mail.

Encoding of binary data with textual encoding

How do you transport binary data with textual encoding? There are two meth-

ods:

@ If you have an eight-bit transparent transport channels, you can just split
the binary data into eight-bit octets and send them as they are. This is
usually combined with the length method of delimiting the end of the bi-
nary data element, to allow any eight-bit value within the binary data.

@ Encode the binary data as text. The two most common methods for this
are UUENCODING and BASE64.

n 8 n BASEG64 is more reliable and works as follows: Take
a 616 “ three octets (24 bits), split them into four 6-bit bytes,
n 318 n and encode each 6-bit byte as one character. Since 6-
bit bytes can have 64 different values, 64 different
characters are needed. These have been chosen to be those 64 ASCII charac-

ters which are known not to be perverted in transport. Since BASE64 requires
4 octets, 32 bits, to encode 24 bits of binary data, the overhead is 8/24 or 33
%.

1.1.6. More About Encoding of Information Structure

Often you need to transport a complex set of related information elements in a
networked protocol. Suppose, for example, that you have the following data
structure:

Personal record consists of age, weight and name.

Name consists of two strings, given name and surname.

Age consists of a positive integer.

Weight consists of a positive decimal value in kilograms.

The two most common methods of encoding this kind of information is the

18

1. Introduction to coding

tag-length-value encoding and the textual encoding.

1.1.1.1. Tag-Length-Value encoding

With the tag-length-value encoding, each element in the data structure is split
into three parts, a tag, which specifies whether this is a age, weight, name,
given name or surname value, a length, giving the number of octets needed
for the value, and then the value. If the value contains several elements, it can

consist of a new set of Tag-Length-Value encodings, as shown in Figure 2.
Age Weight Name

Tag Length Value Tag Length Value Tag Length Value

T T T 1T T T T T]
- %

Given name Surname

Tag Length Value Tag Length Value
. r r r [|

Figure 2: Example of tag-lenght-value encoding

A fuller description of this encoding is shown in Table 1 on page 19.

T} obed g wnipuadwo)

1. Introduction to coding 19

1.1.1.2. Textual encoding

With textual encoding, the same information might be encoded as the fol-
lowing text string (represents carriage return+line feed = a line
break).

Age: 58; Weight: 74.6; Name: John,

or as the following string:

Table 5: Example of tag-length-value encoding

Information element Part Octets Encoding
Tag 1 The value “0” is chosen to
represent “Age” in this
Age protocol.
Length 1 Always 1
Value 1 Binary value
Tag 1 The value “1” is chosen to
represent “Weight” in this
protocol.
Length 1 Always 4
Weight Value 4 First octet exponent with

the base 10, then three
octets with mantissa, both
exponent and mantissa in
binary form.

Name Tag 1 The value “2” is chosen to
represent “Name” in this
protocol.

Length 1 The total length of the
components.
Tag 1 The value “3” is chosen to
represent “Given name”
. in this protocol.
Given .
name Length 1 The length of the string
Value As many octets as ISO 8859-1
needed for this
Com- string
pNO'le“tS of Tag 1 The value “4” is chosen to
ame represent “Surname” in
s this protocol.
n:rrr;c Length 1 The length of the string
Value As many octets as ISO 8859-1
needed for this
string

20

1. Introduction to coding

Age: 58
Weight: 74

Name:

Given Name: John

Surname: Smith

An example of textual encoding from an actual Internet standard is the e-mail
header, an example of which might be:

Received: from mail.ietf.net

by info.dsv.su.se (8.8.8/8.8.8) with ESMTP
id HAA06480 for <jpalme@dsv.su.se:
Wed, 22 Jul 1998 07:51:54 +0200
Message-ID: <AF4ClAD5F8662ED305D823AF@ietf.net>

From: Erik Nielsen <erikn@ietf.net>
To: Jacob Palme <jpalme@dsv.su.se>

Subject: Example of an e-mail header

Date: Tue, 24 Jul 1998 21:25:21 —0700

Textual encoding usually uses the delimeter method. In the example above,
€17, 7, 0, >, “from”, “by”, “id” and space are used as delimeters. “Re -
ceived”, “Message-ID”, “From”, “To”, ‘Subject” and “Date” are
used as tags, but in the “Received” field there are subtags “from”, “by”,

a n d “id”.

Z| abed g wnipuadwo)

ugmented Backus-Naur Form,

2. Augmented Backus Naur Form, ABNF

When writing syntax specifications for protocols, a special language for syn-
tax specifications is used. There are three common such languages, ABNF
(Chapter 2) and XML (Chapter 0) for specifying the syntax of textual proto-
cols, and ASN.1 (Chapter 0) for specifying the syntax of binary tag-length-
value-encoded protocols. ABNF was first standardized in [RFC 822] and a
revised version was standardized in [RFC 2234]. ABNF and ASN.1 are both
based on the Backus-Naur Form, BNF, which became first widely known in

eT obed 9 wnipuadwo)

2. Augmented Backus Naur Form, ABNF 2 3

be CRLF.
Here is an example from an old Internet standard, RFC822, the standard for
the format of e-mail messages:

date = 1*2DIGIT month 2DIGIT ; day month year

Literally, the ABNF below should generate date formats like “25Jul98”.
But in reality, the correct date format is “25 Jul 98”, with a space between
the words. Some, but not all, later Internet standards specify explicitly where
white space is allowed, for example:

date = 1*2DIGIT " " month " " 4DIGIT ; day month year

Often (but not in the case of the gap between day, month and year above)
where one space is allowed, also a sequence of linear white space characters
is allowed. For example, the following three variants are identical according
to the e-mail standards:

From: "Autumn publishers" <books@autumn.net>

From: "Autumn publishers" <books@autumn.net>

From: "Autumn publishers"
<books@autumn.net>

Some standards even allow comments in parenthesis where white space is al-
lowed. Thus, in e-mail, a fourth equivalent alternative to the “From” field
above might be:

From: (good books) "Autumn publishers"
(write to us) <books@autumn.net> (to order our books)

1.1.8. Versions of ABNF

There are two commonly used versions of ABNF. The first is the 1982 ver-
sion, specified in RFC 822 and used, sometimes a little modified, in many
Internet standards. Typical of standards using the old ABNF is that they do
not specify clearly where comments and linenar white space is allowed or re-
quired.

The 1997 version, specified in RFC 2234, is when this is written (2000)
not yet very much used. It has some new features, which allows the exact
specification of things which could only be specified by plain text comments
in the old ABNF (see section “RFC 822 lexical scanner specified in ABNF”
on page 30).

24

2. Augmented Backus Naur Form, ABNF

1.4.

An overview of ABNF syntax constructs

1.1.9. Either-or construct

The “/" means either the specification to the left or the specification to the
right. Example:

answer = "Answer: " ("Yes" / "No")

will specify the following two alternative values:

Answer: Yes and RAnswer: No

1.1.10. A series of elements of the same kind

There is often a need to specify a series of elements of the same kind. For ex-
ample, to specify a series of "yes" and "no" we can specify:

yes-no-series = *("yes " / "no ")

This specifies that when we send a yes-no-series from one computer to an-
other, we can send for example one of the following strings (double-quote not
included):

X3 2 13 2
yes yes no

X3 2 €
yes yes yes

(an empty string)

The “*” symbol in ABNF means “repeat zero, one or more times”, so yes-no-
series, as defined above, will also match an empty string. A number can be

s

written before the “*” to indicate a minimum, and a number after the to
indicate a maximum. Thus “1*2” means one or two ocurrences of the fol-
lowing construct, “1*” means one or more, “*5” means between zero and five
occurences.

If we want to specify a series of exactly five yes or no, we can thus
specify:

five-yes-or-no = 5*5("yes " / "no ")

and if we want to specify a series of between one and five yes or no, we can
specify:

¥1 @bed g9 wnipuadwo)

2. Augmented Backus Naur Form, ABNF 25 26 2. Augmented Backus Naur Form, ABNF

one-to-five-yes-or-no = 1*5("yes " / "no ")

1.1.11. Comments in ABNF where LWSP is allowed. Thus, newer ABNF specifications would instead

. . . use:
A semi-colon, set off some distance to the right of rule text, starts a com-

yes-or-no ("yes" / "no")

ment that continues to the end of line. yes-no-series = yes-or-no *(LWSP yes-or-no)
1.1.12. Linear White Space (LWSP) to indicate a series of “yes” or “no” separated by LWSP, or
)))) yes-no-series = yes-or-no *("," LWSP yes-or-no)
There is often a need to specify that one or more characters which just show
up as white space (blanks) on the screen is allowed. In newer standards, this is to indicate a series of “yes” or “no” separated by “,” and LWSP.
done by defining Linear White Space: 1.1.14. ABNF syntax rules, parentheses
SP ch = (SPAC ; eith tab . .
235113 char = {*Lf,é‘?’fc{,a?“) : et gﬁﬁesgl&;Zﬁe"ﬁhz’r‘Z“Zm Elements enclosed in parentheses are treated as a single element. Thus,
LWSP, as defined above, is thus one or more SPACE and HTAB characters. (elem (foo / bar) elem) allows the token sequences
Using LWSP, we can specify for example: elem foo elem”and “elem bar elem”. Example of use of this (from
yes-no-series = * (("yes" / "no") LWSP) RFC822):
. . .. authentic = "From" " mailbox ; Single author
examples of a string of this format is: / ("Sender" ":" mailbox ; Actual submittor
"From" ":" 1l#mailbox) ; Multiple authors
I3 EX) 113 9 H or not sender
yes yes no
“no ” “yes yes yes > Example 3, value a:
1332 113 ER) From: Donald Duck <dduck@disney.com>
yes yes no

Example 3, value b:

1.1.13. Comma-SCparated list Sender: Walt Disney <walt@disney.com>

. . . From: Donald Duck <dduck@disney.com>
Older ABNF specifications often uses a construct "#" which means the same
as "*" but with a comma between the elements. Thus, in older ABNF specifi- 1.1.15. Optional elements
cations: There is often the need to specify that something can occur or can be omitted.
yes-no-series = *("yes" / "no") This is specified by square brackets. Example:
is meant to match for example the strings answer = ("yes" / "no") [", maybe"]
w e “ 5 . .

yes yes no will match the strings
w3 < 5 iyesn “no”

no yes yes yes "ges, maybe” “no, maybe”
while : " ;

) Square brackets is actually the same as "0*1, the ABNF production above

yes-no-series = #("yes" / "no")

could as well be written as:

is meant to match the strings answer = ("yes" / "no") 0*1(", maybe")
(13 2
yes yes, no
113 99 or
no yes, yes, yes

The problem with this, however, is that neither of the notations above specify

GT obed 9 wnipuadwo)

2. Augmented Backus Naur Form, ABNF 2 7

answer = ("yes" / "no") *1(", maybe")
Table 6: Summary of ABNF notation
Notation Meaning
“r” either or
n*m(element) Repetition of between n and m elements
n*n(element) Repetition exactly n times
n*(element) Repetition n or more times
*n(element) Repetition not more than n times
n#m(element) Same as n*m but comma-separated
[element] Optional emenent, same as *1(element)
Example Meaning
Yes /No Either Yes or No
1*2(DIGIT) One or two digits
2*2(DIGIT) Exactly two digits
1*(DIGIT) A series of at least one digit
*4(DIGIT) Zero, one, two, three or four digits
2#3("A") “A, A" or “A, A, A”
[";" para] The parameter string can be included or omitted
B Text from a semicolon (;) to the end of a line is a comment
Exercise 1

Specify, using ABNF, the syntax for a directory path, like “users/smith/file”
or

“users/smith/ WWW/file” with none, one or more directory names, followed
by a file name.

(Solutions to the exercises can be found on page 112.)

Exercise 2

Specify, using ABNF, the syntax for Folding Linear White Space, i.e. any se-
quences of spaces or tabs or newlines, provided there is at least one space or
tab after each newline.

Examples:

“ ”

28

2. Augmented Backus Naur Form, ABNF

-[ET] [CR] [LE]
[ET]-

[CR| LE] BT~

Assume SP = Space, HT = Tab, CR = Carriage Return, LF = Line Feed

9T abed xis wnipuadwo)

2. Augmented Backus Naur Form, ABNF 2 9

1.5.

Examples of use of ABNF

Example 1, ABNF (from RFC 822):

LWSP-char = SPACE / HTAB ; semantics = SPACE
Example 2, ABNF (from RFC822):
mailbox = addr-spec simple address

/ phrase route-addr
addr-spec = local-part "@" domain
phrase = 1l*word
word = atom / quoted-string

name & addr-spec
global address
Sequence of words

Examples of values matching the syntax in Example 2 above:

jpalme@dsv.su.se
Jacob Palme <jpalme@dsv.su.se>

Example 3 (from RFC822):

optional-field =
/ "Message-ID"

"Resent-Message-ID

msg-id
msg-id

/ "In-Reply-To" *(phrase / msg-id)

/ "References" *(phrase / msg-id)

/ "Keywords" #phrase

/ "Subject" *text

/ “"Comments" *text

/ "Encrypted" 1#2word

/ extension-field ; To be defined

/ user-defined-field ; May be pre-empted

Examples of values matching the syntax in Example 3 above:
In-Reply-To: <12345*jpalme@dsv.su.se>

In-Reply-To: <12345*jpalme@dsv.su.se> <5678*jpalme@dsv.su.se>
In-Reply-To: Your message of July 26 <12345*jpalme@dsv.su.se>

Keywords: flowers, tropics, evolution

Example 4 (from RFC822) demonstrating the use of square brackets ([)
and (]):

received = "Received" e ; one per relay
["from" domain] sending host
["by" domain] receiving host
"via" atom] physical path
" atom) link/mail protocol
msg-id] receiver msg id
["for" addr-spec] initial form

1.1.16. Examples of values matching the syntax in example 4 above:

Received: from mars.su.se (root@mars.su.se A130.237.158.10A)
by zaphod.sisu.se (8.6.10/8.6.9) with ESMTP
id MAA29032 for <cecilia@sisu.se>

30

2. Augmented Backus Naur Form, ABNF

1.1.17. Example 7 (from RFC822):

authentic = "From" " mailbox ; Single author
/ ("Sender" ":" mailbox ; Actual submittor
"From" ":" l#mailbox) ; Multiple authors
i

or not sender

1.1.18. Examples of value matching the syntax in example 7 above

From: Sven Svensson <ss@foo.bar>, Per Persson <pp@foo.bar>
Sender: Sven Svensson <ss@foo.bar>

Exercise 3

Specify the syntax of a new e-mail header field with the following properties:
Name: “Weather”

Values: “Sunny” or “Cloudy” or “Raining” or “Snowing”

Optional parameters: ";" followed by parameter, "=" and integer value
Parameters: “temperature” and “humidity”

1.1.1.3. Examples of values:

Weather: Sunny ; temperature=20; humidity=50

Weather: Cloudy

Exercise 4

An identifier in a programming language is allowed to contain between 1 and
6 letters and digits, the first character must be a letter. Only upper case char-
acter are used. Write an ABNF specification for the syntax of such an identi-
fier.

1.6.

RFC 822 lexical scanner specified in ABNF

By a lexical scanner is meant the lowest level of the syntax, the rules for
scanning characters and combining them into words. Below is part of the
lexical scanner from RFC822 as an example of how such a scanner can be
specified using ABNF.

/| abed g wnipuadwo)

2. Augmented Backus Naur Form, ABNF 31
CHAR = <any ASCII character> ;i (0-177, 0.-127.)
ALPHA = <any ASCII alphabetic character>
; (101-132, 65.- 90.)
(141-172, 97.-122.)
DIGIT = <any ASCII decimal digit> ; (60- 71, 48.- 57.)
CTL = <any ASCII control ; (0-37, 0.-31.)
character and DEL> i 177, 127.)
CR = <ASCII CR, carriage return> ; (15, 13.)
LF = <ASCII LF, linefeed> i (12, 10.)
SPACE = <ASCII SP, space> i (40, 32.)
HTAB = <ASCII HT, horizontal-tab> i (11, 9.)
<"> = <ASCII gquote mark> i (42, 34.)
CRLF = CR LF
LWSP-char = SPACE / HTAB ; semantics = SPACE

Note that much important information above is specified in plain text and not
using ABNF constructs. The 1997 version of ABNF includes constructs
which mean that much of this can be specified using ABNF constructs. With
these new constructs, a code roughly defining the same is specified in the
ABNF standard itself as:

$x41-5A / %x61-7A ; A-Z / a-z

$x01-7F ; any 7-bit US-ASCII character, excluding NUL
0D ; carriage return
CR LF ; Internet standard newline
$x00-1F / %x7F ; controls
= %x30-39 ; 0-9
= %x22 ; " (Double Quote)
= pIGIT / "A" / "B" / "c" / "D" / "E" / "F"
= %x09 ; horizontal tab
LF = %x0A ; linefeed
LWSP = *(WSP / CRLF WSP) ; linear white space (past newline)
OCTET = $%$x00-FF ; 8 bits of data
SP = %x20

The new constructs allow the specification of character codes using binary
(b), decimal (d) or hexadecimal (x) notation.

%d13 is the character with decimal value 13, which is carriage return.

%x0D is the character with hexadecimal value 0D, which is another way of specifying
the carriage return character.

b1101 is the character with binary value 1101, which is a third way of specifying the
carriage return character.

%x30-39 means all characters with hexadecimal values from 30 to 39, which is the digits
0-9 in the ASCII character set.

%d13.10 is a short form for %d13 %d10, which is carriage return followed by line feed.

3. Abstract Syntax Notation, ASN.1

Objectives

ASN.1 is a strongly typed coding langauge which gives readable code
descriptions and very compact, but difficult to read, binary encoding

Keywords

ASN.1
BER

g1 abed g9 wnipuadwo)

3. Abstract Syntax Notation, ASN.1 33

ASN.1 (Abstract syntax notation 1 [Larmouth 1999, Kaliski 1993]) is an al-
ternative to ABNF for specifying the syntax of complex data structures. While
ABNF is mostly used to specify textual encodings, ASN.1 is mostly used to
specify binary encodings. The same syntax specification in ASN.1 can be
used with different encoding rules, but of course the sending and receiving
computer must agree on which encoding rules to use, if they are to understand
each other using ASN.1. The mostly used encoding rule for ASN.I is called
BER (Basic Encoding Rules). A short overview of BER can be found on page
67. This book does not give a complete description of all the features of
ASN.1.

Most Internet application layer standards use ABNF and textual enco d-
ings, but a few use ASN.1, for example SMIME, LDAP and Kerberos.

The main principle of ASN.1 is that new data types can be defined based
on simpler types. The example below shows how this is done.

Assume that a meteorological station needs to send a temperature meas-
urement to a meteorological center. The temperature is one single value, it can
be encoded in different ways. It can be sent as a real value (which in a com-
puter is encoded as a floating-point number, with a mantissa and an exponent)
or it can be sent as an integer value. It can be given in degrees Celsius, Kelvin
or Fahrenheit.

A standard for sending meteorological information must define this. The
ASN.1 definition of how temperature information is transferred might look
like this:

Temperature ::= REAL - - In degrees Kelvin

This statement just says that the temperature is to be encoded using the ASN.1
rules for encoding floating-point (real) values. REAL is a built-in ASN.I type.
ASN.1 has a number of built-in simple data types, like REAL, INTEGER,
BOOLEAN, STRING, etc. Information which cannot be coded formally in the
ASN.1 language can be added as a comment, which is preceded by “--” as “- -
In degrees Kelvin” in the example above.

But how does the recipient know that the value sent is a temperature value
and not, for example, the floating-point value of the wind velocity or humid-
ity? One way of doing this is to introduce a tag. A tag is a label which is sent

34

3. Abstract Syntax Notation, ASN.1

before the data value and indicates what kind of information is sent. The
ASN.1 definition in that case might be:

Temperature ::= [APPLICATION 0] REAL - - In degrees Kelvin

This statement says that, in this application (the protocol for sending mete-
orological data), we let the tag “[APPLICATION 0]” indicate that the data which

follows is a temperature reading. Wind velocity and humidity might have dif-
ferent tags:

Temperature ::= [APPLICATION 0] REAL
WindVelocity ::= [APPLICATION 1] REAL
Humidity ::= [APPLICATION 2] REAL

The three lines above define three new data types, Temperature, WindVelocity,

and Humidity, all encoded using the ASN.1 REAL type. Note that it is only in

this special application thato, 1 and 2 are tags for Temperature, WindVelocity, and

Humidity. In other applications, the tags 0, 1 and 2 may mean something else.
The definition:

Temperature ::= [APPLICATION 0] REAL - - In degrees Kelvin

will actually define a new tagged data type, based on REAL. With explicit
tagging, both tags are sent on the line as shown by this figure:

[Application 0-tag | Length | Real-tag [Length [Value |

~ Realdatatype
——
Tagged data type

Sometimes, a new data type requires a combination of several values. A
complex number, for example, can be coded as two floating-point values, one
for the imaginary and one for the real element of the number. In ASN.1 this
might be defined as follows:

ComplexNumber ::= [APPLICATION 3] SEQUENCE {

imaginaryPart REAL,

realPart REAL }

More complex data types can thus, as in the example, be defined by a combi-
nation of more than one element of simpler types.

One type definition may use separately defined types. For example, the

61 @bed g9 wnipuadwo)

3. Abstract Syntax Notation, ASN.1 35

type for a record containing temperature, wind velocity, and humidity may be
defined as:

WeatherReading ::= [APPLICATION 4] SEQUENCE {

temperatureReading Temperature,

velocityReading ~ WindVelocity,

humidityReading Humidity }

Note that this definition of the new type WeatherReading uses the previous defi-
nitions of the three types Temperature, WindVelocity, and Humidity as elements. In
this way, more and more complex data structures which are needed for some
applications can be built using previously defined simpler types. For example,
we may want to send a series of weather readings from different altitudes in
one transmission as an even more complex object:

SeriesOfReadings ::= [APPLICATION 5] SEQUENCE OF AltituteReading

AltitudeReading Hol [APPLICATION 6] SEQUENCE {
altitude Altitude,
weatherReading WeatherReading }

Altitude ::= [APPLICATION 7] REAL - - Meters above sea level

This contains three ASN.1 productions, where each production refers to types
defined in a later production. ASN.1 productions are usually written in this
top-down order, but ASN.1 does not require any particular ordering of the
productions.

Using the definitions above, the actual bit string (octet string) sent may be
partitioned as shown in Figure 3.

36 3. Abstract Syntax Notation, ASN.1
SeriesOfReadings
App-
lica- AltitudeReading AltitudeReading AltitudeReading
tion 5
_A
— N
altitude

App-

lica- REAL

tion 7

weatherReading

g
-~ N
App- tempe- velo- humi-
lica- rature- city- dity-
tion 4 Reading Reading Reading
App- App- App-
lica- REAL lica- REAL lica- REAL
tion O tion 1 tion 2

The basic octet-string
Figure 3: How ASN.1 and BER is used to produce an octet string.

Here is an example of the actual ASN.1 used in an Internet standard. The ex-
cerpt below is taken from the LDAP standard (RFC 2251):

BindRequest ::= [APPLICATION 0] SEQUENCE {
version INTEGER (1 .. 127),

name LDAPDN,

autt icati Autt icati hoice }

AuthenticationChoice ::= CHOICE {
simple [0] OCTET STRING, --1and 2 reserved
sasl [3] SaslICredentials }

SaslCredentials ::= SEQUENCE {
mechanism LDAPString,
credentials OCTET STRING OPTIONAL }

3. Abstract Syntax Notation, ASN.1 37 38 3. Abstract Syntax Notation, ASN.1

1.7. ASN.1 basic 1. The name of the new data type (must begin with an upper case letter, A-Z)
2. The operator ::=

0z obed g wnipuadwo)

3. The definition of the new data type.

1.1.19. ASN.1 value notation

Information sent via protocols between computers is usually not constant,

Exercise 5

. You are to define a protocol for communication between an automatic scale
since there is no need to send constant information. Thus, ASN.1 is mostly P

- . - . . and a packing machine. The scale measures the weight in grams as a floatin;
used to specify information which is not constant. There is however a notation P € & g &

. o . . int th f th handi integer. Defi
in ASN.1 for specifying constants, the ASN.1 value notation. It is mostly used point number and the code number of the merchandise as an integer. Define a

. . . . data type ScaleReading which the scale can use to report this to the packin,
to specify constants which are to be used in other ASN.1 declarations. For ex- P 9 P P &

machine.

ample, instead of the ASN.1 specification:

Windowline ::= GeneralString (SIZE (80)) N
. Exercise 6
we might use:

Windowline ::= GeneralString (SIZE (lineLength)) Some countries use, as an alternative to the metric system, a measurement

system based on inches, feet and yeards. Define a data type Measurement which
lineLength ::= 80

gives one value in this system, and Box which gives the height, length and

The advantage with this is that it is easier to change the lineLength, it may be width of an object in this measurement system. Feet and yards are integers,

used in many places but defined only once. It is also neat to collect all con-

inches is a decimal value (=floating point value with the base 10).

stants like line lengthes in a special area of a standards document.
1.1.20. ASN.1 terminology

A type or a data type is a set of permitted values. A type can be defined by

1.1.21. Pre-defined, built-in types in ASN.1
Table 7 lists the pre-defined, built-in types of ASN.1.

enumerating all permitted values, or it can be defined to have an unlimited
number of values, like the data types Integer and Real. A new type, which is
defined by a combination of elements of already defined types, is called a
structured type. Example of a definition of a structured type:
ComplexNumber::= [APPLICATION 3] SEQUENCE

{ imaginaryPart REAL,

realPart REAL}
A specification of a syntax isn ASN.1 is called an abstract syntax. The syntax
used in actual communication between two computers is called a transfer
syntax. The specification of how an abstract syntax is to be implemented in a
transfer syntax is an encoding rule, like the Basic Encoding Rules (BER).

An ASN.1 production is a rule to define one type, based on other already

defined types. The syntax for an ASN.1 production is:

Lz 9bed g wnipuadwon

3. Abstract Syntax Notation, ASN.1 39

Table 7: Built-in types in ASN.1

Simple types Character string types Structured types “Useful

types”
BOOLEAN NumericString SET Generalized Time
INTEGER PrintableString SET OF UTCTime
ENUMERATED TeletexString SEQUENCE EXTERNAL
REAL VideotexString SEQUENCE OF ObjectDescriptor
BIT STRING VisibleString CHOICE

Warning: Constraints

OCTET STRING IAS5String ANY
. . are strongly recom-

NULL Graph!cStr!ng [Tagged] mended for Graphic,
OBJECT IDENTIFIER Gel?eralsmn.g <Different vari- ~ General, Universal,

UniversalString ants BMP and UTF8

BMPString < of ISO 10646, strings

UTFS$String na‘t’f 0 n o Shrnes

CharacterString < in the 1998

< version

1.1.22. Comments

@ 9

Comments in ASN.1 start with two hyphens in direct succession, , and

@

end with either two hyphens again, “->* or the end of the row.

1.1.23. Format of identifiers

Field names and constant values in ASN.1 must have names beginning with a
lower case letter (a-z). Types must have names beginning with an upper-case
letter (A-Z). The case is thus significant in ASN.1 names. Both field names
and values can contain all letters (a-z, A-Z, numbers (0-9) and the hyphen
character ("-"). Two hyphens in succession are however not allowed, since

they are used to indicate the start of a comment.

1.8.

Simple Types

1.1.24. Integer Type

The INTEGER simple type can have as values all positive and negative integers
including 0. Note that there is no maximum value. This is different from inte-
gers in computer programming languages, which usually are limited to 32 or
64 bits.

40

3. Abstract Syntax Notation, ASN.1

An example of use of an INTEGER declaration:

Number-of-years ::= INTEGER

An INTEGER declaration may include names of certain values. Example:

Weekday ::= INTEGER { monday(1), tuesday(2), wednesday(3), thursday(4), friday(5),
saturday(6), sunday(7) }

This does not limit the value of Weekday to integers between 1 and 7. Weekday,

as defined above, can still have as value any positive or negative integer.

1.1.25. Subtypes

It is, however, possible to restrict a new type, based on the INTEGER type, to
only some values. This is done using the subtyping notation. Example:
Weekday ::= INTEGER { monday(1), tuesday(2), wednesday(3), thursday(4), friday(5),
saturday(6), sunday(7) } (1..7)

Subtypes are specified with information in parenthesises after a type specifi-
cation, as in the example above. Subtype will limit the set of allowed values
to only a subset of the allowed values of the parent type. In the case of the
INTEGER type, the following commands are allowed in subtype specifica-

tions:
Example Description
1.7 all values between the lower and upper bound
5 a single value
wg:k%gss all values from another, defined type
2110 list of values, separated by |

Additional constructs are allowed in subtypes to other types than INTEGER, this
will be described later. Here are some examples of subtype declarations on
the INTEGER type:

OddsingleDigitPrimes ::= INTEGER (31517)

SingleDigitPrimes ::= INTEGER (2 | INCLUDES OddSingleDigitPrimes)
PositiveNumber ::= INTEGER (1 .. MAX)
Month ::=(1..12)

Month ::=(1..<13)

2z 9bed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 41

The two declarations of Month above define the same value set. MAX and MIN
means that there is no limit. This is not the same thing as +oo and -o0), an
INTEGER cannot have infinity as a value, but it can be of arbitrary size.

Exercise 7

Change the definition of Measurement in Exercise 2 so that feet can only have
the values 0, 1 or 2 (since 3 feet will be a yeard), and so that inches is speci-
fied as an integer between 0 and 1199 giving the value in hundreds of an inch
(since 1200 or 12 inces will be a foot).

1.1.26. Boolean Type
The Boolean type has only two values, TRUE and FALSE. Example:
ShopOpen ::= BOOLEAN
It is not permitted to write:
Gender ::= BOOLEAN {male (TRUE), female (FALSE) }
but instead, you can write

Gender ::= BOOLEAN
male Gender ::= TRUE
female Gender ::= FALSE

Exercise 8

In an opinion poll, made at the exit door from the election rooms, every voter
is asked to indicate which party they voted for. Allowed values are Labour,
Liberals, Conservatives or “other”. The age of each voter is also registered as
a positive integer above the voting age of 18 years, and the gender is regis-
tered. Define a data type to transfer this information from the poll station to a

Server.

Exercise 9

In the local election in Hometown, there are also two local parties, the
Hometown party and the Drivers party. Extend solution 1 to exercise 8 to a
new datatype HometownVoter where also these two additional parties are al-
lowed.

42 3. Abstract Syntax Notation, ASN.1

1.1.27. Enumerated
The ENUMERATED type can only have the values which are enumerated in its

declaration. The syntax is similar to the INTEGER type. Example:

DayOfTheWeek ::= ENUMERATED {monday (1), tuesday (2), wednesday (3), thursday (4),
friday (5), saturday (6), sunday (7) }

A difference between ENUMERATED and INTEGER is that the values of the
ENUMERATED type are not ordered. The following construct:

WeekDayNumber ::= INTEGER {monday (1), tuesday (2), wednesday (3), thursday (4),
friday (5), saturday (6), sunday (7) }

WorkingDayNumber ::= WeekDayNumber (1..5)

is thus not permitted, with ENUMERATED, you have to define this subtype as:

WorkingDay ::= DayOfTheWeek (monday | tuesday | wednesday | thursday | friday |
saturday | sunday)

Compare the following three definitions of DayOfTheWeek:

) DayOfTheWeek ::= INTEGER { monday(1), tuesday(2), wednesday(3),
thursday(4), friday(5), saturday(6), sunday(7) }

@ DayOfTheWeek ::= INTEGER { monday(1), tuesday(2), wednesday(3),
thursday(4), friday(5), saturday(6), sunday(7) } (1..7)

) DayOfTheWeek ::= ENUMERATED { monday(1), tuesday(2), wednesday(3),
thursday(4), friday(5), saturday(6), sunday(7) }
Case @ allows all possible integers as values, case @ and @ only allows the
seven values 1 to 7. Case @ has a defined order, case @ has no defined order

of the values.

1.1.28. Real Type
The ReAL type includes the following allowed values:
+o0, --00 and values of the form

M * BE, where M and E can be any ASN.1 INTEGER and B can only have the
value 2 or 10. Examples:

¢z 9bed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 43 44 3. Abstract Syntax Notation, ASN.1

Weight ::=[APPLICATION 0] REAL -- Measured in grams Table 8 Different kinds of subtypes
pi REAL ::= {314159265358793238462433, 10, 25 } Kind of sub- Allowed for Examples
zero REAL ::=0 Spe
dividuals Single value All types RetirementAge ::= INTEGER (65)

topValue REAL ::= PLUS-INFINITY

n Range INTEGER and | pguitage ::= INTEGER (15 .. MAX)
Exercise 10

Child ::= INTEGER (1 .. 14)
In the armed forces, three degrees of secrecy are used: open, secret and toj i
> & y pen,) P scu"b‘:t;;;?d All types Age ::= INTEGER (INCLUDES Child | INCLUDES
secret. Suggest a suitable datatype to convey the secrecy of a document which AdultAge)
is transferred electronically. i
Size range SEQUENCE OF | | i\ .. General String (SIZE (1..80))
, SET OF and
Exercise 11 all string types | coyple ::= SET SIZE(2) OF Person
Given the solution to Exercise 10, assume that a new degree extra high secret g:ﬁlw:bet limi- [Cy};)irqaaer SINE | octalDigit ::= General String (FROM (0" | "1 | "2"
is wanted. Define an extended version of the protocol defined in Exercise 10 | 73" "4" | "5" | "6" | "7")
to allow also this value. izger subtyp- :Léﬂ:gF Person ::= CHOICE { Male, Female }
] . SEQUENCE OF .
1.1.29. Bit Strlng .~ CHOICE Males ::= SET WITH Component (Male) OF Person

A BIT STRING has as value an ordered string of 0 or more bits. The first bit is List of several [All types Base ::= INTEGER (2 8 |10 16)

subtype values

numbered 0, the second 1, etc. Examples

Constraint (the | All types ENCRYPTED { ToBeEnciphered } ::=

Gender ::= BIT STRING -- This BITSTRING indicates the gender of each actual subtyp-
ing restrictions BIT STRING
-- of several i B .
are specified in (CONSTRAINED-BY {
a comment) £ b ioh d using th
DotPattern ::= BIT STRING (SIZE (25)) -- This BITSTRING always contains -- must be enciphermed using the
-- exactly 25 bits -- DES encipherment standard
3

Person ::= BIT STRING { gender (0), married (1), adult (2) }

Note: BER will encode a BIT STRING more compactly than a SEQUENCE OF
BOOLEAN. With the Packed Encoding Rules (PER) there is no difference.

1.1.30. Subtypes

A subtype specification takes an existing type, and specifies a subtype of its

1.1.31. Variants of Bit Strings

@ Characteristics ::= BIT STRING {gender(0), adult(1), blueEyed(2), caucasian(3) }
values. The following constructs can be used to specify subtypes of a type: @ Characteristics ::= BIT STRING {gender(0), adult(1), blueEyed(2), caucasian(3) }
(SIZE (0 .. 4))

@ Characteristics ::= BIT STRING {gender(0), adult(1), blueEyed(2), caucasian(3) }
(SIZE (4))

@ Specifies a BIT STRING of any length, but with defined names only for its

yz obed g wnipuadwo)

3. Abstract Syntax Notation, ASN.1 45

first four values.
@ Is similar to @, but cannot be longer than 4 bits.
® Is similar to @, but always has exactly 4 bits.

Exercise 12

Assume that you want to define a pattern to cover a monochrome screen.
Each pixel on the screen can be either black or white. The pattern is made by
repeating a rectangle of N times M pixels over the whole screen. Examples
of possible patterns are:

Base Example of use Base Example of use

Specify an ASN.1 data type which you can use to de-
scribe different such patterns.

Exercise 13

A store holds paper in the formats A3, A4, AS and A6. A user wants to know
if sheets are available in each of these four formats. Specify a data type to re-
port this to the user.

46

3. Abstract Syntax Notation, ASN.1

Exercise 14

What is the difference between these two types, and what does monday
mean for each of them?

DayOfTheWeek ::= ENUMERATED { monday(0), tuesday(1), wednesday(2),
thursday(3), friday(4), saturday(5), sunday(6) } }

DaysOpen ::= BIT STRING { monday(0), tuesday(1), wednesday(2),
thursday(3), friday(4), saturday(5), sunday(6) } (SIZE(7))

1.1.32. Octet String TypeAn Octet String specifies a string of zero, one or more oc-

tets. This type is often used when you want to transfer data specified accord-

ing to some other syntax than ASN.1, such as a GIF file. Example:
GifPicture ::= OCTET STRING

1.1.33. Null Type

The Null type has only one allowed value, the value null. It can be used to in-
dicate a placeholder for something to be added in the future, or it can be used
combined with OPTIONAL, where the existence of a value or its absence indi-
cates some information. Example:

Prisoner ::= SEQUENCE {

name GeneralString,

dangerous NULL OPTIONAL }

Which conveys the same information as

Prisoner ::= SEQUENCE {
name GeneralString,
dangerous BOOLEAN }

Gz abed g9 wnipuadwo)

3. Abstract Syntax Notation, ASN.1 47

1.1.34. Examples of the Use of Size

MonthNumber ::= NumericString (SIZE (1 ..2))
MonthNumber ::= NumericString (SIZE (1 12))
Base ::= BIT STRING (SIZE (012..7110))
Couple ::= SET SIZE(2) OFHuman

BridgeDeal ::= SET SIZE (13) OFPlayingCard
BridgeHand ::= SET SIZE (0..13) OFPlayingCard
lineLength INTEGER 80

Line ::= VisibleString (SIZE (0 .. lineLength)

Exercise 15

The X.400 standard specifies that a name can consist of several subfields. One
of the subfields is called OrganizationName and can have as value between 1
and 64 characters from the character se PrintableString. Suggest a definition
of this in ASN.1.

1.1.35. Character String Types

ASN.1 has several Character String types for different charactersets.

NumericString* “0”..“9”and “ 7
PrintableString “a”.l 2, CATEZT, 0”9 () - 0=
TeletexString The T.61 or ISO 6937 character set, a set which uses one or two octets

to specify more than 255 different characters, for example, the character
E is specified by the two characters “'E”.

VisibleString Printable characters, including space, from ISO 646 ("ASCII”), but no
format control characters like Carriage Return or Line Feed.

T61String

1SO646String

1A5String 1A5 (ISO 646, >ASCII”).

GraphicString Can contain characters from several different character sets, using
1SO 2022 codes to switch from one character set to another character set
within the string. Can only contain printable characters and space, not
format control characters.

GeneralString Same as GraphicString, but can also contain formatting characters.

UniversalString 1SO 10646.

CharacterString Can contain characters from multiple character sets, using ISO 2022

codes to switch between the sets.

Character Strings have a special kind of subtype only available for Character
Strings. It is called Permitted Alphabet, and uses a list of characters allowed
in a new type. Example:PrintableString (FROM("0" | "1" 1 "2" ["3" | "4" | "5" | "6" | "7"))

48

3. Abstract Syntax Notation, ASN.1

1.9.

Structured types

Structured types specify new types by combining several components of one

or more already defined types. This table lists the basic constructed types in

ASNL.1.

SET A list of component
fields, like a record in
a data base. the com-
ponents can be in-
cluded in any order,
and the order of the
components when
transmitted does not
convey any informa-
tion.

Chairmen ::= SET {
democratic chairman [0] General
String, republican chairman [1]
General String }

SEQUENCE | Similar to SET, but
the fields must be sent
in a certain order.

Ingredients ::= SEQUENCE {
peas REAL,
eggs INTEGER }

SET OF Zero, one or more
components, all of the
same type. The order
of the components
conveys no informa-
tion.

Ingredients ::= SET OF Ingredient

Couple ::= SET SIZE (2) OF Person

SEQUENCE | | ike SET OF, but
OF order has signifi-
cance.

Children ::= SET OF Person

CHOICE Has as value one of a
listed number of al-
ternative types.

Vehicle ::= CHOICE {
Bus, Car, Bicycle }

For the SET OF and SEQUENCE OF types, it is possible to indicate that one or

more of the components need not be included. Example:

KnownParents ::= SEQUENCE OF {

father Male OPTIONAL,
mother Female OPTIONAL }

9z 9bed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 49

Exercise 16

In a protocol for transferring personal data between two computers, a social
security number is transferred. This number consists of only digits, blanks and
dashes. Name (not split into first name and surname, max 40 characters) can
also be transferred if known, and an estimated yearly income can be trans-
ferred if known. Both of these values are optional, only the social security
number is mandatory. Specify, using the SET construct of ASN.1, a datatype
to transfer this information.

Exercise 17

Assume that a name is to be transferred as two fields, one for given name and
one for surname. How can the solution to Exercise 16 be changed to suit this
case?

Exercise 18

Define a datatype FullName which consists of three elements in given order:
Given name, Initials and Surname. Given name and Initials are optional, but

Surname is mandatory.

Exercise 19

Define a data type BasicFamily consisting of 0 or 1 husband, 0 or 1 wife and 0, 1
or more children. Each of these components are specified as an 1A5String.

Exercise 20

Define a datatype ChildLessFamily, based on BasicFamily from Exercise 19.
Exercise 21 be changed to suit this case?

1.1.36. Inner subtyping

A special kind of subtypes can be specified for constructed types. This is an
inner subtype. By this is meant that you specify a subtype for one or more of
the components.

For SET OF and SEQUENCE OF, the construct WITH COMPONENT is used to

50

3. Abstract Syntax Notation, ASN.1

specify a subtype of the type of the element. Example:
Age ::=INTEGER

People ::= SET OF Age

Childen ::= People (WITH COMPONENT (1 .. 14))

For SeT and SEQUENCE, the construct WITH COMPONENTS is used to specify
subtypes for one or more of the components. Example 1:

Person ::= SEQUENCE {

name GeneralString,

age INTEGER }

Adult ::= Person WITH COMPONENTS{ ..., age (15 .. MAX) }
Example 2:
Parents ::= SEQUENCE {

father Person OPTIONAL,
mother Person OPTIONAL }

SingleMother ::= Parents (WITH COMPONENTS { Father ABSENT, ... }

Thus, in a subtype, an element which was OPTIONAL in the original type
may be specifed as PRESENT, ABSENT or OPTIONAL in the subtype.
SingleMother is a subtype of Person, specified by specifying a subtype of

«

one of its components, the age component. specifies that all the other
components are unchanged.

Example 3:

NormalName ::= SEQUENCE {

gi [0] GraphicString OPTIONAL,
surName [1] GraphicString OPTIONAL,
generation [2] GraphicString OPTIONAL,
age [3] INTEGER

}

JZ 9bed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 51

RoyalName ::= NormalName

(WITH COMPONENTS {
givenName PRESENT,
surName ABSENT,
generation PRESENT
age (18.. MAX) }

Exercise 21

Define a datatype FullName which consists of three elements in given order:
Given name, Initials and Surname. Given name and Initials are optional, but
Surname is mandatory.

Exercise 22

Define a data type BasicFamily consisting of 0 or 1 husband, 0 or 1 wife and 0, 1
or more children. Each of these components are specified as an 1A5String.

Exercise 23

Define a datatype ChildLessFamily, based on BasicFamily from Exercise 16.

Exercise 24

Given the ASN.1-type:

XYCoordinate ::= SEQUENCE {
x REAL,

y REAL

}

Define a subtype which only allows values in the positive quadrant (where
both x and y are >= 0).

52

3. Abstract Syntax Notation, ASN.1

Exercise 25

Given the ASN.1 type:

JET ¢
author Name OPTIONAL,
textbody IA5String }

Define a subtype to this, called AnonymousMessage, in which no author is

specified.

1.1.37. Choice Type

The possible values for the Choice type is the total of all the values of all the
component types. The choice type indicates that always exactly one of the al-
terantives will be sent. Example:

Identification ::= CHOICE {
textualname GeneralString,
identitynumber NumericString }

If you want to define a subtype which can only have one of the alternatives in
a choice, this can be specified as:

Textualldentification ::= Identification (WITH COMPONENTS {textualname})

There is a shortcut notation for this,

Textualldentification ::= textualname < Identification

Exercise 26

Given the data types Aircraft, Ship, Train and MotorCar, define a datatype Vessel
whose value can be any of these datatypes.

Exercise 27

What is the difference between the data type:

NamelListA ::= CHOICE {

ia5 [0] SEQUENCE OF IA5String,

gs [1] SEQUENCE OF GeneralString
}

and the data type:

gz abed g wnipuadwo)

3. Abstract Syntax Notation, ASN.1 53

NamelistB ::= SEQUENCE OF CHOICE {
ia5 [0] IA5String,

gs [1] GeneralString

}
How is it in both alternatives above possible to define a new data type Gener-

alNameList which only can contain a GeneralString element?

Exercise 28

The by-laws of a society allows two kinds of votes:

(a) The voters can select one and only one of 1 .. N alternatives. The alterna-
tive which gets the most total votes wins.

(b) The voters can indicate a score of between 0 and 10 for each of the
choices 1 .. N. The choice which gets highest total score wins.

Specify an ASN.1 data type which can be used to report the votings of a per-|
son to the vote collection agent, and which can be used for both kinds of]
votes. The name of the voter shall be included in the report as an 1A5String.

Exercise 29

Suggest a textual encoding for Exercise 25 using ABNF.

1.1.38. Any Type

The Any type is a way of introducing something, whose format is not defined
in the standard, and where you expect future usage to use different format at
different times. There are two variants:

@ Vehicle ::= ANY

® SEQUENCE {
type-of-vehicle INTEGER,
Vehicle ::= ANY DEFINED BY type-of-vehicle }

With @, the receiving computer will have to analyse the value to find out
which format it has. With @, the number (type-of-vehicle in the example) will
give some kind of information to the receiving computer about the format of

54

3. Abstract Syntax Notation, ASN.1

the ANY-formatted data.

With the @ syntax, type-of-vehicle can either be an INTEGER or an OBJECT-
IDENTIFIER. The difference between an INTEGER and an OBJECT-IDENTIFIER is
that if two different groups, independently define two different extensions,
with different format for what they put in the ANY, they might choose the same
value for type-of-vehicle, and then the receiving agent might confuse the two
values. OBJECT-IDENTIFIER is a special kind of identification tag, which is al-
ways globally unique. No two will ever define two OBJECT IDENTIFIERS with
the same value. The method for defining globally unique OBJECT IDENTI-
FIERs is similar to the method of assigning globally unique domains in the
Domain Name System (DNS). The tree structure in Figure 4 is used to dis-
tribute OBJECT IDENTIFIERS.

ITU standard

0
1 ITU question
0 ITU 2 ITU country
3 ITU member
0 ISO standard
1 180 1 registration-authority
root > 2 ISO member organisation
3

identified-organization

ASN.1 itself

0
2 joint ISO-ITU é g(r;zentatlon layer
3 rtse
4 rose
5 OSI directory (X.500)
6 MHS
7

document interchange

Figure 4: Domain name tree used in selecting OBJECT IDENTIFIERs

1.1.39. Tags
Look at the three examples below:
Name ::= SEQUENCE {

givenName [0] VisibleString OPTIONAL,
surName [1] VisibleString OPTIONAL }

6 abed 9 wnipuadwo)

3. Abstract Syntax Notation, ASN.1 55

Name 1:=SET{
givenName [0] VisibleString,
surName [1] VisibleString }
Name ::= CHOICE {
numericName NumericString,

Iphabeti Visi ing}

In example @, both elements are optional. The tags [0] and [1] are neces-
sary, because otherwise the receiving computer would not know, when it got
only one string, whether this string was givenName or surName.

In example @, the tags are necessary, because otherwise the receiving
computer would not know if the first string was the givenName or the sur-
Name, since values of SET types can be sent in arbitrary order.

In example @), the alternatives have different base type, NumericString and
VisibleString, so the receiving computer can look at the UNIVERSAL tag to
know which of the alternatives it got.

In summary, the tags for the elements must be different for components in
a SET, for components in SEQUENCEs with OPTIONAL elements, and for
components in a CHOICE. If the base type is not different, tags must be
added to make them different.

Tags are labels used to differentiate between types. Tags are necessary in
certain cases, but can be used also when they are not required. It is regarded
as good ASN.1 usage to use the tags, also when they are not absolutely neces-
sary. The advantage with using tags, even when they are not needed, is that
they will make it easier for an old implementation to handle data in a new
format, defined in a newer version of the standard. (This is not true if the
Packed Encoding Rules, PER, are used.)

A tag has two components, a class component and a number component.
There are four classes of tags as shown in Table 1.

56 3. Abstract Syntax Notation, ASN.1

Table 9: Tag classes

Class Example Description

Application Is used in the same way everywhere in an ASN.1 mod-
ule. Use of this tag has problems, mainly when ASN.1

definitions are exported from one module to another.

[APPLICATION 3]

Private Allows a company to make its own extensions. Also this
[PRIVATE 4] tag has problems, because it is not possible to distin-
guish between two extensions made by different compa-
nies.

Context m This tag is only valid in its immediate context, such as a
SET, SEQUENCE or CHOICE. It is the best tag to use if
the UNIVERSAL tag is not enough.

The 1994 extension of ASN.1 introduced a fifth tag declaration AUTOMATIC.
But AUTOMATIC does not define a new tag class, it specifies that the tag is
to be computed automatically when compiling the ASN.1 code.

Here is an example of the use of tags:

@ Name = SET {
given name [0] VisibleString,
surname [1] VisibleString }
@ PersonnelRecord 1= SET{
name [0] Name,
wage [1]1 INTEGER }

Even if these two ASN.I type declarations occur in the same module, they
will not be confused. The tag [0] means something different in the @ and the
@ type declaration.

The pre-defined UNIVERSAL tags are listed in Table 10.

0¢ 9bed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 57

Table 10: UNIVERSAL tags in ASN.1

Simple types Structured types
1 BOOLEAN 16 SEQUENCE
2 INTEGER 16 SEQUENCE OF
3 BIT STRING 17 SET
4 OCTET STRING 17 SETOF
5 NULL .
6 OBJECT IDENTIFIER (i) crorce
9 REAL (i) ANy

10 ENUMERATED . . .
(i) No special tag is needed,

the tags of the components
are used

(ii)) The tag is specified inside
the ANY value, and can
thus be any possible ASN.1

tag
Character String Types UsefulTypes
12 UTF8String 7 ObjectDescriptor
18 NumericString 8 EXTERNAL
19 PrintableString 23 UTCTime
20 TeletexString 24 GeneralizedTime

21 VideotexString
22 1A5String

25 GraphicString
26 VisibleString

27 GeneralString
28 UniversalString
29 CharacterString
30 BMPString

1.1.40. Explicit and Implicit tags

Suppose you have the following ASN.1 declaration:

Name ::= SEQUENCE {

gi [0] Visi ing OPTIONAL,
initials [1] VisibleString OPTIONAL,
surName [2] VisibleString OPTIONAL }

58

3. Abstract Syntax Notation, ASN.1

When this is encoded using the Basic Encoding Rules (BER), two tags will
be sent for every element. First the Context-Dependent tag [0], [1] or [2], and
then the UNIVERSAL tag for VisibleString (28, see Table 10). This is not really
necessary. The declaration can then be changed to:

Name ::= SEQUENCE {

givenName [0] IMPLICIT VisibleString OPTIONAL,
initials [1] IMPLICIT VisibleString OPTIONAL,
surName [2] IMPLICIT VisibleString OPTIONAL }

The word IMPLICIT specifies that only the tag defined in the text ([o], [1] or
[2],) need be sent, not the UNIVERSAL tag for VisibleString.

It is also possible, in the head of an ASN.1 module, to specify that all tags
are to be IMPLICIT where possible, even if this is not explicitly specified.
The head of an ASN.1 module can be

DEFINITIONS ::= -- Implies Explicit tags

DEFINITIONS IMPLICIT TAGS ::=

DEFINITIONS EXPLICIT TAGS ::=

DEFINITIONS AUTOMATIC TAGS ::= (In the 1994 version ASN.1)

If the module head specifies IMPLICIT TAGS, the ASN.1 code within the module
must use EXPLICIT where this kind of tag is wanted. If the module head speci-
fies EXPLICIT TAGS, the ASN.1 code within the module must use IMPLICIT
where this is wanted (more about this in the section Modules on page 65).

Exercise 30

Assume an ASN.l-module which looks like shown below; Change this
ASN.1 module, so that the same coding is specified, but with tag defaults
IMPLICIT instead of EXPLICIT.

WeatherReporting {2 6 6 247 1} DEFINITIONS EXPLICIT TAGS :=
BEGIN

WeatherReport ::= SEQUENCE {
height [0] IMPLICIT REAL,
weather [1] IMPLICIT Wrecord

L¢ abed g wnipuadwo)

3. Abstract Syntax Notation, ASN.1 59

Wrecord ::= [APPLICATION 3] SEQUENCE {
temp Temperature,
moist Moisture
wspeed [0] Windspeed OPTIONAL

}

Temperature ::= [APPLICATION 0] IMPLICIT REAL
Moisture ::= [APPLICATION 1] REAL
Windspeed ::= [APPLICATION 2] REAL

END - - of module WeatherReporting

3. Abstract Syntax Notation, ASN.1

Exercise 31

Which of the tags in the example below can be removed while the receiving
computer will still be able to interpret what you send?

Record ::= SEQUENCE {

GivenName [0] Pri ing

SurName [1] PrintableString }

Record ::= SET {
Gi [0] Pri ing
SurName [1] PrintableString }

Record ::= SEQUENCE {
GivenName [0] PrintableString OPTIONAL
SurName [1] PrintableString OPTIONAL }

RGB-Colour ::= [APPLICATION 1] SEQUENCE {
red [0] REAL,

green [1] REAL OPTIONAL,

blue [2] REAL

}

CMG-Colour ::= SET{ cyan [1] REAL,
magenta [2] REAL,

green [3] REAL

}

Frequency ::= SET {fullness [0] REAL,
freq [1] REAL
}

Exercise 32

Which of the tags in the examples below can be removed, while the receiving|
computer will still be able to deduce what you meant, and assuming that
AUTOMATIC tagging is not specified.

Colour ::= [APPLICATION 0] CHOICE {

rgb [1] RGB-Colour,

cmg [2] CMG-Colour,

freq [3] Frequency

Exercise 33

The following ASN.1 construct is taken from the 1988 version of the X.500
standard. (OPTIONALLY-SIGNED is a macro, macros were replaced with a new
construct in the 1994 version of ASN.1.)

ListResult ::= OPTIONALLY-SIGNED
CHOICE {

listinfo SET {

DistinguishedName OPTIONAL,
subordinates [1]SET OF SEQUENCE {

F d

aliasEntry [0] BOOLEAN DEFAULT FALSE
fromEntry [1] BOOLEAN DEFAULT TRUE},
partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL
COMPONENTS OF CommonResults },
uncorrelatedListinfo[0] SET OF ListResult }

Exercise 34

Is there anything wrong in the ASN.1 code in Exercise 33.

}

Exercise 35

Why is there no identifier on the element COMPONENTS OF? What does it]

Zs obed g wnipuadwo)

3. Abstract Syntax Notation, ASN.1 61

|mean?

Exercise 36

Why are there no context-dependent tags on some of the elements, but not on|
all of them?

1.10.

Special types and Concepts

1.1.41. Time Types

GeneralizedTime is a built-in type for specificing time and date. Its format fol-
lows an ISO standard for dates. UTCTime is a shorter variant, where year is
specied with only two digits (beware!). The same point in time, 9 minutes and
25.2 seconds after 9 p.m in the U.S. Eastern Time Zone can be specified in
three ways using GeneralizedTime:

time-to-stop-working GeneralizedTime ::="19880726210925.2" or
time-to-stop-working GeneralizedTime ::="19880726210925.2Z" or

time-to-stop-working GeneralizedTime ::="19880726210925.2-0500"

1.1.42. Use of Object Identifiers, Any, External

Older version
of a program

Data in an
older format

Newer version
of a program

Datain a
newer format

Figure 5:Allow communication between old and new programs

Figure 5 shows a common problem in distributed systems, where many pieces

62

3. Abstract Syntax Notation, ASN.1

of software, which have been developed at different times by different people,
need to work together. Thus, an older version of a program may receive data
from a newer version, in a newer format, which did not even exist when the
older version of the program was produced.

ASN.1 contains special constructs to make this possible: constructs for
specifying data elements which can be bypassed by older versions of a pro-
gram and interpreted by newer versions of the same program.

Here is an excerpt from the ASN.1 in the 1988 version of X.420, which
shows one way of using these extension facilities:

ExtensionsField ::= SET OF HeadingExtension
HeadingExtension ::= SEQUENCE {

type OBJECT IDENTIFIER,
value ANY DEFINED BY type DEFAULT NULL NULL }

}
HEADING-EXTENSION MACRO ::=
BEGIN
TYPE NOTATION ::="VALUE" type | empty
VALUE NOTATION ::= VALUE (VALUE OBJECT IDENTIFIER)
END

One heading extension, defined in the 1988 version of X.400 using this con-
struct, is:

languages HEADING-EXTENSION

VALUE SET OF Language

::= id-hex-languages

Language ::= PrintableString (SIZE (2..2))

In the 1992 version of ASN.1, the ANY and MACRO constructs were abol-
ished, and replaced by the new CLASS construct. The above extension facil-
ity is with the 1994 X.420 syntax instead defined as:

ExtensionsField ::= SET OF IPMSExtension

IPMSExtension ::= SEQUENCE {

type IPMS-EXTENSION.&id,
value IPMS-EXTENSION.&Type DEFAULT NULL:NULL }

¢¢ abed g wnipuadwo)

3. Abstract Syntax Notation, ASN.1 63

IPMS-EXTENSION ::= CLASS {

&id OBJECT IDENTIFIER UNIQUE,

&Type DEFAULT NULL }

WITH SYNTAX { [VALUE &Type ,] IDENTIFIED BY &id }

The heading extension for languages is with the new 1992 syntax defined as:

languages IPMS-EXTENSION ::= {VALUE SET OF Language,
IDENTIFIED BY id-hex-languages}

Language ::= PrintableString (SIZE (2..5))

As is shown in the example above, a typical such extensible element has two
subfields, one field with the name type and one field with the name value. The
type field is particular for every kind of extended field. The value field has a
structure which is called ANY DEFINED BY type with the 1988 notation and IPMS-
EXTENSION.&Type with the 1992 notation. This means that, for different values
of type, different ASN.1 specifications will describe the value. A new exten-
sion can then be identified by a new type value, and a new ASN.1 specifica-
tion of the value structure, like SET OF Language in the example above.

The type field in the example above is specified as an OBJECT IDENTIFIER. It
can also be specified as an INTEGER. The difference between OBJECT
IDENTIFIER and INTEGER is that there are rules defined which allows anyone to
obtain a new OBJECT IDENTIFIER, which will then be different from any other
OBJECT IDENTIFIER obtained by anyone else. In the case of integer, there is no
protection against two different developers using the same integer for two dif-
ferent extensions, which would, of course, create a mess if their systems were
connected. Thus, in practice, integer only allows extensions made by the inter-
national standards organizations, while OBJECT IDENTIFIER allows anyone to
make his own extension, without risk of a conflict with another extension
made by some other person or organization.

The value of an extension can (with the 1988 notation) be either ANY or
EXTERNAL. The difference between the two is that ANY refers to an extension
specified in ASN.1, while EXTERNAL allows an extension specified in some
language other than ASN.1.

An implementation, which encounters an extended field, can react to the
extended field in four different ways:

1. The implementation knows about the extension and utilizes it in the way it

64

3. Abstract Syntax Notation, ASN.1

was intended to be used.

2. The implementation receives the unknown fields, removes them and con-
tinues handling the message as if they had never been there.

3. The implementation receives the unknown fields, saves them, and transfers
them further along with the other data, even though the implementation
does not understand and cannot use the information in the extended field.

4. The implementation recognizes that this is an extended field and then gives
an error code saying that it cannot handle the data because it contains an
extension it does not understand.

Note that (4) is different from the kind of error that was produced when the

incoming data were incorrect. Such errors, called protocol violations, carry a

risk that a program will crash completely or react in unpredictable ways.

For envelope extensions, the X.400 standard for electronic mail specifies
for each extension whether reaction (3) (noncritical extension) or (4) (critical
extension) should be used by an implementation which does not understand
the extension. For heading extensions, X.400 states that reaction (3) is suit-
able.

1.1.43. Object Descriptor and External types

Example of use of the ObjectDescriptor type:
ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

This types is used when you use the ANY or EXTERNAL types, to give a human-
readable description of the data type, in addition to the machine-parseable
type code.

The EXTERNAL type can actually be specified in ASN.1. Its structure is:

EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE
{ direct-reference OBJECT-IDENTFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE {
single-ASN1-type [0] ANY,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING

¢ obed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 65

This is a more advanced version of ANY, where the type of the unspecified
data is specified in one or more of three ways: An OBJECT IDENTIFIER, An
INTEGER or a text string. At least one of them must be specified.

1.1.44. Modules

A module is a named collection of ASN.1 type and value definitions. Its
structure is as follows:

<moduleReference> <obj-id > DEFINITIONS <tag-defaults> ::=
BEGIN

EXPORTS <type and value references>;

IMPORTS <type and value references>

FROM <moduleReference> <obj-id>;

<type and value definitions>

END

EXPORTS and IMPORTS are tools for using type definitions from one module in
another module. Example of modules with IMPORTS and EXPORTS:

CargoHandling { 1 2 4711 17 } DEFINITIONS EXPLICIT TAGS ::=
BEGIN EXPORTS Box, Container ;

Box ::= SEQUENCE {
height INTEGER, - - in centimeters
width INTEGER, - - in centimeters
length INTEGER } - - in centimeters

Container ::= SEQUENCE
weight INTEGER, - - in kilograms

volume Box }
END - - of CargoHandling
TrainCargo { 124711 18 } DEFINITIONS EXPLICIT TAGS ::=

BEGIN IMPORTS Box, Container FROM CargoHandling { 1 2 4711 17};

66

3. Abstract Syntax Notation, ASN.1

TrainContainer ::= Container
(WITH COMPONENTS
{ weight(0..5000), volume }
)

Carriage ::= SET SIZE (2..4) OF Container

END - - of TrainCargo

Example of a module specification using dot notation:
CargoHandling { 1 2 4711 17 } DEFINITIONS EXPLICIT TAGS ::=
BEGIN EXPORTS Box, Container ;

Box ::= SEQUENCE {
height INTEGER, -- in centimeters
width INTEGER, -- in centimeters
length INTEGER } -- in centimeters
Container ::= SEQUENCE
weight INTEGER, -- in kilograms
volume Box }

END -- of CargoHandling
TrainCargo { 1 2 4711 18 } DEFINITIONS EXPLICIT TAGS ::=
BEGIN

Container ::= CargoHandling{ 1 2 4711 17 }.Container
(WITH COMPONENTS
{ weight(0..5000), volume }
)

Carriage ::= SET SIZE (2..4) OF Container

END -- of TrainCargo

Exercise 37

Given the following ASN.1 module:

Driving {1 2 4711 17} DEFINITIONS EXPLICIT TAGS ::=
BEGIN

G¢ abed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 67

MainOperation ::= SEQUENCE {
wheel [0] REAL,
brake [1] REAL,
gas [2] REAL }

END

Define an ASN.1 module CarDriving, which imports MainOperation from the|
module above, and defines a new datatype FullOperation which in addition to
MainOperation also includes switching on and of the left and right blinking
lights, and setting the lights as unlit, parking lights, dimmed light and full
beam.

1.11. Encoding Rules

1.1.45. Basic Encoding Rules (BER)

The Basic Encoding Rules (BER) are the most commonly used encoding rules
for interpreting ASN.1 syntax into protocol units to be sent over the net. BER
is based on the length-value format (see page 18). Figure 6 shows two exam-
ples of BER encodings. Primitive encoding is used for simple types, types
which have no components. Constructed encoding is used for constructed
types, for example SET, SET OF, SEQUENCE, SEQUENCE OF. As is shown by the
figure, the value of a constructed type is itself split into a series of Tag-
Length-Value objects.

68

3. Abstract Syntax Notation, ASN.1

Primitive:
T L ‘ (a stringvof octets)
Constructed:
T L (a string of nc;icd encodings)
T|L|V T| L[|V T| L

v

T=Tag octets L = Length octets V = Value octets

Figure 6 Tag-Length-Value encoding in BER

1.1.46. The Tag or Identifier field

One-Octet-Variant

X

Tag-class Primitive Tag-number
or
constructed \
L{t|afiff1 1 o |0

Multiple-Octet-Variant

Figure 7: Use of bits in BER encoding

The first two bits contain the tag class, with 00=Universal tag,
01=Application tag, 10=Context tag and 11=Private tag. The third bit is 0 for
a primitive type and 1 for a constructed type. If the tag number is between 0
and 30, it is encoded in the remaining give bits (One-Octet-Variant in Figure

o¢ abed g wnipuadwo)

3. Abstract Syntax Notation, ASN.1 69

7). If the tag class is higher than 30 (Multiple-Octet-Variant in Figure 7), the
remaining five bits are all 1-s, and the tag value is encoded in the last 7 bits of
one or more succeeding octets. The first bit of each such suceeding octet is 0
for the last octet, 1 for all but the last octet.

1.1.47. The Length Field in BER

Short form

0<n<127 0 1 n

Unlimited form, ends with an octet with eight 0-s

Figure 8: The Length field in BER

As is shown in Figure 8, the length field in BER also has a short, one-octet
form and a long, multiple-octet form. The short form has the first bit 0, and
the remaining 7 bit can contain a length between 0 and 127. In the long form,
the first bit is 1, and the remaining 7 bits of the first cotet contains the number
of additional octets. The length is then encoded as a binary number in the rest
of the bits.

There is also an unlimited form. It starts with an octet with 1 in the first 1
and 0 in the rest of the bits, and ends with an octet with eight 0-s. The unlim-
ited form is always constructed, i.e. its value must always be organized into
Tag-Length-Value groups. Even though the end is marked with an octet with
eight 0-s, it is sitll possible to have octets with all 0-s in the value, if these
octets occur inside the Tag-Length-Value groups. An octet with eight 0-s is

70

3. Abstract Syntax Notation, ASN.1

only interpreted as an end of the unlimited form, if it occurs immediately after
the end of a Tag-Length-Value group, as is shown below.

‘I‘1 00OODOO‘I‘L‘C‘...‘I‘L‘C‘OO000000

1.1.48. The BER Value Octet

Table 11 shows how the BER value octet is defined for different types.

Table 11: The BER value octet

Boolean One Single Octet.

FALSE = 00000000
TRUE = all other values.

Integer Two-complement notation, coded using the smallest number
of necessary bits.

Enumerated Same coding as Integer.

Null No value octet at all.

Object Identifier A packed sequence of integers. The first integer contains the
first two labels, after that, one label in each encoded integer.

Set, Sequence, Nested sequences of coding of the components.

Set-of, Sequence-

of

Choice, Any Same code as for the selected element.

Real Four variants:

0 is represented by no value octets,

01000000 represents PLUS-INFINITY and 01000001 repre-
sents MINUS-INFINITY

Other values are coded as binary values with the base 2, 8 or
16, or as decimal values according to the ISO 6093 standard.
The first octet indicates which coding method is used.

String Strings have two encoding variants, primitive and con-
structed. In the primitive form, the values are directly put
into the value octets. In the constructed form, the string is
split into a series of substring, as if the ASN.1 definition had
been:

BIT STRING ::= [UNIVERSAL 3] IMPLICIT SEQUENCE OF BIT STRING

OCTET STRING ::= [UNIVERSAL 4] IMPLICIT SEQUENCE OF OCTET STRING

ing ::= [UI 22] IMPLICIT E OF OCTET STRING

1.1.49. Variants of the encoding of a string with tag

Figure 9 shows some examples of the encoding of a string, with and without a

/¢ 9bed 9 wnipuadwon

3. Abstract Syntax Notation, ASN.1 71

preceding context-sensitive tag.

Context Constructed .
— / IAS string

A7 = 1010\& Lejgth)/‘/Length
Explicit tag W Mo i wpn
[l ASSting "Fred" |7 06 16 04 "B" "R" "E" "D" |

Content
Original-type Womw wpu wmn non
IA5String "Fred" /'Jls 04 'E "R" "E' D" |
Tag\‘

Implicit tag W o won
[7] IMPLICIT |A5String "Fred" |87 04 "F" 'R" "E" 'D |

87 = 1000

Confext Primitive

Figure 9: Encoding of a tagged string

1.1.50. Example of the coding of a SEQUENCE

HeadOfState ::= [APPLICATION 17] SEQUENCE
{ name IA5 STRING,
type ENUMERATED {
president (0),
emperor (1),
king (2) }
birthyear INTEGER OPTIIONAL }

swedishKing ::= {
name "Carl XVI Gustav",
type king,
birthyear 1946 }

72

3. Abstract Syntax Notation, ASN.1

This might be coded as shown below (hexadecimal numbers):

49| 18| 4pplication tag 17 and Length of the whole construct
16| OF] C a‘ r‘ |‘ ‘x‘v‘ |‘ ‘G‘u‘s‘ c‘a‘v|Namg

0A[01] 02| pype= king
02| 02| 1E| 4] birthyear = 1946

The hexadecimal value 16 in the first octet of the second line, the tag of the
text string, is made up as follows:

2210 = 161g= class universal(00),
form primitive(0), tag number ofojof1joj1]|1]0O
1A5String(22)

Exercise 38

Given the ASN.1 definition
Surname ::= [APPLICATION 1] IA5String
hername Surname ::="Mary"

Show its coding in BER

Exercise 39

Given the ASN.1 definitions

Light ::= ENUMERATED {
dark (0),
parkingLight (1),
halfLight (2),
fullLight (3) }

daylight Light ::= halflight
give a BER encoding of this value.

Exercise 40

Given the following ASN.1 defintions and explicit tags

g¢ obed 9 wnipuadwo)

3. Abstract Syntax Notation, ASN.1 73

BreakFast ::= CHOICE {
continental [0] Continental,
english [1] English,
american [2] American }

Continental ::= SEQUENCE {

beverage [1] ENUMERATED {

coffea (0), tea(1), milk(2), chocolade (3) } OPTIONAL,
jam [2] ENUMERATED {

orange(0), strawberry(1), lingonberry(3) } OPTIONAL }

English ::= SEQUENCE {
. t Conti .
eggform ENUMERATED {
soft(0), hard(1), scrambled(2), fried(3) }

Order ::= SEQUENCE {
customername IA5String,
typeofbreakfast Breakfast }

firstorder Order ::={
customername "Johan",
typeofbreakfast {
english {
continentalpart {
beverage tea,
jam orange
}
eggform fried

123

Give an encoding of firstorder with BER.

1.1.51. Different Encoding Rules for ASN.1

Most standards based on ASN.1 use the Basic Encoding Rules. They are not
very efficient, the redundancy causes about twice as many octets as the
Packed Encoding rules. In addition to BER, DER and CER are also used, be-
cause they are better suited to security applications. BER allows the same in-
formation to be coded in different ways. For example, TRUE can in BER be
represented by any nonzero octet value, and strings can in BER be encoded

74

3. Abstract Syntax Notation, ASN.1

with either definite length or indefinite length encoding. This means that a se-
curity checksum may fail for two different BER encodings of exactly the
same data. With DER and CER, there are no options for coding the same in-
formation in more than one way, and security checksums will thus work bet-
ter with DER and CER than with BER. See Table 12 for a list of different en-
coding rules for ASN.1.

Table 12: Different encoding rules

BER = Basic Encoding Rules Not very efficient, much redundancy, good sup-

port for extensions

DER = Distinguished Encoding Rules No encoding options (for security hashing),
always use definite length encoding

CER = Canonical Encoding Rules No encoding options (for security hashing),
always use indefinite length encoding

PER = Packed Encoding Rules

LWER = Light Weight Encoding Rules Almost internal structure, fast encod-
ing/decoding

Very compact, less extensible

1.12. ASN.1 compilers

ASN.1 | | ASN.1 |
source file compiler

.h and .c-files (C declarations |
and functions)

Standard library I::> User implementation

Figure 10: ASN.1 compilers

As shown in Figure 10, the ASN.1 compiler takes ASN.1 declaration files and

6¢ abed g9 wnipuadwo)

3. Abstract Syntax Notation, ASN.1 75

compiles this into, usually, source code in the C programming language. This
source code is then combined with standard libraries and included as part of
the user application source code. Some ASN.1 compilers produce code which
directly compiles the ASN.1 into code for exactly this rule. Such compilers
need less standard libraries. Other compilers compile to ASN.1 source code
into some kind of data structure, which is then interpreted during execution.
They need more standard libraries, since these libraries will include the inter-
preter code.

4. HTML and C5S

Objectives

HTML and CSS encode text with markup. The markup controls the lay-
out and gives some structural information about the text.

Keywords
HTML
CSs
W3C

ot obed g wnipuadwo)

4. HTML and CSS 77

1.13. (Hypertext Markup Language)
This book is not a complete guide to HTML [W3C HTML401]. Here is just a
short description of some central concepts of HTML, since these concepts are
used later in this book.
A HTML document is a document which contains special codes called
markup, which control the layout of the document. Example:
HTML document: What the user sees:
<p>First paragraph containing one First paragraph containing one boldface word.
<PoSecond paragraph with a line Second paragraph with a line break
break
text after the line break. text after the line break.
As shown in this example, the <p> tag indicates the start of a new paragraph,
the tag indicates bold-face text, the tag indicates the end of bold-face
text, and the
 tag indicates a line break.
Since certain characters are used for markup, such as “<”, “>”, “&” and
“"_they must be coded if they are to be included as text and not as markup.
Example:
HTML document: What the user sees:
Jim's e-mail address is Jim Sim Jim's e-mail address is Jim Sim <jsim@foo.bar>.
> jsim&foo.barsgt; .

An HTML document can contain links to other documents. Example:

HTML document: What the user sees:
Read the Read the web page associated with this book.

web pageassociated with this book.

The links to other document contain URIs (see chapter ;). To include pic-
tures in an HTML document, you include a link to a separate file, containing

the picture in some graphics format, such as for example GIF. Example:

78 4. HTML and CSS

HTML document: What the user sees:
This is st e (e loym GIF
the logo of the Internet Engineering Task \M\A:. 80 ¢
Forc&g It e ':\/\/\A the Internet Engi-
neering Task
1 ETF Force.

An HTML document is split into main sections as shown in this example:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"> Heading line which identifies which
<HTML> dialect of HTML is used

<HEAD >
<TITLE>Caves and Caverns in Sweden</TITLE>
<META name="description" The head section contains information

for the whole document and not di-
rected at some particular part of the
document. The head can also contain

content="This site gives an overview of
the most famous Swedish caves.">

<META name="keywords" content="Sweden, style sheets and executable code.
cave, cavern, speleology, Lummelunda">
</HEAD>
<BODY BGCOLOR="#FFFFFF"> The body section contains the actual
<H1>Caves and Caverns in Sweden</H1> text shown to users.

<p>The most famous Swedish cave is the
Lummelunda Cave on the Island of Gotland
in the Baltic Sea.

</BOD Y></HTML>

An HTML document can refer to other HTML documents, which are com-

bined to produce the text shown to the user. Example:

4. HTML and CSS

79

80 4.

HTML and CSS

L @bed g wnipuadwo)

HTML documents: What the user HTML document: What the user sees:
sees: e This is the main heading
FP F <title>CSS E: le</title> . . .
frameset.html <HTML ><HEAD> This is the left | This is the top frame. <stl:y1: type=)‘('i“;pxte/cssl"> € This is the text below the main
<TITLE>Framed document</TITLE> frame. <l-- .
</HEAD> hl { font-family: Helvetica; font-size: 16pt} headlng-
<FRAMESET COLS="25%,75%"> .maintext { font-family: Times; font-size: 12pt}
<FRAME NaME=left scrolling=no ;;:ty le>
src="left.html"> </head>
" " <body>
<FRAMESET ROWS="50%,50%"> <h1>This is the main heading</hl>
<FRAME NAME=tOp scrolling=no <div class=maintext>))
N N <p>This is the text below the main heading.</p>
sre="top.html"> </div></body></html>
<FRAME NAME=right scrolling=no
s;c=“ bottom.html"> The style sheet in the example above specifies that all text with the tag <n1>
</FRAMESET>
<§quzsm> should be shown with the font Helvetica and the size 16pt, and that all text
</HTML>
whose tag has the attribute “class=maintext” should be shown with the font
left.html <HTML ><HEAD> A A
<riTLE>Left frame</TITLE> Times and the size 12 pt.
</HEAD><BODY> The <t-- and --> commands above will make this text look like comments
This is the left frame.
</BOD Y></HTML> to old browsers. In the future, when web browsers generally understand the
top.html <HTML ><HEAD> This is the bottom frame. <style> element, this will not be necessary any more.
gime>Top frame</riTie> Style sheets can either be put into the <head> of the HTML document, or
This is the top frame. they can be put into separate files, which are referenced by the HTML docu-
</BOD Y></HTML> .)
ment. The document above could thus instead have consisted of two files:
bottom.html <HTML ><HEAD>
<TITLE>Bottom frame</TITLE>
</HEAD><BODY> HTML document: What the user sees:
This is the bottom frame. o . .
</BODY></HTHL> <html> This is the main heading
<head> 9 . 9
<title>CSS Example</title> This is the text below the main heading.
- <LINK rel="stylesheet"
1.14. Cascadlng Style Sheets (CSS) href="styles.css"></style>
</head>
HTML documents can be combined with style sheets, which specify how dif- <body> A . .
’ <h1>This is the main heading.</hl>
ferent parts of the HTML documents are to be shown to users. The language <div class=maintext>
for these style sheets is called “Cascading Style Sheets” [WR3C CSS1, W3C <p>This is the text below the main
heading.</p>
CSS2]. Example: </div>< /%ody>g/html>

4. HTML and CSS 81

CSS style sheet file “styles.css™:

font-family: Helvetica; font-

font-family: Times; font-size:

Zp obed g wnipuadwo)

One central idea in Cascading Style Sheets is that there can be several differ-
ent Style Sheets from the same document, which will show it in different
ways. Different users may best be supported by style sheets suited to their
needs. There is also an option for a user override the style sheet specified by

the provider of a web page with his own alternative style sheet.

CSS can also be used with XML, see section 1.19 on page 97.

5. Extensible Markup Language, XML

Objectives

XML is a coding format which can combine structural information with
layout information to control how XML is shown to users.

Keywords
XML
DTD
CSS
XSLT

¢ abed g wnipuadwo)

5. Extensible Markup Language, XML 83

Extensible Markup Language (XML) Introduction

XML (Extensible Markup Language), like ABNF, is a method for specifying
nested textual encoding. XML is, however, similar to ASN.1 in that it easily
allows complex structures. A particular property of XML is that it can be
combined with layout information (using separate standards CSS = Cascading
Style Sheets, and XSLT = Extensible Style Language Transformations) to
convert the information into human-friendly text.

Like ASN.1, XML consists of two languages, one language for specifying
the coding format, corresponding to ASN.1, called DTD (Document Type
Definition) and another languages for the actual encoded data, corresponding
to BER, called XML. DTD (like ASN.1 and ABNF) is a metalanguage, a lan-
guage for specifying another language used for the actual encoded data.

XML has many superficial similarities to HTML. It is, however, different
from HTML in that HTML has a fixed set of tags and attributes, specified in
the HTML specification, while XML allows every application to specify its
own tags and their attributes.

When describing ASN.1 and ABNF, it is natural to start by describing the
metalanguage, and then go on to describe the actual coding format. With
XML, descriptions usually start with the actual coding format, before de-
scribing the metalanguage. The reason for this is that the XML coding format
is very easy to read and understand, while the metalanguage DTD is rather
complex.

The octets sent to describe a person in XML might be:

(Boldface is not part of XML, just used here to make the text more
readable.)

<PERS ON>
<NAME >John Smith</NAME>
<BIRTHYEAR>1941</BIRTHYEAR>
<WAGE>57000 </WAGE>
</PERSON>

If you prefer to separate the name into components, the octets sent might

5. Extensible Markup Language, XML

instead be:
<PERS ON>
<NAME >
<FIRST-NAME>John</FIRST-NAME>
<SURNAME>Smith</SURNAME>
</NAME>
<BIRTHYEAR>1941</BIRTHYEAR>
<WAGE>57000</WAGE>
</PERSON>

From these examples, you can see that XML-encoded data consists of a
nested structure of tags and data within the tags. In this way, XML is very
similar to HTML.

An XML element has a start-tag, contents, and an end-tag. Thus, in the ex-
ample above, <BIRTHYEAR>1941</BIRTHYEAR> IS an element, and <BIRTHYEAR>
is the start-tag and </BIrTHYEAR> is the end-tag of this element.

The definition of the tags used, in the example <PERSON>, <NAME>, <FIRST-
NAME>, <SURNAME>, <BIRTHYEAR> and <wage> are not pre-defined in XML, they

are chosen by the user or application to suit its needs.

Exercise 41

Here is an example of part of an e-mail heading according to current e-mail

standards.

From: Nancy Nice <nnice@good.net>

To: Percy Devil <pdevil@hell.net>

Cc: Mary Clever <mclever@intelligence.net>, Rupert Happy
<rhappy@fun.net>

How might the same information be encoded using XML?

1.1.52. XML versus HTML
Here is a comparison of the main similarities and differences between XML
and HTML:
Function HTML XML
Set of tags Built-in, predefined set of tags specified | Every application or user can define its own
in the HTML standard. element types and select their tags to suite the
needs of this particular application.
End-tag Not always required. Always required.
Case sensitive No, for example, <TITLE> and <ti- Yes, <TITLE> and <title> are two different
tle> are identical. tags, specifying two different element types. An

element which starts with <TITLE> must end
with </TITLE>, not with </title>.

¥ obed g wnipuadwo)

5. Extensible Markup Language, XML 85

Function

HTML XML

Acceptance of coding er-
rors

Most web browsers accept many coding | Code must be syntactically correct, and only
ITOrS. syntactically correct XML-encoded data should
be accepted by an XML processor.

5. Extensible Markup Language, XML

Table 13: Relation between DTD and XML

Example:
<1>Bold-italic text</I1>

is not correct HTML, but accepted by most web browsers. The example is incorrect, be-
cause the elements are incorrectly nested. The element <I> is neither inside or outside the
element tag. Correct HTML would be:

<I1>Bold italic text</1> (Element <I> inside element)

or
<1>Bold italic text</I> (Element inside element <I>)

According to the liberal-conservative rule, it may still be wise to accept certain kinds of
inaccurate data. But XML is a reaction to the way this rule has come to be interpreted for
HTML, where a web browser is expected to accept and interpet almost any kind of vastly
inccorrect HTML text.

The reason why faults are so common in HTML texts is that they are still often devel-
oped manually. Another reason is the multitude of variants of HTML, which make it diffi-
cult to test HTML for correctness. Some incorrect constructs (example: <CENT ER>) do in
fact work in more browsers than the corresponding correct constructs (<DIV
ALIGN=CENTER> instead of <CENTER>). In the case of XML, texts will mostly be pro-
duced by software, which will reduce the amount of incorrect XML data.

Enviroment: | “ABNF” “ASN.1” “XML”

Language for specifying the en- ABNF ASN.1 DTD (but not as strong
codings for a particular applica- typing as in ASN.1)
tion.
Language used to actually encode | Text, often as a list of BER (or some other XML
data. lines beginning with a ASN.1 encoding rule)

name, a colon, followed

by a value.

Support in web browsers

Yes. Yes in some newer ver-
sions.

Text layout and style

HTML tags and style sheets. Style sheets and XSLT

transformation code.

1.16.

Document Type Definition (DTD)

The Document Type Definition (DTD) is a language for specifying the ele-
ment types for a particular application of XML. The name of an element type
is used in its start and end-tags. To understand this, compare ABNF, ASN.1
and XML:

<?xml version="1.0"2?>

<!DOCTYPE person SYSTEM "person.dtd">

It is not required that XML data has any DTD. You can send XML data with-
out specifying any DTD, but for serious applications you should specify a
DTD, since (i) this allows software to be able to check that your XML is syn-
tactically valid (ii) it can be used as an aid in developing software to encode
and decode the XML data. An XML document which has correct XML syn-
tax, but no DTD, is said to be well-formed. An XML document which also
has a DTD, and whose syntax agrees with the DTD, is said to be valid.

While a big advantage with XML is that its encoded data is so easy to
read, a disadvantage is that the DTD language is not as neat as for example
ASN.1.

When an XML text is based on a DTD, this is indicated by a
<IDOCTYPE> element in the head of the XML text. Thus, an XML text may
look like this:

Specifies that this is XML-encoded
data

Specifies where to find the DTD.
"Person.dtd" can be a complete
URL, which gives a globally unique
reference to this DTD.

Here comes the XML encoded

<PERS ON>
according to this
<NAME>John Smith</NAME> DTD.
<BIRTHYEAR>1941</BIRTHYEAR>
<WAGE>57000</WAGE>
</PERSON>

In Table 14 is an example of a DTD and an XML text encoded according
to this DTD.

G¥ abed g9 wnipuadwo)

5. Extensible Markup Language, XML

Table 14: An example of an XML text and the corresponding DTD

87

Explanation: DTD text: XML text:

Indicates that this is an XML <?xml version="1.0"?>
document.

<TDOCTYPE person
Tells where to find the DTD SYSTEM pesson Seans>
ﬁlel, which specifies the syntax
of this XML file. "person.dtd"
can be an absolute or a relative

URIL

<TELEMENT PERSON (NAME, <PERSON>

Specifies the element type tagged BIRTHYEAR, WAGE)>

PERSON and that it should al-
ways contain, within it, elements
tagged NAME, BIRTHYEAR

and WAGE.
Similar 0 PERSON. S BTN A (FIRSHLAE | e
<TELEMENT FIRST-NAME <FIRST-NAME>John
(#PCDATA) specifies that ele- (#PCDATA)>
ments of this element type will
contain text outside the tags, in <!ELEMENT SURNAME (#PCDATA)>

this case “John” and “Smith”.

There is no way in DTD to spec- STELEMENT BIRTHYEAR (#PCDATA)> [<BIRTHYEAR>1§4T

</BIRTHYEAR>

ify that this element type must

I o 000</WAGE>
contain an integer. This is an

“STELEMENT WAGE (#PCDATA)>

example where XML/DTD is less
strongly typed than ASN.1

1.17. XML ELEMENT and its contents

! The demo files used in this book can be found at http://dsv.su.se/jpalme/abook/xml/

8 5. Extensible Markup Language, XML

ELEMENT and TAG

Starttag Start tag End tag End tag

<BOOK><AUTHOR>Margaret York</AUTHOR></BOOK>

H_/

Content of AUTHOR

Content of BOOK=Element AUTHOR

Element BOOK
An XML element has a start-tag (example <person> in Table 14) and an end-
tag (example </PERSON>).

The information between the start-tag and the end-tag is the contents of the
element. The contents can either be a piece of text (like “sonn” in the example
in Table 14) or it can be further XML elements (like <namMe> inside <pErs on>
in Table 14) or it can be both text and further XML code.

The DTD declaration of an XML element type (example <tELEMENT
PERSON (NAME, BIRTHYEAR, WAGE)>) begins with <:eLemMent followed by the
name of the element type, and its contents in parentheses, and ends with >.

When the element type allows are further XML elements as contents, their
names are listed inside the parenthesises, like (NaME, BIRTHYEAR, WAGE) in
<!ELEMENT PERSON (NAME, BIRTHYEAR, WAGE)>. When the element type al-
lows content in plain text, this is specified by the special operator #PCDATA.

Many XML applications will regard multiple white space characters as
logically identical to a single space character. Thus, many applications will

regard the following two XML documents as logically identical:

<NAME ><FIRST-NAME>John</FIRST-NAME> <NAME >
<SURNAME>Smith</SURNAME> <FIRST-NAME>John
</NAME></PERSON> </FIRST-NAME>
<SURNAME>Smith
</SURNAME>
</NAME>
</PERSON>

It is, however, up to an XML application to decide whether multiple white
space characters are significant or not. And even if they are not logically sig-

ot abed g wnipuadwo)

5. Extensible Markup Language, XML 89

nificant, an XML application may let white space influence the layout, in
which a document is presented to a reader.
1.1.53. Reserved characters

XML has the same problems as most other textual encodings: Since certain
characters are used as delimiters to separate different elements, they cannot
occur within plain text. You cannot store:

DTD specification: Illegal XML data:

<!ELEMENT e-mail (#PCDATA)> <?xml version="1.0" ?>

<!DOCTYPE e-mail SYSTEM "e-mail.dtd">
<e-mail>"John Smith" <jsmith@foo.bar>
</e-mail>

w_

The receiving program will have difficulty interpreting the “<” in
“<jsmithefoo.bar>", it will believe that this is some kind of weird XML tag.
To solve this problem, the plain text string must be encoded as

“slt;jsmith@foo.barsgt;”. The characters which require such special coding

are:
Reserved character Special coding to use instead
< <
& &
> >
' &apos ;
" " ;

The inventors av XML apparently have been unhappy with this. Therefore
they have invented another, even more convulated way of handling free text
data in XML. This alternative method starts the free text with the string

“<1rcoatar” and ends it with “71>”. Example:

DTD specification: XML data:

<!ELEMENT e-mail (#PCDATA)> <?xml version="1.0" ?>

<!DOCTYPE e-mail SYSTEM "e-mail.dtd">
<e-mail>

<![CDATA["John Smith" <jsmith@foo.bar>]]>
</e-mail>

This, of course, means that the string “<: [cpara[” cannot occur in free text in
other uses than for this special purpose, and the internal content of the free

text cannot use the string “11>". In Swedish, we have a proverb about such

9 5. Extensible Markup Language, XML

things, “No matter how you turn, you will have your back behind you”.

1.1.54. Empty Elements

If an XML element type does not allow any content, this is specified in the
DTD with the term empry. Example:

DTD specification: XML data:

<IELEMENT cup EMPTY> <?xml version="1.0" 2>
<!DOCTYPE cup SYSTEM "cup.dtd">
<cup></cup>

When there is no content, then a shorter variant of the XML data is to put a
“/” at the end of the starting tag, and not specify any end-tag. Thus
<cup></cup> and <cup/> are identical. This is allowed even if the element
type was not defined as empry in the DTD, but happens to have no content in
one particular instance. Such a tag, which is both a start-tag and an end-tag at

the same time, is called an empty element tag.
1.1.55. Any Specification

The ANY specification (example: <!ELEMENT miscellaneous ANy>) allows
any kind of un-specified XML content. This specification should in most
cases be avoided, since it makes it difficult for software to check or interpret
the content.

1.1.56. Repeated subelements

Example DTD specification: XML data:

<!ELEMENT family (husband, wife)> <?xml version="1.0" ?>

<!ELEMENT husband (#PCDATA)> <!DOCTYPE family SYSTEM "family.dtd">
<IELEMENT wife (#PCDATA)> <family>

<husband>John</hus band>
<wi fe>Margaret</wife>
</family>

The DTD specification above requires that there is exactly one husband fol-
lowed by exactly one wife in the XML data. If you want to specify that the
family can also, optionally, contain one or more children, you might use the

following specification:

/¥ 9bed g wnipuadwo)

5. Extensible Markup Language, XML 91 9 5. Extensible Markup Language, XML
Example DTD specification: XML data: Exercise 42
<!ELEMENT family (husband, wife, <?xml version="1.0" ?>
child*)> <!DOCTYPE family SYSTEM "family.dtd"> . ~ : _ : : :
<IELEMENT husband (#PCDATA)> <fami ly> X\gge %ganfiocreaEn)n(il\g}@ \g%réagé t0>f the e-mail header in Exercise 41.
<!ELEMENT wife (#PCDATA)> <husband>John</husband> s éercy gevil <pdevil@gell.net>
<!ELEMENT child (#PCDATA)> ::;if:g;igi;::;{:;fe> Cc: Mary Clever <mclever@intelligence.net>, Rupert Happy <rhappy@fun.net>
<child>Peter</child>
</family> .
1.1.57. Choice subelements
If you want to specify that there must be at least one child, you can specify: . .
Example DTD specification: XML data:
. P . <!ELEMENT vehicles (vehicle*)> <?xml version="1.0" 2>
Example DTD specification: XML data: <IELEMENT vehicle (bike | car)> <IDOCTYPE vehicles SYSTEM "vehicles.dtd">
<IELEMENT child-family (husband, <?xml version="1.0" 2> <!ELEMENT bike (#PCDATA)> <vehicles>
wife, child+)> <!DOCTYPE child-family SYSTEM "child- <!ELEMENT car (#PCDATA)> <vehicle><bike>Crescent</bike></vehicle>
<IELEMENT husband (#PCDATA)> family.dtd"> <ve§1c1e><car>Volvo</car></veh1c1e>
<!ELEMENT wife (#PCDATA)> <child-family> </vehicles>
<!ELEMENT child (#PCDATA)> <husband>John</hus band>
SwiferMargaret</wife> The character “|” specifies either/or as is shown in the example above. It is
<child>Peter</child> . . .- . .
</child-family> often combined with additional parenthesis levels, example:
Thus, the following operators can be used in a list of subelements: Example DTD specification: XML data:
JIELEMENT transport ((bike | car)*)> | <?xml version="1.0" ?>
Code: Exol s <!ELEMENT bike (#PCDATA)> <!DOCTYPE transport SYSTEM "transport.dtd">
ode: Xplanation: <IELEMENT car (#PCDATA)> <transport>
<bike>Crescent</bike>
a, b Mandatory a followed by mandatory b. <car>Volvo</car>
. </transport>
a| b Eithera or b.
ax 0, 1 or more occurences of a.
a+t 1 or more occurences of a. Exercise 43
a? 0 or one occurences of a.
Specify DTD and an XML example for a protocol to send either a name (single string), a social-
security number (another single string) or both.

1.18. Attributes of XML elements

Like in HTML, an XML element can have attributes on its start-tag. An XML
element might for example look like this:

<book author ="Margaret Yorke" title="False Pretences"></book>

The DTD describing the type for this element might be:

gf abed g9 wnipuadwo)

>

<!ELEMENT book EMPTY>
<!ATTLIST book

author CDATA #REQUIRED
title CDATA #REQUIRED

5. Extensible Markup Language, XML

93

CDATA is the type of the attribute. An XML attribute can have the types

listed in Table 16.

An element can have both attributes and content. Example:

DTD specification

XML data

<!ELEMENT book (author, title)>

<!ATTLIST book

binding (hardback | paperback) #REQUIRED
color-mode (CMYK | RGB | GREYS | BITMAP)

#REQUIRED
>

<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE book SYSTEM "book.dtd">
<book
binding="paperback"
colormode="CMYK"
>
<author>Margaret Yorke</author>
<title>False Pretences</title>
</book>

For an XML attribute, the DTD can control the use of default values.

5. Extensible Markup Language, XML

Table 15: Default values for XML attributes

DTD term:

Example:

Description:

A single value

<!ATTLIST book

This default value should be assumed if

within quotes at the | binding (hardback | paperback) the attribute is not specified in the XML
end of the attribute. hardback"> text.
#REQUIRED <IATTLIST book No default value is allowed, the attrib-
binding (hardback | paperback) ute must always be specified in the
#REQUIRED> XML text
#IMPLIED <IATTLIST book No default value, but the attribute is not
binding (hardback | paperback) #IMPLIED> | required. If the attribute is not given,
this might mean that it is unknown or
not valid.
#FIXED <!ATTLIST book The XML can cither contain this attrib-
}ginding (hardback | paperback) #FIXED ute or not, but if it is there, it must al-
hardback"> ways have this particular value.
Table 16: Types of XML attributes
Type: Example: Description:
CDATA <!ATTLIST book Any character string.
title CDATA #REQUIRED>
A list of <!ATTLIST book Restricted to the listed values only.
enumerated binding (hardback | paperback)
values hardback">
ID <!ATTLIST book entryno ID #REQUIRED> | Gives a name to this particular element. No
other element in the XML text can have the
same name. Unique names on elements are
useful in some cases for programs which ma-
nipulate the XML text.
IDREF <!ATTLIST author authorid ID Reference to the unique name, which was given
#I}EQU IRED> . to another element in the XML text. In the ex-
;’ATTLIST book authorid IDREF ample, every element of type author has an ID
REQU IRED> .
authorid, and every element of type book has an
IDREF referring to the ID of the element for the
author of that book.
IDREFS <!ATTLIST author authorid ID Similar to IDREF, but allows a list of more than
#f‘*igg £12}5‘3¥>b k authorids IDREFS one value. Needed in this example, if a book
<! 00. au orids
#REQU IRED> can have more than one author.
ENTITY DTD text: This is one way to include binary data in an

<!ELEMENT LOGO EMPTY>
<!ATTLIST LOGO GIF-FILE ENTITY
#REQU IRED>

<!ENTITY DSV-LOGO SYSTEM "dsv-
logo.gif">

XML text:

XML file, by referring to the URI of the binary
data. Just like with <IM@> tags in HTML, the
actual binary file is not included, just refer-
enced.

61 @bed g9 wnipuadwo)

5. Extensible Markup Language, XML 95
Type: Example: Description:
<LOGO GIF-FILE= 'DSV-LOGO" />
ENTITIES DTD text: A list of more than one entity.
<!ELEMENT LOGO EMPTY>
<!ATTLIST LOGO GIF-FILE ENTITIES
#REQU IRED>
<!ENTITY DSV-LOGO SYSTEM "dsv-
logo.gif">
<IENTITY KTH-LOGO SYSTEM "kth-
logo.gif">
XML text:
<LOGO GIF-FILE="DSV-LOGO KTH-LOGO"/>
NMTOKEN <!ATTLIST variable-name #NMTOKEN> A name, formatted like a variable name in a
computer program. Useful when you use XML
to generate source program code.
NMTOKENS <!ATTLIST variables #NMTOKENS> A list of names, similar as for NMTOKEN
above.
NOTATION <!ATTLIST SPEECH PLAYER NOTATION (The name of a non-XML encoding.

MP3 | QUICKTIME) #REQUIRED>

Exercise 44

Specify DTD and an XML example for a protocol to send a record describing a movie. The record
contains a title and a list of people. Each person is identified by the attributes name, and option-
ally, the attribute role as either actor, photographer, director, author or administrator. As an XML
example, use the movie “The Postman Always Rings Twice”, directed by Tay Garnet based on a
book by James M. Cain with leading actors Lana Turner and John Garfield.

1.1.58. Use attributes or subelements?

In many cases, you have a choice between use of attributes and subelements.

Example:

5. Extensible Markup Language, XML

DTD specification using attributes:

XML data:

<!ELEMENT book-att EMPTY>

<!ATTLIST book-att
author #REQUIRED
title #REQUIRED

<?xml version="1.0" ?>

<!DOCTYPE book-att SYSTEM "book-
att.dtd">

<book -att

author="Margaret Yorke"
title="False Pretences"/>

DTD specification using subelements:

XML data:

<TELEMENT book-sub (author, title)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<?xml version="1.0" ?>

<!DOCTYPE book-sub SYSTEM "book-
sub.dtd">

<book -sub>

<author>Margaret Yorke</author>
<title>False Pretences</title>
</book-sub>

There are no fixed rules for when data should be encoded as attributes and as
subelements. Both choices above are equally correct. Note however the fol-
lowing differences between attributes and subelements:

Advantage with attributes: There is some rudimentary type control, for ex-
ample using enumerated attributes, even if the type control is not at all as
complete as with ASN.1. Example:

DTD specification: XML data:

<IELEMENT book EMPTY> <?xml version="1.0" ?>
<!ATTLIST book <!DOCTYPE book SYSTEM "book.dtd">
binding (hardback | paperback) #REQUIRED <book
color-mode (CMYK | RGB | GREYS | BITMAP) binding="paperback"
#REQUIRED colormode="CMYK"
> />

Advantage with subelements: Subelements can be repeated multiple times,

and can have further inner subelements. Example:

0G obed g wnipuadwo)

5. Extensible Markup Language, XML 97

DTD specification: XML data:

<!ELEMENT child-family (husband, wife,

child+)>

<!ELEMENT husband (#PCDATA)> family.dtd">
<IELEMENT wife (#PCDATA)>
<!ELEMENT child (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE child-family SYSTEM "child-

<child-family>
<husband>John</husband>
<wi fe>Margaret</wife>
<child>Eve</child>
<child>Peter</child>

</child-family>

1.19. Formatting XML layout when shown to users (CSS and
XLST)

XML can be used as a replacement for HTML. To achieve this, XML is com-
bined with layout information. Special layout languages (CSS and XLST) are
available for adding layout information to XML data. CSS or XLST layout
specifications are associated with an XML document with a <?xm1-
stylesheet> clement in the preamble of an XML document. Example:

<?xml version="1.0" ?>
<?xml-stylesheet type="text/css"
href="mystyles.css"?>

9 5. Extensible Markup Language, XML

File ticket.css:

TITLE { position: absolute; width: 121px; height: 31px; top:25px; left: 86px;
font-family: Verdana, sans-serif; font-size: 24pt; font-weight: bold}

CLASS { position: absolute; width: 106px; height: 15px; top: 115px; left: 13px;
font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }

FROM { position: absolute; width: 150px; height: 15px; top: 70px; left: 12px;
font-family: Verdana, sans-serif; font-size: l4pt; font-weight: bold }
TO { position: absolute; width: 150px; height: 15px; top: 70px; left: 166px;
font-family: Verdana, sans-serif; font-size: 1l4pt; font-weight: bold; }
DEPART { position: absolute; width: 142px; height: 15px; top: 95px; left: 1lpx;
font-family: Verdana, sans-serif; font-size: 10pt }

ARRIVE { position: absolute; width: 128px; height: 15px; top: 95px; left: 167px;
font-family: Verdana, sans-serif; font-size: 10pt }

CABIN { position: absolute; width: 138px; height: 18px; top: 115px; left: 167px;
font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold

SEAT { position: absolute; width: 138px; height: 18px; top: 115px; left: 247px;
font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }

File ticket.xml: Visual rendering:

<?xml version="1.0" 2>

<!DOCTYPE TICKET SYSTEM "ticket.dtd">
<?XML:stylesheet type="text/css"
href="ticket.css" 2>
<TICKET><TITLE>TICKET</TITLE>
<CLASS>2 Class</CLASS>
<FROM>O0slo</FROM>

<TO>Stockholm</TO> Oslo
<DEPART>Mon 13 Jan 12:13</DEPART>
<ARRIVE>Mon 13 Jan 18:45</ARRIVE>
<CABIN>Cabin 3</CABIN>
<SEAT>Seat 55</SEAT></TICKET>

TICKET

Stockholm
Mon 13 Jan 12:13
2 Class Cabin 3 Seat 5

Mon 13 Jan 18:45

Cascading Style Sheets (see chapter 1.14 on page 79) can be applied to
HTML tags or XML elements.

Here is an example of an XML document with a style sheet and how it
might be rendered:

Note that with style sheets, you cannot get words like From and To and Class
and Cabin and Seat inserted into the visual rendering, if they are not part of
the XML values. To solve this problem, you need XSLT. Extensible Style
Language Transformations (XSLT) [W3C XSLT 1999] is a more powerful
language than CSS. It can be used to describe a series of transformations,
which will successively transform an XML document to an HTML document.
Transformation from XML to HTML encoding can be done either in the

server or in the client as shown in Figure 11.

LG abed g wnipuadwon

5. Extensible Markup Language, XML 99

Figure 11: Conversion from XML to HTML

Sending XML to the PC and conversion in the PC

CSS and/or XSL
layout information

XML document

Server

(often built into the web browser)

Converter from
> XML to HTML

User Web
Browser

Intermediate
HTML document

User PC

Conversion from XML to HTML in the server, before transmission to the PC

CSS and/or XSL

layout information \

Converter from
XML to HTML

XML document /

Server

Intermediate
HTML document

User Web
Browser

CSS and/or XSL
layout information

XML document

<~

Store of prepared
HTML pages

on request

\ Converter from
/ XML to HTML

Intermediate
HTML document

Ordinary HTTP server
dispatching web pages

Server

User PC

Conversion from XML to HTML before
storage in the server. The pages are
then stored as static pages on the web
server, which usually enables faster
delivery than if the result must be
generated on the fly by the web server
before delivery to the user.

10 5. Extensible Markup Language, XML

ferent readers, but with XML, you can use the same XML source data, com-
bined with different CSS and/or XLST layout specifications, in order to pro-
duce your data in different format for different readers.

1.20. XML special problems and methods

1.1.59. Putting binary data into XML encodings
All textual encodings have a common problem in that they will not allow bi-
nary data, like, for example, a picture in GIF format. There are three ways of
handling this problem in XML:
@ Encode the binary data, using, for example, the BASE64 method (see page 17).
&) Put the binary data in a separate file, like GIF pictures in HTML:

® Use method @, but combine it with the MHTML method (see page () to concatenate all
the files into a single compound file.

1.1.60. Reusing DTD information

You may have a need to define some general DTD element types, and then
use them in several other DTD element types. This can be done by an include
functionality. The name of the include functionality in XML is ENTITY. Ex-
ample of use of ENTITIES in DTD files::

neral DTD specifications:

e name person.dtd)

ELEMENT person (name, birthyear)>

ELEMENT name (#PCDATA)>

ELEMENT birthyear (#PCDATA)>

ATTLIST person

gender (male | female)
#REQUIRED

status (unmarried | married |

XML data:

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM "family.dtd">
<fami ly>
<person gender="male"
status="married">
<name >John Smith</name>
<birthyear>1958

divorced | widow
widower) #REQUIRED

</birthyear>
</person>

Intermediate
HTML document

User Web
Browser

User PC

HTML does not support alternative versions of the same information for dif-

<person gender="female"

status="married">

TD using this specification: <name>Eliza

. . Tennyson</name>
ile name family.dtd) <birthyear>1959
ELEMENT family (persont+)> </birthyear>
ENTITY % person SYSTEM "person.dtd"> </per son>

erson; </family>

After defining person in the file person.dtd above, this element type can

ZG obed g winipuadwo)

5. Extensible Markup Language, XML 101

then be used in a number of different new DTDs by just referencing them as

shown in the file family.dtd above.

1.1.61. Entities

Entities are ways of referencing data defined elsewhere. They can be external,
as in the example in section 1.1.60, or they can be internal references within a
file. Example:

<!ENTITY KTH "Kungliga Tekniska Hégskolan">
<DESCRIPTION>&KTH; is a technical university.</DESCRIPTION>

is identical to

<DESCRIPTION>Kungliga Tekniska H&gskolan is a technical
university.</DESCRIPTION>

In fact, the special codes for certain characters defined in section 1.1.53, like

" are built-in entitites.

1.1.62. Name Spaces

When you want to combine different DTD sets, perhaps developed by differ-
ent people at different times, there is a risk that several of the sets will use the
same element type name for different purposes.

Example: Suppose you have two DTDs, one about war, one about geogra-
phy. Both contain elements with the same tag <desert>. In the war DTD, this
element describes the act of deserting from an army. In the geography DTD,
this element describes a kind of arid region. Suppose now that for a particular
application, you want to combine element types from both these DTDs.

10

5. Extensible Markup Language, XML

Part of the war DTD:
(file name war.dtd)

XML data:

<!ELEMENT war:desert (deserter*)>
<!ELEMENT war:deserter (#PCDATA)>

Part of the geography DTD:
(file name geography.dtd)

<!ELEMENT geography:desert (#PCDATA)>

(file name desertaions-in-deserts.dtd)

Use of these two DTDs in a new DTD:

<!ENTITY % war:desert SYSTEM "war.dtd">
war;

<!ENTITY % geography:desert SYSTEM
"geography.dtd">

%geography;

<!ELEMENT desertations-in-deserts
(war:desert, geography:desert)>
<!ATTLIST desertaions-in-deserts
xmlns:war CDATA #IMPLIED
xmlns:geography CDATA #IMPLIED>

<?xml version="1.0" ?>
<!DOCTYPE desertations-in-deserts SYSTEM
"desertations-in-deserts.dtd">
<desertations-in-deserts
xmlns :war="http://dsv.su.se/jpalme/a-
book/xml/war.dtd"
xmlns :geography="http: //dsv.su.se/jpalme/a-
book/xml/geography.dtd">

<war:desert>

<deserter>John Smith</deserter>

</war :desert>

<geography:desert>

Sahara</geography:desert>
</desertations-in-deserts>

The xmlns :war="http: //dsv.su.se/jpalme/a-book/xml/war.dtd" and

xmlns :geography="http: //dsv.su.se/jpalme/a-book/xml/ geography.dtd"

attributes need not refer to any real file, but should contain a unique URL for

this name space.

The character “:” is not permitted in XML identifiers except to separate the

name space name and the following identifier from that name space.

1.1.63. XLinks and XPointers

It is possible to put links into an XML document in the same way as in an

HTML document, for example:

Web pages for this

book

If you do this in XML, you should define the <a> element type and its attrib-
ute href in the DTD, just like you define other XML element types. Addition-
aly, XML has special constructs XLinks and XPointers. They are more pow-
erful than the <a> tag in HTML: An element defined for other purposes can at
the same time become a link, you have better ways of linking to parts of a tar-
get document than in HTML, and with Xlinks (specified in the Extensible
Linking Language, XLL) you can create bi-directional links, links which are

¢g abed g wnipuadwo)

5. Extensible Markup Language, XML 103

fully specified in both linked documents.

1.1.64. Processing instructions

Elements like

<?xml version="1.0" 2>
<?xml-stylesheet type="text/css" href="mystyles.css"?>

are called processing instructions, because they instruct the recipient how to
process the XML document.

The default character set in XML is UTF-8. If you are using some other
character set, such as ISO 8859-1, you have to indicate this in the first proc-
essing instruction in the XML file. For example, you can specify

<?xml version="1.0" encoding="I1S0-8859-1" ?>

to indicate that the character set used in the XML document is ISO 8859-1.

1.1.65. Standalone declarations

When you look at XML files, you may find that the first line is not
<?xml version="1.0"?> but instead <?xml version="1.0" standa-
lone="yes" ?> OI <?xml version="1.0" standalone="no" ?>. This is supposed
to indicate whether some information in some other file (like a DTD declara-
tion) is needed to understand the XML content. You need not specify standa-
lone="no" in every XML file which is based on a DTD. standalone="no" is
required only if information in the DTD (or some other external file, such as
one reference in an ENTITY declaration) is required in order to correctly in-
terpret the XML. For example, if the DTD specifies defaults or fixed values
for attributes, then this information is necessary to correctly interpret the
XML code, and then this declaration should be standalone="no". The whole
standalone declaration is optional, and many XML applications do not use it
at all.

1.1.66. XML validation

When you are developing specifications using DTD and XML, it is essential
to be able to check your specifications for correctness. There is software
available to do this. I have been using the validator on the net at
http://www.stg.brown.edu/service/xmlvalid/ to validate the examples given in

10 5. Extensible Markup Language, XML

this book.
1.1.67. XHMTL

XHTML is a variant of HTML which is at the same time also correct XML.
The main differences from ordinary HTML are:

* All tags must be lower case, €.g. <a href> and not

* All tags must be ended, e.g. <p>First paragraph
second
line.</p>

* No syntax errors allowed, e.g. not <p><s trong>Strong text</p>

1.21. A comparison of ABNF, ASN.1-BER/PER and DTD-
XML

Table 17 shows an example of the same information as encoded with ABNF,
ASN.1-BER and DTD-XML.

Table 18 compares some properties of the three encoding methods.

G obed g wnipuadwo)

5. Extensible Markup Language, XML

Table 17: The same information with ABNF, ASN.1 and XML

105

BNF specification:

ASN.1 specification:

DTD specification:

mily = "Family"
CRLF *(Person)
"End of Family"

rson = "Person" CRLF

Name: " 1*A CRLF

" Birthyear: " 4D CRLF
Gender: "
("Male"/"Female") CRLF

" Status: "
("unmarried"/ "married"/
"divorced"/ "widow"/
"widower")

= SEQUENCE OF Person

= SEQUENCE {
name VisibleString,
birthyear INTEGER,
gender Gender,
status Status }

:= ENUMERATED {
male(0), female(1) }

F ENUMERATED {

widow(3), widower(4) }

<!ELEMENT family
(person+)>

birthyear)>
<!ELEMENT birthyear
(#PCDATA)>

<!ATTLIST person

#REQUIRED

widow | widower)

unmarried(0), married(1), divorced(2), #REQUIRED

<!ELEMENT person (name,

<!ELEMENT name (#PCDATA)>

gender (male | female)

status (unmarried |
married | divorced |

:ample of textual encoding:

Example of BER encoding:

Example of XML encoding:

mily

rson

Name: John Smith
Birthyear: 1958
Gender: Male
Status: Married
rson

Name: Eliza Tennyson
Birthyear: 1959
Gender: Female
Status: Married
d of Family

codes are characters)

1]
(CECECH|

(Each box represents one octet. Two-character | <2ym1 version="1.0"
codes are hexadecimal numbers, one character

"family.dtd">
<family>

status="married">
<birthyear>1958
</birthyear>

</person>

status="married">

OO MERY <namesEliza

Tennyson</name>
<birthyear>1959
</birthyear>
</person>
</family>

?>

<!DOCTYPE family SYSTEM

<person gender="male"

<name>John Smith</name>

<person gender="female"

) octets (excluding newlines)

54 octets

spaces)

258 octets (excluding newlines and leading

% efficiency2

57 % cfﬁcicncyl

12% cfﬁcicn&:y1

2 As compared to PER.

10

5. Extensible Markup Language, XML

The PER (unaligned variant) encoding of the same ASN.1 and the same data would be the

following 31 octets:

00000010 (number of persons in family) 000011 10 (14 characters)
00001010 (10 characters) 100010 1 E
1001010 J 1101100 1
1101111 o 1101001 i
11 01000 h 1 111010 z
110 1110 n 11 00001 a
0100 000 010 0000
10100 11 S 1010 100 T
110110 1 m 11001 01 e
1101001 i 110111 0 n
1110100 t 1101110 n
1 101000 h 1111001 y
00 000010 (2 octets) 1110011 s
00 ooo11110 100110 (1958) 11 01111 o
0 (male) 110 1110 n
0 01 (married) 0000 0010 (2 bytes)
0000 01111010 0111 (1959)
1 (female)
001 (married)
Note 1: ~ Many thanks to Jean-Paul Lemaire, who helped me with the BER and PER encodings.
Note 2: The success of many Internet application layer protocols with very inefficient textual
encodings apparently indicates that the efficiency is not a very important factor in de-
termining the success of an application layer protocol.
Note 3: Compression programs (like zip, gz, etc.) can compress almost any textual encoding to

near-maximal efficiency. This, however, only works for large files. Small files are not
compressed very efficiently with compression programs. To test this, I tried to compress
the XML encoding above using the Zip encoding. It actually becaome 14 % larger after
compression. I also tested a file where I repeated the XML encoding above 11 times,
with the same XML elements and tags, but different content. This larger file, after com-
pression with Zip encoding, became 53 % as efficient as the PER encoding, or about as

high efficiency as with the BER encoding.

GG abed g9 wnipuadwo)

5. Extensible Markup Language, XML 107

Table 18: Comparison of ABNF, ASN.1-BER and DTD-XML

ABNF

ASN.1

DTD+XML

Level

Low level, can specify al-
most any textual encoding.

High level, strongly typed,
you define the exact data
types to use .

High level, but not as good
type facilities as ASN.1.

Encoded format Text. With for example Basic En- Text.
coding Rules (BER), a binary
format, or Packed Encoding
Rules (PER), a very efficient
binary format, or other encod-
ing rules.
Readability of meta- OK. Good. Acceptable.
language
Readability of en- Very good. Very bad unless special reader | Very good.
coded data program is used.
Efficiency of data Usually not so good. About 50 % with BER, almost | Not so good.

packing, as compared
to maximum effi-
ciency.

100 % with PER.

Binary data

Must be encoded, for exam-
ple using BASE64, which
however adds 33 % redun-
dancy.

Can easily be included as is.

Must be encoded, for example
using BASE64, or sent as
separate files.

Layout facilities

None, but the high freedom
allows specification of
rather readable formats.

None.

Can be combined with layout
languages to produce highly
readable output (comparable
to HTML-based web docu-
ments).

Below are quoted two messages from an e-mail discussion about the pros and

cons of ASN.1:

From: Marshall T. Rose <mrose@dbc.mtview.ca.us>
Date: 12 jul 1995 05:12

Combining ASN.1 and high-performance is oxymornonic.

ASN.1 is probably the greatest failure of the OSI effort, it led
hundreds of engineers, including myself, to devise data structures that
were far too complicated for their own good.

(Oxymoron = Self-contradiction)
(Marshall T. Rose is a well-known previous OSI expert who has turned

into one of the most vocal OSI enemies. OSI is a set of standards which in the

1980s were competing with the Internet standards. Today, most OSI standards

10

5. Extensible Markup Language, XML

have failed, a few of them have been accepted in the Internet, for example
X.500 as used in the LDAP standard.)

From: Colin Robbins <c.robbins@nexor.co.uk>
Date 13 Jul 1995 16:58

Let me see if I have understood this debate.
X.400 is a brontosarus, because it uses ASN.1l.
SMTP is a monkey because it does not.

Where does that leave the SNMPv2 Protocol, desgined by the Internet
community, co-auther one Marshall T. Rose. It uses ASN.l. I thought
leopards didn't change their spots!

There are plenty or reasons to knock X.400, but the use of ASN.1l is not
one of them. Sure it has its faults, but BOTH the Internet and OSI
communities are using it.

1.1.68. Comparion RFC822-style headings versus XML and ASN.1

Many standards have used the so-called RFC822-style header format, which
is usually specified using ABNF. Below is an example of how the same in-

formation can be encoded in this format as compared to XML:

RFC822 example:

‘ From: Father Christmas <fchristmas@northpole.arctic>

XML encoding of the same information:

<from>
<user-friendly-name>Father Christmas</user-friendly-name>
<e-mail-address>
<localpart>fchristmas</localpart>
<domainpart>
<domainelement>northpole</domainelement>
<domainelement>arctic</domainelement>
</domainpart>
</from>

Besides noting that XML in this example requires about five times as many
characters, another difference is that XML uses the same characters for fram-
ing in all levels, while the RFC822 example uses three different notations in
five levels:

Level 1: Newline between headers.

Level 2: “:” between header name and header value.

Level 3: “<” and “>” to separate localpart from e-mail address.

Level 4: “@” to separate localpart from domainlist.

Level 5: “.” to separate the domain component in the list of domain ele-

ments.

It is of course an advantage with XML that you do not have to invent new

oG abed g wnipuadwo)

5. Extensible Markup Language, XML 109

framing characters at each level, and also maybe new rules about forbidden

characters or characters that need to be quoted at each level.

1.22.

Other Encoding Languages

ABNF, ASN.1 and XML are not the only encoding languages. Some other
existing languages are Corba and XDR (External Data Representation, [RFC
1832]). Both XDR and Corba represent data in a format which is more similar
to the way it is stored internally in data handled by common programming
languages like C and Pascal. XDR is somewhat similar to ASN.1, but tags and
length encoding are used more sparsely. An application using XDR may then
have to include type and length information into the defined data structures,
while with ASN.1 tag and length are included in the encoding rules. On the
other hand, XDR avoids some unnecessary tags, and will thus probably give
somewhat more efficient encodings than BER. XDR is used in the ONC RPC
(Remote Procedure Call) and the NFS* (Network File System).

Corba is is integrated with a programming API for transmission of data be-
tween applications running on different hosts. And some protocols, for exam-
ple the Domain Naming System (DNS) do not use any encoding language at
all, their encodings are specified in the form of English-language text and ta-
bles.

11

6. References

Objectives
Books and websites for further reading

Keywords

Book
Web site

16 abed g wnipuadwo)

6. References

1

Reference

Source

Comment

Larmouth 1999:

ASN.1 Complete, by John Larmouth, Morgan Kaufmann Publishers
1999.

An ASN.1 tutorial.

Kaliski 1993:

A Layman's Guide to a Subset of ASN.1, BER, and DER, by Burton S.
Kaliski Jr. 1993, http://www.rsa.com/rsalabs/pkcs/.

A 36-page introduction to the of ASN.1 and
BER.

RFC 822: RF(C822 Standard for the format of ARPA Internet text messages. D. This early e-mail standard specifies a com-
Crocker. Aug-13-1982. (Status: STANDARD) monly used version of ABNF.

RFC 2234: RFC2234 Augmented BNF for Syntax Specifications: ABNF. D. New version of ABNF used in some newer
Crocker, Ed., P. Overell. November 1997. standards.

RFC 2279: RFC2279 UTF-8, a transformation format of ISO 10646. F. Yergeau. Specification of the UTF-8 encoding format
January 1998. (Obsoletes RFC2044) for the ISO 10646=Unicode character set.

RFC 1345: RFC1345 Character Mnemonics and Character Sets. K. Simonsen. A comprehensive listing of character sets
June 1992. and the characters within them.

RFC 1832: RFC 1832 XDR: External Data Representation Standard. Specification of the XDR encoding stan-

dard.
RFC 2045: 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format | Contains specification of the Quoted-

of Internet Message Bodies. N. Freed & N. Borenstein. November
1996.

Printable and BASE64 encoding methods.

Harold 1999:

XML Bible, by Eliott Rusty Harold, IDG Books, Foster City, CA,
US.A., 1999.

A very thorough and readable guilde to all
aspects of XML. Some chapters have been
updated after publication, and can be down-
loaded from the web.

W3C XSLT
1999:

XSL Transformations (XSLT), W3C Recommendation 16 November
1999, http://www.w3.org/TR/xslt

A language for transforming XML docu-
ments to HTML documents for neat layout
when shown to users.

W3C CSS1 1996:

Cascading Style Sheets, level 1, W3C Recommendation 17 Dec 1996,
http://www.w3.org/TR/REC-CSS1

The standard for level 1 of cascading style
sheets.

W3C CSS2 1998:

Cascading Style Sheets, level 2, CSS2 Specification, W3C Recom-
mendation /2-May-1998, http://www.w3.0rg/TR/REC-CSS2/

The standard for level 2 of cascading style
sheets.

W3C HTMLA401 HTML 4.01 Specification, W3C Recommendation 24 December 1999, | The standard describing the HTML text
1999: http://www.w3.org/TR/htm1401/ markup language.
Bourett 2000: XML Namespaces FAQ, by Ronald Bourett, February 2000, Tries to explain the complex issue of name

http://www.informatik.tu-darmstadt.de/DSV 1/staff/bourett/xml/Names
pacesFAQ.htm

spaces in XML.

11

7. Acknowledgements

Objectives
People who helped getting this book better.

Keywords

Expert
Mailing list

g6 abed 9 wnipuadwo)

7. Acknowledgements 113

Many people have helped me in the writing of this book. I have sent draft
chapters of various chapters to mailing lists with experts on the varioups pro-
tocols and methods and got very useful feedback. Here are some of the people
who have helped me: Andrew Waugh, Olivier Dubuisson, Jean-Paul Lemaire,
Richard Lander, Lars Marius Garshol.

11

8. Solutions to exercises

Objectives

Solving the exercises.

Keywords

Solution
Facit

6G obed 9 wnipuadwo)

8. Solutions to exercises 115

Exercise 1 solution

path = ["/"] *(directory-name "/") file-name
directory-nane = 1* (ALPHA/ DIGT)
directory-nane = 1* (ALPHA/ DIG T)

Exercise 2 solution

LWSP = 1*(SP / HT / (CR LF (SP / HT))

Exercise 3 solution

weather-header = "Weather:" LWSP weathertype 0*2(parameter)
weathertype = "Sunny" / "Cloudy" / "Raining" / "Snowing"
parameter = (";" (LWSP "temperature" / "humidity")) "=" 1*DIGIT

Exercise 4 solution

ALPHA = "A" / "B" / "C" / "D" / "E" / “E' / "G" / "H" / "I" / "g" / "K"
/UL / MM/ UN' /"0 / "B" / "QT / "R" /'S / T" /["U" [V' /"X
R

DIGIT = "0" / "1" / "% / "3% , wgn ; wgw ; uwgw ; ugu o, wgu , wgn
Identifier = ALPHA *5(ALPHA / DIGIT)

Exercise 5 solution

1.1.1.4. Solution alternative 1 to Exercise 1

ScaleReading ::= [APPLICATION 0] SEQUENCE { weight Weight,
itemno ltemno

}
Weight ::= [APPLICATION 1] REAL - - in grams

Itemno ::= [APPLICATION 2] INTEGER

1.1.1.5. Solution alternative 2 to Exercise 1

ScaleReading ::= [APPLICATION 0] SEQUENCE {
weight REAL, - - in grams
itemno INTEGER

}

Warning: The use of the APPLICATION tag is not recommended in the 1994 ver-
sion of ASN.1. So with the 1994 style of ASN.1, use:

116

Voter ::=

8. Solutions to exercises

1.1.1.6. Solution alternative 3 to Exercise 1

ScaleReading ::= SEQUENCE { weight Weight,

itemno Itemno

}
Weight ::= REAL - - in grams

Itemno ::= INTEGER

Exercise 6 solution

Box ::= SEQUENCE{
height Measurement,
width Measurement,
length Measurement

}

Measurement ::= SEQUENCE {
yards INTEGER,

feet INTEGER,

inches REAL }

Exercise 7 solution

Measurement ::= SEQUENCE {
yards INTEGER,

feet INTEGER (0 .. 2),

inches INTEGER (0 .. 1199)

}

Exercise 8 solution

SEQUENCE { Vote ::= INTEGER {
vote Vote, labour(0),
age Age, liberals (1),
gender Gender conservatives (2),
} other (3)
}(0..3)

Age ::= INTEGER (18 .. MAX)

09 9bed 9 wnipuadwon

8. Solutions to exercises

Gender ::= BOOLEAN

Alternative definiton of “Vote”:

Vote ::= ENUMERATED {
labour(0),
liberals (1),
conservatives (2),
other (3)
}

117

Exercise 9 solution

HomeTownVoter ::= SEQUENCE {
hometownvote Sthvote,

HomeTownVoter ::= SEQUENCE {
hometownvote Sthvote,

age Age, age Age,
gender Gender gender Gender
} }

Note, some people claim that it would be allowed to write:
} (INCLUDES Vote 1 415)

as the last line above, but other people claim this is not allowed.

Exercise 10 solution

1.1.1.7. Alternative 1
Secrecy ::= INTEGER { open(1), secret(2), topsecret(3) } (1..3)
1.1.1.8. Alternative 2 (better)

Secrecy ::= ENUMERATED { open(1), secret(2), topsecret(3) }

Exercise 11 solution

1.1.1.9. Alternative 1

StabSecrecy ::= INTEGER { open(1), secret(2), topsecret(3), extratopsecret(4) }
(INCLUDES Secrecy | 4)

118

8. Solutions to exercises

1.1.1.10. Alternative 2 (better)
(better according to ASN.1 experts)

StabSecrecy ::= ENUMERATED { open(1), secret(2), topsecret(3), p (@)}

Exercise 12 Solution

Alternative 1

Pattern ::= SEQUENCE {

Alternative 2

Row ::= BIT STRING

height INTEGER,

width INTEGER,
pattern BIT STRING - - row by row

}

Pattern ::= SEQUENCE {
height INTEGER,
width INTEGER,
pattern SEQUENCE OF Row
}

Exercise 13 Solution

InStore ::= BIT STRING {

a3 (0),
a4 (1),
a5 (2),
a6 (3)
} (SIZE(4))

Exercise 14

What is the difference between these two types, and what does monday
mean for each of them?

DayOfTheWeek ::= ENUMERATED { monday(0), tuesday(1), wednesday(2),
thursday(3), friday(4), saturday(5), sunday(6) } }

DaysOpen ::= BIT STRING { monday(0), tuesday(1), wednesday(2),
thursday(3), friday(4), saturday(5), sunday(6) } (SIZE(7))

Solution

DayOfTheWeek can have as value one of the seven days, and the value monday

L9 abed g wnipuadwon

8. Solutions to exercises 119

designates that single day.

DaysOpen can have as value a bit string, which specifies for each day, whether
a shop is open or not on that day. monday is the name of the first bit, which is
true if the shop is open on mondays, and false if it is closed on mondays.

Exercise 15 Solution

1.1.1.13. Solution taken from X.411, 1998 version

ub-organization-name-length INTEGER ::= 64

Or izationName ::= Prir ing

(SIZE (1 .. ub-organization-name-length))

1.1.1.14. Solution, using new constructs from the 1994 version of ASN.1:

Name {INTEGER : name-length} :::

ing (Size(1..n)

OrganizationDirectorName ::= Name {64}

Exercise 16 solution

1.1.1.15. Solution 1

PersonRecord ::= SET {
pnumber Pnumber,
name Nametype OPTIONAL,
income Incometype OPTIONAL
}

Pnumber1 ::= [APPLICATION 1] PrintableString
(FROM ("0" 1 ™1" | "2 | "3" | "4"["5" | "G" | "7" | g | "g"| n.n | » w))

Pnumber ::= Pnumber1 (SIZE (13))
Nametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

120 8. Solutions to exercises

1.1.1.16. Solution 2

PersonRecord ::= SET {
pnumber Pnumber,
name Nametype OPTIONAL,
income Incometype OPTIONAL
}

Pnumber1 ::= PrintableString (FROM ("0" | "1" ["2" | "3" | "4"|"5" | "6" | "7" | "8" | "Q"|"-" | " "))
Pnumber ::= Pnumber1 (SIZE (13))
Nametype ::= GeneralString (SIZE (1 .. 40))
Incometype ::= INTEGER (0 .. MAX)
1.1.1.17. Solution 3
Pnumber1 ::= PrintableString (FROM ("0" | "1" ["2" | "3" | "4"|"5" | "6" | "7" | "8" | "9"|"-" | " "))

PersonRecord ::= [APPLICATION 0] SET {
pnumber Pnumber1 (SIZE (13))
name GeneralString (SIZE (1 .. 40)) OPTIONAL,
income INTEGER (0 .. MAX) OPTIONAL
}

Note: With the 1994 version of ASN.1, you might also write:

Pnumber1 ::= PrintableString (FROM ("0" .."9" | "-" | " "))

Exercise 17 Solution

1.1.1.18. Solution 1

PersonRecord ::= SET {
pnumber Pnumber,

gname GNametype OPTIONAL,
sname SNametype OPTIONAL,
Income Incometype OPTIONAL
}

Pnumber1 ::= PrintableString
(FROM ("0" 1 "1" ["2" | "3" | "4"|"5" | "G" | "7" | "8" | "g"| "% | " *))

Pnumber ::= Pnumberi (SIZE (13))

29 abed g wnipuadwo)

8. Solutions to exercises 121

GNametype ::= [APPLICATION 0] GeneralString (SIZE (1 .. 40))
SNametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

1.1.1.19. Solution 2

PersonRecord ::= SET {
pnumber Pnumber,

name Nametype OPTIONAL,
income Incometype OPTIONAL
}

Pnumber1 ::= PrintableString
(FROM ("0" 1 "1" ["2" | "3" | "4’

5% 1 "G" [7" | ngt | Mgr| L |)
Pnumber ::= Pnumber1 (SIZE (13))

Nametype ::= SEQUENCE {

sName GeneralString (SIZE (1 .. 40)),
gName GeneralString (SIZE(1 .. 40))
}

Incometype ::= [APPLICATION 3] INTEGER (0 .. MAX)

Question: Why is the solution below not correct?

PersonRecord ::= [APPLICATION 0] SET {
pnumber Pnumber,

gname Nametype OPTIONAL,

sname Nametype OPTIONAL,

income Incometype OPTIONAL

}

Pnumber1 ::= PrintableString
(FROM ("0" 1 "1" ["2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Pnumber ::= Pnumberi (SIZE (13))
Nametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

Answer: The receiving computers cannot know if a name with only one com-

ponent is only a gname or only a sname.

122 8. Solutions to exercises

Exercise 21 solution

FullName ::= SEQUENCE {
givenName [0] IA5String OPTIONAL,
initials [1] IA5String OPTIONAL,
surname [2] IA5STring
}
Question: Can the tags in the solution above be removed?
Yes, you can always remove one of the tags, since it will then get the
UNIVERSAL tag of IAsString, which is different than the other user-defined tags.
If you have AUTOMATIC tagging set, you can remove all the tags. Otherwise,
two of them must be kept, since the elements must have different tags to sepa-
rate them. If the first two elements had not been OPTIONAL, then the tags
would not have been required, since then the elements could be separated by
their order in the SEQUENCE.

Exercise 22 solution

BasicFamily ::= SEQUENCE {
husband [0] IA5String OPTIONAL,
wife [1] IA5String OPTIONAL,
children [2] SEQUENCE OF 1A5String OPTIONAL
}
With automatic tagging, the tags above can be removed.
Question: Is SEQUENCE OF or SET OF best in this exercise? Answer: If you
want to indicate the order of birth the children, SEQUENCE OF is better.

Exercise 23 solution

ChildLessFamily ::= BasicFamily
(WITH COMPONENTS {

..., children ABSENT

}

)}

¢9 abed g wnipuadwo)

8. Solutions to exercises

123

Exercise 24

Given the ASN.1-type:
XYCoordinate ::= SEQUENCE {
x REAL,

y REAL

}

both x and y are >=0).

Define a subtype which only allows values in the positive quadrant (where

_solution

PositiveCoordinate ::= XYCoordinate

(WITH COMPONENTS {
X (0... MAX)

y (0... MAX)

}

)

Exercise 25

Given the ASN.1 type:

ET{
author Name OPTIONAL,
textbody IA5String }

specified.

Define a subtype to this, called AnonymousMessage, in which no author is

solution

1.1.1.20. Solution 1

Anony B
(WITH COMPONENTS {... , author ABSENT }
)

124

8. Solutions to exercises

1.1.1.21. Solution 2

AnonymousMessage ::= Message
(WITH COMPONENTS {

author ABSENT,

textbody }

Exercise 26 solution

Vessel ::= CHOICE {

aircraft Aircraft,
ship Ship,
train Train,

motorcar MotorCar

Exercise 27 solution

1.1.1.22. Solution 1

GeneralNameListA ::= gs < NameListA

G istB ::= istB
(WITH COMPONENT

(WITH COMPONENTS {gs})

)

1.1.1.23. Solution 2

GeneralNamelListA ::= NameListA (WITH COMPONENTS {gs})

istB ::= istB
(WITH COMPONENT
(WITH COMPONENTS {gs}))

9 abed g wnipuadwo)

8. Solutions to exercises 125

Exercise 28 solution

Vote ::= SEQUENCE {

vote
voter-name
name
namechar
One-choice
Choice-list
alternative
Score

voterName IA5String,
votevalue CHOICE {
h Alternative Alternati A
setvalue SET OF SEQUENCE {
alternative AlternativeNumber,
score INTEGER (0..10)
}

Exercise 29 solution

voter-name
nnv hame "
l*namechar

<any printable ASCII character except """>

"Single:" 1*DIGIT

"Multiple:" 1#(alternative LWSP score)

1*DIGIT

nQU /MM y mgw g w3m g owgw g owgw g owgw g owgu g owgm /o wguw oy mpgw

(One-choice / Choice-list)

Exercise 30 solution

WeatherReporting {2 6 6 247 1} DEFINITIONS IMPLICIT TAGS ::=
BEGIN

WeatherReport ::= SEQUENCE {
height [0] REAL,
weather [1] Wrecord

}

Wrecord ::= [APPLICATION 3] EXPLICIT SEQUENCE {
temp Temperature,

moist Moisture

wspeed [0] EXPLICIT Windspeed OPTIONAL

}

Temperature ::= [APPLICATION 0] REAL
Moisture ::= [APPLICATION 1] EXPLICIT REAL

Windspeed ::= [APPLICATION 2] EXPLICIT REAL

126

8. Solutions to exercises

END - - of module

WeaterhReporting

Exercise 31 solution

Record ::= SEQUENCE {
GivenName [0] PrintableString
SurName [1] PrintableString }

Record ::= SET {
GivenName [0] PrintableString
SurName [1] PrintableString }

Record ::= SEQUENCE {
GivenName [0] PrintableString OPTIONAL
SurName [1] PrintableString OPTIONAL }

Both tags can be removed

One of the tags can be re-
moved, since if you remove
one of them, that element will
have the UNIVERSAL tag for
PrintableString, which is dif-
ferent from the context-
dependent tag [1].

Exercise 32 solution

The tags which can be removed are those shown in italics below.

Colour ::= [APPLICATION 0] CHOICE {
rgb [1] RGB-Colour,

cmg [2] CMG-Colour,

freq [3] Frequency

}

RGB-Colour ::= [APPLICATION 1] SEQUENCE {
red [0] REAL,

green [1] REAL OPTIONAL,

blue [2] REAL

}

CMG-Colour ::= SET {
cyan [1]REAL,
magenta [2] REAL,
green [3] REAL

}

G9 obed g9 wnipuadwo)

8. Solutions to exercises 127

Frequency ::= SET {
fullness [0] REAL,
freq [1] REAL

}

Exercise 33 solution

ListResult ::= OPTIONALLY-SIGNED

CHOICE {

listinfo SET {
DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {
RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE
fromEntry [1] BOOLEAN DEFAULT TRUE},
partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL
COMPONENTS OF CommonResults },

uncorrelatedListinfo [0] SET OF Listresult }

Exercise 34 solution

Yes, two comma characters are missing:
ListResult ::= OPTIONALLY-SIGNED
CHOICE {

listinfo SET {
DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {
RelativeDistinguishedName,

aliasEntry [0] BOOLEAN DEFAULT FALSE, - <= This comma is missing
fromEntry [1] BOOLEAN DEFAULT TRUE},
partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL, - ¢= This comma is missing

COMPONENTS OF CommonResults },
uncorrelatedListinfo [0] SET OF Listresult }

128

8. Solutions to exercises

| Exercise 36 solution

In a sEeT all the elements must have different type. It is then necessary to give

a context tag only on all but one of the elements.

| Exercise 37 solution

CarDriving { 124711 18 } DEFINITIONS EXPLICIT TAGS ::

BEGIN
IMPORTS MainOperation FROM Driving {1 2 4711 17};

FullOperation ::= SEQUENCE {

+}

COMPONENTS OF MainOperation,
blink SEQUENCE {

on BOOLEAN,

left BOOLEAN },
light ENUMERATED {

dark(0),

parkingLight (1),
dimmedLight (2),

fullBeam (3)

END - - of module CarDriving

Note: Since there was no EXPORTS statement in Driving, all objects in it are

exported.

Exercise 38 solution

Exercise 35 solution

APPLI- CON- Tagnr. | Length | UNI- | PRIMI-| iasstrin | Length | Character
CATION| STRUC- VER- | TIVE codes
TED SAL
01 1 00001 6 00 0 10110 4 Mlalr]y
61 06 16 04 [M]Ja]r]y

COMPONENTS OF is not a data type, and can thus not have any identifier. It
copies a series of separately defined type elements, and is useful if you have a
series of standard elements, like CommonResults, which is to be used in many
places.

99 abed g wnipuadwo)

8. Solutions to exercises

129

Exercise 39 solution

| 00 0 01010 |Ol | 00000010 |

Ve :
LENGTH

UNI-
VERSAL

halflight

ENUME-
PRIMI- RATED

TIVE

Exercise 40 solution

element encoding Octet

beverage (context explicit tag)101 00001 2
(ENUMERATED) 000 01010

tea (length) 1 (value) 00000001 2

. . 2

jam (contextexplicit tag) 101 00010
(ENUMERATED) 000 01010

orange (length) 1 (value) 00000000 2

continentalpart (SEQUENCE) 001 10000 (length) 8 10
beverage tea jam orange

eggform fried (ENUMERATED) 000 01010 (length) 1 3
(value) 00000101

english (SEQUENCE) 001 10000 (length) 10 12
continentalpart

typeofbreakfast (context explicit tag) 100 00001 14
(length) 12 english

customername (1A5string) 00010110 (length) 5 7
("Johan") "J" "o" "h" "a" "n"

firstorder (SEQUENCE) 001 10000 (length) 21 customername typeofbreakfast 23

130

8. Solutions to exercises

Exercise 41 solution

<?xml version="1.0" ?>
<!DOCTYPE header SYSTEM "header.dtd">
<header>
<from>
<person>
<user-friendly-name>Nancy Nice</user-friendly-name>
<local-id>nnice</local-id>
<doma in>good. net</domain>
</person>
</from>
<to>
<person>
<user -friendly-name>Percy Devil</user-friendly-name>
<local-id>pdevil</local-id>
<doma in>hell. net</domain>
</person>
</to>
<ce>
<person>
<user-friendly-name>Mary Clever</user-friendly-name>
<local-id>mclever</local-id>
<domain>intelligence.net</domain>
</person>
<person>
<user -friendly-name>rupert happy</user-friendly-name>
<local-id>rhappy</local-id>
<doma in>fun.net</domain>
</per son>
</cc>
</header>

Exercise 42 solution

<!ELEMENT header (from, to?, cc?)>

<!ELEMENT from (person)>

<!ELEMENT to (person+)>

<!ELEMENT cc (person+)>

<IELEMENT person (user-friendly-name,local-id,domain)>
<!ELEMENT user-friendly-name (#PCDATA)>

<!ELEMENT local-id (#PCDATA)>

<!ELEMENT domain (#PCDATA)>

Exercise 43 solution

DTD specification: XML examples:

<IELEMENT id (name | social- <?xml version="1.0" 2>
security-no | both)>

<!ELEMENT both (name, social-
security-no)> 1410
<!ELEMENT name (#PCDATA)>

<!DOCTYPE id SYSTEM "id.dtd">
<id><social-security-no>410201-

</social-security-no></id>

<!ELEMENT social-security-no <?xml version="1.0" ?>

<id><both><name>Eliza
Doolittle</name>

</social-security-
no></both></id>

(#PCDATA)> <!DOCTYPE id SYSTEM "id.dtd">

<social-security-no>410201-1410

/9 abed g wnipuadwo)

8. Solutions to exercises 131

<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">

no))>
<!ELEMENT name (#PCDATA)>

<id><name>Eliza
Doolittle</name>
</id>
Note: The following will not work:
<!ELEMENT id (name | social-security-no | (name, social-security-

<!ELEMENT social-security-no (#PCDATA)>

This will not work, because the receiving program will not be able to know,

when it starts to scan <name> whether this is the first or the third branch of

the choice.

Exercise 44 solution

DTD specification:

XML data:

<!ELEMENT movie (title, person+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT person EMPTY>
<!ATTLIST person
name CDATA #REQUIRED
role (actor | photographer
director | author | administrator)
#IMPLIED
>

<?xml version="1.0" ?>

<!DOCTYPE movie SYSTEM

"movie.dtd">

<movie>

<title>

The Postman Always Rings

Twice</title>

<person name="Lana Turner"
role="actor" />

<person name="John Garfield"
role="actor" />

<person name="Tay Garnet"
role="director"/>

ame="James M. Cain"

"author"/>

</movie>

g9 abed 9 wnipuadwo)

A Summary of ASN.1 Types and their Usage

Abstract: The basics of how to design ASN.1 code is shown through a practical example.

By Jacob Palme (http://www.palme.nu/jacob/)

This document is also available in HTML format at URL
http://dsv.su.se/jpalme/internet-course/solving-asn-1-exercise.html

REAL A real value, example:

Windvelocity ::= REAL

SEQUENCE Several different types of data in sequence. Example:

Name ::= SEQUENCE { Givenname VisibleString,
Surname VisibleString }

SEQUENCE OF A list of one or more items of the same type. Example:
Family ::= SEQUENCE OF Name

SET Same as SEQUENCE, but no assumed order.

SET OF Same as SEQUENCE OF, but no assumed order.

ASN.1 type Usage
ANY Data, whose format is to be specified in the future or by someone else.
Example:
FutureData ::= SEQUENCE { type VisibleString,
value ANY }
BitString A string of Boolean values. Example:
DaysOpen ::= BitString { monday (0), tuesday (2), wednesday (3),
thursday (4), friday (5), saturday (6), sunday (7) }
Boolean

A single Boolean (true/false, or 1/0) value. Example:
Gender ::= BOOLEAN -- Male=true, Female=false

Example of how you can Think when Solving an
ASN.1 Exam Question

All page references are to pages in the book ASN.1 The Tutorial & Reference by Douglas
Steedman.

Question 2 in the exam 1999-11-09

CharacterString:

NumericString
PrintableString
TeletexString
VideotexString
VisibleString
IA5String
GraphicString
GeneralString
UniversalString

Character strings using different sets of allowed characters. Example:
Surname ::= VisibleString

CHOICE

One of a list of different types, combined with a value of the chosen
type. Example 1:

CHOICE { car Motorcar, bike Bicycle, boat Boat }

Example 2: Tags needed since all elements must be of different type:

CHOICE { registrationnumber [1] VisibleString,
name [2] VisibleString }

ENUMERATED

Can have any of a limited set of enumerated values. Example:

Weekday ::= ENUMERATED { monday (0), tuesday (2), wednesday
(3), thursday (4), friday (5), saturday (6), sunday (7) }

INTEGER

An integer value, example:
Age ::= INTEGER (0 .. MAX)

OCTET STRING

A string of octets, whose data is not specified in ASN.1. Example:
GIF-Picture ::= OCTET STRING

Below is a specification of a proposed addition to Internet e-mail. The specification is based
on ABNF.

Write a specificaction which will convey the same information using ASN.1. You need only
translate the syntax (down to “Note:”) not the explanatory text which comes after “Note:”.

Note: Your solution need only transfer the information, not the syntactical form.

Supersedes
Syntax
Supersedes-field = "Supersedes:" " " identifier
* (identifier)
optional-parameter-list
CRLF
optional-parameter-list = *x(";" " " parameter
parameter = parameter-name ["="
parameter-value]
parameter-name = "noshow" / "show" / "repost"

private-parameter /

future-parameter
Note: There is no comma between multiple values, and that each Message-ID
value is to be surrounded by angle brackets.

Warning: Some software may not work correctly with comments in header
fields, especially comments in other places than at the beginning and end
of the field value.

Warning: This header MUST be spelled "Supersedes" and not "Supercedes".

File name: solving-asn-1-exercise.doc

Latest change: 02-03-05 17.34 Page 1

File name: solving-asn-1-exercise.doc Latest change: 02-03-05 17.34 Page 2

69 obed g9 wnipuadwo)

Semantics

The Supersedes header identifies previous correspondence, which this
message supersedes. Different messaging agents such as user agents, mailing
list expanders and mailing list archives. A user agent is expected to
handle this field in much the same way as the In-Reply-To and References
header.

Note: The Message-ID of a superseding message MUST be different from the
Message-ID of the superseded message. The Message-ID of the superseded
message 1s used as value in the "Supersedes:" header, not in the Message-ID
of the superseding message.

Parameters:

noshow In the opinion of the sender, this message makes such
a minor change to the superseded version, that a
recipient, who has already seen the previous verson,
will probably not want to see the new version, unless
the user explicitly asks for it.

show In the opinion of the sender, this message makes such
a large change to the superseded version, that a
recipient, who has already seen the previous version,
will probably want to see the new version, too.

repost This document is a document which is repeatedly, at
regular or irregular intervals, reposted, such as
FAQs or mailing list monthly information.

None of these parameters have values. The "noshow" and the "show"

parameters are mutually exclusive, but both of them can occur together with
the "repost" parameter.

How to solve this exam question

First analyse what information is sent from with this protocol element. The information sent
is:

1. That this is a Supersedes header field.

2. A list of one or more identifiers of superseded messages.

3. A list of one or more optional parameters.

4. Each optional parameter can have a name, and an optional value.
5

The parameters noshow, show and repost are specified, additional private or future
parameters can be added.

Note that the ":", ";", "=" are part of the ABNF syntactical structure, and should not be sent,
since ASN.1 has its own, alternative methods of syntactically structuring the information sent.

How is this information formatted with ASN.1?
1. That this is a Supersedes header field

Presumably, there is a list of header fields, of which this is one. To create a list of elements of
the same type, you use SEQUENCE OF.

Look at the syntax for SEQUENCE OF on page 141:

File name: solving-asn-1-exercise.doc Latest change: 02-03-05 17.34 Page 3

SEQUENCE @7 ElementType »@

|«

Using this syntax, you can construct it as follows:

HeaderFields ::= SEQUENCE OF Header
Each header contains information on which header it is, and the data for this header. Thus, we
need two main parts of each header, name and value, so a SEQUENCE might be used. See the
syntax for SEQUENCE on page 141:

Header ::= SEQUENCE { headername, -- Not complete yet
headerdata }

"headername" and "headerdata" have the syntax for ElementType, which you can find on
page 795 of Compendium 1. As you can see there, it is a NamedType, possibly followed by
OPTIONAL or DEFAULT.

And the syntax of NamedType can be found on page 139 as an identifer and a type:

Header ::= SEQUENCE { headername Headernametype,
headerdata Headerdatatype }

Headernametype should tell which of a number of known headers this is. Since there are,
presumably, a limited number of known headers, ENUMERATED is suitable. Thus, we could
specify Headernametype as:

Headernametype ::= ENUMERATED { From (0), To (1), Cc (2), Date (3),
Supersedes (4) }

There are probably more values, but that is not part of this question.

The syntax for ENUMERATED can be found on page 135 of Compendium 1. It uses
Namednumber, whose syntax can be found on page 139.

Another alternative would be to use a text string:

Headernametype ::= VisibleString
2. A list of one or more identifiers of superseded messages,
3. A list of one or more optional parameters

Headerdata consists of two main groups of data in sequence, so we use the SEQUENCE type:

Headerdatatype ::= SEQUENCE { identifierlist Identifierlisttype,
parameterlist Parameterlisttype OPTIONAL }

The identifierlist consists of one or more identifiers, which are text strings:
Identifierlisttype ::= SEQUENCE OF VisibleString

File name: solving-asn-1-exercise.doc Latest change: 02-03-05 17.34 Page 4

0. @bed 9 wnipuadwon

4. A list of one or more optional parameters

5. The parameters noshow, show and repost are specified,
additional private or future parameters can be added

Since this is a list of one or more parameters, we use SEQUENCE OF:
Parameterlisttype ::= SEQUENCE OF Parameter

Each Parameter is either a built in parameter, a private parameter or a future parameter. We
use a CHOICE:

Parameter ::= CHOICE { builtinparameter Builtinparametetertype,
privateparameter [1] Newparametertype,
futureparameter [2] Newparametertype }

The tags are necessary, since no two elements in a CHOICE can have the same type.

The Builtinparametertype is an indication of one of three possible values, thus ENUMERATED
is suitable:

Builtinparametertype ::= ENUMERATED { noshow (0), show (1), repost (3) }

The private and future parameters have a name and an optional value:

Newparametertype ::= SEQUENCE { name VisibleString,
value ANY OPTIONAL }

ANY is a placeholder where you can put any kind of data. Since this data is in text string
format in ABNF, we might use for example VisibleString instead of ANY above.

We are ready

So now we are ready. Just collect the ASN.1 together:
HeaderFields ::= SEQUENCE OF Header

Header ::= SEQUENCE { headername Headernametype,
headerdata Headerdatatype }

Headernametype ::= VisibleString

Headerdatatype ::= SEQUENCE { identifierlist Identifierlisttype,
parameterlist Parameterlisttype OPTIONAL }

Identifierlisttype ::= SEQUENCE OF VisibleString
Parameterlisttype ::= SEQUENCE OF Parameter

Parameter ::= CHOICE { builtinparameter Builtinparametetertype,
privateparameter [1] Newparametertype,
futureparameter [2] Newparametertype }

Builtinparametertype ::= ENUMERATED { noshow (0), show(1), repost(3) }

Newparametertype ::= SEQUENCE { name VisibleString,
value ANY OPTIONAL }

File name: solving-asn-1-exercise.doc Latest change: 02-03-05 17.34 Page 5

L/ bed g wnipuadwo)

A Layman's Guide to a
Subset of ASN.1, BER, and
DER

An RSA Laboratories Technical Note
Burton S. Kaliski Jr.
Revised November 1, 1993*

Abstract. This note gives a layman's introduction to a subset of OSI's Abstract Syntax Notation One
(ASN.1), Basic Encoding Rules (BER), and Distinguished Encoding Rules (DER). The particular
purpose of this note is to provide background material sufficient for understanding and implementing the
PKCS family of standards.

1. Introduction

It is a generally accepted design principle that abstraction is a key to managing
software development. With abstraction, a designer can specify a part of a
system without concern for how the part is actually implemented or represented.
Such a practice leaves the implementation open; it simplifies the specification;
and it makes it possible to state "axioms" about the part that can be proved when
the part is implemented, and assumed when the part is employed in another,
higher-level part. Abstraction is the hallmark of most modern software
specifications.

One of the most complex systems today, and one that also involves a great deal
of abstraction, is Open Systems Interconnection (OSI, described in X.200). OSI is
an internationally standardized architecture that governs the interconnection of
computers from the physical layer up to the user application layer. Objects at
higher layers are defined abstractly and intended to be implemented with
objects at lower layers. For instance, a service at one layer may require transfer
of certain abstract objects between computers; a lower layer may provide

“Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors’ Workshop
document SEC-SIG-91-17. PKCS documents are available by electronic mail to <pkcs@rsa. coms.

Copyright © 1991-1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy
this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key

Cryptography Standards (PKCS)" in all material mentioning or referencing this document.
003-903015-110-000-000

Page 2 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

transfer services for strings of ones and zeroes, using encoding rules to
transform the abstract objects into such strings. OSI is called an open system
because it supports many different implementations of the services at each layer.

OSl's method of specifying abstract objects is called ASN.1 (Abstract Syntax
Notation One, defined in X.208), and one set of rules for representing such
objects as strings of ones and zeros is called the BER (Basic Encoding Rules,
defined in X.209). ASN.1 is a flexible notation that allows one to define a variety
data types, from simple types such as integers and bit strings to structured types
such as sets and sequences, as well as complex types defined in terms of others.
BER describes how to represent or encode values of each ASN.1 type as a string
of eight-bit octets. There is generally more than one way to BER-encode a given
value. Another set of rules, called the Distinguished Encoding Rules (DER),
which is a subset of BER, gives a unique encoding to each ASN.1 value.

The purpose of this note is to describe a subset of ASN.1, BER and DER
sufficient to understand and implement one OSl-based application, RSA Data
Security, Inc.'s Public-Key Cryptography Standards. The features described
include an overview of ASN.1, BER, and DER and an abridged list of ASN.1
types and their BER and DER encodings. Sections 2—4 give an overview of
ASN.1, BER, and DER, in that order. Section 5 lists some ASN.1 types, giving
their notation, specific encoding rules, examples, and comments about their
application to PKCS. Section 6 concludes with an example, X.500 distinguished
names.

Advanced features of ASN.1, such as macros, are not described in this note, as
they are not needed to implement PKCS. For information on the other features,
and for more detail generally, the reader is referred to CCITT Recommendations
X.208 and X.209, which define ASN.1 and BER.

Terminology and notation. In this note, an octet is an eight-bit unsigned integer.
Bit 8 of the octet is the most significant and bit 1 is the least significant.

The following meta-syntax is used for in describing ASN.1 notation:

BIT monospace denotes literal characters in the type and value
notation; in examples, it generally denotes an octet value in
hexadecimal

ny bold italics denotes a variable

M bold square brackets indicate that a term is optional
{3 bold braces group related terms
| bold vertical bar delimits alternatives with a group

2. 9bed 9 wnipuadwon

2. ABSTRACT SYNTAX NOTATION ONE Page 3

bold ellipsis indicates repeated occurrences

= bold equals sign expresses terms as subterms

2. Abstract Syntax Notation One

Abstract Syntax Notation One, abbreviated ASN.1, is a notation for describing
abstract types and values.

In ASN.1, a type is a set of values. For some types, there are a finite number of
values, and for other types there are an infinite number. A value of a given
ASN.1 type is an element of the type's set. ASN.1 has four kinds of type: simple
types, which are "atomic" and have no components; structured types, which
have components; tagged types, which are derived from other types; and other
types, which include the CHOICE type and the ANY type. Types and values can
be given names with the ASN.1 assignment operator (: :=) , and those names
can be used in defining other types and values.

Every ASN.1 type other than CHOICE and ANY has a tag, which consists of a
class and a nonnegative tag number. ASN.1 types are abstractly the same if and
only if their tag numbers are the same. In other words, the name of an ASN.1
type does not affect its abstract meaning, only the tag does. There are four
classes of tag:

Universal, for types whose meaning is the same in all applications; these
types are only defined in X.208.

Application, for types whose meaning is specific to an application, such as
X.500 directory services; types in two different applications may
have the same application-specific tag and different meanings.

Private, for types whose meaning is specific to a given enterprise.

Context-specific, for types whose meaning is specific to a given structured
type; context-specific tags are used to distinguish between
component types with the same underlying tag within the context
of a given structured type, and component types in two different
structured types may have the same tag and different meanings.

The types with universal tags are defined in X.208, which also gives the types'
universal tag numbers. Types with other tags are defined in many places, and
are always obtained by implicit or explicit tagging (see Section 2.3). Table 1 lists
some ASN.1 types and their universal-class tags.

Page 4 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Type Tag number Tag number

(decimal) (hexadecimal)
INTEGER 2 02
BIT STRING 3 03
OCTET STRING 4 04
NULL 5 05
OBJECT IDENTIFIER 6 06
SEQUENCE and SEQUENCE OF 16 10
SET and SET OF 17 11
PrintableString 19 13
T61String 20 14
IAS5String 22 16
UTCTime 23 17

Table 1. Some types and their universal-class tags.

ASN.1 types and values are expressed in a flexible, programming-language-like
notation, with the following special rules:

. Layout is not significant; multiple spaces and line breaks can be
considered as a single space.

. Comments are delimited by pairs of hyphens (--), or a pair of
hyphens and a line break.

. Identifiers (names of values and fields) and type references (names
of types) consist of upper- and lower-case letters, digits, hyphens,
and spaces; identifiers begin with lower-case letters; type
references begin with upper-case letters.

The following four subsections give an overview of simple types, structured
types, implicitly and explicitly tagged types, and other types. Section 5 describes
specific types in more detail.

2.1 Simple types

Simple types are those not consisting of components; they are the "atomic" types.
ASN.1 defines several; the types that are relevant to the PKCS standards are the
following:

BIT STRING, an arbitrary string of bits (ones and zeroes).
IASString, an arbitrary string of IA5 (ASCII) characters.

INTEGER, an arbitrary integer.

¢/ 9bed 9 wnipuadwon

2. ABSTRACT SYNTAX NOTATION ONE Page 5

NULL, a null value.

OBJECT IDENTIFIER, an object identifier, which is a sequence of integer
components that identify an object such as an algorithm or
attribute type.

OCTET STRING, an arbitrary string of octets (eight-bit values).
PrintableString, an arbitrary string of printable characters.
T61String, an arbitrary string of T.61 (eight-bit) characters.

UTCTime, a "coordinated universal time" or Greenwich Mean Time
(GMT) value.

Simple types fall into two categories: string types and non-string types. BIT
STRING, IA5String, OCTET STRING, PrintableString, T61String, and
UTCTime are string types.

String types can be viewed, for the purposes of encoding, as consisting of
components, where the components are substrings. This view allows one to
encode a value whose length is not known in advance (e.g., an octet string value
input from a file stream) with a constructed, indefinite-length encoding (see
Section 3).

The string types can be given size constraints limiting the length of values.

2.2 Structured types

Structured types are those consisting of components. ASN.1 defines four, all of
which are relevant to the PKCS standards:

SEQUENCE, an ordered collection of one or more types.

SEQUENCE OF, an ordered collection of zero or more occurrences of a
given type.

SET, an unordered collection of one or more types.

SET OF, an unordered collection of zero or more occurrences of a given
type.

The structured types can have optional components, possibly with default
values.

Page 6 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

2.3 Implicitly and explicitly tagged types

Tagging is useful to distinguish types within an application; it is also commonly
used to distinguish component types within a structured type. For instance,
optional components of a SET or SEQUENCE type are typically given distinct
context-specific tags to avoid ambiguity.

There are two ways to tag a type: implicitly and explicitly.

Implicitly tagged types are derived from other types by changing the tag of the
underlying type. Implicit tagging is denoted by the ASN.1 keywords [class
number] IMPLICIT (see Section 5.1).

Explicitly tagged types are derived from other types by adding an outer tag to
the underlying type. In effect, explicitly tagged types are structured types
consisting of one component, the underlying type. Explicit tagging is denoted by
the ASN.1 keywords [class number] EXPLICIT (see Section 5.2).

The keyword [class number] alone is the same as explicit tagging, except when
the "module” in which the ASN.1 type is defined has implicit tagging by default.
("Modules" are among the advanced features not described in this note.)

For purposes of encoding, an implicitly tagged type is considered the same as
the underlying type, except that the tag is different. An explicitly tagged type is
considered like a structured type with one component, the underlying type.
Implicit tags result in shorter encodings, but explicit tags may be necessary to
avoid ambiguity if the tag of the underlying type is indeterminate (e.g., the
underlying type is CHOICE or ANY).

2.4 Other types

Other types in ASN.1 include the CHOICE and ANY types. The CHOICE type
denotes a union of one or more alternatives; the ANY type denotes an arbitrary
value of an arbitrary type, where the arbitrary type is possibly defined in the
registration of an object identifier or integer value.

3. Basic Encoding Rules

The Basic Encoding Rules for ASN.1, abbreviated BER, give one or more ways to
represent any ASN.1 value as an octet string. (There are certainly other ways to
represent ASN.1 values, but BER is the standard for interchanging such values in
Osl.)

¥, 9bed 9 wnipuadwon

3. BAsIC ENCODING RULES Page 7

There are three methods to encode an ASN.1 value under BER, the choice of
which depends on the type of value and whether the length of the value is
known. The three methods are primitive, definite-length encoding; constructed,
definite-length encoding; and constructed, indefinite-length encoding. Simple
non-string types employ the primitive, definite-length method; structured types
employ either of the constructed methods; and simple string types employ any
of the methods, depending on whether the length of the value is known. Types
derived by implicit tagging employ the method of the underlying type and types
derived by explicit tagging employ the constructed methods.

In each method, the BER encoding has three or four parts:

Identifier octets. These identify the class and tag number of the ASN.1
value, and indicate whether the method is primitive or constructed.

Length octets. For the definite-length methods, these give the number of
contents octets. For the constructed, indefinite-length method, these
indicate that the length is indefinite.

Contents octets. For the primitive, definite-length method, these give a
concrete representation of the value. For the constructed methods,
these give the concatenation of the BER encodings of the
components of the value.

End-of-contents octets. For the constructed, indefinite-length method, these
denote the end of the contents. For the other methods, these are
absent.

The three methods of encoding are described in the following sections.

3.1 Primitive, definite-length method

This method applies to simple types and types derived from simple types by
implicit tagging. It requires that the length of the value be known in advance.
The parts of the BER encoding are as follows:

Identifier octets. There are two forms: low tag number (for tag numbers
between 0 and 30) and high tag number (for tag numbers 31 and greater).

Low-tag-number form. One octet. Bits 8 and 7 specify the class (see Table 2),
bit 6 has value "0," indicating that the encoding is primitive, and
bits 5—1 give the tag number.

Page 8 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER
Class Bit8 | Bit7
universal 0 0
application 0 1
context-specific 1 0
private 1 1

Table 2. Class encoding in identifier octets.

High-tag-number form. Two or more octets. First octet is as in low-tag-
number form, except that bits 5-1 all have value "1." Second and
following octets give the tag number, base 128, most significant
digit first, with as few digits as possible, and with the bit 8 of each
octet except the last set to "1."

Length octets. There are two forms: short (for lengths between 0 and 127), and
long definite (for lengths between 0 and 21008_1),

Short form. One octet. Bit 8 has value "0" and bits 7-1 give the length.

Long form. Two to 127 octets. Bit 8 of first octet has value "1" and bits 7-1
give the number of additional length octets. Second and following
octets give the length, base 256, most significant digit first.

Contents octets. These give a concrete representation of the value (or the value
of the underlying type, if the type is derived by implicit tagging). Details for
particular types are given in Section 5.

3.2 Constructed, definite-length method

This method applies to simple string types, structured types, types derived
simple string types and structured types by implicit tagging, and types derived
from anything by explicit tagging. It requires that the length of the value be
known in advance. The parts of the BER encoding are as follows:

Identifier octets. As described in Section 3.1, except that bit 6 has value "1,"
indicating that the encoding is constructed.

Length octets. As described in Section 3.1.

Contents octets. The concatenation of the BER encodings of the components of
the value:

. For simple string types and types derived from them by implicit
tagging, the concatenation of the BER encodings of consecutive
substrings of the value (underlying value for implicit tagging).

G/ obed g9 wnipuadwo)

4. DISTINGUISHED ENCODING RULES Page 9

. For structured types and types derived from them by implicit
tagging, the concatenation of the BER encodings of components of
the value (underlying value for implicit tagging).

. For types derived from anything by explicit tagging, the BER
encoding of the underlying value.

Details for particular types are given in Section 5.

3.3 Constructed, indefinite-length method

This method applies to simple string types, structured types, types derived
simple string types and structured types by implicit tagging, and types derived
from anything by explicit tagging. It does not require that the length of the value
be known in advance. The parts of the BER encoding are as follows:

Identifier octets. As described in Section 3.2.
Length octets. One octet, 80.

Contents octets. As described in Section 3.2.
End-of-contents octets. Two octets, 00 00.

Since the end-of-contents octets appear where an ordinary BER encoding might
be expected (e.g., in the contents octets of a sequence value), the 00 and 00
appear as identifier and length octets, respectively. Thus the end-of-contents
octets is really the primitive, definite-length encoding of a value with universal
class, tag number 0, and length 0.

4. Distinguished Encoding Rules

The Distinguished Encoding Rules for ASN.1, abbreviated DER, are a subset of
BER, and give exactly one way to represent any ASN.1 value as an octet string.
DER is intended for applications in which a unique octet string encoding is
needed, as is the case when a digital signature is computed on an ASN.1 value.
DER is defined in Section 8.7 of X.509.

DER adds the following restrictions to the rules given in Section 3:

1. When the length is between 0 and 127, the short form of length
must be used

Page 10 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

2. When the length is 128 or greater, the long form of length must be
used, and the length must be encoded in the minimum number of
octets.

3. For simple string types and implicitly tagged types derived from
simple string types, the primitive, definite-length method must be
employed.

4. For structured types, implicitly tagged types derived from
structured types, and explicitly tagged types derived from
anything, the constructed, definite-length method must be
employed.

Other restrictions are defined for particular types (such as BIT STRING,
SEQUENCE, SET, and SET OF), and can be found in Section 5.

5. Notation and encodings for some types

This section gives the notation for some ASN.1 types and describes how to
encode values of those types under both BER and DER.

The types described are those presented in Section 2. They are listed
alphabetically here.

Each description includes ASN.1 notation, BER encoding, and DER encoding.
The focus of the encodings is primarily on the contents octets; the tag and length
octets follow Sections 3 and 4. The descriptions also explain where each type is
used in PKCS and related standards. ASN.1 notation is generally only for types,
although for the type OBJECT IDENTIFIER, vValue notation is given as well.

5.1 Implicitly tagged types

An implicitly tagged type is a type derived from another type by changing the
tag of the underlying type.

Implicit tagging is used for optional SEQUENCE components with underlying
type other than ANY throughout PKCS, and for the extendedCertificate
alternative of PKCS #7's ExtendedCertificateOrCertificate type.

ASN.1 notation:

[[class] number] IMPLICIT Type

class = UNIVERSAL | APPLICATION | PRIVATE

9/ 9bed 9 wnipuadwon

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 11

where Type is a type, class is an optional class name, and number is the tag
number within the class, a nonnegative integer.

In ASN.1 "modules" whose default tagging method is implicit tagging, the
notation [[class] number] Type is also acceptable, and the keyword IMPLICIT is
implied. (See Section 2.3.) For definitions stated outside a module, the explicit
inclusion of the keyword IMPLICIT is preferable to prevent ambiguity.

If the class name is absent, then the tag is context-specific. Context-specific tags
can only appear in a component of a structured or CHOICE type.

Example: PKCS #8's PrivateKeyInfo type has an optional attributes
component with an implicit, context-specific tag:

PrivateKeyInfo ::= SEQUENCE {
version Version,
privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
privateKey PrivateKey,
attributes [0] IMPLICIT Attributes OPTIONAL }

Here the underlying type is Attributes, the class is absent (i.e., context-
specific), and the tag number within the class is 0.

BER encoding. Primitive or constructed, depending on the underlying type.
Contents octets are as for the BER encoding of the underlying value.

Example: The BER encoding of the attributes component of a
PrivateKeyInfo value is as follows:

. the identifier octets are 80 if the underlying Attributes value
has a primitive BER encoding and a0 if the underlying
Attributes value has a constructed BER encoding

. the length and contents octets are the same as the length and
contents octets of the BER encoding of the underlying
Attributes value

DER encoding. Primitive or constructed, depending on the underlying type.
Contents octets are as for the DER encoding of the underlying value.
5.2 Explicitly tagged types

Explicit tagging denotes a type derived from another type by adding an outer
tag to the underlying type.

Page 12 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Explicit tagging is used for optional SEQUENCE components with underlying
type ANY throughout PKCS, and for the version component of X.509's
Certificate type.

ASN.1 notation:
[[class] number] EXPLICIT Type
class = UNIVERSAL | APPLICATION | PRIVATE

where Type is a type, class is an optional class name, and number is the tag
number within the class, a nonnegative integer.

If the class name is absent, then the tag is context-specific. Context-specific tags
can only appear in a component of a SEQUENCE, SET or CHOICE type.

In ASN.1 "modules" whose default tagging method is explicit tagging, the
notation [[class] number] Type is also acceptable, and the keyword EXPLICIT is
implied. (See Section 2.3.) For definitions stated outside a module, the explicit
inclusion of the keyword EXPLICIT is preferable to prevent ambiguity.

Example 1: PKCS #7's ContentInfo type has an optional content component
with an explicit, context-specific tag:

ContentInfo ::= SEQUENCE {
contentType ContentType,
content

[0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

Here the underlying type is ANY DEFINED BY contentType, the class is
absent (i.e., context-specific), and the tag number within the class is 0.

Example 2: X.509's Certificate type has a version component with an
explicit, context-specific tag, where the EXPLICIT keyword is omitted:

Certificate ::=

version [0] Version DEFAULT wv1988,

The tag is explicit because the default tagging method for the ASN.1 "module” in
X.509 that defines the certificate type is explicit tagging.

BER encoding. Constructed. Contents octets are the BER encoding of the
underlying value.

Example: the BER encoding of the content component of a ContentInfo value
is as follows:

/2 9bed 9 wnipuadwon

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 13
. identifier octets are a0
. length octets represent the length of the BER encoding of the

underlying ANY DEFINED BY contentType value

. contents octets are the BER encoding of the underlying ANY
DEFINED BY contentType value

DER encoding. Constructed. Contents octets are the DER encoding of the
underlying value.

5.3 ANY

The ANY type denotes an arbitrary value of an arbitrary type, where the arbitrary
type is possibly defined in the registration of an object identifier or associated
with an integer index.

The ANY type is used for content of a particular content type in PKCS #7's
ContentInfo type, for parameters of a particular algorithm in X.509's
AlgorithmIdentifier type, and for attribute values in X.501's Attribute
and AttributeValueAssertion types. The Attribute type is used by
PKCS #6, #7, #8, #9 and #10, and the AttributeValueAssertion type is used
in X.501 distinguished names.

ASN.1 notation:

ANY [DEFINED BY identifier]

where identifier is an optional identifier.

In the ANY form, the actual type is indeterminate.

The ANY DEFINED BY identifier form can only appear in a component of a
SEQUENCE or SET type for which identifier identifies some other component,
and that other component has type INTEGER or OBJECT IDENTIFIER (or a
type derived from either of those by tagging). In that form, the actual type is
determined by the value of the other component, either in the registration of the
object identifier value, or in a table of integer values.

Example: X.509's AlgorithmIdentifier type has a component of type ANY:
AlgorithmIdentifier ::= SEQUENCE ({

algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

Page 14 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Here the actual type of the parameter component depends on the value of the
algorithm component. The actual type would be defined in the registration of
object identifier values for the algorithm component.

BER encoding. Same as the BER encoding of the actual value.

Example: The BER encoding of the value of the parameter component is the
BER encoding of the value of the actual type as defined in the registration of
object identifier values for the algorithm component.

DER encoding. Same as the DER encoding of the actual value.

5.4 BIT STRING

The BIT STRING type denotes an arbitrary string of bits (ones and zeroes). A
BIT STRING value can have any length, including zero. This type is a string
type.

The BIT STRING type is used for digital signatures on extended certificates in
PKCS #6's ExtendedCertificate type, for digital signatures on certificates in
X.509's certificate type, and for public keys in certificates in X.509's
SubjectPublicKeyInfo type.

ASN.1 notation:
BIT STRING

Example: X.509's SubjectPublicKeyInfo type has a component of type BIT
STRING:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
publicKey BIT STRING }

BER encoding. Primitive or constructed. In a primitive encoding, the first
contents octet gives the number of bits by which the length of the bit string is
less than the next multiple of eight (this is called the "number of unused bits").
The second and following contents octets give the value of the bit string,
converted to an octet string. The conversion process is as follows:

1. The bit string is padded after the last bit with zero to seven bits of
any value to make the length of the bit string a multiple of eight. If
the length of the bit string is a multiple of eight already, no
padding is done.

g/ obed g9 wnipuadwo)

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 15

2. The padded bit string is divided into octets. The first eight bits of
the padded bit string become the first octet, bit 8 to bit 1, and so on
through the last eight bits of the padded bit string.

In a constructed encoding, the contents octets give the concatenation of the BER
encodings of consecutive substrings of the bit string, where each substring
except the last has a length that is a multiple of eight bits.

Example: The BER encoding of the BIT STRING value "011011100101110111" can
be any of the following, among others, depending on the choice of padding bits,
the form of length octets, and whether the encoding is primitive or constructed:

03 04 06 6e 5d cO DER encoding
03 04 06 6e 5d e0 padded with "100000"
03 81 04 06 6e 5d cO long form of length octets
23 09 constructed encoding: "0110111001011101" + "11"
03 03 00 6e 5d
03 02 06 cO

DER encoding. Primitive. The contents octects are as for a primitive BER
encoding, except that the bit string is padded with zero-valued bits.

Example: The DER encoding of the BIT STRING value "011011100101110111" is

03 04 06 6e 5d cO

5.5 CHOICE
The CHOICE type denotes a union of one or more alternatives.

The CHOICE type is used to represent the union of an extended certificate and an
X.509 certificate in PKCS #7's ExtendedCertificateOrCertificate type.

ASN.1 notation:

CHOICE {
[identifier;] Typeq,

-

lidentifier,] Type, }

where identifier; , ..., identifier, are optional, distinct identifiers for the
alternatives, and Type;, ..., Type, are the types of the alternatives. The

Page 16 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

identifiers are primarily for documentation; they do not affect values of the type
or their encodings in any way.

The types must have distinct tags. This requirement is typically satisfied with
explicit or implicit tagging on some of the alternatives.

Example: PKCS #7's ExtendedCertificateOrCertificate type is a CHOICE
type:

ExtendedCertificateOrCertificate ::= CHOICE (
certificate Certificate, -- X.509
extendedCertificate [0] IMPLICIT ExtendedCertificate

Here the identifiers for the alternatives are certificate and
extendedCertificate, and the types of the alternatives are Certificate
and [0] IMPLICIT ExtendedCertificate.

BER encoding. Same as the BER encoding of the chosen alternative. The fact that
the alternatives have distinct tags makes it possible to distinguish between their
BER encodings.

Example: The identifier octets for the BER encoding are 30 if the chosen
alternative is certificate, and a0 if the chosen alternative is
extendedCertificate

DER encoding. Same as the DER encoding of the chosen alternative.

5.6 IA5String

The IA5String type denotes an arbtrary string of IA5 characters. A5 stands for
International Alphabet 5, which is the same as ASCII. The character set includes
non-printing control characters. An IA5String value can have any length,
including zero. This type is a string type.

The IA5String type is used in PKCS #9's electronic-mail address, unstructured-
name, and unstructured-address attributes.

ASN.1 notation:
IASString

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the IA5 string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the A5 string.

6/ obed 9 wnipuadwo)

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 17

Example: The BER encoding of the IA5String value "testl@rsa.com" can be any
of the following, among others, depending on the form of length octets and
whether the encoding is primitive or constructed:

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d DER encoding

16 81 od long form of length octets
74 65 73 74 31 40 72 73 61 2e 63 6f 6d

36 13 constructed encoding: “testl" + "@" + "rsa.com”
16 05 74 65 73 74 31
16 01 40

16 07 72 73 61 2e 63 6f 6d
DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the IA5String value "testl@rsa.com” is

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d

5.7 INTEGER

The INTEGER type denotes an arbitrary integer. INTEGER values can be positive,
negative, or zero, and can have any magnitude.

The INTEGER type is used for version numbers throughout PKCS, cryptographic
values such as modulus, exponent, and primes in PKCS #1's RSAPublicKey and
RSAPrivateKey types and PKCS #3's DHParameter type, a message-digest
iteration count in PKCS #5's PBEParameter type, and version numbers and
serial numbers in X.509's Certificate type.

ASN.1 notation:
INTEGER [{ identifier; (value;) ... identifier, (value,) }]

where identifiery, ..., identifiery are optional distinct identifiers and valuey, ...,
value, are optional integer values. The identifiers, when present, are associated
with values of the type.

Example: X.509's Version type is an INTEGER type with identified values:
Version ::= INTEGER { v1988(0) }

The identifier v1988 is associated with the value 0. X.509's Certificate type
uses the identifier v1988 to give a default value of 0 for the version
component:

Page 18 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Certificate ::= ...
version Version DEFAULT v1988,

BER encoding. Primitive. Contents octets give the value of the integer, base 256,
in two's complement form, most significant digit first, with the minimum
number of octets. The value 0 is encoded as a single 00 octet.

Some example BER encodings (which also happen to be DER encodings) are
given in Table 3.

Integer BER encoding
value

0 02 01 00

127 02 01 7F

128 02 02 00 80
256 02 02 01 00
-128 02 01 80
-129 02 02 FF 7F

Table 3. Example BER encodings of INTEGER values.

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

5.8 NULL

The NULL type denotes a null value.

The NULL type is used for algorithm parameters in several places in PKCS.
ASN.1 notation:

NULL

BER encoding. Primitive. Contents octets are empty.

Example: The BER encoding of a NULL value can be either of the following, as
well as others, depending on the form of the length octets:

05 00

05 81 00

DER encoding. Primitive. Contents octets are empty; the DER encoding of a
NULL value is always 05 00.

0g @bed 9 wnipuadwon

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 19

5.9 OBJECT IDENTIFIER

The OBJECT IDENTIFIER type denotes an object identifier, a sequence of
integer components that identifies an object such as an algorithm, an attribute
type, or perhaps a registration authority that defines other object identifiers. An
OBJECT IDENTIFIER value can have any number of components, and
components can generally have any nonnegative value. This type is a non-string

type.

OBJECT IDENTIFIER Values are given meanings by registration authorities.
Each registration authority is responsible for all sequences of components
beginning with a given sequence. A registration authority typically delegates
responsibility for subsets of the sequences in its domain to other registration
authorities, or for particular types of object. There are always at least two
components.

The OBJECT IDENTIFIER type is used to identify content in PKCS #7's
ContentInfo type, to identify algorithms in X.509's AlgorithmIdentifier
type, and to identify attributes in X.501's Attribute and
AttributeValueAssertion types. The Attribute type is used by PKCS #6,
#7, #8, #9, and #10, and the AttributeValueAssertion type is used in X.501
distinguished names. OBJECT IDENTIFIER values are defined throughout
PKCS.

ASN.1 notation:

OBJECT IDENTIFIER

The ASN.1 notation for values of the OBJECT IDENTIFIER type is
{ Tridentifier] component; ... component, }

component; = identifier; | identifier; (valuej) | value;

where identifier, identifiery, ..., identifiery, are identifiers, and valuey, ..., value,
are optional integer values.

The form without identifier is the "complete” value with all its components; the
form with identifier abbreviates the beginning components with another object
identifier value. The identifiers identifiery, ..., identifier,, are intended primarily
for documentation, but they must correspond to the integer value when both are
present. These identifiers can appear without integer values only if they are
among a small set of identifiers defined in X.208.

Example: The following values both refer to the object identifier assigned to RSA
Data Security, Inc.:

Page 20 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

{ iso(1) member-body(2) 840 113549 }
{ 1 2 840 113549 }

(In this example, which gives ASN.1 value notation, the object identifier values
are decimal, not hexadecimal.) Table 4 gives some other object identifier values
and their meanings.

Object identifier value Meaning
{12} 1SO member bodies
{ 12 840 } US (ANSI)
{ 1 2 840 113549 } RSA Data Security, Inc.
{ 1 2 840 113549 1 } RSA Data Security, Inc. PKCS
{ 25} directory services (X.500)
{258} directory services—algorithms

Table 4. Some object identifier values and their meanings.

BER encoding. Primitive. Contents octets are as follows, where valuey, ..., value,
denote the integer values of the components in the complete object identifier:

1. The first octet has value 40 x value; + value,. (This is unambiguous,
since value; is limited to values 0, 1, and 2; value, is limited to the
range 0 to 39 when value; is 0 or 1; and, according to X.208, n is
always at least 2.)

2. The following octets, if any, encode valueg, ..., value,. Each value is
encoded base 128, most significant digit first, with as few digits as
possible, and the most significant bit of each octet except the last in
the value's encoding set to "1."

Example: The first octet of the BER encoding of RSA Data Security, Inc.'s object
identifier is 40 x 1 + 2 = 42 = 2a,¢. The encoding of 840 =6 x 128 + 48,5 is 86 48
and the encoding of 113549 = 6 x 1282 + 77 x 128 + dygis 86 £7 0d. This leads
to the following BER encoding:

06 06 2a 86 48 86 f£7 0d

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

5.10 OCTET STRING

The OCTET STRING type denotes an arbitrary string of octets (eight-bit values).
An OCTET STRING value can have any length, including zero. This type is a
string type.

Lg @bed g wnipuadwo)

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 21

The OCTET STRING type is used for salt values in PKCS #5's PREParameter
type, for message digests, encrypted message digests, and encrypted content in
PKCS #7, and for private keys and encrypted private keys in PKCS #8.

ASN.1 notation:
OCTET STRING [SIZE ({size | size;..sizes})]

where size, size;, and size, are optional size constraints. In the OCTET STRING
SIZE (size) form, the octet string must have size octets. In the OCTET STRING
SIZE (size;..sizep) form, the octet string must have between sizel and size2
octets. In the OCTET STRING form, the octet string can have any size.

Example: PKCS #5's PBEParameter type has a component of type OCTET
STRING:

PBEParameter ::= SEQUENCE {
salt OCTET STRING SIZE(8),
iterationCount INTEGER }

Here the size of the salt component is always eight octets.

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the value of the octet string, first octet to last octet. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
substrings of the OCTET STRING value.

Example: The BER encoding of the OCTET STRING value 01 23 45 67 89 ab
cd ef can be any of the following, among others, depending on the form of
length octets and whether the encoding is primitive or constructed:

04 08 01 23 45 67 89 ab cd ef DER encoding
04 81 08 01 23 45 67 89 ab cd ef long form of length octets
24 Oc constructed encoding: 01 ... 67+89 ... ef
04 04 01 23 45 67
04 04 89 ab cd ef
DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The BER encoding of the OCTET STRING value 01 23 45 67 89 ab
cd efis

04 08 01 23 45 67 89 ab cd ef

Page 22 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

5.11 PrintableString

The PrintableString type denotes an arbitrary string of printable characters
from the following character set:

AB, ..., Z

a, b, ...,z

0,1,...,9
(space) ' () +,-./:=7?

This type is a string type.

The PrintableString type is used in PKCS #9's challenge-password and
unstructuerd-address attributes, and in several X.521 distinguished names
attributes.

ASN.1 notation:
PrintableString

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the printable string, encoded in ASCIIl. In a
constructed encoding, the contents octets give the concatenation of the BER
encodings of consecutive substrings of the string.

Example: The BER encoding of the PrintableString value "Test User 1" can be
any of the following, among others, depending on the form of length octets and
whether the encoding is primitive or constructed:

13 0b 54 65 73 74 20 55 73 65 72 20 31 DER encoding

13 81 0b 54 65 73 74 20 55 73 65 72 20 31
long form of length octets

33 0of constructed encoding: "Test " + "User 1"
13 05 54 65 73 74 20
13 06 55 73 65 72 20 31

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the PrintableString value "Test User 1" is

13 0b 54 65 73 74 20 55 73 65 72 20 31

28 9bed 9 wnipuadwon

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 23

5.12 SEQUENCE

The SEQUENCE type denotes an ordered collection of one or more types.
The SEQUENCE type is used throughout PKCS and related standards.
ASN.1 notation:

SEQUENCE {
[identifier{] Typeq [{OPTIONAL | DEFAULT valueq}],

[identifier)] Type, [{OPTIONAL | DEFAULT value,}]}

where identifier; , ..., identifier, are optional, distinct identifiers for the
components, Typey, ..., Type, are the types of the components, and valuey, ...,
value, are optional default values for the components. The identifiers are
primarily for documentation; they do not affect values of the type or their
encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is optional and
need not be present in the sequence. The DEFAULT qualifier also indicates that
the value of a component is optional, and assigns a default value to the
component when the component is absent.

The types of any consecutive series of components with the OPTIONAL or
DEFAULT qualifier, as well as of any component immediately following that
series, must have distinct tags. This requirement is typically satisfied with
explicit or implicit tagging on some of the components.

Example: X.509's validity type is a SEQUENCE type with two components:

Validity ::= SEQUENCE {
start UTCTime,
end UTCTime }

Here the identifiers for the components are start and end, and the types of the
components are both UTCTime.

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the components of the sequence, in order of
definition, with the following rules for components with the OPTIONAL and
DEFAULT qualifiers:

. if the value of a component with the OPTIONAL or DEFAULT
qualifier is absent from the sequence, then the encoding of that
component is not included in the contents octets

Page 24 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

. if the value of a component with the DEFAULT qualifier is the
default value, then the encoding of that component may or may not
be included in the contents octets

DER encoding. Constructed. Contents octets are the same as the BER encoding,
except that if the value of a component with the DEFAULT qualifier is the default
value, the encoding of that component is not included in the contents octets.

5.13 SEQUENCE OF

The SEQUENCE OF type denotes an ordered collection of zero or more
occurrences of a given type.

The SEQUENCE OF type is used in X.501 distinguished names.
ASN.1 notation:

SEQUENCE OF Type

where Type is a type.

Example: X.501's RDNSequence type consists of zero or more occurences of the
RelativeDistinguishedName type, most significant occurrence first:

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the occurrences in the collection, in order of
occurence.

DER encoding. Constructed. Contents octets are the concatenation of the DER
encodings of the values of the occurrences in the collection, in order of
occurence.

5.14 SET

The SET type denotes an unordered collection of one or more types.

The SET type is not used in PKCS.

ASN.1 notation:

SET {
[identifier;] Type; [{OPTIONAL | DEFAULT valueq}],

¢g abed 9 wnipuadwon

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 25

[identifier,] Type, [{OPTIONAL | DEFAULT value,}]}

where identifiery, ..., identifier, are optional, distinct identifiers for the
components, Typey, ..., Type, are the types of the components, and valuey, ...,
value, are optional default values for the components. The identifiers are
primarily for documentation; they do not affect values of the type or their
encodings in any way.

The oPTIONAL qualifier indicates that the value of a component is optional and
need not be present in the set. The DEFAULT qualifier also indicates that the
value of a component is optional, and assigns a default value to the component
when the component is absent.

The types must have distinct tags. This requirement is typically satisfied with
explicit or implicit tagging on some of the components.

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the components of the set, in any order, with the
following rules for components with the OPTIONAL and DEFAULT qualifiers:

. if the value of a component with the OPTIONAL or DEFAULT
qualifier is absent from the set, then the encoding of that
component is not included in the contents octets

. if the value of a component with the DEFAULT qualifier is the
default value, then the encoding of that component may or may not
be included in the contents octets

DER encoding. Constructed. Contents octets are the same as for the BER
encoding, except that:

1. If the value of a component with the DEFAULT qualifier is the
default value, the encoding of that component is not included.

2. There is an order to the components, namely ascending order by
tag.
5.15 SET OF

The SET OF type denotes an unordered collection of zero or more occurrences of
a given type.

Page 26 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

The SET OF type is used for sets of attributes in PKCS #6, #7, #8, #9 and #10, for
sets of message-digest algorithm identifiers, signer information, and recipient
information in PKCS #7, and in X.501 distinguished names.

ASN.1 notation:
SET OF Type
where Type is a type.

Example: X.501's RelativeDistinguishedName type consists of zero or more
occurrences of the AttributeValueAssertion type, where the order is
unimportant:

RelativeDistinguishedName ::=
SET OF AttributeValueAssertion

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the occurrences in the collection, in any order.

DER encoding. Constructed. Contents octets are the same as for the BER
encoding, except that there is an order, namely ascending lexicographic order of
BER encoding. Lexicographic comparison of two different BER encodings is
done as follows: Logically pad the shorter BER encoding after the last octet with
dummy octets that are smaller in value than any normal octet. Scan the BER
encodings from left to right until a difference is found. The smaller-valued BER
encoding is the one with the smaller-valued octet at the point of difference.

5.16 T61String

The T61String type denotes an arbtrary string of T.61 characters. T.61 is an
eight-bit extension to the ASCII character set. Special "escape" sequences specify
the interpretation of subsequent character values as, for example, Japanese; the
initial interpretation is Latin. The character set includes non-printing control
characters. The T61String type allows only the Latin and Japanese character
interepretations, and implementors' agreements for directory names exclude
control characters [NIST92]. A T61String value can have any length, including
zero. This type is a string type.

The T61String type is used in PKCS #9's unstructured-address and challenge-
password attributes, and in several X.521 attributes.

ASN.1 notation:

T6lString

g obed 9 wnipuadwon

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 27

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the T.61 string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the T.61 string.

Example: The BER encoding of the T61String value "clés publiques" (French for
"public keys") can be any of the following, among others, depending on the form
of length octets and whether the encoding is primitive or constructed:

14 of DER encoding
63 6c c2 65 73 20 70 75 62 6¢c 69 71 75 65 73

14 81 Of long form of length octets
63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

34 15 constructed encoding: "clés" + " " + "publiques”
14 05 63 6c c2 65 73
14 01 20

14 09 70 75 62 6¢c 69 71 75 65 73

The eight-bit character c2 is a T.61 prefix that adds an acute accent (") to the next
character.

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the T61String value "clés publiques” is

14 0f 63 6¢c c2 65 73 20 70 75 62 6c 69 71 75 65 73

517 UTCTime

The UTCTime type denotes a "coordinated universal time" or Greenwich Mean
Time (GMT) value. A UTCTime value includes the local time precise to either
minutes or seconds, and an offset from GMT in hours and minutes. It takes any
of the following forms:

YYMMDDhhmmZ
YYMMDDhhmm+hh 'mm'
YYMMDDhhmm-hh 'mm'’
YYMMDDhhmmssZ
YYMMDDhhmmss+hh "mm'
YYMMDDhhmmss-hh 'mm'

where:

YY is the least significant two digits of the year

Page 28 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

MM is the month (01 to 12)
DD is the day (01 to 31)

hh is the hour (00 to 23)

mm are the minutes (00 to 59)
ss are the seconds (00 to 59)

7 indicates that local time is GMT, + indicates that local time is later than
GMT, and - indicates that local time is earlier than GMT

hh* is the absolute value of the offset from GMT in hours
mm" is the absolute value of the offset from GMT in minutes
This type is a string type.

The UTCTime type is used for signing times in PKCS #9's signing-time attribute
and for certificate validity periods in X.509's Validity type.

ASN.1 notation:
UTCTime

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the string. (The constructed encoding is not
particularly interesting, since UTCTime values are so short, but the constructed
encoding is permitted.)

Example: The time this sentence was originally written was 4:45:40 p.m. Pacific
Daylight Time on May 6, 1991, which can be represented with either of the
following UTCTime values, among others:

"910506164540-0700"

"910506234540Z"

These values have the following BER encodings, among others:
17 0d 39 31 30 35 30 36 32 33 34 35 34 30 5a

17 11 39 31 30 35 30 36 31 36 34 35 34 30 2D 30 37 30
30

Gg obed 9 wnipuadwo)

6. AN EXAMPLE Page 29

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

6. An example

This section gives an example of ASN.1 notation and DER encoding: the X.501
type Name.

6.1 Abstract notation

This section gives the ASN.1 notation for the X.501 type Name.

Name ::= CHOICE ({
RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::=
SET OF AttributeValueAssertion

AttributeValueAssertion ::= SEQUENCE {
AttributeType,
AttributevValue }

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

The Name type identifies an object in an X.500 directory. Name is a CHOICE type
consisting of one alternative: RDNSequence. (Future revisions of X.500 may
have other alternatives.)

The RDNSequence type gives a path through an X.500 directory tree starting at
the root. RDNSequence is a SEQUENCE OF type consisting of zero or more
occurences of RelativeDistinguishedName.

The RelativeDistinguishedName type gives a unique name to an object
relative to the object superior to it in the directory tree.
RelativeDistinguishedName iS a SET OF type consisting of zero or more
occurrences of AttributeValueAssertion

The AttributeValueAssertion type assigns a value to some attribute of a
relative distinguished name, such as country name or common name.
AttributeValueAssertion IS a SEQUENCE type consisting of two
components, an AttributeType type and an Attributevalue type.

Page 30 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

The AttributeType type identifies an attribute by object identifier. The
AttributeValue type gives an arbitrary attribute value. The actual type of the
attribute value is determined by the attribute type.

6.2 DER encoding

This section gives an example of a DER encoding of a value of type Name,
working from the bottom up.

The name is that of the Test User 1 from the PKCS examples [Kal93]. The name is
represented by the following path:

(root)
|

countryName = "US"

organizationName = "Example Organization"

commonName = "Test User 1"

Each level corresponds to one RelativeDistinguishedName value, each of
which happens for this name to consist of one AttributevValueAssertion
value. The AttributeType value is before the equals sign, and the
AttributeValue value (a printable string for the given attribute types) is after
the equals sign.

The countryName, organizationName, and commonUnitName are attribute
types defined in X.520 as:

attributeType OBJECT IDENTIFIER ::=

{ joint-iso-ccitt(2) ds(5) 4 }
countryName OBJECT IDENTIFIER ::= { attributeType 6 }
organizationName OBJECT IDENTIFIER ::=

{ attributeType 10 }

commonUnitName OBJECT IDENTIFIER ::=
{ attributeType 3 }

6.2.1 AttributeType

The three AttributeType values are OCTET STRING values, so their DER
encoding follows the primitive, definite-length method:

06 03 55 04 06 countryName

06 03 55 04 0Oa organizationName

9g 9bed 9 wnipuadwon

6. AN EXAMPLE Page 31

06 03 55 04 03 commonName

The identifier octets follow the low-tag form, since the tag is 6 for OBJECT
IDENTIFIER. Bits 8 and 7 have value "0," indicating universal class, and bit 6
has value "0," indicating that the encoding is primitive. The length octets follow
the short form. The contents octets are the concatenation of three octet strings
derived from subidentifiers (in decimal): 40 x 2 + 5 = 85 = 55,4; 4; and 6, 10, or 3.

6.2.2 AttributeValue

The three AttributeValue values are PrintableString values, so their
encodings follow the primitive, definite-length method:

13 02 55 53 "uUs"

13 14 "Example Organization"
45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
74 69 6f 6e

13 0b "Test User 1"
54 65 73 74 20 55 73 65 72 20 31

The identifier octets follow the low-tag-number form, since the tag for
PrintableString, 19 (decimal), is between 0 and 30. Bits 8 and 7 have value
"0" since PrintableString is in the universal class. Bit 6 has value "0" since
the encoding is primitive. The length octets follow the short form, and the
contents octets are the ASCII representation of the attribute value.

6.2.3 AttributeValueAssertion

The three AttributeValueAssertion values are SEQUENCE values, so their
DER encodings follow the constructed, definite-length method:

30 09 countryName = "US"
06 03 55 04 06
13 02 55 53

30 1b organizationName = "Example Organizaiton"
06 03 55 04 Oa
13 14 ... 6f 6e

30 12 commonName = "Test User 1"
06 03 55 04 0b
13 0b ... 20 31

Page 32 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

The identifier octets follow the low-tag-number form, since the tag for
SEQUENCE, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since
SEQUENCE is in the universal class. Bit 6 has value "1" since the encoding is
constructed. The length octets follow the short form, and the contents octets are
the concatenation of the DER encodings of the attributeType and
attributevalue components.

6.2.4 RelativeDistinguishedName

The three RelativeDistinguishedName values are SET OF values, so their
DER encodings follow the constructed, definite-length method:

31 0b

30 09 ... 55 53
31 1d

30 1b ... 6f 6e
31 14

30 12 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for SET OF,
17 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since SET OF isin
the universal class Bit 6 has value "1" since the encoding is constructed. The
lengths octets follow the short form, and the contents octets are the DER
encodings of the respective AttributeValueAssertion values, since there is
only one value in each set.

6.2.5 RDNSequence

The RDNSequence Vvalue is a SEQUENCE OF Vvalue, so its DER encoding follows
the constructed, definite-length method:

30 42
31 0b ... 55 53
31 1d ... 6f 6e
31 14 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for
SEQUENCE OF, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value "0"
since SEQUENCE OF is in the universal class. Bit 6 has value "1" since the
encoding is constructed. The lengths octets follow the short form, and the
contents octets are the concatenation of the DER encodings of the three
RelativeDistinguishedName values, in order of occurrence.

/8 abed g wnipuadwo)

REFERENCES Page 33

6.2.6 Name

The Name value is a CHOICE value, so its DER encoding is the same as that of the
RDNSequence Vvalue:

30 42
31 0b
30 09
06 03 55 04 06 attributeType = countryName
13 02 55 53 attributevValue = "US"
31 1d
30 1b
06 03 55 04 0Oa attributeType = organizationName
13 14 attributevalue = "Example Organization"
45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 Ta 61
74 69 6f 6e
31 14
30 12
06 03 55 04 03 attributeType = commonName
13 0b attributeValue = "Test User 1"
54 65 73 74 20 55 73 65 72 20 31
References
PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November
1993.
PKCS #3 RSA Laboratories. PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.
PKCS #5 RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 1.5,
November 1993.
PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.
PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.
PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2,
November 1993.
PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November
1993.
PKCS #10 RSA Laboratories. PKCS #10: Certification Request Syntax Standard. Version 1.0,
November 1993.
X.200 CCITT. Recommendation X.200: Reference Model of Open Systems Interconnection for

CCITT Applications. 1984.

Page 34

X.208

X.209

X.500

X.501
X.509
X.520

[Kal93]

[NIST92]

A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

CCITT. Recommendation X.500: The Directory—Overview of Concepts, Models and
Services. 1988.

CCITT. Recommendation X.501: The Directory—Models. 1988.
CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.
CCITT. Recommendation X.520: The Directory—Selected Attribute Types. 1988.

Burton S. Kaliski Jr. Some Examples of the PKCS Standards. RSA Laboratories,
November 1993.

NIST. Special Publication 500-202: Stable Implementation Agreements for Open
Systems Interconnection Protocols. Part 11 (Directory Services Protocols).
December 1992.

gg abed g9 wnipuadwo)

REVISION HISTORY Page 35 Page 36 A LAYMAN's GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Revision history RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA burt@rsa.com

June 3, 1991 version

The June 3, 1991 version is part of the initial public release of PKCS. It was
published as NIST/OSI Implementors' Workshop document SEC-SIG-91-17.
November 1, 1993 version

The November 1, 1993 version incorporates several editorial changes, including
the addition of a revision history. It is updated to be consistent with the
following versions of the PKCS documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November
1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.
PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November
1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November
1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Reguest Syntax Standard. Version 1.0, November
1993.

The following substantive changes were made:
Section 5: Description of T61String type is added.

Section 6: Names are changed, consistent with other PKCS examples.

Author's address

Burton S. Kaliski Jr., Ph.D.
Chief Scientist

68 obed 9 wnipuadwo)

A) {4,
ol
s wales
onst 2 aE
b %
= Oty 4 v

Ovningsuppgifter pa ASN.1 och BER

Ovningsuppgifter pa ASN.1 och BER Sida 1

Ovningsuppgift 1

Du skall definiera ett protokoll fér kommunikation mellan en automatisk
vag och en férpackningsmaskin.

Vagen avlaser varans vikt i gram som ett flytande tal, och varans
typnummer som ett heltal.

Definiera en datatyp ScaleReading med vilken vagen kan rapportera
detta till férpackningsmaskinen.

Ovningsuppgift 2

Som ett alternativ till metersystemet anvander en del lander ett
mattsystem som baseras pa inches, feet och yards. Definera en
datatyp Measurement som ger ett varde i detta mattsystem, och en
datatyp Box som ger hojd, langd och bredd hos ett objekt i det nya
mattsystemet. feet och yards ar heltal, inches ett decimalbrak.

Ovningsuppgift 3

Andra definitionen av Measurement i 6vningsuppgift 2 sa att feet bara
kan ha vardena 0, 1 eller 2 (3 feet ar ju en yard), och sa att inches ar
ett heltal mellan 0 och 1199 som anger langden i hundradels tum.
(1200 motsvarar ju 12 tum eller en fot).

Ovningsuppgift 4

| en opinionsundersdkning som gors utanfor vallokalen registrerar man
for varje intervjuad person vilket parti denne réstade pa. Tillatna
varden ar v, s, mp, c, fp, m, kds, nd eller 6. Vidare registreras alder
som ett positivt heltal storre an eller lika med 18 och kén som kan vara
man eller kvinna. Definiera en datatyp for att verfora dessa uppgifter
fran intervjustationen till den varddator som bearbetar vardet.

Ovningsuppgift 5

| den lokala valundersdkningen i Stockholm vill man separat registrera
aven rosterna for Stockholmspartiet (sp) och Bilistpartiet (bp). Ange,
utgaende fran att I0sningsforslag 1 till dvningsuppgift 4 ar given, en
modifierad datatype Stockholmvoter dar dessa nya partier ingar.

Ovningsuppgift 6

I det militéra har man tre sekretessgrader: Kvalificerat hemligt, hemligt
och Oppet. Foresla en lamplig datatyp for att ange sekretessgraden for
ett dokument som dverfors elektroniskt.

Ovningsuppgift 7

Givet I6sningen till dvningsuppgift 6, antag att man inom férsvars-
staben vill definiera en ny sekretessgrad Extra Kvalificerat Hemligt.
Kan man definiera detta i en utvidgad version av ett protokoll definierat
som i Idsningen av 6évningsuppgift 6.

Ovningsuppgift 8
Antag att man vill definiera olika ménster for att tdcka en yta pa en
monokrom bildskarm. Varje punkt pa skarmen kan vara antingen svart

eller vit. Monstren bildas genom att en ruta pa N ganger M pixels
upprepas over hela ytan. Mgjliga monster ar t.ex.

Bas Exempel pa yta

aEstiis

Ange en ASN.1 datatyp med vilken man kan beskriva olika méjliga
sadana tackningsmonster for ytor.

Ovningsuppgift 9

Ett lager salufor papper i formaten A3, A4, A5 och A6. En bestallare vill
veta om lagret har papper i lager av vart och ett av de fyra formaten.
Ange en datatyp med vilken butiken kan rapportera detta till
bestallaren.

Ovningsuppgift 10

| X.400-standarden kan ett namn besta av flera delfalt. Ett av delfalten
kallas for OrganizationName och kan ha ett varde mellan 1 och 64
tecken ur teckenmangden PrintableString. Ange ett forslag till definition
av detta i ASN.1.

Sida 2

06 @bed 9 wnipuadwon

b ao,
Q‘;ﬁ%ﬁk’ Ovningsuppgifter pa ASN.1 och BER Sida 3

Ovningsuppgift 11

| ett protokoll for 6verféring av personuppgifter mellan tva datorer
overfors alltid personnummer, bestaende av enbart siffror, blanka och
bindestreck. Namn (ej uppdelat pa for- och efternamn, max 40 tecken)
kan Overforas, om det ar kant, och beraknad arsinkomst kan 6verforas,
om det ar kant. Bada dessa uppgifter kan utelamnas, endast
personnummer ar obligatoriskt. Ange med anvandning av SET en
datatyp som kan anvandas for att éverfora denna information.

Ovningsuppgift 12

Antag att namnet skall éverféras som tva félt, ett fér férnamn och ett
for efternamn. Hur kan man andra I6sningen till dvningsuppgift 11 for
att passa detta fall.

Ovningsuppgift 13

Givet foljande ASN.1-typ:

XYCoordinate ::= SEQUENCE
{ x REAL,
y REAL
}

Definiera en subtyp till typen ovan som bara inkluderar tal i positiva
kvadranten (dar bade x och y &r 2 0).

Ovningsuppgift 14

Givet foljande ASN.1-typ:

Message =SET
{ author Name OPTIONAL,
textbody IA5String }

Definiera en subtyp till denna, kallad AnonymousMessage, i vilken author
inte uppges.

Ovningsuppgift 15

Definiera en datatyp FullName som omfattar en serie av tre element i
given ordning: Férnamn, initialer och efternamn, dar férnamn och
initialier kan utelamnas men efternamn alltid maste anges.

ot o iy,
@%‘“@5 Ovningsuppgifter p4 ASN.1 och BER

Ovningsuppgift 16

Definiera en datatyp BasicFamily bestaende av 0 eller 1 husband, O eller
1 wife och 0, 1 eller flera children. Var och en av dessa komponenter
anges med sitt namn som en 1A5String.

Ovningsuppgift 17

Definiera en datatyp ChildLessFamily, utgdende fran BasicFamily.

Ovningsuppgift 18

Givet datatyperna Aircraft, Ship, Train och MotorCar, definiera en datatyp
Vessel vars varde kan vara vilket som helst av dessa fyra datatyper
med sina varden.

Ovningsuppgift 19

Vad ar skillnaden mellan de tva datatyperna:

NamelListA ::= CHOICE
{ ia5 [0] SEQUENCE OF IA5String,
gs [1] SEQUENCE OF GeneralString
}
och
NamelistB ::= SEQUENCE OF CHOICE
{ iab [0] IA5String,
gs [1] GeneralString
}

Hur kan man i bada fallen utgaende fran ovan givna definitioner
definiera en ny datatyp GeneralNameList som bara kan innehalla
GeneralString-falt?

Ovningsuppgift 20

| en forening tillats tva slag av omrostningar:

(a) De rostande far valja ut ett och endast ett av ett antal alternativ 1
.. N och rosta for detta. Det alternativ som far flest réster vinner.

(b) De rostande far ange en poang mellan 0 och 10 for vart och ett
av alternativen 1 .. N. Det alternativ som far hogst sammanlagd
poang vinner.

Ange en ASN.1 datatyp som kan anvandas for att rapportera en
persons rostande till omréstningsraknaren och som kan anvandas for
bada typerna av omréstningar. Den réstandes namn skall inga i
rapporten som en IA5String.

Sida 4

L6 @bed g wnipuadwo)

S

#svpio0n

@:Ws W,
s w s,
ocn 3
& 25
» %
= s 4w

Ovningsuppgift 21

%

Ovningsuppgifter pa ASN.1 och BER

Antag att en ASN.1-modul ser ut sa har:

WeatherReporting {2 6 6 247 1} DEFINITIONS EXPLICIT TAGS ::=

BEGIN
WeatherReport ::= SEQUENCE
{ height [0] IMPLICIT REAL,
weather [1] IMPLICIT Wrecord
}
Wrecord ::=[APPLICATION 3] SEQUENCE
{ temp Temperature,
moist Moisture
wspeed [0] Windspeed OPTIONAL
}
Temperature ::= [APPLICATION 0] IMPLICIT REAL
Moisture ::= [APPLICATION 1] REAL

Windspeed ::= [APPLICATION 2] REAL
END - - of module WeaterhReporting

Skriv om denna ASN.1-modul sa att den ger exakt samma kodning,
men ar definierad med tag default IMPLICIT istéllet for EXPLICIT.

Ovningsuppgift 22

Vilka tags kan tas bort nedan, med bibehallen korrekt ASN.1?

Colour ::= [APPLICATION 0] CHOICE
rgb [1] RGB-Colour,
cmg [2] CMG-Colour,
freq [3] Frequency
}
RGB-Colour ::= [APPLICATION 1] SEQUENCE
{ red [0] REAL,
green [1] REAL OPTIONAL,
blue [2] REAL
}
CMG-Colour = SET
{ cyan [1] REAL,
magenta [2] REAL,
green [3] REAL
}
Frequency =SET
{ fullness [0] REAL,
freq [1] REAL

Sida 5

'm'%&’\s i o,
@%‘“@5 Ovningsuppgifter p4 ASN.1 och BER

Ovningsuppgift 23

Foljande ASN.1-konstruktion ar hamtad ur X.500-standarden (88 ars
version, macros som OPTIONALLY-SIGNED togs bort i 1994 ars version
av ASN.1):

ListResult ::= OPTIONALLY-SIGNED
CHOICE {
listinfo SET {
DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {
RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE
fromEntry [1] BOOLEAN DEFAULT TRUE},
partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL
COMPONENTS OF CommonResults },
uncorrelatedListinfo [0] SET OF
ListResult }

(a) Skriv om konstruktionen sa att indenteringarna tydligare visar
strukturen.

Ovningsuppgift 24

Givet foljande ASN.1-modul:

Driving {1 2 4711 17} DEFINITIONS EXPLICIT TAGS ::=

BEGIN
MainOperation ::= [APPLICATION 0] SEQUENCE
{ wheel [0] REAL,
brake [1] REAL,
gas [2] REAL

END

Definiera en ASN.1-modul CarDriving, som importerar MainOperation
fran modulen ovan, och definierar en ny datatyp FullOperation som
utdver MainOperation ocksa innefattar pa och avkoppling av blinkers at
vanster eller hoger, och instéllning av lyset pa slackt, parkeringsljus,
halvljus eller helljus.

Ovningsuppgift 25

Givet ASN.1-definitionen
Surname ::= [APPLICATION 1] IA5String
hername Surname 1:="Mary"

Ange dess kodning i BER.

Sida 6

26 9bed 9 wnipuadwon

S

#svpio0n

@:ws W,
s w s,
ocn 3
& 25
» %
= s 4w

Ovningsuppgift 26

Ovningsuppgifter pa ASN.1 och BER Sida 7

%

Givet ASN.1-definitionen

Light ::= ENUMERATED {
dark (0),
parkingLight (1),
halfLight (2),
fullLight (3) }

daylight Light ::= halflight

Ange detta vardes kodning i BER

Ovningsuppgift 27

Givet féljande ASN.1-definitioner och explicit tags

BreakFast ::= CHOICE
{ continental [0] Continental,
english [1] English,
american [2] American
}
Continental ::= SEQUENCE
{ beverage [1] ENUMERATED
{ coffea (0), tea(1), milk(2), chocolade (3) } OPTIONAL,
jam [2] ENUMERATED
{ orange(0), strawberry(1), lingonberry(3) } OPTIONAL
}
English ::= SEQUENCE
{ continentalpart Continental,
eggform ENUMERATED
{ soft(0), hard(1), scrambled(2), fried(3)
}
Order::= SEQUENCE
{ customername IA5String,
typeofbreakfast Breakfast
}
firstorder Order ::={
customername "Johan",
typeofbreakfast {
english {

continentalpart {
beverage tea,
jam orange

eggform fried

}

Ange kodningen av firstorder med BER.

-m;%,\s W ¢,
{ivf;&y?.# "
s 50’%{ Ovningsuppgifter pa ASN.1 och BER Sida 8

Ovningsuppgift 28 (pa RFC822)

En identifierare i Fortran skall besta av mellan 1 och 6 bokstaver och
siffror. FOrsta tecknet maste vara en bokstav. Skriv en specifikation i
ABNF for syntaxen for sadana identifierare.

Ovningsuppgift 29 (pa RFC822)

| 6vningsuppgift 20 uppgavs att en forening tillats tva slag av
omrgstningar:

(@) De rostande far valja ut ett och endast ett av ett antal alternativ 1
.. N och rosta for detta. Det alternativ som far flest réster vinner.

(b) De rostande far ange en poang mellan 0 och 10 for vart och ett
av alternativen 1 .. N. Det alternativ som far hogst sammanlagd
poang vinner.

Ange ett forslag till specifikation av dessa data med textmassig
kodning och ABNF som specifikationssprak.

¢6 obed 9 wnipuadwon

oy, o b, o e,
KONST 2 g . KONST 42 ¢ g .
wes | Gsningsforslag till Gvningsuppgifter pa ASN.1 och BER Sida 1 wes] Gsningsforslag till Gvningsuppgifter pa ASN.1 och BER Sida 2
A H A 1A H H 3 Vote ::= [APPLICATION 2] INTEGER
Losningsforslag till 6vningsuppgifter pa ASN.1 och BER ; v (0). - - Vansterpartiet
s (1), - - Socialdemokraterna
o . mp (2), - - Miljopartiet
Ovningsuppgift 1 c (3), - - Centerpartiet
fp (4), - - Folkpartiet
Losningsforslag 1: m (5), - - Moderaterna
kds (6), - - Kristdemokraterna
ScaleReading ::= [APPLICATION 0] SEQUENCE nd (7), - - Ny demokrati
X " o (8) - - Ovriga
{ weight Weight,
h }(0..8)
itemno Itemno
} Age ::= [APPLICATION 3] INTEGER (18 .. MAX)
Weigh ::= [APPLICATION 1] REAL - - i
eight L CATION 1] in grams Male ::= [APPLICATION 4] BOOLEAN - - TRUE for male,
Itemno ::= [APPLICATION 2] INTEGER False for female

Lésningsforslag 2:

ScaleReading

Ovningsuppgift 2

Box

Measurement

::= [APPLICATION 0] SEQUENCE

{ weight REAL, - -in grams
itemno INTEGER

}

::= [APPLICATION 0] SEQUENCE

{ height Measurement,
width Measurement,
length Measurement

}

::= [APPLICATION 1] SEQUENCE

{ yards INTEGER,
feet INTEGER,

inches REAL

Ovningsuppgift 5

Stockholmvoter ::= [APPLICATION 5) SEQUENCE

{ sthvote Sthvote,
age Age,
sex Sex
}
Sthvote ::= [APPLICATION 6] INTEGER
{ v (0), - - Vansterpartiet

s (1), - - Socialdemokraterna
mp (2), - - Miljopartiet

c (3), - - Centerpartiet

fp (4), - - Folkpartiet

m (5), - - Moderaterna

kds (6), - - Kristdemokraterna
nd (7), - - Ny demokrati

o (8), - - Ovriga,

sp (9), - - Stockholmspartiet,
bp (10) - - Bilistpartiet

}
} (INCLUDES Vote | 9[10)
Ovningsuppgift 3 L .
Ovningsuppgift 6:
Measurement ::= [APPLICATION 1] SEQUENCE o
{ yards INTEGER, Losningsforslag 1: Secrecy ::= INTEGER { open(1), secret(2), gsecret(3) } (1..3)
feet INTEGER (0 .. 2),
) inches INTEGER (0 .. 1199) Lésningsforslag 2: Secrecy ::= ENUMERATED { open(1), secret(2), gsecret(3) }
A . Ovningsuppgift 7
Ovningsuppgift 4 o su t
Voter ::= [APPLICATION 1] SEQUENCE Losningsforslag 1:
{ vote Vote,
age Age, StabSecrecy ::= INTEGER { open(1), secret(2), gsecret(3)
male Male eqsecret(4)
}

}
(INCLUDES Secrecy | 4)

¥6 obed 9 wnipuadwon

S Wiy o,
w
>

R

QAR

{v %

Losningsforslag 2:

StabSecrecy

ws™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER

::= ENUMERATED { open(1), secret(2), qsecret(3)
eqgsecret(4)

Sida 3

Anmarkning: Man maste upprepa open, secret och gsecret pa nytt i definitionen av

StabSecrecy. Om man vill slippa denna upprepning, far man forst deklarare

StabSecrecy och sedan deklarera Secrecy som en subtyp till StabSecrecy.

Ovningsuppgift 8
Losningsforslag 1:

Pattern

Losningsforslag 2:
Row

Pattern

Ovningsuppgift 9

InStore

::= SEQUENCE
{ height INTEGER,
width INTEGER,

pattern BIT STRING - - row by row

::= [APPLICATION 0] BIT STRING

::= [APPLICATION 1] SEQUENCE

{ height INTEGER,
width INTEGER,
SEQUENCE OF Row

}

::= BITSTRING

{ a3 (0),
a4 (1),
a5 (2),
a6 (3)

} (SIZE(4))

Ovningsuppgift 10 (hamtat ur X.411)

OrganizationName

::= PrintableString
(SIZE (1 .. ub-organization-name-length))

ub-organization-name-length INTEGER ::= 64

B

g,

© Gy
w
>

&

7

g

5
“97E

Ovningsuppgift 11

Ldsningsforslag 1:

PersonRecord

Pnumber1

“s™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER
::= [APPLICATION 0] SET
{ pnumber Pnumber,
name Nametype OPTIONAL,
income Incometype OPTIONAL
}
::= [APPLICATION 1] PrintableString
(FROM ("0 | ™" | "2" | "3" | "4"
["5" | "6" | "7" | "8" | "9"

Pnumber
Nametype

Incometype

Lésningsforslag 2:

PersonRecord

Pnumber1

Pnumber
Nametype

Incometype

Lésningsforslag 3:

Pnumber1

PersonRecord

[r)
Pnumber1 (SIZE (13))
::= [APPLICATION 2] GraphicString (SIZE (1 .. 40))

::= [APPLICATION 3] INTEGER (0 .. MAX)

::= [APPLICATION 0] SET
{ pnumber Pnumber,
name Nametype OPTIONAL,
income Incometype OPTIONAL
}

::= PrintableString (FROM ("0" | ™" | "2" | "3" | "4"
5" | "6 | "7 | "8 | "g"
[r])

::= Pnumber1 (SIZE (13))

GraphicString (SIZE (1 .. 40))

INTEGER (0 .. MAX)

::= PrintableString

::= [APPLICATION 0] SET
{ pnumber Pnumber1 (SIZE (13))

name GraphicString (SIZE (1 .. 40))
OPTIONAL,

income INTEGER (0 .. MAX) OPTIONAL
}

Sida 4

66 obed 9 wnipuadwo)

B

s W o
»
g

ws™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER

&

<
Z
H
1

83
28
o

s

Sida 5

Ovningsuppgift 12

Losningsforslag 1:

PersonRecord ::= [APPLICATION 0] SET
{ pnumber Pnumber,
gname GNametype OPTIONAL,
shame SNametype OPTIONAL,
income Incometype OPTIONAL

}
Pnumber1 ::= [APPLICATION 1] PrintableString
(FROM ("0" | ™1™ | "2" | "3" | "4"
["5" | "6" | "7" | "8" | "9"
[)
Pnumber ::= Pnumber1 (SIZE (13))
GNametype ::= [APPLICATION 2] GraphicString (SIZE (1 .. 40))
SNametype ::= [APPLICATION 3] GraphicString (SIZE (1 .. 40))
Incometype ::= [APPLICATION 4] INTEGER (0 .. MAX)
Lésningsforslag 2:
PersonRecord ::= [APPLICATION 0] SET
{ pnumber Pnumber,
name Nametype OPTIONAL,
income Incometype OPTIONAL
}
Pnumber1 ::= [APPLICATION 1] PrintableString
(FROM ("0" | ™1™ | "2" | "3" | "4"
["5" | "6" | "7" | "8" | "9"
[)
Pnumber ::= Pnumber1 (SIZE (13))
Nametype ::= [APPLICATION 2] SEQUENCE
{ sName GraphicString (SIZE (1 .. 40)),
gName GraphicString (SIZE(1 .. 40))
}
Incometype ::= [APPLICATION 3] INTEGER (0 .. MAX)

Fraga: Varfér ar nedanstaende 16sning felaktig?

PersonRecord ::= [APPLICATION 0] SET
{ pnumber Pnumber,
gname Nametype OPTIONAL,
sname Nametype OPTIONAL,
income Incometype OPTIONAL

“s™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER Sida 6

Pnumber1 ::= [APPLICATION 1] PrintableString
(FROM (0™ | ™™ | "2" | "3" | "4"
|"5" | "6" | "7 | "8" | "9"
[)

Pnumber ::= Pnumber1 (SIZE (13))
Nametype ::= [APPLICATION 2] GraphicString (SIZE (1 .. 40))
Incometype ::= [APPLICATION 4] INTEGER (0 .. MAX)

Ovningsuppgit 13

PositiveCoordinate ::= XYCoordinate
(WITH COMPONENTS
{ x (0 .. MAX)
y (0 .. MAX)
}

Ovningsuppgift 14

Losningsforslag 1:

AnonymousMessage ::= Message
(WITH COMPONENTS
{..., author ABSENT }
)

Lésningsforslag 2:

AnonymousMessage ::= Message

(WITH COMPONENTS

{ author ABSENT,
textbody }

)
Ovningsuppgift 15
FullName ::= SEQUENCE

{ givenName [APPLICATION 0] IA5String

OPTIONAL,
initials [APPLICATION 1] IA5String OPTIONAL,
surname [APPLICATION 2] IA5STring
}

Fraga: Kan APPLICATION-etiketterna i 16sningsforslaget ovan utelamnas?

Svar: Nej, ty elementen maste ha olika tags for att kunna skilja dem at. Om det
inte hade statt OPTIONAL sa hade dessa etiketter kunnat utelamnas, ty da hade
elementen kunna skiljas at genom ordningsféljden.

96 9bed 9 wnipuadwon

B

s W o
»
g

ws™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER

&

€

<
z
M
QAR

i
"

Sida 7

Ovningsuppgift 16

BasicFamily ::= SEQUENCE
{ husband [0] IA5String OPTIONAL,
wife [1] IA5STring OPTIONAL,
children [2] SEQUENCE OF IA5String OPTIONAL
}

Fraga: Ar det lampligt att anvinda SEQUENCE OF eller SET OF ovan?

Svar: Om man vill ange barnens ordningsféljd, &r SEQUENCE OF battre.

Ovningsuppgift 17

ChildLessFamily ::= BasicFamily
(WITH COMPONENTS
{..., children ABSENT

}
)
Ovningsuppgift 18
Vessel ::= CHOICE
{ aircraft Aircraft,
ship Ship,
train Train,
motorcar MotorCar
}
Ovningsuppgift 19
Lésningsforslag 1:
GeneralNamelListA ::= gs < NamelListA
GeneralNamelL.istB ::= NamelistB
(WITH COMPONENT
(WITH COMPONENTS {gs})
)
Lésningsférslag 2:
GeneralNamelListA ::= NameListA (WITH COMPONENTS {gs})
GeneralNamelL.istB ::= NamelistB

(WITH COMPONENT
(WITH COMPONENTS {gs})
)

B

g,

© Gy
w
>

“s™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER

&

7

g

5
“97E

Sida 8

Ovningsuppgift 20

Ldsningsforslag 1:

Vote ::= SEQUENCE
{ voterName |A5String,
CHOICE
{ chosenAlternative

AlternativeNumber,
SET OF SEQUENCE
{ alternative
AlternativeNumber,
score INTEGER (0 ..10)

Lésningsforslag 2:

(Utgar fran att den rostande i fallet (b) alltid raknar upp samtliga alternativ i
nummerordning, alternativnumret kan da utelamnas.)

Vote ;= SEQUENCE
{ voterName |A5String,
CHOICE
{ chosenAlternative

AlternativeNumber,
SEQUENCE OF
score INTEGER (0 ..10)

Ovningsuppgift 21

WeatherReporting {2 6 6 247 1} DEFINITIONS IMPLICIT TAGS ::=

BEGIN
WeatherReport ::= SEQUENCE
{ height [0] REAL,
weather [1] Wrecord
}
Wrecord ::= [APPLICATION 3] EXPLICIT SEQUENCE
{ temp Temperature,
moist Moisture
wspeed [0] EXPLICIT Windspeed
OPTIONAL
}
Temperature ::= [APPLICATION 0] REAL
Moisture ::= [APPLICATION 1] EXPLICIT REAL

Windspeed ::= [APPLICATION 2] EXPLICIT REAL

END - - of module WeaterhReporting

/6 9bed 9 wnipuadwon

S Wiy o,
w
>

R

QAR

{v %

Ovningsuppgift 22

Tags som kan tas bort anges i kursiv stil nedan

ws™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER

Colour ::= [APPLICATION 0] CHOICE

{ rgb

[1] RGB-Colour,

Sida 9

cmg [2] CMG-Colour,
freq [3] Frequency
}
RGB-Colour ::= [APPLICATION 1] SEQUENCE
{ red [0] REAL,
green [1] REAL OPTIONAL,
blue [2] REAL
}
CMG-Colour = SET
{ cyan [1] REAL,
magenta [2] REAL,
green [3] REAL
}
Frequency = SET
{ fullness [0] REAL,
freq [1] REAL
}

Ovningsuppgift 23a

ListResult ::= OPTIONALLY-SIGNED
CHOICE {
listinfo SET {
DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {
RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE
fromEntry [1] BOOLEAN DEFAULT TRUE},
partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL
COMPONENTS OF CommonResults },
uncorrelatedListinfo [0] SET OF Listresult }

Ovningsuppgift 23b

Svar: Savitt jag kan forsta fattas det tva komma-tecken, se nedan:

ListResult ::= OPTIONALLY-SIGNED
CHOICE {
listinfo SET {
DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {
RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE,
fromEntry [1] BOOLEAN DEFAULT TRUE},
partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults },
uncorrelatedListinfo [0] SET OF Listresult }

B

g,

o @,
w
>

7

g

5
“97E

“s™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER Sida 10

Ovningsuppgift 23¢c

Svar: COMPONENTS OF ar ingen egen typ, och kan alltsa inte ha nagon
identifierare. Den syftar till att kopiera in en serie separat definierade typelement.
Den ar praktisk om man har en serie standardelement, t.ex. CommonResults, som
skall kopieras in pa flera olika stéllen.

Ovningsuppgift 23d

Svar: | en SET maste alla elementen ha olika typ. Det innebar att det racker med
att ange tag for alla utom ett av elementen.

Ovningsuppgift 24

CarDriving { 1 2 4711 18 } DEFINITIONS EXPLICIT TAGS ::=
BEGIN
IMPORTS MainOperation FROM Driving {1 2 4711 17}

FullOperation ::= [APPLICATION 1] SEQUENCE

{ COMPONENTS OF MainOperation,
blink SEQUENCE
{ on BOOLEAN,
left BOOLEAN
b
light ENUMERATED
{ dark(0),
parkingLight (1),
halfLight (2),
fullLight (3)
}

END - - of module CarDriving

Anmarkning: Eftersom det inte fanns nagot EXPORTS i Driving, betyder detta att
alla objekt specificerade i Driving ar exporterade.

Ovningsuppgift 25

APPLI- | CON- Tagnr. |Length |UNI- [PRIMI |IA5- Length
CATION | STRUC VER- | TIVE |[STRING
TED SAL
01 1 00001 6 00 0 10110 4 rly
61 06 16 04 rly

86 obed 9 wnipuadwo)

Ovningsuppgift 26

[00001010 01[00040010 |

A h b

UNL LENGTH halflight
VERSAL
ENUME-
PRIMI- RATED

TIVE

Ovningsuppgift 27

(Jag lovar inte att det ar ratt!)

beverage (context explicit tag)101 00001
(ENUMERATED) 000 01010

tea (length) 1 (value) 00000001

jam (contextexplicit tag) 101 00010
(ENUMERATED) 000 01010

orange (length) 1 (value) 00000000

continentalpart (SEQUENCE) 001 10000 (length) 8

beverage tea jam orange

eggform fried (ENUMERATED) 000 01010 (length) 1
(value) 00000101

english (SEQUENCE) 001 10000 (length) 10
continentalpart

typeofbreakfast (context explicit tag) 100 00001
(length) 12 english

customername (IA5string) 00010110 (length) 5
("Johan") "J" "o" "h" "a" "n"

firstorder (SEQUENCE) 001 10000 (length) 21
customername typeofbreakfast

Losningsforslag till dvningsuppgifter pa ASN.1 och BER

Sida 11

Antal oktetter

10

12

14

23

582
51;
Sou
<

s

“s™ | gsningsforslag till dvningsuppgifter pa ASN.1 och BER Sida 12

Ovningsuppgift 28

ALPHA ="A" / "B" / uCu / "D" / "E" / "E" / nGu / "y / " / "y / "K" / " / "M" / "N" /
"o"/"P"/ nQu JUR" /S /T U VX Y

DIGIT = "0" / "{" ["2"] "3" ["4" ["5" ["g" ["7 ["g" | "gn

fortran-identifier = ALPHA *5(ALPHA / DIGIT)

Ovningsuppgift 29

Vote = Voter-name "," (One-choice / Choice-list)
Voter-name = <"> Name <">
Name =1*Namechar

Namechar = <any printable ASCII character except <"> and "\">
[y g e

One-choice = "Single:" 1*DIGIT

Choice-list = "Multiple:" 1#(Alternative Score)

Alternative = 1*DIGIT

Score =="0"/"1"/"2"/"3"/"4" /"5" /"6" /"7" /"8" /"9" [/ "10"

Jamfér med ASN.1-16sningen av dvningsuppgift 20 (I6sningsforslag 1), se nedan:

Vote ::= SEQUENCE
{ voterName |A5String,
CHOICE
{ chosenAlternative

AlternativeNumber,
SET OF SEQUENCE
{ alternative
AlternativeNumber,
score INTEGER (0..10)

66 @bed g9 wnipuadwo)

BASIC HTML TAGS (Anna Maria Island Network) 0-10-11 12.0¢

Index

@ How to Start an HTML Document

This is a quick and easy HTML guide for beginners and can
be a good reference tool for novice HTML writers. It is not a
complete listing of all the HTML language, but should be an
excellent spot for you to start. Some of the HTML below may
not work on all browsers, but should work with Microsoft,
Netscape and any other browser supporting some of the
latest HTML language.

e Basic HTML Extensions

e Background Colors and Images

e Creating Links

e Tables

e Java Scrips

e Other References

How to Start an HTML Document

If you have an HTML Editor, many come with a start-up template you can use. However, if you do not, you can still actually
create HTML Documents with a basic Windows' Notepad! | do suggest that you find a regular editor, which will speed up many
of the processes of creating and updating your pages.

The Start-Up Template
Every HTML Document should include the following commands:

<html>
<head> <title>
<body>

</title> </nead>

</body>

</html>

Start your new page by typing the above commands in. Notice that the HTML commands start with a "<" and end with a ">".
Also, for about every starting command (<body>, for example) there is always an ending command for that function (</body>).

Now, you are ready to start entering the basic text for your page. Name a title that is appropriate to the information you are
going to provide on that page.

<html>
<head> <title>Your Title Goes Here </title> </head>
<body>

Your Text Goes Here
</body>

</html>
Back to t« f

Basic HTML Extensions

Now you are ready to start laying out your page. Have some idea, first, on what order and placement you want the text and
images displayed.

<h1> </h1>

The first command you will generally use is the Headline command.

1P TML%20TAGS. htm!

Page 1 of €

BASIC HTML TAGS (Anna Maria Island Network) 0-10-11 12.0¢

<h1>Your Main Headline</h1> This diplays the biggest headline size. You MUST include the closing command, or the
headline function will continue to work on any following text! To change the size of the headline, simply change the
number with the headline command accordingly.

<h1> Headline </h1>

<h2> Headline </h2>
<h3> Headline </h3>

and so on, down to level 6

 Line Break

HTML documents will continue to keep wrapping text together until it comes to a command for it to do otherwise. The

command DOES NOT need an ending statement. It is simply used to start a new line of text.

<p> New Paragraph

Used in the same way as Line Break. However, this function also inserts a blank line to better seperate the paragraphs. It also
does NOT need a closing command (</p>)

<hr> Horizontal Line

This inserts a horizontal line across the page to help divide or break up sectionns of text. It does not need a closing arguement.
However, there are a few additional options you can add to this command:

<hr width=50%>
This tells the line to only go across 50% of the page.

 Unordered List

Nice function to use if you have a list to display. Start with the command to tell the document to expect a list. Then, for each
listing, you must use the command. Simply place the in front of each item. There is no need to use a line break, since this
function will automatically move to the next line when it comes to the next item.

Item #1

Item #2

The DOES REQUIRE a closing arguement! At the end of your list, insert to tell the document that is the end of the list.
It is really easy to add to the list later. Just start with the inside your list commands () and insert your text!

 Display Images

Insert this command where you want to display an image. Substitute "imagename.gif" with the path to your image. If the image
is located in the same directory as you HTML document, then simply use the image's filename. However, if you keep all your
images in another directory, such as “images"”, then you must input the path to the file:

You can also align your images along with your text. If you want the image to be displayed on the left, and your text to flow
around it on the right, then use the following align command:

The best way to learn this is to experiment with your page and see what the different options do to it. You can also change the
border of an image. If you want no border around the image, use the border=0 command as in the following: <img align=left
border=0 src="images/filename.gif">

To increase the border width around the image, simply increase the value of the border command.

Back to top of page

Background Colors and Images

Colors
You can also change the color or look of the background for your HTML page! This is done inside the <body> command.
If you want a solid color background instead of the default gray, add the following command to the <body> statement:

<body bgcolor="#ffffff">

/BASIC%20HTML%20TAGS html Page 2 of ¢

001 @bed g wnipuadwon

BASIC HTML TAGS (Anna Maria Island Network) 0-10-11 12.04

This will create a solid white background. Reload your page and see what it looks like. To change the background color, simply
change the value of the bgcolor statement. As in the above example, the ffffff makes all the RGB red, green, blue) values full. Try
inserting numbers into some of these and see what you get! For exampe:

<body bgcolor="#B2E2FF"> creates a sky-blue color. see color chart codes
Images
If you want more of a textured look, or something besides a solid color for background, then the background image is what you want.

First you must have a .gif file of the background you want for your page. The image does not need to be very big at all. In fact,
you may want it down to about 100x100 pixels. The browser automatically copies it until it covers the entire page.

Once you have your file, simply (as with the bgcolor command) add the following statement to the <body> call:
<body background="imagename.gif">

That should do it! Just make sure the image is in the same directory as the page that is calling it, or that you have the correct path
to the file.

Back to top of page

Creating Links

This a nice place to have an HTML editor, but it still can be done relatively simply. As with most of these, you do not necessarily
have to type all these commands out by hand if you have an editor. However, it is greatly important that you understand what
the editor is doing, so that in the event of an error on your page - you know what to look for and can fix it.

To create a link, either to an outside site or to another page on yours, find the word or words that you want to be highlighted as
the link. Immediately right before the linkable word, type:

Where "link-to-site" is the path to an outside site or a document on your site. For outside sites, you must include the full path:
“http://www.domain.com/page.html"

and after the linkable word:

For example, if | want the word "NASA" to take me to NASA'a site, my link would read:
NASA

You can also make an image a link to something by including it inside the and the .
Example:

It is VERY important that you have the immediately following the linkable item. Otherwise, all the remaining text will be
included in that link.

Back f

Tables

Tables are used to create rows and columns of text and images. Simular to a newspaper layout.

To create a table in HTML, you must start with <table> and end with the </table> commands. You then begin a row of data by
using <tr>. To now insert data into this row, add <td> and go ahead with your normal text and/or images.

If you want to start a new column, use the <td> again, with the text following. It does not matter how much information you
have after the <td>. The table will continue to wrap the text.

For example:

<table border=1>

<tr><td>Your first column of text
<td>Your second column of text
</table>

Displays this:

[Your first column of text [Your second column of text|

If you want to see the borders of the table, which will probably help in the beginning and then you can always get rid of them,
add border=1 to the <table> function as above. 1 being the thickness of the border.

The </td> is optional at the end of the data cell (the same for </tr>), but SHOULD be used when using tables within other tables.

http://www.annamaria.net/Htmltags.htm

Page 3 of 5

BASIC HTML TAGS (Anna Maria Island Network)

0-10-11 12.04

Some of the text and images may be centered vertically on your table. If you want them to start at the top, add valign=top to the
<td> call for that text. (<td valign=top>)

To start a new horizontal row, use <tr> (and <td> for the data). Starting to get the picture now?

<table border=1>
<tr><td>Your first column of text
<td>Your second column of text
<tr><td>Second row
</table>

Your first column of text

Second row

'Your second column of text

You could then add another <td> to move over to the next column, or you can stretch the existing table cell over the next column
by using <td colspan=2>.

<table border=1>

<tr><td>Your first column of text

<td>Your second column of text

<tr><td colspan=2>Second row

</table>

Your first column of text |Y0ur second column of text
Second row

The same can be done with spanning rows. Use <td rowspan=#>, replacing # with the number of horizontal rows you wish to
span.

Hope this gets you started with tables. Try experimenting around with what all you can do with tables and view the different
results with your browser.

Back to top of page

Java Scripts & Codes

You can Cut and Paste these Scripts into your page.

Frame On Frame Off:
This script lets the user choose which version of your page they want to see. Framepage.html is the your page with frames.
Regualerpage.html is an alternate you have created

Frames:
<form>

Frames:

<INPUT TYPE="Button" VALUE="0n" onClick="parent.location="framepage.html|"'>
<INPUT TYPE="Button" VALUE="0Off" onClick="parent.location="regularpage.html">
</form>

This shows the user the last date this page was modified:
<SCRIPT LANGUAGE="JavaScript">

/IModified by Coffeecup.com

function initArray()

{
this.length = initArray.arguments.length

for (var i = 0; i < this.length; i++)
this[i+1] = initArray.argumentsi]
}

var DOWArray = new initArray("Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday");
var MOYArray = new
initArray("January","February”,"March","April","May","June","July","August","September","October","November","December");

var LastModDate = new Date(document.lastModified);
document.write("This page was last updated on ");
document.write(DOWArray[(LastModDate.getDay()+1)],", *);
document.write(MOYArray[(LastModDate.getMonth()+1)],");
document.write(LastModDate.getDate(),", ",(LastModDate.getYear()+1900));
document.write(".");

</SCRIPT>

Script produces a randomly generated graphic to use as ad or cool effect

ASIC%20HTML9%20TAGS. html Page 4 of €

L0} ebed g wnipuadwo)

BASIC HTML TAGS (Anna Maria Island Network)

<Script Language ="JavaScript">

/IModified by user

I/lproduces a randomly generated graphic to use as ad or cool effect
function RandomNumber()

var today = new Date();
var num= Math.abs(Math.sin(today.getTime()/1000));
return num;

function RandomGraphics()

var x = RandomNumber();

if (x >.77) {document.write(""); return; }
if (x > .66) {document.write(""); return; }
if (x > .55) {document.write(""); return; }
if (x > .44) {document.write(""); return; }
if (x >.33) {document.write(""); return; }
if (x >.22) {document.write(""); return; }
if (x >.11) {document.write(""); return; }
if (x > 0) {document.write(""); return; }

}
RandomGraphics();
//IEnd Script
</SCRIPT>

Real Audio Tag will begin to stream live. This is not a script
<EMBED SRC="*.rpm" WIDTH=40 HEIGHT=20 CONTROLS = PlayButton AUTOSTART=TRUE>

Wave Background Script designed to work with I.E. and Netscape Formats.
<!I--Begin Wave File Script--><script>

if(navigator.userAgent.indexOf("MSIE") = -1)

document.writeln ('<bgsound src="*.wav">');else

document.writeln (‘'<embed src="*.wav" height=55 width=146 autostart=true hidden=true>');
</script><!--End Wave File Script-->

Java Script Archive

Back to top of page

0-10-11 12.0¢

Other HTML Reference Sources

e Wilbur HTML 3.2 Reference
o Microsoft HTML Reference
o HyperText Markup Language
e HTML2.0
e HTML3.0

/D! 1P 20f1C ASIC9%20HTMLI620TAGS. htm!

Page 5 of €

Dave Raggett's Introduction to HTML

201 @bed g wnipuadwon

W3C

Advanced HTML | Adding a touch of style

Getting started with HTML

Dave Raggett, revised 29th August 2000.

This is a short introduction to writing HTML. Many people still write
HTML by hand using tools such as NotePad on Windows, or
SimpleText on the Mac. This guide will get you up and running. Even if
you don't intend to edit HTML directly and instead plan to use an HTML
editor such as Netscape Composer, or W3C's Amaya, this guide will
enable you to understand enough to make better use of such tools and
how to make your HTML documents accessible on a wide range of
browsers. Once you are comfortable with the basics of authoring HTML,
you may want to learn how to add a touch of style using CSS, and to go
on to try out features covered in my page on advanced HTML

A convenient way to automatically fix markup errors is to use the HTML
Tidy utility. This also tidies the markup making it easier to read and
easier to edit. | recommend you regularly run Tidy over any markup you
are editing. Tidy is very effective at cleaning up markup created by
authoring tools with sloppy habits.

p.s. a good way to learn is to look at how other people have coded their
html pages. To do this, click on the "View" menu and then on "Source".
Try it with this page to see how | have applied the ideas | explain below.
You will find yourself developing a critical eye as many pages look
rather a mess under the hood!

This page will teach you how to:

« start with a title

« add headings and paragraphs
« add emphasis to your text

e add images

« add links to other pages

« use various kinds of lists

0-10-11 09.16

Dave Raggett's Introduction to HTML

Every HTML document needs a title. Here is what you need to type:

<title>My first HTM. docunent</title>

Change the text from "My first HTML document" to suit your own needs.

The title text is preceded by the start tag <title> and ends with the
matching end tag </title>. The title should be placed at the beginning of
your document.

Add headings and paragraphs

If you have used Microsoft Word, you will be familiar with the built in
styles for headings of differing importance. In HTML there are six levels
of headings. H1 is the most important, H2 is slightly less important, and
so on down to H6, the least important.

Here is how to add an important heading:

<h1>An inportant headi ng</hl>

and here is a slightly less important heading:

<h2>A slightly |l ess inportant headi ng</h2>

Each paragraph you write should start with a <p> tag. The </p> is
optional, unlike the end tags for elements like headings. For example:

<p>This is the first paragraph. </ p>

<p>This is the second paragraph. </ p>

Adding a bit of emphasis

You can emphasise one or more words with the tag, for instance:

This is a really <enpinteresting</en» topic!

0-10-11 09.16

Adding interest to your pages
with images

Images can be used to make your Web pages distinctive and greatly

If you are looking for something else, try the advanced HTML page.

Start with a title

http://www.w3.ora/MarkUp/Guide/ Page 1 of 6 http://www.w3.ora/MarkUp/Guide/ Page 2 of 6

Dave Raggett's Introduction to HTML

help to get your message across. The simple way to add an image is
using the tag. Let's assume you have an image file called
"peter.jpg" in the same folder/directory as your HTML file. It is 200
pixels wide by 150 pixels high.

<ing src="peter.jpg" w dth="200" hei ght="150">

The src attribute names the image file. The width and height aren't
strictly necessary but help to speed the display of your Web page.
Something is still missing! People who can't see the image need a
description they can read in its absence. You can add a short
description as follows:

<inmg src="peter.jpg" w dth="200" hei ght="150"
alt="M friend Peter">

The alt attribute is used to give the short description, in this case "My
friend Peter". For complex images, you may need to also give a longer
description. Assuming this has been written in the file "peter.html", you
can add one as follows using the longdesc attribute:

<ing src="peter.jpg" w dth="200" hei ght="150"
alt="M/ friend Peter" |ongdesc="peter.htm">

You can create images in a number of ways, for instance with a digital
camera, by scanning an image in, or creating one with a painting or
drawing program. Most browsers understand GIF and JPEG image
formats, newer browsers also understand the PNG image format. To
avoid long delays while the image is downloaded over the network, you
should avoid using large image files.

€0l @bed g wnipuadwo)

Generally speaking, JPEG is best for photographs and other smoothly
varying images, while GIF and PNG are good for graphics art involving
flat areas of color, lines and text. All three formats support options for
progressive rendering where a crude version of the image is sent first
and progressively refined.

Adding links to other pages

What makes the Web so effective is the ability to define links from one
page to another, and to follow links at the click of a button. A single click
can take you right across the world!

Links are defined with the <a> tag. Lets define a link to the page
defined in the file "peter.html":

http://www.w3.ora/MarkUp/Guide/

0-10-11 09.16

Page 3 of 6

Dave Raggett's Introduction to HTML

0-10-11 09.16

This alink to Peter's page.

The text between the <a> and the is used as the caption for the
link. It is common for the caption to be in blue underlined text.

To link to a page on another Web site you need to give the full Web
address (commonly called a URL), for instance to link to www.w3.org
you need to write:

This is alink to WBC</ a>.

You can turn an image into a hypertext link, for example, the following
allows you to click on the company logo to get to the home page:

<inmg src="logo.gif" alt="honme page">

Three kinds of lists

HTML supports three kinds of lists. The first kind is a bulletted list, often
called an unordered list. It uses the and tags, for instance:

he first list itenx/li>
the second list itenx/li>

he third list itenx/li>

Note that you always need to end the list with the end tag, but that
the is optional and can be left off. The second kind of list is a
numbered list, often called an ordered list. It uses the and
tags. For instance:

he first list itenx/li>

the second list itenx/li>

he third list itenx/Ii>

http://www.w3.ora/MarkUp/Guide/ Page 4 of 6

Dave Raggett's Introduction to HTML

01 9bed g wnipuadwo)

http://www.w3.ora/MarkUp/Guide/

0-10-11 09.16

Like bulletted lists, you always need to end the list with the end
tag, but the end tag is optional and can be left off.

The third and final kind of list is the definition list. This allows you to list
terms and their definitions. This kind of list starts with a <dI> tag and
ends with </dI> Each term starts with a <dt> tag and each definition
starts with a <dd>. For instance:

<dl >
<dt>the first ternx/dt>
<dd>i ts definition</dd>

<dt >t he second ternx/dt>
<dd>i ts definition</dd>

<dt>the third ternx/dt>
<dd>i ts definition</dd>
</dl >

The end tags </dt> and </dd> are optional and can be left off. Note that
lists can be nested, one within another. For instance:

he first list itenx/li>

the second list item

first nested itenx/li>
<l i >second nested itenx/|i>

he third |list
</ ol >

itenx/li>

You can also make use of paragraphs and headings etc. for longer list
items.

Getting Further Information

If you are ready to learn more, | have prepared some accompanying
material on advanced HTML and adding a touch of style.

Page 5 of 6

Dave Raggett's Introduction to HTML

W3C's Recommendation for HTML 4.0 is the authorative specification
for HTML. However, it is a technical specification. For a less technical
source of information of information you may want to purchase one of
the many books on HTML, for example "Raggett on HTML 4", published
1998 by Addison Wesley. See also "Beginning XHTML", published
2000 by Wrox Press, which introduces W3C's reformulation of HTML as
an application of XML. XHTML 1.0 is now a W3C Recommendation.

Best of luck and get writing!

Dave Raggett <dsr@w3.0rg>

Copyright © 2000 W3C ® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply. Your interactions with this
site are in accordance with our public and Member privacy statements.

http://www.w3.ora/MarkUp/Guide/

0-10-11 09.16

Page 6 of 6

Raggett's Guide to CSS

Adding a touch of style

60| @bed g wnipuadwo)

Back to Basics
Dave Raggett, 26th November 1999.

This is a short guide to styling your Web pages. It will show you how to use
W3C's Cascading Style Sheets language (CSS) as well as alternatives
using HTML itself. The route will steer you clear of most of the problems

caused by differerences between different brands and versions of browsers.

Getting started

Let's start with setting the color of the text and the background. You can do
this by using the STYLE element to set style properties for the document's
tags:

<style type=""text/css'>
body { color: black; background: white; }
</style>

The stuff between the <style> and </style> is written in special notation for
style rules. Each rule starts with a tag name followed by a list of style
properties bracketed by { and }. In this example, the rule matches the body
tag. As you will see, the body tag provides the basis for setting the overall
look and feel of your Web page.

Each style property starts with the property's name, then a colon and lastly
the value for this property. When there is more than one style property in
the list, you need to use a semicolon between each of them to delimit one
property from the next. In this example, there are two properties - "color"
which sets the color of the text, and "background" which sets the color of
the page background. | recommend always adding the semicolon even
after the last property.

Colors can be given as names or as numerical values, for instance
rgb(255, 204, 204) which is a fleshy pink. The 3 numbers correspond
to red, green and blue respectively in the range 0 to 255. You can also use
a hexadecimal notation, the same color can also be written as #FFCCCC.
More details on color is given in a later section.

Note that the style element must be placed in the document's head along
with the title element. It shouldn't be placed within the body.

Linking to a separate style sheet

If you are likely to want to use the same styles for several Web pages it is

htto://www.w3.ora/MarkUp/Guide/stvle.html|

0-10-11 09.18

Page 1 of 9

Raggett's Guide to CSS

worth considering using a separate style sheet which you then link from
each page. You can do this as follows:

<link rel="stylesheet" href="style.css">
The LINK tag should be placed in the document's head. The rel attribute

must be set to the value "stylesheet" to allow the browser to recognize that
the href attribute gives the Web address (URL) for your style sheet.

Setting the page margins

Web pages look a lot nicer with bigger margins. You can set the left and
right margins with the "margin-left" and "margin-right" properties, e.g.

<style type="text/css">
body { margin-left: 10%; margin-right: 10%; }
</style>

This sets both margins to 10% of the window width, and the margins will
scale when you resize the browser window.

Setting left and right indents

To make headings a little more distinctive, you can make them start within
the margin set for the body, e.g.

<style type=""text/css'>
body { margin-left: 10%; margin-right: 10%; }
hl { margin-left: -8%;}
h2,h3,h4,h5,h6 { margin-left: -4%; }

</style>

This example has three style rules. One for the body, one for h1 (used for
the most important headings) and one for the rest of the headings (h2, h3,
h4, h5 and h6). The margins for the headings are additive to the margins for
the body. Negative values are used to move the start of the headings to the
left of the margin set for the body.

In the following sections, the examples of particular style rules will need to
be placed within the style element in the document's head (if present) or in
a linked style sheet.

Controlling the white space above and below

Browsers do a pretty good job for the white space above and below
headings and paragraphs etc. Two reasons for taking control of this
yourself are: when you want a lot of white space before a particular heading
or paragraph, or when you need precise control for the general spacings.

htto://www.w3.ora/MarkUp/Guide/stvle.html|

0-10-11 09.18

Paae 2 of 9

Raggett's Guide to CSS 0-10-11 09.18 Raggett's Guide to CSS 0-10-11 09.18

The "margin-top" property specifies the space above and the .
"margin-below" specifies the space below. To set these for all h2 headings CO n t ro I I N g th e fO nt
ou can write:
y This section explains how to set the font and size, and how to add italic,

h2 { margin-top: 8em; margin-bottom: 3em; } bold and other styles.

The em is a very useful unit as it scales with the size of the font. One em is Font styles

the height of the font. By using em's you can preserve the general look of o

the Web page independently of the font size. This is much safer than The most common styles are to place text in italic or bold. Most browsers
alternatives such as pixels or points, which can cause problems for users render the em tag in italic and the strong tag in bold. Let's assume you

who need large fonts to read the text. instead want em to appear in bold italic and strong in BOLD UPPERCASE:
Points are commonly used in word processing packages, e.g. 10pt text. em { font-style: italic; font-weight: bold; }
Unfortunately the same point size is rendered differently on different strong { text-transform: uppercase; font-weight: bold; }
browsers. What works fine for one browser will be illegible on another! o)

Sticking with em's avoids these problems. If you feel so inclined, you can fold headings to lower case as follows:

To specify the space above a particular heading, you should create a h2 { text-transform: lowercase; }

named style for the heading. You do this with the class attribute in the

markup, e.g.

Setting the font size

Q <h2 class="'subsection'>Getting started</h2>
3 Most browsers use a larger font size for more important headings. If you
o The style rule is then written as: override the default size, you run the risk of making the text too small to be
a))) legible, particularly if you use points. You are therefore recommended to
5 h2_.subsection { margin-top: 8em; margin-bottom: 3em; } specify font sizes in relative terms.
_g’ The rule starts with the tag name, a dot and then the value of the class This example sets heading sizes in percentages relative to the size used for
2 attribute. Be careful to avoid placing a space before or after the dot. If you normal text:
S partioular element but the class attibte e the most fexible. - hi { font-size: 200%; }
S) h2 { font-size: 150%; }
When a heading is followed by a paragraph, the value for margin-bottom for h3 { font-size: 100%; }
the heading isn't added to the value for margin-top for the paragraph.
Instead, the maximum of the two values is used for the spacing between . .
the heading and paragraph. This subtlety applies to margin-top and Setting the font family
margin-bottom regardiess of which tags are involved. It is likely that your favorite font won't be available on all browsers. To get
First-line indent around this, you are allowed to list several fonts in preference order. There
is a short list of generic font names which are garanteed to be available, so
Sometimes you may want to indent the first line of each paragraph. The you are recommended to end your list with one of these: serif, sans-serif,
following style rule emulates the traditional way paragraphs are rendered in cursive, fantasy, or monospace, for instance:
novels: body { font-family: Verdana, sans-serif; }
p { text-indent: 2em; margin-top: 0; margin-bottom: 0; } hi,h2 { font-family: Garamond, Times New Roman, serif; }
It indents the first line of each paragraph by 2 em's and suppresses the In this example, important headings would preferably be shown in
inter-paragraph spacing. Garamond, failing that in Times New Roman, and if that is unavailable in

the browsers default serif font. Paragraph text would appear in Verdana or
if that is unavailable in the browser's default sans-serif font.

htto://www.w3.ora/MarkUp/Guide/stvle.html| Paae 3 of 9 htto://www.w3.ora/MarkUp/Guide/stvle.html| Paae 4 of 9

Raggett's Guide to CSS

/01 @bed g wnipuadwon

The legibility of different fonts generally depends more on the height of
lower case letters than on the font size itself. Fonts like Verdana are much
more legible than ones like Times New Roman and are therefore
recommended for paragraph text.

Adding borders and backgrounds

You can easily add a border around a heading, list, paragraph or a group
of these enclosed with a div element. For instance:

div.box { border: solid; border-width: thin; }

which can be used with markup such as:

<div class=""box"">

The content within this DIV element will be enclosed
in a box with a thin line around it.

</div>

There are a limited choice of border types: dotted, dashed, solid, double,
groove, ridge, inset and outset. The border-width property sets the width. Its
values include thin, medium and thick as well as a specified width e.g.
0.1em. The border-color property allows you to set the color.

A nice effect is to paint the background of the box with a solid color or
with a tiled image. To do this you use the background property. You can
fill the box enclosing a div as follows:

div.color {
background: rgb(204,204,255);
padding: 0.5em;
border: none;

}

Without an explicit definition for border property some browsers will only
paint the background color under each character. The padding property

introduces some space between the edges of the colored region and the
text it contains.

You can set different values for padding on the left, top, right and bottom
sides with the padding-left, padding-top, padding-right and
padding-bottom properties, e.g. padding-left: lem.

Suppose you only want borders on some of the sides. You can control the
border properties for each of the sides independently using the border-left,

htto://www.w3.ora/MarkUp/Guide/stvle.html|

0-10-11 09.18

Page 5 of 9

Raggett's Guide to CSS

htto://www.w3.ora/MarkUp/Guide/stvle.html|

border-top, border-right and border-bottom family of properties together
with the appropriate suffix: style, width or color, e.g.

p-changed {
padding-left: 0.2em;
border-left: solid;
border-right: none;
border-top: none;
border-bottom: none;
border-left-width: thin;
border-color: red;

}

which sets a red border down the left hand side only of any paragraph with
the class "changed".

What about browsers that don't
support CSS?

Older browsers, that is to say before Netscape 4.0 and Internet Explorer
4.0, either don't support CSS at all or do so inconsistently. For these
browsers you can still control the style by using HTML itself.

Setting the color and background

You can set the color using the BODY tag. The following example sets the
background color to white and the text color to black:

<body bgcolor="white" text="black">
The BODY element should be placed before the visible content of the Web

page, e.g. before the first heading. You can also control the color of
hypertext links. There are three attributes for this:

o LINK for unvisited links
« VLINK for visited links
o ALINK for the color used when you click the link

Here is an example that sets all three:
<body bgcolor="white" text="black"
link="navy" vlink="maroon" alink="red">

You can also get the browser to tile the page background with an image
using the background attribute to specify the Web address for the image,
e.g.

<body bgcolor="white" background="texture.jpeg" text="black"

0-10-11 09.18

Paae 6 of 9

Raggett's Guide to CSS

80| @bed g wnipuadwo)

link="navy" vlink="maroon" alink="red">

It is a good idea to specify a background color using the bgcolor attribute in
case the browser is unable to render the image. You should check that the
colors you have chosen don't cause legibility problems. As an extreme case
consider the following:

<body bgcolor="black">

Most browsers will render text in black by default. The end result is that the
page will be shown with black text on a black background! Lots of people
suffer from one form of color blindness or another, for example olive green
may appear brown to some people.

A separate problem appears when you try to print the Web page. Many
browsers will ignore the background color, but will obey the text color.
Setting the text to white will often result in a blank page when printed, so
the following is not recommended:

<body bgcolor="black”™ text="white'>

You can also use the bgcolor attribute on table cells, e.g.

<table border="0"
<tr>
<td bgcolor="yellow">colored table cell</td>
</tr>
</table>

cellpadding="5">

Tables can be used for a variety of layout effects and have been widely
exploited for this. In the future this role is likely to be supplanted by style
sheets, which make it practical to achieve precise layout with less effort.

Named colors

The standard set of color names is: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow. These
16 colors are defined in HTML 3.2 and 4.0 and correspond to the basic
VGA set on PCs. Most browsers accept a wider set of color names but use
of these is not recommended.

Hexadecimal color values

Values like "#FF9999" represent colors as hexadecimal numbers for red,
green and blue. The first two characters following the # give the number for
red, the next two for green and the last two for blue. These numbers are
always in the range 0 to 255 decimal. If you know the values in decimal,
you can convert to hexadecimal using a calculator, like the one that comes
as part of Microsoft Windows.

htto://www.w3.ora/MarkUp/Guide/stvle.html|

0-10-11 09.18

Paae 7 of 9

Raggett's Guide to CSS

Browser safe colors

Many older color systems can only show up to 256 colors at a time. To
cope with this, browsers make do with colors from a fixed palette. The
effect of this is often visible as a speckling of colors as the browser tries to
approximate the true color at any point in the image.

Most browsers use the same so called "browser safe" palette. This uses 6
evenly spaced gradations in red, green and blue and their combinations. If
you select image colors from this palette, you can avoid the speckling
effect. This is particularly useful for background areas of images.

These are constructed from colors where red, green and blue are restricted
to the values:

RGB | 00 |51 | 102 | 153 | 204 | 255
Hex |00|33|66 |99 |CC |FF

The page background uses the nearest color in the palette. If you set the
page background to a color which isn't in the browser safe palette, you run
the risk that the background will have different colors depending on whether
the computer is using indexed or true-color.

How do you find browser safe colors? There are several ways: you can
load the browser safe palette into an image editor, you can use an image
viewer to select a color from an image showing all colors in the palette, or
you can use a tool that shows the system palette, and read off the color you
like.

Setting the font, its size and color

The FONT tag can be used to select the font, to set its size and the color.
This example just sets the color:

0-10-11 09.18

This sentance has a word in yellow

The face attribute is used to set the font. It takes a list of fonts in preference
order, e.g.

some text

The size attribute can be used to select the font size as a number from 1 to
6. If you place a - or + sign before the number it is interpreted as a relative

htto://www.w3.ora/MarkUp/Guide/stvle.html|

...

Paae 8 of 9

Raggett's Guide to CSS 0-10-11 09.18

value. Use size="+1" when you want to use the next larger font size and
size="-1" when you want to use the next smaller font size, e.g.

<font size="+1" color="maroon"
face=""Garamond, Times New Roman'>some text ...

Getting Further Information

For further information you may want to purchase one of the many books
on HTML that cover CSS, for example "Raggett on HTML 4", published
1998 by Addison Wesley. For a more detailed explanation, "Cascading
Style Sheets" by Hakon Wium Lie and Bert Bos, pub. 1997 by Addison
Wesley, provides an in-depth look at CSS as seen by the architects of CSS
themselves.

| plan to extend this guide with additional pages explaining CSS positioning,
printing and aural style sheets.

Best of luck and get writing!

601 @bed g wnipuadwo)

htto://www.w3.ora/MarkUp/Guide/stvle.html| Paae 9 of 9

Bare Bones Guide to HTML 0-10-11 09.22

“Bare Bones Guide

By Kevin Werbach (barebones@werbach.com) H TML

Version 4.0 Formatted -- February 1999

The latest version of this document is available at http://werbach.com/barebones/, where
you will also find the text version, translations, and background materials.

The Bare Bones Guide to HTML lists all the tags that current browsers are likely to
recognize. | have included all the elementsin the official HTML 4.0 recommendation with
cammon attributes, as well as Netscape and Microsoft extensions. This document is a
q@ck reference, not a complete specification; for officia information about HTML and its
dgyelopment, see the World Wide Web Consortium site at http://www.w3.org/MarkUp/.

>
TEe Guide is designed to be as concise as possible, and therefore it doesn't go into any
de&gail about how to use the various tags. A few tags link to notes that address
fregluently-asked questions. If you're looking for more detailed step-by-step information,
s@ my WWW Help Page.

T%ble of Contents

<. INTRODUCTORY MATERIAL
o What is unique about this guide
o Which HTML tags are included
o How this document is formatted (including a description of symbols and
abbreviations)
2. HTML TAGS
o basic elements (all HTML documents should have these)
o structural definition (appearance controlled by the browser's preferences)
o presentation formatting (author specifies text appearance)
o links, graphics, and sounds
o positioning
o dividers
o lists
o backgrounds and colors

o special characters
o forms

o tables

http://werbach.com/barebones/barebones.html Page 1 of 13

Bare Bones Guide to HTML

o frames

0-10-11 09.22

o scripts and java

o miscellaneous
Important: If you are not clear about the differences between the various versions of
HTML, | suggest that you read my discussion of the development of HTML, or the

World Wide Web Consortium HTML activity statement.

BASIC ELEMENTS

Document
Type
Title
Header
Body

<HM></ HTML> (beginning and end of file)

<N TLE</ T TLE> (must be in header)

<HAD</ HEAD> (descriptive info, such astitle)
<BDr></ BDY> (bulk of the page)

STRUCTURAL DEFINITION

Heading
Align
Heading
Division
Align
Division
Defined
Content
Block Quote
4.0 Quote
4.0 Citation
Emphasis
Strong
Emphasis
Citation
Code
Sample
Output
Keyboard
Input
Variable
Definition
Author's

4.0

<H></ H>> (the spec. defines 6 levels)

<+
ALl G\ELEFT] GENTER R G/ H2>

<0\ O\
<0V ALl G\ELEFT] R GHT) GENTER JUBTI FY</ O \>

<A KQUOBE< BAKQOE> (usualy indented)

Q<& (for short quotations)
QATE'WR">< Q@

<Bv</ B (usually displayed as italic)
<STRING</ STRNG (usually displayed as bold)
<aTBe</aTe (usually italics)

<qE</ OB (for source code listings)
<SAVP=/ SAMP>

<KBD=</ KBD>

QAR VAR

<O/ OAN> (not widely implemented)

<ADRESS</ ATRESS>

http://werbach.com/barebones/barebones.html Page 2 of 13

Bare Bones Guide to HTML

Address

0-10-11 09.22

gieérege Font <AG<RG
omall Font o</ swLL>
4.0 Insert < NS/ I N>> (marks additions in a new version)
4.0 E'h”;ﬁg‘g <IN DATETI ME=": : : "></ | NB>
4.0 Comments <INS A TE'WRL"'></ | NS>
4.0 Delete <H></ B> (marks deletions in a new version)
4.0 E'hrgﬁg%f <CHL DNTET ME=": : : "></ CEL>
4.0 Comments J B>
4.0 Acronym <ACRONYM</ ACRONYNS
4.0 Abbreviation <ABER~</ABBR>
_ PRESENTATION FORMATTING
o
_g Bold <B</ B>
@ Italic <> 1>
@0* Underline U</ (not widely implemented)
3 Strikeout <SIR KB</ STR K& (not widely implemented)
£0* Strikeout <S</S (not widely implemented)
& Subscript <SB</ 9B>
® Superscript <3P/ P>
= Typewriter <TT>=</ TT> (displays in a monospaced font)
Preformatted <PE</ PRE> (display text spacing as-is)
Width <PRE WDTH=></ PR> (in characters)
Center <ENTER~</ (BENTER> (for both text and images)
N1 Blinking <BLI NGS</ B NG (the most derided tag ever)
Font Size </ FONT> (ranges from 1-7)
Change Font </ FONT>
</ FONT>

N4 Point size %C{\\INT-SZE:MFO\D
N4 Weight </ FONTI>

4.0 Base Font

<BASHFONT 9 ZE=2> (from 1-7; default is 3)

http://werbach.com/barebones/barebones.html

Page 3 of 13

Bare Bones Guide to HTML

Size

MS Marquee

0-10-11 09.22

POSITIONING

N3

N3
N3
N3

N3
N3

N3

N4
N4
N4

N4

N4
N4

N4

N4

N4
N4
N4

N4

N4
N4

Multi-Coumn<MLTI QL GALS=?></ MLTI Q0>

Column
Gutter

Column
Width

Spacer
Spacer Type

Size
Dimensions

Alignment

L ayer
Name
L ocation

Rel. Position

Source File
Stacking

Stack
Position

Dimensions

Clipping
Path
Visible?

Background
Color

Inline Layer
Alt. Content

<MLTI G GJITER=?></ MLTI 0>

<MLTI QA WDTH=></ MLTI G>

<PAEH

<PAER
TYPE=HIR ZONTAL| VERT CAL| BLADG
<PAER 9 ZE2>

<SPACER WDTH? HE GHI=?>

<PAR
ALl Q\ELEFT] R GT) GENTER>
LAYER=/ LAYER>

<LAYER | D2+ ></ LAYER>
<LAYER LEFT=? TGP=2></ LAYER>
<LAYER PAGEX=?

PAGEY=2></ LAYER>

<LAYER SRO*+*" ></ LAYER>
<LAYER Z | NDBE?></ LAYER>

<LAYER ABOVEZ***"
BELON" ">/ LAYER>

<LAYER HH G1I=?
WDTH=?></ LAYER>
<LAYERR AU P=,, , > LAYER>

<AYER M S Bl LI TY=SHOYH CoEN | NHER T></ LAYER>
AR

BAKGROND=" $85858 " ></ LAYER>
<AYER

BEIOL. (R $38588 " ></ LAYER>

< LAYER</ | LAYER>
<NIAYER=</ NDAYER>

(takes same attributes as
LAYER)

LINKS, GRAPHICS, AND SOUNDS

Link

http://werbach.com/barebones/barebones.html

Page 4 of 13

Bare Bones Guide to HTML

4.0*

4.0*

4.0*

4.0*

<z
(0]

Z1 | 8bed gdinipuadwo)

N1

MS

MS

http://werbach.com/barebones/barebones.html

Link to
L ocation

Target
Window

Action on
Click

M ouseover
Action

M ouse out
Action

Link to
Email
Specify
Subj ect
Define

L ocation

Display
Image
Alignment
Alignment
Alternate

Dimensions

Border
Runaround
Space
Low-Res
Proxy

Imagemap
I magemap

Movie Clip

Background
Sound

Client-Side
Map
Map Section

0-10-11 09.22

< Ao
 A
</ A>

(if in another document)

(if in current document)

LI Ger#eeed A (Gavascript
NOEEDVER? 447 (Gavasoripy
<A HRER='LR- (Javascript)

ONVOLBEQUT=" ** %" ><f A>
=< A>

<A
HE="nai | t o: @S BIECT=***"

<f A

'l Ao (use areal question mark)

< MG SRG=' LR ALl G\ETGR| BOTTOM M COLE LEFT] RG>
<IMG SR LR ALl GNETEXTTQR ABSM COLH BASH | NE| ABSBOTTOM
<I MG SRG'URL ALT= x> (if image not displayed)

< MG SRG-'URL WDTH=?

FE GT=7> (in pixels)

< MG SRG="WR" WDTH% (as percentage of page
HE GT=% width/height)

<M SRG'WIRY BORIER=?> (in pixels)

< MG SRC='WR" HRPACE=? (|n plerS)

VPAE?>

< MG SRC'URYY LOMRGE' LR >
<M SRG'URY | SWWe>

<M SRC-'URL U= LR >
<I MG DNBRG="***" START="***"
LGOP=2>

<BOBOUND SRG="*++"

LAP=?| INA N TB>

<VRP NAME=" ***"' ></ NP> (describes the map)

<AREA SHAFE-'DHFALLT RECTI A RO ALY aooRs=, "
HE="LR | NORE=>

(requires a script)

Page 5 of 13

Bare Bones Guide to HTML

0-10-11 09.22

N1 Client Pull <META HITP BQ V='Refresh” QONTENT='?; LRALR'>
Embed T ; —
N2 Object <BMBED SRG2'LRL"> (insert object into page)
. . <BMBED SRG='WR" WDTH=?
N2 Object Size e G
4.0 Object <BIECT></ (BIECT>
4.0 Parameters <PARAW
Par agraph <P</ P> (closing tag often unnecessary)
. P
Align Text 5| QuL 1) CENTER R GT></ P>
N Justify Text <P ALl GNRIUST Fre</ P>
Line Break <= (asingle carriage return)
Clear
Textwrap <BR A EARALB-T| R G ALL>
Horizontal
Rule e
- 4R
Alignment 5 | o BT R G| GENTER
Thickness <R 9 ZE?> (in pixels)
Width <HR WDTH=?> (in pixels)
Width , .
Pelr cent <HR WDTH=" %> (as a percentage of page width)
Solid Line <HR NCBHA B> (without the 3D cutout |ook)
N1 No Break <NBR</ NBR> (prevents line breaks)
N1 Word Break <R (where to break aline if needed)

http://werbach.com/barebones/barebones.html

Page 6 of 13

Bare Bones Guide to HTML

LISTS

0-10-11 09.22

Unordered
List
Compact
Bullet Type

Bullet Type

Ordered List
Compact
Numbering
Type
Numbering
Type
Starting
Number

Starting
Number

Definition
List
Compact
Menu List
Compact
Directory
List
Compact

€11 @bed g wnipuadwo)

BACKGROUNDSAND COLORS

<U><l >/ Uu>

<L GOMPACT=/ U>
<L

TYPED SO A RLE SQARE>

<

TYPE=D SO A RLE SQARE>

<Q<Ll>=/ Q>
<. QOMPACT>< Q>

<Q TYPE=A o] 1]i| 1>
< TYPEAall]i| 1>
<Q. START=?>
U \VALE>

<O ><Dr<D</ 0>

<0 GMPACT>/ D>
<MBENU</ MENJ>
<MENU GOMPACT></ MENL>

<DR=</0OR>
<0 R GWPACT>=/ O R>

(before each list item)

(for the whole list)
(this & subsequent)
(before each list item)
(for the whole list)
(this & subsequent)
(for the whole list)

(this & subsequent)

(<DT>=term, <DD>=definition)

(before each list item)

(before each list item)

Tiled
Bkground

MS Watermark

Bkground
Color

Text Color
Link Color
Visited Link
Active Link

<BDY BAKGOND="LR">

<BLY

BEAROPERT ES5='"H X&D' >
<BLY

BRI R HESH5$ " >
<BDY TEXT="H#E$E5$" >
<BDY LI N HESE5$" >

<BDY WL N HES85$ >
<BDY ALl N #35555$" >

(order is red/green/blue)

(Moreinfo at http://werbach.com/web/wwwhel p.html#color)

http://werbach.com/barebones/barebones.html

Page 7 of 13

Bare Bones Guide to HTML

SPECIAL CHARACTERS

0-10-11 09.22

Special !)
Char acter &2, (where ?is the 1ISO 8859-1 code)
< 8t;

> &t

& ganp;

) " ;

Registered .

™ ®

Registered)

™ ⪚

Copyright E

Copyright &opy;

Non-Breaking i

Space

(Complete list at http://www.uni-passau.de/%7Eramsch/iso8859-1.html)

FORMS

4.0*

4.0
4.0
4.0
4.0
4.0
4.0

<FORVIACTI ON=" LR

Define Form NETHID=GET| PCSTS</ FCRV
File Upload <FORMBNCTYPE="mul ti part/formdat ">/ FORW
Input Field < NPUT TYPE="TEXT] PASSWR G-EOBO{ RAO Q
A LE BUITON | MG H CDEN SLBM T) RESET >
Field Name < NPUT NAME'***">
Field Value < NPUT VALLE="***">
Checked? < NPUT GHEOKED> (checkboxes and radio boxes)
Field Size < NPUT 9 ZE=2> (in characters)
Max Length < NPUT MXLENGTH=?> (in characters)
Button <BUTTON=/ BUTTON>

<BUITON
Button Name e v sy RUITOS

Button Type <BUITON TYPE="SLBM T| RESET| BUTTON' ></ BUITON>

Default <BUTTON

Value VALLE="***" ></ BUTTON>
L abel <LABH ></ LABH >

Item <L AEH

L abelled FOR="***" ></ LABH >
Selection

<SH K</ H K>

http://werbach.com/barebones/barebones.html

Page 8 of 13

Bare Bones Guide to HTML

List

0-10-11 09.22

; <HET
Name of List NAVE=" * %" >/ S ECT>
- <HET
of Options S ZEro< SELECT>
Multiple
Choice <H ECT MLTI PLE> (can select more than one)
Option <OPTI QN> (items that can be selected)
Default
Option <CPTI ON 2L ECTHD>
Option Value <PTI QN VALUE="***">
4.0 Option <@PTEOP
) Group LABH ="***" >/ QPTGRAP>
Input Box <TEXTAREA RO/$=?
Size QAS=7></ TEXTAREA>
<TEXTAREA
Name of Box NAVES" %%] TEXTAREAS
N2 Wrap Text <TEXTAREA VIRAP=CHH HARO SOFT></ TEXTAREA>
S+ Group
4%0 dements <A BLDSET></ A BLOEET>
£0 Legend <LEBED</ LEE\D> (caption for fieldsets)
43'0 Alignment <LEGEND ALl G\F' TCH BOITQM LEFT| R GHIM ></ LEGEN\D>
»
g TABLES
§ Define Table <TABLE=</ TARLE>
Table
4.0* Alignment <TABLE A| G\HLEFT] R G| (ENTER>
Table Border <TABLE BORIER</ TABLE> (either on or off)
Table Border <TABLE BORDER=?></ TABLE> (you can set the value)
Cell Spacing <TABLE (HLSPAQ NG=?>
Cell Padding <TABLE (HLPACDI NG=2>
\?v?ﬁtrr?d <TABLE WDTH?> (in pixels)
\F/>ve|rdctehn) <TABLE WDTH% (percentage of page)
4.0* Table Color <TABLE BGIO.CR $$$55%" >< TARLE>
<TABLE FRAVERVQ [ABOVE BELOYHS DEY LHY R
4.0 Table Frame VS [CES| B BORER=</ TARLE>
4.0 Table Rules <TABLE RLES-NON GROPY RVH CO.9 ALL></ TABLE>
MS Border Color SPHE

BORCEROOL(R-" $$$$5%" >/ TABLE>

http://werbach.com/barebones/barebones.html

Page 9 of 13

Bare Bones Guide to HTML

MS
MS

4.0*

N3
4.0*

4.0*

N3

4.0*
4.0
4.0
4.0

4.0

http://werbach.com/barebones/barebones.html

Dark Border

Light Border

Table Row
Alignment

Table Cell

Alignment

No
linebreaks
Columns to
Span

Rows to
Span
Desired
Width

Width
Per cent

Cell Color
Header Cell

Alignment

No
Linebreaks
Columns to
Span

Rows to
Span
Desired
Width

Width
Per cent

Ceéll Color
Table Body
Table Footer
Table Header
Table
Caption
Alignment

Column

0-10-11 09.22

<TAB.E
BORCERO. GROARKE" $$555%" ></ TABLE>

<TAALE
BORCERCAL.CRL GTT="$$5$$$" ></ TABLE>

<TR</ TR>
<TR ALl G\ELEFT] R GHT| CENTER M COLE BOTTOM

(must appear within table
<D</ D> rows)

<TD ALl G\ELEFT] R GHT| GENTER VALI GNSTCH M COLH BOTTOM:
<TD NO/RAP>

<TD CL.FAN?>
<TD RO/EPAN=?>
<TD WDTH=?> (in pixels)
<TD WDTH" %> (percentage of table)
<TD B OR=" #E$$$$$ ' >
T/ (same as data, except bold
< lag centered)
<TH ALl G\RLEFT] R GHT] GBENTER M COLH BOTTOM
<TH NO/RAP>
<TH C.FAN?>
<TH RO/EPAN?>
<TH WDTH=?> (in pixels)
<TH WDTH=" %> (percentage of table)
<TH B OR=" #ES$$H$ ' >
<TBDY>
<TFQOr></ TFQO> (must come before THEAD>
<THEAD</ THEAD>
<CAPTI ON</ CGAPTI QN>
<CAPTI AN
ALl G\ETQR BOTTOM LEFT| R GT>
<</ > (groups column attributes)

Page 10 of 13

Bare Bones Guide to HTML

0-10-11 09.22

Columns
4.0 Spanned <@ AN >
Column
4.0 Width <. WDIH=>=</ Q>
40 Ddth <) WDTHE %</ Q0>
4.0 cGorI alrjr?n s <O FIP< AFRIP> (groups column structure)
4.0 gg;‘;rr?gds <@L.GAP PN/ CAGROP>
4.0 Group Width <GA.GAP WDTH></ CA.GAP>
4.0 \Iévelr(g[:nt <A@ P WDTH" %>/ QL.GRAP>
4.0+ Frame <FRAVESET></ FRAMESET> instead of <BODY >
-~ Document (instead o)
Q
- <FRAMESET -
41%0* Row Heights Sya™= o eens (pixels or %)
D . . .
Lgp* Row Heights ;(F)%:EFFRN\EED (* =relative size)
Column <FRAMEET .
£9" \Widths @S, ,, >/ FRVEET> (pixels or %)
B~ Column <FRAMESET e
€0 \yidths QLS ></ FRAVESET> (* = relative size)
4£D* Borders <FRAMESET FRAMEBORCER="yes| no" ></ FRAMESET>
(&)}
; <HRAMESET
4.0* Border Width BORER></ FRAVESET>
4.0 Border Color <FRAMESET BORDEROALCR=" #5585 ></ FRAMESET>
N3 Frame <FRAMESET
Spacing FRAMESPAQ NG=7></ FRAMEET>
4.0* Define Frame <FRMME> (contents of an individual frame)
Display e
4.0* Document <FRAME SRG-'LR'>
4.0* Frame Name <FRAME NAME='***"| bl ank| _sel f| _parent| _top>
4.0* \'\//Ivﬁ;,?k']n <FRAME MAR3 NWDTH=?> (left and right margins)
4.0* M ;rg%tn <FRAMVE MR3 NHE GT=2> (top and bottom margins)
4.0* Scrollbar? TRAME

Not

SCRALLI NG YES NO) AUTO) >

http://werbach.com/barebones/barebones.html

Page 11 of 13

Bare Bones Guide to HTML 0-10-11 09.22

4.0* Resizable <FRAME NORES ZB>

<FRAME
4.0* Borders FRAVEBORCER” yes| no' >

<FRAME
4.0* Border Color BOREROO (R H985656 >

4.0* ggLrtgrrﬂed <NOFRAVES></ NCFRAMVES> (for non-frames browsers)
4.0 Inline Frame < FRAVE< | FRAVE (takes same attributes as FRAME)

< FRAME WDTH=?
HE GII=></ | FRAME>

< FRAME WDTH="%
HA GII="%></ | FRAVE>

SCRIPTSAND JAVA

4.0 Dimensions

4.0 Dimensions

Script <SR PT></ SR PT>
L ocation g PuE;_x/ IR P>
Type %:EL*--% IR P>
Language m:"***“wﬂ P>
4.0 8(t)rrﬁant <NOBCR PT></ NOSR PT> (if scripts not supported)

Applet <APPLET></ APPLET>
File Name <APPLET GIE="***">
Parameters <APPLET PARAM NAME="***">

Location <APPLET CIERASE"IR">

I dentifier <APPLET NAME="***"> (for references)

Alt Text <APRLET ALT='***"> (for non-Java browsers)
; <AFRLET

Alignment 5| g LEFT] R G GENTER >

Size <APPLET WDTH=? HE GT=?> (in pixels)

Spacing ,qug EE__F%"BDA(E:? (in pixels)

N4 Server Script <SRER< FRER>

http://werbach.com/barebones/barebones.html Page 12 of 13

91| @bed g wnipuadwo)

Bare Bones Guide to HTML

0-10-11 09.22

MISCELLANEOUS

Comment
Prologue
Searchable
Prompt
Send Search
URL of This
File

Base

4.0* Window
Name

Relationship

N4 Linked File

Meta
Information

Style Sheets
4.0 Bidirect Off

oo xR > (not displayed by the browser)
< DOCTYPE HIML PLBLIC "-//V@Q / DID HIML 4. O/ / BN'>
<4 9 NBe (indicates a searchable index)

<I 9 NCEX PROMPT="***"> (text to prompt input)
 (usearea question mark)

<BASE HRE="LRL'> (must be in header)
<BASE TAREET="***"> (must be in header)
N e e qes (i headen)

<L NK TYPE **x

R+ < || NG

<META> (must be in header)
<STYLE</ STL.E> (implementations vary)

<B0 D RLTR RIL></BD>> (for certain character sets)

Copyright ©1995-2000 Kevin Werbach. Redistribution is permitted, so long asthereis
no charge and this document is included without ateration in its entirety. This Guide is
not a product of Bare Bones Software. More information is available at

http://werbach.com/barebones.

wac iy

http://werbach.com/barebones/barebones.html Page 13 of 13

/11 9bed g wnipuadwon

Top Ten Mistakes in Web Design

By Jakob Nielsen, SunSoft Distinguished Engineer, May 1996

1. Using Frames

Splitting a page into frames is very confusing for
users since frames break the fundamental user
model of the web page. All of a sudden, you
cannot bookmark the current page and return to
it (the bookmark points to another version of the
frameset), URLs stop working, and printouts
become difficult. Even worse, the predictability
of user actions goes out the door: who knows
what information will appear where when you
click on a link?

2. Gratuitous Use of Bleeding-Edge
Technology

Don't try to attract users to your site by bragging
about use of the latest web technology. You may
attract a few nerds, but mainstream users will
care more about useful content and your ability
to offer good customer service. Using the latest
and greatest before it is even out of beta is a sure
way to discourage users: if their system crashes
while visiting your site, you can bet that many of
them will not be back. Unless you are in the
business of selling Internet products or services,
it is better to wait until some experience has been
gained with respect to the appropriate ways of
using new techniques. When desktop publishing
was young, people put twenty fonts in their
documents: let's avoid similar design bloat on the
Web.

As an example: Use VRML if you actually have
information that maps naturally onto a three-
dimensional space (e.g., architectural design,
shoot-them-up games, surgery planning). Don't
use VRML if your data is N-dimensional since it
is usually better to produce 2-dimensional
overviews that fit with the actual display and
input hardware available to the user.

TopTenMistakesinWebDesign.doc

3. Scrolling Text, Marquees, and
Constantly Running Animations

Never include page elements that move
incessantly. Moving images have an
overpowering effect on the human peripheral
vision. A web page should not emulate Times
Square in New York City in its constant attack
on the human senses: give your user some peace
and quiet to actually read the text!

Of course, <BLINK> is simply evil. Enough
said.

4. Complex URLs

Even though machine-level addressing like the
URL should never have been exposed in the user
interface, it is there and we have found that users
actually try to decode the URLs of pages to infer
the structure of web sites. Users do this because
of the horrifying lack of support for navigation
and sense of location in current web browsers.
Thus, a URL should contain human-readable
directory and file names that reflect the nature of
the information space.

Also, users sometimes need to type in a URL, so
try to minimize the risk of typos by using short
names with all lower-case characters and no
special characters (many people don't know how
to type a ~).

5. Orphan Pages

Make sure that all pages include a clear
indication of what web site they belong to since
users may access pages directly without coming
in through your home page. For the same reason,
every page should have a link up to your home
page as well as some indication of where they fit
within the structure of your information space.

Page 1

6. Long Scrolling Pages

Only 10% of users scroll beyond the information
that is visible on the screen when a page comes
up. All critical content and navigation options
should be on the top part of the page.

Note added December 1997: More recent studies
show that users are more willing to scroll now
than they were in the early years of the Web. 1
still recommend minimizing scrolling on
navigation pages, but it is no longer an absolute
ban.

7. Lack of Navigation Support

Don't assume that users know as much about
your site as you do. They always have difficulty
finding information, so they need support in the
form of a strong sense of structure and place.
Start your design with a good understanding of
the structure of the information space and
communicate this structure explicitly to the user.
Provide a site map and let users know where
they are and where they can go. Also, you will
need a good search feature since even the best
navigation support will never be enough.

8. Non-Standard Link Colors

Links to pages that have not been seen by the
user are blue; links to previously seen pages are
purple or red. Don't mess with these colors since
the ability to understand what links have been
followed is one of the few navigational aides that
is standard in most web browsers. Consistency is
key to teaching users what the link colors mean.

9. Outdated Information

Budget to hire a web gardener as part of your
team. You need somebody to root out the weeds
and replant the flowers as the website changes
but most people would rather spend their time
creating new content than on maintenance. In
practice, maintenance is a cheap way of
enhancing the content on your website since
many old pages keep their relevance and should
be linked into the new pages. Of course, some
pages are better off being removed completely

TopTenMistakesinWebDesign.doc

from the server after their expiration date.
10. Overly Long Download Times

I am placing this issue last because most people
already know about it; not because it is the least
important. Traditional human factors guidelines
indicate 10 seconds as the maximum response
time before users lose interest. On the web, users
have been trained to endure so much suffering
that it may be acceptable to increase this limit to
15 seconds for a few pages.

Even websites with high-end users need to
consider download times: many B2B customers
access websites from home computers in the
evening because they are too busy to surf the
Web during working hours.

Other related information

Added by Jacob Palme, not part of Nielsens
paper.

For this document with links to related
information, see URL
http://www.useit.com/alertbox/9605.html

See also Ten Quick Tips for Better Site Design

See also the following two papers in the June
1997 issue of the Internet World:

Space: The first Frontier - Keeping text and
graphics in their place, by Wayne Bremser

and
Avoid the Five Cardinal Graphical Sins Say no

to lazy images and bizarre colors, by David
Busch

Page 2

811 obed g wnipuadwo)

E?z st??guzde e
07 vdven

av Karl-Foban Norén -

Skriven av Karl-Johan Norén, kjnoren@hem3. en.se, maj 1997.

Detta &r allt-i-ett versionen av min En stilguide for véaven, lamplig for t ex utskrifter. Vill ndgon anvanda denna
guide som kurs- eller undervisningsmaterial gar det bra, forutsatt att den dterges i sin helhet. Kopior for personligt
bruk & ocksatillétet. Vill ndgon anvéanda det for annat &ndamal, var vénlig kontakta mig.

Skriver du ut den hér filen kan du ocksa skriva ut Appendix A som innehdller samtliga URL :er till kallorna som
namns i denna guide. Egentligen borde det vara vévl&sarnas sak att ordna det, men da de flestainte klarar av denna
mycket enkla sak f&r ni hdllatillgodo med denna inte helt perfekta lsning.

Den senaste versionen av denna stilguide finns tillganglig fran <http://hem3.passagen.se/kjnoren/stilguide/>.

0-10-11 01.42

Introduktion

Detta &r ett forsok att skriva en ndgorlunda utforlig och komplett stilguide pa& svenska for véavsidor. Det & alltsd inte
négot dokument for dig som vill l&radig HTML, utan snarare for dig som vill anvanda HTML pa basta sétt p&
vaven.

Om du har 1&st andra stilguider, framst Tim Berners-Lees eller WDGs s kommer du sékert att kannaigen dig, men
jag har forsokt att undvika att géra den hér guiden till en dversdttning, aven om mycket av det som namns dar
aterfinns har. Jag har ocksd anvant mina egna erfarenheter av drygt tva ars vavsidessnickrande, liksom mina
erfarenheter som "surfare" pa olika plattformar och med olika vévlasare.

Notera dock att det har & en guide, det & inte ndgon form av anvisningar om hur saker och ting maste goras. Se det
som goda rad och idéer, men det &r till syvende og sidst du som maste bygga och skriva dina sidor, och seftill att de
har en form som & anpassad till innehdllet.

Innehallsférteckning

e Intro - att arbeta med HTML

o Vavplatsen som helhet

o Innehdllet i vavsidan

e Att hantera lankarna

o Bilder pa vaven

o Objekt - [jud, Java mm

o Saker man bér undvika

e Kontrollera sidorna

o Kéllor, lankar och fortsatt |&snin
o Appendix A: Adresser

Nagra kommentarer

Jag anvénder konsekvent "vav" och sammanséttningar med det istallet for "webb", som i mina éron & oerhort ful
svengelska. Likasa anvander jag "rutor” istéllet for "ramar" (frames) eftersom analogin med vanliga fonster da blir
tydligare. Ett fonster (dvs vévlésaren) kan ha flera rutor, men flera ramar?

http://hem.passagen.se/kjnoren/stilguide/all.html|

Page 1 of 13

En stilguide for vaven: Allt i ett

Som s mycket annat pa vaven & den hér stilguiden visserligen fardig, men den &r inte klar och den |&r aldrig bli det
heller. Jag tar gérna emot kommentarer p& saker som kan goras tydligare eller ar felaktiga, liksom tips om nya
amnen eller fragor. Exempel saknas i manga fall, men det ska férhoppningsvis béttra sig med tiden.

0-10-11 01.42

Att arbeta med HTML

Den troligen viktigaste, men samtidigt svaraste, lektionen om HTML &r hur man arbetar med HTML, istéllet for
emot HTML. Jag talar alltsd inte om vilka verktyg man anvander, eller vad de olika koderna stér for, utan frén
vilken utgangspunkt man anvander spréket och vad man vill uppné med det.

HTML & ett verktyg bland manga andra, och precis som andra verktyg har det styrkor och svagheter - det & bra pa
vissa saker och daligt pd andra. For att forsta vad som & HTMLs styrkor och svagheter maste man forsta filosofin
bakom HTML.

Struktur kontra presentation

HTML & ett sprék for att beskriva strukturen i en text, vilken roll de olika delarna spelar i dokumentet som helhet.
Man anger vad som & rubriker, vad som ingdr i de olika styckena, vilka ord som & betonade osv utan att beskriva
exakt hur rubrikerna ska synas eller styckena ska skiljas fran varandra. Istéllet fa HTML-tolken (som vanligen & en
vévlasare) presentera sidan pa ett sitt som passar mediet och forhoppningsvis besokaren (lasaren).

Fordelen med detta &r att ett HTML-dokument kan presenteras i en méngd olika situationer: med en fullgrafisk
vévlasare, pa en ren textterminal, med en rostldsare osv. Det gor det ocksa létt att automatiskt skapa
innehallsforteckningar, dispositioner och index frén en vavsida, vilket bland annat sbkmaskinerna drar nytta av.

Nackdelen & att man som forfattare ger upp kontrollen 6ver exakt hur presentationen ska bli. Ansvaret for detta
ligger istédllet p& vévlasaren, som férhoppningsvis ska presenterainnehdllet pa sidan i enlighet med besokarens
6nskemal, men tyvarr & de flesta vavl&sare bedrévliga pa detta.

Ar layout mojlig?

Darmed inte sagt att det saknas layoutelement i HTML. En del fungerar som attribut till andra element (t ex
ALIGN), en del kan anvandas for layout (t ex TABLE), en del har inget annat syfte (t ex FONT) - men forsoker
man uppna en exakt kontroll dver en sidas utseende med HTML s3 kommer man oundvikligen att sid huvudet i
véggen. Det finns inga som helst garantier att sidan kommer att presenteras i enlighet med forfattarens 6nskemal -
typsnittet kan saknas, skarmen kan vara for liten eller ha for fa farger osv osv.

| det absolut vérsta fallet gér man sidan oanvandbar for en storre eller mindre grupp besokare. Borja darfor med en
god strukturell beskrivning av dina sidor, och anvand sedan layoutdirektiv utéver detta. P& sa vis kan man behdlla
flexibilititen och anpassningsbarheten hos HTML.

Annars finns det en béttre [6sning &n layoutdirektiv direkt i HTML-koden: style sheets, som &r betydligt mer
kraftfulla for att beskriva en layout, kan anpassas fér olika situationer och miljoer, och & gjorda med mélet att béde
forfattaren och besokaren kan ange sina 6nskemdl om presentationen. Dessa sidor anvander for Gvrigt style sheets.
Men precis som layoutdirektiv direkt i HTML-koden kan style sheets missbrukas.
Anpassningsbar het
Mycket av det som ndmns ovan och som jag tar upp senare i den hér stilguiden syftar mot en och samma sak:
anpassningsbarhet. En valgjord véavsida anpassar sig efter den plattform den visas pa och besokarens behov. Om man
tror att man behover ha en separat kopia av alla sidor med enbart text s3 har man inte forstatt poangen med HTML.
Om man behéver anvanda en sddan beharskar man oftast inte HTML.
Eller som Tim Berners-Lee, skaparen av World Wide Web, sai Technology Review i juli 1996:

Anyone who slaps a "this page is best viewed with Browser X" label on a Web page appears to be

http://hem.passagen.se/kjnoren/stilguide/all.html|

Page 2 of 13

611 abed g wnipuadwo)

http://hem.passagen.se/kjnoren/stilguide/all.html|

En stilguide for vaven: Allt i ett

yearning for the bad old days, before the Web, when you had very little chance of reading a document
written on another computer, another word processor, or another network.

Jag vill poéngtera att klassiska grafiska kunskaper fran layout eller reklamskapande inte & vérdel sa pa vaven. Men
véven & ett nytt och eget medium, skilt frén de pappersbaserade. Att forsoka anvanda klassiska grafiska kunskaper
direkt pa véaven utan att forst forsta vad véven har for egenskaper, mojligheter och begrénsningar & forkastligt. Man
maste forst forsta vad véaven innebar, vilka sirskilda krav den stéller och vilka méjligheter den ger.

Fortsatt lasning

e What isHTML? An Opinion
En sida av Michael H. Kelsey om filosofin bakom HTML och vad den innebér.

e The Telephone is the Best Metaphor for the Web
Jakob Nielson ger sin motivering varfor vaven har mer gemensamt med telefonen an med TVn.

e Hints for Web Authors
Warren Steel ger sin filosofi for hur han anvander HTML.

e Publishing on the Web |s Different
Jukka Korpela beskriver skillnaderna mellan att publicera information med vanliga medier och att géra det pa
vaven.

0-10-11 01.42

Vavplatsen som helhet

En vavplats & en samling vavsidor som & grupperade tillsammans och vanligen behandlar ett gemensamt &mne.
Sidornai den hér stilguiden kan ségas utgora en (mycket liten) vévplats, som ingdr i min egen personliga vévplats.
Minasidor & i sin tur en del i DSV's vévplats.

Genom att bygga upp en klar struktur éver din egen vévplats gor du det enkelt for de som besdker en del av den att
titta pa andra delar med, och det blir ocksd enklare att uppdatera och andra sidorna.

Tradmodellen

Detta & den absolut vanligaste modellen fér att bygga upp en vévplats, och ocksd en av de enklaste. Sidorna ordnas
hierarkiskt, med en sida som rot (hem-, topp- eller valkomstsida). Rotsidan har sedan lankar till de underliggande
sidorna. Lagger man ett antal underliggande sidor i samma katalog (mapp eller directory) har man skapat en gren
som i sig har en egen rotsida och underliggande sidor. Alla sidor har en lank till sidan direkt ovanfér.

Aven om man tycker att man bara har en eller ett fétal sidor om ett &mne s& & det ofta en braidé att 1agga dem i en
egen katalog. Pa sa vis ger man utrymme for framtida utékningar och nya sidor, och slipper kranglet med att flytta
sidor som det finns massor med lankar till utifran.

Hur grenarna ska organiseras & inte n&gon it fréga, sirskilt inte om man har en flersprékig véavplats. Ar det bara
en eller ett fatal sidor som ska varatillgangliga pa tva sprak kan man samla dem i samma katalog, annars kan det
lona sig att 14gga dem var sin katalog. Se ocksatill att namnen pa sidorna & konsekventa, t ex att alla engelska sidor
i eni ovrigt svensk katalog borjar med e- .

Sidorna inom en gren kan ocksd innehdlla lankar till de andra sidorna inom samma gren, eller bara sidorna direkt
fore och efter. PAsd vis kan man l&sa dem i sekvens, utan att behgva backa tillbakatill rotsidan.

Ge vavplatsen en identitet

Det ska markas att sidornai din vévplats hor ihop med varandra, och det ska inte vara ndgon tvekan om né man har
lamnat den. Det viktigaste medlet for detta &r att ha en konsekvent stil pd sidorna. Sidhuvuden och sidfétter ska vara

Page 3 of 13 http://hem.passagen.se/kjnoren/stilguide/all.html|

En stilguide for vaven: Allt i ett

gemensamma for sidorna, och fungera pd samma sétt i dem. Gemensam information som lankar till resten av platsen,
kontaktinformation till forfattaren, nér sidan senast uppdaterades osv ska &terfinnas pd samma plats i ala sidorna. En
annan god effekt av detta & att sidorna blir 1&tta att uppdatera och navigerai.

Gor sidorna latta att navigera

Att sidorna & lankade till varandra |6ser bara halva problemet. Man méste ocksd kommunicera vart |dnkarna gér,
och vilken roll de spelar i sidan som helhet. Oftast kan detta goras direkt i lanktexten, men ibland kan det vara
lampligt att bygga upp en fast sekvens eller en "guidad tur" genom sidorna. Likasa bor man gora det mojligt for
dterkommande bestkare €ller personer med erfarenhet i &mnet att snabbt nd den information han eller hon &r pa jakt
efter.

En anvandbar tumregel & trestegsprincipen: man ska kunna nd godtycklig sidai vavplatsen fran vilken annan sida i
deni tre steg, dvs via hégst tvad mellanliggande sidor. V& valdaindexsidor gor det mojligt att uppnd detta mal &ven i
storre vavplatser utan sérskilda hjalpmedel. Nasta steg kan vara en samlad innehdllsforteckning for alla véavplatsens
sidor eller en lokal sokmaskin.

Det vara majligt att n& platsens valkomstsida, eventuella sskmaskiner och innehallsforteckningar direkt fran alla
sidor i vavplatsen. Ordlistor, copyright-meddelanden och andra gemensamma resurser kan hanteras p& samma sétt.

Man uppnér ytterligare en férdel med detta. Det finns inga som helst garantier att bestkaren kommer till en viss sida
pa det st du har forutsett eller véntar dig. Han eller hon kan ha anvént en sskmaskin eller en lank utifran. Lankarna
till dina kringliggande sidor gor det da enkelt att n& resten av din plats.

Det & ocksé en braidé att ge information om vad som & nytt eller har dndrats. Man kan ha en blénkare pa rotsidan,
en sarskild sida med nyheter eller bade och. Sidan med nyheter kan ocksa anvandas for att visa hela utvecklingen av
vavplatsen.

Dokumentstorlek

| mangafall kan ett amne eller ett hypertextdokument svara mot flera sidor (den hér stilguiden &r ett exempel). Det
finns bade foérdelar och nackdelar med att dela upp ett dokument i flera delar, men man bor definitivt strava mot att
varje sida behandlar ett avgransat &mne. Att & samman flera skilda &mnen ger |&tt sidorna véxtvark, och kan
forvirra bestkare.

En nackdel med att ha flera sma& sidor & att varje sida méste hamtas for sig, och varje ny férbindelse dver nétverket
tar tid. A andra sidan har stora sidor ocksd nackdelar. De tar tid att hémta och det besbkaren stker kan vara var som
helst i sidan. Informationen blir ocksa mer svéréverskadlig, och man tvingar besokaren att bladdra runt éver stora
siok av information.

Oavsett om man delar upp dokumentet eller samlar det i en stor sida & det darfor en fordel att forst ha en dversikt
eller en innehdllIsforteckning. Pa s sétt kan en bestkare enkelt avgéra om det du erbjuder & av intresse, och kan
ocksa snabbt n& det han eller hon & pajakt efter. | vissafall kan man erbjuda bade flera mindre ihoplénkade sidor
och en stor sida med all information i ett. Den senare & anvandbar for t ex utskrifter.

I vilket fall bor man alltid se till att valkomstsidan for en vévplats & hogst 60 kB stor, inklusive bilder, lankade style
sheets, Java applets osv. Helst bor den inte vara mer &n 30 kB stor, gérna mindre.

Kraven kan |&ttas upp for mer amnesspecifika sidor, men 60 till 100 kB &r i manga fall en praktisk dvre grans for

enbart HTML-koden och texten. Mer &n sd och sidan blir odverskadlig. Man bor ocksa ge en varning om en lankad
sida (dvs text och bild) & 6ver en viss storlek, t ex 40 kB. Att ge sidans storlek i kB inom parentes efter lanken &r
fullt tillrackligt.

Fortsatt lasning

e Sub-Site Structure
Jakob Nielsen tittar pd hur stora vavplatser kan delas upp i manga mindre for enklare navigering.

0-10-11 01.42

Page 4 of 13

0z1 abed g wnipuadwo)

En stilguide for vaven: Allt i ett

0-10-11 01.42

Innehallet i vavsidan

Innehdllet & det som & vardefullt i din vavsida, och det du ska l&gga ner mest arbete pa. | den hér diskussionen
definierar jag innehdll i dess bredaste bemérkelse, bade den information som ska kommuniceras, i viss mén hur den
presenteras och metainformation som vem som skrev den, nar den skrevs, sammanfattningar osv.

M etainfor mation

Det & en gévklarhet att varje sida ska ge information om vem som skrev den, hur man kontaktar forfattaren och
nér den senast dndrades. Ar en del av sidan inte helt fardig sa bér man ocksa tala om det, liksom eventuell copyright
och andra juridiska aspekter.

Mycket av dennainformation kan med fordel samlas med ADDRESS-elementet, pd samma platsi alla sidorna och
med samma layout. Det gor den |&tt att uppdatera och hitta. Lankar till relaterade sidor kan ocks& samlas i anslutning
med metai nformationen.

Om man behdver anvénda léngre copyright-meddelanden eller meddela en specifik policy & det en braidé att bryta
ut den till en egen sida, och lankatill den fran ett kort copyright-meddelande. Pa sa vis belastar man inte varje sida
med |&nga identiska texter, och uppdateringen blir ocksa enklare.

Informationen om hur man kontaktar forfattaren kan med férdel goéras som en mailto-lank till forfattarens
e-postadress, eller ett formular for att skicka e-post. Som lanktext bor e-postadressen §élv anvandas. D& undviker
man att kontaktinformationen férsvinner om sidan skrivs ut eller sparasi textformat, och n&gon som vill anvénda ett
separat e-postprogram kan anvanda klippa och klistra for adressen.

Anvand HTML ratt

En viktig egenskap i HTML & att man gor strukturen i en sida explicit. Istéllet for att anvanda ett radindrag €ller en
blankrad for att siga att nu & det ett nytt stycke, sd anvander man elementet P. Istéllet for att anvandat ex Helvetica
i 24 punkter for en rubrik sd anvander man elementet H1. P4 samma sétt markerar man langre citat, rubriker, listor

osv.

Detta har flera trevliga egenskaper. En sida kan presenteras pa ett adekvat sitt pd en stor mangd plattformar och
miljder. Enrostlésare kan sdganytt st ycke eller goraen paus for att meddela styckebyte. En grafisk |&sare kan
anvénda radindrag. En textl&sare kan anvénda blankrad, osv.

Ett annat viktigt resultat & att sokmaskiner kan anvénda rubriker och andra element for att indexera din sida
korrekt. Undvik definitivt att anvandat ex BLOCKQUOTE for att skapa en indentering. Visserligen gér manga
vévlasare en indentering, men vavlésaren & i sin fullarétt att sdgaj ag ci t er ar eller sétta> fore varjerad i citatet,
som &r den standard som anvandsi e-post och i nys.

Lat sidan std pa egna ben

Samtidigt som lankar, sokmaskiner och bokmérken gor vaven s rik som den & s3 medfor de ocksd krav. Du kan
aldrig vara siker pa att en bestkare har |ast en sida som foregdr den de & pa. Sidan maste vara anvandbar aven i
dessafall - den maste sta pa egna ben.

Forst och frémst skasidan haen anvandbar och tydlig titel. | nt r odukt i on sager inte speciellt mycket, men Pr oj ekt
Runeber g: | ntrodukti on gor det. Enval valdtitel & ocksavardefull for sskmaskiner och personer som lankar till
din sida

L&t heller inte texten pa sidan utga fran ett underforstatt sammanhang. Se istéllet till att brodtexten presenterar sig
sjav, utan hjalp av rubriker och tidigare sidor. Se ocksa till att det finns lankar till de omkringliggande sidorna. Pa
sAvis spelar det ingen roll till vilken sida en bestkare kommer forst - han eller hon kan fortfarande avgéra om dina
sidor & anvéndbara och kan f& hela ditt budskap.

http://hem.passagen.se/kjnoren/stilguide/all.html

Page 5 of 13

En stilguide for vaven: Allt i ett 0-10-11 01.42

Fortsatt lasning

e A Web Siteis aHarsh Mistress
Diane Wilson tittar p& hur en vévsida och en bestkare fungerar ihop.

e Writing for the Web
Ytterligare en sidai Jakob Nielsens serie The Alertbox. Denna studerar de krav pa spraket véven stéller.

Att hantera lankarna

Om sdvasidornai din véavplats & brodet, s & lankarna smoret. Lankarna & det som binder samman sidorna och
ser till att din vavplats inte & en isolerad 6 skild fran omvarlden. Det & ingen storre dverdrift att pasta att lankarna
ar vaven. HTML-dialekter och sidor kommer och gér, men lankarna bestar.

Namnge dem réatt

En av de viktigaste principerna nar man konstruerar ett informationssystem &r att den relevanta informationen ska
vara | &t att identifiera, samtidigt som den inte ska stéra den 6évriga informationen runtomkring.

Lankar med namnet kI i cka har eller liknande bryter mot béda principerna ovan. Det finns tvaintressanta
informationsbitar for en Iank: att det finns en Iank till ndgonting, och vad lanken berdr, men dessatva & intei direkt
angdlutning till varandra. Man méste titta p& omrédet fére och efter sjalva lanken for att fa dess funktion.

Dessutom blir meningarna ofta klumpigare och mer svérlasta genom anvéandning av k1 i cka har . Visst, det & |4t att
skrivamed "klicka har", men malet & val knappast att ha en l&ttskriven vévplats, utan en |attlast och lattanvand en?
Eller hur?

Lanknamn bor vara korta och deskriptiva. Tre eller fyra ord racker i manga fall. Om sidan man lankar till & stor
kan man ange dess storlek (text och bild tillsammans) inom parentes efter 1anken. En vanligt minimivérde som
namns for detta & 40 kB, men man bor definitivt marka alla lankar till sidor pa 100 kB eller mer.

Ord man skaférsikaundvikai lanknamn & blaai nf or nat i on, mer , har, bakat ,ti | | baka, f ranét ochhem De
fyra forsta sager egentligen ingenting om vad lanken handlar om, de fyra senare &r i praktiken reserverade for
funktioner i vavlasaren. Sidansomt i | | baka pekar pa & oftainte densamma som den sida som besokaren var pa
senast.

Setill att de pekar ratt

Doda lankar ar tristalankar. Det endaman fér se & ett litet meddelande med HTTP 404 Fil e Not Found pagra
bakgrund. Férhoppningsvis stér och faller inte din sida med dess ldnkar, men man bor definitivt ha for vana att
kontrollera dem regelbundet och fixa alla som pekar fel pa n&got sitt.

Men en lank kan ocksd vara felaktig och fortfarande peka p& ndgonting. Tvafall & valdigt vanliga hdr. Det forsta &
att det finns kvar en sida med en notis om att den nya adressen & si-och-s3, komplett med en lank dit. Ordna dessa
med, du kan aldrig veta ndr en sddan sida forsvinner, och du tvingar dina besokare till att folja ytterligare en lank.

Det andra fallet & mindre tydligt, men nog sa vanligt. Det & att en del av URL:en pekar fel, men servern som sidan
finns pa korrigerar felet med en sk redirect. Vanliga sddana fel ar att lanken pekar p& en maskin som sidan tidigare
1&g p4, eller att en avslutande "/" saknas i URL:en. Visserligen korrigeras felet, men det tar tid och nétverksresurser
helt i onddan. Vid minsta tvekan, klipp och klistrain URL:en direkt fran vavlasaren!

index.html eller inte index.html

http://hem.passagen.se/kjnoren/stilguide/all.html Page 6 of 13

LZ| ebed g wnipusdwo)

En stilguide for vaven: Allt i ett

i ndex. ht n i ndex. htm
komplicerad. Nar sokvéagen i en URL avslutas med "/" pekar den pa en katalog, och vad vavservern skickar tillbaka
beror p& hur den & instélld. Oftast tittar den efter om det finns en fil som heter t exi ndex. ht m , def aul t . ht m
eller V&l cone. ht m , och skickar ivag den, om den finns. Dennafil kan kallas for en indexfil.

Finns det inte en fil med ett sddant namn, eller om listan Gver standardfilnamn & tom, s& kan vévl&saren antingen
skicka tillbaka en lista 6ver alafiler i katalogen, eller helt enkelt meddela att man inte fér tittai den. For att veta
exakt pa vilket sitt din vavserver fungerar och vilka standardnamn den har sa far kontrollera med din vavansvarige
eller dokumentationen, eller helt enkelt testa galv.

| vilket fall bor du vara konsekvent vad géller dina URL:er. Antingen anvander du URL :er som pekar pa katal ogen,
eller som pekar direkt pa indexfilen. Anvander du b&da finns det risk for att dina bestkare blir férvirrade, eller
tvingas ladda ner exakt samma sida tva génger. Du kan anvéndaen lank i formen | ankt ext </ A> for
att peka pa den aktuella katalogen.

L anklistor
Det &r |&tt att gora jéttelistan Allan dver all varldens lankar, men att halla den uppdaterad & definitivt inte |&tt.

Dessutom finns det redan stora tjanster for dettai form av Y ahoo, olika &mnesspecifika index eller sokmaskiner. Att
ens forsoka konkurrera med dem &r dodfott.

D& & det en béttre idé att géra en relativt kort och personlig lista éver lankar - sidor som du sjélv besker relativt
ofta. P& s& vis kan du ocksa frigéra din lista med bokmérken i vavléasaren for t ex sidor du skata en narmare titt pa
lite senare. Annu béttre blir det om du laggger till dina egna kommentarer om sidorna.

Om det saknas en bra lista med lankar till sidor inom ett omréade du &r intresserad av kan du naturligtvis sld slag i
saken och forsbka géra en mer eller mindre komplett sddan - men tank pa att det & mycket jobb.

0-10-11 01.42

Bilder pa véaven

Hittills har vi mest behandlat text, men bilder fyller ocksa en viktig funktion pé véven. De anvénds som prydnader
for att gora en sida mer attraktiv, som navigationshja pmedel eller som en integrerad del av en sidas innehall.

Bilder i allmanhet

Det forsta du méaste ténka pé & att bilder & stora. Aven en liten ikon motsvarar 14t hundra ord eller mer.
Visserligen sager en bild lika mycket som tusen ord, men i en dator & & den ofta manga ganger storre. Det &r
heller inte alla vévlasare som kan visa bilder 6verhuvudtaget, eller inte kan visa dem direkt pa sidan. De kan ocksa
gora att sidan tar langre tid att presenteras for mottagaren.

Samtidigt & de ofta ocksa ovérderliga. De gor sidan mer attraktiv och de kan enkelt forklara eller visa saker som
inte gar att sdgai ord. Men hanteringen av bilder pa véven kraver planering, noggrannhet och att man ténker efter
fore.

Det viktigaste & att gora bilderna sa utrymmessnéla som méjligt. For att gora detta kan man reducera antalet farger,
klippa bort delar som inte behdvs eller minska bildens fysiska storlek. Har man ett galleri eller behdver en stor bild
skapar man miniatyrer av.som lankar till motsvarande fullstora bild. Miniatyerna ger en snabb éversikt av vad du
har att erbjuda, laddas ner snabbare och |&ter beskaren sjalv vélja ut vilka bilder han eller hon vill se.

Nasta del & dteranvandning. Lagg dina bilder samlat i en katalog, och Idnka sedan in bilderna darifrén for ala dina
sidor. Om du anvander samma bild fér samma funktion pa dina sidor ritas dels sidan upp snabbare eftersom
vévlasaren redan har laddat ner bilden en géng, och du ger ocksa dina sidor en starkare identitet. Om det finns ett
centralt bildbibliotek i din vavserver ska du definitivt utnyttja det.

Vévlé&saren méste ocksa veta hur stor bilden & innan den kan rita upp texten runtomkring. Du kan reservera

http://hem.passagen.se/kjnoren/stilguide/all.html

Page 7 of 13

En stilguide for vaven: Allt i ett 0-10-11 01.42

Ha G WDTH
bilden med de hér vardena - dels f&r du alltid béttre resultat om du gor det sjalv, dels ar inte vévldsaren tvungen att
skala om bilden. Den kan rita om sidan istéllet.

Sist, men definitivt inte minst, kommer ALT-texten. Ange alltid en ALT-text till alla dina bilder. Jag tar upp mer
om ALT-texten nedan.

L ogotyper

Om ett foretag eller en organisation har en logotyp ska den naturligtvis &erfinnas pa alla sidorna. Om man dessutom
gor den till en lank till rotsidan fyller den ytterligare en funktion. Ofta kan man ocksd ersétta den vanliga
rubriktexten, t ex Val kommen till XYZ med logotypen. Om man da placerar bilden i rubriken och ger den en bra
ALT-text kommer den ocksd att hanteras rétt av sokmaskiner och (forhoppningsvis) vévlasare som inte laddar ner
bilderna. De hér sidorna anvander for ovrigt den metoden.

Ikoner for navigation

Det finns flera skél till att anvanda ikoner istéllet for text for de grundléggande gemensamma lankarna. En ikon syns
oftast béttre &n en text, vilket ar en fordel. Detta kréver dock att ikonerna anvands konsekvent, dvs samma ikon
anvands for Nast a, Topp osv paalasidor. Konsekvensen har naturligtvis andra férdelar, som att ge sidornaen
identitet och att vavlasaren behdver ladda ner farre bilder. Om man bygger upp en knapprad kan man |&ta en ikon
som pekar pa sidan man & pa vara kvar, men utan en lank.

ALT-texterna &r extra viktiga har - det & inte roligt att se en rackamed [LI NK] &ver hela sidans bredd. Ett problem
hér &r att ikonerna ofta &r relativt sma, vilket innebér att om du ger ikonen attributen HEI GHT och W DTH sd kan det
handa att AL T-texten inte far platsi en del vévlasare. En l6sning & att Sopa HElI GHT och W DTHi dessafall, en annan
att skriva extremt korta AL T-texter, t ex > istéllet for Nast a. Den forra ldsningen kan fungera bra om ikonerna &
pa botten av sidan. Den senare lGsningen ger problem for rostlésare. Attributet REL kan troligen anvandas for att
atgarda detta, men det & endast en handfull vavlasare som stéder REL .

Prydnader

| manga fall anvénds bilder bara eftersom de gor sidan snyggare och mer attraktiv. | mangafall & det inga problem
sa lange man tanker pd AL T-texter och storleken pa bilderna, men tyvérr finns det inga bra och effektiva st att
anvanda bilder istéllet for punkter i listor eller som avdelare. Style sheets gér att anvanda, men stodet for detta
fortfarande daligt.

ALT-texten

ALT-texten &r ett av dina viktigaste verktyg for att skapa anpassningsbara vavsidor. Det &r 1angtifrén endast blinda
personer eller personer vars vavlésare inte kan visa bilder éverhuvudtaget som drar nytta av dem. En stor andel
anvandare av grafiska vavlasare surfar normalt med avstangd automatisk nedladdning av bilder (de flesta
uppskattningar pekar pa ungefar en tredjedel). En textl&sare som Lynx kan hamta och spara bilder, eller visa dem i
en separat bildlasare - som oftast & battre pa detta an en grafisk vévlasare.

Tyvéarr & ALT-texten begransad pa manga sétt, framst beroende pa hur IMG-elementet & konstruerat. Det kan
innehalla max 1024 tecken och, vad vérre &r, inte heller ndgra HTML-element. Du kan déremot |&gga hela bilden i
ett eget element, t ex en rubrik, och ALT-texten kommer da att "&rva' det elementet. Det nya elementet OBJECT i
Cougar |6ser de problemen, men det stods mycket daligt.

I vilket fall ska ALT-texten i nastan samtliga fall ersétta bildens funktion, inte beskriva bilden. For rent dekorativa
bilder &r ALT=""effektivt. For avdelare & ALT="- - - - " bra (repetera -- tills du har 60 €ller s), osv.

Fortsatt lasning

o Text-friendly authoring
Alan Flavell diskuterar hur ALT-texten ska hanteras samt for- och nackdelarna med klickbara bilder.

http://hem.passagen.se/kjnoren/stilguide/all.html Page 8 of 13

Zz | obed g wnipuadwo)

En stilguide for vaven: Allt i ett

o |mage Use on the Web
En kort text frdn WDG om bildformat och bildhantering.

e Onimages, especialy in the Web context
En grundlig genomgang av hur bilder ska anvéandas pa véaven.

0-10-11 01.42

Objekt - ljud, Java mm

Ett stort anvandningsomrade fér HTML och véven som uppstétt nyligen & som bérare av andra medier: ljud,

animationer, filmer, Java-applets, JavaScript, ActiveX-kontroller osv osv. Jag kallar alla dessa gemensamt for objekt.

Mycket av det som géller for vanliga bilder gaéller ocksé for dessa, men jag ska posngtera négra saker som blir extra
viktiga.

Begréansat stod

Ménga typer av objekt & beroende av insticksprogram (plug-ins), hjal papplikationer eller s & de begransade till
endast ett fatal antal plattformar. Manga stanger dessutom av tekniker som Java och JavaScript av olika skal. Du bor
darfor aldrig gora sidan beroende av de har teknikerna. Om ditt innehdll kraver att du anvander objekt av nagot slag
sAbor sidan i Gvrigt meddela det pa et hovligt sitt. Att endast haentext med Di n vavl dsare ar skit dler
motsvarande skadar i sluténdan bara dig.

Gor istallet ditt basta for att Gvertyga bestkaren att ditt innehdll behdver objektet. Manga har t ex méjlighet att kéra
Java-applets, men har sténgt av det av olika skél, eller maste starta upp en annan vévl&sare. Om du meddelar vad din
applet gor sa ger du dem anledning att sétta pa det just for din sida. Samma angreppssétt kan ocksa anvandas for
andra typer av objekt.

Animationer och annat som rér sig

Var hjarna & programmerad for att 14gga mérke till saker som ror sig. En sak som blinkar, andrar form eller ror
sig pa n&got annat sétt far automatiskt en hogre prioritet dn ngot som inte gor det. En mycket hogre prioritet.

Visst, det drar uppméarksamheten till sig, men din vavsida & inte en neonskylt som man ska lédgga marke till néar man
gér forbi. Din besokare tittar redan pa din sida. Ditt m8l & inte att dra uppmérksamheten till den, utan att
kommunicera. Om da din animation eller blinkande text stér besikaren och hindrar honom eller henne fran att 14sa
texten i lugn och ro motverkar den snarast sitt syfte!

Animationer & inte fel, men ofta & en knappt mérkbar animering eller en som bara gar en gang effektivare. Kittla
intresset och nyfikenheten, drank det inte!

Ljud

Precis som bilder har ljud sin plats p& vaven. En vévsida som behandlar musikinstrument & knappast komplett utan
exempel pa hur instrumenten I&ter, en sida om en musikgrupp kan ha korta bitar ur gruppens I&tar, och ofta kan man
ha en enkel vakomsthalsning.

Men det &r alltid bestkaren som ska ha valet om han eller hon vill lyssna pa ljudet! Om man surfar mitt i natten
medan resten av familjen sover vill man knappast héra plétsliga eller higa ljud, likasd inte ifall man sitter i en
gemensam labsal i en skola. Geistéllet en enkel 18nk till ljudet eller [juden.

Det finns naturligtvis fall da ljud som laddas ner automatiskt kan vara effektfulla. T ex kan en vévsida om The
Beatles spela upp inledningsackordet fran Help!. Men tank da pa att |judet maste varalitet, sa att det dyker upp
kvickt. Ju kortare det &r desto battre. S&dana héar exempel & ocksa sd gott som alltid undantagsfall.

http://hem.passagen.se/kjnoren/stilguide/all.html|

Page 9 of 13 http://hem.passagen.se/kjnoren/stilguide/all.html|

En stilguide for vaven: Allt i ett
Saker man bor undvika

Det jag sagt tidigare om att det har & en guide och inte en anvisning géller extra mycket fér denna del. De tekniker
och metoder jag tar upp hér & snarare sadana att de antingen kan goras béttre pa andra sétt, eller s & de kanda for
att orsaka problem. Vill du anvénda dem s fér du gora det, men mitt r&d &r att du vet exakt varfor du gor det, och
varfor du behdver gora det, innan du sdtter dig ner och goér det.

Rutor

Rutor (eller ramar som det vanligen kallas) har ett antal stora problem med dagens implementering, bade
designméssigt och hur de hanteras av vévlasarna. Det & inget fel p& dlvaidén att ha flera samtidiga vyer av en
dataméangd, tvartom, men det sitt som den realiserades pa av Netscape &r ett klassiskt fall av BAD (Broken As
Designed).

Det storsta problemet &r att URL:er slutar fungera - de pekar inte pa den aktuella vyn utan den ursprungliga vyn -
den som definierade rutorna. Det finns ingen relation fran de enskilda sidorna tillbaka till den sida som definierade
rutorna. Hanteringen av rutorna & ocksa helt inriktad pa visuell presentation helt utan plattformsoberoende.

Héftig farghantering

Svarta bakgrunder & ofta snygga, men & det |&tt att 14sa texten pa dem? Anvander man dessutom féargad text i ndgon
man blir det hela &nnu mer svarl&st, och personer som lider av ndgon sorts fargblindhet kan f& svart text pa svart
bakgrund. Narmare tio procent av alla méan lider av ndgon rodgron fargblindhet i ndgon grad.

En vévsida ska kunna vara anvandbar i svartvitt precis som en fargfilm kan visas pa en svartvit TV. Detta oavsett om
begrénsningen ligger i ménniskan eller i maskinen.

Det man sarskilt maste uppmarksamma &r att kontrasten mellan texten och bakgrunden ska vara stor, att léankarna &
|dtta att urskilja och att du inte riskerar att géra ngon del av texten osynlig. Det sista & en risk om man inte anger
alla farger som sidan anvander. Ange antingen inga farger, eller alla farger. Om du anvénder en bakgrund ska du se
till att texten fortfarande &r |4ttl&st pa bakgrunden, och att dina valda farger matchar den.

Foraldrad information

Som jag namnde tidigare i den har stilguiden s finns det fa saker som & sa trista som lankar som inte leder
nagonstans. Men doda lankar &r bara en liten del av problemet - en sida med féréldrad information & minst likailla.

Det & minst lika viktigt att sidorna hélls uppdaterade och frascha som att de finns 6verhuvudtaget. Tank ocksa pa att
hélla dem uppdaterade &r ett stort arbete som tar tid. Det & ytterligare ett sk&l till att starta smatt - genom att
utveckla vévplatsen i lugn takt inser man hur mycket underhdll den behdver, och sitter inte med en méngd sidor som
ingen ordnar ta hand om.

Héardkodade sidor

Redan tidigt med NCSA Mosaic borjade det dyka upp sidor som var noggrant grafiskt designade for att uppna en viss
presentation. De utgick ofta fran att alla anvinde samma bredd pa vévldsarens fonster, samma vévldsare och exakt
samma typsnitt. Stdmde inte detta blev allt en endardra. | takt med att véavl&sare som Netscape inférde mer element
for layout och att olika HTML-verktyg borjade marknadsforas som WY SIWY G har det hér blivit alt vanligare.

Vanliga exempel pa detta &r att anvanda FONT-elementet for att skapa rubriker och bestdmma typsnitt, och att
anvéanda tabeller for att skapa en specifik layout av sidan. Problemet med dessa sidor &r att de slénger bort den
viktigaste egenskapen en vévsida har: anpassningsbarheten.

Istéllet for att |&ta vavlasaren presentera sidan och dessinnehdll i enlighet med de méjligheter den har sa blir sidan i
manga fall endast anvéandbar i specifika situationer. En hrdkodning innebér inte bara att man forutsétter en specifik
vévlasare, utan vanligen ocksa att automatisk laddning av bilder & pa, att vissa typsnitt & installerade, en viss storlek
pa vavlasarens fonster, ett visst fargdjup pa skarmen, en viss storlek pa texten osv osv.

0-10-11 01.42

Page 10 of 13

¢z| abed g wnipuadwo)

En stilguide for vaven: Allt i ett

Resultatet & en sida som dels blir svérare att halla aktuell och uppdaterad, dels inte blir anvandbar for manga. Tank
ocksa pa att aven om din vavl&sare inte presenterar ett visst element som du vill ha det, sa kanske en annan vavlasare
presenterar det rétt, och nagra besokare gillar det sétt du ogillar.

Istéllet for att anvanda
 och en liten gif-bild for att skapa ett radindrag si klaga hos tillverkarna av vavl &saren
att deras vavl&sare inte kan anpassas for att visa <P> som du vill hadet! De flesta véavlasare & faktiskt bedrévliga pa
att presentera sidor, och att fixa designen i HTML-koden & en &ervandsgrand.

Stora tabeller

En vanlig variant av de hérdkodade sidorna & de som utnyttjar en eller ett par stora tabeller for att visa innehdllet.
Detta innebar inte bara de vanliga nackdelarna med hardkodade sidor, utan medfér ocksa problem som & inbyggda i
hur tabeller hanterasi HTML.

Om man gér till en sida som har en enda stor tabell, t ex Pagina med en grafisk vévl&sare som stoder tabeller s ser
du att &ven nér en stor del av sidan har laddats ner, si syns det knappast ndgonting pa skarmen! Orsaken & att
tabellen i sin helhet méste varatillgéanglig for véavlésaren innan den kan rita upp den. Ingér det bilder kan det dréja
annu langre om de saknar attributen HEI GHT och W DTH.

Det har & ndgot som definitivt inte & lyckat. Visserligen & det ok om det drojer med att sidan dyker upp i sin
helhet, men det bor atminstone dyka upp ndgon text inom tio sekunder. Kan din sidainte klara att fa fram nagon
rubrik och lite text pa den tiden &r det risk att bestkaren helt enkelt tréttnar.

| HTML 4.0 finns det en ny och forbattrad tabellhantering som |8ter vavlasaren rita upp tabellen inkrementellt, dvs
allteftersom den kommer in. Men knappast ndgon vévlasare stoder dettaidag, och en sédan tabell blir knappast heller
lika snygg som en som ritas upp pa konventionellt sétt. Den & darfor knappast ett alternativ for layout idag.

Ett annat vanligt problem med att gora sidan som en tabell & att man tvingar bestkaren att bléddra horisontellt for
att 1asainnehdllet, ngot som &r helt forkastligt. L&t din besokare sjélv bestdmma vad som & 1amplig fonsterbredd
for honom eller henne!

Fortsatt lasning

e This page optimized for ...
Jahn Rantmeister gér igenom varfor hdrdkodade sidor &r en dalig idé.

e Color Perception Issues
Diane Wilson tittar pa farger och fargseendet.

e Top Ten Mistakesin Web Design
Ytterligare ett dokument i Jakob Nielsens Alertbox-serie.

0-10-11 01.42

Kontrollera sidorna

Det finns fa saker som &r sd enerverande som att upptécka att man maste géra om en vévsida nér en ny version av
ens vavlasare dyker upp. Till skillnad fran manniskor & ocksa datorer dumma, sa gor du misstag i din HTML-kod
kan du l&tt gora hela sidan olaslig.

Validera din sida

Att validera en HTML-sida innebar att man kontrollerar om sidans HTML-kod &r syntaktiskt korrekt och rétt stavat.
Enkelt uttryckt gor man en grammatisk kontroll av HTML-koden i enlighet med ett antal formella regler.

Varje standard av HTML har sin egen uppsattning formellaregler. Vilken standard som ska anvéndas gérs med en

http://hem.passagen.se/kjnoren/stilguide/all.html|

Page 11 of 13

En stilguide for vaven: Allt i ett

doctype-deklaration alraférst i sidan - fore <HTML>. Vilken dokumenttyp (DTD) du ska anvanda bestdms av vilka
koder du anvander, men det vanligaste & nog den for HTML 3.2 Wilbur: <! DOCTYPE HTM. PUBLI C "-//VBC / DTD
HM. 3. 2//BEN'>.

Om man skarétta alafel eller g & en samvetsfraga. | vissafall kan felaktig HTML vara énskvard eller till och med
nddvandig. En god tumregel & att om du vet vad som kommer att ge ett fel, varfor det ger ett fel och varfor du
anvander konstruktionen ifraga i forvag si kan det passera. Annars inte.

Lat en kompis kolla sidorna

Man blir 1&tt blind infér sina egna aster. Det & en gammal sanning for alla forfattare, och minst lika sann pa véven.
P& det har séttet kan du undvika alla sorters fel i innehdllet i dina sidor, bade sprékliga och faktaméssiga.

Ett annat sitt & att I4gga undan texten i ndgra dagar och sedan ga tillbaka till den for att I4sa om den och rétta felen.
Det har & inte lika bra som att |1&ta en kompis kolla dem, men det fungerar. Likasa & det ofta 6nskvart med en
stavningskontroll (det ska ségas att jag sjélv & en slarver vad géller detta). HTML-koderna kan stélla till problem,
men det gér i nodfall att dppna sidan i sin vavldsare och sedan spara texten i en vanlig textfil.

Anvand mer an en vavlasare

Olika vavl&sare reagerar olika pa olika konstruktioner. Detta galler sarskilt d& de rékar ut for felaktig HTML, men
ocksd i andra sammanhang. | vilket fall & "Det fungerar brai Netscape!" en helt oacceptabel ursakt for att en
bestkare som anvander en annan vévlasare inte kan anvéanda sidan! Tank ocksd pa att inte bara vévldsarnas namn
skiljer dem &. Olika versioner av samma vévlésare eller samma vévlasare pé olika plattformar skiljer sig ocksd, i
vissa fall minst lika mycket.

Hur manga vavlasare man ska anvanda & en svar fraga, men att testa dem pa Netscape och Internet Explorer & som
att saga "vi spelar bada sorters musik: country and western”. Bade Netscape och Internet Explorer bygger i hdg grad
p& gamla NCSA Mosaic, och beteendet i Internet Explorer har till stora delar skapats efter det i Netscape.

Som minimum bér man ha kollat sidorna dels i en ren textl&sare och en grafisk lasare, forhoppningsvis ocksa med
automatisk laddning av bilder avslaget. Opera & sérskilt vardefull har da den dels har ett riktigt textlage, dels att
buggarnai den & helt olika de som finns i Netscape och Internet Explorer, men den finns bara till Windows. Lynx
ar en ren text-lasare som déremot finns till i stort sett alla plattformar, &ven MacOS.

Nagonstans mellan en kontroll i en vévlasare och en riktig validering kommer olika typer av heuristiska verktyg. De
kallas ofta for linters efter programmet | i nt for att kontrollera C-kod. Det finns flera verktyg, men det vanligaste
heter rétt och slétt Weblint. Tyvéarr férekommer det en hel del forvirring om vad som &r en validator och vad som
& ett heuristiskt verktyg, och manga del heuristiska verktyg marknadsfors &ven som validatorer. Det innebér inte att
de inte & vardefulla, men man bor vara klar éver skillnaden.

Fortsatt lasning
e The Kinder, Gentler Validator

Ett oumbérligt verktyg for att kontrollera din HTML-kod. Denna online-validator ger hjé psamma
felmeddelanden och har tillgang till ett stort antal DTD-er.

o Weblint
Hemsidan for Weblint, ett Perl-program for att gora enklare kontroller av HTML-kod.

e Lynx
Lynx & en textbaserad men mycket kraftfull vavlasare, tillgéanglig till de flesta plattformar, &ven MacOS och
Windows.

o Opera En relativt ny vévlasare till Windows, med manga intressanta finesser.

0-10-11 01.42

http://hem.passagen.se/kjnoren/stilguide/all.html|

Page 12 of 13

yz| obed g wnipuadwo)

En stilguide for vaven: Allt i ett 0-10-11 01.42
Kéallor och fortsatt lasning

Det hér &r en lista pa nagra av de sidor jag anvant som kallmaterial och som stilguider for mina egna sidor. Av
naturliga skél &r det bara ett axplock, men jag har forsokt att plocka russinen ur kakan.

Artiklar, referenser och essaer

e The Web Design Group
WDG har en av de absolut basta platserna med resurser for forfattare pa vaven, med utmérkta referenser for
HTML 3.2 Wilbur och CSS1, FAQer, stilguider med mera. Rekommender as!

e The Alertbox

The Alertbox: Current Issuesin Web Usability & en samling essder av Jakob Nielsen, SunSoft. De tar bland
annat upp trender, design i dess vidaste bemarkelse och vaven som medium.

e Designing For the Web
Diane Wilson tar bl a upp frégor kring farger och fargseendet - viktigt d& uppemot tio procent av alla mén
lider av ndgon sorts fargblindhet.

o Referenshocker

Under denna inte speciellt upphetsande rubrik har Eva von Pepel den troligen stdrsta och bésta samligen sidor
om HTML och style sheets som finns p& svenska. Tyvarr & det ofta rétt tekniskt och illa skrivet.

e The World Wide Web Consortium
Standardiseringsorganet for HTML och andra vévrelaterade tekniker och standarder.

Copyright © 1997 Karl-Johan Norén, kjnoren@hem3.passagen.se
Last modified/Senast andrad: 09 Jan 1999 %I:

http://hem.passagen.se/kjnoren/stilguide/all.html Page 13 of 13

Font Size Comparisons 01-02-03 09.32

Font Size Comparisons as
shown on Screen

Jacob Palme <jpalme@dsv.su.se>
Last change: 2001-02-01

Fonts marked with an asterisk in the table below are
unreadable with some web browsers on some platforms.

With Explorer 5.0,
10 pt corresponds to 12 px and
12 pt corresponds to 16 px.

Times 7 o T 7 g Times sorsmall * Times size=1 *
.H.Hﬁu_,mm mH_HHH #* ﬁﬂuﬁ_x * Times x-small * _H_H....Emm E.HWHM u
Times 9 pt * .H__..Hmﬂm_wn Times small *1 Times size=3
: TimealZpx . o —
Times 10) pt Times 1Anx Times medium Times size=4
Times 12 pt : D :
Times 16px ~ 11mes large wveraans size=1
Times smaller Verdana size=2
‘Times larger Verdana size=3
..._naaﬂuﬁ** Vardana xx-zrmall * {mam:m m_Nm"h.
Yerdana 7 pt ¥ eidana Bp *
verdana & pt * Verdana Spx Werdana x-small
VerdanalOpx \ H_ __
VYerdana 9 pt verdanal2px erdana smd

werdana 10 pt yerdana 14px Verdana medium
Verdana 12 pt verdana 16px

http://dsv.su.se/jpalme/internet-course/font-size-comparisons.html Page 1 of 1

Compendium 6 page 125

The Multipart/Related Content Type

The Multipart/related content type is designed when you are sending several files, which are
related by URL-links. It isused, for example, to send HTML, SGML and XML with
embedded pictures or applets as separate files.

Each fileis a separate body parts. Each body part islabelled by either Content-ID or Content-

Location. The URL referring to the body part from another body part, is of the URL type

"cid:" to refer to a Content-1D, or can be any kind of URL (absolute or relative) to refer to a

Content-L ocation with the same content.

Example (abbreviated):

Cont ent -t ype:
Mul tipart/rel ated

The compound object of the HTML text and
the embedded message.

Cont ent - Type: Text/htm

<I MG SRC="ci d: 1*f oo@ar . net >

<I MG SRC="pi cture.gif">

The main text in HTL format.

Link to an embedded image using a"cid:"
type URL.

Link to an embedded image using arelative
URL.

Cont ent - Type: | mage/gif
Content-1D: 1*f oo@ar . net

Thefirst embedded image, identified by a
Content-1D.

Cont ent - Type: | mage/gif
Cont ent - Location: picture.gif

The second embedded image, identified by a
Content-Locdation URL.

Since some mailers do not support this, messages are usually sent using multipart/alternative,

with plain text in the first branch and HTML in the second branch. This can be done in two

ways:

With the multipart/alternative inside the multipart/related:

Content-Type:
Multipart/rel ated

Content-Type:
Multipart/alternative

Content-Type:
Image/gif

Content-type: Content-Type:
Text/plain Text/html

With the multipart/alternative outside the multipart/related:

Content-Type:

Multipart/alternative

Content-Type: Content-Type:
Text/plain Multipart/related

Content-type:
Text/html

Content-Type:
Text/Image/gif

Some mailers send messages using each of these methods, so a good mailer will have to be

able to receive messages in both formats.

Compendium 6 page 126

/21 9bed g wnipuadwon

Why bitmapped OHs are Sometimes Ugly 01-06-08 11.11

Why Bitmapped Screen
Dumps used as OHs
Sometimes get Ugly

By professor Jacob Palme,
Department of Computer and Systems Sciences
KTH Technical University

Abstract

Computer screen dumps will sometimes look very ugly
when you view then in manuals and help texts. This
document analyzes why and suggest how to avoid this
problem.

The Problem

When you dump a computer screen content in a
bitmapped file, this file will usually get the same
resolution as is used for the computer screen, 72 pixels/
inch or 96 pixels/inch.

If you then use this bitmapped picture in an overhead or
in a document, which is to be read on a computer, the
picture looks OK if it is shown at the same resolution as
it was produced. If, however, the resolution is changed,
the picture can sometimes become very ugly.

If, for example, the original bitmapped picture looked like
this:

. o The original bitmapped picture used in all
This is the original text the examples. Verdana text, 12 pt, 72
dots/inch resolution.

It looks OK if shown with the original size as above. If,
however, it is shown in reduced or enlarged size, it will

http:/www.dsv.su.se/jpalme/internet-course/why-bitmapped-ohs-are-ugly/ Page 1 of 4

Why bitmapped OHs are Sometimes Ugly
look very ugly:
The same image

increased to 1,5
times original size.

This is the original text

- . —— — ... The same image
Tz ic te origiral ext 73 reduced to 2/3 of
- —_ original size.

This problem will especially occur if you show the
document with a program which allows the increase or
reduction of the size of the document on the screen, such

as Adobe Acrobat or Microsoft Powerpoint. Powerpoint,
using anti-aliasing.

The explanation can be seen if you increase the size of
the letter "h" from the original and the two revised
pictures. In the table below, the size of these characters
has been increased 8 times, so that you can see them
more clearly.

The oriignal "h" was a bitmapped
original "h" picture 6 pixels wide and 10 pixels
high.

As you can see here, there is no good way to
" increase bitmapped picture by 50 %. The only
choices are to either leave the line widths as they

':f;i?:‘ii are, or double_ the line widths. The choice between
these alternatives seems to have been done rather
randomly.

When you reduce by 2/3, it means that you have to

"h" remove 1/3 of the pixels. Since the original "h" was
reduced to composed of lines 1 pixel width, some of them
2/3 became 0 length after reduction. Not very good

either.

Solution 1: Show in Original Size

The simplest solution to this problem is to ensure that
the pictures are always shown in their original size. This
is the method used by web browsers, and web browsers
are, because of that, sometimes better when displaying
documents containing screen dumps.

hitp://www.dsv.su.se/jpalme/internet-course/why-bitmapped-ohs-are-ugly/

01-06-08 11.11

Page 2 of 4

gz 9bed g wnipuadwon

Why bitmapped OHs are Sometimes Ugly 01-06-08 11.11

Solution 2a: Produce in very High

Resolution

Another solution is to produce the picture in very high
resolution. If, for example, the picture in the example
above is produced with 600 pixels/inch, and its size is
then reduced, it will still look fairly good. Example

High-resolution
e P H bitmapped picture
This is the original picture o B els/
inch

Solution 2b: Convert to very High
Resolution and Blur

This is variant of Solution 2a, where you have to start
with the original picture in only a low resolution format.
You can convert the low resolution format to a high
resolution format and then blur the picture, which will
make it behave a little better when reduced to low
resolution while viewing.

Below is an example, where the original picture used in
all the examples above was converted in this way.

The picture to the
left was first
converted from 72 to
“=.. 720 pixels/inch, then
This is the Drlglnal text) blurred, then
T — =" converted back to 72
— pixels/inch, and then
actually shown in 1,5
times enlargement:

A simpler variant,
the original picture
, was blurred as is,

-._ This is the original text was blurred as IS,

—_— e 1,5 times
enlargement.

Solution 3: Store Picture in Object
Format instead of Bitmapped
Format

The best solution should be to store the picture in an
object oriented format instead of a bitmapped format.
With this method, the picture should always get the best
possible rendering on the screen. Example of how it
should look like (my experients, see "solution 4" below
were not so positive, however, when trying to embed PDF
and Flash in HTML):

http://www.dsv.su.se/jpalme/internet-course/why-bitmapped-ohs-are-ugly/ Page 3 of 4

Why bitmapped OHs are Sometimes Ugly

This is the original picture Object picture

Solution 4: Embed objects in other
formats handled by plug-ins

I also experimented with inserting the picture using
plugins. Before this, I converted the text to paths, so
that the result should not rely on the right fonts
available. Here are the results:

Embedding
PDF in web

This is the original picture page. This
will only work

with Explorer,
not with
Netscape 4.7.

This does not look as neat as it should, probably because
the functionality in Explorer for embedding PDF in HTML
has some problems, or because I did not understand
correctly how to use it.

The HTML code used for the picture above was:

<object type="application/pdf" codetype="application/pdf" height=114
width=348 data="original-paths.pdf">

Embedding
This is the original picture Flash in a
web page.

This embedding was done using the following :-) neat
and simple code, which Dreamweaver produced
automatically for me:

01-06-08 11.11

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

width="348" height="57">

<param name=movie value="original-paths-150-perc-inc.swf">
<param name=quality value=high>

<embed src="original-paths-150-perc-inc.swf" quality=high

type="application/x-shockwave-flash" width="348" height="57">
</embed>
</object>

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=5,0,0,0"

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash"

hitp://www.dsv.su.se/jpalme/internet-course/why-bitmapped-ohs-are-ugly/

Page 4 of 4

Extensible Markup Language

Extensible Markup Language is a technology that is now
being developed under the auspices of the World Wide Web
Consortium (W3C). XML complements HTML and is based
on Standard Generalized Markup Language (SGML).
Whereas HTML describes a set of commands that define
how dataislaid out on a page, XML allows the data on an
HTML page to be described by the type of information it
represents. One direct consequence of this distinction is that
search engines can return more meaningful hits. For
example, using XML, a search engine might be able to
distinguish whether the word "cookie" in an HTML page
appliesto the Internet or to atasty dessert.

XML alows browser clients to dowrtload an HTML page
just once and then manipulate the page off line, without
referring to the server. The client can view the datain any
meaningful way desired and can manipulate the data; for
example, XML would, idealy, allow aclient to perform
actions such as extracting a hotel's name and address from
the result of a search and then feeding the datainto a
mapping program that would print out driving directions.

XML Syntax Details

XML uses the Unicode character set for encoding. This
means that XML can be used with awide variety of
international languages. Unicode has associated encodings
for purposes of transmission. XML uses Universal
Transformation Format-B (UTF-8) by default. (For
information about Unicode and UTF-8, see Chapter 4, 'En-
coding Standards.")

Unlike HTML, XML is case sensitive and white space is
relevant.

XML has some reserved characters that have special
meaning. For example, the characters "< and ">" need to
be encoded as"&It" and "& gt" respectively. The sentence
"25 > 24 and 25 < 26" would thus be encoded as "25 > 24
and 25 &It 26" in XML.

XML syntax isvery similar to that of HTML and consists of
a series of tags and annotated text. The major differenceis
that the XML tags indicate what the data represents, rather
than how the data should be represented. Another difference
isthat thetags are limited in HTML, whereas XML has

Offprint from Dilip C. Naik: Internet Sandards and Protocols, Microsoft Press 1998, ISBN 1-57231-692-6

unlimited potential because users can define their own sets of tags.

XML syntax consists of a series of elements. Each element consists
of abeginning tag, contents, and an ending tag, asin this example:

<PERSON>
<LASTNAME>Gates</LASTNAME>
<FIRSTNAME>BIll</[FIRSTNAME>
</PERSON>

In this example, the element PERSON begins on thefirst line and
ends on the last line of the example. As shown, elements can
contain other elements. Simple XML documents can be self-
contained and self-describing. Complex XML documents are
described using an external file called a Document Type Definition
file.

Document Type Definition File

A Document Type Definition (DTD) file specifies the valid syntax
for an XML document. In particular, aDTD file enumerates the
elements that can appear in aparticular XML document and the
relationships among different elements. An XML document may or
may not have aDTD associated with it.

XML and SGML

Aspreviously stated, XML is based on Standard Generalized
Markup Language (SGML). XML isasimplified form of SGML
that lends itself readily to transmission across networks by reducing
complexity while promoting ease of use and interoperability across
platforms and applications. A form of XML document called
"well4ormed" does not need an associated DTD file and can thus
be transmitted over networks more easily. SGML has no equivalent
to awell-formed XML document. A different form of XML
document called "valid" does require an associated DTD file and
does have an SGML-equivalent concept.

XML Vocabularies

Simply put, an XML DTD file constitutes a vocabulary. A
vocabulary isthe collection of elements defined by aDTD file and
the rules for constructing valid instances of those elements. The
following sections describe some XML vocabularies. More are
expected to be defined in the future.

Page 1

Compendium 6 page 129

11 9bed xis wnipuadwon

Internet Application
Protocols

For more info see http://dsv.su.se/jpalme/abook/

1. WebDAV

Objectives

This chapter describes an example of use of XML combined with HTTP
in an application layer standard. WebDAYV is a standard for managing a

web site or other document collection by multiple users.

Keywords
coding
records
data structures
characters

Publisher
Not yet published * City

1.1.

Use of HTTP for new protocols

It has become very popular to use HTTP for other purposes than web page
downloading. The reason for this is that existing software modules for HTTP
can be used, and that firewalls often allow HTTP but prevents non-HTTP
connections. Thus, if a non-HTTP protocol is used, one has to build holes in
the firewall to allow them. This is often not need if HTTP is used.

When HTTP is used in this way, there is often a need to transfer more
complex information than can easily be encoded in an HTTP header. For this
purpose, XML is often used. Thus, many protocols use HTTP headers com-
bined with XML bodies.

One example of this is SOAP, also known as “Web services”, which is a
protocol for what is also known as “Remote Procedure Calls (RPC)”. A Re-
mote Procedure Calls involves sending data to a application on another host,
and getting other data back in response.

In SOAP, all the data is encoded in the bodies in XML format. In Web-
DAYV, some information is encoded in the HTTP headers and some informa-
tion in the XML bodies below the HTTP headers. HTTP headers are used for
information which is easy to encode using ABNF. XML bodies are used for
information which is not easy to encode using ABNF, but which is easy to
encode using the more advanced encoding capabilities of XML.

A disadvantage with using HTTP as a base protocol for other application
protocols is that HTTP is a very complex protocol, and has facilities which
can cause a lot of difficulties, for example caching. Sometimes, application
protocols based on HTTP specify a subset of HTTP to avoid such problems.

1.2.

What is WebDAV

WebDAYV is a standard for management of collections of documents on a re-
mote host. It can be used for management of a web site, but also for other
kinds of document collections. WebDAV is based on a model where a user

agent process is running on a personal computer, and a WebDAYV server proc-

Z€ 1 obed xis wnipuadwo)

ess is running on a remote server. The server holds collections. By “collec-
tions” is in WebDAYV meant what is usually named “folders” or “directories”
(see Figure 1).

WehDAN
User Agenls

WebDAY
Server
Laocally

Produced

Daocument

Document Collections

Laocally
Produced
Daocument

[

A collection

- el e

A collection A collection

—— e —

e B

Figure 1: WebDAYV model with clients, servers and document collec-
tionsFiles or other objects stored in a document data base are in WebDAV
called Resources. Folders/directories of such documents are in WebDAV

called Collections (see Figure 1).
Resources and collections can have Properties. Some basic properties,
such as file name and last revision date, are predefined in WebDAV. Each ap-

plication of WebDAYV can define additional properties for its resources.

1.3.

Alternatives to WebDAV

Instead of WebDAYV, a common alternative solutions used by many sites is to
use an HTTP-HTML-only protocol, with no User Agent process, only using
an ordinary web browser as client. The advantage with WebDAYV is that it al-
lows neater clients.

Another alternative to WebDAV is FTP or SFTP, but these protocols lack
certain facilities which are important when several people manage a document
collection together.

1.4.

Simultaneous Update Problem

One main problem which WebDAV tries to solve is the simultaneous update
problem. This problem happens if two users try to update the same document
on the server at the same time. There is then a risk that some of the changes to
the document is lost.

Example:

User A downloads a document to modify it.
User B downloads the same document to modify it.
User A uploads the modified document.

User B uploads the modified document.

The result with this example will be that user B will overwrite the changes
made by user A, so that these changes will be lost, since user B will base its
changes on the document before user A has uploaded its change.

A more complex example: Suppose that that the names and the prices are
stored in separate objects in the data base as shown below:

eg| abed xis wnipuadwo)

Original text: Red Orchid: Price $ 6.75

User A downloads this and Bouquet of five red or- Price $ 33.75

changes it to: chids:

User B downloads this and Red or pink orchids Price $ 6.75

changes the descriptive text to:

User A saves its change: Bougquet of five red or- Price § 33.75
chids:

User B saves its change to the Read or pink orchid: Price § 33.75

description only:

1.5.

WebDAV HTTP Methods

The result will in this example be an unintended five-fold increase in the price
of the orchids.
Three common ways of handling this problem is:

Hard lock

Soft lock

Immediate
update

Only one user at a time is al-
lowed to update a certain
piece of information. When
one user starts to update it, a
lock is set, which prevents
anyone else from updating it.

Simultaneous updaters of a
certain piece of code are
warned, and use procedures
for avoiding problems, such

as merge of separate changes.

All changes are immediately
shown on screen of each si-
multaneous user.

Advantages: No risk of
modification getting lost.

Disadvantage: Another per-
son cannot update what an-
other person has locked,
locks may inadvertently stay
too long.

Advantages: Several persons
can update at the same time.

Disadvantages: Merging can
be done incorrectly.

Advantages: No restriction
on who may update when.

Disadvantages: Will work
only with very fast connec-
tions between client and
server.

WebDAYV supports the two first methods, but does not include any merging

algorithm which may be needed with a soft lock.
Hard locks are in WebDAYV called Exclusive locks.
Soft locks are in WebDAYV called Shared locks.

WebDAV HTTP methods are operations which a client can perform on a
server. Most of these operations can be applied either only to a resource as a
whole, or to all members of a collection, usually recursively to all sublevels.

WebDAYV defines the following HTTP methods:

PROPFIND: Used to get some or all properties of one or more resources.
Here one can see the advantage of using XML: It is easy to return a list of re-
sources, or even a hierarchical structure of collections and subcollections and
their resources to any level.

PROPPATCH: Used to modify or remove properties of one or more re-
sources.

MKCOL: Used to create folder/directory/collection.

GET, HEAD for collections: Standard HTTP does not specify how these
operations are to operate on collections. In standard HTTP a GET on a direc-
tory (collection) can retrieve a list of files, or a start page (index.html). In
WebDAYV, GET and HEAD are fully defined also for collections.

POST for collections.

DELETE for resources and collections.

PUT on resources and folders/directories/collections.

COPY and MOVE on resources and folders/directories/collections.

LOCK and UNLOCK on resources and folders/directories/collections.

1.6.

WebDAYV Coding Methods

WebDAV encodes some of its data in the HTTP header and some in the
HTTP body. The syntax of the HTTP header is specified using ABNF, the
syntax of the HTTP bodies are usually specified using XML. Below is an ex-
ample of part of a very simple PROPFIND operation:

€| abed xis wnipuadwo)

HTTP PROPFIND /container/ HTTP/1.1 Specified using
header Host: www.foo.bar ABNF
Content-Length: 117

Content-Type: text/xml; charset="utf-8"

HTTP body <?xml version="1.0" encoding="utf-8" 2> | In XML format
<D:propfind xmlns:D="DAV:">
<D:prop><D:supportedlock/></D:prop>

</D:propfind>

Example of new or modified HTTP header fields:

Dav: Specifies that this is a WebDAV operations, and indicates version of
WebDAV.

Depth: Indicates whether this operation is only to be done on a collection
in itself, or recursively for all its members and submembers to unlimited
depth. Usual values: “0” or “infinity”.

Destination: Destination URLs for operations such as COPY and MOVE.

If: Existing HTTP IF header is extended to allow testing of WebDAV
properties.

Lock-token: Unique identifier of a lock, created by the client when request-
ing a lock.

Overwrite: Should overwriting of existing files be allowed or not?

Time-out: Maximum duration of a lock.

Example of use of XML: A source Property for moving or copying re-
sources:

<D:src>http://foo.bar/program</D:src>
<D:dst>http://foo.bar/src/main.lib</D:dst>

</D:1link>

<D:link>
<F:projfiles>Makefile</F:projfiles>
<D:src>http://foo.bar/program</D:src>
<D:dst>http://foo.bar/src/makefile</D:dst>

</D:1link>

</D:source>
</D:prop>

Explanation of terms in the example above: “D:” = Dav namespace (defined
in the WebDAV standard), “F:” = own namespace (defined by a WebDAV
application), "src"=Source, "dst"=Destination.

1.7.

WebDAYV Extensions

<?xml version="1.0" encoding="utf-8" 2>
<D:prop xmlns:D="DAV:"
xmlns:F="http://www.foocorp.com/Project/">
<D:source>
<D:1link>
<F:projfiles>Source</F:projfiles>
<D:src>http://foo.bar/program</D:src>
<D:dst>http://foo.bar/src/main.c</D:dst>
</D:1link>
<D:link>
<F:projfiles>Library</F:projfiles>

The description above describes the functions of the basic WebDAYV standard
as defined in the standards document RFC 2518. There are additional stan-
dards documenting extensions to the basic WebDAV standard. The most im-
portant WebDAV RFCs are:

Ge| abed xis wnipuadwon

RFC 2518
RFC 3648

RFC 3648

RFC 3744

RFC 4316

RFC 4331
RFC 4437

RFC 4709

By Experimental is meant that this is a standard for experiments to find out if
this facility is to become a future standard or not. By Informational is meant

that this is not a standard, just information for Internet application developers.

Basic WebDAV: Locks, properties, collections.
Versioning Extensions to WebDAV:

Version history makes it possible to find and retrieve previous
versions of a resource.

Parallel development: The version history can fork into two
different paths, for example one path for bug corrections to an
old version of a resource, and another path for developing the
next release with new functionality.

Ordered collections - where the order is not sorting by any
property values but on user-defined order.

Examples: Recommended access order, Revision history order,
Pages of a book, Overheads in a lecture

Access Control Protocol: Access control lists, which specifies
who can do what with each resource.

(Experimental) Datatypes for properties (XML has rather few
datatypes): Passing data type with value, schema (specifying
structure of data base), Mandatory property types, Updating
parts of a structured property.

Quota and Size Properties.

(Experimental) Redirect Reference Resources (authoring redi-
rect commands). By Redirect is meant that someone trying to
access a certain resource at a certain URL will automatically be
shown another resource at another URL instead.

(Informational) How WebDAYV can be accessed through ordi-
nary HTML interfaces.

2. RSS and Podcasting

Objectives
This chapter describes the RSS and Podcasting protocols for subscribing

to new information.

Keywords
RSS
podcasting
subscribing
syndication

9¢| abed xis wnipuadwo)

1.8.

Push and Pull

One way of understanding differences between different Internet protocols is
the concepts of Push and Pull.

By Push is meant protocols where the sender of information has much
control of what information is sent. An extremely Push-oriented protocol is e-
mail. Anyone can send e-mail to anyone, if they know the recipients e-mail
address. A disadvantage with this is that recipients can be overloaded with e-
mail and have problems coping with it. An extreme example of this is spam-
ming, unsolicited e-mail sent to millions of recipients, often with questionable
advertising. To handle this problem, people install spam filters in their e-mail
programs. But spam filers have the risk of rejecting messages which should
not be rejected.

But even for e-mail which is not spamming, many people have problems
handling all their e-mail. This is a natural result of a protocol where so much
control is given to the senders.

Other protocols with a strong Push orientation are Usenet News,
RSS/Podcasting, and web-based forum systems. They are, however, not as
strongly Push-oriented as e-mail. With Usenet News, the recipient has some
control by selecting which newsgroups to subscribe to. Usenet News also has
moderated newsgroups, where one person or organization checks all messages
before publishing them. This gives an added protection for recipients against
unwanted information.

RSS and Podcasting are similar to moderated newsgroups, there is, usu-
ally, a person or organisation responsible for controlling what is sent out to a
certain channel. A user subscribing to a channel therefore knows that only
messages approved by the channel owner will be sent to it.

Example of a protocol with very strong Pull characteristic is ordinary web
usage through search engines. The user decides what query to write to the
search engine, and the search engine tries to find the best web documents cor-
responding to the user's query. There are also ads in search engine results,
which are more Push oriented. But the search engines sometimes tries to finds

ads related to the user's query, giving the user some control also of which ads

12

8. Solutions to exercises

to see.

In Google Adwords, for example, the ad providers bids a certain price for
their ads on certain search strings. These ads will only be shown to users typ-
ing the search strings which the ad providers made their bid on. When several
ad providers bid on the same search string, Google will show those ads which
had the highest bids, and the ads are sorted with the highest bid first in the list
of ads. What was written in the previous sentence is not quite true, Google
also check on how often users click on a certain ads, and ads which users of-
ten click on also can get a more prominent position in the Google search re-
sults. Ads in Google search results are clearly marked as “sponsored links”, so

that the user can separate ads from regular content.

1.9.

RSS and Podcasting

RSS is a protocol which allows users to subscribe to new information from
certain content providers. Every time something new is available from that
content provider, it is then usually automatically downloaded, but the user de-
cides when to read the downloaded information.

The RSS protocol is very simple. The users decides which feeds they want
to subscribe to. A feed is a web page in XML format. It contains some infor-
mation about the feed itself, and then a list of available new episodes. For
each episode, a title and/or a description is provided. A feed will usually not
list all episodes, only the most recent episodes.

The user runs an RSS reader. This reader knows which episodes it has al-
ready downloaded, and downloads only the new episodes. The reader is a
program running continuously in the background, and it checks for new epi-
sodes for example once every two hours.

The actual text of the episode can either be contained in the episode data
itself, or (more common) the episode contains the web address of where its
content can be downloaded.

The episode data can be of any format, the episode description specifies its
format. RSS is commonly used for news items (shorter texts, often contained
in the episode description itself) and blogs. RSS is also often used for audio

/€1 9bed xis wnipuadwo)

and video contents, such as broadcasts. This is known as “Podcasting”. One
feed will then represent for example a regularly occurring broadcast radio
program, and the RSS reader will then download these programs automati-
cally as they are published in the feed. Some RSS readers will even automati-
cally copy newly downloaded radio programs to an MP3 reader, if the user so
wishes.

When the content is included in full in the seed, instead of in a separate

document, any occurring HTML must be entity-encoded, so that for example
“word" is encoded as
“>strong<word”

Here is an example, copied from Wikipedia, of a feed in RSS version 2.0

format:

<?xml version="1.0"?>
<rss version="2.0">

<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</link>
<description>Liftoff to Space Exploration.</description>
<language>en-us</language>
<pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>
<lastBuildDate>Tue, 10 Jun 2003 09:41:01 GMT</lastBuildDate>
<docs>http://blogs.law.harvard.edu/tech/rss</docs>
<generator>Weblog Editor 2.0</generator>
<managingEditor>editor@example.com</managingEditor>
<webMaster>webmaster@example.com</webMaster>

<item>
<title>Star City </title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>
<description>How do Americans get ready to work with Russians
aboard the International Space Station? They take a crash course in
culture, language and protocol at Russia's Star City.</description>
<pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
<guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>
</item>

14

8. Solutions to exercises

<item>
<title>Space Exploration</title>
<link>http://liftoff.msfc.nasa.gov/</link>
<description>Sky watchers in Europe, Asia, and parts of Alaska and
Canada will experience a partial eclipse of the Sun on Saturday,
May 31st.</description>
<pubDate>Fri, 30 May 2003 11:06:42 GMT</pubDate>
<guid>http://liftoff.msfc.nasa.gov/2003/05/30.html#item572</guid>
</item>

<item>
<title>The Engine That Does More</title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-VASIMR.asp
</link>
<description>Before man travels to Mars, NASA hopes to design new
engines that will let us fly through the Solar System more quickly.
The proposed VASIMR engine would do that.</description>
<pubDate>Tue, 27 May 2003 08:37:32 GMT</pubDate>
<guid>http://liftoff.msfc.nasa.gov/2003/05/27 .html#item571</guid>
</item>

<item>
<title>Astronauts' Dirty Laundry</title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-laundry.asp
</link>
<description>Compared to earlier spacecraft, the International Space
Station has many luxuries, but laundry facilities are not one of them.
Instead, astronauts have other options.</description>
<pubDate>Tue, 20 May 2003 08:56:02 GMT</pubDate>
<guid>http://liftoff.msfc.nasa.gov/2003/05/20.html#item570</guid>
</item>
</channel>
</rss>

If you look at the RSS document above, you can see that it contains two major
sections a <channel> heading with information about the channel/feed itself,

and a list of <item>s describing recent episodes published on this channel.

RSS versions and standards

There is some confusion with RSS standards, because there are actually
three different RSS standards, each with different versions.

ge| abed xis wnipuadwo)

Branch A: RSS 0.90, RSS 1.0 and RSS 1.1.

Branch B: RSS 0.92 and RSS 2.0. This is the most commonly used version
of RSS when this is written (August 2007).

Branch C: Atom, an IETF standard published in RFC 4287.

Many RSS readers handle this by being able to receive an RSS feed in any
of these three formats.

The different branches interpret the RSS acronym in different ways. In
Branch A, RSS is short for RDF Site Summary or Rich Site summary. In
branch B, RSS is short for Really Simple Syndication. One can see from the
changes in interpretation that RSS is in Branch B mainly regarded as a format
for Syndication, providing facilities to download new items as they arrive.

Below is a description of the most important XML elements in an RSS
feed with the RSS 2.0 standard:

Information which is specified only once for a whole channel:

Element name Description Example
<title> Name of the channel. GoUpstate.com News Head-
lines
<link> URL to the website for http:/www.goupstate.com/
the channel.
<description> A short description of ~ The latest news from GoUp-
the channel. sate.com, a Spartanburg Herald-
Journal Web site.
<language> Language for the chan- en-us
nel.
<rating> A PICS rating for the

channel, specifying if it
contains information
unsuitable for children.

<cloud> Reference to a facility,
where the cloud con-
nects to your computer
and tells it when there
is news. If no cloud is
used, the RSS reader
will have to check
regularly for news from
the channel.

16

1.1.2.

8. Solutions to exercises

Element name

Description

Example

<ttl>

<textInput>

“time to live” - tells
caches how long time
they can keep old
cached version of the
seed.

Reference to a facility
where people can send
comments on a chan-
nel, which will then be
made available to
channel subscribers.

Information which is specified separately for each item:

Element name

Description

Example

<title>

<link>

<description>

<author>

<comments>

<pubDate>

Title of the item.

URL from which the
item can be down-
loaded. Note that <en-
closure> is more com-
monly used for this.

Synopsis if the item.

Email address of the
author of the item.

Comments area, where
comments from view-
ers of the item can be
published.

When the item was
published.

Venice Film Festival Tries to
Quit Sinking
http://nytimes.com/
2004/07FEST.html

Some of the mot heated chatter
at the Venice Film Festival this
week was about the way that
the arrival of the starts at the
Palazzo del Cinema was being
staged.

http://www.myblog.org/
cgi-local/mt/mt-
comments.cgi?entry id=290

6£] obed xis wnipuadwo)

Element name Description Example

<guild> A globally unique iden-
tifier of the item. Used
by RSS readers to
know which items they
have downloaded and
not downloaded>.

<enclosure> See below.

1.1.3. RSS <enclosure> element

The <enclosure> element is where an RSS 2.0 item usually indicates from
where it can be downloaded. Example:

<enclosure url="http://www.scripting.com/mp3s/
weatherReportSuite.mp3" length="12216320"
type="audio/mpeg" />

In addition to the url, the length and the data type is specified, which makes it
casier for RSS readers to know how to download the item, as can be seen in
the example above.

0| ©bed xis wnipuadwo)

1 Other Application Layer
Standards

Message Handling

1.3 XML Schema

1.1 Introduction

This chapter gives an overview of miscellaneous standards, which are not covered in separate

chapters in this book.

1.2 Scalable Vector Graphics (SVG)

According to the original World Wide Web standards, documents were sent in HTML format
with embedded pictures in either the JPEG or the GIF format. Both these formats are
bitmapped formats, they describe a picture by a twodimensional matris of pixels, with the

color given for each pixel.

Bitmapped formats are good for photographs and paintings. But they are not good for pictures
whose content can be logically described. For such pictures, they have several disadvantages:
1. Pictures get less and less sharp when you enlarge them. And pictures
which look all right on the screen (typical resolution 72-96 pixels/inch)
will look blurry when printed on paper (typical resolution 160-2400
pixels/inch).
2. File sizes are often unnecessarily large, which also gives longer
download time.
Becaise pf this, the World Wide Web Consortium has developed a standard named Scalable
Vector Graphics (SVG). This standard is based on a logical description of the content of a
picture, i.e. describing it as consisting of straight and curved lines and polycons, and areas
bordered by such lines. Plug ins are available for displaying SVG in web browsers, and future

web browsers may have SVG built in.

SVG uses XML to enclode the logical description of a picture. For example, the following

code defines an ellipse:

<ellipse cx="200" cy="300" rx="60" ry="30"
style="fill:none;stroke:#000099;
stroke-width:6;opacity:none" />

The full description of SVG can be found in [W3C 2001A] and a tutorial can be found at
[Adobe 2002].

An important property of XML is that you can use XML without any syntax specification.
The DTD language for syntax specification of XML is not mandatory. This also means that
instead of DTD, another syntax specification language can be used. One other such syntax
specification language, developed by the World Wide Web consortium, is XML Schema
[W3C 2001B].

XML Schema has the following advantages compared to DTD:

1. An XML Schema is itself written in XML.
2. The format is more user friendly, avoids some cryptic encodinngs in DTD.

3. XML Schema gives more detailed control of the data. It is, for example, possible to
define that a value should be an integer, or an integer between 1 and 100.

XML Schema has many similarities to ASN.1.

Here is an example of an XML Schema:

<xsd:schema xmlns:xsd:"http://www.w3.0rg/2001/XMLSchema">
<xsd:simpleType name="positiveInteger">
<xsd:Restriction base="xsd:integer">
xsd:minInclusive value="1"/
</xsd:Restriction>
</xsd:simpleType>
<xsd:complexType name = "Person" >
<xsd: sequence>
<xsd: element name="name" type="Xsd:string" />
<xsd: element name="age" type="positiveInteger" />
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

This schema defines a data type "Person" which consists of two elements, a name as a string,

and an age as a positive integer.

XML Schema defines also some non-XML formatting. For example, the following XML

Schema:

<xsd:simpleType name="SimpleListOfIntegers">
<xsd:list itemType="myInteger"/>
</xsd:simpleType>

specifies data which is sent like this in XML:

[<simpleListOfIntegers>1 2 3 5 8 13</listOfIntegers>

Note that the syntax separating the integers is spaces, not XML encoding. So XML Schema is

in fact a standard specifying a somewhat richer standard than XML alone.

A full XML encoding of a list of integers with all syntax separators in XML format, might be:

<complexListOfIntegers>
<integer>1</integer>
<integer>2</integer>
<integer>3</integer>
<integer>5</integer>
<integer>8</integer>

<integer>13</integer>

Ti71 ©bed x1s wnipuadwon

Message Handling

[</complexListofIntegers>

1.4 BitTorrent

BitTorrent is one of several protocols for downloading large files (like movies, audio files,
large software products) in a way which reduces the load on the involved servers. The
traditional way of downloading such files is to connect to a server, and transferring the whole
file from that server, most commonly using HTTP, FTP or SFTP for the download. This way
of downloading means that the server has to send all the file contents to every client who
wants to download it. For large and popular files, this can overload the server. With
BitTorrent, the load is distributed on several hosts who act as both clients and servers at the

same time.

A basic concept of BitTorrent is that of a torrent. A torrent does not contain any piece of

the file, but contains a description of a file needed to start a download.
BitTorrent actually involves three kinds of hosts:

A tracker is a host which contains a directory of torrents. It provides torrents for one or

more downloadable files, but need not contain the downloadable file itself.
A seed is a host which holds the full contents of a downloadable file.
A client is any other host involved in the file transfer.

Downloading a file (or a directory with several files) starts with using a tracker to find a
torrent. The torrent may then contain information on which hosts a seed can be fould. A
connection is then done to this seed. After having found a torrent and a seed, these will give
information about other clients who at present are downloading this file. All the hosts

involved in downloading a particular file at a particular time is called a swarm.

The file to be transferred is split into many small pieces. A client can receive any of the
pieces in any order, and will assemble all the pieces in arbitrary order. When the client has
received all pieces, the download is finished for this particular file and client. As long as the
client continues running, it will however continue to be piece of the swarm and will provide
pieces of the file to other clients in the swarm. The swarm continues to live until all clients in

the swarm has received all pieces of the file.

During the process of downloading to a number of clients in a swarm, most clients
involved will hold some pieces of the file. BitTorrent then allows exchange of information
between the clients in a swarm of which client has which pieces. A client can then download a
piece from any other client which has that piece, and need thus not always get the piece from
the seed. This will greatly reduce the load on the seed, compared to HTTP, FTP and SFTP,
where all pieces are sent to all clients from the “seed” (although the word “seed” is not used

for these other protocols).

Transmission of a file thus involves each client in both getting file pieces, and usually also
sending file pieces of the file to other clients. The burden of transmission is thus distributed

on many clients, instead of concentrated on one server.

Transmission in this way between different clients, and not directly from server to client, is

known under the name Peer-To-Peer (P2P) protocols.

Message Handling

In addition to what is described above, BitTorrent also contains methods of finding the

members of a swarm and finding which file pieces each of them can provide.

During running, BitTorrent establishes multiple simultaneous connections to other clients
to get or send different pieces in parallel. These connections can be initiated by either client.
For high efficiency, it is thus necessary for firewalls to accept connections on the ports
commonly used by BitTorrent. BitTorrent may however work, but with reduced efficiency
and speed, also for hosts which are behind firewalls which do not accept incoming

connections.

To a user, BitTorrent acts differently than traditional downloads. The download starts very
slowly, then picks up speed after a delay of often many minutes, gets very fast and then slows

down again at the end when the last remaining pieces are found and downloaded.

‘When making statistics on the usage of the Internet, one often finds that BitTorrent alone
is one of the largest protocol on the Internet (measured in the number of packets transferred)
and figures such as that 20 % of the load on an ISP (Internet Service Provider) comes from
BitTorrent are not unusual. Some ISPs blocks the BitTorrent ports in order to reduce the load
on their routers and lines. Users of BitTorrent then sometimes circumwent this by using other

port numbers than those blocked.

BitTorrent is very robust, meaning that when problems occurs, such as breaking of the
downloading of a piece, it will just try to get that piece from another client. The fact that one
tracker is involed in each swarm will however make BitTorrent less robust than some
protocols not relying on a tracker. On the other hand, having a tracker monitoring a transfer

also makes download more robust than protocols not requiring a tracker.

For more information about BitTorrent see [Wikipedia BitTorrent 2004+] and [Brian

2004+].

1.4.1 BitTorrent and illegal downloading

BitTorrent can, like any file transfer protocol, be used for illegal downloading, such as for
getting pirate copies of copyrighted content. The fact that BitTorrent relies of directories of
files to be downloaded makes it, however, less efficient than some alternative protocols which
do not rely on central such directories. One should also note that all usage of BitTorrent is not

pirate copying, BitTorrent is also much used for legal copying of files.

The server holding the tracker directory may, however, not hold the actual files. In some

countries, holding a directory of files is not illegal, even if holding the actual files is illegal.

Organizations acting to protect copyright holders, such as CD and DVD publishers, try to
stop illegal use of BitTorrent by getting involved in concurrent swarms, getting the IP
addresses of the computers involved in the swarm, and asking the ISP through which the host
using this IP address is based, to disconnect this host from the ISP. Some will warn

beforehands, others may just stop the connection without warning.

Organizations acting to protect copyright holders also try to prosecute those invloved in
using BitTorrent and other similar protocols to download illegal files. Such prosecution is

however made more difficult because:

Zv7L abed xis wnipuadwo)

Message Handling

1. Each host will often hold only one or a few files. The crime is then of small nature, and

the laws in many countries does not allow finding who is using a particular IP number

when the crime is lower than a certain magnitude.

2. Holding information about where an illegal copy of a file can be found, without holding
the actual file, is not illegal in each countries.

3. As always for the Internet, illegal activities are made easier by the distributed nature of
the Internet and the large number of hosts in many countries. Organizations actiong to

protect copyright holders need to take legal action in many countries, and when legal

action is started, the pirate copiers will just move to another host in another country.

When this is written (July 2007) Russia is particularly often involved in illegal hosting of

pirate copies of CDs, DVDs and other audio and video content.

1.5 References

[Wikipedia
BitTorrent
2004+]

[Brian 2004+]

[W3C 2001A]

[Adobe 2002]

[W3C 2001B]

BitTorrent article in Wikipedia, http://en.wikipedia.org/wiki/BitTorrent,

from January 2004 and onwards in revised versios.

Brian's BitTorrent FAQ and Guide, from June 2003 and onwards in

revised versions.

Scalable Vector Graphics (SVG) 1.0 Specification, World Wide Web
Consortium, September 2001. http://www.w3.0rg/SVG/.

SVG Zone, Adobe 2001, http://www.adobe.com/svg/.

XML Schema. Part O Primer (http://www.w3.org/TR/xmlschema-0/),
Part 1 Structures (http://www.w3.org/TR/xmlschema-1/), Part 2:
Datatypes (http://www.w3.org/TR/xmlschema-2/), World Wide Web
Consortium, September 2001,

