
*:96 In
tern

et ap
p

licatio
n

 layer
p

ro
to

co
ls an

d
 stan

d
ard

s
C

o
m

p
en

d
iu

m
 1:

A
llo

w
ed

 d
u

rin
g

 th
e exam

L
ast revisio

n
: 28 A

u
g

 2001

A
S

N
.1

A
SN

.1 syntax (basic item
s)..2-10

A
B

N
F

R
FC

 2234: A
ugm

ented B
N

F for Syntax Specifications: A
B

N
F...12-18

D
N

S
R

FC
 1034: D

om
ain N

am
es - C

oncepts (D
N

S)..19-46

T
here is no page 34

E
-m

ail
R

FC
 2821: Sim

ple M
ail T

ransfer Protocol (SM
T

P)...47-86
R

FC
 2822: Internet M

essage Form
at (M

SG
FM

T
, f.d. R

FC
822)..87-111

R
FC

 2197: SM
T

P Service E
xtension for C

om
m

and Pipelining..112-115
R

FC
 2045: M

IM
E

 1: Form
at of M

essage B
odies...116-131

R
FC

 2046: M
IM

E
 2: M

edia T
ypes...132-153

R
FC

 2047: M
IM

E
 3: H

eaders in N
on-A

SC
II...155-161

R
FC

 2048: M
IM

E
 4: R

egistration Procedures...162-172
R

FC
 2049: M

IM
E

 5: C
onform

ance C
riteria...173-184

R
FC

 1891: SM
T

P for D
SN

s..185-200
R

FC
 1892: T

he M
ultipart/R

eport C
ontent T

ype...201-210
R

FC
 1894: A

n E
xtensible M

essage Form
at for D

elivery Status N
otifications................211-230

R
FC

 1939: Post O
ffice Protocol (PO

P) - V
ersion 3...253-264

R
FC

 2060: Internet M
essage Protocol (IM

A
P) - V

ersion 4rev1...265-305

L
D

A
P

R
FC

 2251: L
ightw

eight D
irectory A

ccess Protocol...307-331
R

FC
 2252: L

ightw
eight D

irectory A
ccess Protocol (v3): A

ttribute Syntax
D

efinitions...333-341

T
he docum

ents are not ordered in a suitable order for reading them
,

 see com
pendium

 0 page 14-17

C
om

pendium
 1 page 1

T
here is no page 11

P
ages 2-12 are offprints from

 “A
bstract Syntax N

otation O
ne (A

SN
.1):

T
he Turorial and R

eference” by D
ouglas Steedm

an 1990

C
om

pendium
 1 page 2

C
om

pendium
 1 page 3

There is no page 130

C
om

pendium
 1 page 4

C
om

pendium
 1 page 5

C
om

pendium
 1 page 6

C
om

pendium
 1 page 7

C
om

pendium
 1 page 8

C
om

pendium
 1 page 9

C
om

pendium
 1 page 10

Network Working Group D. Crocker, Ed.
Request for Comments: 2234 Internet Mail Consortium
Category: Standards Track P. Overell
 Demon Internet Ltd.
 November 1997

 Augmented BNF for Syntax Specifications: ABNF

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1997). All Rights Reserved.

TABLE OF CONTENTS

 1. INTRODUCTION .. 2

 2. RULE DEFINITION ... 2
 2.1 RULE NAMING .. 2
 2.2 RULE FORM .. 3
 2.3 TERMINAL VALUES .. 3
 2.4 EXTERNAL ENCODINGS ... 5

 3. OPERATORS ... 5
 3.1 CONCATENATION RULE1 RULE2 5
 3.2 ALTERNATIVES RULE1 / RULE2 6
 3.3 INCREMENTAL ALTERNATIVES RULE1 =/ RULE2 6
 3.4 VALUE RANGE ALTERNATIVES %C##-## 7
 3.5 SEQUENCE GROUP (RULE1 RULE2) 7
 3.6 VARIABLE REPETITION *RULE 8
 3.7 SPECIFIC REPETITION NRULE 8
 3.8 OPTIONAL SEQUENCE [RULE] 8
 3.9 ; COMMENT .. 8
 3.10 OPERATOR PRECEDENCE ... 9

 4. ABNF DEFINITION OF ABNF 9

 5. SECURITY CONSIDERATIONS 10

Crocker & Overell Standards Track [Page 1]

RFC 2234 ABNF for Syntax Specifications November 1997

 6. APPENDIX A - CORE ... 11
 6.1 CORE RULES ... 11
 6.2 COMMON ENCODING .. 12

 7. ACKNOWLEDGMENTS ... 12

 8. REFERENCES .. 13

 9. CONTACT ... 13

 10. FULL COPYRIGHT STATEMENT 14

1. INTRODUCTION

 Internet technical specifications often need to define a format
 syntax and are free to employ whatever notation their authors deem
 useful. Over the years, a modified version of Backus-Naur Form
 (BNF), called Augmented BNF (ABNF), has been popular among many
 Internet specifications. It balances compactness and simplicity,
 with reasonable representational power. In the early days of the
 Arpanet, each specification contained its own definition of ABNF.
 This included the email specifications, RFC733 and then RFC822 which
 have come to be the common citations for defining ABNF. The current
 document separates out that definition, to permit selective
 reference. Predictably, it also provides some modifications and
 enhancements.

 The differences between standard BNF and ABNF involve naming rules,
 repetition, alternatives, order-independence, and value ranges.
 Appendix A (Core) supplies rule definitions and encoding for a core
 lexical analyzer of the type common to several Internet
 specifications. It is provided as a convenience and is otherwise
 separate from the meta language defined in the body of this document,
 and separate from its formal status.

2. RULE DEFINITION

2.1 Rule Naming

 The name of a rule is simply the name itself; that is, a sequence of
 characters, beginning with an alphabetic character, and followed by
 a combination of alphabetics, digits and hyphens (dashes).

 NOTE: Rule names are case-insensitive

 The names <rulename>, <Rulename>, <RULENAME> and <rUlENamE> all refer
 to the same rule.

Crocker & Overell Standards Track [Page 2]

C
om

pendium
 1 page 012

RFC 2234 ABNF for Syntax Specifications November 1997

 Unlike original BNF, angle brackets ("<", ">") are not required.
 However, angle brackets may be used around a rule name whenever their
 presence will facilitate discerning the use of a rule name. This is
 typically restricted to rule name references in free-form prose, or
 to distinguish partial rules that combine into a string not separated
 by white space, such as shown in the discussion about repetition,
 below.

2.2 Rule Form

 A rule is defined by the following sequence:

 name = elements crlf

 where <name> is the name of the rule, <elements> is one or more rule
 names or terminal specifications and <crlf> is the end-of- line
 indicator, carriage return followed by line feed. The equal sign
 separates the name from the definition of the rule. The elements
 form a sequence of one or more rule names and/or value definitions,
 combined according to the various operators, defined in this
 document, such as alternative and repetition.

 For visual ease, rule definitions are left aligned. When a rule
 requires multiple lines, the continuation lines are indented. The
 left alignment and indentation are relative to the first lines of the
 ABNF rules and need not match the left margin of the document.

2.3 Terminal Values

 Rules resolve into a string of terminal values, sometimes called
 characters. In ABNF a character is merely a non-negative integer.
 In certain contexts a specific mapping (encoding) of values into a
 character set (such as ASCII) will be specified.

 Terminals are specified by one or more numeric characters with the
 base interpretation of those characters indicated explicitly. The
 following bases are currently defined:

 b = binary

 d = decimal

 x = hexadecimal

Crocker & Overell Standards Track [Page 3]

RFC 2234 ABNF for Syntax Specifications November 1997

 Hence:

 CR = %d13

 CR = %x0D

 respectively specify the decimal and hexadecimal representation of
 [US-ASCII] for carriage return.

 A concatenated string of such values is specified compactly, using a
 period (".") to indicate separation of characters within that value.
 Hence:

 CRLF = %d13.10

 ABNF permits specifying literal text string directly, enclosed in
 quotation-marks. Hence:

 command = "command string"

 Literal text strings are interpreted as a concatenated set of
 printable characters.

 NOTE: ABNF strings are case-insensitive and
 the character set for these strings is us-ascii.

 Hence:

 rulename = "abc"

 and:

 rulename = "aBc"

 will match "abc", "Abc", "aBc", "abC", "ABc", "aBC", "AbC" and "ABC".

 To specify a rule which IS case SENSITIVE,
 specify the characters individually.

 For example:

 rulename = %d97 %d98 %d99

 or

 rulename = %d97.98.99

Crocker & Overell Standards Track [Page 4]

C
om

pendium
 1 page 13

RFC 2234 ABNF for Syntax Specifications November 1997

 will match only the string which comprises only lowercased
 characters, abc.

2.4 External Encodings

 External representations of terminal value characters will vary
 according to constraints in the storage or transmission environment.
 Hence, the same ABNF-based grammar may have multiple external
 encodings, such as one for a 7-bit US-ASCII environment, another for
 a binary octet environment and still a different one when 16-bit
 Unicode is used. Encoding details are beyond the scope of ABNF,
 although Appendix A (Core) provides definitions for a 7-bit US-ASCII
 environment as has been common to much of the Internet.

 By separating external encoding from the syntax, it is intended that
 alternate encoding environments can be used for the same syntax.

3. OPERATORS

3.1 Concatenation Rule1 Rule2

 A rule can define a simple, ordered string of values -- i.e., a
 concatenation of contiguous characters -- by listing a sequence of
 rule names. For example:

 foo = %x61 ; a

 bar = %x62 ; b

 mumble = foo bar foo

 So that the rule <mumble> matches the lowercase string "aba".

 LINEAR WHITE SPACE: Concatenation is at the core of the ABNF
 parsing model. A string of contiguous characters (values) is
 parsed according to the rules defined in ABNF. For Internet
 specifications, there is some history of permitting linear white
 space (space and horizontal tab) to be freelyPand
 implicitlyPinterspersed around major constructs, such as
 delimiting special characters or atomic strings.

 NOTE: This specification for ABNF does not
 provide for implicit specification of linear white
 space.

 Any grammar which wishes to permit linear white space around
 delimiters or string segments must specify it explicitly. It is
 often useful to provide for such white space in "core" rules that are

Crocker & Overell Standards Track [Page 5]

RFC 2234 ABNF for Syntax Specifications November 1997

 then used variously among higher-level rules. The "core" rules might
 be formed into a lexical analyzer or simply be part of the main
 ruleset.

3.2 Alternatives Rule1 / Rule2

 Elements separated by forward slash ("/") are alternatives.
 Therefore,

 foo / bar

 will accept <foo> or <bar>.

 NOTE: A quoted string containing alphabetic
 characters is special form for specifying alternative
 characters and is interpreted as a non-terminal
 representing the set of combinatorial strings with the
 contained characters, in the specified order but with
 any mixture of upper and lower case..

3.3 Incremental Alternatives Rule1 =/ Rule2

 It is sometimes convenient to specify a list of alternatives in
 fragments. That is, an initial rule may match one or more
 alternatives, with later rule definitions adding to the set of
 alternatives. This is particularly useful for otherwise- independent
 specifications which derive from the same parent rule set, such as
 often occurs with parameter lists. ABNF permits this incremental
 definition through the construct:

 oldrule =/ additional-alternatives

 So that the rule set

 ruleset = alt1 / alt2

 ruleset =/ alt3

 ruleset =/ alt4 / alt5

 is the same as specifying

 ruleset = alt1 / alt2 / alt3 / alt4 / alt5

Crocker & Overell Standards Track [Page 6]

C
om

pendium
 1 page 14

RFC 2234 ABNF for Syntax Specifications November 1997

3.4 Value Range Alternatives %c##-##

 A range of alternative numeric values can be specified compactly,
 using dash ("-") to indicate the range of alternative values. Hence:

 DIGIT = %x30-39

 is equivalent to:

 DIGIT = "0" / "1" / "2" / "3" / "4" / "5" / "6" /

 "7" / "8" / "9"

 Concatenated numeric values and numeric value ranges can not be
 specified in the same string. A numeric value may use the dotted
 notation for concatenation or it may use the dash notation to specify
 one value range. Hence, to specify one printable character, between
 end of line sequences, the specification could be:

 char-line = %x0D.0A %x20-7E %x0D.0A

3.5 Sequence Group (Rule1 Rule2)

 Elements enclosed in parentheses are treated as a single element,
 whose contents are STRICTLY ORDERED. Thus,

 elem (foo / bar) blat

 which matches (elem foo blat) or (elem bar blat).

 elem foo / bar blat

 matches (elem foo) or (bar blat).

 NOTE: It is strongly advised to use grouping
 notation, rather than to rely on proper reading of
 "bare" alternations, when alternatives consist of
 multiple rule names or literals.

 Hence it is recommended that instead of the above form, the form:

 (elem foo) / (bar blat)

 be used. It will avoid misinterpretation by casual readers.

 The sequence group notation is also used within free text to set off
 an element sequence from the prose.

Crocker & Overell Standards Track [Page 7]

RFC 2234 ABNF for Syntax Specifications November 1997

3.6 Variable Repetition *Rule

 The operator "*" preceding an element indicates repetition. The full
 form is:

 <a>*element

 where <a> and are optional decimal values, indicating at least
 <a> and at most occurrences of element.

 Default values are 0 and infinity so that *<element> allows any
 number, including zero; 1*<element> requires at least one;
 3*3<element> allows exactly 3 and 1*2<element> allows one or two.

3.7 Specific Repetition nRule

 A rule of the form:

 <n>element

 is equivalent to

 <n>*<n>element

 That is, exactly <N> occurrences of <element>. Thus 2DIGIT is a
 2-digit number, and 3ALPHA is a string of three alphabetic
 characters.

3.8 Optional Sequence [RULE]

 Square brackets enclose an optional element sequence:

 [foo bar]

 is equivalent to

 *1(foo bar).

3.9 ; Comment

 A semi-colon starts a comment that continues to the end of line.
 This is a simple way of including useful notes in parallel with the
 specifications.

Crocker & Overell Standards Track [Page 8]

C
om

pendium
 1 page 15

RFC 2234 ABNF for Syntax Specifications November 1997

3.10 Operator Precedence

 The various mechanisms described above have the following precedence,
 from highest (binding tightest) at the top, to lowest and loosest at
 the bottom:

 Strings, Names formation
 Comment
 Value range
 Repetition
 Grouping, Optional
 Concatenation
 Alternative

 Use of the alternative operator, freely mixed with concatenations can
 be confusing.

 Again, it is recommended that the grouping operator be used to
 make explicit concatenation groups.

4. ABNF DEFINITION OF ABNF

 This syntax uses the rules provided in Appendix A (Core).

 rulelist = 1*(rule / (*c-wsp c-nl))

 rule = rulename defined-as elements c-nl
 ; continues if next line starts
 ; with white space

 rulename = ALPHA *(ALPHA / DIGIT / "-")

 defined-as = *c-wsp ("=" / "=/") *c-wsp
 ; basic rules definition and
 ; incremental alternatives

 elements = alternation *c-wsp

 c-wsp = WSP / (c-nl WSP)

 c-nl = comment / CRLF
 ; comment or newline

 comment = ";" *(WSP / VCHAR) CRLF

 alternation = concatenation
 *(*c-wsp "/" *c-wsp concatenation)

Crocker & Overell Standards Track [Page 9]

RFC 2234 ABNF for Syntax Specifications November 1997

 concatenation = repetition *(1*c-wsp repetition)

 repetition = [repeat] element

 repeat = 1*DIGIT / (*DIGIT "*" *DIGIT)

 element = rulename / group / option /
 char-val / num-val / prose-val

 group = "(" *c-wsp alternation *c-wsp ")"

 option = "[" *c-wsp alternation *c-wsp "]"

 char-val = DQUOTE *(%x20-21 / %x23-7E) DQUOTE
 ; quoted string of SP and VCHAR
 without DQUOTE

 num-val = "%" (bin-val / dec-val / hex-val)

 bin-val = "b" 1*BIT
 [1*("." 1*BIT) / ("-" 1*BIT)]
 ; series of concatenated bit values
 ; or single ONEOF range

 dec-val = "d" 1*DIGIT
 [1*("." 1*DIGIT) / ("-" 1*DIGIT)]

 hex-val = "x" 1*HEXDIG
 [1*("." 1*HEXDIG) / ("-" 1*HEXDIG)]

 prose-val = "<" *(%x20-3D / %x3F-7E) ">"
 ; bracketed string of SP and VCHAR
 without angles
 ; prose description, to be used as
 last resort

5. SECURITY CONSIDERATIONS

 Security is truly believed to be irrelevant to this document.

Crocker & Overell Standards Track [Page 10]

C
om

pendium
 1 page 16

RFC 2234 ABNF for Syntax Specifications November 1997

6. APPENDIX A - CORE

 This Appendix is provided as a convenient core for specific grammars.
 The definitions may be used as a core set of rules.

6.1 Core Rules

 Certain basic rules are in uppercase, such as SP, HTAB, CRLF,
 DIGIT, ALPHA, etc.

 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

 BIT = "0" / "1"

 CHAR = %x01-7F
 ; any 7-bit US-ASCII character,
 excluding NUL

 CR = %x0D
 ; carriage return

 CRLF = CR LF
 ; Internet standard newline

 CTL = %x00-1F / %x7F
 ; controls

 DIGIT = %x30-39
 ; 0-9

 DQUOTE = %x22
 ; " (Double Quote)

 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

 HTAB = %x09
 ; horizontal tab

 LF = %x0A
 ; linefeed

 LWSP = *(WSP / CRLF WSP)
 ; linear white space (past newline)

 OCTET = %x00-FF
 ; 8 bits of data

 SP = %x20

Crocker & Overell Standards Track [Page 11]

RFC 2234 ABNF for Syntax Specifications November 1997

 ; space

 VCHAR = %x21-7E
 ; visible (printing) characters

 WSP = SP / HTAB
 ; white space

6.2 Common Encoding

 Externally, data are represented as "network virtual ASCII", namely
 7-bit US-ASCII in an 8-bit field, with the high (8th) bit set to
 zero. A string of values is in "network byte order" with the
 higher-valued bytes represented on the left-hand side and being sent
 over the network first.

7. ACKNOWLEDGMENTS

 The syntax for ABNF was originally specified in RFC 733. Ken L.
 Harrenstien, of SRI International, was responsible for re-coding the
 BNF into an augmented BNF that makes the representation smaller and
 easier to understand.

 This recent project began as a simple effort to cull out the portion
 of RFC 822 which has been repeatedly cited by non-email specification
 writers, namely the description of augmented BNF. Rather than simply
 and blindly converting the existing text into a separate document,
 the working group chose to give careful consideration to the
 deficiencies, as well as benefits, of the existing specification and
 related specifications available over the last 15 years and therefore
 to pursue enhancement. This turned the project into something rather
 more ambitious than first intended. Interestingly the result is not
 massively different from that original, although decisions such as
 removing the list notation came as a surprise.

 The current round of specification was part of the DRUMS working
 group, with significant contributions from Jerome Abela , Harald
 Alvestrand, Robert Elz, Roger Fajman, Aviva Garrett, Tom Harsch, Dan
 Kohn, Bill McQuillan, Keith Moore, Chris Newman , Pete Resnick and
 Henning Schulzrinne.

Crocker & Overell Standards Track [Page 12]

C
om

pendium
 1 page 17

RFC 2234 ABNF for Syntax Specifications November 1997

8. REFERENCES

 [US-ASCII] Coded Character Set--7-Bit American Standard Code for
 Information Interchange, ANSI X3.4-1986.

 [RFC733] Crocker, D., Vittal, J., Pogran, K., and D. Henderson,
 "Standard for the Format of ARPA Network Text Message," RFC 733,
 November 1977.

 [RFC822] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, August 1982.

9. CONTACT

 David H. Crocker Paul Overell

 Internet Mail Consortium Demon Internet Ltd
 675 Spruce Dr. Dorking Business Park
 Sunnyvale, CA 94086 USA Dorking
 Surrey, RH4 1HN
 UK

 Phone: +1 408 246 8253
 Fax: +1 408 249 6205
 EMail: dcrocker@imc.org paulo@turnpike.com

Crocker & Overell Standards Track [Page 13]

RFC 2234 ABNF for Syntax Specifications November 1997

10. Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Crocker & Overell Standards Track [Page 14]

C
om

pendium
 1 page 18

Network Working Group P. Mockapetris
Request for Comments: 1034 ISI
Obsoletes: RFCs 882, 883, 973 November 1987

 DOMAIN NAMES - CONCEPTS AND FACILITIES

1. STATUS OF THIS MEMO

This RFC is an introduction to the Domain Name System (DNS), and omits
many details which can be found in a companion RFC, "Domain Names -
Implementation and Specification" [RFC-1035]. That RFC assumes that the
reader is familiar with the concepts discussed in this memo.

A subset of DNS functions and data types constitute an official
protocol. The official protocol includes standard queries and their
responses and most of the Internet class data formats (e.g., host
addresses).

However, the domain system is intentionally extensible. Researchers are
continuously proposing, implementing and experimenting with new data
types, query types, classes, functions, etc. Thus while the components
of the official protocol are expected to stay essentially unchanged and
operate as a production service, experimental behavior should always be
expected in extensions beyond the official protocol. Experimental or
obsolete features are clearly marked in these RFCs, and such information
should be used with caution.

The reader is especially cautioned not to depend on the values which
appear in examples to be current or complete, since their purpose is
primarily pedagogical. Distribution of this memo is unlimited.

2. INTRODUCTION

This RFC introduces domain style names, their use for Internet mail and
host address support, and the protocols and servers used to implement
domain name facilities.

2.1. The history of domain names

The impetus for the development of the domain system was growth in the
Internet:

 - Host name to address mappings were maintained by the Network
 Information Center (NIC) in a single file (HOSTS.TXT) which
 was FTPed by all hosts [RFC-952, RFC-953]. The total network

Mockapetris [Page 1]

RFC 1034 Domain Concepts and Facilities November 1987

 bandwidth consumed in distributing a new version by this
 scheme is proportional to the square of the number of hosts in
 the network, and even when multiple levels of FTP are used,
 the outgoing FTP load on the NIC host is considerable.
 Explosive growth in the number of hosts didn't bode well for
 the future.

 - The network population was also changing in character. The
 timeshared hosts that made up the original ARPANET were being
 replaced with local networks of workstations. Local
 organizations were administering their own names and
 addresses, but had to wait for the NIC to change HOSTS.TXT to
 make changes visible to the Internet at large. Organizations
 also wanted some local structure on the name space.

 - The applications on the Internet were getting more
 sophisticated and creating a need for general purpose name
 service.

The result was several ideas about name spaces and their management
[IEN-116, RFC-799, RFC-819, RFC-830]. The proposals varied, but a
common thread was the idea of a hierarchical name space, with the
hierarchy roughly corresponding to organizational structure, and names
using "." as the character to mark the boundary between hierarchy
levels. A design using a distributed database and generalized resources
was described in [RFC-882, RFC-883]. Based on experience with several
implementations, the system evolved into the scheme described in this
memo.

The terms "domain" or "domain name" are used in many contexts beyond the
DNS described here. Very often, the term domain name is used to refer
to a name with structure indicated by dots, but no relation to the DNS.
This is particularly true in mail addressing [Quarterman 86].

2.2. DNS design goals

The design goals of the DNS influence its structure. They are:

 - The primary goal is a consistent name space which will be used
 for referring to resources. In order to avoid the problems
 caused by ad hoc encodings, names should not be required to
 contain network identifiers, addresses, routes, or similar
 information as part of the name.

 - The sheer size of the database and frequency of updates
 suggest that it must be maintained in a distributed manner,
 with local caching to improve performance. Approaches that

Mockapetris [Page 2]

C
om

pendium
 1 page 19

RFC 1034 Domain Concepts and Facilities November 1987

 attempt to collect a consistent copy of the entire database
 will become more and more expensive and difficult, and hence
 should be avoided. The same principle holds for the structure
 of the name space, and in particular mechanisms for creating
 and deleting names; these should also be distributed.

 - Where there tradeoffs between the cost of acquiring data, the
 speed of updates, and the accuracy of caches, the source of
 the data should control the tradeoff.

 - The costs of implementing such a facility dictate that it be
 generally useful, and not restricted to a single application.
 We should be able to use names to retrieve host addresses,
 mailbox data, and other as yet undetermined information. All
 data associated with a name is tagged with a type, and queries
 can be limited to a single type.

 - Because we want the name space to be useful in dissimilar
 networks and applications, we provide the ability to use the
 same name space with different protocol families or
 management. For example, host address formats differ between
 protocols, though all protocols have the notion of address.
 The DNS tags all data with a class as well as the type, so
 that we can allow parallel use of different formats for data
 of type address.

 - We want name server transactions to be independent of the
 communications system that carries them. Some systems may
 wish to use datagrams for queries and responses, and only
 establish virtual circuits for transactions that need the
 reliability (e.g., database updates, long transactions); other
 systems will use virtual circuits exclusively.

 - The system should be useful across a wide spectrum of host
 capabilities. Both personal computers and large timeshared
 hosts should be able to use the system, though perhaps in
 different ways.

2.3. Assumptions about usage

The organization of the domain system derives from some assumptions
about the needs and usage patterns of its user community and is designed
to avoid many of the the complicated problems found in general purpose
database systems.

The assumptions are:

 - The size of the total database will initially be proportional

Mockapetris [Page 3]

RFC 1034 Domain Concepts and Facilities November 1987

 to the number of hosts using the system, but will eventually
 grow to be proportional to the number of users on those hosts
 as mailboxes and other information are added to the domain
 system.

 - Most of the data in the system will change very slowly (e.g.,
 mailbox bindings, host addresses), but that the system should
 be able to deal with subsets that change more rapidly (on the
 order of seconds or minutes).

 - The administrative boundaries used to distribute
 responsibility for the database will usually correspond to
 organizations that have one or more hosts. Each organization
 that has responsibility for a particular set of domains will
 provide redundant name servers, either on the organization's
 own hosts or other hosts that the organization arranges to
 use.

 - Clients of the domain system should be able to identify
 trusted name servers they prefer to use before accepting
 referrals to name servers outside of this "trusted" set.

 - Access to information is more critical than instantaneous
 updates or guarantees of consistency. Hence the update
 process allows updates to percolate out through the users of
 the domain system rather than guaranteeing that all copies are
 simultaneously updated. When updates are unavailable due to
 network or host failure, the usual course is to believe old
 information while continuing efforts to update it. The
 general model is that copies are distributed with timeouts for
 refreshing. The distributor sets the timeout value and the
 recipient of the distribution is responsible for performing
 the refresh. In special situations, very short intervals can
 be specified, or the owner can prohibit copies.

 - In any system that has a distributed database, a particular
 name server may be presented with a query that can only be
 answered by some other server. The two general approaches to
 dealing with this problem are "recursive", in which the first
 server pursues the query for the client at another server, and
 "iterative", in which the server refers the client to another
 server and lets the client pursue the query. Both approaches
 have advantages and disadvantages, but the iterative approach
 is preferred for the datagram style of access. The domain
 system requires implementation of the iterative approach, but
 allows the recursive approach as an option.

Mockapetris [Page 4]

C
om

pendium
 1 page 20

RFC 1034 Domain Concepts and Facilities November 1987

The domain system assumes that all data originates in master files
scattered through the hosts that use the domain system. These master
files are updated by local system administrators. Master files are text
files that are read by a local name server, and hence become available
through the name servers to users of the domain system. The user
programs access name servers through standard programs called resolvers.

The standard format of master files allows them to be exchanged between
hosts (via FTP, mail, or some other mechanism); this facility is useful
when an organization wants a domain, but doesn't want to support a name
server. The organization can maintain the master files locally using a
text editor, transfer them to a foreign host which runs a name server,
and then arrange with the system administrator of the name server to get
the files loaded.

Each host's name servers and resolvers are configured by a local system
administrator [RFC-1033]. For a name server, this configuration data
includes the identity of local master files and instructions on which
non-local master files are to be loaded from foreign servers. The name
server uses the master files or copies to load its zones. For
resolvers, the configuration data identifies the name servers which
should be the primary sources of information.

The domain system defines procedures for accessing the data and for
referrals to other name servers. The domain system also defines
procedures for caching retrieved data and for periodic refreshing of
data defined by the system administrator.

The system administrators provide:

 - The definition of zone boundaries.

 - Master files of data.

 - Updates to master files.

 - Statements of the refresh policies desired.

The domain system provides:

 - Standard formats for resource data.

 - Standard methods for querying the database.

 - Standard methods for name servers to refresh local data from
 foreign name servers.

Mockapetris [Page 5]

RFC 1034 Domain Concepts and Facilities November 1987

2.4. Elements of the DNS

The DNS has three major components:

 - The DOMAIN NAME SPACE and RESOURCE RECORDS, which are
 specifications for a tree structured name space and data
 associated with the names. Conceptually, each node and leaf
 of the domain name space tree names a set of information, and
 query operations are attempts to extract specific types of
 information from a particular set. A query names the domain
 name of interest and describes the type of resource
 information that is desired. For example, the Internet
 uses some of its domain names to identify hosts; queries for
 address resources return Internet host addresses.

 - NAME SERVERS are server programs which hold information about
 the domain tree's structure and set information. A name
 server may cache structure or set information about any part
 of the domain tree, but in general a particular name server
 has complete information about a subset of the domain space,
 and pointers to other name servers that can be used to lead to
 information from any part of the domain tree. Name servers
 know the parts of the domain tree for which they have complete
 information; a name server is said to be an AUTHORITY for
 these parts of the name space. Authoritative information is
 organized into units called ZONEs, and these zones can be
 automatically distributed to the name servers which provide
 redundant service for the data in a zone.

 - RESOLVERS are programs that extract information from name
 servers in response to client requests. Resolvers must be
 able to access at least one name server and use that name
 server's information to answer a query directly, or pursue the
 query using referrals to other name servers. A resolver will
 typically be a system routine that is directly accessible to
 user programs; hence no protocol is necessary between the
 resolver and the user program.

These three components roughly correspond to the three layers or views
of the domain system:

 - From the user's point of view, the domain system is accessed
 through a simple procedure or OS call to a local resolver.
 The domain space consists of a single tree and the user can
 request information from any section of the tree.

 - From the resolver's point of view, the domain system is
 composed of an unknown number of name servers. Each name

Mockapetris [Page 6]

C
om

pendium
 1 page 21

RFC 1034 Domain Concepts and Facilities November 1987

 server has one or more pieces of the whole domain tree's data,
 but the resolver views each of these databases as essentially
 static.

 - From a name server's point of view, the domain system consists
 of separate sets of local information called zones. The name
 server has local copies of some of the zones. The name server
 must periodically refresh its zones from master copies in
 local files or foreign name servers. The name server must
 concurrently process queries that arrive from resolvers.

In the interests of performance, implementations may couple these
functions. For example, a resolver on the same machine as a name server
might share a database consisting of the the zones managed by the name
server and the cache managed by the resolver.

3. DOMAIN NAME SPACE and RESOURCE RECORDS

3.1. Name space specifications and terminology

The domain name space is a tree structure. Each node and leaf on the
tree corresponds to a resource set (which may be empty). The domain
system makes no distinctions between the uses of the interior nodes and
leaves, and this memo uses the term "node" to refer to both.

Each node has a label, which is zero to 63 octets in length. Brother
nodes may not have the same label, although the same label can be used
for nodes which are not brothers. One label is reserved, and that is
the null (i.e., zero length) label used for the root.

The domain name of a node is the list of the labels on the path from the
node to the root of the tree. By convention, the labels that compose a
domain name are printed or read left to right, from the most specific
(lowest, farthest from the root) to the least specific (highest, closest
to the root).

Internally, programs that manipulate domain names should represent them
as sequences of labels, where each label is a length octet followed by
an octet string. Because all domain names end at the root, which has a
null string for a label, these internal representations can use a length
byte of zero to terminate a domain name.

By convention, domain names can be stored with arbitrary case, but
domain name comparisons for all present domain functions are done in a
case-insensitive manner, assuming an ASCII character set, and a high
order zero bit. This means that you are free to create a node with
label "A" or a node with label "a", but not both as brothers; you could
refer to either using "a" or "A". When you receive a domain name or

Mockapetris [Page 7]

RFC 1034 Domain Concepts and Facilities November 1987

label, you should preserve its case. The rationale for this choice is
that we may someday need to add full binary domain names for new
services; existing services would not be changed.

When a user needs to type a domain name, the length of each label is
omitted and the labels are separated by dots ("."). Since a complete
domain name ends with the root label, this leads to a printed form which
ends in a dot. We use this property to distinguish between:

 - a character string which represents a complete domain name
 (often called "absolute"). For example, "poneria.ISI.EDU."

 - a character string that represents the starting labels of a
 domain name which is incomplete, and should be completed by
 local software using knowledge of the local domain (often
 called "relative"). For example, "poneria" used in the
 ISI.EDU domain.

Relative names are either taken relative to a well known origin, or to a
list of domains used as a search list. Relative names appear mostly at
the user interface, where their interpretation varies from
implementation to implementation, and in master files, where they are
relative to a single origin domain name. The most common interpretation
uses the root "." as either the single origin or as one of the members
of the search list, so a multi-label relative name is often one where
the trailing dot has been omitted to save typing.

To simplify implementations, the total number of octets that represent a
domain name (i.e., the sum of all label octets and label lengths) is
limited to 255.

A domain is identified by a domain name, and consists of that part of
the domain name space that is at or below the domain name which
specifies the domain. A domain is a subdomain of another domain if it
is contained within that domain. This relationship can be tested by
seeing if the subdomain's name ends with the containing domain's name.
For example, A.B.C.D is a subdomain of B.C.D, C.D, D, and " ".

3.2. Administrative guidelines on use

As a matter of policy, the DNS technical specifications do not mandate a
particular tree structure or rules for selecting labels; its goal is to
be as general as possible, so that it can be used to build arbitrary
applications. In particular, the system was designed so that the name
space did not have to be organized along the lines of network
boundaries, name servers, etc. The rationale for this is not that the
name space should have no implied semantics, but rather that the choice
of implied semantics should be left open to be used for the problem at

Mockapetris [Page 8]

C
om

pendium
 1 page 22

RFC 1034 Domain Concepts and Facilities November 1987

hand, and that different parts of the tree can have different implied
semantics. For example, the IN-ADDR.ARPA domain is organized and
distributed by network and host address because its role is to translate
from network or host numbers to names; NetBIOS domains [RFC-1001, RFC-
1002] are flat because that is appropriate for that application.

However, there are some guidelines that apply to the "normal" parts of
the name space used for hosts, mailboxes, etc., that will make the name
space more uniform, provide for growth, and minimize problems as
software is converted from the older host table. The political
decisions about the top levels of the tree originated in RFC-920.
Current policy for the top levels is discussed in [RFC-1032]. MILNET
conversion issues are covered in [RFC-1031].

Lower domains which will eventually be broken into multiple zones should
provide branching at the top of the domain so that the eventual
decomposition can be done without renaming. Node labels which use
special characters, leading digits, etc., are likely to break older
software which depends on more restrictive choices.

3.3. Technical guidelines on use

Before the DNS can be used to hold naming information for some kind of
object, two needs must be met:

 - A convention for mapping between object names and domain
 names. This describes how information about an object is
 accessed.

 - RR types and data formats for describing the object.

These rules can be quite simple or fairly complex. Very often, the
designer must take into account existing formats and plan for upward
compatibility for existing usage. Multiple mappings or levels of
mapping may be required.

For hosts, the mapping depends on the existing syntax for host names
which is a subset of the usual text representation for domain names,
together with RR formats for describing host addresses, etc. Because we
need a reliable inverse mapping from address to host name, a special
mapping for addresses into the IN-ADDR.ARPA domain is also defined.

For mailboxes, the mapping is slightly more complex. The usual mail
address <local-part>@<mail-domain> is mapped into a domain name by
converting <local-part> into a single label (regardles of dots it
contains), converting <mail-domain> into a domain name using the usual
text format for domain names (dots denote label breaks), and
concatenating the two to form a single domain name. Thus the mailbox

Mockapetris [Page 9]

RFC 1034 Domain Concepts and Facilities November 1987

HOSTMASTER@SRI-NIC.ARPA is represented as a domain name by
HOSTMASTER.SRI-NIC.ARPA. An appreciation for the reasons behind this
design also must take into account the scheme for mail exchanges [RFC-
974].

The typical user is not concerned with defining these rules, but should
understand that they usually are the result of numerous compromises
between desires for upward compatibility with old usage, interactions
between different object definitions, and the inevitable urge to add new
features when defining the rules. The way the DNS is used to support
some object is often more crucial than the restrictions inherent in the
DNS.

3.4. Example name space

The following figure shows a part of the current domain name space, and
is used in many examples in this RFC. Note that the tree is a very
small subset of the actual name space.

 |
 |
 +---------------------+------------------+
 | | |
 MIL EDU ARPA
 | | |
 | | |
 +-----+-----+ | +------+-----+-----+
 | | | | | | |
 BRL NOSC DARPA | IN-ADDR SRI-NIC ACC
 |
 +--------+------------------+---------------+--------+
 | | | | |
 UCI MIT | UDEL YALE
 | ISI
 | |
 +---+---+ |
 | | |
 LCS ACHILLES +--+-----+-----+--------+
 | | | | | |
 XX A C VAXA VENERA Mockapetris

In this example, the root domain has three immediate subdomains: MIL,
EDU, and ARPA. The LCS.MIT.EDU domain has one immediate subdomain named
XX.LCS.MIT.EDU. All of the leaves are also domains.

3.5. Preferred name syntax

The DNS specifications attempt to be as general as possible in the rules

Mockapetris [Page 10]

C
om

pendium
 1 page 23

RFC 1034 Domain Concepts and Facilities November 1987

for constructing domain names. The idea is that the name of any
existing object can be expressed as a domain name with minimal changes.
However, when assigning a domain name for an object, the prudent user
will select a name which satisfies both the rules of the domain system
and any existing rules for the object, whether these rules are published
or implied by existing programs.

For example, when naming a mail domain, the user should satisfy both the
rules of this memo and those in RFC-822. When creating a new host name,
the old rules for HOSTS.TXT should be followed. This avoids problems
when old software is converted to use domain names.

The following syntax will result in fewer problems with many
applications that use domain names (e.g., mail, TELNET).

<domain> ::= <subdomain> | " "

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <letter> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= any one of the 52 alphabetic characters A through Z in
upper case and a through z in lower case

<digit> ::= any one of the ten digits 0 through 9

Note that while upper and lower case letters are allowed in domain
names, no significance is attached to the case. That is, two names with
the same spelling but different case are to be treated as if identical.

The labels must follow the rules for ARPANET host names. They must
start with a letter, end with a letter or digit, and have as interior
characters only letters, digits, and hyphen. There are also some
restrictions on the length. Labels must be 63 characters or less.

For example, the following strings identify hosts in the Internet:

A.ISI.EDU XX.LCS.MIT.EDU SRI-NIC.ARPA

3.6. Resource Records

A domain name identifies a node. Each node has a set of resource

Mockapetris [Page 11]

RFC 1034 Domain Concepts and Facilities November 1987

information, which may be empty. The set of resource information
associated with a particular name is composed of separate resource
records (RRs). The order of RRs in a set is not significant, and need
not be preserved by name servers, resolvers, or other parts of the DNS.

When we talk about a specific RR, we assume it has the following:

owner which is the domain name where the RR is found.

type which is an encoded 16 bit value that specifies the type
 of the resource in this resource record. Types refer to
 abstract resources.

 This memo uses the following types:

 A a host address

 CNAME identifies the canonical name of an
 alias

 HINFO identifies the CPU and OS used by a host

 MX identifies a mail exchange for the
 domain. See [RFC-974 for details.

 NS
 the authoritative name server for the domain

 PTR
 a pointer to another part of the domain name space

 SOA
 identifies the start of a zone of authority]

class which is an encoded 16 bit value which identifies a
 protocol family or instance of a protocol.

 This memo uses the following classes:

 IN the Internet system

 CH the Chaos system

TTL which is the time to live of the RR. This field is a 32
 bit integer in units of seconds, an is primarily used by
 resolvers when they cache RRs. The TTL describes how
 long a RR can be cached before it should be discarded.

Mockapetris [Page 12]

C
om

pendium
 1 page 24

RFC 1034 Domain Concepts and Facilities November 1987

RDATA which is the type and sometimes class dependent data
 which describes the resource:

 A For the IN class, a 32 bit IP address

 For the CH class, a domain name followed
 by a 16 bit octal Chaos address.

 CNAME a domain name.

 MX a 16 bit preference value (lower is
 better) followed by a host name willing
 to act as a mail exchange for the owner
 domain.

 NS a host name.

 PTR a domain name.

 SOA several fields.

The owner name is often implicit, rather than forming an integral part
of the RR. For example, many name servers internally form tree or hash
structures for the name space, and chain RRs off nodes. The remaining
RR parts are the fixed header (type, class, TTL) which is consistent for
all RRs, and a variable part (RDATA) that fits the needs of the resource
being described.

The meaning of the TTL field is a time limit on how long an RR can be
kept in a cache. This limit does not apply to authoritative data in
zones; it is also timed out, but by the refreshing policies for the
zone. The TTL is assigned by the administrator for the zone where the
data originates. While short TTLs can be used to minimize caching, and
a zero TTL prohibits caching, the realities of Internet performance
suggest that these times should be on the order of days for the typical
host. If a change can be anticipated, the TTL can be reduced prior to
the change to minimize inconsistency during the change, and then
increased back to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of
binary strings and domain names. The domain names are frequently used
as "pointers" to other data in the DNS.

3.6.1. Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol,
and are usually represented in highly encoded form when stored in a name
server or resolver. In this memo, we adopt a style similar to that used

Mockapetris [Page 13]

RFC 1034 Domain Concepts and Facilities November 1987

in master files in order to show the contents of RRs. In this format,
most RRs are shown on a single line, although continuation lines are
possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with
a blank, then the owner is assumed to be the same as that of the
previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class
and type use the mnemonics defined above, and TTL is an integer before
the type field. In order to avoid ambiguity in parsing, type and class
mnemonics are disjoint, TTLs are integers, and the type mnemonic is
always last. The IN class and TTL values are often omitted from examples
in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge
of the typical representation for the data.

For example, we might show the RRs carried in a message as:

 ISI.EDU. MX 10 VENERA.ISI.EDU.
 MX 10 VAXA.ISI.EDU.
 VENERA.ISI.EDU. A 128.9.0.32
 A 10.1.0.52
 VAXA.ISI.EDU. A 10.2.0.27
 A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16 bit number
followed by a domain name. The address RRs use a standard IP address
format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

 XX.LCS.MIT.EDU. IN A 10.0.0.44
 CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different
class.

3.6.2. Aliases and canonical names

In existing systems, hosts and other resources often have several names
that identify the same resource. For example, the names C.ISI.EDU and
USC-ISIC.ARPA both identify the same host. Similarly, in the case of
mailboxes, many organizations provide many names that actually go to the
same mailbox; for example Mockapetris@C.ISI.EDU, Mockapetris@B.ISI.EDU,

Mockapetris [Page 14]

C
om

pendium
 1 page 25

RFC 1034 Domain Concepts and Facilities November 1987

and PVM@ISI.EDU all go to the same mailbox (although the mechanism
behind this is somewhat complicated).

Most of these systems have a notion that one of the equivalent set of
names is the canonical or primary name and all others are aliases.

The domain system provides such a feature using the canonical name
(CNAME) RR. A CNAME RR identifies its owner name as an alias, and
specifies the corresponding canonical name in the RDATA section of the
RR. If a CNAME RR is present at a node, no other data should be
present; this ensures that the data for a canonical name and its aliases
cannot be different. This rule also insures that a cached CNAME can be
used without checking with an authoritative server for other RR types.

CNAME RRs cause special action in DNS software. When a name server
fails to find a desired RR in the resource set associated with the
domain name, it checks to see if the resource set consists of a CNAME
record with a matching class. If so, the name server includes the CNAME
record in the response and restarts the query at the domain name
specified in the data field of the CNAME record. The one exception to
this rule is that queries which match the CNAME type are not restarted.

For example, suppose a name server was processing a query with for USC-
ISIC.ARPA, asking for type A information, and had the following resource
records:

 USC-ISIC.ARPA IN CNAME C.ISI.EDU

 C.ISI.EDU IN A 10.0.0.52

Both of these RRs would be returned in the response to the type A query,
while a type CNAME or * query should return just the CNAME.

Domain names in RRs which point at another name should always point at
the primary name and not the alias. This avoids extra indirections in
accessing information. For example, the address to name RR for the
above host should be:

 52.0.0.10.IN-ADDR.ARPA IN PTR C.ISI.EDU

rather than pointing at USC-ISIC.ARPA. Of course, by the robustness
principle, domain software should not fail when presented with CNAME
chains or loops; CNAME chains should be followed and CNAME loops
signalled as an error.

3.7. Queries

Queries are messages which may be sent to a name server to provoke a

Mockapetris [Page 15]

RFC 1034 Domain Concepts and Facilities November 1987

response. In the Internet, queries are carried in UDP datagrams or over
TCP connections. The response by the name server either answers the
question posed in the query, refers the requester to another set of name
servers, or signals some error condition.

In general, the user does not generate queries directly, but instead
makes a request to a resolver which in turn sends one or more queries to
name servers and deals with the error conditions and referrals that may
result. Of course, the possible questions which can be asked in a query
does shape the kind of service a resolver can provide.

DNS queries and responses are carried in a standard message format. The
message format has a header containing a number of fixed fields which
are always present, and four sections which carry query parameters and
RRs.

The most important field in the header is a four bit field called an
opcode which separates different queries. Of the possible 16 values,
one (standard query) is part of the official protocol, two (inverse
query and status query) are options, one (completion) is obsolete, and
the rest are unassigned.

The four sections are:

Question Carries the query name and other query parameters.

Answer Carries RRs which directly answer the query.

Authority Carries RRs which describe other authoritative servers.
 May optionally carry the SOA RR for the authoritative
 data in the answer section.

Additional Carries RRs which may be helpful in using the RRs in the
 other sections.

Note that the content, but not the format, of these sections varies with
header opcode.

3.7.1. Standard queries

A standard query specifies a target domain name (QNAME), query type
(QTYPE), and query class (QCLASS) and asks for RRs which match. This
type of query makes up such a vast majority of DNS queries that we use
the term "query" to mean standard query unless otherwise specified. The
QTYPE and QCLASS fields are each 16 bits long, and are a superset of
defined types and classes.

Mockapetris [Page 16]

C
om

pendium
 1 page 26

RFC 1034 Domain Concepts and Facilities November 1987

The QTYPE field may contain:

<any type> matches just that type. (e.g., A, PTR).

AXFR special zone transfer QTYPE.

MAILB matches all mail box related RRs (e.g. MB and MG).

* matches all RR types.

The QCLASS field may contain:

<any class> matches just that class (e.g., IN, CH).

* matches aLL RR classes.

Using the query domain name, QTYPE, and QCLASS, the name server looks
for matching RRs. In addition to relevant records, the name server may
return RRs that point toward a name server that has the desired
information or RRs that are expected to be useful in interpreting the
relevant RRs. For example, a name server that doesn't have the
requested information may know a name server that does; a name server
that returns a domain name in a relevant RR may also return the RR that
binds that domain name to an address.

For example, a mailer tying to send mail to Mockapetris@ISI.EDU might
ask the resolver for mail information about ISI.EDU, resulting in a
query for QNAME=ISI.EDU, QTYPE=MX, QCLASS=IN. The response's answer
section would be:

 ISI.EDU. MX 10 VENERA.ISI.EDU.
 MX 10 VAXA.ISI.EDU.

while the additional section might be:

 VAXA.ISI.EDU. A 10.2.0.27
 A 128.9.0.33
 VENERA.ISI.EDU. A 10.1.0.52
 A 128.9.0.32

Because the server assumes that if the requester wants mail exchange
information, it will probably want the addresses of the mail exchanges
soon afterward.

Note that the QCLASS=* construct requires special interpretation
regarding authority. Since a particular name server may not know all of
the classes available in the domain system, it can never know if it is
authoritative for all classes. Hence responses to QCLASS=* queries can

Mockapetris [Page 17]

RFC 1034 Domain Concepts and Facilities November 1987

never be authoritative.

3.7.2. Inverse queries (Optional)

Name servers may also support inverse queries that map a particular
resource to a domain name or domain names that have that resource. For
example, while a standard query might map a domain name to a SOA RR, the
corresponding inverse query might map the SOA RR back to the domain
name.

Implementation of this service is optional in a name server, but all
name servers must at least be able to understand an inverse query
message and return a not-implemented error response.

The domain system cannot guarantee the completeness or uniqueness of
inverse queries because the domain system is organized by domain name
rather than by host address or any other resource type. Inverse queries
are primarily useful for debugging and database maintenance activities.

Inverse queries may not return the proper TTL, and do not indicate cases
where the identified RR is one of a set (for example, one address for a
host having multiple addresses). Therefore, the RRs returned in inverse
queries should never be cached.

Inverse queries are NOT an acceptable method for mapping host addresses
to host names; use the IN-ADDR.ARPA domain instead.

A detailed discussion of inverse queries is contained in [RFC-1035].

3.8. Status queries (Experimental)

To be defined.

3.9. Completion queries (Obsolete)

The optional completion services described in RFCs 882 and 883 have been
deleted. Redesigned services may become available in the future, or the
opcodes may be reclaimed for other use.

4. NAME SERVERS

4.1. Introduction

Name servers are the repositories of information that make up the domain
database. The database is divided up into sections called zones, which
are distributed among the name servers. While name servers can have
several optional functions and sources of data, the essential task of a
name server is to answer queries using data in its zones. By design,

Mockapetris [Page 18]

C
om

pendium
 1 page 27

RFC 1034 Domain Concepts and Facilities November 1987

name servers can answer queries in a simple manner; the response can
always be generated using only local data, and either contains the
answer to the question or a referral to other name servers "closer" to
the desired information.

A given zone will be available from several name servers to insure its
availability in spite of host or communication link failure. By
administrative fiat, we require every zone to be available on at least
two servers, and many zones have more redundancy than that.

A given name server will typically support one or more zones, but this
gives it authoritative information about only a small section of the
domain tree. It may also have some cached non-authoritative data about
other parts of the tree. The name server marks its responses to queries
so that the requester can tell whether the response comes from
authoritative data or not.

4.2. How the database is divided into zones

The domain database is partitioned in two ways: by class, and by "cuts"
made in the name space between nodes.

The class partition is simple. The database for any class is organized,
delegated, and maintained separately from all other classes. Since, by
convention, the name spaces are the same for all classes, the separate
classes can be thought of as an array of parallel namespace trees. Note
that the data attached to nodes will be different for these different
parallel classes. The most common reasons for creating a new class are
the necessity for a new data format for existing types or a desire for a
separately managed version of the existing name space.

Within a class, "cuts" in the name space can be made between any two
adjacent nodes. After all cuts are made, each group of connected name
space is a separate zone. The zone is said to be authoritative for all
names in the connected region. Note that the "cuts" in the name space
may be in different places for different classes, the name servers may
be different, etc.

These rules mean that every zone has at least one node, and hence domain
name, for which it is authoritative, and all of the nodes in a
particular zone are connected. Given, the tree structure, every zone
has a highest node which is closer to the root than any other node in
the zone. The name of this node is often used to identify the zone.

It would be possible, though not particularly useful, to partition the
name space so that each domain name was in a separate zone or so that
all nodes were in a single zone. Instead, the database is partitioned
at points where a particular organization wants to take over control of

Mockapetris [Page 19]

RFC 1034 Domain Concepts and Facilities November 1987

a subtree. Once an organization controls its own zone it can
unilaterally change the data in the zone, grow new tree sections
connected to the zone, delete existing nodes, or delegate new subzones
under its zone.

If the organization has substructure, it may want to make further
internal partitions to achieve nested delegations of name space control.
In some cases, such divisions are made purely to make database
maintenance more convenient.

4.2.1. Technical considerations

The data that describes a zone has four major parts:

 - Authoritative data for all nodes within the zone.

 - Data that defines the top node of the zone (can be thought of
 as part of the authoritative data).

 - Data that describes delegated subzones, i.e., cuts around the
 bottom of the zone.

 - Data that allows access to name servers for subzones
 (sometimes called "glue" data).

All of this data is expressed in the form of RRs, so a zone can be
completely described in terms of a set of RRs. Whole zones can be
transferred between name servers by transferring the RRs, either carried
in a series of messages or by FTPing a master file which is a textual
representation.

The authoritative data for a zone is simply all of the RRs attached to
all of the nodes from the top node of the zone down to leaf nodes or
nodes above cuts around the bottom edge of the zone.

Though logically part of the authoritative data, the RRs that describe
the top node of the zone are especially important to the zone's
management. These RRs are of two types: name server RRs that list, one
per RR, all of the servers for the zone, and a single SOA RR that
describes zone management parameters.

The RRs that describe cuts around the bottom of the zone are NS RRs that
name the servers for the subzones. Since the cuts are between nodes,
these RRs are NOT part of the authoritative data of the zone, and should
be exactly the same as the corresponding RRs in the top node of the
subzone. Since name servers are always associated with zone boundaries,
NS RRs are only found at nodes which are the top node of some zone. In
the data that makes up a zone, NS RRs are found at the top node of the

Mockapetris [Page 20]

C
om

pendium
 1 page 28

RFC 1034 Domain Concepts and Facilities November 1987

zone (and are authoritative) and at cuts around the bottom of the zone
(where they are not authoritative), but never in between.

One of the goals of the zone structure is that any zone have all the
data required to set up communications with the name servers for any
subzones. That is, parent zones have all the information needed to
access servers for their children zones. The NS RRs that name the
servers for subzones are often not enough for this task since they name
the servers, but do not give their addresses. In particular, if the
name of the name server is itself in the subzone, we could be faced with
the situation where the NS RRs tell us that in order to learn a name
server's address, we should contact the server using the address we wish
to learn. To fix this problem, a zone contains "glue" RRs which are not
part of the authoritative data, and are address RRs for the servers.
These RRs are only necessary if the name server's name is "below" the
cut, and are only used as part of a referral response.

4.2.2. Administrative considerations

When some organization wants to control its own domain, the first step
is to identify the proper parent zone, and get the parent zone's owners
to agree to the delegation of control. While there are no particular
technical constraints dealing with where in the tree this can be done,
there are some administrative groupings discussed in [RFC-1032] which
deal with top level organization, and middle level zones are free to
create their own rules. For example, one university might choose to use
a single zone, while another might choose to organize by subzones
dedicated to individual departments or schools. [RFC-1033] catalogs
available DNS software an discusses administration procedures.

Once the proper name for the new subzone is selected, the new owners
should be required to demonstrate redundant name server support. Note
that there is no requirement that the servers for a zone reside in a
host which has a name in that domain. In many cases, a zone will be
more accessible to the internet at large if its servers are widely
distributed rather than being within the physical facilities controlled
by the same organization that manages the zone. For example, in the
current DNS, one of the name servers for the United Kingdom, or UK
domain, is found in the US. This allows US hosts to get UK data without
using limited transatlantic bandwidth.

As the last installation step, the delegation NS RRs and glue RRs
necessary to make the delegation effective should be added to the parent
zone. The administrators of both zones should insure that the NS and
glue RRs which mark both sides of the cut are consistent and remain so.

4.3. Name server internals

Mockapetris [Page 21]

RFC 1034 Domain Concepts and Facilities November 1987

4.3.1. Queries and responses

The principal activity of name servers is to answer standard queries.
Both the query and its response are carried in a standard message format
which is described in [RFC-1035]. The query contains a QTYPE, QCLASS,
and QNAME, which describe the types and classes of desired information
and the name of interest.

The way that the name server answers the query depends upon whether it
is operating in recursive mode or not:

 - The simplest mode for the server is non-recursive, since it
 can answer queries using only local information: the response
 contains an error, the answer, or a referral to some other
 server "closer" to the answer. All name servers must
 implement non-recursive queries.

 - The simplest mode for the client is recursive, since in this
 mode the name server acts in the role of a resolver and
 returns either an error or the answer, but never referrals.
 This service is optional in a name server, and the name server
 may also choose to restrict the clients which can use
 recursive mode.

Recursive service is helpful in several situations:

 - a relatively simple requester that lacks the ability to use
 anything other than a direct answer to the question.

 - a request that needs to cross protocol or other boundaries and
 can be sent to a server which can act as intermediary.

 - a network where we want to concentrate the cache rather than
 having a separate cache for each client.

Non-recursive service is appropriate if the requester is capable of
pursuing referrals and interested in information which will aid future
requests.

The use of recursive mode is limited to cases where both the client and
the name server agree to its use. The agreement is negotiated through
the use of two bits in query and response messages:

 - The recursion available, or RA bit, is set or cleared by a
 name server in all responses. The bit is true if the name
 server is willing to provide recursive service for the client,
 regardless of whether the client requested recursive service.
 That is, RA signals availability rather than use.

Mockapetris [Page 22]

C
om

pendium
 1 page 29

RFC 1034 Domain Concepts and Facilities November 1987

 - Queries contain a bit called recursion desired or RD. This
 bit specifies specifies whether the requester wants recursive
 service for this query. Clients may request recursive service
 from any name server, though they should depend upon receiving
 it only from servers which have previously sent an RA, or
 servers which have agreed to provide service through private
 agreement or some other means outside of the DNS protocol.

The recursive mode occurs when a query with RD set arrives at a server
which is willing to provide recursive service; the client can verify
that recursive mode was used by checking that both RA and RD are set in
the reply. Note that the name server should never perform recursive
service unless asked via RD, since this interferes with trouble shooting
of name servers and their databases.

If recursive service is requested and available, the recursive response
to a query will be one of the following:

 - The answer to the query, possibly preface by one or more CNAME
 RRs that specify aliases encountered on the way to an answer.

 - A name error indicating that the name does not exist. This
 may include CNAME RRs that indicate that the original query
 name was an alias for a name which does not exist.

 - A temporary error indication.

If recursive service is not requested or is not available, the non-
recursive response will be one of the following:

 - An authoritative name error indicating that the name does not
 exist.

 - A temporary error indication.

 - Some combination of:

 RRs that answer the question, together with an indication
 whether the data comes from a zone or is cached.

 A referral to name servers which have zones which are closer
 ancestors to the name than the server sending the reply.

 - RRs that the name server thinks will prove useful to the
 requester.

Mockapetris [Page 23]

RFC 1034 Domain Concepts and Facilities November 1987

4.3.2. Algorithm

The actual algorithm used by the name server will depend on the local OS
and data structures used to store RRs. The following algorithm assumes
that the RRs are organized in several tree structures, one for each
zone, and another for the cache:

 1. Set or clear the value of recursion available in the response
 depending on whether the name server is willing to provide
 recursive service. If recursive service is available and
 requested via the RD bit in the query, go to step 5,
 otherwise step 2.

 2. Search the available zones for the zone which is the nearest
 ancestor to QNAME. If such a zone is found, go to step 3,
 otherwise step 4.

 3. Start matching down, label by label, in the zone. The
 matching process can terminate several ways:

 a. If the whole of QNAME is matched, we have found the
 node.

 If the data at the node is a CNAME, and QTYPE doesn't
 match CNAME, copy the CNAME RR into the answer section
 of the response, change QNAME to the canonical name in
 the CNAME RR, and go back to step 1.

 Otherwise, copy all RRs which match QTYPE into the
 answer section and go to step 6.

 b. If a match would take us out of the authoritative data,
 we have a referral. This happens when we encounter a
 node with NS RRs marking cuts along the bottom of a
 zone.

 Copy the NS RRs for the subzone into the authority
 section of the reply. Put whatever addresses are
 available into the additional section, using glue RRs
 if the addresses are not available from authoritative
 data or the cache. Go to step 4.

 c. If at some label, a match is impossible (i.e., the
 corresponding label does not exist), look to see if a
 the "*" label exists.

 If the "*" label does not exist, check whether the name
 we are looking for is the original QNAME in the query

Mockapetris [Page 24]

C
om

pendium
 1 page 30

RFC 1034 Domain Concepts and Facilities November 1987

 or a name we have followed due to a CNAME. If the name
 is original, set an authoritative name error in the
 response and exit. Otherwise just exit.

 If the "*" label does exist, match RRs at that node
 against QTYPE. If any match, copy them into the answer
 section, but set the owner of the RR to be QNAME, and
 not the node with the "*" label. Go to step 6.

 4. Start matching down in the cache. If QNAME is found in the
 cache, copy all RRs attached to it that match QTYPE into the
 answer section. If there was no delegation from
 authoritative data, look for the best one from the cache, and
 put it in the authority section. Go to step 6.

 5. Using the local resolver or a copy of its algorithm (see
 resolver section of this memo) to answer the query. Store
 the results, including any intermediate CNAMEs, in the answer
 section of the response.

 6. Using local data only, attempt to add other RRs which may be
 useful to the additional section of the query. Exit.

4.3.3. Wildcards

In the previous algorithm, special treatment was given to RRs with owner
names starting with the label "*". Such RRs are called wildcards.
Wildcard RRs can be thought of as instructions for synthesizing RRs.
When the appropriate conditions are met, the name server creates RRs
with an owner name equal to the query name and contents taken from the
wildcard RRs.

This facility is most often used to create a zone which will be used to
forward mail from the Internet to some other mail system. The general
idea is that any name in that zone which is presented to server in a
query will be assumed to exist, with certain properties, unless explicit
evidence exists to the contrary. Note that the use of the term zone
here, instead of domain, is intentional; such defaults do not propagate
across zone boundaries, although a subzone may choose to achieve that
appearance by setting up similar defaults.

The contents of the wildcard RRs follows the usual rules and formats for
RRs. The wildcards in the zone have an owner name that controls the
query names they will match. The owner name of the wildcard RRs is of
the form "*.<anydomain>", where <anydomain> is any domain name.
<anydomain> should not contain other * labels, and should be in the
authoritative data of the zone. The wildcards potentially apply to
descendants of <anydomain>, but not to <anydomain> itself. Another way

Mockapetris [Page 25]

RFC 1034 Domain Concepts and Facilities November 1987

to look at this is that the "*" label always matches at least one whole
label and sometimes more, but always whole labels.

Wildcard RRs do not apply:

 - When the query is in another zone. That is, delegation cancels
 the wildcard defaults.

 - When the query name or a name between the wildcard domain and
 the query name is know to exist. For example, if a wildcard
 RR has an owner name of "*.X", and the zone also contains RRs
 attached to B.X, the wildcards would apply to queries for name
 Z.X (presuming there is no explicit information for Z.X), but
 not to B.X, A.B.X, or X.

A * label appearing in a query name has no special effect, but can be
used to test for wildcards in an authoritative zone; such a query is the
only way to get a response containing RRs with an owner name with * in
it. The result of such a query should not be cached.

Note that the contents of the wildcard RRs are not modified when used to
synthesize RRs.

To illustrate the use of wildcard RRs, suppose a large company with a
large, non-IP/TCP, network wanted to create a mail gateway. If the
company was called X.COM, and IP/TCP capable gateway machine was called
A.X.COM, the following RRs might be entered into the COM zone:

 X.COM MX 10 A.X.COM

 *.X.COM MX 10 A.X.COM

 A.X.COM A 1.2.3.4
 A.X.COM MX 10 A.X.COM

 *.A.X.COM MX 10 A.X.COM

This would cause any MX query for any domain name ending in X.COM to
return an MX RR pointing at A.X.COM. Two wildcard RRs are required
since the effect of the wildcard at *.X.COM is inhibited in the A.X.COM
subtree by the explicit data for A.X.COM. Note also that the explicit
MX data at X.COM and A.X.COM is required, and that none of the RRs above
would match a query name of XX.COM.

4.3.4. Negative response caching (Optional)

The DNS provides an optional service which allows name servers to
distribute, and resolvers to cache, negative results with TTLs. For

Mockapetris [Page 26]

C
om

pendium
 1 page 31

RFC 1034 Domain Concepts and Facilities November 1987

example, a name server can distribute a TTL along with a name error
indication, and a resolver receiving such information is allowed to
assume that the name does not exist during the TTL period without
consulting authoritative data. Similarly, a resolver can make a query
with a QTYPE which matches multiple types, and cache the fact that some
of the types are not present.

This feature can be particularly important in a system which implements
naming shorthands that use search lists beacuse a popular shorthand,
which happens to require a suffix toward the end of the search list,
will generate multiple name errors whenever it is used.

The method is that a name server may add an SOA RR to the additional
section of a response when that response is authoritative. The SOA must
be that of the zone which was the source of the authoritative data in
the answer section, or name error if applicable. The MINIMUM field of
the SOA controls the length of time that the negative result may be
cached.

Note that in some circumstances, the answer section may contain multiple
owner names. In this case, the SOA mechanism should only be used for
the data which matches QNAME, which is the only authoritative data in
this section.

Name servers and resolvers should never attempt to add SOAs to the
additional section of a non-authoritative response, or attempt to infer
results which are not directly stated in an authoritative response.
There are several reasons for this, including: cached information isn't
usually enough to match up RRs and their zone names, SOA RRs may be
cached due to direct SOA queries, and name servers are not required to
output the SOAs in the authority section.

This feature is optional, although a refined version is expected to
become part of the standard protocol in the future. Name servers are
not required to add the SOA RRs in all authoritative responses, nor are
resolvers required to cache negative results. Both are recommended.
All resolvers and recursive name servers are required to at least be
able to ignore the SOA RR when it is present in a response.

Some experiments have also been proposed which will use this feature.
The idea is that if cached data is known to come from a particular zone,
and if an authoritative copy of the zone's SOA is obtained, and if the
zone's SERIAL has not changed since the data was cached, then the TTL of
the cached data can be reset to the zone MINIMUM value if it is smaller.
This usage is mentioned for planning purposes only, and is not
recommended as yet.

Mockapetris [Page 27]

RFC 1034 Domain Concepts and Facilities November 1987

4.3.5. Zone maintenance and transfers

Part of the job of a zone administrator is to maintain the zones at all
of the name servers which are authoritative for the zone. When the
inevitable changes are made, they must be distributed to all of the name
servers. While this distribution can be accomplished using FTP or some
other ad hoc procedure, the preferred method is the zone transfer part
of the DNS protocol.

The general model of automatic zone transfer or refreshing is that one
of the name servers is the master or primary for the zone. Changes are
coordinated at the primary, typically by editing a master file for the
zone. After editing, the administrator signals the master server to
load the new zone. The other non-master or secondary servers for the
zone periodically check for changes (at a selectable interval) and
obtain new zone copies when changes have been made.

To detect changes, secondaries just check the SERIAL field of the SOA
for the zone. In addition to whatever other changes are made, the
SERIAL field in the SOA of the zone is always advanced whenever any
change is made to the zone. The advancing can be a simple increment, or
could be based on the write date and time of the master file, etc. The
purpose is to make it possible to determine which of two copies of a
zone is more recent by comparing serial numbers. Serial number advances
and comparisons use sequence space arithmetic, so there is a theoretic
limit on how fast a zone can be updated, basically that old copies must
die out before the serial number covers half of its 32 bit range. In
practice, the only concern is that the compare operation deals properly
with comparisons around the boundary between the most positive and most
negative 32 bit numbers.

The periodic polling of the secondary servers is controlled by
parameters in the SOA RR for the zone, which set the minimum acceptable
polling intervals. The parameters are called REFRESH, RETRY, and
EXPIRE. Whenever a new zone is loaded in a secondary, the secondary
waits REFRESH seconds before checking with the primary for a new serial.
If this check cannot be completed, new checks are started every RETRY
seconds. The check is a simple query to the primary for the SOA RR of
the zone. If the serial field in the secondary's zone copy is equal to
the serial returned by the primary, then no changes have occurred, and
the REFRESH interval wait is restarted. If the secondary finds it
impossible to perform a serial check for the EXPIRE interval, it must
assume that its copy of the zone is obsolete an discard it.

When the poll shows that the zone has changed, then the secondary server
must request a zone transfer via an AXFR request for the zone. The AXFR
may cause an error, such as refused, but normally is answered by a
sequence of response messages. The first and last messages must contain

Mockapetris [Page 28]

C
om

pendium
 1 page 32

RFC 1034 Domain Concepts and Facilities November 1987

the data for the top authoritative node of the zone. Intermediate
messages carry all of the other RRs from the zone, including both
authoritative and non-authoritative RRs. The stream of messages allows
the secondary to construct a copy of the zone. Because accuracy is
essential, TCP or some other reliable protocol must be used for AXFR
requests.

Each secondary server is required to perform the following operations
against the master, but may also optionally perform these operations
against other secondary servers. This strategy can improve the transfer
process when the primary is unavailable due to host downtime or network
problems, or when a secondary server has better network access to an
"intermediate" secondary than to the primary.

5. RESOLVERS

5.1. Introduction

Resolvers are programs that interface user programs to domain name
servers. In the simplest case, a resolver receives a request from a
user program (e.g., mail programs, TELNET, FTP) in the form of a
subroutine call, system call etc., and returns the desired information
in a form compatible with the local host's data formats.

The resolver is located on the same machine as the program that requests
the resolver's services, but it may need to consult name servers on
other hosts. Because a resolver may need to consult several name
servers, or may have the requested information in a local cache, the
amount of time that a resolver will take to complete can vary quite a
bit, from milliseconds to several seconds.

A very important goal of the resolver is to eliminate network delay and
name server load from most requests by answering them from its cache of
prior results. It follows that caches which are shared by multiple
processes, users, machines, etc., are more efficient than non-shared
caches.

5.2. Client-resolver interface

5.2.1. Typical functions

The client interface to the resolver is influenced by the local host's
conventions, but the typical resolver-client interface has three
functions:

 1. Host name to host address translation.

 This function is often defined to mimic a previous HOSTS.TXT

Mockapetris [Page 29]

RFC 1034 Domain Concepts and Facilities November 1987

 based function. Given a character string, the caller wants
 one or more 32 bit IP addresses. Under the DNS, it
 translates into a request for type A RRs. Since the DNS does
 not preserve the order of RRs, this function may choose to
 sort the returned addresses or select the "best" address if
 the service returns only one choice to the client. Note that
 a multiple address return is recommended, but a single
 address may be the only way to emulate prior HOSTS.TXT
 services.

 2. Host address to host name translation

 This function will often follow the form of previous
 functions. Given a 32 bit IP address, the caller wants a
 character string. The octets of the IP address are reversed,
 used as name components, and suffixed with "IN-ADDR.ARPA". A
 type PTR query is used to get the RR with the primary name of
 the host. For example, a request for the host name
 corresponding to IP address 1.2.3.4 looks for PTR RRs for
 domain name "4.3.2.1.IN-ADDR.ARPA".

 3. General lookup function

 This function retrieves arbitrary information from the DNS,
 and has no counterpart in previous systems. The caller
 supplies a QNAME, QTYPE, and QCLASS, and wants all of the
 matching RRs. This function will often use the DNS format
 for all RR data instead of the local host's, and returns all
 RR content (e.g., TTL) instead of a processed form with local
 quoting conventions.

When the resolver performs the indicated function, it usually has one of
the following results to pass back to the client:

 - One or more RRs giving the requested data.

 In this case the resolver returns the answer in the
 appropriate format.

 - A name error (NE).

 This happens when the referenced name does not exist. For
 example, a user may have mistyped a host name.

 - A data not found error.

 This happens when the referenced name exists, but data of the
 appropriate type does not. For example, a host address

Mockapetris [Page 30]

C
om

pendium
 1 page 33

RFC 1034 Domain Concepts and Facilities November 1987

 function applied to a mailbox name would return this error
 since the name exists, but no address RR is present.

It is important to note that the functions for translating between host
names and addresses may combine the "name error" and "data not found"
error conditions into a single type of error return, but the general
function should not. One reason for this is that applications may ask
first for one type of information about a name followed by a second
request to the same name for some other type of information; if the two
errors are combined, then useless queries may slow the application.

5.2.2. Aliases

While attempting to resolve a particular request, the resolver may find
that the name in question is an alias. For example, the resolver might
find that the name given for host name to address translation is an
alias when it finds the CNAME RR. If possible, the alias condition
should be signalled back from the resolver to the client.

In most cases a resolver simply restarts the query at the new name when
it encounters a CNAME. However, when performing the general function,
the resolver should not pursue aliases when the CNAME RR matches the
query type. This allows queries which ask whether an alias is present.
For example, if the query type is CNAME, the user is interested in the
CNAME RR itself, and not the RRs at the name it points to.

Several special conditions can occur with aliases. Multiple levels of
aliases should be avoided due to their lack of efficiency, but should
not be signalled as an error. Alias loops and aliases which point to
non-existent names should be caught and an error condition passed back
to the client.

5.2.3. Temporary failures

In a less than perfect world, all resolvers will occasionally be unable
to resolve a particular request. This condition can be caused by a
resolver which becomes separated from the rest of the network due to a
link failure or gateway problem, or less often by coincident failure or
unavailability of all servers for a particular domain.

It is essential that this sort of condition should not be signalled as a
name or data not present error to applications. This sort of behavior
is annoying to humans, and can wreak havoc when mail systems use the
DNS.

While in some cases it is possible to deal with such a temporary problem
by blocking the request indefinitely, this is usually not a good choice,
particularly when the client is a server process that could move on to

Mockapetris [Page 31]

RFC 1034 Domain Concepts and Facilities November 1987

other tasks. The recommended solution is to always have temporary
failure as one of the possible results of a resolver function, even
though this may make emulation of existing HOSTS.TXT functions more
difficult.

5.3. Resolver internals

Every resolver implementation uses slightly different algorithms, and
typically spends much more logic dealing with errors of various sorts
than typical occurances. This section outlines a recommended basic
strategy for resolver operation, but leaves details to [RFC-1035].

5.3.1. Stub resolvers

One option for implementing a resolver is to move the resolution
function out of the local machine and into a name server which supports
recursive queries. This can provide an easy method of providing domain
service in a PC which lacks the resources to perform the resolver
function, or can centralize the cache for a whole local network or
organization.

All that the remaining stub needs is a list of name server addresses
that will perform the recursive requests. This type of resolver
presumably needs the information in a configuration file, since it
probably lacks the sophistication to locate it in the domain database.
The user also needs to verify that the listed servers will perform the
recursive service; a name server is free to refuse to perform recursive
services for any or all clients. The user should consult the local
system administrator to find name servers willing to perform the
service.

This type of service suffers from some drawbacks. Since the recursive
requests may take an arbitrary amount of time to perform, the stub may
have difficulty optimizing retransmission intervals to deal with both
lost UDP packets and dead servers; the name server can be easily
overloaded by too zealous a stub if it interprets retransmissions as new
requests. Use of TCP may be an answer, but TCP may well place burdens
on the host's capabilities which are similar to those of a real
resolver.

5.3.2. Resources

In addition to its own resources, the resolver may also have shared
access to zones maintained by a local name server. This gives the
resolver the advantage of more rapid access, but the resolver must be
careful to never let cached information override zone data. In this
discussion the term "local information" is meant to mean the union of
the cache and such shared zones, with the understanding that

Mockapetris [Page 32]

C
om

pendium
 1 page 34

RFC 1034 Domain Concepts and Facilities November 1987

authoritative data is always used in preference to cached data when both
are present.

The following resolver algorithm assumes that all functions have been
converted to a general lookup function, and uses the following data
structures to represent the state of a request in progress in the
resolver:

SNAME the domain name we are searching for.

STYPE the QTYPE of the search request.

SCLASS the QCLASS of the search request.

SLIST a structure which describes the name servers and the
 zone which the resolver is currently trying to query.
 This structure keeps track of the resolver's current
 best guess about which name servers hold the desired
 information; it is updated when arriving information
 changes the guess. This structure includes the
 equivalent of a zone name, the known name servers for
 the zone, the known addresses for the name servers, and
 history information which can be used to suggest which
 server is likely to be the best one to try next. The
 zone name equivalent is a match count of the number of
 labels from the root down which SNAME has in common with
 the zone being queried; this is used as a measure of how
 "close" the resolver is to SNAME.

SBELT a "safety belt" structure of the same form as SLIST,
 which is initialized from a configuration file, and
 lists servers which should be used when the resolver
 doesn't have any local information to guide name server
 selection. The match count will be -1 to indicate that
 no labels are known to match.

CACHE A structure which stores the results from previous
 responses. Since resolvers are responsible for
 discarding old RRs whose TTL has expired, most
 implementations convert the interval specified in
 arriving RRs to some sort of absolute time when the RR
 is stored in the cache. Instead of counting the TTLs
 down individually, the resolver just ignores or discards
 old RRs when it runs across them in the course of a
 search, or discards them during periodic sweeps to
 reclaim the memory consumed by old RRs.

Mockapetris [Page 33]

RFC 1034 Domain Concepts and Facilities November 1987

5.3.3. Algorithm

The top level algorithm has four steps:

 1. See if the answer is in local information, and if so return
 it to the client.

 2. Find the best servers to ask.

 3. Send them queries until one returns a response.

 4. Analyze the response, either:

 a. if the response answers the question or contains a name
 error, cache the data as well as returning it back to
 the client.

 b. if the response contains a better delegation to other
 servers, cache the delegation information, and go to
 step 2.

 c. if the response shows a CNAME and that is not the
 answer itself, cache the CNAME, change the SNAME to the
 canonical name in the CNAME RR and go to step 1.

 d. if the response shows a servers failure or other
 bizarre contents, delete the server from the SLIST and
 go back to step 3.

Step 1 searches the cache for the desired data. If the data is in the
cache, it is assumed to be good enough for normal use. Some resolvers
have an option at the user interface which will force the resolver to
ignore the cached data and consult with an authoritative server. This
is not recommended as the default. If the resolver has direct access to
a name server's zones, it should check to see if the desired data is
present in authoritative form, and if so, use the authoritative data in
preference to cached data.

Step 2 looks for a name server to ask for the required data. The
general strategy is to look for locally-available name server RRs,
starting at SNAME, then the parent domain name of SNAME, the
grandparent, and so on toward the root. Thus if SNAME were
Mockapetris.ISI.EDU, this step would look for NS RRs for
Mockapetris.ISI.EDU, then ISI.EDU, then EDU, and then . (the root).
These NS RRs list the names of hosts for a zone at or above SNAME. Copy
the names into SLIST. Set up their addresses using local data. It may
be the case that the addresses are not available. The resolver has many
choices here; the best is to start parallel resolver processes looking

Mockapetris [Page 34]

C
om

pendium
 1 page 35

RFC 1034 Domain Concepts and Facilities November 1987

for the addresses while continuing onward with the addresses which are
available. Obviously, the design choices and options are complicated
and a function of the local host's capabilities. The recommended
priorities for the resolver designer are:

 1. Bound the amount of work (packets sent, parallel processes
 started) so that a request can't get into an infinite loop or
 start off a chain reaction of requests or queries with other
 implementations EVEN IF SOMEONE HAS INCORRECTLY CONFIGURED
 SOME DATA.

 2. Get back an answer if at all possible.

 3. Avoid unnecessary transmissions.

 4. Get the answer as quickly as possible.

If the search for NS RRs fails, then the resolver initializes SLIST from
the safety belt SBELT. The basic idea is that when the resolver has no
idea what servers to ask, it should use information from a configuration
file that lists several servers which are expected to be helpful.
Although there are special situations, the usual choice is two of the
root servers and two of the servers for the host's domain. The reason
for two of each is for redundancy. The root servers will provide
eventual access to all of the domain space. The two local servers will
allow the resolver to continue to resolve local names if the local
network becomes isolated from the internet due to gateway or link
failure.

In addition to the names and addresses of the servers, the SLIST data
structure can be sorted to use the best servers first, and to insure
that all addresses of all servers are used in a round-robin manner. The
sorting can be a simple function of preferring addresses on the local
network over others, or may involve statistics from past events, such as
previous response times and batting averages.

Step 3 sends out queries until a response is received. The strategy is
to cycle around all of the addresses for all of the servers with a
timeout between each transmission. In practice it is important to use
all addresses of a multihomed host, and too aggressive a retransmission
policy actually slows response when used by multiple resolvers
contending for the same name server and even occasionally for a single
resolver. SLIST typically contains data values to control the timeouts
and keep track of previous transmissions.

Step 4 involves analyzing responses. The resolver should be highly
paranoid in its parsing of responses. It should also check that the
response matches the query it sent using the ID field in the response.

Mockapetris [Page 35]

RFC 1034 Domain Concepts and Facilities November 1987

The ideal answer is one from a server authoritative for the query which
either gives the required data or a name error. The data is passed back
to the user and entered in the cache for future use if its TTL is
greater than zero.

If the response shows a delegation, the resolver should check to see
that the delegation is "closer" to the answer than the servers in SLIST
are. This can be done by comparing the match count in SLIST with that
computed from SNAME and the NS RRs in the delegation. If not, the reply
is bogus and should be ignored. If the delegation is valid the NS
delegation RRs and any address RRs for the servers should be cached.
The name servers are entered in the SLIST, and the search is restarted.

If the response contains a CNAME, the search is restarted at the CNAME
unless the response has the data for the canonical name or if the CNAME
is the answer itself.

Details and implementation hints can be found in [RFC-1035].

6. A SCENARIO

In our sample domain space, suppose we wanted separate administrative
control for the root, MIL, EDU, MIT.EDU and ISI.EDU zones. We might
allocate name servers as follows:

 |(C.ISI.EDU,SRI-NIC.ARPA
 | A.ISI.EDU)
 +---------------------+------------------+
 | | |
 MIL EDU ARPA
 |(SRI-NIC.ARPA, |(SRI-NIC.ARPA, |
 | A.ISI.EDU | C.ISI.EDU) |
 +-----+-----+ | +------+-----+-----+
 | | | | | | |
 BRL NOSC DARPA | IN-ADDR SRI-NIC ACC
 |
 +--------+------------------+---------------+--------+
 | | | | |
 UCI MIT | UDEL YALE
 |(XX.LCS.MIT.EDU, ISI
 |ACHILLES.MIT.EDU) |(VAXA.ISI.EDU,VENERA.ISI.EDU,
 +---+---+ | A.ISI.EDU)
 | | |
 LCS ACHILLES +--+-----+-----+--------+
 | | | | | |
 XX A C VAXA VENERA Mockapetris

Mockapetris [Page 36]

C
om

pendium
 1 page 36

RFC 1034 Domain Concepts and Facilities November 1987

In this example, the authoritative name server is shown in parentheses
at the point in the domain tree at which is assumes control.

Thus the root name servers are on C.ISI.EDU, SRI-NIC.ARPA, and
A.ISI.EDU. The MIL domain is served by SRI-NIC.ARPA and A.ISI.EDU. The
EDU domain is served by SRI-NIC.ARPA. and C.ISI.EDU. Note that servers
may have zones which are contiguous or disjoint. In this scenario,
C.ISI.EDU has contiguous zones at the root and EDU domains. A.ISI.EDU
has contiguous zones at the root and MIL domains, but also has a non-
contiguous zone at ISI.EDU.

6.1. C.ISI.EDU name server

C.ISI.EDU is a name server for the root, MIL, and EDU domains of the IN
class, and would have zones for these domains. The zone data for the
root domain might be:

 . IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (
 870611 ;serial
 1800 ;refresh every 30 min
 300 ;retry every 5 min
 604800 ;expire after a week
 86400) ;minimum of a day
 NS A.ISI.EDU.
 NS C.ISI.EDU.
 NS SRI-NIC.ARPA.

 MIL. 86400 NS SRI-NIC.ARPA.
 86400 NS A.ISI.EDU.

 EDU. 86400 NS SRI-NIC.ARPA.
 86400 NS C.ISI.EDU.

 SRI-NIC.ARPA. A 26.0.0.73
 A 10.0.0.51
 MX 0 SRI-NIC.ARPA.
 HINFO DEC-2060 TOPS20

 ACC.ARPA. A 26.6.0.65
 HINFO PDP-11/70 UNIX
 MX 10 ACC.ARPA.

 USC-ISIC.ARPA. CNAME C.ISI.EDU.

 73.0.0.26.IN-ADDR.ARPA. PTR SRI-NIC.ARPA.
 65.0.6.26.IN-ADDR.ARPA. PTR ACC.ARPA.
 51.0.0.10.IN-ADDR.ARPA. PTR SRI-NIC.ARPA.
 52.0.0.10.IN-ADDR.ARPA. PTR C.ISI.EDU.

Mockapetris [Page 37]

RFC 1034 Domain Concepts and Facilities November 1987

 103.0.3.26.IN-ADDR.ARPA. PTR A.ISI.EDU.

 A.ISI.EDU. 86400 A 26.3.0.103
 C.ISI.EDU. 86400 A 10.0.0.52

This data is represented as it would be in a master file. Most RRs are
single line entries; the sole exception here is the SOA RR, which uses
"(" to start a multi-line RR and ")" to show the end of a multi-line RR.
Since the class of all RRs in a zone must be the same, only the first RR
in a zone need specify the class. When a name server loads a zone, it
forces the TTL of all authoritative RRs to be at least the MINIMUM field
of the SOA, here 86400 seconds, or one day. The NS RRs marking
delegation of the MIL and EDU domains, together with the glue RRs for
the servers host addresses, are not part of the authoritative data in
the zone, and hence have explicit TTLs.

Four RRs are attached to the root node: the SOA which describes the root
zone and the 3 NS RRs which list the name servers for the root. The
data in the SOA RR describes the management of the zone. The zone data
is maintained on host SRI-NIC.ARPA, and the responsible party for the
zone is HOSTMASTER@SRI-NIC.ARPA. A key item in the SOA is the 86400
second minimum TTL, which means that all authoritative data in the zone
has at least that TTL, although higher values may be explicitly
specified.

The NS RRs for the MIL and EDU domains mark the boundary between the
root zone and the MIL and EDU zones. Note that in this example, the
lower zones happen to be supported by name servers which also support
the root zone.

The master file for the EDU zone might be stated relative to the origin
EDU. The zone data for the EDU domain might be:

 EDU. IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (
 870729 ;serial
 1800 ;refresh every 30 minutes
 300 ;retry every 5 minutes
 604800 ;expire after a week
 86400 ;minimum of a day
)
 NS SRI-NIC.ARPA.
 NS C.ISI.EDU.

 UCI 172800 NS ICS.UCI
 172800 NS ROME.UCI
 ICS.UCI 172800 A 192.5.19.1
 ROME.UCI 172800 A 192.5.19.31

Mockapetris [Page 38]

C
om

pendium
 1 page 37

RFC 1034 Domain Concepts and Facilities November 1987

 ISI 172800 NS VAXA.ISI
 172800 NS A.ISI
 172800 NS VENERA.ISI.EDU.
 VAXA.ISI 172800 A 10.2.0.27
 172800 A 128.9.0.33
 VENERA.ISI.EDU. 172800 A 10.1.0.52
 172800 A 128.9.0.32
 A.ISI 172800 A 26.3.0.103

 UDEL.EDU. 172800 NS LOUIE.UDEL.EDU.
 172800 NS UMN-REI-UC.ARPA.
 LOUIE.UDEL.EDU. 172800 A 10.0.0.96
 172800 A 192.5.39.3

 YALE.EDU. 172800 NS YALE.ARPA.
 YALE.EDU. 172800 NS YALE-BULLDOG.ARPA.

 MIT.EDU. 43200 NS XX.LCS.MIT.EDU.
 43200 NS ACHILLES.MIT.EDU.
 XX.LCS.MIT.EDU. 43200 A 10.0.0.44
 ACHILLES.MIT.EDU. 43200 A 18.72.0.8

Note the use of relative names here. The owner name for the ISI.EDU. is
stated using a relative name, as are two of the name server RR contents.
Relative and absolute domain names may be freely intermixed in a master

6.2. Example standard queries

The following queries and responses illustrate name server behavior.
Unless otherwise noted, the queries do not have recursion desired (RD)
in the header. Note that the answers to non-recursive queries do depend
on the server being asked, but do not depend on the identity of the
requester.

Mockapetris [Page 39]

RFC 1034 Domain Concepts and Facilities November 1987

6.2.1. QNAME=SRI-NIC.ARPA, QTYPE=A

The query would look like:

 +---+
 Header | OPCODE=SQUERY |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | <empty> |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

The response from C.ISI.EDU would be:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | SRI-NIC.ARPA. 86400 IN A 26.0.0.73 |
 | 86400 IN A 10.0.0.51 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

The header of the response looks like the header of the query, except
that the RESPONSE bit is set, indicating that this message is a
response, not a query, and the Authoritative Answer (AA) bit is set
indicating that the address RRs in the answer section are from
authoritative data. The question section of the response matches the
question section of the query.

Mockapetris [Page 40]

C
om

pendium
 1 page 38

RFC 1034 Domain Concepts and Facilities November 1987

If the same query was sent to some other server which was not
authoritative for SRI-NIC.ARPA, the response might be:

 +---+
 Header | OPCODE=SQUERY,RESPONSE |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | SRI-NIC.ARPA. 1777 IN A 10.0.0.51 |
 | 1777 IN A 26.0.0.73 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

This response is different from the previous one in two ways: the header
does not have AA set, and the TTLs are different. The inference is that
the data did not come from a zone, but from a cache. The difference
between the authoritative TTL and the TTL here is due to aging of the
data in a cache. The difference in ordering of the RRs in the answer
section is not significant.

6.2.2. QNAME=SRI-NIC.ARPA, QTYPE=*

A query similar to the previous one, but using a QTYPE of *, would
receive the following response from C.ISI.EDU:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=* |
 +---+
 Answer | SRI-NIC.ARPA. 86400 IN A 26.0.0.73 |
 | A 10.0.0.51 |
 | MX 0 SRI-NIC.ARPA. |
 | HINFO DEC-2060 TOPS20 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

Mockapetris [Page 41]

RFC 1034 Domain Concepts and Facilities November 1987

If a similar query was directed to two name servers which are not
authoritative for SRI-NIC.ARPA, the responses might be:

 +---+
 Header | OPCODE=SQUERY, RESPONSE |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=* |
 +---+
 Answer | SRI-NIC.ARPA. 12345 IN A 26.0.0.73 |
 | A 10.0.0.51 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

and

 +---+
 Header | OPCODE=SQUERY, RESPONSE |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=* |
 +---+
 Answer | SRI-NIC.ARPA. 1290 IN HINFO DEC-2060 TOPS20 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

Neither of these answers have AA set, so neither response comes from
authoritative data. The different contents and different TTLs suggest
that the two servers cached data at different times, and that the first
server cached the response to a QTYPE=A query and the second cached the
response to a HINFO query.

Mockapetris [Page 42]

C
om

pendium
 1 page 39

RFC 1034 Domain Concepts and Facilities November 1987

6.2.3. QNAME=SRI-NIC.ARPA, QTYPE=MX

This type of query might be result from a mailer trying to look up
routing information for the mail destination HOSTMASTER@SRI-NIC.ARPA.
The response from C.ISI.EDU would be:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=MX |
 +---+
 Answer | SRI-NIC.ARPA. 86400 IN MX 0 SRI-NIC.ARPA.|
 +---+
 Authority | <empty> |
 +---+
 Additional | SRI-NIC.ARPA. 86400 IN A 26.0.0.73 |
 | A 10.0.0.51 |
 +---+

This response contains the MX RR in the answer section of the response.
The additional section contains the address RRs because the name server
at C.ISI.EDU guesses that the requester will need the addresses in order
to properly use the information carried by the MX.

6.2.4. QNAME=SRI-NIC.ARPA, QTYPE=NS

C.ISI.EDU would reply to this query with:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=NS |
 +---+
 Answer | <empty> |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

The only difference between the response and the query is the AA and
RESPONSE bits in the header. The interpretation of this response is
that the server is authoritative for the name, and the name exists, but
no RRs of type NS are present there.

6.2.5. QNAME=SIR-NIC.ARPA, QTYPE=A

If a user mistyped a host name, we might see this type of query.

Mockapetris [Page 43]

RFC 1034 Domain Concepts and Facilities November 1987

C.ISI.EDU would answer it with:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA, RCODE=NE |
 +---+
 Question | QNAME=SIR-NIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | <empty> |
 +---+
 Authority | . SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. |
 | 870611 1800 300 604800 86400 |
 +---+
 Additional | <empty> |
 +---+

This response states that the name does not exist. This condition is
signalled in the response code (RCODE) section of the header.

The SOA RR in the authority section is the optional negative caching
information which allows the resolver using this response to assume that
the name will not exist for the SOA MINIMUM (86400) seconds.

6.2.6. QNAME=BRL.MIL, QTYPE=A

If this query is sent to C.ISI.EDU, the reply would be:

 +---+
 Header | OPCODE=SQUERY, RESPONSE |
 +---+
 Question | QNAME=BRL.MIL, QCLASS=IN, QTYPE=A |
 +---+
 Answer | <empty> |
 +---+
 Authority | MIL. 86400 IN NS SRI-NIC.ARPA. |
 | 86400 NS A.ISI.EDU. |
 +---+
 Additional | A.ISI.EDU. A 26.3.0.103 |
 | SRI-NIC.ARPA. A 26.0.0.73 |
 | A 10.0.0.51 |
 +---+

This response has an empty answer section, but is not authoritative, so
it is a referral. The name server on C.ISI.EDU, realizing that it is
not authoritative for the MIL domain, has referred the requester to
servers on A.ISI.EDU and SRI-NIC.ARPA, which it knows are authoritative
for the MIL domain.

Mockapetris [Page 44]

C
om

pendium
 1 page 40

RFC 1034 Domain Concepts and Facilities November 1987

6.2.7. QNAME=USC-ISIC.ARPA, QTYPE=A

The response to this query from A.ISI.EDU would be:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=USC-ISIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | USC-ISIC.ARPA. 86400 IN CNAME C.ISI.EDU. |
 | C.ISI.EDU. 86400 IN A 10.0.0.52 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

Note that the AA bit in the header guarantees that the data matching
QNAME is authoritative, but does not say anything about whether the data
for C.ISI.EDU is authoritative. This complete reply is possible because
A.ISI.EDU happens to be authoritative for both the ARPA domain where
USC-ISIC.ARPA is found and the ISI.EDU domain where C.ISI.EDU data is
found.

If the same query was sent to C.ISI.EDU, its response might be the same
as shown above if it had its own address in its cache, but might also
be:

Mockapetris [Page 45]

RFC 1034 Domain Concepts and Facilities November 1987

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=USC-ISIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | USC-ISIC.ARPA. 86400 IN CNAME C.ISI.EDU. |
 +---+
 Authority | ISI.EDU. 172800 IN NS VAXA.ISI.EDU. |
 | NS A.ISI.EDU. |
 | NS VENERA.ISI.EDU. |
 +---+
 Additional | VAXA.ISI.EDU. 172800 A 10.2.0.27 |
 | 172800 A 128.9.0.33 |
 | VENERA.ISI.EDU. 172800 A 10.1.0.52 |
 | 172800 A 128.9.0.32 |
 | A.ISI.EDU. 172800 A 26.3.0.103 |
 +---+

This reply contains an authoritative reply for the alias USC-ISIC.ARPA,
plus a referral to the name servers for ISI.EDU. This sort of reply
isn't very likely given that the query is for the host name of the name
server being asked, but would be common for other aliases.

6.2.8. QNAME=USC-ISIC.ARPA, QTYPE=CNAME

If this query is sent to either A.ISI.EDU or C.ISI.EDU, the reply would
be:

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=USC-ISIC.ARPA., QCLASS=IN, QTYPE=A |
 +---+
 Answer | USC-ISIC.ARPA. 86400 IN CNAME C.ISI.EDU. |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

Because QTYPE=CNAME, the CNAME RR itself answers the query, and the name
server doesn't attempt to look up anything for C.ISI.EDU. (Except
possibly for the additional section.)

6.3. Example resolution

The following examples illustrate the operations a resolver must perform
for its client. We assume that the resolver is starting without a

Mockapetris [Page 46]

C
om

pendium
 1 page 41

RFC 1034 Domain Concepts and Facilities November 1987

cache, as might be the case after system boot. We further assume that
the system is not one of the hosts in the data and that the host is
located somewhere on net 26, and that its safety belt (SBELT) data
structure has the following information:

 Match count = -1
 SRI-NIC.ARPA. 26.0.0.73 10.0.0.51
 A.ISI.EDU. 26.3.0.103

This information specifies servers to try, their addresses, and a match
count of -1, which says that the servers aren't very close to the
target. Note that the -1 isn't supposed to be an accurate closeness
measure, just a value so that later stages of the algorithm will work.

The following examples illustrate the use of a cache, so each example
assumes that previous requests have completed.

6.3.1. Resolve MX for ISI.EDU.

Suppose the first request to the resolver comes from the local mailer,
which has mail for PVM@ISI.EDU. The mailer might then ask for type MX
RRs for the domain name ISI.EDU.

The resolver would look in its cache for MX RRs at ISI.EDU, but the
empty cache wouldn't be helpful. The resolver would recognize that it
needed to query foreign servers and try to determine the best servers to
query. This search would look for NS RRs for the domains ISI.EDU, EDU,
and the root. These searches of the cache would also fail. As a last
resort, the resolver would use the information from the SBELT, copying
it into its SLIST structure.

At this point the resolver would need to pick one of the three available
addresses to try. Given that the resolver is on net 26, it should
choose either 26.0.0.73 or 26.3.0.103 as its first choice. It would
then send off a query of the form:

Mockapetris [Page 47]

RFC 1034 Domain Concepts and Facilities November 1987

 +---+
 Header | OPCODE=SQUERY |
 +---+
 Question | QNAME=ISI.EDU., QCLASS=IN, QTYPE=MX |
 +---+
 Answer | <empty> |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

The resolver would then wait for a response to its query or a timeout.
If the timeout occurs, it would try different servers, then different
addresses of the same servers, lastly retrying addresses already tried.
It might eventually receive a reply from SRI-NIC.ARPA:

 +---+
 Header | OPCODE=SQUERY, RESPONSE |
 +---+
 Question | QNAME=ISI.EDU., QCLASS=IN, QTYPE=MX |
 +---+
 Answer | <empty> |
 +---+
 Authority | ISI.EDU. 172800 IN NS VAXA.ISI.EDU. |
 | NS A.ISI.EDU. |
 | NS VENERA.ISI.EDU.|
 +---+
 Additional | VAXA.ISI.EDU. 172800 A 10.2.0.27 |
 | 172800 A 128.9.0.33 |
 | VENERA.ISI.EDU. 172800 A 10.1.0.52 |
 | 172800 A 128.9.0.32 |
 | A.ISI.EDU. 172800 A 26.3.0.103 |
 +---+

The resolver would notice that the information in the response gave a
closer delegation to ISI.EDU than its existing SLIST (since it matches
three labels). The resolver would then cache the information in this
response and use it to set up a new SLIST:

 Match count = 3
 A.ISI.EDU. 26.3.0.103
 VAXA.ISI.EDU. 10.2.0.27 128.9.0.33
 VENERA.ISI.EDU. 10.1.0.52 128.9.0.32

A.ISI.EDU appears on this list as well as the previous one, but that is
purely coincidental. The resolver would again start transmitting and
waiting for responses. Eventually it would get an answer:

Mockapetris [Page 48]

C
om

pendium
 1 page 42

RFC 1034 Domain Concepts and Facilities November 1987

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=ISI.EDU., QCLASS=IN, QTYPE=MX |
 +---+
 Answer | ISI.EDU. MX 10 VENERA.ISI.EDU. |
 | MX 20 VAXA.ISI.EDU. |
 +---+
 Authority | <empty> |
 +---+
 Additional | VAXA.ISI.EDU. 172800 A 10.2.0.27 |
 | 172800 A 128.9.0.33 |
 | VENERA.ISI.EDU. 172800 A 10.1.0.52 |
 | 172800 A 128.9.0.32 |
 +---+

The resolver would add this information to its cache, and return the MX
RRs to its client.

6.3.2. Get the host name for address 26.6.0.65

The resolver would translate this into a request for PTR RRs for
65.0.6.26.IN-ADDR.ARPA. This information is not in the cache, so the
resolver would look for foreign servers to ask. No servers would match,
so it would use SBELT again. (Note that the servers for the ISI.EDU
domain are in the cache, but ISI.EDU is not an ancestor of
65.0.6.26.IN-ADDR.ARPA, so the SBELT is used.)

Since this request is within the authoritative data of both servers in
SBELT, eventually one would return:

Mockapetris [Page 49]

RFC 1034 Domain Concepts and Facilities November 1987

 +---+
 Header | OPCODE=SQUERY, RESPONSE, AA |
 +---+
 Question | QNAME=65.0.6.26.IN-ADDR.ARPA.,QCLASS=IN,QTYPE=PTR |
 +---+
 Answer | 65.0.6.26.IN-ADDR.ARPA. PTR ACC.ARPA. |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

6.3.3. Get the host address of poneria.ISI.EDU

This request would translate into a type A request for poneria.ISI.EDU.
The resolver would not find any cached data for this name, but would
find the NS RRs in the cache for ISI.EDU when it looks for foreign
servers to ask. Using this data, it would construct a SLIST of the
form:

 Match count = 3

 A.ISI.EDU. 26.3.0.103
 VAXA.ISI.EDU. 10.2.0.27 128.9.0.33
 VENERA.ISI.EDU. 10.1.0.52

A.ISI.EDU is listed first on the assumption that the resolver orders its
choices by preference, and A.ISI.EDU is on the same network.

One of these servers would answer the query.

7. REFERENCES and BIBLIOGRAPHY

[Dyer 87] Dyer, S., and F. Hsu, "Hesiod", Project Athena
 Technical Plan - Name Service, April 1987, version 1.9.

 Describes the fundamentals of the Hesiod name service.

[IEN-116] J. Postel, "Internet Name Server", IEN-116,
 USC/Information Sciences Institute, August 1979.

 A name service obsoleted by the Domain Name System, but
 still in use.

Mockapetris [Page 50]

C
om

pendium
 1 page 43

RFC 1034 Domain Concepts and Facilities November 1987

[Quarterman 86] Quarterman, J., and J. Hoskins, "Notable Computer
 Networks",Communications of the ACM, October 1986,
 volume 29, number 10.

[RFC-742] K. Harrenstien, "NAME/FINGER", RFC-742, Network
 Information Center, SRI International, December 1977.

[RFC-768] J. Postel, "User Datagram Protocol", RFC-768,
 USC/Information Sciences Institute, August 1980.

[RFC-793] J. Postel, "Transmission Control Protocol", RFC-793,
 USC/Information Sciences Institute, September 1981.

[RFC-799] D. Mills, "Internet Name Domains", RFC-799, COMSAT,
 September 1981.

 Suggests introduction of a hierarchy in place of a flat
 name space for the Internet.

[RFC-805] J. Postel, "Computer Mail Meeting Notes", RFC-805,
 USC/Information Sciences Institute, February 1982.

[RFC-810] E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD
 Internet Host Table Specification", RFC-810, Network
 Information Center, SRI International, March 1982.

 Obsolete. See RFC-952.

[RFC-811] K. Harrenstien, V. White, and E. Feinler, "Hostnames
 Server", RFC-811, Network Information Center, SRI
 International, March 1982.

 Obsolete. See RFC-953.

[RFC-812] K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC-812,
 Network Information Center, SRI International, March
 1982.

[RFC-819] Z. Su, and J. Postel, "The Domain Naming Convention for
 Internet User Applications", RFC-819, Network
 Information Center, SRI International, August 1982.

 Early thoughts on the design of the domain system.
 Current implementation is completely different.

[RFC-821] J. Postel, "Simple Mail Transfer Protocol", RFC-821,
 USC/Information Sciences Institute, August 1980.

Mockapetris [Page 51]

RFC 1034 Domain Concepts and Facilities November 1987

[RFC-830] Z. Su, "A Distributed System for Internet Name Service",
 RFC-830, Network Information Center, SRI International,
 October 1982.

 Early thoughts on the design of the domain system.
 Current implementation is completely different.

[RFC-882] P. Mockapetris, "Domain names - Concepts and
 Facilities," RFC-882, USC/Information Sciences
 Institute, November 1983.

 Superceeded by this memo.

[RFC-883] P. Mockapetris, "Domain names - Implementation and
 Specification," RFC-883, USC/Information Sciences
 Institute, November 1983.

 Superceeded by this memo.

[RFC-920] J. Postel and J. Reynolds, "Domain Requirements",
 RFC-920, USC/Information Sciences Institute
 October 1984.

 Explains the naming scheme for top level domains.

[RFC-952] K. Harrenstien, M. Stahl, E. Feinler, "DoD Internet Host
 Table Specification", RFC-952, SRI, October 1985.

 Specifies the format of HOSTS.TXT, the host/address
 table replaced by the DNS.

[RFC-953] K. Harrenstien, M. Stahl, E. Feinler, "HOSTNAME Server",
 RFC-953, SRI, October 1985.

 This RFC contains the official specification of the
 hostname server protocol, which is obsoleted by the DNS.
 This TCP based protocol accesses information stored in
 the RFC-952 format, and is used to obtain copies of the
 host table.

[RFC-973] P. Mockapetris, "Domain System Changes and
 Observations", RFC-973, USC/Information Sciences
 Institute, January 1986.

 Describes changes to RFC-882 and RFC-883 and reasons for
 them. Now obsolete.

Mockapetris [Page 52]

C
om

pendium
 1 page 44

RFC 1034 Domain Concepts and Facilities November 1987

[RFC-974] C. Partridge, "Mail routing and the domain system",
 RFC-974, CSNET CIC BBN Labs, January 1986.

 Describes the transition from HOSTS.TXT based mail
 addressing to the more powerful MX system used with the
 domain system.

[RFC-1001] NetBIOS Working Group, "Protocol standard for a NetBIOS
 service on a TCP/UDP transport: Concepts and Methods",
 RFC-1001, March 1987.

 This RFC and RFC-1002 are a preliminary design for
 NETBIOS on top of TCP/IP which proposes to base NetBIOS
 name service on top of the DNS.

[RFC-1002] NetBIOS Working Group, "Protocol standard for a NetBIOS
 service on a TCP/UDP transport: Detailed
 Specifications", RFC-1002, March 1987.

[RFC-1010] J. Reynolds and J. Postel, "Assigned Numbers", RFC-1010,
 USC/Information Sciences Institute, May 1987

 Contains socket numbers and mnemonics for host names,
 operating systems, etc.

[RFC-1031] W. Lazear, "MILNET Name Domain Transition", RFC-1031,
 November 1987.

 Describes a plan for converting the MILNET to the DNS.

[RFC-1032] M. K. Stahl, "Establishing a Domain - Guidelines for
 Administrators", RFC-1032, November 1987.

 Describes the registration policies used by the NIC to
 administer the top level domains and delegate subzones.

[RFC-1033] M. K. Lottor, "Domain Administrators Operations Guide",
 RFC-1033, November 1987.

 A cookbook for domain administrators.

[Solomon 82] M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET
 Name Server", Computer Networks, vol 6, nr 3, July 1982.

 Describes a name service for CSNET which is independent
 from the DNS and DNS use in the CSNET.

Mockapetris [Page 53]

RFC 1034 Domain Concepts and Facilities November 1987

Index

 A 12
 Absolute names 8
 Aliases 14, 31
 Authority 6
 AXFR 17

 Case of characters 7
 CH 12
 CNAME 12, 13, 31
 Completion queries 18

 Domain name 6, 7

 Glue RRs 20

 HINFO 12

 IN 12
 Inverse queries 16
 Iterative 4

 Label 7

 Mailbox names 9
 MX 12

 Name error 27, 36
 Name servers 5, 17
 NE 30
 Negative caching 44
 NS 12

 Opcode 16

 PTR 12

 QCLASS 16
 QTYPE 16

 RDATA 13
 Recursive 4
 Recursive service 22
 Relative names 7
 Resolvers 6
 RR 12

Mockapetris [Page 54]

C
om

pendium
 1 page 45

RFC 1034 Domain Concepts and Facilities November 1987

 Safety belt 33
 Sections 16
 SOA 12
 Standard queries 22

 Status queries 18
 Stub resolvers 32

 TTL 12, 13

 Wildcards 25

 Zone transfers 28
 Zones 19

Mockapetris [Page 55]

C
om

pendium
 1 page 46

Network Working Group J. Klensin, Editor
Request for Comments: 2821 AT&T Laboratories
Obsoletes: 821, 974, 1869 April 2001
Updates: 1123
Category: Standards Track

 Simple Mail Transfer Protocol

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document is a self-contained specification of the basic protocol
 for the Internet electronic mail transport. It consolidates, updates
 and clarifies, but doesn't add new or change existing functionality
 of the following:

 - the original SMTP (Simple Mail Transfer Protocol) specification of
 RFC 821 [30],

 - domain name system requirements and implications for mail
 transport from RFC 1035 [22] and RFC 974 [27],

 - the clarifications and applicability statements in RFC 1123 [2],
 and

 - material drawn from the SMTP Extension mechanisms [19].

 It obsoletes RFC 821, RFC 974, and updates RFC 1123 (replaces the
 mail transport materials of RFC 1123). However, RFC 821 specifies
 some features that were not in significant use in the Internet by the
 mid-1990s and (in appendices) some additional transport models.
 Those sections are omitted here in the interest of clarity and
 brevity; readers needing them should refer to RFC 821.

Klensin Standards Track [Page 1]

RFC 2821 Simple Mail Transfer Protocol April 2001

 It also includes some additional material from RFC 1123 that required
 amplification. This material has been identified in multiple ways,
 mostly by tracking flaming on various lists and newsgroups and
 problems of unusual readings or interpretations that have appeared as
 the SMTP extensions have been deployed. Where this specification
 moves beyond consolidation and actually differs from earlier
 documents, it supersedes them technically as well as textually.

 Although SMTP was designed as a mail transport and delivery protocol,
 this specification also contains information that is important to its
 use as a 'mail submission' protocol, as recommended for POP [3, 26]
 and IMAP [6]. Additional submission issues are discussed in RFC 2476
 [15].

 Section 2.3 provides definitions of terms specific to this document.
 Except when the historical terminology is necessary for clarity, this
 document uses the current 'client' and 'server' terminology to
 identify the sending and receiving SMTP processes, respectively.

 A companion document [32] discusses message headers, message bodies
 and formats and structures for them, and their relationship.

Table of Contents

 1. Introduction .. 4
 2. The SMTP Model .. 5
 2.1 Basic Structure .. 5
 2.2 The Extension Model .. 7
 2.2.1 Background ... 7
 2.2.2 Definition and Registration of Extensions 8
 2.3 Terminology .. 9
 2.3.1 Mail Objects ... 10
 2.3.2 Senders and Receivers 10
 2.3.3 Mail Agents and Message Stores 10
 2.3.4 Host ... 11
 2.3.5 Domain ... 11
 2.3.6 Buffer and State Table 11
 2.3.7 Lines .. 12
 2.3.8 Originator, Delivery, Relay, and Gateway Systems 12
 2.3.9 Message Content and Mail Data 13
 2.3.10 Mailbox and Address 13
 2.3.11 Reply ... 13
 2.4 General Syntax Principles and Transaction Model 13
 3. The SMTP Procedures: An Overview 15
 3.1 Session Initiation ... 15
 3.2 Client Initiation .. 16
 3.3 Mail Transactions .. 16
 3.4 Forwarding for Address Correction or Updating 19

Klensin Standards Track [Page 2]

C
om

pendium
 1 page 47

RFC 2821 Simple Mail Transfer Protocol April 2001

 3.5 Commands for Debugging Addresses 20
 3.5.1 Overview ... 20
 3.5.2 VRFY Normal Response 22
 3.5.3 Meaning of VRFY or EXPN Success Response 22
 3.5.4 Semantics and Applications of EXPN 23
 3.6 Domains .. 23
 3.7 Relaying ... 24
 3.8 Mail Gatewaying .. 25
 3.8.1 Header Fields in Gatewaying 26
 3.8.2 Received Lines in Gatewaying 26
 3.8.3 Addresses in Gatewaying 26
 3.8.4 Other Header Fields in Gatewaying 27
 3.8.5 Envelopes in Gatewaying 27
 3.9 Terminating Sessions and Connections 27
 3.10 Mailing Lists and Aliases 28
 3.10.1 Alias ... 28
 3.10.2 List .. 28
 4. The SMTP Specifications 29
 4.1 SMTP Commands .. 29
 4.1.1 Command Semantics and Syntax 29
 4.1.1.1 Extended HELLO (EHLO) or HELLO (HELO) 29
 4.1.1.2 MAIL (MAIL) .. 31
 4.1.1.3 RECIPIENT (RCPT) ... 31
 4.1.1.4 DATA (DATA) .. 33
 4.1.1.5 RESET (RSET) ... 34
 4.1.1.6 VERIFY (VRFY) .. 35
 4.1.1.7 EXPAND (EXPN) .. 35
 4.1.1.8 HELP (HELP) .. 35
 4.1.1.9 NOOP (NOOP) .. 35
 4.1.1.10 QUIT (QUIT) ... 36
 4.1.2 Command Argument Syntax 36
 4.1.3 Address Literals ... 38
 4.1.4 Order of Commands .. 39
 4.1.5 Private-use Commands 40
 4.2 SMTP Replies .. 40
 4.2.1 Reply Code Severities and Theory 42
 4.2.2 Reply Codes by Function Groups 44
 4.2.3 Reply Codes in Numeric Order 45
 4.2.4 Reply Code 502 ... 46
 4.2.5 Reply Codes After DATA and the Subsequent <CRLF>.<CRLF> 46
 4.3 Sequencing of Commands and Replies 47
 4.3.1 Sequencing Overview .. 47
 4.3.2 Command-Reply Sequences 48
 4.4 Trace Information .. 49
 4.5 Additional Implementation Issues 53
 4.5.1 Minimum Implementation 53
 4.5.2 Transparency ... 53
 4.5.3 Sizes and Timeouts ... 54

Klensin Standards Track [Page 3]

RFC 2821 Simple Mail Transfer Protocol April 2001

 4.5.3.1 Size limits and minimums 54
 4.5.3.2 Timeouts ... 56
 4.5.4 Retry Strategies ... 57
 4.5.4.1 Sending Strategy ... 58
 4.5.4.2 Receiving Strategy 59
 4.5.5 Messages with a null reverse-path 59
 5. Address Resolution and Mail Handling 60
 6. Problem Detection and Handling 62
 6.1 Reliable Delivery and Replies by Email 62
 6.2 Loop Detection ... 63
 6.3 Compensating for Irregularities 63
 7. Security Considerations 64
 7.1 Mail Security and Spoofing 64
 7.2 "Blind" Copies ... 65
 7.3 VRFY, EXPN, and Security 65
 7.4 Information Disclosure in Announcements 66
 7.5 Information Disclosure in Trace Fields 66
 7.6 Information Disclosure in Message Forwarding 67
 7.7 Scope of Operation of SMTP Servers 67
 8. IANA Considerations ... 67
 9. References .. 68
 10. Editor's Address ... 70
 11. Acknowledgments .. 70
 Appendices ... 71
 A. TCP Transport Service ... 71
 B. Generating SMTP Commands from RFC 822 Headers 71
 C. Source Routes ... 72
 D. Scenarios ... 73
 E. Other Gateway Issues .. 76
 F. Deprecated Features of RFC 821 76
 Full Copyright Statement ... 79

1. Introduction

 The objective of the Simple Mail Transfer Protocol (SMTP) is to
 transfer mail reliably and efficiently.

 SMTP is independent of the particular transmission subsystem and
 requires only a reliable ordered data stream channel. While this
 document specifically discusses transport over TCP, other transports
 are possible. Appendices to RFC 821 describe some of them.

 An important feature of SMTP is its capability to transport mail
 across networks, usually referred to as "SMTP mail relaying" (see
 section 3.8). A network consists of the mutually-TCP-accessible
 hosts on the public Internet, the mutually-TCP-accessible hosts on a
 firewall-isolated TCP/IP Intranet, or hosts in some other LAN or WAN
 environment utilizing a non-TCP transport-level protocol. Using

Klensin Standards Track [Page 4]

C
om

pendium
 1 page 48

RFC 2821 Simple Mail Transfer Protocol April 2001

 SMTP, a process can transfer mail to another process on the same
 network or to some other network via a relay or gateway process
 accessible to both networks.

 In this way, a mail message may pass through a number of intermediate
 relay or gateway hosts on its path from sender to ultimate recipient.
 The Mail eXchanger mechanisms of the domain name system [22, 27] (and
 section 5 of this document) are used to identify the appropriate
 next-hop destination for a message being transported.

2. The SMTP Model

2.1 Basic Structure

 The SMTP design can be pictured as:

 +----------+ +----------+
 +------+ | | | |
 | User |<-->| | SMTP | |
 +------+ | Client- |Commands/Replies| Server- |
 +------+ | SMTP |<-------------->| SMTP | +------+
 | File |<-->| | and Mail | |<-->| File |
 |System| | | | | |System|
 +------+ +----------+ +----------+ +------+
 SMTP client SMTP server

 When an SMTP client has a message to transmit, it establishes a two-
 way transmission channel to an SMTP server. The responsibility of an
 SMTP client is to transfer mail messages to one or more SMTP servers,
 or report its failure to do so.

 The means by which a mail message is presented to an SMTP client, and
 how that client determines the domain name(s) to which mail messages
 are to be transferred is a local matter, and is not addressed by this
 document. In some cases, the domain name(s) transferred to, or
 determined by, an SMTP client will identify the final destination(s)
 of the mail message. In other cases, common with SMTP clients
 associated with implementations of the POP [3, 26] or IMAP [6]
 protocols, or when the SMTP client is inside an isolated transport
 service environment, the domain name determined will identify an
 intermediate destination through which all mail messages are to be
 relayed. SMTP clients that transfer all traffic, regardless of the
 target domain names associated with the individual messages, or that
 do not maintain queues for retrying message transmissions that
 initially cannot be completed, may otherwise conform to this
 specification but are not considered fully-capable. Fully-capable
 SMTP implementations, including the relays used by these less capable

Klensin Standards Track [Page 5]

RFC 2821 Simple Mail Transfer Protocol April 2001

 ones, and their destinations, are expected to support all of the
 queuing, retrying, and alternate address functions discussed in this
 specification.

 The means by which an SMTP client, once it has determined a target
 domain name, determines the identity of an SMTP server to which a
 copy of a message is to be transferred, and then performs that
 transfer, is covered by this document. To effect a mail transfer to
 an SMTP server, an SMTP client establishes a two-way transmission
 channel to that SMTP server. An SMTP client determines the address
 of an appropriate host running an SMTP server by resolving a
 destination domain name to either an intermediate Mail eXchanger host
 or a final target host.

 An SMTP server may be either the ultimate destination or an
 intermediate "relay" (that is, it may assume the role of an SMTP
 client after receiving the message) or "gateway" (that is, it may
 transport the message further using some protocol other than SMTP).
 SMTP commands are generated by the SMTP client and sent to the SMTP
 server. SMTP replies are sent from the SMTP server to the SMTP
 client in response to the commands.

 In other words, message transfer can occur in a single connection
 between the original SMTP-sender and the final SMTP-recipient, or can
 occur in a series of hops through intermediary systems. In either
 case, a formal handoff of responsibility for the message occurs: the
 protocol requires that a server accept responsibility for either
 delivering a message or properly reporting the failure to do so.

 Once the transmission channel is established and initial handshaking
 completed, the SMTP client normally initiates a mail transaction.
 Such a transaction consists of a series of commands to specify the
 originator and destination of the mail and transmission of the
 message content (including any headers or other structure) itself.
 When the same message is sent to multiple recipients, this protocol
 encourages the transmission of only one copy of the data for all
 recipients at the same destination (or intermediate relay) host.

 The server responds to each command with a reply; replies may
 indicate that the command was accepted, that additional commands are
 expected, or that a temporary or permanent error condition exists.
 Commands specifying the sender or recipients may include server-
 permitted SMTP service extension requests as discussed in section
 2.2. The dialog is purposely lock-step, one-at-a-time, although this
 can be modified by mutually-agreed extension requests such as command
 pipelining [13].

Klensin Standards Track [Page 6]

C
om

pendium
 1 page 49

RFC 2821 Simple Mail Transfer Protocol April 2001

 Once a given mail message has been transmitted, the client may either
 request that the connection be shut down or may initiate other mail
 transactions. In addition, an SMTP client may use a connection to an
 SMTP server for ancillary services such as verification of email
 addresses or retrieval of mailing list subscriber addresses.

 As suggested above, this protocol provides mechanisms for the
 transmission of mail. This transmission normally occurs directly
 from the sending user's host to the receiving user's host when the
 two hosts are connected to the same transport service. When they are
 not connected to the same transport service, transmission occurs via
 one or more relay SMTP servers. An intermediate host that acts as
 either an SMTP relay or as a gateway into some other transmission
 environment is usually selected through the use of the domain name
 service (DNS) Mail eXchanger mechanism.

 Usually, intermediate hosts are determined via the DNS MX record, not
 by explicit "source" routing (see section 5 and appendices C and
 F.2).

2.2 The Extension Model

2.2.1 Background

 In an effort that started in 1990, approximately a decade after RFC
 821 was completed, the protocol was modified with a "service
 extensions" model that permits the client and server to agree to
 utilize shared functionality beyond the original SMTP requirements.
 The SMTP extension mechanism defines a means whereby an extended SMTP
 client and server may recognize each other, and the server can inform
 the client as to the service extensions that it supports.

 Contemporary SMTP implementations MUST support the basic extension
 mechanisms. For instance, servers MUST support the EHLO command even
 if they do not implement any specific extensions and clients SHOULD
 preferentially utilize EHLO rather than HELO. (However, for
 compatibility with older conforming implementations, SMTP clients and
 servers MUST support the original HELO mechanisms as a fallback.)
 Unless the different characteristics of HELO must be identified for
 interoperability purposes, this document discusses only EHLO.

 SMTP is widely deployed and high-quality implementations have proven
 to be very robust. However, the Internet community now considers
 some services to be important that were not anticipated when the
 protocol was first designed. If support for those services is to be
 added, it must be done in a way that permits older implementations to
 continue working acceptably. The extension framework consists of:

Klensin Standards Track [Page 7]

RFC 2821 Simple Mail Transfer Protocol April 2001

 - The SMTP command EHLO, superseding the earlier HELO,

 - a registry of SMTP service extensions,

 - additional parameters to the SMTP MAIL and RCPT commands, and

 - optional replacements for commands defined in this protocol, such
 as for DATA in non-ASCII transmissions [33].

 SMTP's strength comes primarily from its simplicity. Experience with
 many protocols has shown that protocols with few options tend towards
 ubiquity, whereas protocols with many options tend towards obscurity.

 Each and every extension, regardless of its benefits, must be
 carefully scrutinized with respect to its implementation, deployment,
 and interoperability costs. In many cases, the cost of extending the
 SMTP service will likely outweigh the benefit.

2.2.2 Definition and Registration of Extensions

 The IANA maintains a registry of SMTP service extensions. A
 corresponding EHLO keyword value is associated with each extension.
 Each service extension registered with the IANA must be defined in a
 formal standards-track or IESG-approved experimental protocol
 document. The definition must include:

 - the textual name of the SMTP service extension;

 - the EHLO keyword value associated with the extension;

 - the syntax and possible values of parameters associated with the
 EHLO keyword value;

 - any additional SMTP verbs associated with the extension
 (additional verbs will usually be, but are not required to be, the
 same as the EHLO keyword value);

 - any new parameters the extension associates with the MAIL or RCPT
 verbs;

 - a description of how support for the extension affects the
 behavior of a server and client SMTP; and,

 - the increment by which the extension is increasing the maximum
 length of the commands MAIL and/or RCPT, over that specified in
 this standard.

Klensin Standards Track [Page 8]

C
om

pendium
 1 page 50

RFC 2821 Simple Mail Transfer Protocol April 2001

 In addition, any EHLO keyword value starting with an upper or lower
 case "X" refers to a local SMTP service extension used exclusively
 through bilateral agreement. Keywords beginning with "X" MUST NOT be
 used in a registered service extension. Conversely, keyword values
 presented in the EHLO response that do not begin with "X" MUST
 correspond to a standard, standards-track, or IESG-approved
 experimental SMTP service extension registered with IANA. A
 conforming server MUST NOT offer non-"X"-prefixed keyword values that
 are not described in a registered extension.

 Additional verbs and parameter names are bound by the same rules as
 EHLO keywords; specifically, verbs beginning with "X" are local
 extensions that may not be registered or standardized. Conversely,
 verbs not beginning with "X" must always be registered.

2.3 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described below.

 1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that
 the definition is an absolute requirement of the specification.

 2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the
 definition is an absolute prohibition of the specification.

 3. SHOULD This word, or the adjective "RECOMMENDED", mean that
 there may exist valid reasons in particular circumstances to
 ignore a particular item, but the full implications must be
 understood and carefully weighed before choosing a different
 course.

 4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean
 that there may exist valid reasons in particular circumstances
 when the particular behavior is acceptable or even useful, but the
 full implications should be understood and the case carefully
 weighed before implementing any behavior described with this
 label.

 5. MAY This word, or the adjective "OPTIONAL", mean that an item is
 truly optional. One vendor may choose to include the item because
 a particular marketplace requires it or because the vendor feels
 that it enhances the product while another vendor may omit the
 same item. An implementation which does not include a particular
 option MUST be prepared to interoperate with another
 implementation which does include the option, though perhaps with
 reduced functionality. In the same vein an implementation which

Klensin Standards Track [Page 9]

RFC 2821 Simple Mail Transfer Protocol April 2001

 does include a particular option MUST be prepared to interoperate
 with another implementation which does not include the option
 (except, of course, for the feature the option provides.)

2.3.1 Mail Objects

 SMTP transports a mail object. A mail object contains an envelope
 and content.

 The SMTP envelope is sent as a series of SMTP protocol units
 (described in section 3). It consists of an originator address (to
 which error reports should be directed); one or more recipient
 addresses; and optional protocol extension material. Historically,
 variations on the recipient address specification command (RCPT TO)
 could be used to specify alternate delivery modes, such as immediate
 display; those variations have now been deprecated (see appendix F,
 section F.6).

 The SMTP content is sent in the SMTP DATA protocol unit and has two
 parts: the headers and the body. If the content conforms to other
 contemporary standards, the headers form a collection of field/value
 pairs structured as in the message format specification [32]; the
 body, if structured, is defined according to MIME [12]. The content
 is textual in nature, expressed using the US-ASCII repertoire [1].
 Although SMTP extensions (such as "8BITMIME" [20]) may relax this
 restriction for the content body, the content headers are always
 encoded using the US-ASCII repertoire. A MIME extension [23] defines
 an algorithm for representing header values outside the US-ASCII
 repertoire, while still encoding them using the US-ASCII repertoire.

2.3.2 Senders and Receivers

 In RFC 821, the two hosts participating in an SMTP transaction were
 described as the "SMTP-sender" and "SMTP-receiver". This document
 has been changed to reflect current industry terminology and hence
 refers to them as the "SMTP client" (or sometimes just "the client")
 and "SMTP server" (or just "the server"), respectively. Since a
 given host may act both as server and client in a relay situation,
 "receiver" and "sender" terminology is still used where needed for
 clarity.

2.3.3 Mail Agents and Message Stores

 Additional mail system terminology became common after RFC 821 was
 published and, where convenient, is used in this specification. In
 particular, SMTP servers and clients provide a mail transport service
 and therefore act as "Mail Transfer Agents" (MTAs). "Mail User
 Agents" (MUAs or UAs) are normally thought of as the sources and

Klensin Standards Track [Page 10]

C
om

pendium
 1 page 51

RFC 2821 Simple Mail Transfer Protocol April 2001

 targets of mail. At the source, an MUA might collect mail to be
 transmitted from a user and hand it off to an MTA; the final
 ("delivery") MTA would be thought of as handing the mail off to an
 MUA (or at least transferring responsibility to it, e.g., by
 depositing the message in a "message store"). However, while these
 terms are used with at least the appearance of great precision in
 other environments, the implied boundaries between MUAs and MTAs
 often do not accurately match common, and conforming, practices with
 Internet mail. Hence, the reader should be cautious about inferring
 the strong relationships and responsibilities that might be implied
 if these terms were used elsewhere.

2.3.4 Host

 For the purposes of this specification, a host is a computer system
 attached to the Internet (or, in some cases, to a private TCP/IP
 network) and supporting the SMTP protocol. Hosts are known by names
 (see "domain"); identifying them by numerical address is discouraged.

2.3.5 Domain

 A domain (or domain name) consists of one or more dot-separated
 components. These components ("labels" in DNS terminology [22]) are
 restricted for SMTP purposes to consist of a sequence of letters,
 digits, and hyphens drawn from the ASCII character set [1]. Domain
 names are used as names of hosts and of other entities in the domain
 name hierarchy. For example, a domain may refer to an alias (label
 of a CNAME RR) or the label of Mail eXchanger records to be used to
 deliver mail instead of representing a host name. See [22] and
 section 5 of this specification.

 The domain name, as described in this document and in [22], is the
 entire, fully-qualified name (often referred to as an "FQDN"). A
 domain name that is not in FQDN form is no more than a local alias.
 Local aliases MUST NOT appear in any SMTP transaction.

2.3.6 Buffer and State Table

 SMTP sessions are stateful, with both parties carefully maintaining a
 common view of the current state. In this document we model this
 state by a virtual "buffer" and a "state table" on the server which
 may be used by the client to, for example, "clear the buffer" or
 "reset the state table," causing the information in the buffer to be
 discarded and the state to be returned to some previous state.

Klensin Standards Track [Page 11]

RFC 2821 Simple Mail Transfer Protocol April 2001

2.3.7 Lines

 SMTP commands and, unless altered by a service extension, message
 data, are transmitted in "lines". Lines consist of zero or more data
 characters terminated by the sequence ASCII character "CR" (hex value
 0D) followed immediately by ASCII character "LF" (hex value 0A).
 This termination sequence is denoted as <CRLF> in this document.
 Conforming implementations MUST NOT recognize or generate any other
 character or character sequence as a line terminator. Limits MAY be
 imposed on line lengths by servers (see section 4.5.3).

 In addition, the appearance of "bare" "CR" or "LF" characters in text
 (i.e., either without the other) has a long history of causing
 problems in mail implementations and applications that use the mail
 system as a tool. SMTP client implementations MUST NOT transmit
 these characters except when they are intended as line terminators
 and then MUST, as indicated above, transmit them only as a <CRLF>
 sequence.

2.3.8 Originator, Delivery, Relay, and Gateway Systems

 This specification makes a distinction among four types of SMTP
 systems, based on the role those systems play in transmitting
 electronic mail. An "originating" system (sometimes called an SMTP
 originator) introduces mail into the Internet or, more generally,
 into a transport service environment. A "delivery" SMTP system is
 one that receives mail from a transport service environment and
 passes it to a mail user agent or deposits it in a message store
 which a mail user agent is expected to subsequently access. A
 "relay" SMTP system (usually referred to just as a "relay") receives
 mail from an SMTP client and transmits it, without modification to
 the message data other than adding trace information, to another SMTP
 server for further relaying or for delivery.

 A "gateway" SMTP system (usually referred to just as a "gateway")
 receives mail from a client system in one transport environment and
 transmits it to a server system in another transport environment.
 Differences in protocols or message semantics between the transport
 environments on either side of a gateway may require that the gateway
 system perform transformations to the message that are not permitted
 to SMTP relay systems. For the purposes of this specification,
 firewalls that rewrite addresses should be considered as gateways,
 even if SMTP is used on both sides of them (see [11]).

Klensin Standards Track [Page 12]

C
om

pendium
 1 page 52

RFC 2821 Simple Mail Transfer Protocol April 2001

2.3.9 Message Content and Mail Data

 The terms "message content" and "mail data" are used interchangeably
 in this document to describe the material transmitted after the DATA
 command is accepted and before the end of data indication is
 transmitted. Message content includes message headers and the
 possibly-structured message body. The MIME specification [12]
 provides the standard mechanisms for structured message bodies.

2.3.10 Mailbox and Address

 As used in this specification, an "address" is a character string
 that identifies a user to whom mail will be sent or a location into
 which mail will be deposited. The term "mailbox" refers to that
 depository. The two terms are typically used interchangeably unless
 the distinction between the location in which mail is placed (the
 mailbox) and a reference to it (the address) is important. An
 address normally consists of user and domain specifications. The
 standard mailbox naming convention is defined to be "local-
 part@domain": contemporary usage permits a much broader set of
 applications than simple "user names". Consequently, and due to a
 long history of problems when intermediate hosts have attempted to
 optimize transport by modifying them, the local-part MUST be
 interpreted and assigned semantics only by the host specified in the
 domain part of the address.

2.3.11 Reply

 An SMTP reply is an acknowledgment (positive or negative) sent from
 receiver to sender via the transmission channel in response to a
 command. The general form of a reply is a numeric completion code
 (indicating failure or success) usually followed by a text string.
 The codes are for use by programs and the text is usually intended
 for human users. Recent work [34] has specified further structuring
 of the reply strings, including the use of supplemental and more
 specific completion codes.

2.4 General Syntax Principles and Transaction Model

 SMTP commands and replies have a rigid syntax. All commands begin
 with a command verb. All Replies begin with a three digit numeric
 code. In some commands and replies, arguments MUST follow the verb
 or reply code. Some commands do not accept arguments (after the
 verb), and some reply codes are followed, sometimes optionally, by
 free form text. In both cases, where text appears, it is separated
 from the verb or reply code by a space character. Complete
 definitions of commands and replies appear in section 4.

Klensin Standards Track [Page 13]

RFC 2821 Simple Mail Transfer Protocol April 2001

 Verbs and argument values (e.g., "TO:" or "to:" in the RCPT command
 and extension name keywords) are not case sensitive, with the sole
 exception in this specification of a mailbox local-part (SMTP
 Extensions may explicitly specify case-sensitive elements). That is,
 a command verb, an argument value other than a mailbox local-part,
 and free form text MAY be encoded in upper case, lower case, or any
 mixture of upper and lower case with no impact on its meaning. This
 is NOT true of a mailbox local-part. The local-part of a mailbox
 MUST BE treated as case sensitive. Therefore, SMTP implementations
 MUST take care to preserve the case of mailbox local-parts. Mailbox
 domains are not case sensitive. In particular, for some hosts the
 user "smith" is different from the user "Smith". However, exploiting
 the case sensitivity of mailbox local-parts impedes interoperability
 and is discouraged.

 A few SMTP servers, in violation of this specification (and RFC 821)
 require that command verbs be encoded by clients in upper case.
 Implementations MAY wish to employ this encoding to accommodate those
 servers.

 The argument field consists of a variable length character string
 ending with the end of the line, i.e., with the character sequence
 <CRLF>. The receiver will take no action until this sequence is
 received.

 The syntax for each command is shown with the discussion of that
 command. Common elements and parameters are shown in section 4.1.2.

 Commands and replies are composed of characters from the ASCII
 character set [1]. When the transport service provides an 8-bit byte
 (octet) transmission channel, each 7-bit character is transmitted
 right justified in an octet with the high order bit cleared to zero.
 More specifically, the unextended SMTP service provides seven bit
 transport only. An originating SMTP client which has not
 successfully negotiated an appropriate extension with a particular
 server MUST NOT transmit messages with information in the high-order
 bit of octets. If such messages are transmitted in violation of this
 rule, receiving SMTP servers MAY clear the high-order bit or reject
 the message as invalid. In general, a relay SMTP SHOULD assume that
 the message content it has received is valid and, assuming that the
 envelope permits doing so, relay it without inspecting that content.
 Of course, if the content is mislabeled and the data path cannot
 accept the actual content, this may result in ultimate delivery of a
 severely garbled message to the recipient. Delivery SMTP systems MAY
 reject ("bounce") such messages rather than deliver them. No sending
 SMTP system is permitted to send envelope commands in any character

Klensin Standards Track [Page 14]

C
om

pendium
 1 page 53

RFC 2821 Simple Mail Transfer Protocol April 2001

 set other than US-ASCII; receiving systems SHOULD reject such
 commands, normally using "500 syntax error - invalid character"
 replies.

 Eight-bit message content transmission MAY be requested of the server
 by a client using extended SMTP facilities, notably the "8BITMIME"
 extension [20]. 8BITMIME SHOULD be supported by SMTP servers.
 However, it MUST not be construed as authorization to transmit
 unrestricted eight bit material. 8BITMIME MUST NOT be requested by
 senders for material with the high bit on that is not in MIME format
 with an appropriate content-transfer encoding; servers MAY reject
 such messages.

 The metalinguistic notation used in this document corresponds to the
 "Augmented BNF" used in other Internet mail system documents. The
 reader who is not familiar with that syntax should consult the ABNF
 specification [8]. Metalanguage terms used in running text are
 surrounded by pointed brackets (e.g., <CRLF>) for clarity.

3. The SMTP Procedures: An Overview

 This section contains descriptions of the procedures used in SMTP:
 session initiation, the mail transaction, forwarding mail, verifying
 mailbox names and expanding mailing lists, and the opening and
 closing exchanges. Comments on relaying, a note on mail domains, and
 a discussion of changing roles are included at the end of this
 section. Several complete scenarios are presented in appendix D.

3.1 Session Initiation

 An SMTP session is initiated when a client opens a connection to a
 server and the server responds with an opening message.

 SMTP server implementations MAY include identification of their
 software and version information in the connection greeting reply
 after the 220 code, a practice that permits more efficient isolation
 and repair of any problems. Implementations MAY make provision for
 SMTP servers to disable the software and version announcement where
 it causes security concerns. While some systems also identify their
 contact point for mail problems, this is not a substitute for
 maintaining the required "postmaster" address (see section 4.5.1).

 The SMTP protocol allows a server to formally reject a transaction
 while still allowing the initial connection as follows: a 554
 response MAY be given in the initial connection opening message
 instead of the 220. A server taking this approach MUST still wait
 for the client to send a QUIT (see section 4.1.1.10) before closing
 the connection and SHOULD respond to any intervening commands with

Klensin Standards Track [Page 15]

RFC 2821 Simple Mail Transfer Protocol April 2001

 "503 bad sequence of commands". Since an attempt to make an SMTP
 connection to such a system is probably in error, a server returning
 a 554 response on connection opening SHOULD provide enough
 information in the reply text to facilitate debugging of the sending
 system.

3.2 Client Initiation

 Once the server has sent the welcoming message and the client has
 received it, the client normally sends the EHLO command to the
 server, indicating the client's identity. In addition to opening the
 session, use of EHLO indicates that the client is able to process
 service extensions and requests that the server provide a list of the
 extensions it supports. Older SMTP systems which are unable to
 support service extensions and contemporary clients which do not
 require service extensions in the mail session being initiated, MAY
 use HELO instead of EHLO. Servers MUST NOT return the extended
 EHLO-style response to a HELO command. For a particular connection
 attempt, if the server returns a "command not recognized" response to
 EHLO, the client SHOULD be able to fall back and send HELO.

 In the EHLO command the host sending the command identifies itself;
 the command may be interpreted as saying "Hello, I am <domain>" (and,
 in the case of EHLO, "and I support service extension requests").

3.3 Mail Transactions

 There are three steps to SMTP mail transactions. The transaction
 starts with a MAIL command which gives the sender identification.
 (In general, the MAIL command may be sent only when no mail
 transaction is in progress; see section 4.1.4.) A series of one or
 more RCPT commands follows giving the receiver information. Then a
 DATA command initiates transfer of the mail data and is terminated by
 the "end of mail" data indicator, which also confirms the
 transaction.

 The first step in the procedure is the MAIL command.

 MAIL FROM:<reverse-path> [SP <mail-parameters>] <CRLF>

 This command tells the SMTP-receiver that a new mail transaction is
 starting and to reset all its state tables and buffers, including any
 recipients or mail data. The <reverse-path> portion of the first or
 only argument contains the source mailbox (between "<" and ">"
 brackets), which can be used to report errors (see section 4.2 for a
 discussion of error reporting). If accepted, the SMTP server returns
 a 250 OK reply. If the mailbox specification is not acceptable for
 some reason, the server MUST return a reply indicating whether the

Klensin Standards Track [Page 16]

C
om

pendium
 1 page 54

RFC 2821 Simple Mail Transfer Protocol April 2001

 failure is permanent (i.e., will occur again if the client tries to
 send the same address again) or temporary (i.e., the address might be
 accepted if the client tries again later). Despite the apparent
 scope of this requirement, there are circumstances in which the
 acceptability of the reverse-path may not be determined until one or
 more forward-paths (in RCPT commands) can be examined. In those
 cases, the server MAY reasonably accept the reverse-path (with a 250
 reply) and then report problems after the forward-paths are received
 and examined. Normally, failures produce 550 or 553 replies.

 Historically, the <reverse-path> can contain more than just a
 mailbox, however, contemporary systems SHOULD NOT use source routing
 (see appendix C).

 The optional <mail-parameters> are associated with negotiated SMTP
 service extensions (see section 2.2).

 The second step in the procedure is the RCPT command.

 RCPT TO:<forward-path> [SP <rcpt-parameters>] <CRLF>

 The first or only argument to this command includes a forward-path
 (normally a mailbox and domain, always surrounded by "<" and ">"
 brackets) identifying one recipient. If accepted, the SMTP server
 returns a 250 OK reply and stores the forward-path. If the recipient
 is known not to be a deliverable address, the SMTP server returns a
 550 reply, typically with a string such as "no such user - " and the
 mailbox name (other circumstances and reply codes are possible).
 This step of the procedure can be repeated any number of times.

 The <forward-path> can contain more than just a mailbox.
 Historically, the <forward-path> can be a source routing list of
 hosts and the destination mailbox, however, contemporary SMTP clients
 SHOULD NOT utilize source routes (see appendix C). Servers MUST be
 prepared to encounter a list of source routes in the forward path,
 but SHOULD ignore the routes or MAY decline to support the relaying
 they imply. Similarly, servers MAY decline to accept mail that is
 destined for other hosts or systems. These restrictions make a
 server useless as a relay for clients that do not support full SMTP
 functionality. Consequently, restricted-capability clients MUST NOT
 assume that any SMTP server on the Internet can be used as their mail
 processing (relaying) site. If a RCPT command appears without a
 previous MAIL command, the server MUST return a 503 "Bad sequence of
 commands" response. The optional <rcpt-parameters> are associated
 with negotiated SMTP service extensions (see section 2.2).

 The third step in the procedure is the DATA command (or some
 alternative specified in a service extension).

Klensin Standards Track [Page 17]

RFC 2821 Simple Mail Transfer Protocol April 2001

 DATA <CRLF>

 If accepted, the SMTP server returns a 354 Intermediate reply and
 considers all succeeding lines up to but not including the end of
 mail data indicator to be the message text. When the end of text is
 successfully received and stored the SMTP-receiver sends a 250 OK
 reply.

 Since the mail data is sent on the transmission channel, the end of
 mail data must be indicated so that the command and reply dialog can
 be resumed. SMTP indicates the end of the mail data by sending a
 line containing only a "." (period or full stop). A transparency
 procedure is used to prevent this from interfering with the user's
 text (see section 4.5.2).

 The end of mail data indicator also confirms the mail transaction and
 tells the SMTP server to now process the stored recipients and mail
 data. If accepted, the SMTP server returns a 250 OK reply. The DATA
 command can fail at only two points in the protocol exchange:

 - If there was no MAIL, or no RCPT, command, or all such commands
 were rejected, the server MAY return a "command out of sequence"
 (503) or "no valid recipients" (554) reply in response to the DATA
 command. If one of those replies (or any other 5yz reply) is
 received, the client MUST NOT send the message data; more
 generally, message data MUST NOT be sent unless a 354 reply is
 received.

 - If the verb is initially accepted and the 354 reply issued, the
 DATA command should fail only if the mail transaction was
 incomplete (for example, no recipients), or if resources were
 unavailable (including, of course, the server unexpectedly
 becoming unavailable), or if the server determines that the
 message should be rejected for policy or other reasons.

 However, in practice, some servers do not perform recipient
 verification until after the message text is received. These servers
 SHOULD treat a failure for one or more recipients as a "subsequent
 failure" and return a mail message as discussed in section 6. Using
 a "550 mailbox not found" (or equivalent) reply code after the data
 are accepted makes it difficult or impossible for the client to
 determine which recipients failed.

 When RFC 822 format [7, 32] is being used, the mail data include the
 memo header items such as Date, Subject, To, Cc, From. Server SMTP
 systems SHOULD NOT reject messages based on perceived defects in the
 RFC 822 or MIME [12] message header or message body. In particular,

Klensin Standards Track [Page 18]

C
om

pendium
 1 page 55

RFC 2821 Simple Mail Transfer Protocol April 2001

 they MUST NOT reject messages in which the numbers of Resent-fields
 do not match or Resent-to appears without Resent-from and/or Resent-
 date.

 Mail transaction commands MUST be used in the order discussed above.

3.4 Forwarding for Address Correction or Updating

 Forwarding support is most often required to consolidate and simplify
 addresses within, or relative to, some enterprise and less frequently
 to establish addresses to link a person's prior address with current
 one. Silent forwarding of messages (without server notification to
 the sender), for security or non-disclosure purposes, is common in
 the contemporary Internet.

 In both the enterprise and the "new address" cases, information
 hiding (and sometimes security) considerations argue against exposure
 of the "final" address through the SMTP protocol as a side-effect of
 the forwarding activity. This may be especially important when the
 final address may not even be reachable by the sender. Consequently,
 the "forwarding" mechanisms described in section 3.2 of RFC 821, and
 especially the 251 (corrected destination) and 551 reply codes from
 RCPT must be evaluated carefully by implementers and, when they are
 available, by those configuring systems.

 In particular:

 * Servers MAY forward messages when they are aware of an address
 change. When they do so, they MAY either provide address-updating
 information with a 251 code, or may forward "silently" and return
 a 250 code. But, if a 251 code is used, they MUST NOT assume that
 the client will actually update address information or even return
 that information to the user.

 Alternately,

 * Servers MAY reject or bounce messages when they are not
 deliverable when addressed. When they do so, they MAY either
 provide address-updating information with a 551 code, or may
 reject the message as undeliverable with a 550 code and no
 address-specific information. But, if a 551 code is used, they
 MUST NOT assume that the client will actually update address
 information or even return that information to the user.

 SMTP server implementations that support the 251 and/or 551 reply
 codes are strongly encouraged to provide configuration mechanisms so
 that sites which conclude that they would undesirably disclose
 information can disable or restrict their use.

Klensin Standards Track [Page 19]

RFC 2821 Simple Mail Transfer Protocol April 2001

3.5 Commands for Debugging Addresses

3.5.1 Overview

 SMTP provides commands to verify a user name or obtain the content of
 a mailing list. This is done with the VRFY and EXPN commands, which
 have character string arguments. Implementations SHOULD support VRFY
 and EXPN (however, see section 3.5.2 and 7.3).

 For the VRFY command, the string is a user name or a user name and
 domain (see below). If a normal (i.e., 250) response is returned,
 the response MAY include the full name of the user and MUST include
 the mailbox of the user. It MUST be in either of the following
 forms:

 User Name <local-part@domain>
 local-part@domain

 When a name that is the argument to VRFY could identify more than one
 mailbox, the server MAY either note the ambiguity or identify the
 alternatives. In other words, any of the following are legitimate
 response to VRFY:

 553 User ambiguous

 or

 553- Ambiguous; Possibilities are
 553-Joe Smith <jsmith@foo.com>
 553-Harry Smith <hsmith@foo.com>
 553 Melvin Smith <dweep@foo.com>

 or

 553-Ambiguous; Possibilities
 553- <jsmith@foo.com>
 553- <hsmith@foo.com>
 553 <dweep@foo.com>

 Under normal circumstances, a client receiving a 553 reply would be
 expected to expose the result to the user. Use of exactly the forms
 given, and the "user ambiguous" or "ambiguous" keywords, possibly
 supplemented by extended reply codes such as those described in [34],
 will facilitate automated translation into other languages as needed.
 Of course, a client that was highly automated or that was operating
 in another language than English, might choose to try to translate
 the response, to return some other indication to the user than the

Klensin Standards Track [Page 20]

C
om

pendium
 1 page 56

RFC 2821 Simple Mail Transfer Protocol April 2001

 literal text of the reply, or to take some automated action such as
 consulting a directory service for additional information before
 reporting to the user.

 For the EXPN command, the string identifies a mailing list, and the
 successful (i.e., 250) multiline response MAY include the full name
 of the users and MUST give the mailboxes on the mailing list.

 In some hosts the distinction between a mailing list and an alias for
 a single mailbox is a bit fuzzy, since a common data structure may
 hold both types of entries, and it is possible to have mailing lists
 containing only one mailbox. If a request is made to apply VRFY to a
 mailing list, a positive response MAY be given if a message so
 addressed would be delivered to everyone on the list, otherwise an
 error SHOULD be reported (e.g., "550 That is a mailing list, not a
 user" or "252 Unable to verify members of mailing list"). If a
 request is made to expand a user name, the server MAY return a
 positive response consisting of a list containing one name, or an
 error MAY be reported (e.g., "550 That is a user name, not a mailing
 list").

 In the case of a successful multiline reply (normal for EXPN) exactly
 one mailbox is to be specified on each line of the reply. The case
 of an ambiguous request is discussed above.

 "User name" is a fuzzy term and has been used deliberately. An
 implementation of the VRFY or EXPN commands MUST include at least
 recognition of local mailboxes as "user names". However, since
 current Internet practice often results in a single host handling
 mail for multiple domains, hosts, especially hosts that provide this
 functionality, SHOULD accept the "local-part@domain" form as a "user
 name"; hosts MAY also choose to recognize other strings as "user
 names".

 The case of expanding a mailbox list requires a multiline reply, such
 as:

 C: EXPN Example-People
 S: 250-Jon Postel <Postel@isi.edu>
 S: 250-Fred Fonebone <Fonebone@physics.foo-u.edu>
 S: 250 Sam Q. Smith <SQSmith@specific.generic.com>

 or

 C: EXPN Executive-Washroom-List
 S: 550 Access Denied to You.

Klensin Standards Track [Page 21]

RFC 2821 Simple Mail Transfer Protocol April 2001

 The character string arguments of the VRFY and EXPN commands cannot
 be further restricted due to the variety of implementations of the
 user name and mailbox list concepts. On some systems it may be
 appropriate for the argument of the EXPN command to be a file name
 for a file containing a mailing list, but again there are a variety
 of file naming conventions in the Internet. Similarly, historical
 variations in what is returned by these commands are such that the
 response SHOULD be interpreted very carefully, if at all, and SHOULD
 generally only be used for diagnostic purposes.

3.5.2 VRFY Normal Response

 When normal (2yz or 551) responses are returned from a VRFY or EXPN
 request, the reply normally includes the mailbox name, i.e.,
 "<local-part@domain>", where "domain" is a fully qualified domain
 name, MUST appear in the syntax. In circumstances exceptional enough
 to justify violating the intent of this specification, free-form text
 MAY be returned. In order to facilitate parsing by both computers
 and people, addresses SHOULD appear in pointed brackets. When
 addresses, rather than free-form debugging information, are returned,
 EXPN and VRFY MUST return only valid domain addresses that are usable
 in SMTP RCPT commands. Consequently, if an address implies delivery
 to a program or other system, the mailbox name used to reach that
 target MUST be given. Paths (explicit source routes) MUST NOT be
 returned by VRFY or EXPN.

 Server implementations SHOULD support both VRFY and EXPN. For
 security reasons, implementations MAY provide local installations a
 way to disable either or both of these commands through configuration
 options or the equivalent. When these commands are supported, they
 are not required to work across relays when relaying is supported.
 Since they were both optional in RFC 821, they MUST be listed as
 service extensions in an EHLO response, if they are supported.

3.5.3 Meaning of VRFY or EXPN Success Response

 A server MUST NOT return a 250 code in response to a VRFY or EXPN
 command unless it has actually verified the address. In particular,
 a server MUST NOT return 250 if all it has done is to verify that the
 syntax given is valid. In that case, 502 (Command not implemented)
 or 500 (Syntax error, command unrecognized) SHOULD be returned. As
 stated elsewhere, implementation (in the sense of actually validating
 addresses and returning information) of VRFY and EXPN are strongly
 recommended. Hence, implementations that return 500 or 502 for VRFY
 are not in full compliance with this specification.

Klensin Standards Track [Page 22]

C
om

pendium
 1 page 57

RFC 2821 Simple Mail Transfer Protocol April 2001

 There may be circumstances where an address appears to be valid but
 cannot reasonably be verified in real time, particularly when a
 server is acting as a mail exchanger for another server or domain.
 "Apparent validity" in this case would normally involve at least
 syntax checking and might involve verification that any domains
 specified were ones to which the host expected to be able to relay
 mail. In these situations, reply code 252 SHOULD be returned. These
 cases parallel the discussion of RCPT verification discussed in
 section 2.1. Similarly, the discussion in section 3.4 applies to the
 use of reply codes 251 and 551 with VRFY (and EXPN) to indicate
 addresses that are recognized but that would be forwarded or bounced
 were mail received for them. Implementations generally SHOULD be
 more aggressive about address verification in the case of VRFY than
 in the case of RCPT, even if it takes a little longer to do so.

3.5.4 Semantics and Applications of EXPN

 EXPN is often very useful in debugging and understanding problems
 with mailing lists and multiple-target-address aliases. Some systems
 have attempted to use source expansion of mailing lists as a means of
 eliminating duplicates. The propagation of aliasing systems with
 mail on the Internet, for hosts (typically with MX and CNAME DNS
 records), for mailboxes (various types of local host aliases), and in
 various proxying arrangements, has made it nearly impossible for
 these strategies to work consistently, and mail systems SHOULD NOT
 attempt them.

3.6 Domains

 Only resolvable, fully-qualified, domain names (FQDNs) are permitted
 when domain names are used in SMTP. In other words, names that can
 be resolved to MX RRs or A RRs (as discussed in section 5) are
 permitted, as are CNAME RRs whose targets can be resolved, in turn,
 to MX or A RRs. Local nicknames or unqualified names MUST NOT be
 used. There are two exceptions to the rule requiring FQDNs:

 - The domain name given in the EHLO command MUST BE either a primary
 host name (a domain name that resolves to an A RR) or, if the host
 has no name, an address literal as described in section 4.1.1.1.

 - The reserved mailbox name "postmaster" may be used in a RCPT
 command without domain qualification (see section 4.1.1.3) and
 MUST be accepted if so used.

Klensin Standards Track [Page 23]

RFC 2821 Simple Mail Transfer Protocol April 2001

3.7 Relaying

 In general, the availability of Mail eXchanger records in the domain
 name system [22, 27] makes the use of explicit source routes in the
 Internet mail system unnecessary. Many historical problems with
 their interpretation have made their use undesirable. SMTP clients
 SHOULD NOT generate explicit source routes except under unusual
 circumstances. SMTP servers MAY decline to act as mail relays or to
 accept addresses that specify source routes. When route information
 is encountered, SMTP servers are also permitted to ignore the route
 information and simply send to the final destination specified as the
 last element in the route and SHOULD do so. There has been an
 invalid practice of using names that do not appear in the DNS as
 destination names, with the senders counting on the intermediate
 hosts specified in source routing to resolve any problems. If source
 routes are stripped, this practice will cause failures. This is one
 of several reasons why SMTP clients MUST NOT generate invalid source
 routes or depend on serial resolution of names.

 When source routes are not used, the process described in RFC 821 for
 constructing a reverse-path from the forward-path is not applicable
 and the reverse-path at the time of delivery will simply be the
 address that appeared in the MAIL command.

 A relay SMTP server is usually the target of a DNS MX record that
 designates it, rather than the final delivery system. The relay
 server may accept or reject the task of relaying the mail in the same
 way it accepts or rejects mail for a local user. If it accepts the
 task, it then becomes an SMTP client, establishes a transmission
 channel to the next SMTP server specified in the DNS (according to
 the rules in section 5), and sends it the mail. If it declines to
 relay mail to a particular address for policy reasons, a 550 response
 SHOULD be returned.

 Many mail-sending clients exist, especially in conjunction with
 facilities that receive mail via POP3 or IMAP, that have limited
 capability to support some of the requirements of this specification,
 such as the ability to queue messages for subsequent delivery
 attempts. For these clients, it is common practice to make private
 arrangements to send all messages to a single server for processing
 and subsequent distribution. SMTP, as specified here, is not ideally
 suited for this role, and work is underway on standardized mail
 submission protocols that might eventually supercede the current
 practices. In any event, because these arrangements are private and
 fall outside the scope of this specification, they are not described
 here.

Klensin Standards Track [Page 24]

C
om

pendium
 1 page 58

RFC 2821 Simple Mail Transfer Protocol April 2001

 It is important to note that MX records can point to SMTP servers
 which act as gateways into other environments, not just SMTP relays
 and final delivery systems; see sections 3.8 and 5.

 If an SMTP server has accepted the task of relaying the mail and
 later finds that the destination is incorrect or that the mail cannot
 be delivered for some other reason, then it MUST construct an
 "undeliverable mail" notification message and send it to the
 originator of the undeliverable mail (as indicated by the reverse-
 path). Formats specified for non-delivery reports by other standards
 (see, for example, [24, 25]) SHOULD be used if possible.

 This notification message must be from the SMTP server at the relay
 host or the host that first determines that delivery cannot be
 accomplished. Of course, SMTP servers MUST NOT send notification
 messages about problems transporting notification messages. One way
 to prevent loops in error reporting is to specify a null reverse-path
 in the MAIL command of a notification message. When such a message
 is transmitted the reverse-path MUST be set to null (see section
 4.5.5 for additional discussion). A MAIL command with a null
 reverse-path appears as follows:

 MAIL FROM:<>

 As discussed in section 2.4.1, a relay SMTP has no need to inspect or
 act upon the headers or body of the message data and MUST NOT do so
 except to add its own "Received:" header (section 4.4) and,
 optionally, to attempt to detect looping in the mail system (see
 section 6.2).

3.8 Mail Gatewaying

 While the relay function discussed above operates within the Internet
 SMTP transport service environment, MX records or various forms of
 explicit routing may require that an intermediate SMTP server perform
 a translation function between one transport service and another. As
 discussed in section 2.3.8, when such a system is at the boundary
 between two transport service environments, we refer to it as a
 "gateway" or "gateway SMTP".

 Gatewaying mail between different mail environments, such as
 different mail formats and protocols, is complex and does not easily
 yield to standardization. However, some general requirements may be
 given for a gateway between the Internet and another mail
 environment.

Klensin Standards Track [Page 25]

RFC 2821 Simple Mail Transfer Protocol April 2001

3.8.1 Header Fields in Gatewaying

 Header fields MAY be rewritten when necessary as messages are
 gatewayed across mail environment boundaries. This may involve
 inspecting the message body or interpreting the local-part of the
 destination address in spite of the prohibitions in section 2.4.1.

 Other mail systems gatewayed to the Internet often use a subset of
 RFC 822 headers or provide similar functionality with a different
 syntax, but some of these mail systems do not have an equivalent to
 the SMTP envelope. Therefore, when a message leaves the Internet
 environment, it may be necessary to fold the SMTP envelope
 information into the message header. A possible solution would be to
 create new header fields to carry the envelope information (e.g.,
 "X-SMTP-MAIL:" and "X-SMTP-RCPT:"); however, this would require
 changes in mail programs in foreign environments and might risk
 disclosure of private information (see section 7.2).

3.8.2 Received Lines in Gatewaying

 When forwarding a message into or out of the Internet environment, a
 gateway MUST prepend a Received: line, but it MUST NOT alter in any
 way a Received: line that is already in the header.

 "Received:" fields of messages originating from other environments
 may not conform exactly to this specification. However, the most
 important use of Received: lines is for debugging mail faults, and
 this debugging can be severely hampered by well-meaning gateways that
 try to "fix" a Received: line. As another consequence of trace
 fields arising in non-SMTP environments, receiving systems MUST NOT
 reject mail based on the format of a trace field and SHOULD be
 extremely robust in the light of unexpected information or formats in
 those fields.

 The gateway SHOULD indicate the environment and protocol in the "via"
 clauses of Received field(s) that it supplies.

3.8.3 Addresses in Gatewaying

 From the Internet side, the gateway SHOULD accept all valid address
 formats in SMTP commands and in RFC 822 headers, and all valid RFC
 822 messages. Addresses and headers generated by gateways MUST
 conform to applicable Internet standards (including this one and RFC
 822). Gateways are, of course, subject to the same rules for
 handling source routes as those described for other SMTP systems in
 section 3.3.

Klensin Standards Track [Page 26]

C
om

pendium
 1 page 59

RFC 2821 Simple Mail Transfer Protocol April 2001

3.8.4 Other Header Fields in Gatewaying

 The gateway MUST ensure that all header fields of a message that it
 forwards into the Internet mail environment meet the requirements for
 Internet mail. In particular, all addresses in "From:", "To:",
 "Cc:", etc., fields MUST be transformed (if necessary) to satisfy RFC
 822 syntax, MUST reference only fully-qualified domain names, and
 MUST be effective and useful for sending replies. The translation
 algorithm used to convert mail from the Internet protocols to another
 environment's protocol SHOULD ensure that error messages from the
 foreign mail environment are delivered to the return path from the
 SMTP envelope, not to the sender listed in the "From:" field (or
 other fields) of the RFC 822 message.

3.8.5 Envelopes in Gatewaying

 Similarly, when forwarding a message from another environment into
 the Internet, the gateway SHOULD set the envelope return path in
 accordance with an error message return address, if supplied by the
 foreign environment. If the foreign environment has no equivalent
 concept, the gateway must select and use a best approximation, with
 the message originator's address as the default of last resort.

3.9 Terminating Sessions and Connections

 An SMTP connection is terminated when the client sends a QUIT
 command. The server responds with a positive reply code, after which
 it closes the connection.

 An SMTP server MUST NOT intentionally close the connection except:

 - After receiving a QUIT command and responding with a 221 reply.

 - After detecting the need to shut down the SMTP service and
 returning a 421 response code. This response code can be issued
 after the server receives any command or, if necessary,
 asynchronously from command receipt (on the assumption that the
 client will receive it after the next command is issued).

 In particular, a server that closes connections in response to
 commands that are not understood is in violation of this
 specification. Servers are expected to be tolerant of unknown
 commands, issuing a 500 reply and awaiting further instructions from
 the client.

Klensin Standards Track [Page 27]

RFC 2821 Simple Mail Transfer Protocol April 2001

 An SMTP server which is forcibly shut down via external means SHOULD
 attempt to send a line containing a 421 response code to the SMTP
 client before exiting. The SMTP client will normally read the 421
 response code after sending its next command.

 SMTP clients that experience a connection close, reset, or other
 communications failure due to circumstances not under their control
 (in violation of the intent of this specification but sometimes
 unavoidable) SHOULD, to maintain the robustness of the mail system,
 treat the mail transaction as if a 451 response had been received and
 act accordingly.

3.10 Mailing Lists and Aliases

 An SMTP-capable host SHOULD support both the alias and the list
 models of address expansion for multiple delivery. When a message is
 delivered or forwarded to each address of an expanded list form, the
 return address in the envelope ("MAIL FROM:") MUST be changed to be
 the address of a person or other entity who administers the list.
 However, in this case, the message header [32] MUST be left
 unchanged; in particular, the "From" field of the message header is
 unaffected.

 An important mail facility is a mechanism for multi-destination
 delivery of a single message, by transforming (or "expanding" or
 "exploding") a pseudo-mailbox address into a list of destination
 mailbox addresses. When a message is sent to such a pseudo-mailbox
 (sometimes called an "exploder"), copies are forwarded or
 redistributed to each mailbox in the expanded list. Servers SHOULD
 simply utilize the addresses on the list; application of heuristics
 or other matching rules to eliminate some addresses, such as that of
 the originator, is strongly discouraged. We classify such a pseudo-
 mailbox as an "alias" or a "list", depending upon the expansion
 rules.

3.10.1 Alias

 To expand an alias, the recipient mailer simply replaces the pseudo-
 mailbox address in the envelope with each of the expanded addresses
 in turn; the rest of the envelope and the message body are left
 unchanged. The message is then delivered or forwarded to each
 expanded address.

3.10.2 List

 A mailing list may be said to operate by "redistribution" rather than
 by "forwarding". To expand a list, the recipient mailer replaces the
 pseudo-mailbox address in the envelope with all of the expanded

Klensin Standards Track [Page 28]

C
om

pendium
 1 page 60

RFC 2821 Simple Mail Transfer Protocol April 2001

 addresses. The return address in the envelope is changed so that all
 error messages generated by the final deliveries will be returned to
 a list administrator, not to the message originator, who generally
 has no control over the contents of the list and will typically find
 error messages annoying.

4. The SMTP Specifications

4.1 SMTP Commands

4.1.1 Command Semantics and Syntax

 The SMTP commands define the mail transfer or the mail system
 function requested by the user. SMTP commands are character strings
 terminated by <CRLF>. The commands themselves are alphabetic
 characters terminated by <SP> if parameters follow and <CRLF>
 otherwise. (In the interest of improved interoperability, SMTP
 receivers are encouraged to tolerate trailing white space before the
 terminating <CRLF>.) The syntax of the local part of a mailbox must
 conform to receiver site conventions and the syntax specified in
 section 4.1.2. The SMTP commands are discussed below. The SMTP
 replies are discussed in section 4.2.

 A mail transaction involves several data objects which are
 communicated as arguments to different commands. The reverse-path is
 the argument of the MAIL command, the forward-path is the argument of
 the RCPT command, and the mail data is the argument of the DATA
 command. These arguments or data objects must be transmitted and
 held pending the confirmation communicated by the end of mail data
 indication which finalizes the transaction. The model for this is
 that distinct buffers are provided to hold the types of data objects,
 that is, there is a reverse-path buffer, a forward-path buffer, and a
 mail data buffer. Specific commands cause information to be appended
 to a specific buffer, or cause one or more buffers to be cleared.

 Several commands (RSET, DATA, QUIT) are specified as not permitting
 parameters. In the absence of specific extensions offered by the
 server and accepted by the client, clients MUST NOT send such
 parameters and servers SHOULD reject commands containing them as
 having invalid syntax.

4.1.1.1 Extended HELLO (EHLO) or HELLO (HELO)

 These commands are used to identify the SMTP client to the SMTP
 server. The argument field contains the fully-qualified domain name
 of the SMTP client if one is available. In situations in which the
 SMTP client system does not have a meaningful domain name (e.g., when
 its address is dynamically allocated and no reverse mapping record is

Klensin Standards Track [Page 29]

RFC 2821 Simple Mail Transfer Protocol April 2001

 available), the client SHOULD send an address literal (see section
 4.1.3), optionally followed by information that will help to identify
 the client system. y The SMTP server identifies itself to the SMTP
 client in the connection greeting reply and in the response to this
 command.

 A client SMTP SHOULD start an SMTP session by issuing the EHLO
 command. If the SMTP server supports the SMTP service extensions it
 will give a successful response, a failure response, or an error
 response. If the SMTP server, in violation of this specification,
 does not support any SMTP service extensions it will generate an
 error response. Older client SMTP systems MAY, as discussed above,
 use HELO (as specified in RFC 821) instead of EHLO, and servers MUST
 support the HELO command and reply properly to it. In any event, a
 client MUST issue HELO or EHLO before starting a mail transaction.

 These commands, and a "250 OK" reply to one of them, confirm that
 both the SMTP client and the SMTP server are in the initial state,
 that is, there is no transaction in progress and all state tables and
 buffers are cleared.

 Syntax:

 ehlo = "EHLO" SP Domain CRLF
 helo = "HELO" SP Domain CRLF

 Normally, the response to EHLO will be a multiline reply. Each line
 of the response contains a keyword and, optionally, one or more
 parameters. Following the normal syntax for multiline replies, these
 keyworks follow the code (250) and a hyphen for all but the last
 line, and the code and a space for the last line. The syntax for a
 positive response, using the ABNF notation and terminal symbols of
 [8], is:

 ehlo-ok-rsp = ("250" domain [SP ehlo-greet] CRLF)
 / ("250-" domain [SP ehlo-greet] CRLF
 *("250-" ehlo-line CRLF)
 "250" SP ehlo-line CRLF)

 ehlo-greet = 1*(%d0-9 / %d11-12 / %d14-127)
 ; string of any characters other than CR or LF

 ehlo-line = ehlo-keyword *(SP ehlo-param)

 ehlo-keyword = (ALPHA / DIGIT) *(ALPHA / DIGIT / "-")
 ; additional syntax of ehlo-params depends on
 ; ehlo-keyword

Klensin Standards Track [Page 30]

C
om

pendium
 1 page 61

RFC 2821 Simple Mail Transfer Protocol April 2001

 ehlo-param = 1*(%d33-127)
 ; any CHAR excluding <SP> and all
 ; control characters (US-ASCII 0-31 inclusive)

 Although EHLO keywords may be specified in upper, lower, or mixed
 case, they MUST always be recognized and processed in a case-
 insensitive manner. This is simply an extension of practices
 specified in RFC 821 and section 2.4.1.

4.1.1.2 MAIL (MAIL)

 This command is used to initiate a mail transaction in which the mail
 data is delivered to an SMTP server which may, in turn, deliver it to
 one or more mailboxes or pass it on to another system (possibly using
 SMTP). The argument field contains a reverse-path and may contain
 optional parameters. In general, the MAIL command may be sent only
 when no mail transaction is in progress, see section 4.1.4.

 The reverse-path consists of the sender mailbox. Historically, that
 mailbox might optionally have been preceded by a list of hosts, but
 that behavior is now deprecated (see appendix C). In some types of
 reporting messages for which a reply is likely to cause a mail loop
 (for example, mail delivery and nondelivery notifications), the
 reverse-path may be null (see section 3.7).

 This command clears the reverse-path buffer, the forward-path buffer,
 and the mail data buffer; and inserts the reverse-path information
 from this command into the reverse-path buffer.

 If service extensions were negotiated, the MAIL command may also
 carry parameters associated with a particular service extension.

 Syntax:

 "MAIL FROM:" ("<>" / Reverse-Path)
 [SP Mail-parameters] CRLF

4.1.1.3 RECIPIENT (RCPT)

 This command is used to identify an individual recipient of the mail
 data; multiple recipients are specified by multiple use of this
 command. The argument field contains a forward-path and may contain
 optional parameters.

 The forward-path normally consists of the required destination
 mailbox. Sending systems SHOULD not generate the optional list of
 hosts known as a source route. Receiving systems MUST recognize

Klensin Standards Track [Page 31]

RFC 2821 Simple Mail Transfer Protocol April 2001

 source route syntax but SHOULD strip off the source route
 specification and utilize the domain name associated with the mailbox
 as if the source route had not been provided.

 Similarly, relay hosts SHOULD strip or ignore source routes, and
 names MUST NOT be copied into the reverse-path. When mail reaches
 its ultimate destination (the forward-path contains only a
 destination mailbox), the SMTP server inserts it into the destination
 mailbox in accordance with its host mail conventions.

 For example, mail received at relay host xyz.com with envelope
 commands

 MAIL FROM:<userx@y.foo.org>
 RCPT TO:<@hosta.int,@jkl.org:userc@d.bar.org>

 will normally be sent directly on to host d.bar.org with envelope
 commands

 MAIL FROM:<userx@y.foo.org>
 RCPT TO:<userc@d.bar.org>

 As provided in appendix C, xyz.com MAY also choose to relay the
 message to hosta.int, using the envelope commands

 MAIL FROM:<userx@y.foo.org>
 RCPT TO:<@hosta.int,@jkl.org:userc@d.bar.org>

 or to jkl.org, using the envelope commands

 MAIL FROM:<userx@y.foo.org>
 RCPT TO:<@jkl.org:userc@d.bar.org>

 Of course, since hosts are not required to relay mail at all, xyz.com
 may also reject the message entirely when the RCPT command is
 received, using a 550 code (since this is a "policy reason").

 If service extensions were negotiated, the RCPT command may also
 carry parameters associated with a particular service extension
 offered by the server. The client MUST NOT transmit parameters other
 than those associated with a service extension offered by the server
 in its EHLO response.

Syntax:
 "RCPT TO:" ("<Postmaster@" domain ">" / "<Postmaster>" / Forward-Path)
 [SP Rcpt-parameters] CRLF

Klensin Standards Track [Page 32]

C
om

pendium
 1 page 62

RFC 2821 Simple Mail Transfer Protocol April 2001

4.1.1.4 DATA (DATA)

 The receiver normally sends a 354 response to DATA, and then treats
 the lines (strings ending in <CRLF> sequences, as described in
 section 2.3.7) following the command as mail data from the sender.
 This command causes the mail data to be appended to the mail data
 buffer. The mail data may contain any of the 128 ASCII character
 codes, although experience has indicated that use of control
 characters other than SP, HT, CR, and LF may cause problems and
 SHOULD be avoided when possible.

 The mail data is terminated by a line containing only a period, that
 is, the character sequence "<CRLF>.<CRLF>" (see section 4.5.2). This
 is the end of mail data indication. Note that the first <CRLF> of
 this terminating sequence is also the <CRLF> that ends the final line
 of the data (message text) or, if there was no data, ends the DATA
 command itself. An extra <CRLF> MUST NOT be added, as that would
 cause an empty line to be added to the message. The only exception
 to this rule would arise if the message body were passed to the
 originating SMTP-sender with a final "line" that did not end in
 <CRLF>; in that case, the originating SMTP system MUST either reject
 the message as invalid or add <CRLF> in order to have the receiving
 SMTP server recognize the "end of data" condition.

 The custom of accepting lines ending only in <LF>, as a concession to
 non-conforming behavior on the part of some UNIX systems, has proven
 to cause more interoperability problems than it solves, and SMTP
 server systems MUST NOT do this, even in the name of improved
 robustness. In particular, the sequence "<LF>.<LF>" (bare line
 feeds, without carriage returns) MUST NOT be treated as equivalent to
 <CRLF>.<CRLF> as the end of mail data indication.

 Receipt of the end of mail data indication requires the server to
 process the stored mail transaction information. This processing
 consumes the information in the reverse-path buffer, the forward-path
 buffer, and the mail data buffer, and on the completion of this
 command these buffers are cleared. If the processing is successful,
 the receiver MUST send an OK reply. If the processing fails the
 receiver MUST send a failure reply. The SMTP model does not allow
 for partial failures at this point: either the message is accepted by
 the server for delivery and a positive response is returned or it is
 not accepted and a failure reply is returned. In sending a positive
 completion reply to the end of data indication, the receiver takes
 full responsibility for the message (see section 6.1). Errors that
 are diagnosed subsequently MUST be reported in a mail message, as
 discussed in section 4.4.

Klensin Standards Track [Page 33]

RFC 2821 Simple Mail Transfer Protocol April 2001

 When the SMTP server accepts a message either for relaying or for
 final delivery, it inserts a trace record (also referred to
 interchangeably as a "time stamp line" or "Received" line) at the top
 of the mail data. This trace record indicates the identity of the
 host that sent the message, the identity of the host that received
 the message (and is inserting this time stamp), and the date and time
 the message was received. Relayed messages will have multiple time
 stamp lines. Details for formation of these lines, including their
 syntax, is specified in section 4.4.

 Additional discussion about the operation of the DATA command appears
 in section 3.3.

 Syntax:
 "DATA" CRLF

4.1.1.5 RESET (RSET)

 This command specifies that the current mail transaction will be
 aborted. Any stored sender, recipients, and mail data MUST be
 discarded, and all buffers and state tables cleared. The receiver
 MUST send a "250 OK" reply to a RSET command with no arguments. A
 reset command may be issued by the client at any time. It is
 effectively equivalent to a NOOP (i.e., if has no effect) if issued
 immediately after EHLO, before EHLO is issued in the session, after
 an end-of-data indicator has been sent and acknowledged, or
 immediately before a QUIT. An SMTP server MUST NOT close the
 connection as the result of receiving a RSET; that action is reserved
 for QUIT (see section 4.1.1.10).

 Since EHLO implies some additional processing and response by the
 server, RSET will normally be more efficient than reissuing that
 command, even though the formal semantics are the same.

 There are circumstances, contrary to the intent of this
 specification, in which an SMTP server may receive an indication that
 the underlying TCP connection has been closed or reset. To preserve
 the robustness of the mail system, SMTP servers SHOULD be prepared
 for this condition and SHOULD treat it as if a QUIT had been received
 before the connection disappeared.

 Syntax:
 "RSET" CRLF

Klensin Standards Track [Page 34]

C
om

pendium
 1 page 63

RFC 2821 Simple Mail Transfer Protocol April 2001

4.1.1.6 VERIFY (VRFY)

 This command asks the receiver to confirm that the argument
 identifies a user or mailbox. If it is a user name, information is
 returned as specified in section 3.5.

 This command has no effect on the reverse-path buffer, the forward-
 path buffer, or the mail data buffer.

 Syntax:
 "VRFY" SP String CRLF

4.1.1.7 EXPAND (EXPN)

 This command asks the receiver to confirm that the argument
 identifies a mailing list, and if so, to return the membership of
 that list. If the command is successful, a reply is returned
 containing information as described in section 3.5. This reply will
 have multiple lines except in the trivial case of a one-member list.

 This command has no effect on the reverse-path buffer, the forward-
 path buffer, or the mail data buffer and may be issued at any time.

 Syntax:
 "EXPN" SP String CRLF

4.1.1.8 HELP (HELP)

 This command causes the server to send helpful information to the
 client. The command MAY take an argument (e.g., any command name)
 and return more specific information as a response.

 This command has no effect on the reverse-path buffer, the forward-
 path buffer, or the mail data buffer and may be issued at any time.

 SMTP servers SHOULD support HELP without arguments and MAY support it
 with arguments.

 Syntax:
 "HELP" [SP String] CRLF

4.1.1.9 NOOP (NOOP)

 This command does not affect any parameters or previously entered
 commands. It specifies no action other than that the receiver send
 an OK reply.

Klensin Standards Track [Page 35]

RFC 2821 Simple Mail Transfer Protocol April 2001

 This command has no effect on the reverse-path buffer, the forward-
 path buffer, or the mail data buffer and may be issued at any time.
 If a parameter string is specified, servers SHOULD ignore it.

 Syntax:
 "NOOP" [SP String] CRLF

4.1.1.10 QUIT (QUIT)

 This command specifies that the receiver MUST send an OK reply, and
 then close the transmission channel.

 The receiver MUST NOT intentionally close the transmission channel
 until it receives and replies to a QUIT command (even if there was an
 error). The sender MUST NOT intentionally close the transmission
 channel until it sends a QUIT command and SHOULD wait until it
 receives the reply (even if there was an error response to a previous
 command). If the connection is closed prematurely due to violations
 of the above or system or network failure, the server MUST cancel any
 pending transaction, but not undo any previously completed
 transaction, and generally MUST act as if the command or transaction
 in progress had received a temporary error (i.e., a 4yz response).

 The QUIT command may be issued at any time.

 Syntax:
 "QUIT" CRLF

4.1.2 Command Argument Syntax

 The syntax of the argument fields of the above commands (using the
 syntax specified in [8] where applicable) is given below. Some of
 the productions given below are used only in conjunction with source
 routes as described in appendix C. Terminals not defined in this
 document, such as ALPHA, DIGIT, SP, CR, LF, CRLF, are as defined in
 the "core" syntax [8 (section 6)] or in the message format syntax
 [32].

 Reverse-path = Path
 Forward-path = Path
 Path = "<" [A-d-l ":"] Mailbox ">"
 A-d-l = At-domain *("," A-d-l)
 ; Note that this form, the so-called "source route",
 ; MUST BE accepted, SHOULD NOT be generated, and SHOULD be
 ; ignored.
 At-domain = "@" domain
 Mail-parameters = esmtp-param *(SP esmtp-param)
 Rcpt-parameters = esmtp-param *(SP esmtp-param)

Klensin Standards Track [Page 36]

C
om

pendium
 1 page 64

RFC 2821 Simple Mail Transfer Protocol April 2001

 esmtp-param = esmtp-keyword ["=" esmtp-value]
 esmtp-keyword = (ALPHA / DIGIT) *(ALPHA / DIGIT / "-")
 esmtp-value = 1*(%d33-60 / %d62-127)
 ; any CHAR excluding "=", SP, and control characters
 Keyword = Ldh-str
 Argument = Atom
 Domain = (sub-domain 1*("." sub-domain)) / address-literal
 sub-domain = Let-dig [Ldh-str]

 address-literal = "[" IPv4-address-literal /
 IPv6-address-literal /
 General-address-literal "]"
 ; See section 4.1.3

 Mailbox = Local-part "@" Domain

 Local-part = Dot-string / Quoted-string
 ; MAY be case-sensitive

 Dot-string = Atom *("." Atom)

 Atom = 1*atext

 Quoted-string = DQUOTE *qcontent DQUOTE

 String = Atom / Quoted-string

 While the above definition for Local-part is relatively permissive,
 for maximum interoperability, a host that expects to receive mail
 SHOULD avoid defining mailboxes where the Local-part requires (or
 uses) the Quoted-string form or where the Local-part is case-
 sensitive. For any purposes that require generating or comparing
 Local-parts (e.g., to specific mailbox names), all quoted forms MUST
 be treated as equivalent and the sending system SHOULD transmit the
 form that uses the minimum quoting possible.

 Systems MUST NOT define mailboxes in such a way as to require the use
 in SMTP of non-ASCII characters (octets with the high order bit set
 to one) or ASCII "control characters" (decimal value 0-31 and 127).
 These characters MUST NOT be used in MAIL or RCPT commands or other
 commands that require mailbox names.

 Note that the backslash, "\", is a quote character, which is used to
 indicate that the next character is to be used literally (instead of
 its normal interpretation). For example, "Joe\,Smith" indicates a
 single nine character user field with the comma being the fourth
 character of the field.

Klensin Standards Track [Page 37]

RFC 2821 Simple Mail Transfer Protocol April 2001

 To promote interoperability and consistent with long-standing
 guidance about conservative use of the DNS in naming and applications
 (e.g., see section 2.3.1 of the base DNS document, RFC1035 [22]),
 characters outside the set of alphas, digits, and hyphen MUST NOT
 appear in domain name labels for SMTP clients or servers. In
 particular, the underscore character is not permitted. SMTP servers
 that receive a command in which invalid character codes have been
 employed, and for which there are no other reasons for rejection,
 MUST reject that command with a 501 response.

4.1.3 Address Literals

 Sometimes a host is not known to the domain name system and
 communication (and, in particular, communication to report and repair
 the error) is blocked. To bypass this barrier a special literal form
 of the address is allowed as an alternative to a domain name. For
 IPv4 addresses, this form uses four small decimal integers separated
 by dots and enclosed by brackets such as [123.255.37.2], which
 indicates an (IPv4) Internet Address in sequence-of-octets form. For
 IPv6 and other forms of addressing that might eventually be
 standardized, the form consists of a standardized "tag" that
 identifies the address syntax, a colon, and the address itself, in a
 format specified as part of the IPv6 standards [17].

 Specifically:

 IPv4-address-literal = Snum 3("." Snum)
 IPv6-address-literal = "IPv6:" IPv6-addr
 General-address-literal = Standardized-tag ":" 1*dcontent
 Standardized-tag = Ldh-str
 ; MUST be specified in a standards-track RFC
 ; and registered with IANA

 Snum = 1*3DIGIT ; representing a decimal integer
 ; value in the range 0 through 255
 Let-dig = ALPHA / DIGIT
 Ldh-str = *(ALPHA / DIGIT / "-") Let-dig

 IPv6-addr = IPv6-full / IPv6-comp / IPv6v4-full / IPv6v4-comp
 IPv6-hex = 1*4HEXDIG
 IPv6-full = IPv6-hex 7(":" IPv6-hex)
 IPv6-comp = [IPv6-hex *5(":" IPv6-hex)] "::" [IPv6-hex *5(":"
 IPv6-hex)]
 ; The "::" represents at least 2 16-bit groups of zeros
 ; No more than 6 groups in addition to the "::" may be
 ; present
 IPv6v4-full = IPv6-hex 5(":" IPv6-hex) ":" IPv4-address-literal
 IPv6v4-comp = [IPv6-hex *3(":" IPv6-hex)] "::"

Klensin Standards Track [Page 38]

C
om

pendium
 1 page 65

RFC 2821 Simple Mail Transfer Protocol April 2001

 [IPv6-hex *3(":" IPv6-hex) ":"] IPv4-address-literal
 ; The "::" represents at least 2 16-bit groups of zeros
 ; No more than 4 groups in addition to the "::" and
 ; IPv4-address-literal may be present

4.1.4 Order of Commands

 There are restrictions on the order in which these commands may be
 used.

 A session that will contain mail transactions MUST first be
 initialized by the use of the EHLO command. An SMTP server SHOULD
 accept commands for non-mail transactions (e.g., VRFY or EXPN)
 without this initialization.

 An EHLO command MAY be issued by a client later in the session. If
 it is issued after the session begins, the SMTP server MUST clear all
 buffers and reset the state exactly as if a RSET command had been
 issued. In other words, the sequence of RSET followed immediately by
 EHLO is redundant, but not harmful other than in the performance cost
 of executing unnecessary commands.

 If the EHLO command is not acceptable to the SMTP server, 501, 500,
 or 502 failure replies MUST be returned as appropriate. The SMTP
 server MUST stay in the same state after transmitting these replies
 that it was in before the EHLO was received.

 The SMTP client MUST, if possible, ensure that the domain parameter
 to the EHLO command is a valid principal host name (not a CNAME or MX
 name) for its host. If this is not possible (e.g., when the client's
 address is dynamically assigned and the client does not have an
 obvious name), an address literal SHOULD be substituted for the
 domain name and supplemental information provided that will assist in
 identifying the client.

 An SMTP server MAY verify that the domain name parameter in the EHLO
 command actually corresponds to the IP address of the client.
 However, the server MUST NOT refuse to accept a message for this
 reason if the verification fails: the information about verification
 failure is for logging and tracing only.

 The NOOP, HELP, EXPN, VRFY, and RSET commands can be used at any time
 during a session, or without previously initializing a session. SMTP
 servers SHOULD process these normally (that is, not return a 503
 code) even if no EHLO command has yet been received; clients SHOULD
 open a session with EHLO before sending these commands.

Klensin Standards Track [Page 39]

RFC 2821 Simple Mail Transfer Protocol April 2001

 If these rules are followed, the example in RFC 821 that shows "550
 access denied to you" in response to an EXPN command is incorrect
 unless an EHLO command precedes the EXPN or the denial of access is
 based on the client's IP address or other authentication or
 authorization-determining mechanisms.

 The MAIL command (or the obsolete SEND, SOML, or SAML commands)
 begins a mail transaction. Once started, a mail transaction consists
 of a transaction beginning command, one or more RCPT commands, and a
 DATA command, in that order. A mail transaction may be aborted by
 the RSET (or a new EHLO) command. There may be zero or more
 transactions in a session. MAIL (or SEND, SOML, or SAML) MUST NOT be
 sent if a mail transaction is already open, i.e., it should be sent
 only if no mail transaction had been started in the session, or it
 the previous one successfully concluded with a successful DATA
 command, or if the previous one was aborted with a RSET.

 If the transaction beginning command argument is not acceptable, a
 501 failure reply MUST be returned and the SMTP server MUST stay in
 the same state. If the commands in a transaction are out of order to
 the degree that they cannot be processed by the server, a 503 failure
 reply MUST be returned and the SMTP server MUST stay in the same
 state.

 The last command in a session MUST be the QUIT command. The QUIT
 command cannot be used at any other time in a session, but SHOULD be
 used by the client SMTP to request connection closure, even when no
 session opening command was sent and accepted.

4.1.5 Private-use Commands

 As specified in section 2.2.2, commands starting in "X" may be used
 by bilateral agreement between the client (sending) and server
 (receiving) SMTP agents. An SMTP server that does not recognize such
 a command is expected to reply with "500 Command not recognized". An
 extended SMTP server MAY list the feature names associated with these
 private commands in the response to the EHLO command.

 Commands sent or accepted by SMTP systems that do not start with "X"
 MUST conform to the requirements of section 2.2.2.

4.2 SMTP Replies

 Replies to SMTP commands serve to ensure the synchronization of
 requests and actions in the process of mail transfer and to guarantee
 that the SMTP client always knows the state of the SMTP server.
 Every command MUST generate exactly one reply.

Klensin Standards Track [Page 40]

C
om

pendium
 1 page 66

RFC 2821 Simple Mail Transfer Protocol April 2001

 The details of the command-reply sequence are described in section
 4.3.

 An SMTP reply consists of a three digit number (transmitted as three
 numeric characters) followed by some text unless specified otherwise
 in this document. The number is for use by automata to determine
 what state to enter next; the text is for the human user. The three
 digits contain enough encoded information that the SMTP client need
 not examine the text and may either discard it or pass it on to the
 user, as appropriate. Exceptions are as noted elsewhere in this
 document. In particular, the 220, 221, 251, 421, and 551 reply codes
 are associated with message text that must be parsed and interpreted
 by machines. In the general case, the text may be receiver dependent
 and context dependent, so there are likely to be varying texts for
 each reply code. A discussion of the theory of reply codes is given
 in section 4.2.1. Formally, a reply is defined to be the sequence: a
 three-digit code, <SP>, one line of text, and <CRLF>, or a multiline
 reply (as defined in section 4.2.1). Since, in violation of this
 specification, the text is sometimes not sent, clients which do not
 receive it SHOULD be prepared to process the code alone (with or
 without a trailing space character). Only the EHLO, EXPN, and HELP
 commands are expected to result in multiline replies in normal
 circumstances, however, multiline replies are allowed for any
 command.

 In ABNF, server responses are:

 Greeting = "220 " Domain [SP text] CRLF
 Reply-line = Reply-code [SP text] CRLF

 where "Greeting" appears only in the 220 response that announces that
 the server is opening its part of the connection.

 An SMTP server SHOULD send only the reply codes listed in this
 document. An SMTP server SHOULD use the text shown in the examples
 whenever appropriate.

 An SMTP client MUST determine its actions only by the reply code, not
 by the text (except for the "change of address" 251 and 551 and, if
 necessary, 220, 221, and 421 replies); in the general case, any text,
 including no text at all (although senders SHOULD NOT send bare
 codes), MUST be acceptable. The space (blank) following the reply
 code is considered part of the text. Whenever possible, a receiver-
 SMTP SHOULD test the first digit (severity indication) of the reply
 code.

Klensin Standards Track [Page 41]

RFC 2821 Simple Mail Transfer Protocol April 2001

 The list of codes that appears below MUST NOT be construed as
 permanent. While the addition of new codes should be a rare and
 significant activity, with supplemental information in the textual
 part of the response being preferred, new codes may be added as the
 result of new Standards or Standards-track specifications.
 Consequently, a sender-SMTP MUST be prepared to handle codes not
 specified in this document and MUST do so by interpreting the first
 digit only.

4.2.1 Reply Code Severities and Theory

 The three digits of the reply each have a special significance. The
 first digit denotes whether the response is good, bad or incomplete.
 An unsophisticated SMTP client, or one that receives an unexpected
 code, will be able to determine its next action (proceed as planned,
 redo, retrench, etc.) by examining this first digit. An SMTP client
 that wants to know approximately what kind of error occurred (e.g.,
 mail system error, command syntax error) may examine the second
 digit. The third digit and any supplemental information that may be
 present is reserved for the finest gradation of information.

 There are five values for the first digit of the reply code:

 1yz Positive Preliminary reply
 The command has been accepted, but the requested action is being
 held in abeyance, pending confirmation of the information in this
 reply. The SMTP client should send another command specifying
 whether to continue or abort the action. Note: unextended SMTP
 does not have any commands that allow this type of reply, and so
 does not have continue or abort commands.

 2yz Positive Completion reply
 The requested action has been successfully completed. A new
 request may be initiated.

 3yz Positive Intermediate reply
 The command has been accepted, but the requested action is being
 held in abeyance, pending receipt of further information. The
 SMTP client should send another command specifying this
 information. This reply is used in command sequence groups (i.e.,
 in DATA).

 4yz Transient Negative Completion reply
 The command was not accepted, and the requested action did not
 occur. However, the error condition is temporary and the action
 may be requested again. The sender should return to the beginning
 of the command sequence (if any). It is difficult to assign a
 meaning to "transient" when two different sites (receiver- and

Klensin Standards Track [Page 42]

C
om

pendium
 1 page 67

RFC 2821 Simple Mail Transfer Protocol April 2001

 sender-SMTP agents) must agree on the interpretation. Each reply
 in this category might have a different time value, but the SMTP
 client is encouraged to try again. A rule of thumb to determine
 whether a reply fits into the 4yz or the 5yz category (see below)
 is that replies are 4yz if they can be successful if repeated
 without any change in command form or in properties of the sender
 or receiver (that is, the command is repeated identically and the
 receiver does not put up a new implementation.)

 5yz Permanent Negative Completion reply
 The command was not accepted and the requested action did not
 occur. The SMTP client is discouraged from repeating the exact
 request (in the same sequence). Even some "permanent" error
 conditions can be corrected, so the human user may want to direct
 the SMTP client to reinitiate the command sequence by direct
 action at some point in the future (e.g., after the spelling has
 been changed, or the user has altered the account status).

 The second digit encodes responses in specific categories:

 x0z Syntax: These replies refer to syntax errors, syntactically
 correct commands that do not fit any functional category, and
 unimplemented or superfluous commands.

 x1z Information: These are replies to requests for information,
 such as status or help.

 x2z Connections: These are replies referring to the transmission
 channel.

 x3z Unspecified.

 x4z Unspecified.

 x5z Mail system: These replies indicate the status of the receiver
 mail system vis-a-vis the requested transfer or other mail system
 action.

 The third digit gives a finer gradation of meaning in each category
 specified by the second digit. The list of replies illustrates this.
 Each reply text is recommended rather than mandatory, and may even
 change according to the command with which it is associated. On the
 other hand, the reply codes must strictly follow the specifications
 in this section. Receiver implementations should not invent new
 codes for slightly different situations from the ones described here,
 but rather adapt codes already defined.

Klensin Standards Track [Page 43]

RFC 2821 Simple Mail Transfer Protocol April 2001

 For example, a command such as NOOP, whose successful execution does
 not offer the SMTP client any new information, will return a 250
 reply. The reply is 502 when the command requests an unimplemented
 non-site-specific action. A refinement of that is the 504 reply for
 a command that is implemented, but that requests an unimplemented
 parameter.

 The reply text may be longer than a single line; in these cases the
 complete text must be marked so the SMTP client knows when it can
 stop reading the reply. This requires a special format to indicate a
 multiple line reply.

 The format for multiline replies requires that every line, except the
 last, begin with the reply code, followed immediately by a hyphen,
 "-" (also known as minus), followed by text. The last line will
 begin with the reply code, followed immediately by <SP>, optionally
 some text, and <CRLF>. As noted above, servers SHOULD send the <SP>
 if subsequent text is not sent, but clients MUST be prepared for it
 to be omitted.

 For example:

 123-First line
 123-Second line
 123-234 text beginning with numbers
 123 The last line

 In many cases the SMTP client then simply needs to search for a line
 beginning with the reply code followed by <SP> or <CRLF> and ignore
 all preceding lines. In a few cases, there is important data for the
 client in the reply "text". The client will be able to identify
 these cases from the current context.

4.2.2 Reply Codes by Function Groups

 500 Syntax error, command unrecognized
 (This may include errors such as command line too long)
 501 Syntax error in parameters or arguments
 502 Command not implemented (see section 4.2.4)
 503 Bad sequence of commands
 504 Command parameter not implemented

 211 System status, or system help reply
 214 Help message
 (Information on how to use the receiver or the meaning of a
 particular non-standard command; this reply is useful only
 to the human user)

Klensin Standards Track [Page 44]

C
om

pendium
 1 page 68

RFC 2821 Simple Mail Transfer Protocol April 2001

 220 <domain> Service ready
 221 <domain> Service closing transmission channel
 421 <domain> Service not available, closing transmission channel
 (This may be a reply to any command if the service knows it
 must shut down)

 250 Requested mail action okay, completed
 251 User not local; will forward to <forward-path>
 (See section 3.4)
 252 Cannot VRFY user, but will accept message and attempt
 delivery
 (See section 3.5.3)
 450 Requested mail action not taken: mailbox unavailable
 (e.g., mailbox busy)
 550 Requested action not taken: mailbox unavailable
 (e.g., mailbox not found, no access, or command rejected
 for policy reasons)
 451 Requested action aborted: error in processing
 551 User not local; please try <forward-path>
 (See section 3.4)
 452 Requested action not taken: insufficient system storage
 552 Requested mail action aborted: exceeded storage allocation
 553 Requested action not taken: mailbox name not allowed
 (e.g., mailbox syntax incorrect)
 354 Start mail input; end with <CRLF>.<CRLF>
 554 Transaction failed (Or, in the case of a connection-opening
 response, "No SMTP service here")

4.2.3 Reply Codes in Numeric Order

 211 System status, or system help reply
 214 Help message
 (Information on how to use the receiver or the meaning of a
 particular non-standard command; this reply is useful only
 to the human user)
 220 <domain> Service ready
 221 <domain> Service closing transmission channel
 250 Requested mail action okay, completed
 251 User not local; will forward to <forward-path>
 (See section 3.4)
 252 Cannot VRFY user, but will accept message and attempt
 delivery
 (See section 3.5.3)

 354 Start mail input; end with <CRLF>.<CRLF>

Klensin Standards Track [Page 45]

RFC 2821 Simple Mail Transfer Protocol April 2001

 421 <domain> Service not available, closing transmission channel
 (This may be a reply to any command if the service knows it
 must shut down)
 450 Requested mail action not taken: mailbox unavailable
 (e.g., mailbox busy)
 451 Requested action aborted: local error in processing
 452 Requested action not taken: insufficient system storage
 500 Syntax error, command unrecognized
 (This may include errors such as command line too long)
 501 Syntax error in parameters or arguments
 502 Command not implemented (see section 4.2.4)
 503 Bad sequence of commands
 504 Command parameter not implemented
 550 Requested action not taken: mailbox unavailable
 (e.g., mailbox not found, no access, or command rejected
 for policy reasons)
 551 User not local; please try <forward-path>
 (See section 3.4)
 552 Requested mail action aborted: exceeded storage allocation
 553 Requested action not taken: mailbox name not allowed
 (e.g., mailbox syntax incorrect)
 554 Transaction failed (Or, in the case of a connection-opening
 response, "No SMTP service here")

4.2.4 Reply Code 502

 Questions have been raised as to when reply code 502 (Command not
 implemented) SHOULD be returned in preference to other codes. 502
 SHOULD be used when the command is actually recognized by the SMTP
 server, but not implemented. If the command is not recognized, code
 500 SHOULD be returned. Extended SMTP systems MUST NOT list
 capabilities in response to EHLO for which they will return 502 (or
 500) replies.

4.2.5 Reply Codes After DATA and the Subsequent <CRLF>.<CRLF>

 When an SMTP server returns a positive completion status (2yz code)
 after the DATA command is completed with <CRLF>.<CRLF>, it accepts
 responsibility for:

 - delivering the message (if the recipient mailbox exists), or

 - if attempts to deliver the message fail due to transient
 conditions, retrying delivery some reasonable number of times at
 intervals as specified in section 4.5.4.

Klensin Standards Track [Page 46]

C
om

pendium
 1 page 69

RFC 2821 Simple Mail Transfer Protocol April 2001

 - if attempts to deliver the message fail due to permanent
 conditions, or if repeated attempts to deliver the message fail
 due to transient conditions, returning appropriate notification to
 the sender of the original message (using the address in the SMTP
 MAIL command).

 When an SMTP server returns a permanent error status (5yz) code after
 the DATA command is completed with <CRLF>.<CRLF>, it MUST NOT make
 any subsequent attempt to deliver that message. The SMTP client
 retains responsibility for delivery of that message and may either
 return it to the user or requeue it for a subsequent attempt (see
 section 4.5.4.1).

 The user who originated the message SHOULD be able to interpret the
 return of a transient failure status (by mail message or otherwise)
 as a non-delivery indication, just as a permanent failure would be
 interpreted. I.e., if the client SMTP successfully handles these
 conditions, the user will not receive such a reply.

 When an SMTP server returns a permanent error status (5yz) code after
 the DATA command is completely with <CRLF>.<CRLF>, it MUST NOT make
 any subsequent attempt to deliver the message. As with temporary
 error status codes, the SMTP client retains responsibility for the
 message, but SHOULD not again attempt delivery to the same server
 without user review and intervention of the message.

4.3 Sequencing of Commands and Replies

4.3.1 Sequencing Overview

 The communication between the sender and receiver is an alternating
 dialogue, controlled by the sender. As such, the sender issues a
 command and the receiver responds with a reply. Unless other
 arrangements are negotiated through service extensions, the sender
 MUST wait for this response before sending further commands.

 One important reply is the connection greeting. Normally, a receiver
 will send a 220 "Service ready" reply when the connection is
 completed. The sender SHOULD wait for this greeting message before
 sending any commands.

 Note: all the greeting-type replies have the official name (the
 fully-qualified primary domain name) of the server host as the first
 word following the reply code. Sometimes the host will have no
 meaningful name. See 4.1.3 for a discussion of alternatives in these
 situations.

Klensin Standards Track [Page 47]

RFC 2821 Simple Mail Transfer Protocol April 2001

 For example,

 220 ISIF.USC.EDU Service ready
 or
 220 mail.foo.com SuperSMTP v 6.1.2 Service ready
 or
 220 [10.0.0.1] Clueless host service ready

 The table below lists alternative success and failure replies for
 each command. These SHOULD be strictly adhered to: a receiver may
 substitute text in the replies, but the meaning and action implied by
 the code numbers and by the specific command reply sequence cannot be
 altered.

4.3.2 Command-Reply Sequences

 Each command is listed with its usual possible replies. The prefixes
 used before the possible replies are "I" for intermediate, "S" for
 success, and "E" for error. Since some servers may generate other
 replies under special circumstances, and to allow for future
 extension, SMTP clients SHOULD, when possible, interpret only the
 first digit of the reply and MUST be prepared to deal with
 unrecognized reply codes by interpreting the first digit only.
 Unless extended using the mechanisms described in section 2.2, SMTP
 servers MUST NOT transmit reply codes to an SMTP client that are
 other than three digits or that do not start in a digit between 2 and
 5 inclusive.

 These sequencing rules and, in principle, the codes themselves, can
 be extended or modified by SMTP extensions offered by the server and
 accepted (requested) by the client.

 In addition to the codes listed below, any SMTP command can return
 any of the following codes if the corresponding unusual circumstances
 are encountered:

 500 For the "command line too long" case or if the command name was
 not recognized. Note that producing a "command not recognized"
 error in response to the required subset of these commands is a
 violation of this specification.

 501 Syntax error in command or arguments. In order to provide for
 future extensions, commands that are specified in this document as
 not accepting arguments (DATA, RSET, QUIT) SHOULD return a 501
 message if arguments are supplied in the absence of EHLO-
 advertised extensions.

 421 Service shutting down and closing transmission channel

Klensin Standards Track [Page 48]

C
om

pendium
 1 page 70

RFC 2821 Simple Mail Transfer Protocol April 2001

 Specific sequences are:

 CONNECTION ESTABLISHMENT
 S: 220
 E: 554
 EHLO or HELO
 S: 250
 E: 504, 550
 MAIL
 S: 250
 E: 552, 451, 452, 550, 553, 503
 RCPT
 S: 250, 251 (but see section 3.4 for discussion of 251 and 551)
 E: 550, 551, 552, 553, 450, 451, 452, 503, 550
 DATA
 I: 354 -> data -> S: 250
 E: 552, 554, 451, 452
 E: 451, 554, 503
 RSET
 S: 250
 VRFY
 S: 250, 251, 252
 E: 550, 551, 553, 502, 504
 EXPN
 S: 250, 252
 E: 550, 500, 502, 504
 HELP
 S: 211, 214
 E: 502, 504
 NOOP
 S: 250
 QUIT
 S: 221

4.4 Trace Information

 When an SMTP server receives a message for delivery or further
 processing, it MUST insert trace ("time stamp" or "Received")
 information at the beginning of the message content, as discussed in
 section 4.1.1.4.

 This line MUST be structured as follows:

 - The FROM field, which MUST be supplied in an SMTP environment,
 SHOULD contain both (1) the name of the source host as presented
 in the EHLO command and (2) an address literal containing the IP
 address of the source, determined from the TCP connection.

Klensin Standards Track [Page 49]

RFC 2821 Simple Mail Transfer Protocol April 2001

 - The ID field MAY contain an "@" as suggested in RFC 822, but this
 is not required.

 - The FOR field MAY contain a list of <path> entries when multiple
 RCPT commands have been given. This may raise some security
 issues and is usually not desirable; see section 7.2.

 An Internet mail program MUST NOT change a Received: line that was
 previously added to the message header. SMTP servers MUST prepend
 Received lines to messages; they MUST NOT change the order of
 existing lines or insert Received lines in any other location.

 As the Internet grows, comparability of Received fields is important
 for detecting problems, especially slow relays. SMTP servers that
 create Received fields SHOULD use explicit offsets in the dates
 (e.g., -0800), rather than time zone names of any type. Local time
 (with an offset) is preferred to UT when feasible. This formulation
 allows slightly more information about local circumstances to be
 specified. If UT is needed, the receiver need merely do some simple
 arithmetic to convert the values. Use of UT loses information about
 the time zone-location of the server. If it is desired to supply a
 time zone name, it SHOULD be included in a comment.

 When the delivery SMTP server makes the "final delivery" of a
 message, it inserts a return-path line at the beginning of the mail
 data. This use of return-path is required; mail systems MUST support
 it. The return-path line preserves the information in the <reverse-
 path> from the MAIL command. Here, final delivery means the message
 has left the SMTP environment. Normally, this would mean it had been
 delivered to the destination user or an associated mail drop, but in
 some cases it may be further processed and transmitted by another
 mail system.

 It is possible for the mailbox in the return path to be different
 from the actual sender's mailbox, for example, if error responses are
 to be delivered to a special error handling mailbox rather than to
 the message sender. When mailing lists are involved, this
 arrangement is common and useful as a means of directing errors to
 the list maintainer rather than the message originator.

 The text above implies that the final mail data will begin with a
 return path line, followed by one or more time stamp lines. These
 lines will be followed by the mail data headers and body [32].

 It is sometimes difficult for an SMTP server to determine whether or
 not it is making final delivery since forwarding or other operations
 may occur after the message is accepted for delivery. Consequently,

Klensin Standards Track [Page 50]

C
om

pendium
 1 page 71

RFC 2821 Simple Mail Transfer Protocol April 2001

 any further (forwarding, gateway, or relay) systems MAY remove the
 return path and rebuild the MAIL command as needed to ensure that
 exactly one such line appears in a delivered message.

 A message-originating SMTP system SHOULD NOT send a message that
 already contains a Return-path header. SMTP servers performing a
 relay function MUST NOT inspect the message data, and especially not
 to the extent needed to determine if Return-path headers are present.
 SMTP servers making final delivery MAY remove Return-path headers
 before adding their own.

 The primary purpose of the Return-path is to designate the address to
 which messages indicating non-delivery or other mail system failures
 are to be sent. For this to be unambiguous, exactly one return path
 SHOULD be present when the message is delivered. Systems using RFC
 822 syntax with non-SMTP transports SHOULD designate an unambiguous
 address, associated with the transport envelope, to which error
 reports (e.g., non-delivery messages) should be sent.

 Historical note: Text in RFC 822 that appears to contradict the use
 of the Return-path header (or the envelope reverse path address from
 the MAIL command) as the destination for error messages is not
 applicable on the Internet. The reverse path address (as copied into
 the Return-path) MUST be used as the target of any mail containing
 delivery error messages.

 In particular:

 - a gateway from SMTP->elsewhere SHOULD insert a return-path header,
 unless it is known that the "elsewhere" transport also uses
 Internet domain addresses and maintains the envelope sender
 address separately.

 - a gateway from elsewhere->SMTP SHOULD delete any return-path
 header present in the message, and either copy that information to
 the SMTP envelope or combine it with information present in the
 envelope of the other transport system to construct the reverse
 path argument to the MAIL command in the SMTP envelope.

 The server must give special treatment to cases in which the
 processing following the end of mail data indication is only
 partially successful. This could happen if, after accepting several
 recipients and the mail data, the SMTP server finds that the mail
 data could be successfully delivered to some, but not all, of the
 recipients. In such cases, the response to the DATA command MUST be
 an OK reply. However, the SMTP server MUST compose and send an
 "undeliverable mail" notification message to the originator of the
 message.

Klensin Standards Track [Page 51]

RFC 2821 Simple Mail Transfer Protocol April 2001

 A single notification listing all of the failed recipients or
 separate notification messages MUST be sent for each failed
 recipient. For economy of processing by the sender, the former is
 preferred when possible. All undeliverable mail notification
 messages are sent using the MAIL command (even if they result from
 processing the obsolete SEND, SOML, or SAML commands) and use a null
 return path as discussed in section 3.7.

 The time stamp line and the return path line are formally defined as
 follows:

Return-path-line = "Return-Path:" FWS Reverse-path <CRLF>

Time-stamp-line = "Received:" FWS Stamp <CRLF>

Stamp = From-domain By-domain Opt-info ";" FWS date-time

 ; where "date-time" is as defined in [32]
 ; but the "obs-" forms, especially two-digit
 ; years, are prohibited in SMTP and MUST NOT be used.

From-domain = "FROM" FWS Extended-Domain CFWS

By-domain = "BY" FWS Extended-Domain CFWS

Extended-Domain = Domain /
 (Domain FWS "(" TCP-info ")") /
 (Address-literal FWS "(" TCP-info ")")

TCP-info = Address-literal / (Domain FWS Address-literal)
 ; Information derived by server from TCP connection
 ; not client EHLO.

Opt-info = [Via] [With] [ID] [For]

Via = "VIA" FWS Link CFWS

With = "WITH" FWS Protocol CFWS

ID = "ID" FWS String / msg-id CFWS

For = "FOR" FWS 1*(Path / Mailbox) CFWS

Link = "TCP" / Addtl-Link
Addtl-Link = Atom
 ; Additional standard names for links are registered with the
 ; Internet Assigned Numbers Authority (IANA). "Via" is
 ; primarily of value with non-Internet transports. SMTP

Klensin Standards Track [Page 52]

C
om

pendium
 1 page 72

RFC 2821 Simple Mail Transfer Protocol April 2001

 ; servers SHOULD NOT use unregistered names.
Protocol = "ESMTP" / "SMTP" / Attdl-Protocol
Attdl-Protocol = Atom
 ; Additional standard names for protocols are registered with the
 ; Internet Assigned Numbers Authority (IANA). SMTP servers
 ; SHOULD NOT use unregistered names.

4.5 Additional Implementation Issues

4.5.1 Minimum Implementation

 In order to make SMTP workable, the following minimum implementation
 is required for all receivers. The following commands MUST be
 supported to conform to this specification:

 EHLO
 HELO
 MAIL
 RCPT
 DATA
 RSET
 NOOP
 QUIT
 VRFY

 Any system that includes an SMTP server supporting mail relaying or
 delivery MUST support the reserved mailbox "postmaster" as a case-
 insensitive local name. This postmaster address is not strictly
 necessary if the server always returns 554 on connection opening (as
 described in section 3.1). The requirement to accept mail for
 postmaster implies that RCPT commands which specify a mailbox for
 postmaster at any of the domains for which the SMTP server provides
 mail service, as well as the special case of "RCPT TO:<Postmaster>"
 (with no domain specification), MUST be supported.

 SMTP systems are expected to make every reasonable effort to accept
 mail directed to Postmaster from any other system on the Internet.
 In extreme cases --such as to contain a denial of service attack or
 other breach of security-- an SMTP server may block mail directed to
 Postmaster. However, such arrangements SHOULD be narrowly tailored
 so as to avoid blocking messages which are not part of such attacks.

4.5.2 Transparency

 Without some provision for data transparency, the character sequence
 "<CRLF>.<CRLF>" ends the mail text and cannot be sent by the user.
 In general, users are not aware of such "forbidden" sequences. To

Klensin Standards Track [Page 53]

RFC 2821 Simple Mail Transfer Protocol April 2001

 allow all user composed text to be transmitted transparently, the
 following procedures are used:

 - Before sending a line of mail text, the SMTP client checks the
 first character of the line. If it is a period, one additional
 period is inserted at the beginning of the line.

 - When a line of mail text is received by the SMTP server, it checks
 the line. If the line is composed of a single period, it is
 treated as the end of mail indicator. If the first character is a
 period and there are other characters on the line, the first
 character is deleted.

 The mail data may contain any of the 128 ASCII characters. All
 characters are to be delivered to the recipient's mailbox, including
 spaces, vertical and horizontal tabs, and other control characters.
 If the transmission channel provides an 8-bit byte (octet) data
 stream, the 7-bit ASCII codes are transmitted right justified in the
 octets, with the high order bits cleared to zero. See 3.7 for
 special treatment of these conditions in SMTP systems serving a relay
 function.

 In some systems it may be necessary to transform the data as it is
 received and stored. This may be necessary for hosts that use a
 different character set than ASCII as their local character set, that
 store data in records rather than strings, or which use special
 character sequences as delimiters inside mailboxes. If such
 transformations are necessary, they MUST be reversible, especially if
 they are applied to mail being relayed.

4.5.3 Sizes and Timeouts

4.5.3.1 Size limits and minimums

 There are several objects that have required minimum/maximum sizes.
 Every implementation MUST be able to receive objects of at least
 these sizes. Objects larger than these sizes SHOULD be avoided when
 possible. However, some Internet mail constructs such as encoded
 X.400 addresses [16] will often require larger objects: clients MAY
 attempt to transmit these, but MUST be prepared for a server to
 reject them if they cannot be handled by it. To the maximum extent
 possible, implementation techniques which impose no limits on the
 length of these objects should be used.

 local-part
 The maximum total length of a user name or other local-part is 64
 characters.

Klensin Standards Track [Page 54]

C
om

pendium
 1 page 73

RFC 2821 Simple Mail Transfer Protocol April 2001

 domain
 The maximum total length of a domain name or number is 255
 characters.

 path
 The maximum total length of a reverse-path or forward-path is 256
 characters (including the punctuation and element separators).

 command line
 The maximum total length of a command line including the command
 word and the <CRLF> is 512 characters. SMTP extensions may be
 used to increase this limit.

 reply line
 The maximum total length of a reply line including the reply code
 and the <CRLF> is 512 characters. More information may be
 conveyed through multiple-line replies.

 text line
 The maximum total length of a text line including the <CRLF> is
 1000 characters (not counting the leading dot duplicated for
 transparency). This number may be increased by the use of SMTP
 Service Extensions.

 message content
 The maximum total length of a message content (including any
 message headers as well as the message body) MUST BE at least 64K
 octets. Since the introduction of Internet standards for
 multimedia mail [12], message lengths on the Internet have grown
 dramatically, and message size restrictions should be avoided if
 at all possible. SMTP server systems that must impose
 restrictions SHOULD implement the "SIZE" service extension [18],
 and SMTP client systems that will send large messages SHOULD
 utilize it when possible.

 recipients buffer
 The minimum total number of recipients that must be buffered is
 100 recipients. Rejection of messages (for excessive recipients)
 with fewer than 100 RCPT commands is a violation of this
 specification. The general principle that relaying SMTP servers
 MUST NOT, and delivery SMTP servers SHOULD NOT, perform validation
 tests on message headers suggests that rejecting a message based
 on the total number of recipients shown in header fields is to be
 discouraged. A server which imposes a limit on the number of
 recipients MUST behave in an orderly fashion, such as to reject
 additional addresses over its limit rather than silently
 discarding addresses previously accepted. A client that needs to

Klensin Standards Track [Page 55]

RFC 2821 Simple Mail Transfer Protocol April 2001

 deliver a message containing over 100 RCPT commands SHOULD be
 prepared to transmit in 100-recipient "chunks" if the server
 declines to accept more than 100 recipients in a single message.

 Errors due to exceeding these limits may be reported by using the
 reply codes. Some examples of reply codes are:

 500 Line too long.
 or
 501 Path too long
 or
 452 Too many recipients (see below)
 or
 552 Too much mail data.

 RFC 821 [30] incorrectly listed the error where an SMTP server
 exhausts its implementation limit on the number of RCPT commands
 ("too many recipients") as having reply code 552. The correct reply
 code for this condition is 452. Clients SHOULD treat a 552 code in
 this case as a temporary, rather than permanent, failure so the logic
 below works.

 When a conforming SMTP server encounters this condition, it has at
 least 100 successful RCPT commands in its recipients buffer. If the
 server is able to accept the message, then at least these 100
 addresses will be removed from the SMTP client's queue. When the
 client attempts retransmission of those addresses which received 452
 responses, at least 100 of these will be able to fit in the SMTP
 server's recipients buffer. Each retransmission attempt which is
 able to deliver anything will be able to dispose of at least 100 of
 these recipients.

 If an SMTP server has an implementation limit on the number of RCPT
 commands and this limit is exhausted, it MUST use a response code of
 452 (but the client SHOULD also be prepared for a 552, as noted
 above). If the server has a configured site-policy limitation on the
 number of RCPT commands, it MAY instead use a 5XX response code.
 This would be most appropriate if the policy limitation was intended
 to apply if the total recipient count for a particular message body
 were enforced even if that message body was sent in multiple mail
 transactions.

4.5.3.2 Timeouts

 An SMTP client MUST provide a timeout mechanism. It MUST use per-
 command timeouts rather than somehow trying to time the entire mail
 transaction. Timeouts SHOULD be easily reconfigurable, preferably
 without recompiling the SMTP code. To implement this, a timer is set

Klensin Standards Track [Page 56]

C
om

pendium
 1 page 74

RFC 2821 Simple Mail Transfer Protocol April 2001

 for each SMTP command and for each buffer of the data transfer. The
 latter means that the overall timeout is inherently proportional to
 the size of the message.

 Based on extensive experience with busy mail-relay hosts, the minimum
 per-command timeout values SHOULD be as follows:

 Initial 220 Message: 5 minutes
 An SMTP client process needs to distinguish between a failed TCP
 connection and a delay in receiving the initial 220 greeting
 message. Many SMTP servers accept a TCP connection but delay
 delivery of the 220 message until their system load permits more
 mail to be processed.

 MAIL Command: 5 minutes

 RCPT Command: 5 minutes
 A longer timeout is required if processing of mailing lists and
 aliases is not deferred until after the message was accepted.

 DATA Initiation: 2 minutes
 This is while awaiting the "354 Start Input" reply to a DATA
 command.

 Data Block: 3 minutes
 This is while awaiting the completion of each TCP SEND call
 transmitting a chunk of data.

 DATA Termination: 10 minutes.
 This is while awaiting the "250 OK" reply. When the receiver gets
 the final period terminating the message data, it typically
 performs processing to deliver the message to a user mailbox. A
 spurious timeout at this point would be very wasteful and would
 typically result in delivery of multiple copies of the message,
 since it has been successfully sent and the server has accepted
 responsibility for delivery. See section 6.1 for additional
 discussion.

 An SMTP server SHOULD have a timeout of at least 5 minutes while it
 is awaiting the next command from the sender.

4.5.4 Retry Strategies

 The common structure of a host SMTP implementation includes user
 mailboxes, one or more areas for queuing messages in transit, and one
 or more daemon processes for sending and receiving mail. The exact
 structure will vary depending on the needs of the users on the host

Klensin Standards Track [Page 57]

RFC 2821 Simple Mail Transfer Protocol April 2001

 and the number and size of mailing lists supported by the host. We
 describe several optimizations that have proved helpful, particularly
 for mailers supporting high traffic levels.

 Any queuing strategy MUST include timeouts on all activities on a
 per-command basis. A queuing strategy MUST NOT send error messages
 in response to error messages under any circumstances.

4.5.4.1 Sending Strategy

 The general model for an SMTP client is one or more processes that
 periodically attempt to transmit outgoing mail. In a typical system,
 the program that composes a message has some method for requesting
 immediate attention for a new piece of outgoing mail, while mail that
 cannot be transmitted immediately MUST be queued and periodically
 retried by the sender. A mail queue entry will include not only the
 message itself but also the envelope information.

 The sender MUST delay retrying a particular destination after one
 attempt has failed. In general, the retry interval SHOULD be at
 least 30 minutes; however, more sophisticated and variable strategies
 will be beneficial when the SMTP client can determine the reason for
 non-delivery.

 Retries continue until the message is transmitted or the sender gives
 up; the give-up time generally needs to be at least 4-5 days. The
 parameters to the retry algorithm MUST be configurable.

 A client SHOULD keep a list of hosts it cannot reach and
 corresponding connection timeouts, rather than just retrying queued
 mail items.

 Experience suggests that failures are typically transient (the target
 system or its connection has crashed), favoring a policy of two
 connection attempts in the first hour the message is in the queue,
 and then backing off to one every two or three hours.

 The SMTP client can shorten the queuing delay in cooperation with the
 SMTP server. For example, if mail is received from a particular
 address, it is likely that mail queued for that host can now be sent.
 Application of this principle may, in many cases, eliminate the
 requirement for an explicit "send queues now" function such as ETRN
 [9].

 The strategy may be further modified as a result of multiple
 addresses per host (see below) to optimize delivery time vs. resource
 usage.

Klensin Standards Track [Page 58]

C
om

pendium
 1 page 75

RFC 2821 Simple Mail Transfer Protocol April 2001

 An SMTP client may have a large queue of messages for each
 unavailable destination host. If all of these messages were retried
 in every retry cycle, there would be excessive Internet overhead and
 the sending system would be blocked for a long period. Note that an
 SMTP client can generally determine that a delivery attempt has
 failed only after a timeout of several minutes and even a one-minute
 timeout per connection will result in a very large delay if retries
 are repeated for dozens, or even hundreds, of queued messages to the
 same host.

 At the same time, SMTP clients SHOULD use great care in caching
 negative responses from servers. In an extreme case, if EHLO is
 issued multiple times during the same SMTP connection, different
 answers may be returned by the server. More significantly, 5yz
 responses to the MAIL command MUST NOT be cached.

 When a mail message is to be delivered to multiple recipients, and
 the SMTP server to which a copy of the message is to be sent is the
 same for multiple recipients, then only one copy of the message
 SHOULD be transmitted. That is, the SMTP client SHOULD use the
 command sequence: MAIL, RCPT, RCPT,... RCPT, DATA instead of the
 sequence: MAIL, RCPT, DATA, ..., MAIL, RCPT, DATA. However, if there
 are very many addresses, a limit on the number of RCPT commands per
 MAIL command MAY be imposed. Implementation of this efficiency
 feature is strongly encouraged.

 Similarly, to achieve timely delivery, the SMTP client MAY support
 multiple concurrent outgoing mail transactions. However, some limit
 may be appropriate to protect the host from devoting all its
 resources to mail.

4.5.4.2 Receiving Strategy

 The SMTP server SHOULD attempt to keep a pending listen on the SMTP
 port at all times. This requires the support of multiple incoming
 TCP connections for SMTP. Some limit MAY be imposed but servers that
 cannot handle more than one SMTP transaction at a time are not in
 conformance with the intent of this specification.

 As discussed above, when the SMTP server receives mail from a
 particular host address, it could activate its own SMTP queuing
 mechanisms to retry any mail pending for that host address.

4.5.5 Messages with a null reverse-path

 There are several types of notification messages which are required
 by existing and proposed standards to be sent with a null reverse
 path, namely non-delivery notifications as discussed in section 3.7,

Klensin Standards Track [Page 59]

RFC 2821 Simple Mail Transfer Protocol April 2001

 other kinds of Delivery Status Notifications (DSNs) [24], and also
 Message Disposition Notifications (MDNs) [10]. All of these kinds of
 messages are notifications about a previous message, and they are
 sent to the reverse-path of the previous mail message. (If the
 delivery of such a notification message fails, that usually indicates
 a problem with the mail system of the host to which the notification
 message is addressed. For this reason, at some hosts the MTA is set
 up to forward such failed notification messages to someone who is
 able to fix problems with the mail system, e.g., via the postmaster
 alias.)

 All other types of messages (i.e., any message which is not required
 by a standards-track RFC to have a null reverse-path) SHOULD be sent
 with with a valid, non-null reverse-path.

 Implementors of automated email processors should be careful to make
 sure that the various kinds of messages with null reverse-path are
 handled correctly, in particular such systems SHOULD NOT reply to
 messages with null reverse-path.

5. Address Resolution and Mail Handling

 Once an SMTP client lexically identifies a domain to which mail will
 be delivered for processing (as described in sections 3.6 and 3.7), a
 DNS lookup MUST be performed to resolve the domain name [22]. The
 names are expected to be fully-qualified domain names (FQDNs):
 mechanisms for inferring FQDNs from partial names or local aliases
 are outside of this specification and, due to a history of problems,
 are generally discouraged. The lookup first attempts to locate an MX
 record associated with the name. If a CNAME record is found instead,
 the resulting name is processed as if it were the initial name. If
 no MX records are found, but an A RR is found, the A RR is treated as
 if it was associated with an implicit MX RR, with a preference of 0,
 pointing to that host. If one or more MX RRs are found for a given
 name, SMTP systems MUST NOT utilize any A RRs associated with that
 name unless they are located using the MX RRs; the "implicit MX" rule
 above applies only if there are no MX records present. If MX records
 are present, but none of them are usable, this situation MUST be
 reported as an error.

 When the lookup succeeds, the mapping can result in a list of
 alternative delivery addresses rather than a single address, because
 of multiple MX records, multihoming, or both. To provide reliable
 mail transmission, the SMTP client MUST be able to try (and retry)
 each of the relevant addresses in this list in order, until a
 delivery attempt succeeds. However, there MAY also be a configurable
 limit on the number of alternate addresses that can be tried. In any
 case, the SMTP client SHOULD try at least two addresses.

Klensin Standards Track [Page 60]

C
om

pendium
 1 page 76

RFC 2821 Simple Mail Transfer Protocol April 2001

 Two types of information is used to rank the host addresses: multiple
 MX records, and multihomed hosts.

 Multiple MX records contain a preference indication that MUST be used
 in sorting (see below). Lower numbers are more preferred than higher
 ones. If there are multiple destinations with the same preference
 and there is no clear reason to favor one (e.g., by recognition of an
 easily-reached address), then the sender-SMTP MUST randomize them to
 spread the load across multiple mail exchangers for a specific
 organization.

 The destination host (perhaps taken from the preferred MX record) may
 be multihomed, in which case the domain name resolver will return a
 list of alternative IP addresses. It is the responsibility of the
 domain name resolver interface to have ordered this list by
 decreasing preference if necessary, and SMTP MUST try them in the
 order presented.

 Although the capability to try multiple alternative addresses is
 required, specific installations may want to limit or disable the use
 of alternative addresses. The question of whether a sender should
 attempt retries using the different addresses of a multihomed host
 has been controversial. The main argument for using the multiple
 addresses is that it maximizes the probability of timely delivery,
 and indeed sometimes the probability of any delivery; the counter-
 argument is that it may result in unnecessary resource use. Note
 that resource use is also strongly determined by the sending strategy
 discussed in section 4.5.4.1.

 If an SMTP server receives a message with a destination for which it
 is a designated Mail eXchanger, it MAY relay the message (potentially
 after having rewritten the MAIL FROM and/or RCPT TO addresses), make
 final delivery of the message, or hand it off using some mechanism
 outside the SMTP-provided transport environment. Of course, neither
 of the latter require that the list of MX records be examined
 further.

 If it determines that it should relay the message without rewriting
 the address, it MUST sort the MX records to determine candidates for
 delivery. The records are first ordered by preference, with the
 lowest-numbered records being most preferred. The relay host MUST
 then inspect the list for any of the names or addresses by which it
 might be known in mail transactions. If a matching record is found,
 all records at that preference level and higher-numbered ones MUST be
 discarded from consideration. If there are no records left at that
 point, it is an error condition, and the message MUST be returned as
 undeliverable. If records do remain, they SHOULD be tried, best
 preference first, as described above.

Klensin Standards Track [Page 61]

RFC 2821 Simple Mail Transfer Protocol April 2001

6. Problem Detection and Handling

6.1 Reliable Delivery and Replies by Email

 When the receiver-SMTP accepts a piece of mail (by sending a "250 OK"
 message in response to DATA), it is accepting responsibility for
 delivering or relaying the message. It must take this responsibility
 seriously. It MUST NOT lose the message for frivolous reasons, such
 as because the host later crashes or because of a predictable
 resource shortage.

 If there is a delivery failure after acceptance of a message, the
 receiver-SMTP MUST formulate and mail a notification message. This
 notification MUST be sent using a null ("<>") reverse path in the
 envelope. The recipient of this notification MUST be the address
 from the envelope return path (or the Return-Path: line). However,
 if this address is null ("<>"), the receiver-SMTP MUST NOT send a
 notification. Obviously, nothing in this section can or should
 prohibit local decisions (i.e., as part of the same system
 environment as the receiver-SMTP) to log or otherwise transmit
 information about null address events locally if that is desired. If
 the address is an explicit source route, it MUST be stripped down to
 its final hop.

 For example, suppose that an error notification must be sent for a
 message that arrived with:

 MAIL FROM:<@a,@b:user@d>

 The notification message MUST be sent using:

 RCPT TO:<user@d>

 Some delivery failures after the message is accepted by SMTP will be
 unavoidable. For example, it may be impossible for the receiving
 SMTP server to validate all the delivery addresses in RCPT command(s)
 due to a "soft" domain system error, because the target is a mailing
 list (see earlier discussion of RCPT), or because the server is
 acting as a relay and has no immediate access to the delivering
 system.

 To avoid receiving duplicate messages as the result of timeouts, a
 receiver-SMTP MUST seek to minimize the time required to respond to
 the final <CRLF>.<CRLF> end of data indicator. See RFC 1047 [28] for
 a discussion of this problem.

Klensin Standards Track [Page 62]

C
om

pendium
 1 page 77

RFC 2821 Simple Mail Transfer Protocol April 2001

6.2 Loop Detection

 Simple counting of the number of "Received:" headers in a message has
 proven to be an effective, although rarely optimal, method of
 detecting loops in mail systems. SMTP servers using this technique
 SHOULD use a large rejection threshold, normally at least 100
 Received entries. Whatever mechanisms are used, servers MUST contain
 provisions for detecting and stopping trivial loops.

6.3 Compensating for Irregularities

 Unfortunately, variations, creative interpretations, and outright
 violations of Internet mail protocols do occur; some would suggest
 that they occur quite frequently. The debate as to whether a well-
 behaved SMTP receiver or relay should reject a malformed message,
 attempt to pass it on unchanged, or attempt to repair it to increase
 the odds of successful delivery (or subsequent reply) began almost
 with the dawn of structured network mail and shows no signs of
 abating. Advocates of rejection claim that attempted repairs are
 rarely completely adequate and that rejection of bad messages is the
 only way to get the offending software repaired. Advocates of
 "repair" or "deliver no matter what" argue that users prefer that
 mail go through it if at all possible and that there are significant
 market pressures in that direction. In practice, these market
 pressures may be more important to particular vendors than strict
 conformance to the standards, regardless of the preference of the
 actual developers.

 The problems associated with ill-formed messages were exacerbated by
 the introduction of the split-UA mail reading protocols [3, 26, 5,
 21]. These protocols have encouraged the use of SMTP as a posting
 protocol, and SMTP servers as relay systems for these client hosts
 (which are often only intermittently connected to the Internet).
 Historically, many of those client machines lacked some of the
 mechanisms and information assumed by SMTP (and indeed, by the mail
 format protocol [7]). Some could not keep adequate track of time;
 others had no concept of time zones; still others could not identify
 their own names or addresses; and, of course, none could satisfy the
 assumptions that underlay RFC 822's conception of authenticated
 addresses.

 In response to these weak SMTP clients, many SMTP systems now
 complete messages that are delivered to them in incomplete or
 incorrect form. This strategy is generally considered appropriate
 when the server can identify or authenticate the client, and there
 are prior agreements between them. By contrast, there is at best
 great concern about fixes applied by a relay or delivery SMTP server
 that has little or no knowledge of the user or client machine.

Klensin Standards Track [Page 63]

RFC 2821 Simple Mail Transfer Protocol April 2001

 The following changes to a message being processed MAY be applied
 when necessary by an originating SMTP server, or one used as the
 target of SMTP as an initial posting protocol:

 - Addition of a message-id field when none appears

 - Addition of a date, time or time zone when none appears

 - Correction of addresses to proper FQDN format

 The less information the server has about the client, the less likely
 these changes are to be correct and the more caution and conservatism
 should be applied when considering whether or not to perform fixes
 and how. These changes MUST NOT be applied by an SMTP server that
 provides an intermediate relay function.

 In all cases, properly-operating clients supplying correct
 information are preferred to corrections by the SMTP server. In all
 cases, documentation of actions performed by the servers (in trace
 fields and/or header comments) is strongly encouraged.

7. Security Considerations

7.1 Mail Security and Spoofing

 SMTP mail is inherently insecure in that it is feasible for even
 fairly casual users to negotiate directly with receiving and relaying
 SMTP servers and create messages that will trick a naive recipient
 into believing that they came from somewhere else. Constructing such
 a message so that the "spoofed" behavior cannot be detected by an
 expert is somewhat more difficult, but not sufficiently so as to be a
 deterrent to someone who is determined and knowledgeable.
 Consequently, as knowledge of Internet mail increases, so does the
 knowledge that SMTP mail inherently cannot be authenticated, or
 integrity checks provided, at the transport level. Real mail
 security lies only in end-to-end methods involving the message
 bodies, such as those which use digital signatures (see [14] and,
 e.g., PGP [4] or S/MIME [31]).

 Various protocol extensions and configuration options that provide
 authentication at the transport level (e.g., from an SMTP client to
 an SMTP server) improve somewhat on the traditional situation
 described above. However, unless they are accompanied by careful
 handoffs of responsibility in a carefully-designed trust environment,
 they remain inherently weaker than end-to-end mechanisms which use
 digitally signed messages rather than depending on the integrity of
 the transport system.

Klensin Standards Track [Page 64]

C
om

pendium
 1 page 78

RFC 2821 Simple Mail Transfer Protocol April 2001

 Efforts to make it more difficult for users to set envelope return
 path and header "From" fields to point to valid addresses other than
 their own are largely misguided: they frustrate legitimate
 applications in which mail is sent by one user on behalf of another
 or in which error (or normal) replies should be directed to a special
 address. (Systems that provide convenient ways for users to alter
 these fields on a per-message basis should attempt to establish a
 primary and permanent mailbox address for the user so that Sender
 fields within the message data can be generated sensibly.)

 This specification does not further address the authentication issues
 associated with SMTP other than to advocate that useful functionality
 not be disabled in the hope of providing some small margin of
 protection against an ignorant user who is trying to fake mail.

7.2 "Blind" Copies

 Addresses that do not appear in the message headers may appear in the
 RCPT commands to an SMTP server for a number of reasons. The two
 most common involve the use of a mailing address as a "list exploder"
 (a single address that resolves into multiple addresses) and the
 appearance of "blind copies". Especially when more than one RCPT
 command is present, and in order to avoid defeating some of the
 purpose of these mechanisms, SMTP clients and servers SHOULD NOT copy
 the full set of RCPT command arguments into the headers, either as
 part of trace headers or as informational or private-extension
 headers. Since this rule is often violated in practice, and cannot
 be enforced, sending SMTP systems that are aware of "bcc" use MAY
 find it helpful to send each blind copy as a separate message
 transaction containing only a single RCPT command.

 There is no inherent relationship between either "reverse" (from
 MAIL, SAML, etc., commands) or "forward" (RCPT) addresses in the SMTP
 transaction ("envelope") and the addresses in the headers. Receiving
 systems SHOULD NOT attempt to deduce such relationships and use them
 to alter the headers of the message for delivery. The popular
 "Apparently-to" header is a violation of this principle as well as a
 common source of unintended information disclosure and SHOULD NOT be
 used.

7.3 VRFY, EXPN, and Security

 As discussed in section 3.5, individual sites may want to disable
 either or both of VRFY or EXPN for security reasons. As a corollary
 to the above, implementations that permit this MUST NOT appear to
 have verified addresses that are not, in fact, verified. If a site

Klensin Standards Track [Page 65]

RFC 2821 Simple Mail Transfer Protocol April 2001

 disables these commands for security reasons, the SMTP server MUST
 return a 252 response, rather than a code that could be confused with
 successful or unsuccessful verification.

 Returning a 250 reply code with the address listed in the VRFY
 command after having checked it only for syntax violates this rule.
 Of course, an implementation that "supports" VRFY by always returning
 550 whether or not the address is valid is equally not in
 conformance.

 Within the last few years, the contents of mailing lists have become
 popular as an address information source for so-called "spammers."
 The use of EXPN to "harvest" addresses has increased as list
 administrators have installed protections against inappropriate uses
 of the lists themselves. Implementations SHOULD still provide
 support for EXPN, but sites SHOULD carefully evaluate the tradeoffs.
 As authentication mechanisms are introduced into SMTP, some sites may
 choose to make EXPN available only to authenticated requestors.

7.4 Information Disclosure in Announcements

 There has been an ongoing debate about the tradeoffs between the
 debugging advantages of announcing server type and version (and,
 sometimes, even server domain name) in the greeting response or in
 response to the HELP command and the disadvantages of exposing
 information that might be useful in a potential hostile attack. The
 utility of the debugging information is beyond doubt. Those who
 argue for making it available point out that it is far better to
 actually secure an SMTP server rather than hope that trying to
 conceal known vulnerabilities by hiding the server's precise identity
 will provide more protection. Sites are encouraged to evaluate the
 tradeoff with that issue in mind; implementations are strongly
 encouraged to minimally provide for making type and version
 information available in some way to other network hosts.

7.5 Information Disclosure in Trace Fields

 In some circumstances, such as when mail originates from within a LAN
 whose hosts are not directly on the public Internet, trace
 ("Received") fields produced in conformance with this specification
 may disclose host names and similar information that would not
 normally be available. This ordinarily does not pose a problem, but
 sites with special concerns about name disclosure should be aware of
 it. Also, the optional FOR clause should be supplied with caution or
 not at all when multiple recipients are involved lest it
 inadvertently disclose the identities of "blind copy" recipients to
 others.

Klensin Standards Track [Page 66]

C
om

pendium
 1 page 79

RFC 2821 Simple Mail Transfer Protocol April 2001

7.6 Information Disclosure in Message Forwarding

 As discussed in section 3.4, use of the 251 or 551 reply codes to
 identify the replacement address associated with a mailbox may
 inadvertently disclose sensitive information. Sites that are
 concerned about those issues should ensure that they select and
 configure servers appropriately.

7.7 Scope of Operation of SMTP Servers

 It is a well-established principle that an SMTP server may refuse to
 accept mail for any operational or technical reason that makes sense
 to the site providing the server. However, cooperation among sites
 and installations makes the Internet possible. If sites take
 excessive advantage of the right to reject traffic, the ubiquity of
 email availability (one of the strengths of the Internet) will be
 threatened; considerable care should be taken and balance maintained
 if a site decides to be selective about the traffic it will accept
 and process.

 In recent years, use of the relay function through arbitrary sites
 has been used as part of hostile efforts to hide the actual origins
 of mail. Some sites have decided to limit the use of the relay
 function to known or identifiable sources, and implementations SHOULD
 provide the capability to perform this type of filtering. When mail
 is rejected for these or other policy reasons, a 550 code SHOULD be
 used in response to EHLO, MAIL, or RCPT as appropriate.

8. IANA Considerations

 IANA will maintain three registries in support of this specification.
 The first consists of SMTP service extensions with the associated
 keywords, and, as needed, parameters and verbs. As specified in
 section 2.2.2, no entry may be made in this registry that starts in
 an "X". Entries may be made only for service extensions (and
 associated keywords, parameters, or verbs) that are defined in
 standards-track or experimental RFCs specifically approved by the
 IESG for this purpose.

 The second registry consists of "tags" that identify forms of domain
 literals other than those for IPv4 addresses (specified in RFC 821
 and in this document) and IPv6 addresses (specified in this
 document). Additional literal types require standardization before
 being used; none are anticipated at this time.

 The third, established by RFC 821 and renewed by this specification,
 is a registry of link and protocol identifiers to be used with the
 "via" and "with" subclauses of the time stamp ("Received: header")

Klensin Standards Track [Page 67]

RFC 2821 Simple Mail Transfer Protocol April 2001

 described in section 4.4. Link and protocol identifiers in addition
 to those specified in this document may be registered only by
 standardization or by way of an RFC-documented, IESG-approved,
 Experimental protocol extension.

9. References

 [1] American National Standards Institute (formerly United States of
 America Standards Institute), X3.4, 1968, "USA Code for
 Information Interchange". ANSI X3.4-1968 has been replaced by
 newer versions with slight modifications, but the 1968 version
 remains definitive for the Internet.

 [2] Braden, R., "Requirements for Internet hosts - application and
 support", STD 3, RFC 1123, October 1989.

 [3] Butler, M., Chase, D., Goldberger, J., Postel, J. and J.
 Reynolds, "Post Office Protocol - version 2", RFC 937, February
 1985.

 [4] Callas, J., Donnerhacke, L., Finney, H. and R. Thayer, "OpenPGP
 Message Format", RFC 2440, November 1998.

 [5] Crispin, M., "Interactive Mail Access Protocol - Version 2", RFC
 1176, August 1990.

 [6] Crispin, M., "Internet Message Access Protocol - Version 4", RFC
 2060, December 1996.

 [7] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", RFC 822, August 1982.

 [8] Crocker, D. and P. Overell, Eds., "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [9] De Winter, J., "SMTP Service Extension for Remote Message Queue
 Starting", RFC 1985, August 1996.

 [10] Fajman, R., "An Extensible Message Format for Message
 Disposition Notifications", RFC 2298, March 1998.

 [11] Freed, N, "Behavior of and Requirements for Internet Firewalls",
 RFC 2979, October 2000.

 [12] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, December 1996.

Klensin Standards Track [Page 68]

C
om

pendium
 1 page 80

RFC 2821 Simple Mail Transfer Protocol April 2001

 [13] Freed, N., "SMTP Service Extension for Command Pipelining", RFC
 2920, September 2000.

 [14] Galvin, J., Murphy, S., Crocker, S. and N. Freed, "Security
 Multiparts for MIME: Multipart/Signed and Multipart/Encrypted",
 RFC 1847, October 1995.

 [15] Gellens, R. and J. Klensin, "Message Submission", RFC 2476,
 December 1998.

 [16] Kille, S., "Mapping between X.400 and RFC822/MIME", RFC 2156,
 January 1998.

 [17] Hinden, R and S. Deering, Eds. "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [18] Klensin, J., Freed, N. and K. Moore, "SMTP Service Extension for
 Message Size Declaration", STD 10, RFC 1870, November 1995.

 [19] Klensin, J., Freed, N., Rose, M., Stefferud, E. and D. Crocker,
 "SMTP Service Extensions", STD 10, RFC 1869, November 1995.

 [20] Klensin, J., Freed, N., Rose, M., Stefferud, E. and D. Crocker,
 "SMTP Service Extension for 8bit-MIMEtransport", RFC 1652, July
 1994.

 [21] Lambert, M., "PCMAIL: A distributed mail system for personal
 computers", RFC 1056, July 1988.

 [22] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 Mockapetris, P., "Domain names - concepts and facilities", STD
 13, RFC 1034, November 1987.

 [23] Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part
 Three: Message Header Extensions for Non-ASCII Text", RFC 2047,
 December 1996.

 [24] Moore, K., "SMTP Service Extension for Delivery Status
 Notifications", RFC 1891, January 1996.

 [25] Moore, K., and G. Vaudreuil, "An Extensible Message Format for
 Delivery Status Notifications", RFC 1894, January 1996.

 [26] Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD
 53, RFC 1939, May 1996.

Klensin Standards Track [Page 69]

RFC 2821 Simple Mail Transfer Protocol April 2001

 [27] Partridge, C., "Mail routing and the domain system", RFC 974,
 January 1986.

 [28] Partridge, C., "Duplicate messages and SMTP", RFC 1047, February
 1988.

 [29] Postel, J., ed., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", STD 7, RFC 793, September 1981.

 [30] Postel, J., "Simple Mail Transfer Protocol", RFC 821, August
 1982.

 [31] Ramsdell, B., Ed., "S/MIME Version 3 Message Specification", RFC
 2633, June 1999.

 [32] Resnick, P., Ed., "Internet Message Format", RFC 2822, April
 2001.

 [33] Vaudreuil, G., "SMTP Service Extensions for Transmission of
 Large and Binary MIME Messages", RFC 1830, August 1995.

 [34] Vaudreuil, G., "Enhanced Mail System Status Codes", RFC 1893,
 January 1996.

10. Editor's Address

 John C. Klensin
 AT&T Laboratories
 99 Bedford St
 Boston, MA 02111 USA

 Phone: 617-574-3076
 EMail: klensin@research.att.com

11. Acknowledgments

 Many people worked long and hard on the many iterations of this
 document. There was wide-ranging debate in the IETF DRUMS Working
 Group, both on its mailing list and in face to face discussions,
 about many technical issues and the role of a revised standard for
 Internet mail transport, and many contributors helped form the
 wording in this specification. The hundreds of participants in the
 many discussions since RFC 821 was produced are too numerous to
 mention, but they all helped this document become what it is.

Klensin Standards Track [Page 70]

C
om

pendium
 1 page 81

RFC 2821 Simple Mail Transfer Protocol April 2001

APPENDICES

A. TCP Transport Service

 The TCP connection supports the transmission of 8-bit bytes. The
 SMTP data is 7-bit ASCII characters. Each character is transmitted
 as an 8-bit byte with the high-order bit cleared to zero. Service
 extensions may modify this rule to permit transmission of full 8-bit
 data bytes as part of the message body, but not in SMTP commands or
 responses.

B. Generating SMTP Commands from RFC 822 Headers

 Some systems use RFC 822 headers (only) in a mail submission
 protocol, or otherwise generate SMTP commands from RFC 822 headers
 when such a message is handed to an MTA from a UA. While the MTA-UA
 protocol is a private matter, not covered by any Internet Standard,
 there are problems with this approach. For example, there have been
 repeated problems with proper handling of "bcc" copies and
 redistribution lists when information that conceptually belongs to a
 mail envelopes is not separated early in processing from header
 information (and kept separate).

 It is recommended that the UA provide its initial ("submission
 client") MTA with an envelope separate from the message itself.
 However, if the envelope is not supplied, SMTP commands SHOULD be
 generated as follows:

 1. Each recipient address from a TO, CC, or BCC header field SHOULD
 be copied to a RCPT command (generating multiple message copies if
 that is required for queuing or delivery). This includes any
 addresses listed in a RFC 822 "group". Any BCC fields SHOULD then
 be removed from the headers. Once this process is completed, the
 remaining headers SHOULD be checked to verify that at least one
 To:, Cc:, or Bcc: header remains. If none do, then a bcc: header
 with no additional information SHOULD be inserted as specified in
 [32].

 2. The return address in the MAIL command SHOULD, if possible, be
 derived from the system's identity for the submitting (local)
 user, and the "From:" header field otherwise. If there is a
 system identity available, it SHOULD also be copied to the Sender
 header field if it is different from the address in the From
 header field. (Any Sender field that was already there SHOULD be
 removed.) Systems may provide a way for submitters to override
 the envelope return address, but may want to restrict its use to
 privileged users. This will not prevent mail forgery, but may
 lessen its incidence; see section 7.1.

Klensin Standards Track [Page 71]

RFC 2821 Simple Mail Transfer Protocol April 2001

 When an MTA is being used in this way, it bears responsibility for
 ensuring that the message being transmitted is valid. The mechanisms
 for checking that validity, and for handling (or returning) messages
 that are not valid at the time of arrival, are part of the MUA-MTA
 interface and not covered by this specification.

 A submission protocol based on Standard RFC 822 information alone
 MUST NOT be used to gateway a message from a foreign (non-SMTP) mail
 system into an SMTP environment. Additional information to construct
 an envelope must come from some source in the other environment,
 whether supplemental headers or the foreign system's envelope.

 Attempts to gateway messages using only their header "to" and "cc"
 fields have repeatedly caused mail loops and other behavior adverse
 to the proper functioning of the Internet mail environment. These
 problems have been especially common when the message originates from
 an Internet mailing list and is distributed into the foreign
 environment using envelope information. When these messages are then
 processed by a header-only remailer, loops back to the Internet
 environment (and the mailing list) are almost inevitable.

C. Source Routes

 Historically, the <reverse-path> was a reverse source routing list of
 hosts and a source mailbox. The first host in the <reverse-path>
 SHOULD be the host sending the MAIL command. Similarly, the
 <forward-path> may be a source routing lists of hosts and a
 destination mailbox. However, in general, the <forward-path> SHOULD
 contain only a mailbox and domain name, relying on the domain name
 system to supply routing information if required. The use of source
 routes is deprecated; while servers MUST be prepared to receive and
 handle them as discussed in section 3.3 and F.2, clients SHOULD NOT
 transmit them and this section was included only to provide context.

 For relay purposes, the forward-path may be a source route of the
 form "@ONE,@TWO:JOE@THREE", where ONE, TWO, and THREE MUST BE fully-
 qualified domain names. This form is used to emphasize the
 distinction between an address and a route. The mailbox is an
 absolute address, and the route is information about how to get
 there. The two concepts should not be confused.

 If source routes are used, RFC 821 and the text below should be
 consulted for the mechanisms for constructing and updating the
 forward- and reverse-paths.

Klensin Standards Track [Page 72]

C
om

pendium
 1 page 82

RFC 2821 Simple Mail Transfer Protocol April 2001

 The SMTP server transforms the command arguments by moving its own
 identifier (its domain name or that of any domain for which it is
 acting as a mail exchanger), if it appears, from the forward-path to
 the beginning of the reverse-path.

 Notice that the forward-path and reverse-path appear in the SMTP
 commands and replies, but not necessarily in the message. That is,
 there is no need for these paths and especially this syntax to appear
 in the "To:" , "From:", "CC:", etc. fields of the message header.
 Conversely, SMTP servers MUST NOT derive final message delivery
 information from message header fields.

 When the list of hosts is present, it is a "reverse" source route and
 indicates that the mail was relayed through each host on the list
 (the first host in the list was the most recent relay). This list is
 used as a source route to return non-delivery notices to the sender.
 As each relay host adds itself to the beginning of the list, it MUST
 use its name as known in the transport environment to which it is
 relaying the mail rather than that of the transport environment from
 which the mail came (if they are different).

D. Scenarios

 This section presents complete scenarios of several types of SMTP
 sessions. In the examples, "C:" indicates what is said by the SMTP
 client, and "S:" indicates what is said by the SMTP server.

D.1 A Typical SMTP Transaction Scenario

 This SMTP example shows mail sent by Smith at host bar.com, to Jones,
 Green, and Brown at host foo.com. Here we assume that host bar.com
 contacts host foo.com directly. The mail is accepted for Jones and
 Brown. Green does not have a mailbox at host foo.com.

 S: 220 foo.com Simple Mail Transfer Service Ready
 C: EHLO bar.com
 S: 250-foo.com greets bar.com
 S: 250-8BITMIME
 S: 250-SIZE
 S: 250-DSN
 S: 250 HELP
 C: MAIL FROM:<Smith@bar.com>
 S: 250 OK
 C: RCPT TO:<Jones@foo.com>
 S: 250 OK
 C: RCPT TO:<Green@foo.com>
 S: 550 No such user here
 C: RCPT TO:<Brown@foo.com>

Klensin Standards Track [Page 73]

RFC 2821 Simple Mail Transfer Protocol April 2001

 S: 250 OK
 C: DATA
 S: 354 Start mail input; end with <CRLF>.<CRLF>
 C: Blah blah blah...
 C: ...etc. etc. etc.
 C: .
 S: 250 OK
 C: QUIT
 S: 221 foo.com Service closing transmission channel

D.2 Aborted SMTP Transaction Scenario

 S: 220 foo.com Simple Mail Transfer Service Ready
 C: EHLO bar.com
 S: 250-foo.com greets bar.com
 S: 250-8BITMIME
 S: 250-SIZE
 S: 250-DSN
 S: 250 HELP
 C: MAIL FROM:<Smith@bar.com>
 S: 250 OK
 C: RCPT TO:<Jones@foo.com>
 S: 250 OK
 C: RCPT TO:<Green@foo.com>
 S: 550 No such user here
 C: RSET
 S: 250 OK
 C: QUIT
 S: 221 foo.com Service closing transmission channel

D.3 Relayed Mail Scenario

 Step 1 -- Source Host to Relay Host

 S: 220 foo.com Simple Mail Transfer Service Ready
 C: EHLO bar.com
 S: 250-foo.com greets bar.com
 S: 250-8BITMIME
 S: 250-SIZE
 S: 250-DSN
 S: 250 HELP
 C: MAIL FROM:<JQP@bar.com>
 S: 250 OK
 C: RCPT TO:<@foo.com:Jones@XYZ.COM>
 S: 250 OK
 C: DATA
 S: 354 Start mail input; end with <CRLF>.<CRLF>
 C: Date: Thu, 21 May 1998 05:33:29 -0700

Klensin Standards Track [Page 74]

C
om

pendium
 1 page 83

RFC 2821 Simple Mail Transfer Protocol April 2001

 C: From: John Q. Public <JQP@bar.com>
 C: Subject: The Next Meeting of the Board
 C: To: Jones@xyz.com
 C:
 C: Bill:
 C: The next meeting of the board of directors will be
 C: on Tuesday.
 C: John.
 C: .
 S: 250 OK
 C: QUIT
 S: 221 foo.com Service closing transmission channel

 Step 2 -- Relay Host to Destination Host

 S: 220 xyz.com Simple Mail Transfer Service Ready
 C: EHLO foo.com
 S: 250 xyz.com is on the air
 C: MAIL FROM:<@foo.com:JQP@bar.com>
 S: 250 OK
 C: RCPT TO:<Jones@XYZ.COM>
 S: 250 OK
 C: DATA
 S: 354 Start mail input; end with <CRLF>.<CRLF>
 C: Received: from bar.com by foo.com ; Thu, 21 May 1998
 C: 05:33:29 -0700
 C: Date: Thu, 21 May 1998 05:33:22 -0700
 C: From: John Q. Public <JQP@bar.com>
 C: Subject: The Next Meeting of the Board
 C: To: Jones@xyz.com
 C:
 C: Bill:
 C: The next meeting of the board of directors will be
 C: on Tuesday.
 C: John.
 C: .
 S: 250 OK
 C: QUIT
 S: 221 foo.com Service closing transmission channel

D.4 Verifying and Sending Scenario

 S: 220 foo.com Simple Mail Transfer Service Ready
 C: EHLO bar.com
 S: 250-foo.com greets bar.com
 S: 250-8BITMIME
 S: 250-SIZE
 S: 250-DSN

Klensin Standards Track [Page 75]

RFC 2821 Simple Mail Transfer Protocol April 2001

 S: 250-VRFY
 S: 250 HELP
 C: VRFY Crispin
 S: 250 Mark Crispin <Admin.MRC@foo.com>
 C: SEND FROM:<EAK@bar.com>
 S: 250 OK
 C: RCPT TO:<Admin.MRC@foo.com>
 S: 250 OK
 C: DATA
 S: 354 Start mail input; end with <CRLF>.<CRLF>
 C: Blah blah blah...
 C: ...etc. etc. etc.
 C: .
 S: 250 OK
 C: QUIT
 S: 221 foo.com Service closing transmission channel

E. Other Gateway Issues

 In general, gateways between the Internet and other mail systems
 SHOULD attempt to preserve any layering semantics across the
 boundaries between the two mail systems involved. Gateway-
 translation approaches that attempt to take shortcuts by mapping,
 (such as envelope information from one system to the message headers
 or body of another) have generally proven to be inadequate in
 important ways. Systems translating between environments that do not
 support both envelopes and headers and Internet mail must be written
 with the understanding that some information loss is almost
 inevitable.

F. Deprecated Features of RFC 821

 A few features of RFC 821 have proven to be problematic and SHOULD
 NOT be used in Internet mail.

F.1 TURN

 This command, described in RFC 821, raises important security issues
 since, in the absence of strong authentication of the host requesting
 that the client and server switch roles, it can easily be used to
 divert mail from its correct destination. Its use is deprecated;
 SMTP systems SHOULD NOT use it unless the server can authenticate the
 client.

Klensin Standards Track [Page 76]

C
om

pendium
 1 page 84

RFC 2821 Simple Mail Transfer Protocol April 2001

F.2 Source Routing

 RFC 821 utilized the concept of explicit source routing to get mail
 from one host to another via a series of relays. The requirement to
 utilize source routes in regular mail traffic was eliminated by the
 introduction of the domain name system "MX" record and the last
 significant justification for them was eliminated by the
 introduction, in RFC 1123, of a clear requirement that addresses
 following an "@" must all be fully-qualified domain names.
 Consequently, the only remaining justifications for the use of source
 routes are support for very old SMTP clients or MUAs and in mail
 system debugging. They can, however, still be useful in the latter
 circumstance and for routing mail around serious, but temporary,
 problems such as problems with the relevant DNS records.

 SMTP servers MUST continue to accept source route syntax as specified
 in the main body of this document and in RFC 1123. They MAY, if
 necessary, ignore the routes and utilize only the target domain in
 the address. If they do utilize the source route, the message MUST
 be sent to the first domain shown in the address. In particular, a
 server MUST NOT guess at shortcuts within the source route.

 Clients SHOULD NOT utilize explicit source routing except under
 unusual circumstances, such as debugging or potentially relaying
 around firewall or mail system configuration errors.

F.3 HELO

 As discussed in sections 3.1 and 4.1.1, EHLO is strongly preferred to
 HELO when the server will accept the former. Servers must continue
 to accept and process HELO in order to support older clients.

F.4 #-literals

 RFC 821 provided for specifying an Internet address as a decimal
 integer host number prefixed by a pound sign, "#". In practice, that
 form has been obsolete since the introduction of TCP/IP. It is
 deprecated and MUST NOT be used.

F.5 Dates and Years

 When dates are inserted into messages by SMTP clients or servers
 (e.g., in trace fields), four-digit years MUST BE used. Two-digit
 years are deprecated; three-digit years were never permitted in the
 Internet mail system.

Klensin Standards Track [Page 77]

RFC 2821 Simple Mail Transfer Protocol April 2001

F.6 Sending versus Mailing

 In addition to specifying a mechanism for delivering messages to
 user's mailboxes, RFC 821 provided additional, optional, commands to
 deliver messages directly to the user's terminal screen. These
 commands (SEND, SAML, SOML) were rarely implemented, and changes in
 workstation technology and the introduction of other protocols may
 have rendered them obsolete even where they are implemented.

 Clients SHOULD NOT provide SEND, SAML, or SOML as services. Servers
 MAY implement them. If they are implemented by servers, the
 implementation model specified in RFC 821 MUST be used and the
 command names MUST be published in the response to the EHLO command.

Klensin Standards Track [Page 78]

C
om

pendium
 1 page 85

RFC 2821 Simple Mail Transfer Protocol April 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Klensin Standards Track [Page 79]

C
om

pendium
 1 page 86

Network Working Group P. Resnick, Editor
Request for Comments: 2822 QUALCOMM Incorporated
Obsoletes: 822 April 2001
Category: Standards Track

 Internet Message Format

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This standard specifies a syntax for text messages that are sent
 between computer users, within the framework of "electronic mail"
 messages. This standard supersedes the one specified in Request For
 Comments (RFC) 822, "Standard for the Format of ARPA Internet Text
 Messages", updating it to reflect current practice and incorporating
 incremental changes that were specified in other RFCs.

Table of Contents

 1. Introduction ... 3
 1.1. Scope .. 3
 1.2. Notational conventions 4
 1.2.1. Requirements notation 4
 1.2.2. Syntactic notation 4
 1.3. Structure of this document 4
 2. Lexical Analysis of Messages 5
 2.1. General Description 5
 2.1.1. Line Length Limits 6
 2.2. Header Fields .. 7
 2.2.1. Unstructured Header Field Bodies 7
 2.2.2. Structured Header Field Bodies 7
 2.2.3. Long Header Fields 7
 2.3. Body ... 8
 3. Syntax ... 9
 3.1. Introduction ... 9
 3.2. Lexical Tokens ... 9

Resnick Standards Track [Page 1]

RFC 2822 Internet Message Format April 2001

 3.2.1. Primitive Tokens 9
 3.2.2. Quoted characters10
 3.2.3. Folding white space and comments11
 3.2.4. Atom ...12
 3.2.5. Quoted strings ...13
 3.2.6. Miscellaneous tokens13
 3.3. Date and Time Specification14
 3.4. Address Specification15
 3.4.1. Addr-spec specification16
 3.5 Overall message syntax17
 3.6. Field definitions ..18
 3.6.1. The origination date field20
 3.6.2. Originator fields21
 3.6.3. Destination address fields22
 3.6.4. Identification fields23
 3.6.5. Informational fields26
 3.6.6. Resent fields ..26
 3.6.7. Trace fields ...28
 3.6.8. Optional fields ..29
 4. Obsolete Syntax ..29
 4.1. Miscellaneous obsolete tokens30
 4.2. Obsolete folding white space31
 4.3. Obsolete Date and Time31
 4.4. Obsolete Addressing33
 4.5. Obsolete header fields33
 4.5.1. Obsolete origination date field34
 4.5.2. Obsolete originator fields34
 4.5.3. Obsolete destination address fields34
 4.5.4. Obsolete identification fields35
 4.5.5. Obsolete informational fields35
 4.5.6. Obsolete resent fields35
 4.5.7. Obsolete trace fields36
 4.5.8. Obsolete optional fields36
 5. Security Considerations36
 6. Bibliography ...37
 7. Editor's Address ...38
 8. Acknowledgements ...39
 Appendix A. Example messages41
 A.1. Addressing examples41
 A.1.1. A message from one person to another with simple
 addressing ...41
 A.1.2. Different types of mailboxes42
 A.1.3. Group addresses ..43
 A.2. Reply messages ...43
 A.3. Resent messages ..44
 A.4. Messages with trace fields46
 A.5. White space, comments, and other oddities47
 A.6. Obsoleted forms ..47

Resnick Standards Track [Page 2]

C
om

pendium
 1 page 87

RFC 2822 Internet Message Format April 2001

 A.6.1. Obsolete addressing48
 A.6.2. Obsolete dates ...48
 A.6.3. Obsolete white space and comments48
 Appendix B. Differences from earlier standards49
 Appendix C. Notices ...50
 Full Copyright Statement51

1. Introduction

1.1. Scope

 This standard specifies a syntax for text messages that are sent
 between computer users, within the framework of "electronic mail"
 messages. This standard supersedes the one specified in Request For
 Comments (RFC) 822, "Standard for the Format of ARPA Internet Text
 Messages" [RFC822], updating it to reflect current practice and
 incorporating incremental changes that were specified in other RFCs
 [STD3].

 This standard specifies a syntax only for text messages. In
 particular, it makes no provision for the transmission of images,
 audio, or other sorts of structured data in electronic mail messages.
 There are several extensions published, such as the MIME document
 series [RFC2045, RFC2046, RFC2049], which describe mechanisms for the
 transmission of such data through electronic mail, either by
 extending the syntax provided here or by structuring such messages to
 conform to this syntax. Those mechanisms are outside of the scope of
 this standard.

 In the context of electronic mail, messages are viewed as having an
 envelope and contents. The envelope contains whatever information is
 needed to accomplish transmission and delivery. (See [RFC2821] for a
 discussion of the envelope.) The contents comprise the object to be
 delivered to the recipient. This standard applies only to the format
 and some of the semantics of message contents. It contains no
 specification of the information in the envelope.

 However, some message systems may use information from the contents
 to create the envelope. It is intended that this standard facilitate
 the acquisition of such information by programs.

 This specification is intended as a definition of what message
 content format is to be passed between systems. Though some message
 systems locally store messages in this format (which eliminates the
 need for translation between formats) and others use formats that
 differ from the one specified in this standard, local storage is
 outside of the scope of this standard.

Resnick Standards Track [Page 3]

RFC 2822 Internet Message Format April 2001

 Note: This standard is not intended to dictate the internal formats
 used by sites, the specific message system features that they are
 expected to support, or any of the characteristics of user interface
 programs that create or read messages. In addition, this standard
 does not specify an encoding of the characters for either transport
 or storage; that is, it does not specify the number of bits used or
 how those bits are specifically transferred over the wire or stored
 on disk.

1.2. Notational conventions

1.2.1. Requirements notation

 This document occasionally uses terms that appear in capital letters.
 When the terms "MUST", "SHOULD", "RECOMMENDED", "MUST NOT", "SHOULD
 NOT", and "MAY" appear capitalized, they are being used to indicate
 particular requirements of this specification. A discussion of the
 meanings of these terms appears in [RFC2119].

1.2.2. Syntactic notation

 This standard uses the Augmented Backus-Naur Form (ABNF) notation
 specified in [RFC2234] for the formal definitions of the syntax of
 messages. Characters will be specified either by a decimal value
 (e.g., the value %d65 for uppercase A and %d97 for lowercase A) or by
 a case-insensitive literal value enclosed in quotation marks (e.g.,
 "A" for either uppercase or lowercase A). See [RFC2234] for the full
 description of the notation.

1.3. Structure of this document

 This document is divided into several sections.

 This section, section 1, is a short introduction to the document.

 Section 2 lays out the general description of a message and its
 constituent parts. This is an overview to help the reader understand
 some of the general principles used in the later portions of this
 document. Any examples in this section MUST NOT be taken as
 specification of the formal syntax of any part of a message.

 Section 3 specifies formal ABNF rules for the structure of each part
 of a message (the syntax) and describes the relationship between
 those parts and their meaning in the context of a message (the
 semantics). That is, it describes the actual rules for the structure
 of each part of a message (the syntax) as well as a description of
 the parts and instructions on how they ought to be interpreted (the
 semantics). This includes analysis of the syntax and semantics of

Resnick Standards Track [Page 4]

C
om

pendium
 1 page 88

RFC 2822 Internet Message Format April 2001

 subparts of messages that have specific structure. The syntax
 included in section 3 represents messages as they MUST be created.
 There are also notes in section 3 to indicate if any of the options
 specified in the syntax SHOULD be used over any of the others.

 Both sections 2 and 3 describe messages that are legal to generate
 for purposes of this standard.

 Section 4 of this document specifies an "obsolete" syntax. There are
 references in section 3 to these obsolete syntactic elements. The
 rules of the obsolete syntax are elements that have appeared in
 earlier revisions of this standard or have previously been widely
 used in Internet messages. As such, these elements MUST be
 interpreted by parsers of messages in order to be conformant to this
 standard. However, since items in this syntax have been determined
 to be non-interoperable or to cause significant problems for
 recipients of messages, they MUST NOT be generated by creators of
 conformant messages.

 Section 5 details security considerations to take into account when
 implementing this standard.

 Section 6 is a bibliography of references in this document.

 Section 7 contains the editor's address.

 Section 8 contains acknowledgements.

 Appendix A lists examples of different sorts of messages. These
 examples are not exhaustive of the types of messages that appear on
 the Internet, but give a broad overview of certain syntactic forms.

 Appendix B lists the differences between this standard and earlier
 standards for Internet messages.

 Appendix C has copyright and intellectual property notices.

2. Lexical Analysis of Messages

2.1. General Description

 At the most basic level, a message is a series of characters. A
 message that is conformant with this standard is comprised of
 characters with values in the range 1 through 127 and interpreted as
 US-ASCII characters [ASCII]. For brevity, this document sometimes
 refers to this range of characters as simply "US-ASCII characters".

Resnick Standards Track [Page 5]

RFC 2822 Internet Message Format April 2001

 Note: This standard specifies that messages are made up of characters
 in the US-ASCII range of 1 through 127. There are other documents,
 specifically the MIME document series [RFC2045, RFC2046, RFC2047,
 RFC2048, RFC2049], that extend this standard to allow for values
 outside of that range. Discussion of those mechanisms is not within
 the scope of this standard.

 Messages are divided into lines of characters. A line is a series of
 characters that is delimited with the two characters carriage-return
 and line-feed; that is, the carriage return (CR) character (ASCII
 value 13) followed immediately by the line feed (LF) character (ASCII
 value 10). (The carriage-return/line-feed pair is usually written in
 this document as "CRLF".)

 A message consists of header fields (collectively called "the header
 of the message") followed, optionally, by a body. The header is a
 sequence of lines of characters with special syntax as defined in
 this standard. The body is simply a sequence of characters that
 follows the header and is separated from the header by an empty line
 (i.e., a line with nothing preceding the CRLF).

2.1.1. Line Length Limits

 There are two limits that this standard places on the number of
 characters in a line. Each line of characters MUST be no more than
 998 characters, and SHOULD be no more than 78 characters, excluding
 the CRLF.

 The 998 character limit is due to limitations in many implementations
 which send, receive, or store Internet Message Format messages that
 simply cannot handle more than 998 characters on a line. Receiving
 implementations would do well to handle an arbitrarily large number
 of characters in a line for robustness sake. However, there are so
 many implementations which (in compliance with the transport
 requirements of [RFC2821]) do not accept messages containing more
 than 1000 character including the CR and LF per line, it is important
 for implementations not to create such messages.

 The more conservative 78 character recommendation is to accommodate
 the many implementations of user interfaces that display these
 messages which may truncate, or disastrously wrap, the display of
 more than 78 characters per line, in spite of the fact that such
 implementations are non-conformant to the intent of this
 specification (and that of [RFC2821] if they actually cause
 information to be lost). Again, even though this limitation is put on
 messages, it is encumbant upon implementations which display messages

Resnick Standards Track [Page 6]

C
om

pendium
 1 page 89

RFC 2822 Internet Message Format April 2001

 to handle an arbitrarily large number of characters in a line
 (certainly at least up to the 998 character limit) for the sake of
 robustness.

2.2. Header Fields

 Header fields are lines composed of a field name, followed by a colon
 (":"), followed by a field body, and terminated by CRLF. A field
 name MUST be composed of printable US-ASCII characters (i.e.,
 characters that have values between 33 and 126, inclusive), except
 colon. A field body may be composed of any US-ASCII characters,
 except for CR and LF. However, a field body may contain CRLF when
 used in header "folding" and "unfolding" as described in section
 2.2.3. All field bodies MUST conform to the syntax described in
 sections 3 and 4 of this standard.

2.2.1. Unstructured Header Field Bodies

 Some field bodies in this standard are defined simply as
 "unstructured" (which is specified below as any US-ASCII characters,
 except for CR and LF) with no further restrictions. These are
 referred to as unstructured field bodies. Semantically, unstructured
 field bodies are simply to be treated as a single line of characters
 with no further processing (except for header "folding" and
 "unfolding" as described in section 2.2.3).

2.2.2. Structured Header Field Bodies

 Some field bodies in this standard have specific syntactical
 structure more restrictive than the unstructured field bodies
 described above. These are referred to as "structured" field bodies.
 Structured field bodies are sequences of specific lexical tokens as
 described in sections 3 and 4 of this standard. Many of these tokens
 are allowed (according to their syntax) to be introduced or end with
 comments (as described in section 3.2.3) as well as the space (SP,
 ASCII value 32) and horizontal tab (HTAB, ASCII value 9) characters
 (together known as the white space characters, WSP), and those WSP
 characters are subject to header "folding" and "unfolding" as
 described in section 2.2.3. Semantic analysis of structured field
 bodies is given along with their syntax.

2.2.3. Long Header Fields

 Each header field is logically a single line of characters comprising
 the field name, the colon, and the field body. For convenience
 however, and to deal with the 998/78 character limitations per line,
 the field body portion of a header field can be split into a multiple
 line representation; this is called "folding". The general rule is

Resnick Standards Track [Page 7]

RFC 2822 Internet Message Format April 2001

 that wherever this standard allows for folding white space (not
 simply WSP characters), a CRLF may be inserted before any WSP. For
 example, the header field:

 Subject: This is a test

 can be represented as:

 Subject: This
 is a test

 Note: Though structured field bodies are defined in such a way that
 folding can take place between many of the lexical tokens (and even
 within some of the lexical tokens), folding SHOULD be limited to
 placing the CRLF at higher-level syntactic breaks. For instance, if
 a field body is defined as comma-separated values, it is recommended
 that folding occur after the comma separating the structured items in
 preference to other places where the field could be folded, even if
 it is allowed elsewhere.

 The process of moving from this folded multiple-line representation
 of a header field to its single line representation is called
 "unfolding". Unfolding is accomplished by simply removing any CRLF
 that is immediately followed by WSP. Each header field should be
 treated in its unfolded form for further syntactic and semantic
 evaluation.

2.3. Body

 The body of a message is simply lines of US-ASCII characters. The
 only two limitations on the body are as follows:

 - CR and LF MUST only occur together as CRLF; they MUST NOT appear
 independently in the body.

 - Lines of characters in the body MUST be limited to 998 characters,
 and SHOULD be limited to 78 characters, excluding the CRLF.

 Note: As was stated earlier, there are other standards documents,
 specifically the MIME documents [RFC2045, RFC2046, RFC2048, RFC2049]
 that extend this standard to allow for different sorts of message
 bodies. Again, these mechanisms are beyond the scope of this
 document.

Resnick Standards Track [Page 8]

C
om

pendium
 1 page 90

RFC 2822 Internet Message Format April 2001

3. Syntax

3.1. Introduction

 The syntax as given in this section defines the legal syntax of
 Internet messages. Messages that are conformant to this standard
 MUST conform to the syntax in this section. If there are options in
 this section where one option SHOULD be generated, that is indicated
 either in the prose or in a comment next to the syntax.

 For the defined expressions, a short description of the syntax and
 use is given, followed by the syntax in ABNF, followed by a semantic
 analysis. Primitive tokens that are used but otherwise unspecified
 come from [RFC2234].

 In some of the definitions, there will be nonterminals whose names
 start with "obs-". These "obs-" elements refer to tokens defined in
 the obsolete syntax in section 4. In all cases, these productions
 are to be ignored for the purposes of generating legal Internet
 messages and MUST NOT be used as part of such a message. However,
 when interpreting messages, these tokens MUST be honored as part of
 the legal syntax. In this sense, section 3 defines a grammar for
 generation of messages, with "obs-" elements that are to be ignored,
 while section 4 adds grammar for interpretation of messages.

3.2. Lexical Tokens

 The following rules are used to define an underlying lexical
 analyzer, which feeds tokens to the higher-level parsers. This
 section defines the tokens used in structured header field bodies.

 Note: Readers of this standard need to pay special attention to how
 these lexical tokens are used in both the lower-level and
 higher-level syntax later in the document. Particularly, the white
 space tokens and the comment tokens defined in section 3.2.3 get used
 in the lower-level tokens defined here, and those lower-level tokens
 are in turn used as parts of the higher-level tokens defined later.
 Therefore, the white space and comments may be allowed in the
 higher-level tokens even though they may not explicitly appear in a
 particular definition.

3.2.1. Primitive Tokens

 The following are primitive tokens referred to elsewhere in this
 standard, but not otherwise defined in [RFC2234]. Some of them will
 not appear anywhere else in the syntax, but they are convenient to
 refer to in other parts of this document.

Resnick Standards Track [Page 9]

RFC 2822 Internet Message Format April 2001

 Note: The "specials" below are just such an example. Though the
 specials token does not appear anywhere else in this standard, it is
 useful for implementers who use tools that lexically analyze
 messages. Each of the characters in specials can be used to indicate
 a tokenization point in lexical analysis.

NO-WS-CTL = %d1-8 / ; US-ASCII control characters
 %d11 / ; that do not include the
 %d12 / ; carriage return, line feed,
 %d14-31 / ; and white space characters
 %d127

text = %d1-9 / ; Characters excluding CR and LF
 %d11 /
 %d12 /
 %d14-127 /
 obs-text

specials = "(" / ")" / ; Special characters used in
 "<" / ">" / ; other parts of the syntax
 "[" / "]" /
 ":" / ";" /
 "@" / "\" /
 "," / "." /
 DQUOTE

 No special semantics are attached to these tokens. They are simply
 single characters.

3.2.2. Quoted characters

 Some characters are reserved for special interpretation, such as
 delimiting lexical tokens. To permit use of these characters as
 uninterpreted data, a quoting mechanism is provided.

quoted-pair = ("\" text) / obs-qp

 Where any quoted-pair appears, it is to be interpreted as the text
 character alone. That is to say, the "\" character that appears as
 part of a quoted-pair is semantically "invisible".

 Note: The "\" character may appear in a message where it is not part
 of a quoted-pair. A "\" character that does not appear in a
 quoted-pair is not semantically invisible. The only places in this
 standard where quoted-pair currently appears are ccontent, qcontent,
 dcontent, no-fold-quote, and no-fold-literal.

Resnick Standards Track [Page 10]

C
om

pendium
 1 page 91

RFC 2822 Internet Message Format April 2001

3.2.3. Folding white space and comments

 White space characters, including white space used in folding
 (described in section 2.2.3), may appear between many elements in
 header field bodies. Also, strings of characters that are treated as
 comments may be included in structured field bodies as characters
 enclosed in parentheses. The following defines the folding white
 space (FWS) and comment constructs.

 Strings of characters enclosed in parentheses are considered comments
 so long as they do not appear within a "quoted-string", as defined in
 section 3.2.5. Comments may nest.

 There are several places in this standard where comments and FWS may
 be freely inserted. To accommodate that syntax, an additional token
 for "CFWS" is defined for places where comments and/or FWS can occur.
 However, where CFWS occurs in this standard, it MUST NOT be inserted
 in such a way that any line of a folded header field is made up
 entirely of WSP characters and nothing else.

FWS = ([*WSP CRLF] 1*WSP) / ; Folding white space
 obs-FWS

ctext = NO-WS-CTL / ; Non white space controls

 %d33-39 / ; The rest of the US-ASCII
 %d42-91 / ; characters not including "(",
 %d93-126 ; ")", or "\"

ccontent = ctext / quoted-pair / comment

comment = "(" *([FWS] ccontent) [FWS] ")"

CFWS = *([FWS] comment) (([FWS] comment) / FWS)

 Throughout this standard, where FWS (the folding white space token)
 appears, it indicates a place where header folding, as discussed in
 section 2.2.3, may take place. Wherever header folding appears in a
 message (that is, a header field body containing a CRLF followed by
 any WSP), header unfolding (removal of the CRLF) is performed before
 any further lexical analysis is performed on that header field
 according to this standard. That is to say, any CRLF that appears in
 FWS is semantically "invisible."

 A comment is normally used in a structured field body to provide some
 human readable informational text. Since a comment is allowed to
 contain FWS, folding is permitted within the comment. Also note that
 since quoted-pair is allowed in a comment, the parentheses and

Resnick Standards Track [Page 11]

RFC 2822 Internet Message Format April 2001

 backslash characters may appear in a comment so long as they appear
 as a quoted-pair. Semantically, the enclosing parentheses are not
 part of the comment; the comment is what is contained between the two
 parentheses. As stated earlier, the "\" in any quoted-pair and the
 CRLF in any FWS that appears within the comment are semantically
 "invisible" and therefore not part of the comment either.

 Runs of FWS, comment or CFWS that occur between lexical tokens in a
 structured field header are semantically interpreted as a single
 space character.

3.2.4. Atom

 Several productions in structured header field bodies are simply
 strings of certain basic characters. Such productions are called
 atoms.

 Some of the structured header field bodies also allow the period
 character (".", ASCII value 46) within runs of atext. An additional
 "dot-atom" token is defined for those purposes.

atext = ALPHA / DIGIT / ; Any character except controls,
 "!" / "#" / ; SP, and specials.
 "$" / "%" / ; Used for atoms
 "&" / "'" /
 "*" / "+" /
 "-" / "/" /
 "=" / "?" /
 "^" / "_" /
 "`" / "{" /
 "|" / "}" /
 "~"

atom = [CFWS] 1*atext [CFWS]

dot-atom = [CFWS] dot-atom-text [CFWS]

dot-atom-text = 1*atext *("." 1*atext)

 Both atom and dot-atom are interpreted as a single unit, comprised of
 the string of characters that make it up. Semantically, the optional
 comments and FWS surrounding the rest of the characters are not part
 of the atom; the atom is only the run of atext characters in an atom,
 or the atext and "." characters in a dot-atom.

Resnick Standards Track [Page 12]

C
om

pendium
 1 page 92

RFC 2822 Internet Message Format April 2001

3.2.5. Quoted strings

 Strings of characters that include characters other than those
 allowed in atoms may be represented in a quoted string format, where
 the characters are surrounded by quote (DQUOTE, ASCII value 34)
 characters.

qtext = NO-WS-CTL / ; Non white space controls

 %d33 / ; The rest of the US-ASCII
 %d35-91 / ; characters not including "\"
 %d93-126 ; or the quote character

qcontent = qtext / quoted-pair

quoted-string = [CFWS]
 DQUOTE *([FWS] qcontent) [FWS] DQUOTE
 [CFWS]

 A quoted-string is treated as a unit. That is, quoted-string is
 identical to atom, semantically. Since a quoted-string is allowed to
 contain FWS, folding is permitted. Also note that since quoted-pair
 is allowed in a quoted-string, the quote and backslash characters may
 appear in a quoted-string so long as they appear as a quoted-pair.

 Semantically, neither the optional CFWS outside of the quote
 characters nor the quote characters themselves are part of the
 quoted-string; the quoted-string is what is contained between the two
 quote characters. As stated earlier, the "\" in any quoted-pair and
 the CRLF in any FWS/CFWS that appears within the quoted-string are
 semantically "invisible" and therefore not part of the quoted-string
 either.

3.2.6. Miscellaneous tokens

 Three additional tokens are defined, word and phrase for combinations
 of atoms and/or quoted-strings, and unstructured for use in
 unstructured header fields and in some places within structured
 header fields.

word = atom / quoted-string

phrase = 1*word / obs-phrase

Resnick Standards Track [Page 13]

RFC 2822 Internet Message Format April 2001

utext = NO-WS-CTL / ; Non white space controls
 %d33-126 / ; The rest of US-ASCII
 obs-utext

unstructured = *([FWS] utext) [FWS]

3.3. Date and Time Specification

 Date and time occur in several header fields. This section specifies
 the syntax for a full date and time specification. Though folding
 white space is permitted throughout the date-time specification, it
 is RECOMMENDED that a single space be used in each place that FWS
 appears (whether it is required or optional); some older
 implementations may not interpret other occurrences of folding white
 space correctly.

date-time = [day-of-week ","] date FWS time [CFWS]

day-of-week = ([FWS] day-name) / obs-day-of-week

day-name = "Mon" / "Tue" / "Wed" / "Thu" /
 "Fri" / "Sat" / "Sun"

date = day month year

year = 4*DIGIT / obs-year

month = (FWS month-name FWS) / obs-month

month-name = "Jan" / "Feb" / "Mar" / "Apr" /
 "May" / "Jun" / "Jul" / "Aug" /
 "Sep" / "Oct" / "Nov" / "Dec"

day = ([FWS] 1*2DIGIT) / obs-day

time = time-of-day FWS zone

time-of-day = hour ":" minute [":" second]

hour = 2DIGIT / obs-hour

minute = 2DIGIT / obs-minute

second = 2DIGIT / obs-second

zone = (("+" / "-") 4DIGIT) / obs-zone

Resnick Standards Track [Page 14]

C
om

pendium
 1 page 93

RFC 2822 Internet Message Format April 2001

 The day is the numeric day of the month. The year is any numeric
 year 1900 or later.

 The time-of-day specifies the number of hours, minutes, and
 optionally seconds since midnight of the date indicated.

 The date and time-of-day SHOULD express local time.

 The zone specifies the offset from Coordinated Universal Time (UTC,
 formerly referred to as "Greenwich Mean Time") that the date and
 time-of-day represent. The "+" or "-" indicates whether the
 time-of-day is ahead of (i.e., east of) or behind (i.e., west of)
 Universal Time. The first two digits indicate the number of hours
 difference from Universal Time, and the last two digits indicate the
 number of minutes difference from Universal Time. (Hence, +hhmm
 means +(hh * 60 + mm) minutes, and -hhmm means -(hh * 60 + mm)
 minutes). The form "+0000" SHOULD be used to indicate a time zone at
 Universal Time. Though "-0000" also indicates Universal Time, it is
 used to indicate that the time was generated on a system that may be
 in a local time zone other than Universal Time and therefore
 indicates that the date-time contains no information about the local
 time zone.

 A date-time specification MUST be semantically valid. That is, the
 day-of-the-week (if included) MUST be the day implied by the date,
 the numeric day-of-month MUST be between 1 and the number of days
 allowed for the specified month (in the specified year), the
 time-of-day MUST be in the range 00:00:00 through 23:59:60 (the
 number of seconds allowing for a leap second; see [STD12]), and the
 zone MUST be within the range -9959 through +9959.

3.4. Address Specification

 Addresses occur in several message header fields to indicate senders
 and recipients of messages. An address may either be an individual
 mailbox, or a group of mailboxes.

address = mailbox / group

mailbox = name-addr / addr-spec

name-addr = [display-name] angle-addr

angle-addr = [CFWS] "<" addr-spec ">" [CFWS] / obs-angle-addr

group = display-name ":" [mailbox-list / CFWS] ";"
 [CFWS]

Resnick Standards Track [Page 15]

RFC 2822 Internet Message Format April 2001

display-name = phrase

mailbox-list = (mailbox *("," mailbox)) / obs-mbox-list

address-list = (address *("," address)) / obs-addr-list

 A mailbox receives mail. It is a conceptual entity which does not
 necessarily pertain to file storage. For example, some sites may
 choose to print mail on a printer and deliver the output to the
 addressee's desk. Normally, a mailbox is comprised of two parts: (1)
 an optional display name that indicates the name of the recipient
 (which could be a person or a system) that could be displayed to the
 user of a mail application, and (2) an addr-spec address enclosed in
 angle brackets ("<" and ">"). There is also an alternate simple form
 of a mailbox where the addr-spec address appears alone, without the
 recipient's name or the angle brackets. The Internet addr-spec
 address is described in section 3.4.1.

 Note: Some legacy implementations used the simple form where the
 addr-spec appears without the angle brackets, but included the name
 of the recipient in parentheses as a comment following the addr-spec.
 Since the meaning of the information in a comment is unspecified,
 implementations SHOULD use the full name-addr form of the mailbox,
 instead of the legacy form, to specify the display name associated
 with a mailbox. Also, because some legacy implementations interpret
 the comment, comments generally SHOULD NOT be used in address fields
 to avoid confusing such implementations.

 When it is desirable to treat several mailboxes as a single unit
 (i.e., in a distribution list), the group construct can be used. The
 group construct allows the sender to indicate a named group of
 recipients. This is done by giving a display name for the group,
 followed by a colon, followed by a comma separated list of any number
 of mailboxes (including zero and one), and ending with a semicolon.
 Because the list of mailboxes can be empty, using the group construct
 is also a simple way to communicate to recipients that the message
 was sent to one or more named sets of recipients, without actually
 providing the individual mailbox address for each of those
 recipients.

3.4.1. Addr-spec specification

 An addr-spec is a specific Internet identifier that contains a
 locally interpreted string followed by the at-sign character ("@",
 ASCII value 64) followed by an Internet domain. The locally
 interpreted string is either a quoted-string or a dot-atom. If the
 string can be represented as a dot-atom (that is, it contains no
 characters other than atext characters or "." surrounded by atext

Resnick Standards Track [Page 16]

C
om

pendium
 1 page 94

RFC 2822 Internet Message Format April 2001

 characters), then the dot-atom form SHOULD be used and the
 quoted-string form SHOULD NOT be used. Comments and folding white
 space SHOULD NOT be used around the "@" in the addr-spec.

addr-spec = local-part "@" domain

local-part = dot-atom / quoted-string / obs-local-part

domain = dot-atom / domain-literal / obs-domain

domain-literal = [CFWS] "[" *([FWS] dcontent) [FWS] "]" [CFWS]

dcontent = dtext / quoted-pair

dtext = NO-WS-CTL / ; Non white space controls

 %d33-90 / ; The rest of the US-ASCII
 %d94-126 ; characters not including "[",
 ; "]", or "\"

 The domain portion identifies the point to which the mail is
 delivered. In the dot-atom form, this is interpreted as an Internet
 domain name (either a host name or a mail exchanger name) as
 described in [STD3, STD13, STD14]. In the domain-literal form, the
 domain is interpreted as the literal Internet address of the
 particular host. In both cases, how addressing is used and how
 messages are transported to a particular host is covered in the mail
 transport document [RFC2821]. These mechanisms are outside of the
 scope of this document.

 The local-part portion is a domain dependent string. In addresses,
 it is simply interpreted on the particular host as a name of a
 particular mailbox.

3.5 Overall message syntax

 A message consists of header fields, optionally followed by a message
 body. Lines in a message MUST be a maximum of 998 characters
 excluding the CRLF, but it is RECOMMENDED that lines be limited to 78
 characters excluding the CRLF. (See section 2.1.1 for explanation.)
 In a message body, though all of the characters listed in the text
 rule MAY be used, the use of US-ASCII control characters (values 1
 through 8, 11, 12, and 14 through 31) is discouraged since their
 interpretation by receivers for display is not guaranteed.

Resnick Standards Track [Page 17]

RFC 2822 Internet Message Format April 2001

message = (fields / obs-fields)
 [CRLF body]

body = *(*998text CRLF) *998text

 The header fields carry most of the semantic information and are
 defined in section 3.6. The body is simply a series of lines of text
 which are uninterpreted for the purposes of this standard.

3.6. Field definitions

 The header fields of a message are defined here. All header fields
 have the same general syntactic structure: A field name, followed by
 a colon, followed by the field body. The specific syntax for each
 header field is defined in the subsequent sections.

 Note: In the ABNF syntax for each field in subsequent sections, each
 field name is followed by the required colon. However, for brevity
 sometimes the colon is not referred to in the textual description of
 the syntax. It is, nonetheless, required.

 It is important to note that the header fields are not guaranteed to
 be in a particular order. They may appear in any order, and they
 have been known to be reordered occasionally when transported over
 the Internet. However, for the purposes of this standard, header
 fields SHOULD NOT be reordered when a message is transported or
 transformed. More importantly, the trace header fields and resent
 header fields MUST NOT be reordered, and SHOULD be kept in blocks
 prepended to the message. See sections 3.6.6 and 3.6.7 for more
 information.

 The only required header fields are the origination date field and
 the originator address field(s). All other header fields are
 syntactically optional. More information is contained in the table
 following this definition.

fields = *(trace
 *(resent-date /
 resent-from /
 resent-sender /
 resent-to /
 resent-cc /
 resent-bcc /
 resent-msg-id))
 *(orig-date /
 from /
 sender /
 reply-to /

Resnick Standards Track [Page 18]

C
om

pendium
 1 page 95

RFC 2822 Internet Message Format April 2001

 to /
 cc /
 bcc /
 message-id /
 in-reply-to /
 references /
 subject /
 comments /
 keywords /
 optional-field)

 The following table indicates limits on the number of times each
 field may occur in a message header as well as any special
 limitations on the use of those fields. An asterisk next to a value
 in the minimum or maximum column indicates that a special restriction
 appears in the Notes column.

Field Min number Max number Notes

trace 0 unlimited Block prepended - see
 3.6.7

resent-date 0* unlimited* One per block, required
 if other resent fields
 present - see 3.6.6

resent-from 0 unlimited* One per block - see
 3.6.6

resent-sender 0* unlimited* One per block, MUST
 occur with multi-address
 resent-from - see 3.6.6

resent-to 0 unlimited* One per block - see
 3.6.6

resent-cc 0 unlimited* One per block - see
 3.6.6

resent-bcc 0 unlimited* One per block - see
 3.6.6

resent-msg-id 0 unlimited* One per block - see
 3.6.6

orig-date 1 1

from 1 1 See sender and 3.6.2

Resnick Standards Track [Page 19]

RFC 2822 Internet Message Format April 2001

sender 0* 1 MUST occur with multi-
 address from - see 3.6.2

reply-to 0 1

to 0 1

cc 0 1

bcc 0 1

message-id 0* 1 SHOULD be present - see
 3.6.4

in-reply-to 0* 1 SHOULD occur in some
 replies - see 3.6.4

references 0* 1 SHOULD occur in some
 replies - see 3.6.4

subject 0 1

comments 0 unlimited

keywords 0 unlimited

optional-field 0 unlimited

 The exact interpretation of each field is described in subsequent
 sections.

3.6.1. The origination date field

 The origination date field consists of the field name "Date" followed
 by a date-time specification.

orig-date = "Date:" date-time CRLF

 The origination date specifies the date and time at which the creator
 of the message indicated that the message was complete and ready to
 enter the mail delivery system. For instance, this might be the time
 that a user pushes the "send" or "submit" button in an application
 program. In any case, it is specifically not intended to convey the
 time that the message is actually transported, but rather the time at
 which the human or other creator of the message has put the message
 into its final form, ready for transport. (For example, a portable
 computer user who is not connected to a network might queue a message

Resnick Standards Track [Page 20]

C
om

pendium
 1 page 96

RFC 2822 Internet Message Format April 2001

 for delivery. The origination date is intended to contain the date
 and time that the user queued the message, not the time when the user
 connected to the network to send the message.)

3.6.2. Originator fields

 The originator fields of a message consist of the from field, the
 sender field (when applicable), and optionally the reply-to field.
 The from field consists of the field name "From" and a
 comma-separated list of one or more mailbox specifications. If the
 from field contains more than one mailbox specification in the
 mailbox-list, then the sender field, containing the field name
 "Sender" and a single mailbox specification, MUST appear in the
 message. In either case, an optional reply-to field MAY also be
 included, which contains the field name "Reply-To" and a
 comma-separated list of one or more addresses.

from = "From:" mailbox-list CRLF

sender = "Sender:" mailbox CRLF

reply-to = "Reply-To:" address-list CRLF

 The originator fields indicate the mailbox(es) of the source of the
 message. The "From:" field specifies the author(s) of the message,
 that is, the mailbox(es) of the person(s) or system(s) responsible
 for the writing of the message. The "Sender:" field specifies the
 mailbox of the agent responsible for the actual transmission of the
 message. For example, if a secretary were to send a message for
 another person, the mailbox of the secretary would appear in the
 "Sender:" field and the mailbox of the actual author would appear in
 the "From:" field. If the originator of the message can be indicated
 by a single mailbox and the author and transmitter are identical, the
 "Sender:" field SHOULD NOT be used. Otherwise, both fields SHOULD
 appear.

 The originator fields also provide the information required when
 replying to a message. When the "Reply-To:" field is present, it
 indicates the mailbox(es) to which the author of the message suggests
 that replies be sent. In the absence of the "Reply-To:" field,
 replies SHOULD by default be sent to the mailbox(es) specified in the
 "From:" field unless otherwise specified by the person composing the
 reply.

 In all cases, the "From:" field SHOULD NOT contain any mailbox that
 does not belong to the author(s) of the message. See also section
 3.6.3 for more information on forming the destination addresses for a
 reply.

Resnick Standards Track [Page 21]

RFC 2822 Internet Message Format April 2001

3.6.3. Destination address fields

 The destination fields of a message consist of three possible fields,
 each of the same form: The field name, which is either "To", "Cc", or
 "Bcc", followed by a comma-separated list of one or more addresses
 (either mailbox or group syntax).

to = "To:" address-list CRLF

cc = "Cc:" address-list CRLF

bcc = "Bcc:" (address-list / [CFWS]) CRLF

 The destination fields specify the recipients of the message. Each
 destination field may have one or more addresses, and each of the
 addresses indicate the intended recipients of the message. The only
 difference between the three fields is how each is used.

 The "To:" field contains the address(es) of the primary recipient(s)
 of the message.

 The "Cc:" field (where the "Cc" means "Carbon Copy" in the sense of
 making a copy on a typewriter using carbon paper) contains the
 addresses of others who are to receive the message, though the
 content of the message may not be directed at them.

 The "Bcc:" field (where the "Bcc" means "Blind Carbon Copy") contains
 addresses of recipients of the message whose addresses are not to be
 revealed to other recipients of the message. There are three ways in
 which the "Bcc:" field is used. In the first case, when a message
 containing a "Bcc:" field is prepared to be sent, the "Bcc:" line is
 removed even though all of the recipients (including those specified
 in the "Bcc:" field) are sent a copy of the message. In the second
 case, recipients specified in the "To:" and "Cc:" lines each are sent
 a copy of the message with the "Bcc:" line removed as above, but the
 recipients on the "Bcc:" line get a separate copy of the message
 containing a "Bcc:" line. (When there are multiple recipient
 addresses in the "Bcc:" field, some implementations actually send a
 separate copy of the message to each recipient with a "Bcc:"
 containing only the address of that particular recipient.) Finally,
 since a "Bcc:" field may contain no addresses, a "Bcc:" field can be
 sent without any addresses indicating to the recipients that blind
 copies were sent to someone. Which method to use with "Bcc:" fields
 is implementation dependent, but refer to the "Security
 Considerations" section of this document for a discussion of each.

Resnick Standards Track [Page 22]

C
om

pendium
 1 page 97

RFC 2822 Internet Message Format April 2001

 When a message is a reply to another message, the mailboxes of the
 authors of the original message (the mailboxes in the "From:" field)
 or mailboxes specified in the "Reply-To:" field (if it exists) MAY
 appear in the "To:" field of the reply since these would normally be
 the primary recipients of the reply. If a reply is sent to a message
 that has destination fields, it is often desirable to send a copy of
 the reply to all of the recipients of the message, in addition to the
 author. When such a reply is formed, addresses in the "To:" and
 "Cc:" fields of the original message MAY appear in the "Cc:" field of
 the reply, since these are normally secondary recipients of the
 reply. If a "Bcc:" field is present in the original message,
 addresses in that field MAY appear in the "Bcc:" field of the reply,
 but SHOULD NOT appear in the "To:" or "Cc:" fields.

 Note: Some mail applications have automatic reply commands that
 include the destination addresses of the original message in the
 destination addresses of the reply. How those reply commands behave
 is implementation dependent and is beyond the scope of this document.
 In particular, whether or not to include the original destination
 addresses when the original message had a "Reply-To:" field is not
 addressed here.

3.6.4. Identification fields

 Though optional, every message SHOULD have a "Message-ID:" field.
 Furthermore, reply messages SHOULD have "In-Reply-To:" and
 "References:" fields as appropriate, as described below.

 The "Message-ID:" field contains a single unique message identifier.
 The "References:" and "In-Reply-To:" field each contain one or more
 unique message identifiers, optionally separated by CFWS.

 The message identifier (msg-id) is similar in syntax to an angle-addr
 construct without the internal CFWS.

message-id = "Message-ID:" msg-id CRLF

in-reply-to = "In-Reply-To:" 1*msg-id CRLF

references = "References:" 1*msg-id CRLF

msg-id = [CFWS] "<" id-left "@" id-right ">" [CFWS]

id-left = dot-atom-text / no-fold-quote / obs-id-left

id-right = dot-atom-text / no-fold-literal / obs-id-right

no-fold-quote = DQUOTE *(qtext / quoted-pair) DQUOTE

Resnick Standards Track [Page 23]

RFC 2822 Internet Message Format April 2001

no-fold-literal = "[" *(dtext / quoted-pair) "]"

 The "Message-ID:" field provides a unique message identifier that
 refers to a particular version of a particular message. The
 uniqueness of the message identifier is guaranteed by the host that
 generates it (see below). This message identifier is intended to be
 machine readable and not necessarily meaningful to humans. A message
 identifier pertains to exactly one instantiation of a particular
 message; subsequent revisions to the message each receive new message
 identifiers.

 Note: There are many instances when messages are "changed", but those
 changes do not constitute a new instantiation of that message, and
 therefore the message would not get a new message identifier. For
 example, when messages are introduced into the transport system, they
 are often prepended with additional header fields such as trace
 fields (described in section 3.6.7) and resent fields (described in
 section 3.6.6). The addition of such header fields does not change
 the identity of the message and therefore the original "Message-ID:"
 field is retained. In all cases, it is the meaning that the sender
 of the message wishes to convey (i.e., whether this is the same
 message or a different message) that determines whether or not the
 "Message-ID:" field changes, not any particular syntactic difference
 that appears (or does not appear) in the message.

 The "In-Reply-To:" and "References:" fields are used when creating a
 reply to a message. They hold the message identifier of the original
 message and the message identifiers of other messages (for example,
 in the case of a reply to a message which was itself a reply). The
 "In-Reply-To:" field may be used to identify the message (or
 messages) to which the new message is a reply, while the
 "References:" field may be used to identify a "thread" of
 conversation.

 When creating a reply to a message, the "In-Reply-To:" and
 "References:" fields of the resultant message are constructed as
 follows:

 The "In-Reply-To:" field will contain the contents of the "Message-
 ID:" field of the message to which this one is a reply (the "parent
 message"). If there is more than one parent message, then the "In-
 Reply-To:" field will contain the contents of all of the parents'
 "Message-ID:" fields. If there is no "Message-ID:" field in any of
 the parent messages, then the new message will have no "In-Reply-To:"
 field.

Resnick Standards Track [Page 24]

C
om

pendium
 1 page 98

RFC 2822 Internet Message Format April 2001

 The "References:" field will contain the contents of the parent's
 "References:" field (if any) followed by the contents of the parent's
 "Message-ID:" field (if any). If the parent message does not contain
 a "References:" field but does have an "In-Reply-To:" field
 containing a single message identifier, then the "References:" field
 will contain the contents of the parent's "In-Reply-To:" field
 followed by the contents of the parent's "Message-ID:" field (if
 any). If the parent has none of the "References:", "In-Reply-To:",
 or "Message-ID:" fields, then the new message will have no
 "References:" field.

 Note: Some implementations parse the "References:" field to display
 the "thread of the discussion". These implementations assume that
 each new message is a reply to a single parent and hence that they
 can walk backwards through the "References:" field to find the parent
 of each message listed there. Therefore, trying to form a
 "References:" field for a reply that has multiple parents is
 discouraged and how to do so is not defined in this document.

 The message identifier (msg-id) itself MUST be a globally unique
 identifier for a message. The generator of the message identifier
 MUST guarantee that the msg-id is unique. There are several
 algorithms that can be used to accomplish this. Since the msg-id has
 a similar syntax to angle-addr (identical except that comments and
 folding white space are not allowed), a good method is to put the
 domain name (or a domain literal IP address) of the host on which the
 message identifier was created on the right hand side of the "@", and
 put a combination of the current absolute date and time along with
 some other currently unique (perhaps sequential) identifier available
 on the system (for example, a process id number) on the left hand
 side. Using a date on the left hand side and a domain name or domain
 literal on the right hand side makes it possible to guarantee
 uniqueness since no two hosts use the same domain name or IP address
 at the same time. Though other algorithms will work, it is
 RECOMMENDED that the right hand side contain some domain identifier
 (either of the host itself or otherwise) such that the generator of
 the message identifier can guarantee the uniqueness of the left hand
 side within the scope of that domain.

 Semantically, the angle bracket characters are not part of the
 msg-id; the msg-id is what is contained between the two angle bracket
 characters.

Resnick Standards Track [Page 25]

RFC 2822 Internet Message Format April 2001

3.6.5. Informational fields

 The informational fields are all optional. The "Keywords:" field
 contains a comma-separated list of one or more words or
 quoted-strings. The "Subject:" and "Comments:" fields are
 unstructured fields as defined in section 2.2.1, and therefore may
 contain text or folding white space.

subject = "Subject:" unstructured CRLF

comments = "Comments:" unstructured CRLF

keywords = "Keywords:" phrase *("," phrase) CRLF

 These three fields are intended to have only human-readable content
 with information about the message. The "Subject:" field is the most
 common and contains a short string identifying the topic of the
 message. When used in a reply, the field body MAY start with the
 string "Re: " (from the Latin "res", in the matter of) followed by
 the contents of the "Subject:" field body of the original message.
 If this is done, only one instance of the literal string "Re: " ought
 to be used since use of other strings or more than one instance can
 lead to undesirable consequences. The "Comments:" field contains any
 additional comments on the text of the body of the message. The
 "Keywords:" field contains a comma-separated list of important words
 and phrases that might be useful for the recipient.

3.6.6. Resent fields

 Resent fields SHOULD be added to any message that is reintroduced by
 a user into the transport system. A separate set of resent fields
 SHOULD be added each time this is done. All of the resent fields
 corresponding to a particular resending of the message SHOULD be
 together. Each new set of resent fields is prepended to the message;
 that is, the most recent set of resent fields appear earlier in the
 message. No other fields in the message are changed when resent
 fields are added.

 Each of the resent fields corresponds to a particular field elsewhere
 in the syntax. For instance, the "Resent-Date:" field corresponds to
 the "Date:" field and the "Resent-To:" field corresponds to the "To:"
 field. In each case, the syntax for the field body is identical to
 the syntax given previously for the corresponding field.

 When resent fields are used, the "Resent-From:" and "Resent-Date:"
 fields MUST be sent. The "Resent-Message-ID:" field SHOULD be sent.
 "Resent-Sender:" SHOULD NOT be used if "Resent-Sender:" would be
 identical to "Resent-From:".

Resnick Standards Track [Page 26]

C
om

pendium
 1 page 99

RFC 2822 Internet Message Format April 2001

resent-date = "Resent-Date:" date-time CRLF

resent-from = "Resent-From:" mailbox-list CRLF

resent-sender = "Resent-Sender:" mailbox CRLF

resent-to = "Resent-To:" address-list CRLF

resent-cc = "Resent-Cc:" address-list CRLF

resent-bcc = "Resent-Bcc:" (address-list / [CFWS]) CRLF

resent-msg-id = "Resent-Message-ID:" msg-id CRLF

 Resent fields are used to identify a message as having been
 reintroduced into the transport system by a user. The purpose of
 using resent fields is to have the message appear to the final
 recipient as if it were sent directly by the original sender, with
 all of the original fields remaining the same. Each set of resent
 fields correspond to a particular resending event. That is, if a
 message is resent multiple times, each set of resent fields gives
 identifying information for each individual time. Resent fields are
 strictly informational. They MUST NOT be used in the normal
 processing of replies or other such automatic actions on messages.

 Note: Reintroducing a message into the transport system and using
 resent fields is a different operation from "forwarding".
 "Forwarding" has two meanings: One sense of forwarding is that a mail
 reading program can be told by a user to forward a copy of a message
 to another person, making the forwarded message the body of the new
 message. A forwarded message in this sense does not appear to have
 come from the original sender, but is an entirely new message from
 the forwarder of the message. On the other hand, forwarding is also
 used to mean when a mail transport program gets a message and
 forwards it on to a different destination for final delivery. Resent
 header fields are not intended for use with either type of
 forwarding.

 The resent originator fields indicate the mailbox of the person(s) or
 system(s) that resent the message. As with the regular originator
 fields, there are two forms: a simple "Resent-From:" form which
 contains the mailbox of the individual doing the resending, and the
 more complex form, when one individual (identified in the
 "Resent-Sender:" field) resends a message on behalf of one or more
 others (identified in the "Resent-From:" field).

 Note: When replying to a resent message, replies behave just as they
 would with any other message, using the original "From:",

Resnick Standards Track [Page 27]

RFC 2822 Internet Message Format April 2001

 "Reply-To:", "Message-ID:", and other fields. The resent fields are
 only informational and MUST NOT be used in the normal processing of
 replies.

 The "Resent-Date:" indicates the date and time at which the resent
 message is dispatched by the resender of the message. Like the
 "Date:" field, it is not the date and time that the message was
 actually transported.

 The "Resent-To:", "Resent-Cc:", and "Resent-Bcc:" fields function
 identically to the "To:", "Cc:", and "Bcc:" fields respectively,
 except that they indicate the recipients of the resent message, not
 the recipients of the original message.

 The "Resent-Message-ID:" field provides a unique identifier for the
 resent message.

3.6.7. Trace fields

 The trace fields are a group of header fields consisting of an
 optional "Return-Path:" field, and one or more "Received:" fields.
 The "Return-Path:" header field contains a pair of angle brackets
 that enclose an optional addr-spec. The "Received:" field contains a
 (possibly empty) list of name/value pairs followed by a semicolon and
 a date-time specification. The first item of the name/value pair is
 defined by item-name, and the second item is either an addr-spec, an
 atom, a domain, or a msg-id. Further restrictions may be applied to
 the syntax of the trace fields by standards that provide for their
 use, such as [RFC2821].

trace = [return]
 1*received

return = "Return-Path:" path CRLF

path = ([CFWS] "<" ([CFWS] / addr-spec) ">" [CFWS]) /
 obs-path

received = "Received:" name-val-list ";" date-time CRLF

name-val-list = [CFWS] [name-val-pair *(CFWS name-val-pair)]

name-val-pair = item-name CFWS item-value

item-name = ALPHA *(["-"] (ALPHA / DIGIT))

item-value = 1*angle-addr / addr-spec /
 atom / domain / msg-id

Resnick Standards Track [Page 28]

C
om

pendium
 1 page 100

RFC 2822 Internet Message Format April 2001

 A full discussion of the Internet mail use of trace fields is
 contained in [RFC2821]. For the purposes of this standard, the trace
 fields are strictly informational, and any formal interpretation of
 them is outside of the scope of this document.

3.6.8. Optional fields

 Fields may appear in messages that are otherwise unspecified in this
 standard. They MUST conform to the syntax of an optional-field.
 This is a field name, made up of the printable US-ASCII characters
 except SP and colon, followed by a colon, followed by any text which
 conforms to unstructured.

 The field names of any optional-field MUST NOT be identical to any
 field name specified elsewhere in this standard.

optional-field = field-name ":" unstructured CRLF

field-name = 1*ftext

ftext = %d33-57 / ; Any character except
 %d59-126 ; controls, SP, and
 ; ":".

 For the purposes of this standard, any optional field is
 uninterpreted.

4. Obsolete Syntax

 Earlier versions of this standard allowed for different (usually more
 liberal) syntax than is allowed in this version. Also, there have
 been syntactic elements used in messages on the Internet whose
 interpretation have never been documented. Though some of these
 syntactic forms MUST NOT be generated according to the grammar in
 section 3, they MUST be accepted and parsed by a conformant receiver.
 This section documents many of these syntactic elements. Taking the
 grammar in section 3 and adding the definitions presented in this
 section will result in the grammar to use for interpretation of
 messages.

 Note: This section identifies syntactic forms that any implementation
 MUST reasonably interpret. However, there are certainly Internet
 messages which do not conform to even the additional syntax given in
 this section. The fact that a particular form does not appear in any
 section of this document is not justification for computer programs
 to crash or for malformed data to be irretrievably lost by any
 implementation. To repeat an example, though this document requires
 lines in messages to be no longer than 998 characters, silently

Resnick Standards Track [Page 29]

RFC 2822 Internet Message Format April 2001

 discarding the 999th and subsequent characters in a line without
 warning would still be bad behavior for an implementation. It is up
 to the implementation to deal with messages robustly.

 One important difference between the obsolete (interpreting) and the
 current (generating) syntax is that in structured header field bodies
 (i.e., between the colon and the CRLF of any structured header
 field), white space characters, including folding white space, and
 comments can be freely inserted between any syntactic tokens. This
 allows many complex forms that have proven difficult for some
 implementations to parse.

 Another key difference between the obsolete and the current syntax is
 that the rule in section 3.2.3 regarding lines composed entirely of
 white space in comments and folding white space does not apply. See
 the discussion of folding white space in section 4.2 below.

 Finally, certain characters that were formerly allowed in messages
 appear in this section. The NUL character (ASCII value 0) was once
 allowed, but is no longer for compatibility reasons. CR and LF were
 allowed to appear in messages other than as CRLF; this use is also
 shown here.

 Other differences in syntax and semantics are noted in the following
 sections.

4.1. Miscellaneous obsolete tokens

 These syntactic elements are used elsewhere in the obsolete syntax or
 in the main syntax. The obs-char and obs-qp elements each add ASCII
 value 0. Bare CR and bare LF are added to obs-text and obs-utext.
 The period character is added to obs-phrase. The obs-phrase-list
 provides for "empty" elements in a comma-separated list of phrases.

 Note: The "period" (or "full stop") character (".") in obs-phrase is
 not a form that was allowed in earlier versions of this or any other
 standard. Period (nor any other character from specials) was not
 allowed in phrase because it introduced a parsing difficulty
 distinguishing between phrases and portions of an addr-spec (see
 section 4.4). It appears here because the period character is
 currently used in many messages in the display-name portion of
 addresses, especially for initials in names, and therefore must be
 interpreted properly. In the future, period may appear in the
 regular syntax of phrase.

obs-qp = "\" (%d0-127)

obs-text = *LF *CR *(obs-char *LF *CR)

Resnick Standards Track [Page 30]

C
om

pendium
 1 page 101

RFC 2822 Internet Message Format April 2001

obs-char = %d0-9 / %d11 / ; %d0-127 except CR and
 %d12 / %d14-127 ; LF

obs-utext = obs-text

obs-phrase = word *(word / "." / CFWS)

obs-phrase-list = phrase / 1*([phrase] [CFWS] "," [CFWS]) [phrase]

 Bare CR and bare LF appear in messages with two different meanings.
 In many cases, bare CR or bare LF are used improperly instead of CRLF
 to indicate line separators. In other cases, bare CR and bare LF are
 used simply as ASCII control characters with their traditional ASCII
 meanings.

4.2. Obsolete folding white space

 In the obsolete syntax, any amount of folding white space MAY be
 inserted where the obs-FWS rule is allowed. This creates the
 possibility of having two consecutive "folds" in a line, and
 therefore the possibility that a line which makes up a folded header
 field could be composed entirely of white space.

 obs-FWS = 1*WSP *(CRLF 1*WSP)

4.3. Obsolete Date and Time

 The syntax for the obsolete date format allows a 2 digit year in the
 date field and allows for a list of alphabetic time zone
 specifications that were used in earlier versions of this standard.
 It also permits comments and folding white space between many of the
 tokens.

obs-day-of-week = [CFWS] day-name [CFWS]

obs-year = [CFWS] 2*DIGIT [CFWS]

obs-month = CFWS month-name CFWS

obs-day = [CFWS] 1*2DIGIT [CFWS]

obs-hour = [CFWS] 2DIGIT [CFWS]

obs-minute = [CFWS] 2DIGIT [CFWS]

obs-second = [CFWS] 2DIGIT [CFWS]

obs-zone = "UT" / "GMT" / ; Universal Time

Resnick Standards Track [Page 31]

RFC 2822 Internet Message Format April 2001

 ; North American UT
 ; offsets
 "EST" / "EDT" / ; Eastern: - 5/ - 4
 "CST" / "CDT" / ; Central: - 6/ - 5
 "MST" / "MDT" / ; Mountain: - 7/ - 6
 "PST" / "PDT" / ; Pacific: - 8/ - 7

 %d65-73 / ; Military zones - "A"
 %d75-90 / ; through "I" and "K"
 %d97-105 / ; through "Z", both
 %d107-122 ; upper and lower case

 Where a two or three digit year occurs in a date, the year is to be
 interpreted as follows: If a two digit year is encountered whose
 value is between 00 and 49, the year is interpreted by adding 2000,
 ending up with a value between 2000 and 2049. If a two digit year is
 encountered with a value between 50 and 99, or any three digit year
 is encountered, the year is interpreted by adding 1900.

 In the obsolete time zone, "UT" and "GMT" are indications of
 "Universal Time" and "Greenwich Mean Time" respectively and are both
 semantically identical to "+0000".

 The remaining three character zones are the US time zones. The first
 letter, "E", "C", "M", or "P" stands for "Eastern", "Central",
 "Mountain" and "Pacific". The second letter is either "S" for
 "Standard" time, or "D" for "Daylight" (or summer) time. Their
 interpretations are as follows:

 EDT is semantically equivalent to -0400
 EST is semantically equivalent to -0500
 CDT is semantically equivalent to -0500
 CST is semantically equivalent to -0600
 MDT is semantically equivalent to -0600
 MST is semantically equivalent to -0700
 PDT is semantically equivalent to -0700
 PST is semantically equivalent to -0800

 The 1 character military time zones were defined in a non-standard
 way in [RFC822] and are therefore unpredictable in their meaning.
 The original definitions of the military zones "A" through "I" are
 equivalent to "+0100" through "+0900" respectively; "K", "L", and "M"
 are equivalent to "+1000", "+1100", and "+1200" respectively; "N"
 through "Y" are equivalent to "-0100" through "-1200" respectively;
 and "Z" is equivalent to "+0000". However, because of the error in
 [RFC822], they SHOULD all be considered equivalent to "-0000" unless
 there is out-of-band information confirming their meaning.

Resnick Standards Track [Page 32]

C
om

pendium
 1 page 102

RFC 2822 Internet Message Format April 2001

 Other multi-character (usually between 3 and 5) alphabetic time zones
 have been used in Internet messages. Any such time zone whose
 meaning is not known SHOULD be considered equivalent to "-0000"
 unless there is out-of-band information confirming their meaning.

4.4. Obsolete Addressing

 There are three primary differences in addressing. First, mailbox
 addresses were allowed to have a route portion before the addr-spec
 when enclosed in "<" and ">". The route is simply a comma-separated
 list of domain names, each preceded by "@", and the list terminated
 by a colon. Second, CFWS were allowed between the period-separated
 elements of local-part and domain (i.e., dot-atom was not used). In
 addition, local-part is allowed to contain quoted-string in addition
 to just atom. Finally, mailbox-list and address-list were allowed to
 have "null" members. That is, there could be two or more commas in
 such a list with nothing in between them.

obs-angle-addr = [CFWS] "<" [obs-route] addr-spec ">" [CFWS]

obs-route = [CFWS] obs-domain-list ":" [CFWS]

obs-domain-list = "@" domain *(*(CFWS / ",") [CFWS] "@" domain)

obs-local-part = word *("." word)

obs-domain = atom *("." atom)

obs-mbox-list = 1*([mailbox] [CFWS] "," [CFWS]) [mailbox]

obs-addr-list = 1*([address] [CFWS] "," [CFWS]) [address]

 When interpreting addresses, the route portion SHOULD be ignored.

4.5. Obsolete header fields

 Syntactically, the primary difference in the obsolete field syntax is
 that it allows multiple occurrences of any of the fields and they may
 occur in any order. Also, any amount of white space is allowed
 before the ":" at the end of the field name.

obs-fields = *(obs-return /
 obs-received /
 obs-orig-date /
 obs-from /
 obs-sender /
 obs-reply-to /
 obs-to /

Resnick Standards Track [Page 33]

RFC 2822 Internet Message Format April 2001

 obs-cc /
 obs-bcc /
 obs-message-id /
 obs-in-reply-to /
 obs-references /
 obs-subject /
 obs-comments /
 obs-keywords /
 obs-resent-date /
 obs-resent-from /
 obs-resent-send /
 obs-resent-rply /
 obs-resent-to /
 obs-resent-cc /
 obs-resent-bcc /
 obs-resent-mid /
 obs-optional)

 Except for destination address fields (described in section 4.5.3),
 the interpretation of multiple occurrences of fields is unspecified.
 Also, the interpretation of trace fields and resent fields which do
 not occur in blocks prepended to the message is unspecified as well.
 Unless otherwise noted in the following sections, interpretation of
 other fields is identical to the interpretation of their non-obsolete
 counterparts in section 3.

4.5.1. Obsolete origination date field

obs-orig-date = "Date" *WSP ":" date-time CRLF

4.5.2. Obsolete originator fields

obs-from = "From" *WSP ":" mailbox-list CRLF

obs-sender = "Sender" *WSP ":" mailbox CRLF

obs-reply-to = "Reply-To" *WSP ":" mailbox-list CRLF

4.5.3. Obsolete destination address fields

obs-to = "To" *WSP ":" address-list CRLF

obs-cc = "Cc" *WSP ":" address-list CRLF

obs-bcc = "Bcc" *WSP ":" (address-list / [CFWS]) CRLF

Resnick Standards Track [Page 34]

C
om

pendium
 1 page 103

RFC 2822 Internet Message Format April 2001

 When multiple occurrences of destination address fields occur in a
 message, they SHOULD be treated as if the address-list in the first
 occurrence of the field is combined with the address lists of the
 subsequent occurrences by adding a comma and concatenating.

4.5.4. Obsolete identification fields

 The obsolete "In-Reply-To:" and "References:" fields differ from the
 current syntax in that they allow phrase (words or quoted strings) to
 appear. The obsolete forms of the left and right sides of msg-id
 allow interspersed CFWS, making them syntactically identical to
 local-part and domain respectively.

obs-message-id = "Message-ID" *WSP ":" msg-id CRLF

obs-in-reply-to = "In-Reply-To" *WSP ":" *(phrase / msg-id) CRLF

obs-references = "References" *WSP ":" *(phrase / msg-id) CRLF

obs-id-left = local-part

obs-id-right = domain

 For purposes of interpretation, the phrases in the "In-Reply-To:" and
 "References:" fields are ignored.

 Semantically, none of the optional CFWS surrounding the local-part
 and the domain are part of the obs-id-left and obs-id-right
 respectively.

4.5.5. Obsolete informational fields

obs-subject = "Subject" *WSP ":" unstructured CRLF

obs-comments = "Comments" *WSP ":" unstructured CRLF

obs-keywords = "Keywords" *WSP ":" obs-phrase-list CRLF

4.5.6. Obsolete resent fields

 The obsolete syntax adds a "Resent-Reply-To:" field, which consists
 of the field name, the optional comments and folding white space, the
 colon, and a comma separated list of addresses.

obs-resent-from = "Resent-From" *WSP ":" mailbox-list CRLF

obs-resent-send = "Resent-Sender" *WSP ":" mailbox CRLF

Resnick Standards Track [Page 35]

RFC 2822 Internet Message Format April 2001

obs-resent-date = "Resent-Date" *WSP ":" date-time CRLF

obs-resent-to = "Resent-To" *WSP ":" address-list CRLF

obs-resent-cc = "Resent-Cc" *WSP ":" address-list CRLF

obs-resent-bcc = "Resent-Bcc" *WSP ":"
 (address-list / [CFWS]) CRLF

obs-resent-mid = "Resent-Message-ID" *WSP ":" msg-id CRLF

obs-resent-rply = "Resent-Reply-To" *WSP ":" address-list CRLF

 As with other resent fields, the "Resent-Reply-To:" field is to be
 treated as trace information only.

4.5.7. Obsolete trace fields

 The obs-return and obs-received are again given here as template
 definitions, just as return and received are in section 3. Their
 full syntax is given in [RFC2821].

obs-return = "Return-Path" *WSP ":" path CRLF

obs-received = "Received" *WSP ":" name-val-list CRLF

obs-path = obs-angle-addr

4.5.8. Obsolete optional fields

obs-optional = field-name *WSP ":" unstructured CRLF

5. Security Considerations

 Care needs to be taken when displaying messages on a terminal or
 terminal emulator. Powerful terminals may act on escape sequences
 and other combinations of ASCII control characters with a variety of
 consequences. They can remap the keyboard or permit other
 modifications to the terminal which could lead to denial of service
 or even damaged data. They can trigger (sometimes programmable)
 answerback messages which can allow a message to cause commands to be
 issued on the recipient's behalf. They can also effect the operation
 of terminal attached devices such as printers. Message viewers may
 wish to strip potentially dangerous terminal escape sequences from
 the message prior to display. However, other escape sequences appear
 in messages for useful purposes (cf. [RFC2045, RFC2046, RFC2047,
 RFC2048, RFC2049, ISO2022]) and therefore should not be stripped
 indiscriminately.

Resnick Standards Track [Page 36]

C
om

pendium
 1 page 104

RFC 2822 Internet Message Format April 2001

 Transmission of non-text objects in messages raises additional
 security issues. These issues are discussed in [RFC2045, RFC2046,
 RFC2047, RFC2048, RFC2049].

 Many implementations use the "Bcc:" (blind carbon copy) field
 described in section 3.6.3 to facilitate sending messages to
 recipients without revealing the addresses of one or more of the
 addressees to the other recipients. Mishandling this use of "Bcc:"
 has implications for confidential information that might be revealed,
 which could eventually lead to security problems through knowledge of
 even the existence of a particular mail address. For example, if
 using the first method described in section 3.6.3, where the "Bcc:"
 line is removed from the message, blind recipients have no explicit
 indication that they have been sent a blind copy, except insofar as
 their address does not appear in the message header. Because of
 this, one of the blind addressees could potentially send a reply to
 all of the shown recipients and accidentally reveal that the message
 went to the blind recipient. When the second method from section
 3.6.3 is used, the blind recipient's address appears in the "Bcc:"
 field of a separate copy of the message. If the "Bcc:" field sent
 contains all of the blind addressees, all of the "Bcc:" recipients
 will be seen by each "Bcc:" recipient. Even if a separate message is
 sent to each "Bcc:" recipient with only the individual's address,
 implementations still need to be careful to process replies to the
 message as per section 3.6.3 so as not to accidentally reveal the
 blind recipient to other recipients.

6. Bibliography

 [ASCII] American National Standards Institute (ANSI), Coded
 Character Set - 7-Bit American National Standard Code for
 Information Interchange, ANSI X3.4, 1986.

 [ISO2022] International Organization for Standardization (ISO),
 Information processing - ISO 7-bit and 8-bit coded
 character sets - Code extension techniques, Third edition
 - 1986-05-01, ISO 2022, 1986.

 [RFC822] Crocker, D., "Standard for the Format of ARPA Internet
 Text Messages", RFC 822, August 1982.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

Resnick Standards Track [Page 37]

RFC 2822 Internet Message Format April 2001

 [RFC2047] Moore, K., "Multipurpose Internet Mail Extensions (MIME)
 Part Three: Message Header Extensions for Non-ASCII Text",
 RFC 2047, November 1996.

 [RFC2048] Freed, N., Klensin, J. and J. Postel, "Multipurpose
 Internet Mail Extensions (MIME) Part Four: Format of
 Internet Message Bodies", RFC 2048, November 1996.

 [RFC2049] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Five: Conformance Criteria and
 Examples", RFC 2049, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2234] Crocker, D., Editor, and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", RFC 2234, November 1997.

 [RFC2821] Klensin, J., Editor, "Simple Mail Transfer Protocol", RFC
 2821, March 2001.

 [STD3] Braden, R., "Host Requirements", STD 3, RFC 1122 and RFC
 1123, October 1989.

 [STD12] Mills, D., "Network Time Protocol", STD 12, RFC 1119,
 September 1989.

 [STD13] Mockapetris, P., "Domain Name System", STD 13, RFC 1034
 and RFC 1035, November 1987.

 [STD14] Partridge, C., "Mail Routing and the Domain System", STD
 14, RFC 974, January 1986.

7. Editor's Address

 Peter W. Resnick
 QUALCOMM Incorporated
 5775 Morehouse Drive
 San Diego, CA 92121-1714
 USA

 Phone: +1 858 651 4478
 Fax: +1 858 651 1102
 EMail: presnick@qualcomm.com

Resnick Standards Track [Page 38]

C
om

pendium
 1 page 105

RFC 2822 Internet Message Format April 2001

8. Acknowledgements

 Many people contributed to this document. They included folks who
 participated in the Detailed Revision and Update of Messaging
 Standards (DRUMS) Working Group of the Internet Engineering Task
 Force (IETF), the chair of DRUMS, the Area Directors of the IETF, and
 people who simply sent their comments in via e-mail. The editor is
 deeply indebted to them all and thanks them sincerely. The below
 list includes everyone who sent e-mail concerning this document.
 Hopefully, everyone who contributed is named here:

 Matti Aarnio Barry Finkel Larry Masinter
 Tanaka Akira Erik Forsberg Denis McKeon
 Russ Allbery Chuck Foster William P McQuillan
 Eric Allman Paul Fox Alexey Melnikov
 Harald Tveit Alvestrand Klaus M. Frank Perry E. Metzger
 Ran Atkinson Ned Freed Steven Miller
 Jos Backus Jochen Friedrich Keith Moore
 Bruce Balden Randall C. Gellens John Gardiner Myers
 Dave Barr Sukvinder Singh Gill Chris Newman
 Alan Barrett Tim Goodwin John W. Noerenberg
 John Beck Philip Guenther Eric Norman
 J. Robert von Behren Tony Hansen Mike O'Dell
 Jos den Bekker John Hawkinson Larry Osterman
 D. J. Bernstein Philip Hazel Paul Overell
 James Berriman Kai Henningsen Jacob Palme
 Norbert Bollow Robert Herriot Michael A. Patton
 Raj Bose Paul Hethmon Uzi Paz
 Antony Bowesman Jim Hill Michael A. Quinlan
 Scott Bradner Paul E. Hoffman Eric S. Raymond
 Randy Bush Steve Hole Sam Roberts
 Tom Byrer Kari Hurtta Hugh Sasse
 Bruce Campbell Marco S. Hyman Bart Schaefer
 Larry Campbell Ofer Inbar Tom Scola
 W. J. Carpenter Olle Jarnefors Wolfgang Segmuller
 Michael Chapman Kevin Johnson Nick Shelness
 Richard Clayton Sudish Joseph John Stanley
 Maurizio Codogno Maynard Kang Einar Stefferud
 Jim Conklin Prabhat Keni Jeff Stephenson
 R. Kelley Cook John C. Klensin Bernard Stern
 Steve Coya Graham Klyne Peter Sylvester
 Mark Crispin Brad Knowles Mark Symons
 Dave Crocker Shuhei Kobayashi Eric Thomas
 Matt Curtin Peter Koch Lee Thompson
 Michael D'Errico Dan Kohn Karel De Vriendt
 Cyrus Daboo Christian Kuhtz Matthew Wall
 Jutta Degener Anand Kumria Rolf Weber
 Mark Delany Steen Larsen Brent B. Welch

Resnick Standards Track [Page 39]

RFC 2822 Internet Message Format April 2001

 Steve Dorner Eliot Lear Dan Wing
 Harold A. Driscoll Barry Leiba Jack De Winter
 Michael Elkins Jay Levitt Gregory J. Woodhouse
 Robert Elz Lars-Johan Liman Greg A. Woods
 Johnny Eriksson Charles Lindsey Kazu Yamamoto
 Erik E. Fair Pete Loshin Alain Zahm
 Roger Fajman Simon Lyall Jamie Zawinski
 Patrik Faltstrom Bill Manning Timothy S. Zurcher
 Claus Andre Farber John Martin

Resnick Standards Track [Page 40]

C
om

pendium
 1 page 106

RFC 2822 Internet Message Format April 2001

Appendix A. Example messages

 This section presents a selection of messages. These are intended to
 assist in the implementation of this standard, but should not be
 taken as normative; that is to say, although the examples in this
 section were carefully reviewed, if there happens to be a conflict
 between these examples and the syntax described in sections 3 and 4
 of this document, the syntax in those sections is to be taken as
 correct.

 Messages are delimited in this section between lines of "----". The
 "----" lines are not part of the message itself.

A.1. Addressing examples

 The following are examples of messages that might be sent between two
 individuals.

A.1.1. A message from one person to another with simple addressing

 This could be called a canonical message. It has a single author,
 John Doe, a single recipient, Mary Smith, a subject, the date, a
 message identifier, and a textual message in the body.

From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

Resnick Standards Track [Page 41]

RFC 2822 Internet Message Format April 2001

 If John's secretary Michael actually sent the message, though John
 was the author and replies to this message should go back to him, the
 sender field would be used:

From: John Doe <jdoe@machine.example>
Sender: Michael Jones <mjones@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

A.1.2. Different types of mailboxes

 This message includes multiple addresses in the destination fields
 and also uses several different forms of addresses.

From: "Joe Q. Public" <john.q.public@example.com>
To: Mary Smith <mary@x.test>, jdoe@example.org, Who? <one@y.test>
Cc: <boss@nil.test>, "Giant; \"Big\" Box" <sysservices@example.net>
Date: Tue, 1 Jul 2003 10:52:37 +0200
Message-ID: <5678.21-Nov-1997@example.com>

Hi everyone.

 Note that the display names for Joe Q. Public and Giant; "Big" Box
 needed to be enclosed in double-quotes because the former contains
 the period and the latter contains both semicolon and double-quote
 characters (the double-quote characters appearing as quoted-pair
 construct). Conversely, the display name for Who? could appear
 without them because the question mark is legal in an atom. Notice
 also that jdoe@example.org and boss@nil.test have no display names
 associated with them at all, and jdoe@example.org uses the simpler
 address form without the angle brackets.

Resnick Standards Track [Page 42]

C
om

pendium
 1 page 107

RFC 2822 Internet Message Format April 2001

A.1.3. Group addresses

From: Pete <pete@silly.example>
To: A Group:Chris Jones <c@a.test>,joe@where.test,John <jdoe@one.test>;
Cc: Undisclosed recipients:;
Date: Thu, 13 Feb 1969 23:32:54 -0330
Message-ID: <testabcd.1234@silly.example>

Testing.

 In this message, the "To:" field has a single group recipient named A
 Group which contains 3 addresses, and a "Cc:" field with an empty
 group recipient named Undisclosed recipients.

A.2. Reply messages

 The following is a series of three messages that make up a
 conversation thread between John and Mary. John firsts sends a
 message to Mary, Mary then replies to John's message, and then John
 replies to Mary's reply message.

 Note especially the "Message-ID:", "References:", and "In-Reply-To:"
 fields in each message.

From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

Resnick Standards Track [Page 43]

RFC 2822 Internet Message Format April 2001

 When sending replies, the Subject field is often retained, though
 prepended with "Re: " as described in section 3.6.5.

From: Mary Smith <mary@example.net>
To: John Doe <jdoe@machine.example>
Reply-To: "Mary Smith: Personal Account" <smith@home.example>
Subject: Re: Saying Hello
Date: Fri, 21 Nov 1997 10:01:10 -0600
Message-ID: <3456@example.net>
In-Reply-To: <1234@local.machine.example>
References: <1234@local.machine.example>

This is a reply to your hello.

 Note the "Reply-To:" field in the above message. When John replies
 to Mary's message above, the reply should go to the address in the
 "Reply-To:" field instead of the address in the "From:" field.

To: "Mary Smith: Personal Account" <smith@home.example>
From: John Doe <jdoe@machine.example>
Subject: Re: Saying Hello
Date: Fri, 21 Nov 1997 11:00:00 -0600
Message-ID: <abcd.1234@local.machine.tld>
In-Reply-To: <3456@example.net>
References: <1234@local.machine.example> <3456@example.net>

This is a reply to your reply.

A.3. Resent messages

 Start with the message that has been used as an example several
 times:

From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

Resnick Standards Track [Page 44]

C
om

pendium
 1 page 108

RFC 2822 Internet Message Format April 2001

 Say that Mary, upon receiving this message, wishes to send a copy of
 the message to Jane such that (a) the message would appear to have
 come straight from John; (b) if Jane replies to the message, the
 reply should go back to John; and (c) all of the original
 information, like the date the message was originally sent to Mary,
 the message identifier, and the original addressee, is preserved. In
 this case, resent fields are prepended to the message:

Resent-From: Mary Smith <mary@example.net>
Resent-To: Jane Brown <j-brown@other.example>
Resent-Date: Mon, 24 Nov 1997 14:22:01 -0800
Resent-Message-ID: <78910@example.net>
From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

 If Jane, in turn, wished to resend this message to another person,
 she would prepend her own set of resent header fields to the above
 and send that.

Resnick Standards Track [Page 45]

RFC 2822 Internet Message Format April 2001

A.4. Messages with trace fields

 As messages are sent through the transport system as described in
 [RFC2821], trace fields are prepended to the message. The following
 is an example of what those trace fields might look like. Note that
 there is some folding white space in the first one since these lines
 can be long.

Received: from x.y.test
 by example.net
 via TCP
 with ESMTP
 id ABC12345
 for <mary@example.net>; 21 Nov 1997 10:05:43 -0600
Received: from machine.example by x.y.test; 21 Nov 1997 10:01:22 -0600
From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

Resnick Standards Track [Page 46]

C
om

pendium
 1 page 109

RFC 2822 Internet Message Format April 2001

A.5. White space, comments, and other oddities

 White space, including folding white space, and comments can be
 inserted between many of the tokens of fields. Taking the example
 from A.1.3, white space and comments can be inserted into all of the
 fields.

From: Pete(A wonderful \) chap) <pete(his account)@silly.test(his host)>
To:A Group(Some people)
 :Chris Jones <c@(Chris's host.)public.example>,
 joe@example.org,
 John <jdoe@one.test> (my dear friend); (the end of the group)
Cc:(Empty list)(start)Undisclosed recipients :(nobody(that I know)) ;
Date: Thu,
 13
 Feb
 1969
 23:32
 -0330 (Newfoundland Time)
Message-ID: <testabcd.1234@silly.test>

Testing.

 The above example is aesthetically displeasing, but perfectly legal.
 Note particularly (1) the comments in the "From:" field (including
 one that has a ")" character appearing as part of a quoted-pair); (2)
 the white space absent after the ":" in the "To:" field as well as
 the comment and folding white space after the group name, the special
 character (".") in the comment in Chris Jones's address, and the
 folding white space before and after "joe@example.org,"; (3) the
 multiple and nested comments in the "Cc:" field as well as the
 comment immediately following the ":" after "Cc"; (4) the folding
 white space (but no comments except at the end) and the missing
 seconds in the time of the date field; and (5) the white space before
 (but not within) the identifier in the "Message-ID:" field.

A.6. Obsoleted forms

 The following are examples of obsolete (that is, the "MUST NOT
 generate") syntactic elements described in section 4 of this
 document.

Resnick Standards Track [Page 47]

RFC 2822 Internet Message Format April 2001

A.6.1. Obsolete addressing

 Note in the below example the lack of quotes around Joe Q. Public,
 the route that appears in the address for Mary Smith, the two commas
 that appear in the "To:" field, and the spaces that appear around the
 "." in the jdoe address.

From: Joe Q. Public <john.q.public@example.com>
To: Mary Smith <@machine.tld:mary@example.net>, , jdoe@test . example
Date: Tue, 1 Jul 2003 10:52:37 +0200
Message-ID: <5678.21-Nov-1997@example.com>

Hi everyone.

A.6.2. Obsolete dates

 The following message uses an obsolete date format, including a non-
 numeric time zone and a two digit year. Note that although the
 day-of-week is missing, that is not specific to the obsolete syntax;
 it is optional in the current syntax as well.

From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: 21 Nov 97 09:55:06 GMT
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

A.6.3. Obsolete white space and comments

 White space and comments can appear between many more elements than
 in the current syntax. Also, folding lines that are made up entirely
 of white space are legal.

Resnick Standards Track [Page 48]

C
om

pendium
 1 page 110

RFC 2822 Internet Message Format April 2001

From : John Doe <jdoe@machine(comment). example>
To : Mary Smith
__
 <mary@example.net>
Subject : Saying Hello
Date : Fri, 21 Nov 1997 09(comment): 55 : 06 -0600
Message-ID : <1234 @ local(blah) .machine .example>

This is a message just to say hello.
So, "Hello".

 Note especially the second line of the "To:" field. It starts with
 two space characters. (Note that "__" represent blank spaces.)
 Therefore, it is considered part of the folding as described in
 section 4.2. Also, the comments and white space throughout
 addresses, dates, and message identifiers are all part of the
 obsolete syntax.

Appendix B. Differences from earlier standards

 This appendix contains a list of changes that have been made in the
 Internet Message Format from earlier standards, specifically [RFC822]
 and [STD3]. Items marked with an asterisk (*) below are items which
 appear in section 4 of this document and therefore can no longer be
 generated.

 1. Period allowed in obsolete form of phrase.
 2. ABNF moved out of document to [RFC2234].
 3. Four or more digits allowed for year.
 4. Header field ordering (and lack thereof) made explicit.
 5. Encrypted header field removed.
 6. Received syntax loosened to allow any token/value pair.
 7. Specifically allow and give meaning to "-0000" time zone.
 8. Folding white space is not allowed between every token.
 9. Requirement for destinations removed.
 10. Forwarding and resending redefined.
 11. Extension header fields no longer specifically called out.
 12. ASCII 0 (null) removed.*
 13. Folding continuation lines cannot contain only white space.*
 14. Free insertion of comments not allowed in date.*
 15. Non-numeric time zones not allowed.*
 16. Two digit years not allowed.*
 17. Three digit years interpreted, but not allowed for generation.
 18. Routes in addresses not allowed.*
 19. CFWS within local-parts and domains not allowed.*
 20. Empty members of address lists not allowed.*

Resnick Standards Track [Page 49]

RFC 2822 Internet Message Format April 2001

 21. Folding white space between field name and colon not allowed.*
 22. Comments between field name and colon not allowed.
 23. Tightened syntax of in-reply-to and references.*
 24. CFWS within msg-id not allowed.*
 25. Tightened semantics of resent fields as informational only.
 26. Resent-Reply-To not allowed.*
 27. No multiple occurrences of fields (except resent and received).*
 28. Free CR and LF not allowed.*
 29. Routes in return path not allowed.*
 30. Line length limits specified.
 31. Bcc more clearly specified.

Appendix C. Notices

 Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

Resnick Standards Track [Page 50]

C
om

pendium
 1 page 111

Network Working Group N. Freed
Request for Comments: 2197 Innosoft
Obsoletes: 1854 September 1997
Category: Standards Track

 SMTP Service Extension
 for Command Pipelining

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

1. Abstract

 This memo defines an extension to the SMTP service whereby a server
 can indicate the extent of its ability to accept multiple commands in
 a single TCP send operation. Using a single TCP send operation for
 multiple commands can improve SMTP performance significantly.

 The present document is an updated version of RFC 1854 [3]. Only
 textual and editorial changes have been made; the protocol has not
 changed in any way.

2. Introduction

 Although SMTP is widely and robustly deployed, certain extensions may
 nevertheless prove useful. In particular, many parts of the Internet
 make use of high latency network links. SMTP's intrinsic one
 command-one response structure is significantly penalized by high
 latency links, often to the point where the factors contributing to
 overall connection time are dominated by the time spent waiting for
 responses to individual commands (turnaround time).

 In the best of all worlds it would be possible to simply deploy SMTP
 client software that makes use of command pipelining: batching up
 multiple commands into single TCP send operations. Unfortunately, the
 original SMTP specification [1] did not explicitly state that SMTP
 servers must support this. As a result a non-trivial number of
 Internet SMTP servers cannot adequately handle command pipelining.
 Flaws known to exist in deployed servers include:

Freed Standards Track [Page 1]

RFC 2197 SMTP Service Extension September 1997

 (1) Connection handoff and buffer flushes in the middle of
 the SMTP dialogue. Creation of server processes for
 incoming SMTP connections is a useful, obvious, and
 harmless implementation technique. However, some SMTP
 servers defer process forking and connection handoff
 until some intermediate point in the SMTP dialogue.
 When this is done material read from the TCP connection
 and kept in process buffers can be lost.

 (2) Flushing the TCP input buffer when an SMTP command
 fails. SMTP commands often fail but there is no reason
 to flush the TCP input buffer when this happens.
 Nevertheless, some SMTP servers do this.

 (3) Improper processing and promulgation of SMTP command
 failures. For example, some SMTP servers will refuse to
 accept a DATA command if the last RCPT TO command
 fails, paying no attention to the success or failure of
 prior RCPT TO command results. Other servers will
 accept a DATA command even when all previous RCPT TO
 commands have failed. Although it is possible to
 accommodate this sort of behavior in a client that
 employs command pipelining, it does complicate the
 construction of the client unnecessarily.

 This memo uses the mechanism described in [2] to define an extension
 to the SMTP service whereby an SMTP server can declare that it is
 capable of handling pipelined commands. The SMTP client can then
 check for this declaration and use pipelining only when the server
 declares itself capable of handling it.

2.1. Requirements notation

 This document occasionally uses terms that appear in capital letters.
 When the terms "MUST", "SHOULD", "MUST NOT", "SHOULD NOT", and "MAY"
 appear capitalized, they are being used to indicate particular
 requirements of this specification. A discussion of the meanings of
 these terms appears in RFC 2119 [4].

3. Framework for the Command Pipelining Extension

 The Command Pipelining extension is defined as follows:

 (1) the name of the SMTP service extension is Pipelining;

 (2) the EHLO keyword value associated with the extension is
 PIPELINING;

Freed Standards Track [Page 2]

C
om

pendium
 1 page 112

RFC 2197 SMTP Service Extension September 1997

 (3) no parameter is used with the PIPELINING EHLO keyword;

 (4) no additional parameters are added to either the MAIL
 FROM or RCPT TO commands.

 (5) no additional SMTP verbs are defined by this extension;
 and,

 (6) the next section specifies how support for the
 extension affects the behavior of a server and client
 SMTP.

4. The Pipelining Service Extension

 When a client SMTP wishes to employ command pipelining, it first
 issues the EHLO command to the server SMTP. If the server SMTP
 responds with code 250 to the EHLO command, and the response includes
 the EHLO keyword value PIPELINING, then the server SMTP has indicated
 that it can accommodate SMTP command pipelining.

4.1. Client use of pipelining

 Once the client SMTP has confirmed that support exists for the
 pipelining extension, the client SMTP may then elect to transmit
 groups of SMTP commands in batches without waiting for a response to
 each individual command. In particular, the commands RSET, MAIL FROM,
 SEND FROM, SOML FROM, SAML FROM, and RCPT TO can all appear anywhere
 in a pipelined command group. The EHLO, DATA, VRFY, EXPN, TURN,
 QUIT, and NOOP commands can only appear as the last command in a
 group since their success or failure produces a change of state which
 the client SMTP must accommodate. (NOOP is included in this group so
 it can be used as a synchronization point.)

 Additional commands added by other SMTP extensions may only appear as
 the last command in a group unless otherwise specified by the
 extensions that define the commands.

 The actual transfer of message content is explicitly allowed to be
 the first "command" in a group. That is, a RSET/MAIL FROM sequence
 used to initiate a new message transaction can be placed in the same
 group as the final transfer of the headers and body of the previous
 message.

 Client SMTP implementations that employ pipelining MUST check ALL
 statuses associated with each command in a group. For example, if
 none of the RCPT TO recipient addresses were accepted the client must

Freed Standards Track [Page 3]

RFC 2197 SMTP Service Extension September 1997

 then check the response to the DATA command -- the client cannot
 assume that the DATA command will be rejected just because none of
 the RCPT TO commands worked. If the DATA command was properly
 rejected the client SMTP can just issue RSET, but if the DATA command
 was accepted the client SMTP should send a single dot.

 Command statuses MUST be coordinated with responses by counting each
 separate response and correlating that count with the number of
 commands known to have been issued. Multiline responses MUST be
 supported. Matching on the basis of either the error code value or
 associated text is expressly forbidden.

 Client SMTP implementations MAY elect to operate in a nonblocking
 fashion, processing server responses immediately upon receipt, even
 if there is still data pending transmission from the client's
 previous TCP send operation. If nonblocking operation is not
 supported, however, client SMTP implementations MUST also check the
 TCP window size and make sure that each group of commands fits
 entirely within the window. The window size is usually, but not
 always, 4K octets. Failure to perform this check can lead to
 deadlock conditions.

 Clients MUST NOT confuse responses to multiple commands with
 multiline responses. Each command requires one or more lines of
 response, the last line not containing a dash between the response
 code and the response string.

4.2. Server support of pipelining

 A server SMTP implementation that offers the pipelining extension:

 (1) MUST NOT flush or otherwise lose the contents of the
 TCP input buffer under any circumstances whatsoever.

 (2) SHOULD issue a positive response to the DATA command if
 and only if one or more valid RCPT TO addresses have
 been previously received.

 (3) MUST NOT, after issuing a positive response to a DATA
 command with no valid recipients and subsequently
 receiving an empty message, send any message whatsoever
 to anybody.

 (4) SHOULD elect to store responses to grouped RSET, MAIL
 FROM, SEND FROM, SOML FROM, SAML FROM, and RCPT TO
 commands in an internal buffer so they can sent as a
 unit.

Freed Standards Track [Page 4]

C
om

pendium
 1 page 113

RFC 2197 SMTP Service Extension September 1997

 (5) MUST NOT buffer responses to EHLO, DATA, VRFY, EXPN,
 TURN, QUIT, and NOOP.

 (6) MUST NOT buffer responses to unrecognized commands.

 (7) MUST send all pending responses immediately whenever
 the local TCP input buffer is emptied.

 (8) MUST NOT make assumptions about commands that are yet
 to be received.

 (9) SHOULD issue response text that indicates, either
 implicitly or explicitly, what command the response
 matches.

 The overriding intent of these server requirements is to make it as
 easy as possible for servers to conform to these pipelining
 extensions.

5. Examples

 Consider the following SMTP dialogue that does not use pipelining:

 S: <wait for open connection>
 C: <open connection to server>
 S: 220 innosoft.com SMTP service ready
 C: HELO dbc.mtview.ca.us
 S: 250 innosoft.com
 C: MAIL FROM:<mrose@dbc.mtview.ca.us>
 S: 250 sender <mrose@dbc.mtview.ca.us> OK
 C: RCPT TO:<ned@innosoft.com>
 S: 250 recipient <ned@innosoft.com> OK
 C: RCPT TO:<dan@innosoft.com>
 S: 250 recipient <dan@innosoft.com> OK
 C: RCPT TO:<kvc@innosoft.com>
 S: 250 recipient <kvc@innosoft.com> OK
 C: DATA
 S: 354 enter mail, end with line containing only "."
 ...
 C: .
 S: 250 message sent
 C: QUIT
 S: 221 goodbye

Freed Standards Track [Page 5]

RFC 2197 SMTP Service Extension September 1997

 The client waits for a server response a total of 9 times in this
 simple example. But if pipelining is employed the following dialogue
 is possible:

 S: <wait for open connection>
 C: <open connection to server>
 S: 220 innosoft.com SMTP service ready
 C: EHLO dbc.mtview.ca.us
 S: 250-innosoft.com
 S: 250 PIPELINING
 C: MAIL FROM:<mrose@dbc.mtview.ca.us>
 C: RCPT TO:<ned@innosoft.com>
 C: RCPT TO:<dan@innosoft.com>
 C: RCPT TO:<kvc@innosoft.com>
 C: DATA
 S: 250 sender <mrose@dbc.mtview.ca.us> OK
 S: 250 recipient <ned@innosoft.com> OK
 S: 250 recipient <dan@innosoft.com> OK
 S: 250 recipient <kvc@innosoft.com> OK
 S: 354 enter mail, end with line containing only "."
 ...
 C: .
 C: QUIT
 S: 250 message sent
 S: 221 goodbye

 The total number of turnarounds has been reduced from 9 to 4.

 The next example illustrates one possible form of behavior when
 pipelining is used and all recipients are rejected:

 S: <wait for open connection>
 C: <open connection to server>
 S: 220 innosoft.com SMTP service ready
 C: EHLO dbc.mtview.ca.us
 S: 250-innosoft.com
 S: 250 PIPELINING
 C: MAIL FROM:<mrose@dbc.mtview.ca.us>
 C: RCPT TO:<nsb@thumper.bellcore.com>
 C: RCPT TO:<galvin@tis.com>
 C: DATA
 S: 250 sender <mrose@dbc.mtview.ca.us> OK
 S: 550 remote mail to <nsb@thumper.bellore.com> not allowed
 S: 550 remote mail to <galvin@tis.com> not allowed
 S: 554 no valid recipients given
 C: QUIT
 S: 221 goodbye

Freed Standards Track [Page 6]

C
om

pendium
 1 page 114

RFC 2197 SMTP Service Extension September 1997

 The client SMTP waits for the server 4 times here as well. If the
 server SMTP does not check for at least one valid recipient prior to
 accepting the DATA command, the following dialogue would result:

 S: <wait for open connection>
 C: <open connection to server>
 S: 220 innosoft.com SMTP service ready
 C: EHLO dbc.mtview.ca.us
 S: 250-innosoft.com
 S: 250 PIPELINING
 C: MAIL FROM:<mrose@dbc.mtview.ca.us>
 C: RCPT TO:<nsb@thumper.bellcore.com>
 C: RCPT TO:<galvin@tis.com>
 C: DATA
 S: 250 sender <mrose@dbc.mtview.ca.us> OK
 S: 550 remote mail to <nsb@thumper.bellore.com> not allowed
 S: 550 remote mail to <galvin@tis.com> not allowed
 S: 354 enter mail, end with line containing only "."
 C: .
 C: QUIT
 S: 554 no valid recipients
 S: 221 goodbye

6. Security Considerations

 This document does not discuss security issues and is not believed to
 raise any security issues not endemic in electronic mail and present
 in fully conforming implementations of [1].

7. Acknowledgements

 This document is based on the SMTP service extension model presented
 in RFC 1425. Marshall Rose's description of SMTP command pipelining
 in his book "The Internet Message" also served as a source of
 inspiration for this extension.

8. References

 [1] Postel, J., "Simple Mail Transfer Protocol", STD 10,
 RFC 821, August 1982.

 [2] Klensin, J., Freed, N., Rose, M., Stefferud, E., and
 D. Crocker, "SMTP Service Extensions", RFC 1869,
 November 1995.

 [3] Freed, N., "SMTP Service Extension for Command Pipelining",
 RFC 1854, October 1995.

Freed Standards Track [Page 7]

RFC 2197 SMTP Service Extension September 1997

 [4] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

9. Author's Address

 Ned Freed
 Innosoft International, Inc.
 1050 Lakes Drive
 West Covina, CA 91790
 USA

 Phone: +1 626 919 3600
 Fax: +1 626 919 3614
 EMail: ned.freed@innosoft.com

 This document is a product of work done by the Internet Engineering
 Task Force Working Group on Messaging Extensions, Alan Cargille,
 chair.

Freed Standards Track [Page 8]

C
om

pendium
 1 page 115

Network Working Group N. Freed
Request for Comments: 2045 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part One:
 Format of Internet Message Bodies

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822, defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, and leaves the
 message content, or message body, as flat US-ASCII text. This set of
 documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 This initial document specifies the various headers used to describe
 the structure of MIME messages. The second document, RFC 2046,
 defines the general structure of the MIME media typing system and
 defines an initial set of media types. The third document, RFC 2047,
 describes extensions to RFC 822 to allow non-US-ASCII text data in

Freed & Borenstein Standards Track [Page 1]

RFC 2045 Internet Message Bodies November 1996

 Internet mail header fields. The fourth document, RFC 2048, specifies
 various IANA registration procedures for MIME-related facilities. The
 fifth and final document, RFC 2049, describes MIME conformance
 criteria as well as providing some illustrative examples of MIME
 message formats, acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521, 1522, and 1590, which
 themselves were revisions of RFCs 1341 and 1342. An appendix in RFC
 2049 describes differences and changes from previous versions.

Table of Contents

 1. Introduction ... 3
 2. Definitions, Conventions, and Generic BNF Grammar 5
 2.1 CRLF .. 5
 2.2 Character Set 6
 2.3 Message ... 6
 2.4 Entity .. 6
 2.5 Body Part ... 7
 2.6 Body .. 7
 2.7 7bit Data ... 7
 2.8 8bit Data ... 7
 2.9 Binary Data ... 7
 2.10 Lines .. 7
 3. MIME Header Fields 8
 4. MIME-Version Header Field 8
 5. Content-Type Header Field 10
 5.1 Syntax of the Content-Type Header Field 12
 5.2 Content-Type Defaults 14
 6. Content-Transfer-Encoding Header Field 14
 6.1 Content-Transfer-Encoding Syntax 14
 6.2 Content-Transfer-Encodings Semantics 15
 6.3 New Content-Transfer-Encodings 16
 6.4 Interpretation and Use 16
 6.5 Translating Encodings 18
 6.6 Canonical Encoding Model 19
 6.7 Quoted-Printable Content-Transfer-Encoding 19
 6.8 Base64 Content-Transfer-Encoding 24
 7. Content-ID Header Field 26
 8. Content-Description Header Field 27
 9. Additional MIME Header Fields 27
 10. Summary ... 27
 11. Security Considerations 27
 12. Authors' Addresses 28
 A. Collected Grammar 29

Freed & Borenstein Standards Track [Page 2]

C
om

pendium
 1 page 116

RFC 2045 Internet Message Bodies November 1996

1. Introduction

 Since its publication in 1982, RFC 822 has defined the standard
 format of textual mail messages on the Internet. Its success has
 been such that the RFC 822 format has been adopted, wholly or
 partially, well beyond the confines of the Internet and the Internet
 SMTP transport defined by RFC 821. As the format has seen wider use,
 a number of limitations have proven increasingly restrictive for the
 user community.

 RFC 822 was intended to specify a format for text messages. As such,
 non-text messages, such as multimedia messages that might include
 audio or images, are simply not mentioned. Even in the case of text,
 however, RFC 822 is inadequate for the needs of mail users whose
 languages require the use of character sets richer than US-ASCII.
 Since RFC 822 does not specify mechanisms for mail containing audio,
 video, Asian language text, or even text in most European languages,
 additional specifications are needed.

 One of the notable limitations of RFC 821/822 based mail systems is
 the fact that they limit the contents of electronic mail messages to
 relatively short lines (e.g. 1000 characters or less [RFC-821]) of
 7bit US-ASCII. This forces users to convert any non-textual data
 that they may wish to send into seven-bit bytes representable as
 printable US-ASCII characters before invoking a local mail UA (User
 Agent, a program with which human users send and receive mail).
 Examples of such encodings currently used in the Internet include
 pure hexadecimal, uuencode, the 3-in-4 base 64 scheme specified in
 RFC 1421, the Andrew Toolkit Representation [ATK], and many others.

 The limitations of RFC 822 mail become even more apparent as gateways
 are designed to allow for the exchange of mail messages between RFC
 822 hosts and X.400 hosts. X.400 [X400] specifies mechanisms for the
 inclusion of non-textual material within electronic mail messages.
 The current standards for the mapping of X.400 messages to RFC 822
 messages specify either that X.400 non-textual material must be
 converted to (not encoded in) IA5Text format, or that they must be
 discarded, notifying the RFC 822 user that discarding has occurred.
 This is clearly undesirable, as information that a user may wish to
 receive is lost. Even though a user agent may not have the
 capability of dealing with the non-textual material, the user might
 have some mechanism external to the UA that can extract useful
 information from the material. Moreover, it does not allow for the
 fact that the message may eventually be gatewayed back into an X.400
 message handling system (i.e., the X.400 message is "tunneled"
 through Internet mail), where the non-textual information would
 definitely become useful again.

Freed & Borenstein Standards Track [Page 3]

RFC 2045 Internet Message Bodies November 1996

 This document describes several mechanisms that combine to solve most
 of these problems without introducing any serious incompatibilities
 with the existing world of RFC 822 mail. In particular, it
 describes:

 (1) A MIME-Version header field, which uses a version
 number to declare a message to be conformant with MIME
 and allows mail processing agents to distinguish
 between such messages and those generated by older or
 non-conformant software, which are presumed to lack
 such a field.

 (2) A Content-Type header field, generalized from RFC 1049,
 which can be used to specify the media type and subtype
 of data in the body of a message and to fully specify
 the native representation (canonical form) of such
 data.

 (3) A Content-Transfer-Encoding header field, which can be
 used to specify both the encoding transformation that
 was applied to the body and the domain of the result.
 Encoding transformations other than the identity
 transformation are usually applied to data in order to
 allow it to pass through mail transport mechanisms
 which may have data or character set limitations.

 (4) Two additional header fields that can be used to
 further describe the data in a body, the Content-ID and
 Content-Description header fields.

 All of the header fields defined in this document are subject to the
 general syntactic rules for header fields specified in RFC 822. In
 particular, all of these header fields except for Content-Disposition
 can include RFC 822 comments, which have no semantic content and
 should be ignored during MIME processing.

 Finally, to specify and promote interoperability, RFC 2049 provides a
 basic applicability statement for a subset of the above mechanisms
 that defines a minimal level of "conformance" with this document.

 HISTORICAL NOTE: Several of the mechanisms described in this set of
 documents may seem somewhat strange or even baroque at first reading.
 It is important to note that compatibility with existing standards
 AND robustness across existing practice were two of the highest
 priorities of the working group that developed this set of documents.
 In particular, compatibility was always favored over elegance.

Freed & Borenstein Standards Track [Page 4]

C
om

pendium
 1 page 117

RFC 2045 Internet Message Bodies November 1996

 Please refer to the current edition of the "Internet Official
 Protocol Standards" for the standardization state and status of this
 protocol. RFC 822 and STD 3, RFC 1123 also provide essential
 background for MIME since no conforming implementation of MIME can
 violate them. In addition, several other informational RFC documents
 will be of interest to the MIME implementor, in particular RFC 1344,
 RFC 1345, and RFC 1524.

2. Definitions, Conventions, and Generic BNF Grammar

 Although the mechanisms specified in this set of documents are all
 described in prose, most are also described formally in the augmented
 BNF notation of RFC 822. Implementors will need to be familiar with
 this notation in order to understand this set of documents, and are
 referred to RFC 822 for a complete explanation of the augmented BNF
 notation.

 Some of the augmented BNF in this set of documents makes named
 references to syntax rules defined in RFC 822. A complete formal
 grammar, then, is obtained by combining the collected grammar
 appendices in each document in this set with the BNF of RFC 822 plus
 the modifications to RFC 822 defined in RFC 1123 (which specifically
 changes the syntax for `return', `date' and `mailbox').

 All numeric and octet values are given in decimal notation in this
 set of documents. All media type values, subtype values, and
 parameter names as defined are case-insensitive. However, parameter
 values are case-sensitive unless otherwise specified for the specific
 parameter.

 FORMATTING NOTE: Notes, such at this one, provide additional
 nonessential information which may be skipped by the reader without
 missing anything essential. The primary purpose of these non-
 essential notes is to convey information about the rationale of this
 set of documents, or to place these documents in the proper
 historical or evolutionary context. Such information may in
 particular be skipped by those who are focused entirely on building a
 conformant implementation, but may be of use to those who wish to
 understand why certain design choices were made.

2.1. CRLF

 The term CRLF, in this set of documents, refers to the sequence of
 octets corresponding to the two US-ASCII characters CR (decimal value
 13) and LF (decimal value 10) which, taken together, in this order,
 denote a line break in RFC 822 mail.

Freed & Borenstein Standards Track [Page 5]

RFC 2045 Internet Message Bodies November 1996

2.2. Character Set

 The term "character set" is used in MIME to refer to a method of
 converting a sequence of octets into a sequence of characters. Note
 that unconditional and unambiguous conversion in the other direction
 is not required, in that not all characters may be representable by a
 given character set and a character set may provide more than one
 sequence of octets to represent a particular sequence of characters.

 This definition is intended to allow various kinds of character
 encodings, from simple single-table mappings such as US-ASCII to
 complex table switching methods such as those that use ISO 2022's
 techniques, to be used as character sets. However, the definition
 associated with a MIME character set name must fully specify the
 mapping to be performed. In particular, use of external profiling
 information to determine the exact mapping is not permitted.

 NOTE: The term "character set" was originally to describe such
 straightforward schemes as US-ASCII and ISO-8859-1 which have a
 simple one-to-one mapping from single octets to single characters.
 Multi-octet coded character sets and switching techniques make the
 situation more complex. For example, some communities use the term
 "character encoding" for what MIME calls a "character set", while
 using the phrase "coded character set" to denote an abstract mapping
 from integers (not octets) to characters.

2.3. Message

 The term "message", when not further qualified, means either a
 (complete or "top-level") RFC 822 message being transferred on a
 network, or a message encapsulated in a body of type "message/rfc822"
 or "message/partial".

2.4. Entity

 The term "entity", refers specifically to the MIME-defined header
 fields and contents of either a message or one of the parts in the
 body of a multipart entity. The specification of such entities is
 the essence of MIME. Since the contents of an entity are often
 called the "body", it makes sense to speak about the body of an
 entity. Any sort of field may be present in the header of an entity,
 but only those fields whose names begin with "content-" actually have
 any MIME-related meaning. Note that this does NOT imply thay they
 have no meaning at all -- an entity that is also a message has non-
 MIME header fields whose meanings are defined by RFC 822.

Freed & Borenstein Standards Track [Page 6]

C
om

pendium
 1 page 118

RFC 2045 Internet Message Bodies November 1996

2.5. Body Part

 The term "body part" refers to an entity inside of a multipart
 entity.

2.6. Body

 The term "body", when not further qualified, means the body of an
 entity, that is, the body of either a message or of a body part.

 NOTE: The previous four definitions are clearly circular. This is
 unavoidable, since the overall structure of a MIME message is indeed
 recursive.

2.7. 7bit Data

 "7bit data" refers to data that is all represented as relatively
 short lines with 998 octets or less between CRLF line separation
 sequences [RFC-821]. No octets with decimal values greater than 127
 are allowed and neither are NULs (octets with decimal value 0). CR
 (decimal value 13) and LF (decimal value 10) octets only occur as
 part of CRLF line separation sequences.

2.8. 8bit Data

 "8bit data" refers to data that is all represented as relatively
 short lines with 998 octets or less between CRLF line separation
 sequences [RFC-821]), but octets with decimal values greater than 127
 may be used. As with "7bit data" CR and LF octets only occur as part
 of CRLF line separation sequences and no NULs are allowed.

2.9. Binary Data

 "Binary data" refers to data where any sequence of octets whatsoever
 is allowed.

2.10. Lines

 "Lines" are defined as sequences of octets separated by a CRLF
 sequences. This is consistent with both RFC 821 and RFC 822.
 "Lines" only refers to a unit of data in a message, which may or may
 not correspond to something that is actually displayed by a user
 agent.

Freed & Borenstein Standards Track [Page 7]

RFC 2045 Internet Message Bodies November 1996

3. MIME Header Fields

 MIME defines a number of new RFC 822 header fields that are used to
 describe the content of a MIME entity. These header fields occur in
 at least two contexts:

 (1) As part of a regular RFC 822 message header.

 (2) In a MIME body part header within a multipart
 construct.

 The formal definition of these header fields is as follows:

 entity-headers := [content CRLF]
 [encoding CRLF]
 [id CRLF]
 [description CRLF]
 *(MIME-extension-field CRLF)

 MIME-message-headers := entity-headers
 fields
 version CRLF
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 MIME-part-headers := entity-headers
 [fields]
 ; Any field not beginning with
 ; "content-" can have no defined
 ; meaning and may be ignored.
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 The syntax of the various specific MIME header fields will be
 described in the following sections.

4. MIME-Version Header Field

 Since RFC 822 was published in 1982, there has really been only one
 format standard for Internet messages, and there has been little
 perceived need to declare the format standard in use. This document
 is an independent specification that complements RFC 822. Although
 the extensions in this document have been defined in such a way as to
 be compatible with RFC 822, there are still circumstances in which it
 might be desirable for a mail-processing agent to know whether a
 message was composed with the new standard in mind.

Freed & Borenstein Standards Track [Page 8]

C
om

pendium
 1 page 119

RFC 2045 Internet Message Bodies November 1996

 Therefore, this document defines a new header field, "MIME-Version",
 which is to be used to declare the version of the Internet message
 body format standard in use.

 Messages composed in accordance with this document MUST include such
 a header field, with the following verbatim text:

 MIME-Version: 1.0

 The presence of this header field is an assertion that the message
 has been composed in compliance with this document.

 Since it is possible that a future document might extend the message
 format standard again, a formal BNF is given for the content of the
 MIME-Version field:

 version := "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

 Thus, future format specifiers, which might replace or extend "1.0",
 are constrained to be two integer fields, separated by a period. If
 a message is received with a MIME-version value other than "1.0", it
 cannot be assumed to conform with this document.

 Note that the MIME-Version header field is required at the top level
 of a message. It is not required for each body part of a multipart
 entity. It is required for the embedded headers of a body of type
 "message/rfc822" or "message/partial" if and only if the embedded
 message is itself claimed to be MIME-conformant.

 It is not possible to fully specify how a mail reader that conforms
 with MIME as defined in this document should treat a message that
 might arrive in the future with some value of MIME-Version other than
 "1.0".

 It is also worth noting that version control for specific media types
 is not accomplished using the MIME-Version mechanism. In particular,
 some formats (such as application/postscript) have version numbering
 conventions that are internal to the media format. Where such
 conventions exist, MIME does nothing to supersede them. Where no
 such conventions exist, a MIME media type might use a "version"
 parameter in the content-type field if necessary.

Freed & Borenstein Standards Track [Page 9]

RFC 2045 Internet Message Bodies November 1996

 NOTE TO IMPLEMENTORS: When checking MIME-Version values any RFC 822
 comment strings that are present must be ignored. In particular, the
 following four MIME-Version fields are equivalent:

 MIME-Version: 1.0

 MIME-Version: 1.0 (produced by MetaSend Vx.x)

 MIME-Version: (produced by MetaSend Vx.x) 1.0

 MIME-Version: 1.(produced by MetaSend Vx.x)0

 In the absence of a MIME-Version field, a receiving mail user agent
 (whether conforming to MIME requirements or not) may optionally
 choose to interpret the body of the message according to local
 conventions. Many such conventions are currently in use and it
 should be noted that in practice non-MIME messages can contain just
 about anything.

 It is impossible to be certain that a non-MIME mail message is
 actually plain text in the US-ASCII character set since it might well
 be a message that, using some set of nonstandard local conventions
 that predate MIME, includes text in another character set or non-
 textual data presented in a manner that cannot be automatically
 recognized (e.g., a uuencoded compressed UNIX tar file).

5. Content-Type Header Field

 The purpose of the Content-Type field is to describe the data
 contained in the body fully enough that the receiving user agent can
 pick an appropriate agent or mechanism to present the data to the
 user, or otherwise deal with the data in an appropriate manner. The
 value in this field is called a media type.

 HISTORICAL NOTE: The Content-Type header field was first defined in
 RFC 1049. RFC 1049 used a simpler and less powerful syntax, but one
 that is largely compatible with the mechanism given here.

 The Content-Type header field specifies the nature of the data in the
 body of an entity by giving media type and subtype identifiers, and
 by providing auxiliary information that may be required for certain
 media types. After the media type and subtype names, the remainder
 of the header field is simply a set of parameters, specified in an
 attribute=value notation. The ordering of parameters is not
 significant.

Freed & Borenstein Standards Track [Page 10]

C
om

pendium
 1 page 120

RFC 2045 Internet Message Bodies November 1996

 In general, the top-level media type is used to declare the general
 type of data, while the subtype specifies a specific format for that
 type of data. Thus, a media type of "image/xyz" is enough to tell a
 user agent that the data is an image, even if the user agent has no
 knowledge of the specific image format "xyz". Such information can
 be used, for example, to decide whether or not to show a user the raw
 data from an unrecognized subtype -- such an action might be
 reasonable for unrecognized subtypes of text, but not for
 unrecognized subtypes of image or audio. For this reason, registered
 subtypes of text, image, audio, and video should not contain embedded
 information that is really of a different type. Such compound
 formats should be represented using the "multipart" or "application"
 types.

 Parameters are modifiers of the media subtype, and as such do not
 fundamentally affect the nature of the content. The set of
 meaningful parameters depends on the media type and subtype. Most
 parameters are associated with a single specific subtype. However, a
 given top-level media type may define parameters which are applicable
 to any subtype of that type. Parameters may be required by their
 defining content type or subtype or they may be optional. MIME
 implementations must ignore any parameters whose names they do not
 recognize.

 For example, the "charset" parameter is applicable to any subtype of
 "text", while the "boundary" parameter is required for any subtype of
 the "multipart" media type.

 There are NO globally-meaningful parameters that apply to all media
 types. Truly global mechanisms are best addressed, in the MIME
 model, by the definition of additional Content-* header fields.

 An initial set of seven top-level media types is defined in RFC 2046.
 Five of these are discrete types whose content is essentially opaque
 as far as MIME processing is concerned. The remaining two are
 composite types whose contents require additional handling by MIME
 processors.

 This set of top-level media types is intended to be substantially
 complete. It is expected that additions to the larger set of
 supported types can generally be accomplished by the creation of new
 subtypes of these initial types. In the future, more top-level types
 may be defined only by a standards-track extension to this standard.
 If another top-level type is to be used for any reason, it must be
 given a name starting with "X-" to indicate its non-standard status
 and to avoid a potential conflict with a future official name.

Freed & Borenstein Standards Track [Page 11]

RFC 2045 Internet Message Bodies November 1996

5.1. Syntax of the Content-Type Header Field

 In the Augmented BNF notation of RFC 822, a Content-Type header field
 value is defined as follows:

 content := "Content-Type" ":" type "/" subtype
 *(";" parameter)
 ; Matching of media type and subtype
 ; is ALWAYS case-insensitive.

 type := discrete-type / composite-type

 discrete-type := "text" / "image" / "audio" / "video" /
 "application" / extension-token

 composite-type := "message" / "multipart" / extension-token

 extension-token := ietf-token / x-token

 ietf-token := <An extension token defined by a
 standards-track RFC and registered
 with IANA.>

 x-token := <The two characters "X-" or "x-" followed, with
 no intervening white space, by any token>

 subtype := extension-token / iana-token

 iana-token := <A publicly-defined extension token. Tokens
 of this form must be registered with IANA
 as specified in RFC 2048.>

 parameter := attribute "=" value

 attribute := token
 ; Matching of attributes
 ; is ALWAYS case-insensitive.

 value := token / quoted-string

 token := 1*<any (US-ASCII) CHAR except SPACE, CTLs,
 or tspecials>

 tspecials := "(" / ")" / "<" / ">" / "@" /
 "," / ";" / ":" / "\" / <">
 "/" / "[" / "]" / "?" / "="
 ; Must be in quoted-string,
 ; to use within parameter values

Freed & Borenstein Standards Track [Page 12]

C
om

pendium
 1 page 121

RFC 2045 Internet Message Bodies November 1996

 Note that the definition of "tspecials" is the same as the RFC 822
 definition of "specials" with the addition of the three characters
 "/", "?", and "=", and the removal of ".".

 Note also that a subtype specification is MANDATORY -- it may not be
 omitted from a Content-Type header field. As such, there are no
 default subtypes.

 The type, subtype, and parameter names are not case sensitive. For
 example, TEXT, Text, and TeXt are all equivalent top-level media
 types. Parameter values are normally case sensitive, but sometimes
 are interpreted in a case-insensitive fashion, depending on the
 intended use. (For example, multipart boundaries are case-sensitive,
 but the "access-type" parameter for message/External-body is not
 case-sensitive.)

 Note that the value of a quoted string parameter does not include the
 quotes. That is, the quotation marks in a quoted-string are not a
 part of the value of the parameter, but are merely used to delimit
 that parameter value. In addition, comments are allowed in
 accordance with RFC 822 rules for structured header fields. Thus the
 following two forms

 Content-type: text/plain; charset=us-ascii (Plain text)

 Content-type: text/plain; charset="us-ascii"

 are completely equivalent.

 Beyond this syntax, the only syntactic constraint on the definition
 of subtype names is the desire that their uses must not conflict.
 That is, it would be undesirable to have two different communities
 using "Content-Type: application/foobar" to mean two different
 things. The process of defining new media subtypes, then, is not
 intended to be a mechanism for imposing restrictions, but simply a
 mechanism for publicizing their definition and usage. There are,
 therefore, two acceptable mechanisms for defining new media subtypes:

 (1) Private values (starting with "X-") may be defined
 bilaterally between two cooperating agents without
 outside registration or standardization. Such values
 cannot be registered or standardized.

 (2) New standard values should be registered with IANA as
 described in RFC 2048.

 The second document in this set, RFC 2046, defines the initial set of
 media types for MIME.

Freed & Borenstein Standards Track [Page 13]

RFC 2045 Internet Message Bodies November 1996

5.2. Content-Type Defaults

 Default RFC 822 messages without a MIME Content-Type header are taken
 by this protocol to be plain text in the US-ASCII character set,
 which can be explicitly specified as:

 Content-type: text/plain; charset=us-ascii

 This default is assumed if no Content-Type header field is specified.
 It is also recommend that this default be assumed when a
 syntactically invalid Content-Type header field is encountered. In
 the presence of a MIME-Version header field and the absence of any
 Content-Type header field, a receiving User Agent can also assume
 that plain US-ASCII text was the sender's intent. Plain US-ASCII
 text may still be assumed in the absence of a MIME-Version or the
 presence of an syntactically invalid Content-Type header field, but
 the sender's intent might have been otherwise.

6. Content-Transfer-Encoding Header Field

 Many media types which could be usefully transported via email are
 represented, in their "natural" format, as 8bit character or binary
 data. Such data cannot be transmitted over some transfer protocols.
 For example, RFC 821 (SMTP) restricts mail messages to 7bit US-ASCII
 data with lines no longer than 1000 characters including any trailing
 CRLF line separator.

 It is necessary, therefore, to define a standard mechanism for
 encoding such data into a 7bit short line format. Proper labelling
 of unencoded material in less restrictive formats for direct use over
 less restrictive transports is also desireable. This document
 specifies that such encodings will be indicated by a new "Content-
 Transfer-Encoding" header field. This field has not been defined by
 any previous standard.

6.1. Content-Transfer-Encoding Syntax

 The Content-Transfer-Encoding field's value is a single token
 specifying the type of encoding, as enumerated below. Formally:

 encoding := "Content-Transfer-Encoding" ":" mechanism

 mechanism := "7bit" / "8bit" / "binary" /
 "quoted-printable" / "base64" /
 ietf-token / x-token

 These values are not case sensitive -- Base64 and BASE64 and bAsE64
 are all equivalent. An encoding type of 7BIT requires that the body

Freed & Borenstein Standards Track [Page 14]

C
om

pendium
 1 page 122

RFC 2045 Internet Message Bodies November 1996

 is already in a 7bit mail-ready representation. This is the default
 value -- that is, "Content-Transfer-Encoding: 7BIT" is assumed if the
 Content-Transfer-Encoding header field is not present.

6.2. Content-Transfer-Encodings Semantics

 This single Content-Transfer-Encoding token actually provides two
 pieces of information. It specifies what sort of encoding
 transformation the body was subjected to and hence what decoding
 operation must be used to restore it to its original form, and it
 specifies what the domain of the result is.

 The transformation part of any Content-Transfer-Encodings specifies,
 either explicitly or implicitly, a single, well-defined decoding
 algorithm, which for any sequence of encoded octets either transforms
 it to the original sequence of octets which was encoded, or shows
 that it is illegal as an encoded sequence. Content-Transfer-
 Encodings transformations never depend on any additional external
 profile information for proper operation. Note that while decoders
 must produce a single, well-defined output for a valid encoding no
 such restrictions exist for encoders: Encoding a given sequence of
 octets to different, equivalent encoded sequences is perfectly legal.

 Three transformations are currently defined: identity, the "quoted-
 printable" encoding, and the "base64" encoding. The domains are
 "binary", "8bit" and "7bit".

 The Content-Transfer-Encoding values "7bit", "8bit", and "binary" all
 mean that the identity (i.e. NO) encoding transformation has been
 performed. As such, they serve simply as indicators of the domain of
 the body data, and provide useful information about the sort of
 encoding that might be needed for transmission in a given transport
 system. The terms "7bit data", "8bit data", and "binary data" are
 all defined in Section 2.

 The quoted-printable and base64 encodings transform their input from
 an arbitrary domain into material in the "7bit" range, thus making it
 safe to carry over restricted transports. The specific definition of
 the transformations are given below.

 The proper Content-Transfer-Encoding label must always be used.
 Labelling unencoded data containing 8bit characters as "7bit" is not
 allowed, nor is labelling unencoded non-line-oriented data as
 anything other than "binary" allowed.

 Unlike media subtypes, a proliferation of Content-Transfer-Encoding
 values is both undesirable and unnecessary. However, establishing
 only a single transformation into the "7bit" domain does not seem

Freed & Borenstein Standards Track [Page 15]

RFC 2045 Internet Message Bodies November 1996

 possible. There is a tradeoff between the desire for a compact and
 efficient encoding of largely- binary data and the desire for a
 somewhat readable encoding of data that is mostly, but not entirely,
 7bit. For this reason, at least two encoding mechanisms are
 necessary: a more or less readable encoding (quoted-printable) and a
 "dense" or "uniform" encoding (base64).

 Mail transport for unencoded 8bit data is defined in RFC 1652. As of
 the initial publication of this document, there are no standardized
 Internet mail transports for which it is legitimate to include
 unencoded binary data in mail bodies. Thus there are no
 circumstances in which the "binary" Content-Transfer-Encoding is
 actually valid in Internet mail. However, in the event that binary
 mail transport becomes a reality in Internet mail, or when MIME is
 used in conjunction with any other binary-capable mail transport
 mechanism, binary bodies must be labelled as such using this
 mechanism.

 NOTE: The five values defined for the Content-Transfer-Encoding field
 imply nothing about the media type other than the algorithm by which
 it was encoded or the transport system requirements if unencoded.

6.3. New Content-Transfer-Encodings

 Implementors may, if necessary, define private Content-Transfer-
 Encoding values, but must use an x-token, which is a name prefixed by
 "X-", to indicate its non-standard status, e.g., "Content-Transfer-
 Encoding: x-my-new-encoding". Additional standardized Content-
 Transfer-Encoding values must be specified by a standards-track RFC.
 The requirements such specifications must meet are given in RFC 2048.
 As such, all content-transfer-encoding namespace except that
 beginning with "X-" is explicitly reserved to the IETF for future
 use.

 Unlike media types and subtypes, the creation of new Content-
 Transfer-Encoding values is STRONGLY discouraged, as it seems likely
 to hinder interoperability with little potential benefit

6.4. Interpretation and Use

 If a Content-Transfer-Encoding header field appears as part of a
 message header, it applies to the entire body of that message. If a
 Content-Transfer-Encoding header field appears as part of an entity's
 headers, it applies only to the body of that entity. If an entity is
 of type "multipart" the Content-Transfer-Encoding is not permitted to
 have any value other than "7bit", "8bit" or "binary". Even more
 severe restrictions apply to some subtypes of the "message" type.

Freed & Borenstein Standards Track [Page 16]

C
om

pendium
 1 page 123

RFC 2045 Internet Message Bodies November 1996

 It should be noted that most media types are defined in terms of
 octets rather than bits, so that the mechanisms described here are
 mechanisms for encoding arbitrary octet streams, not bit streams. If
 a bit stream is to be encoded via one of these mechanisms, it must
 first be converted to an 8bit byte stream using the network standard
 bit order ("big-endian"), in which the earlier bits in a stream
 become the higher-order bits in a 8bit byte. A bit stream not ending
 at an 8bit boundary must be padded with zeroes. RFC 2046 provides a
 mechanism for noting the addition of such padding in the case of the
 application/octet-stream media type, which has a "padding" parameter.

 The encoding mechanisms defined here explicitly encode all data in
 US-ASCII. Thus, for example, suppose an entity has header fields
 such as:

 Content-Type: text/plain; charset=ISO-8859-1
 Content-transfer-encoding: base64

 This must be interpreted to mean that the body is a base64 US-ASCII
 encoding of data that was originally in ISO-8859-1, and will be in
 that character set again after decoding.

 Certain Content-Transfer-Encoding values may only be used on certain
 media types. In particular, it is EXPRESSLY FORBIDDEN to use any
 encodings other than "7bit", "8bit", or "binary" with any composite
 media type, i.e. one that recursively includes other Content-Type
 fields. Currently the only composite media types are "multipart" and
 "message". All encodings that are desired for bodies of type
 multipart or message must be done at the innermost level, by encoding
 the actual body that needs to be encoded.

 It should also be noted that, by definition, if a composite entity
 has a transfer-encoding value such as "7bit", but one of the enclosed
 entities has a less restrictive value such as "8bit", then either the
 outer "7bit" labelling is in error, because 8bit data are included,
 or the inner "8bit" labelling placed an unnecessarily high demand on
 the transport system because the actual included data were actually
 7bit-safe.

 NOTE ON ENCODING RESTRICTIONS: Though the prohibition against using
 content-transfer-encodings on composite body data may seem overly
 restrictive, it is necessary to prevent nested encodings, in which
 data are passed through an encoding algorithm multiple times, and
 must be decoded multiple times in order to be properly viewed.
 Nested encodings add considerable complexity to user agents: Aside
 from the obvious efficiency problems with such multiple encodings,
 they can obscure the basic structure of a message. In particular,
 they can imply that several decoding operations are necessary simply

Freed & Borenstein Standards Track [Page 17]

RFC 2045 Internet Message Bodies November 1996

 to find out what types of bodies a message contains. Banning nested
 encodings may complicate the job of certain mail gateways, but this
 seems less of a problem than the effect of nested encodings on user
 agents.

 Any entity with an unrecognized Content-Transfer-Encoding must be
 treated as if it has a Content-Type of "application/octet-stream",
 regardless of what the Content-Type header field actually says.

 NOTE ON THE RELATIONSHIP BETWEEN CONTENT-TYPE AND CONTENT-TRANSFER-
 ENCODING: It may seem that the Content-Transfer-Encoding could be
 inferred from the characteristics of the media that is to be encoded,
 or, at the very least, that certain Content-Transfer-Encodings could
 be mandated for use with specific media types. There are several
 reasons why this is not the case. First, given the varying types of
 transports used for mail, some encodings may be appropriate for some
 combinations of media types and transports but not for others. (For
 example, in an 8bit transport, no encoding would be required for text
 in certain character sets, while such encodings are clearly required
 for 7bit SMTP.)

 Second, certain media types may require different types of transfer
 encoding under different circumstances. For example, many PostScript
 bodies might consist entirely of short lines of 7bit data and hence
 require no encoding at all. Other PostScript bodies (especially
 those using Level 2 PostScript's binary encoding mechanism) may only
 be reasonably represented using a binary transport encoding.
 Finally, since the Content-Type field is intended to be an open-ended
 specification mechanism, strict specification of an association
 between media types and encodings effectively couples the
 specification of an application protocol with a specific lower-level
 transport. This is not desirable since the developers of a media
 type should not have to be aware of all the transports in use and
 what their limitations are.

6.5. Translating Encodings

 The quoted-printable and base64 encodings are designed so that
 conversion between them is possible. The only issue that arises in
 such a conversion is the handling of hard line breaks in quoted-
 printable encoding output. When converting from quoted-printable to
 base64 a hard line break in the quoted-printable form represents a
 CRLF sequence in the canonical form of the data. It must therefore be
 converted to a corresponding encoded CRLF in the base64 form of the
 data. Similarly, a CRLF sequence in the canonical form of the data
 obtained after base64 decoding must be converted to a quoted-
 printable hard line break, but ONLY when converting text data.

Freed & Borenstein Standards Track [Page 18]

C
om

pendium
 1 page 124

RFC 2045 Internet Message Bodies November 1996

6.6. Canonical Encoding Model

 There was some confusion, in the previous versions of this RFC,
 regarding the model for when email data was to be converted to
 canonical form and encoded, and in particular how this process would
 affect the treatment of CRLFs, given that the representation of
 newlines varies greatly from system to system, and the relationship
 between content-transfer-encodings and character sets. A canonical
 model for encoding is presented in RFC 2049 for this reason.

6.7. Quoted-Printable Content-Transfer-Encoding

 The Quoted-Printable encoding is intended to represent data that
 largely consists of octets that correspond to printable characters in
 the US-ASCII character set. It encodes the data in such a way that
 the resulting octets are unlikely to be modified by mail transport.
 If the data being encoded are mostly US-ASCII text, the encoded form
 of the data remains largely recognizable by humans. A body which is
 entirely US-ASCII may also be encoded in Quoted-Printable to ensure
 the integrity of the data should the message pass through a
 character-translating, and/or line-wrapping gateway.

 In this encoding, octets are to be represented as determined by the
 following rules:

 (1) (General 8bit representation) Any octet, except a CR or
 LF that is part of a CRLF line break of the canonical
 (standard) form of the data being encoded, may be
 represented by an "=" followed by a two digit
 hexadecimal representation of the octet's value. The
 digits of the hexadecimal alphabet, for this purpose,
 are "0123456789ABCDEF". Uppercase letters must be
 used; lowercase letters are not allowed. Thus, for
 example, the decimal value 12 (US-ASCII form feed) can
 be represented by "=0C", and the decimal value 61 (US-
 ASCII EQUAL SIGN) can be represented by "=3D". This
 rule must be followed except when the following rules
 allow an alternative encoding.

 (2) (Literal representation) Octets with decimal values of
 33 through 60 inclusive, and 62 through 126, inclusive,
 MAY be represented as the US-ASCII characters which
 correspond to those octets (EXCLAMATION POINT through
 LESS THAN, and GREATER THAN through TILDE,
 respectively).

 (3) (White Space) Octets with values of 9 and 32 MAY be
 represented as US-ASCII TAB (HT) and SPACE characters,

Freed & Borenstein Standards Track [Page 19]

RFC 2045 Internet Message Bodies November 1996

 respectively, but MUST NOT be so represented at the end
 of an encoded line. Any TAB (HT) or SPACE characters
 on an encoded line MUST thus be followed on that line
 by a printable character. In particular, an "=" at the
 end of an encoded line, indicating a soft line break
 (see rule #5) may follow one or more TAB (HT) or SPACE
 characters. It follows that an octet with decimal
 value 9 or 32 appearing at the end of an encoded line
 must be represented according to Rule #1. This rule is
 necessary because some MTAs (Message Transport Agents,
 programs which transport messages from one user to
 another, or perform a portion of such transfers) are
 known to pad lines of text with SPACEs, and others are
 known to remove "white space" characters from the end
 of a line. Therefore, when decoding a Quoted-Printable
 body, any trailing white space on a line must be
 deleted, as it will necessarily have been added by
 intermediate transport agents.

 (4) (Line Breaks) A line break in a text body, represented
 as a CRLF sequence in the text canonical form, must be
 represented by a (RFC 822) line break, which is also a
 CRLF sequence, in the Quoted-Printable encoding. Since
 the canonical representation of media types other than
 text do not generally include the representation of
 line breaks as CRLF sequences, no hard line breaks
 (i.e. line breaks that are intended to be meaningful
 and to be displayed to the user) can occur in the
 quoted-printable encoding of such types. Sequences
 like "=0D", "=0A", "=0A=0D" and "=0D=0A" will routinely
 appear in non-text data represented in quoted-
 printable, of course.

 Note that many implementations may elect to encode the
 local representation of various content types directly
 rather than converting to canonical form first,
 encoding, and then converting back to local
 representation. In particular, this may apply to plain
 text material on systems that use newline conventions
 other than a CRLF terminator sequence. Such an
 implementation optimization is permissible, but only
 when the combined canonicalization-encoding step is
 equivalent to performing the three steps separately.

 (5) (Soft Line Breaks) The Quoted-Printable encoding
 REQUIRES that encoded lines be no more than 76
 characters long. If longer lines are to be encoded
 with the Quoted-Printable encoding, "soft" line breaks

Freed & Borenstein Standards Track [Page 20]

C
om

pendium
 1 page 125

RFC 2045 Internet Message Bodies November 1996

 must be used. An equal sign as the last character on a
 encoded line indicates such a non-significant ("soft")
 line break in the encoded text.

 Thus if the "raw" form of the line is a single unencoded line that
 says:

 Now's the time for all folk to come to the aid of their country.

 This can be represented, in the Quoted-Printable encoding, as:

 Now's the time =
 for all folk to come=
 to the aid of their country.

 This provides a mechanism with which long lines are encoded in such a
 way as to be restored by the user agent. The 76 character limit does
 not count the trailing CRLF, but counts all other characters,
 including any equal signs.

 Since the hyphen character ("-") may be represented as itself in the
 Quoted-Printable encoding, care must be taken, when encapsulating a
 quoted-printable encoded body inside one or more multipart entities,
 to ensure that the boundary delimiter does not appear anywhere in the
 encoded body. (A good strategy is to choose a boundary that includes
 a character sequence such as "=_" which can never appear in a
 quoted-printable body. See the definition of multipart messages in
 RFC 2046.)

 NOTE: The quoted-printable encoding represents something of a
 compromise between readability and reliability in transport. Bodies
 encoded with the quoted-printable encoding will work reliably over
 most mail gateways, but may not work perfectly over a few gateways,
 notably those involving translation into EBCDIC. A higher level of
 confidence is offered by the base64 Content-Transfer-Encoding. A way
 to get reasonably reliable transport through EBCDIC gateways is to
 also quote the US-ASCII characters

 !"#$@[\]^`{|}~

 according to rule #1.

 Because quoted-printable data is generally assumed to be line-
 oriented, it is to be expected that the representation of the breaks
 between the lines of quoted-printable data may be altered in
 transport, in the same manner that plain text mail has always been
 altered in Internet mail when passing between systems with differing
 newline conventions. If such alterations are likely to constitute a

Freed & Borenstein Standards Track [Page 21]

RFC 2045 Internet Message Bodies November 1996

 corruption of the data, it is probably more sensible to use the
 base64 encoding rather than the quoted-printable encoding.

 NOTE: Several kinds of substrings cannot be generated according to
 the encoding rules for the quoted-printable content-transfer-
 encoding, and hence are formally illegal if they appear in the output
 of a quoted-printable encoder. This note enumerates these cases and
 suggests ways to handle such illegal substrings if any are
 encountered in quoted-printable data that is to be decoded.

 (1) An "=" followed by two hexadecimal digits, one or both
 of which are lowercase letters in "abcdef", is formally
 illegal. A robust implementation might choose to
 recognize them as the corresponding uppercase letters.

 (2) An "=" followed by a character that is neither a
 hexadecimal digit (including "abcdef") nor the CR
 character of a CRLF pair is illegal. This case can be
 the result of US-ASCII text having been included in a
 quoted-printable part of a message without itself
 having been subjected to quoted-printable encoding. A
 reasonable approach by a robust implementation might be
 to include the "=" character and the following
 character in the decoded data without any
 transformation and, if possible, indicate to the user
 that proper decoding was not possible at this point in
 the data.

 (3) An "=" cannot be the ultimate or penultimate character
 in an encoded object. This could be handled as in case
 (2) above.

 (4) Control characters other than TAB, or CR and LF as
 parts of CRLF pairs, must not appear. The same is true
 for octets with decimal values greater than 126. If
 found in incoming quoted-printable data by a decoder, a
 robust implementation might exclude them from the
 decoded data and warn the user that illegal characters
 were discovered.

 (5) Encoded lines must not be longer than 76 characters,
 not counting the trailing CRLF. If longer lines are
 found in incoming, encoded data, a robust
 implementation might nevertheless decode the lines, and
 might report the erroneous encoding to the user.

Freed & Borenstein Standards Track [Page 22]

C
om

pendium
 1 page 126

RFC 2045 Internet Message Bodies November 1996

 WARNING TO IMPLEMENTORS: If binary data is encoded in quoted-
 printable, care must be taken to encode CR and LF characters as "=0D"
 and "=0A", respectively. In particular, a CRLF sequence in binary
 data should be encoded as "=0D=0A". Otherwise, if CRLF were
 represented as a hard line break, it might be incorrectly decoded on
 platforms with different line break conventions.

 For formalists, the syntax of quoted-printable data is described by
 the following grammar:

 quoted-printable := qp-line *(CRLF qp-line)

 qp-line := *(qp-segment transport-padding CRLF)
 qp-part transport-padding

 qp-part := qp-section
 ; Maximum length of 76 characters

 qp-segment := qp-section *(SPACE / TAB) "="
 ; Maximum length of 76 characters

 qp-section := [*(ptext / SPACE / TAB) ptext]

 ptext := hex-octet / safe-char

 safe-char := <any octet with decimal value of 33 through
 60 inclusive, and 62 through 126>
 ; Characters not listed as "mail-safe" in
 ; RFC 2049 are also not recommended.

 hex-octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
 ; Octet must be used for characters > 127, =,
 ; SPACEs or TABs at the ends of lines, and is
 ; recommended for any character not listed in
 ; RFC 2049 as "mail-safe".

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 IMPORTANT: The addition of LWSP between the elements shown in this
 BNF is NOT allowed since this BNF does not specify a structured
 header field.

Freed & Borenstein Standards Track [Page 23]

RFC 2045 Internet Message Bodies November 1996

6.8. Base64 Content-Transfer-Encoding

 The Base64 Content-Transfer-Encoding is designed to represent
 arbitrary sequences of octets in a form that need not be humanly
 readable. The encoding and decoding algorithms are simple, but the
 encoded data are consistently only about 33 percent larger than the
 unencoded data. This encoding is virtually identical to the one used
 in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421.

 A 65-character subset of US-ASCII is used, enabling 6 bits to be
 represented per printable character. (The extra 65th character, "=",
 is used to signify a special processing function.)

 NOTE: This subset has the important property that it is represented
 identically in all versions of ISO 646, including US-ASCII, and all
 characters in the subset are also represented identically in all
 versions of EBCDIC. Other popular encodings, such as the encoding
 used by the uuencode utility, Macintosh binhex 4.0 [RFC-1741], and
 the base85 encoding specified as part of Level 2 PostScript, do not
 share these properties, and thus do not fulfill the portability
 requirements a binary transport encoding for mail must meet.

 The encoding process represents 24-bit groups of input bits as output
 strings of 4 encoded characters. Proceeding from left to right, a
 24-bit input group is formed by concatenating 3 8bit input groups.
 These 24 bits are then treated as 4 concatenated 6-bit groups, each
 of which is translated into a single digit in the base64 alphabet.
 When encoding a bit stream via the base64 encoding, the bit stream
 must be presumed to be ordered with the most-significant-bit first.
 That is, the first bit in the stream will be the high-order bit in
 the first 8bit byte, and the eighth bit will be the low-order bit in
 the first 8bit byte, and so on.

 Each 6-bit group is used as an index into an array of 64 printable
 characters. The character referenced by the index is placed in the
 output string. These characters, identified in Table 1, below, are
 selected so as to be universally representable, and the set excludes
 characters with particular significance to SMTP (e.g., ".", CR, LF)
 and to the multipart boundary delimiters defined in RFC 2046 (e.g.,
 "-").

Freed & Borenstein Standards Track [Page 24]

C
om

pendium
 1 page 127

RFC 2045 Internet Message Bodies November 1996

 Table 1: The Base64 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w (pad) =
 15 P 32 g 49 x
 16 Q 33 h 50 y

 The encoded output stream must be represented in lines of no more
 than 76 characters each. All line breaks or other characters not
 found in Table 1 must be ignored by decoding software. In base64
 data, characters other than those in Table 1, line breaks, and other
 white space probably indicate a transmission error, about which a
 warning message or even a message rejection might be appropriate
 under some circumstances.

 Special processing is performed if fewer than 24 bits are available
 at the end of the data being encoded. A full encoding quantum is
 always completed at the end of a body. When fewer than 24 input bits
 are available in an input group, zero bits are added (on the right)
 to form an integral number of 6-bit groups. Padding at the end of
 the data is performed using the "=" character. Since all base64
 input is an integral number of octets, only the following cases can
 arise: (1) the final quantum of encoding input is an integral
 multiple of 24 bits; here, the final unit of encoded output will be
 an integral multiple of 4 characters with no "=" padding, (2) the
 final quantum of encoding input is exactly 8 bits; here, the final
 unit of encoded output will be two characters followed by two "="
 padding characters, or (3) the final quantum of encoding input is
 exactly 16 bits; here, the final unit of encoded output will be three
 characters followed by one "=" padding character.

 Because it is used only for padding at the end of the data, the
 occurrence of any "=" characters may be taken as evidence that the
 end of the data has been reached (without truncation in transit). No

Freed & Borenstein Standards Track [Page 25]

RFC 2045 Internet Message Bodies November 1996

 such assurance is possible, however, when the number of octets
 transmitted was a multiple of three and no "=" characters are
 present.

 Any characters outside of the base64 alphabet are to be ignored in
 base64-encoded data.

 Care must be taken to use the proper octets for line breaks if base64
 encoding is applied directly to text material that has not been
 converted to canonical form. In particular, text line breaks must be
 converted into CRLF sequences prior to base64 encoding. The
 important thing to note is that this may be done directly by the
 encoder rather than in a prior canonicalization step in some
 implementations.

 NOTE: There is no need to worry about quoting potential boundary
 delimiters within base64-encoded bodies within multipart entities
 because no hyphen characters are used in the base64 encoding.

7. Content-ID Header Field

 In constructing a high-level user agent, it may be desirable to allow
 one body to make reference to another. Accordingly, bodies may be
 labelled using the "Content-ID" header field, which is syntactically
 identical to the "Message-ID" header field:

 id := "Content-ID" ":" msg-id

 Like the Message-ID values, Content-ID values must be generated to be
 world-unique.

 The Content-ID value may be used for uniquely identifying MIME
 entities in several contexts, particularly for caching data
 referenced by the message/external-body mechanism. Although the
 Content-ID header is generally optional, its use is MANDATORY in
 implementations which generate data of the optional MIME media type
 "message/external-body". That is, each message/external-body entity
 must have a Content-ID field to permit caching of such data.

 It is also worth noting that the Content-ID value has special
 semantics in the case of the multipart/alternative media type. This
 is explained in the section of RFC 2046 dealing with
 multipart/alternative.

Freed & Borenstein Standards Track [Page 26]

C
om

pendium
 1 page 128

RFC 2045 Internet Message Bodies November 1996

8. Content-Description Header Field

 The ability to associate some descriptive information with a given
 body is often desirable. For example, it may be useful to mark an
 "image" body as "a picture of the Space Shuttle Endeavor." Such text
 may be placed in the Content-Description header field. This header
 field is always optional.

 description := "Content-Description" ":" *text

 The description is presumed to be given in the US-ASCII character
 set, although the mechanism specified in RFC 2047 may be used for
 non-US-ASCII Content-Description values.

9. Additional MIME Header Fields

 Future documents may elect to define additional MIME header fields
 for various purposes. Any new header field that further describes
 the content of a message should begin with the string "Content-" to
 allow such fields which appear in a message header to be
 distinguished from ordinary RFC 822 message header fields.

 MIME-extension-field := <Any RFC 822 header field which
 begins with the string
 "Content-">

10. Summary

 Using the MIME-Version, Content-Type, and Content-Transfer-Encoding
 header fields, it is possible to include, in a standardized way,
 arbitrary types of data with RFC 822 conformant mail messages. No
 restrictions imposed by either RFC 821 or RFC 822 are violated, and
 care has been taken to avoid problems caused by additional
 restrictions imposed by the characteristics of some Internet mail
 transport mechanisms (see RFC 2049).

 The next document in this set, RFC 2046, specifies the initial set of
 media types that can be labelled and transported using these headers.

11. Security Considerations

 Security issues are discussed in the second document in this set, RFC
 2046.

Freed & Borenstein Standards Track [Page 27]

RFC 2045 Internet Message Bodies November 1996

12. Authors' Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 Nathaniel S. Borenstein
 First Virtual Holdings
 25 Washington Avenue
 Morristown, NJ 07960
 USA

 Phone: +1 201 540 8967
 Fax: +1 201 993 3032
 EMail: nsb@nsb.fv.com

 MIME is a result of the work of the Internet Engineering Task Force
 Working Group on RFC 822 Extensions. The chairman of that group,
 Greg Vaudreuil, may be reached at:

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 28]

C
om

pendium
 1 page 129

RFC 2045 Internet Message Bodies November 1996

Appendix A -- Collected Grammar

 This appendix contains the complete BNF grammar for all the syntax
 specified by this document.

 By itself, however, this grammar is incomplete. It refers by name to
 several syntax rules that are defined by RFC 822. Rather than
 reproduce those definitions here, and risk unintentional differences
 between the two, this document simply refers the reader to RFC 822
 for the remaining definitions. Wherever a term is undefined, it
 refers to the RFC 822 definition.

 attribute := token
 ; Matching of attributes
 ; is ALWAYS case-insensitive.

 composite-type := "message" / "multipart" / extension-token

 content := "Content-Type" ":" type "/" subtype
 *(";" parameter)
 ; Matching of media type and subtype
 ; is ALWAYS case-insensitive.

 description := "Content-Description" ":" *text

 discrete-type := "text" / "image" / "audio" / "video" /
 "application" / extension-token

 encoding := "Content-Transfer-Encoding" ":" mechanism

 entity-headers := [content CRLF]
 [encoding CRLF]
 [id CRLF]
 [description CRLF]
 *(MIME-extension-field CRLF)

 extension-token := ietf-token / x-token

 hex-octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
 ; Octet must be used for characters > 127, =,
 ; SPACEs or TABs at the ends of lines, and is
 ; recommended for any character not listed in
 ; RFC 2049 as "mail-safe".

 iana-token := <A publicly-defined extension token. Tokens
 of this form must be registered with IANA
 as specified in RFC 2048.>

Freed & Borenstein Standards Track [Page 29]

RFC 2045 Internet Message Bodies November 1996

 ietf-token := <An extension token defined by a
 standards-track RFC and registered
 with IANA.>

 id := "Content-ID" ":" msg-id

 mechanism := "7bit" / "8bit" / "binary" /
 "quoted-printable" / "base64" /
 ietf-token / x-token

 MIME-extension-field := <Any RFC 822 header field which
 begins with the string
 "Content-">

 MIME-message-headers := entity-headers
 fields
 version CRLF
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 MIME-part-headers := entity-headers
 [fields]
 ; Any field not beginning with
 ; "content-" can have no defined
 ; meaning and may be ignored.
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 parameter := attribute "=" value

 ptext := hex-octet / safe-char

 qp-line := *(qp-segment transport-padding CRLF)
 qp-part transport-padding

 qp-part := qp-section
 ; Maximum length of 76 characters

 qp-section := [*(ptext / SPACE / TAB) ptext]

 qp-segment := qp-section *(SPACE / TAB) "="
 ; Maximum length of 76 characters

 quoted-printable := qp-line *(CRLF qp-line)

Freed & Borenstein Standards Track [Page 30]

C
om

pendium
 1 page 130

RFC 2045 Internet Message Bodies November 1996

 safe-char := <any octet with decimal value of 33 through
 60 inclusive, and 62 through 126>
 ; Characters not listed as "mail-safe" in
 ; RFC 2049 are also not recommended.

 subtype := extension-token / iana-token

 token := 1*<any (US-ASCII) CHAR except SPACE, CTLs,
 or tspecials>

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 tspecials := "(" / ")" / "<" / ">" / "@" /
 "," / ";" / ":" / "\" / <">
 "/" / "[" / "]" / "?" / "="
 ; Must be in quoted-string,
 ; to use within parameter values

 type := discrete-type / composite-type

 value := token / quoted-string

 version := "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

 x-token := <The two characters "X-" or "x-" followed, with
 no intervening white space, by any token>

Freed & Borenstein Standards Track [Page 31]

C
om

pendium
 1 page 131

Network Working Group N. Freed
Request for Comments: 2046 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part Two:
 Media Types

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822 defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, but which leaves
 the message content, or message body, as flat US-ASCII text. This
 set of documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 The initial document in this set, RFC 2045, specifies the various
 headers used to describe the structure of MIME messages. This second
 document defines the general structure of the MIME media typing
 system and defines an initial set of media types. The third document,
 RFC 2047, describes extensions to RFC 822 to allow non-US-ASCII text

Freed & Borenstein Standards Track [Page 1]

RFC 2046 Media Types November 1996

 data in Internet mail header fields. The fourth document, RFC 2048,
 specifies various IANA registration procedures for MIME-related
 facilities. The fifth and final document, RFC 2049, describes MIME
 conformance criteria as well as providing some illustrative examples
 of MIME message formats, acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521 and 1522, which themselves
 were revisions of RFCs 1341 and 1342. An appendix in RFC 2049
 describes differences and changes from previous versions.

Table of Contents

 1. Introduction ... 3
 2. Definition of a Top-Level Media Type 4
 3. Overview Of The Initial Top-Level Media Types 4
 4. Discrete Media Type Values 6
 4.1 Text Media Type 6
 4.1.1 Representation of Line Breaks 7
 4.1.2 Charset Parameter 7
 4.1.3 Plain Subtype 11
 4.1.4 Unrecognized Subtypes 11
 4.2 Image Media Type 11
 4.3 Audio Media Type 11
 4.4 Video Media Type 12
 4.5 Application Media Type 12
 4.5.1 Octet-Stream Subtype 13
 4.5.2 PostScript Subtype 14
 4.5.3 Other Application Subtypes 17
 5. Composite Media Type Values 17
 5.1 Multipart Media Type 17
 5.1.1 Common Syntax 19
 5.1.2 Handling Nested Messages and Multiparts 24
 5.1.3 Mixed Subtype 24
 5.1.4 Alternative Subtype 24
 5.1.5 Digest Subtype 26
 5.1.6 Parallel Subtype 27
 5.1.7 Other Multipart Subtypes 28
 5.2 Message Media Type 28
 5.2.1 RFC822 Subtype 28
 5.2.2 Partial Subtype 29
 5.2.2.1 Message Fragmentation and Reassembly 30
 5.2.2.2 Fragmentation and Reassembly Example 31
 5.2.3 External-Body Subtype 33
 5.2.4 Other Message Subtypes 40
 6. Experimental Media Type Values 40
 7. Summary .. 41
 8. Security Considerations 41
 9. Authors' Addresses 42

Freed & Borenstein Standards Track [Page 2]

C
om

pendium
 1 page 132

RFC 2046 Media Types November 1996

 A. Collected Grammar 43

1. Introduction

 The first document in this set, RFC 2045, defines a number of header
 fields, including Content-Type. The Content-Type field is used to
 specify the nature of the data in the body of a MIME entity, by
 giving media type and subtype identifiers, and by providing auxiliary
 information that may be required for certain media types. After the
 type and subtype names, the remainder of the header field is simply a
 set of parameters, specified in an attribute/value notation. The
 ordering of parameters is not significant.

 In general, the top-level media type is used to declare the general
 type of data, while the subtype specifies a specific format for that
 type of data. Thus, a media type of "image/xyz" is enough to tell a
 user agent that the data is an image, even if the user agent has no
 knowledge of the specific image format "xyz". Such information can
 be used, for example, to decide whether or not to show a user the raw
 data from an unrecognized subtype -- such an action might be
 reasonable for unrecognized subtypes of "text", but not for
 unrecognized subtypes of "image" or "audio". For this reason,
 registered subtypes of "text", "image", "audio", and "video" should
 not contain embedded information that is really of a different type.
 Such compound formats should be represented using the "multipart" or
 "application" types.

 Parameters are modifiers of the media subtype, and as such do not
 fundamentally affect the nature of the content. The set of
 meaningful parameters depends on the media type and subtype. Most
 parameters are associated with a single specific subtype. However, a
 given top-level media type may define parameters which are applicable
 to any subtype of that type. Parameters may be required by their
 defining media type or subtype or they may be optional. MIME
 implementations must also ignore any parameters whose names they do
 not recognize.

 MIME's Content-Type header field and media type mechanism has been
 carefully designed to be extensible, and it is expected that the set
 of media type/subtype pairs and their associated parameters will grow
 significantly over time. Several other MIME facilities, such as
 transfer encodings and "message/external-body" access types, are
 likely to have new values defined over time. In order to ensure that
 the set of such values is developed in an orderly, well-specified,
 and public manner, MIME sets up a registration process which uses the
 Internet Assigned Numbers Authority (IANA) as a central registry for
 MIME's various areas of extensibility. The registration process for
 these areas is described in a companion document, RFC 2048.

Freed & Borenstein Standards Track [Page 3]

RFC 2046 Media Types November 1996

 The initial seven standard top-level media type are defined and
 described in the remainder of this document.

2. Definition of a Top-Level Media Type

 The definition of a top-level media type consists of:

 (1) a name and a description of the type, including
 criteria for whether a particular type would qualify
 under that type,

 (2) the names and definitions of parameters, if any, which
 are defined for all subtypes of that type (including
 whether such parameters are required or optional),

 (3) how a user agent and/or gateway should handle unknown
 subtypes of this type,

 (4) general considerations on gatewaying entities of this
 top-level type, if any, and

 (5) any restrictions on content-transfer-encodings for
 entities of this top-level type.

3. Overview Of The Initial Top-Level Media Types

 The five discrete top-level media types are:

 (1) text -- textual information. The subtype "plain" in
 particular indicates plain text containing no
 formatting commands or directives of any sort. Plain
 text is intended to be displayed "as-is". No special
 software is required to get the full meaning of the
 text, aside from support for the indicated character
 set. Other subtypes are to be used for enriched text in
 forms where application software may enhance the
 appearance of the text, but such software must not be
 required in order to get the general idea of the
 content. Possible subtypes of "text" thus include any
 word processor format that can be read without
 resorting to software that understands the format. In
 particular, formats that employ embeddded binary
 formatting information are not considered directly
 readable. A very simple and portable subtype,
 "richtext", was defined in RFC 1341, with a further
 revision in RFC 1896 under the name "enriched".

Freed & Borenstein Standards Track [Page 4]

C
om

pendium
 1 page 133

RFC 2046 Media Types November 1996

 (2) image -- image data. "Image" requires a display device
 (such as a graphical display, a graphics printer, or a
 FAX machine) to view the information. An initial
 subtype is defined for the widely-used image format
 JPEG. . subtypes are defined for two widely-used image
 formats, jpeg and gif.

 (3) audio -- audio data. "Audio" requires an audio output
 device (such as a speaker or a telephone) to "display"
 the contents. An initial subtype "basic" is defined in
 this document.

 (4) video -- video data. "Video" requires the capability
 to display moving images, typically including
 specialized hardware and software. An initial subtype
 "mpeg" is defined in this document.

 (5) application -- some other kind of data, typically
 either uninterpreted binary data or information to be
 processed by an application. The subtype "octet-
 stream" is to be used in the case of uninterpreted
 binary data, in which case the simplest recommended
 action is to offer to write the information into a file
 for the user. The "PostScript" subtype is also defined
 for the transport of PostScript material. Other
 expected uses for "application" include spreadsheets,
 data for mail-based scheduling systems, and languages
 for "active" (computational) messaging, and word
 processing formats that are not directly readable.
 Note that security considerations may exist for some
 types of application data, most notably
 "application/PostScript" and any form of active
 messaging. These issues are discussed later in this
 document.

 The two composite top-level media types are:

 (1) multipart -- data consisting of multiple entities of
 independent data types. Four subtypes are initially
 defined, including the basic "mixed" subtype specifying
 a generic mixed set of parts, "alternative" for
 representing the same data in multiple formats,
 "parallel" for parts intended to be viewed
 simultaneously, and "digest" for multipart entities in
 which each part has a default type of "message/rfc822".

Freed & Borenstein Standards Track [Page 5]

RFC 2046 Media Types November 1996

 (2) message -- an encapsulated message. A body of media
 type "message" is itself all or a portion of some kind
 of message object. Such objects may or may not in turn
 contain other entities. The "rfc822" subtype is used
 when the encapsulated content is itself an RFC 822
 message. The "partial" subtype is defined for partial
 RFC 822 messages, to permit the fragmented transmission
 of bodies that are thought to be too large to be passed
 through transport facilities in one piece. Another
 subtype, "external-body", is defined for specifying
 large bodies by reference to an external data source.

 It should be noted that the list of media type values given here may
 be augmented in time, via the mechanisms described above, and that
 the set of subtypes is expected to grow substantially.

4. Discrete Media Type Values

 Five of the seven initial media type values refer to discrete bodies.
 The content of these types must be handled by non-MIME mechanisms;
 they are opaque to MIME processors.

4.1. Text Media Type

 The "text" media type is intended for sending material which is
 principally textual in form. A "charset" parameter may be used to
 indicate the character set of the body text for "text" subtypes,
 notably including the subtype "text/plain", which is a generic
 subtype for plain text. Plain text does not provide for or allow
 formatting commands, font attribute specifications, processing
 instructions, interpretation directives, or content markup. Plain
 text is seen simply as a linear sequence of characters, possibly
 interrupted by line breaks or page breaks. Plain text may allow the
 stacking of several characters in the same position in the text.
 Plain text in scripts like Arabic and Hebrew may also include
 facilitites that allow the arbitrary mixing of text segments with
 opposite writing directions.

 Beyond plain text, there are many formats for representing what might
 be known as "rich text". An interesting characteristic of many such
 representations is that they are to some extent readable even without
 the software that interprets them. It is useful, then, to
 distinguish them, at the highest level, from such unreadable data as
 images, audio, or text represented in an unreadable form. In the
 absence of appropriate interpretation software, it is reasonable to
 show subtypes of "text" to the user, while it is not reasonable to do
 so with most nontextual data. Such formatted textual data should be
 represented using subtypes of "text".

Freed & Borenstein Standards Track [Page 6]

C
om

pendium
 1 page 134

RFC 2046 Media Types November 1996

4.1.1. Representation of Line Breaks

 The canonical form of any MIME "text" subtype MUST always represent a
 line break as a CRLF sequence. Similarly, any occurrence of CRLF in
 MIME "text" MUST represent a line break. Use of CR and LF outside of
 line break sequences is also forbidden.

 This rule applies regardless of format or character set or sets
 involved.

 NOTE: The proper interpretation of line breaks when a body is
 displayed depends on the media type. In particular, while it is
 appropriate to treat a line break as a transition to a new line when
 displaying a "text/plain" body, this treatment is actually incorrect
 for other subtypes of "text" like "text/enriched" [RFC-1896].
 Similarly, whether or not line breaks should be added during display
 operations is also a function of the media type. It should not be
 necessary to add any line breaks to display "text/plain" correctly,
 whereas proper display of "text/enriched" requires the appropriate
 addition of line breaks.

 NOTE: Some protocols defines a maximum line length. E.g. SMTP [RFC-
 821] allows a maximum of 998 octets before the next CRLF sequence.
 To be transported by such protocols, data which includes too long
 segments without CRLF sequences must be encoded with a suitable
 content-transfer-encoding.

4.1.2. Charset Parameter

 A critical parameter that may be specified in the Content-Type field
 for "text/plain" data is the character set. This is specified with a
 "charset" parameter, as in:

 Content-type: text/plain; charset=iso-8859-1

 Unlike some other parameter values, the values of the charset
 parameter are NOT case sensitive. The default character set, which
 must be assumed in the absence of a charset parameter, is US-ASCII.

 The specification for any future subtypes of "text" must specify
 whether or not they will also utilize a "charset" parameter, and may
 possibly restrict its values as well. For other subtypes of "text"
 than "text/plain", the semantics of the "charset" parameter should be
 defined to be identical to those specified here for "text/plain",
 i.e., the body consists entirely of characters in the given charset.
 In particular, definers of future "text" subtypes should pay close
 attention to the implications of multioctet character sets for their
 subtype definitions.

Freed & Borenstein Standards Track [Page 7]

RFC 2046 Media Types November 1996

 The charset parameter for subtypes of "text" gives a name of a
 character set, as "character set" is defined in RFC 2045. The rules
 regarding line breaks detailed in the previous section must also be
 observed -- a character set whose definition does not conform to
 these rules cannot be used in a MIME "text" subtype.

 An initial list of predefined character set names can be found at the
 end of this section. Additional character sets may be registered
 with IANA.

 Other media types than subtypes of "text" might choose to employ the
 charset parameter as defined here, but with the CRLF/line break
 restriction removed. Therefore, all character sets that conform to
 the general definition of "character set" in RFC 2045 can be
 registered for MIME use.

 Note that if the specified character set includes 8-bit characters
 and such characters are used in the body, a Content-Transfer-Encoding
 header field and a corresponding encoding on the data are required in
 order to transmit the body via some mail transfer protocols, such as
 SMTP [RFC-821].

 The default character set, US-ASCII, has been the subject of some
 confusion and ambiguity in the past. Not only were there some
 ambiguities in the definition, there have been wide variations in
 practice. In order to eliminate such ambiguity and variations in the
 future, it is strongly recommended that new user agents explicitly
 specify a character set as a media type parameter in the Content-Type
 header field. "US-ASCII" does not indicate an arbitrary 7-bit
 character set, but specifies that all octets in the body must be
 interpreted as characters according to the US-ASCII character set.
 National and application-oriented versions of ISO 646 [ISO-646] are
 usually NOT identical to US-ASCII, and in that case their use in
 Internet mail is explicitly discouraged. The omission of the ISO 646
 character set from this document is deliberate in this regard. The
 character set name of "US-ASCII" explicitly refers to the character
 set defined in ANSI X3.4-1986 [US- ASCII]. The new international
 reference version (IRV) of the 1991 edition of ISO 646 is identical
 to US-ASCII. The character set name "ASCII" is reserved and must not
 be used for any purpose.

 NOTE: RFC 821 explicitly specifies "ASCII", and references an earlier
 version of the American Standard. Insofar as one of the purposes of
 specifying a media type and character set is to permit the receiver
 to unambiguously determine how the sender intended the coded message
 to be interpreted, assuming anything other than "strict ASCII" as the
 default would risk unintentional and incompatible changes to the
 semantics of messages now being transmitted. This also implies that

Freed & Borenstein Standards Track [Page 8]

C
om

pendium
 1 page 135

RFC 2046 Media Types November 1996

 messages containing characters coded according to other versions of
 ISO 646 than US-ASCII and the 1991 IRV, or using code-switching
 procedures (e.g., those of ISO 2022), as well as 8bit or multiple
 octet character encodings MUST use an appropriate character set
 specification to be consistent with MIME.

 The complete US-ASCII character set is listed in ANSI X3.4- 1986.
 Note that the control characters including DEL (0-31, 127) have no
 defined meaning in apart from the combination CRLF (US-ASCII values
 13 and 10) indicating a new line. Two of the characters have de
 facto meanings in wide use: FF (12) often means "start subsequent
 text on the beginning of a new page"; and TAB or HT (9) often (though
 not always) means "move the cursor to the next available column after
 the current position where the column number is a multiple of 8
 (counting the first column as column 0)." Aside from these
 conventions, any use of the control characters or DEL in a body must
 either occur

 (1) because a subtype of text other than "plain"
 specifically assigns some additional meaning, or

 (2) within the context of a private agreement between the
 sender and recipient. Such private agreements are
 discouraged and should be replaced by the other
 capabilities of this document.

 NOTE: An enormous proliferation of character sets exist beyond US-
 ASCII. A large number of partially or totally overlapping character
 sets is NOT a good thing. A SINGLE character set that can be used
 universally for representing all of the world's languages in Internet
 mail would be preferrable. Unfortunately, existing practice in
 several communities seems to point to the continued use of multiple
 character sets in the near future. A small number of standard
 character sets are, therefore, defined for Internet use in this
 document.

 The defined charset values are:

 (1) US-ASCII -- as defined in ANSI X3.4-1986 [US-ASCII].

 (2) ISO-8859-X -- where "X" is to be replaced, as
 necessary, for the parts of ISO-8859 [ISO-8859]. Note
 that the ISO 646 character sets have deliberately been
 omitted in favor of their 8859 replacements, which are
 the designated character sets for Internet mail. As of
 the publication of this document, the legitimate values
 for "X" are the digits 1 through 10.

Freed & Borenstein Standards Track [Page 9]

RFC 2046 Media Types November 1996

 Characters in the range 128-159 has no assigned meaning in ISO-8859-
 X. Characters with values below 128 in ISO-8859-X have the same
 assigned meaning as they do in US-ASCII.

 Part 6 of ISO 8859 (Latin/Arabic alphabet) and part 8 (Latin/Hebrew
 alphabet) includes both characters for which the normal writing
 direction is right to left and characters for which it is left to
 right, but do not define a canonical ordering method for representing
 bi-directional text. The charset values "ISO-8859-6" and "ISO-8859-
 8", however, specify that the visual method is used [RFC-1556].

 All of these character sets are used as pure 7bit or 8bit sets
 without any shift or escape functions. The meaning of shift and
 escape sequences in these character sets is not defined.

 The character sets specified above are the ones that were relatively
 uncontroversial during the drafting of MIME. This document does not
 endorse the use of any particular character set other than US-ASCII,
 and recognizes that the future evolution of world character sets
 remains unclear.

 Note that the character set used, if anything other than US- ASCII,
 must always be explicitly specified in the Content-Type field.

 No character set name other than those defined above may be used in
 Internet mail without the publication of a formal specification and
 its registration with IANA, or by private agreement, in which case
 the character set name must begin with "X-".

 Implementors are discouraged from defining new character sets unless
 absolutely necessary.

 The "charset" parameter has been defined primarily for the purpose of
 textual data, and is described in this section for that reason.
 However, it is conceivable that non-textual data might also wish to
 specify a charset value for some purpose, in which case the same
 syntax and values should be used.

 In general, composition software should always use the "lowest common
 denominator" character set possible. For example, if a body contains
 only US-ASCII characters, it SHOULD be marked as being in the US-
 ASCII character set, not ISO-8859-1, which, like all the ISO-8859
 family of character sets, is a superset of US-ASCII. More generally,
 if a widely-used character set is a subset of another character set,
 and a body contains only characters in the widely-used subset, it
 should be labelled as being in that subset. This will increase the
 chances that the recipient will be able to view the resulting entity
 correctly.

Freed & Borenstein Standards Track [Page 10]

C
om

pendium
 1 page 136

RFC 2046 Media Types November 1996

4.1.3. Plain Subtype

 The simplest and most important subtype of "text" is "plain". This
 indicates plain text that does not contain any formatting commands or
 directives. Plain text is intended to be displayed "as-is", that is,
 no interpretation of embedded formatting commands, font attribute
 specifications, processing instructions, interpretation directives,
 or content markup should be necessary for proper display. The
 default media type of "text/plain; charset=us-ascii" for Internet
 mail describes existing Internet practice. That is, it is the type
 of body defined by RFC 822.

 No other "text" subtype is defined by this document.

4.1.4. Unrecognized Subtypes

 Unrecognized subtypes of "text" should be treated as subtype "plain"
 as long as the MIME implementation knows how to handle the charset.
 Unrecognized subtypes which also specify an unrecognized charset
 should be treated as "application/octet- stream".

4.2. Image Media Type

 A media type of "image" indicates that the body contains an image.
 The subtype names the specific image format. These names are not
 case sensitive. An initial subtype is "jpeg" for the JPEG format
 using JFIF encoding [JPEG].

 The list of "image" subtypes given here is neither exclusive nor
 exhaustive, and is expected to grow as more types are registered with
 IANA, as described in RFC 2048.

 Unrecognized subtypes of "image" should at a miniumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "image" that they do not specifically recognize to a
 secure and robust general-purpose image viewing application, if such
 an application is available.

 NOTE: Using of a generic-purpose image viewing application this way
 inherits the security problems of the most dangerous type supported
 by the application.

4.3. Audio Media Type

 A media type of "audio" indicates that the body contains audio data.
 Although there is not yet a consensus on an "ideal" audio format for
 use with computers, there is a pressing need for a format capable of
 providing interoperable behavior.

Freed & Borenstein Standards Track [Page 11]

RFC 2046 Media Types November 1996

 The initial subtype of "basic" is specified to meet this requirement
 by providing an absolutely minimal lowest common denominator audio
 format. It is expected that richer formats for higher quality and/or
 lower bandwidth audio will be defined by a later document.

 The content of the "audio/basic" subtype is single channel audio
 encoded using 8bit ISDN mu-law [PCM] at a sample rate of 8000 Hz.

 Unrecognized subtypes of "audio" should at a miniumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "audio" that they do not specifically recognize to a
 robust general-purpose audio playing application, if such an
 application is available.

4.4. Video Media Type

 A media type of "video" indicates that the body contains a time-
 varying-picture image, possibly with color and coordinated sound.
 The term 'video' is used in its most generic sense, rather than with
 reference to any particular technology or format, and is not meant to
 preclude subtypes such as animated drawings encoded compactly. The
 subtype "mpeg" refers to video coded according to the MPEG standard
 [MPEG].

 Note that although in general this document strongly discourages the
 mixing of multiple media in a single body, it is recognized that many
 so-called video formats include a representation for synchronized
 audio, and this is explicitly permitted for subtypes of "video".

 Unrecognized subtypes of "video" should at a minumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "video" that they do not specifically recognize to a
 robust general-purpose video display application, if such an
 application is available.

4.5. Application Media Type

 The "application" media type is to be used for discrete data which do
 not fit in any of the other categories, and particularly for data to
 be processed by some type of application program. This is
 information which must be processed by an application before it is
 viewable or usable by a user. Expected uses for the "application"
 media type include file transfer, spreadsheets, data for mail-based
 scheduling systems, and languages for "active" (computational)
 material. (The latter, in particular, can pose security problems
 which must be understood by implementors, and are considered in
 detail in the discussion of the "application/PostScript" media type.)

Freed & Borenstein Standards Track [Page 12]

C
om

pendium
 1 page 137

RFC 2046 Media Types November 1996

 For example, a meeting scheduler might define a standard
 representation for information about proposed meeting dates. An
 intelligent user agent would use this information to conduct a dialog
 with the user, and might then send additional material based on that
 dialog. More generally, there have been several "active" messaging
 languages developed in which programs in a suitably specialized
 language are transported to a remote location and automatically run
 in the recipient's environment.

 Such applications may be defined as subtypes of the "application"
 media type. This document defines two subtypes:

 octet-stream, and PostScript.

 The subtype of "application" will often be either the name or include
 part of the name of the application for which the data are intended.
 This does not mean, however, that any application program name may be
 used freely as a subtype of "application".

4.5.1. Octet-Stream Subtype

 The "octet-stream" subtype is used to indicate that a body contains
 arbitrary binary data. The set of currently defined parameters is:

 (1) TYPE -- the general type or category of binary data.
 This is intended as information for the human recipient
 rather than for any automatic processing.

 (2) PADDING -- the number of bits of padding that were
 appended to the bit-stream comprising the actual
 contents to produce the enclosed 8bit byte-oriented
 data. This is useful for enclosing a bit-stream in a
 body when the total number of bits is not a multiple of
 8.

 Both of these parameters are optional.

 An additional parameter, "CONVERSIONS", was defined in RFC 1341 but
 has since been removed. RFC 1341 also defined the use of a "NAME"
 parameter which gave a suggested file name to be used if the data
 were to be written to a file. This has been deprecated in
 anticipation of a separate Content-Disposition header field, to be
 defined in a subsequent RFC.

 The recommended action for an implementation that receives an
 "application/octet-stream" entity is to simply offer to put the data
 in a file, with any Content-Transfer-Encoding undone, or perhaps to
 use it as input to a user-specified process.

Freed & Borenstein Standards Track [Page 13]

RFC 2046 Media Types November 1996

 To reduce the danger of transmitting rogue programs, it is strongly
 recommended that implementations NOT implement a path-search
 mechanism whereby an arbitrary program named in the Content-Type
 parameter (e.g., an "interpreter=" parameter) is found and executed
 using the message body as input.

4.5.2. PostScript Subtype

 A media type of "application/postscript" indicates a PostScript
 program. Currently two variants of the PostScript language are
 allowed; the original level 1 variant is described in [POSTSCRIPT]
 and the more recent level 2 variant is described in [POSTSCRIPT2].

 PostScript is a registered trademark of Adobe Systems, Inc. Use of
 the MIME media type "application/postscript" implies recognition of
 that trademark and all the rights it entails.

 The PostScript language definition provides facilities for internal
 labelling of the specific language features a given program uses.
 This labelling, called the PostScript document structuring
 conventions, or DSC, is very general and provides substantially more
 information than just the language level. The use of document
 structuring conventions, while not required, is strongly recommended
 as an aid to interoperability. Documents which lack proper
 structuring conventions cannot be tested to see whether or not they
 will work in a given environment. As such, some systems may assume
 the worst and refuse to process unstructured documents.

 The execution of general-purpose PostScript interpreters entails
 serious security risks, and implementors are discouraged from simply
 sending PostScript bodies to "off- the-shelf" interpreters. While it
 is usually safe to send PostScript to a printer, where the potential
 for harm is greatly constrained by typical printer environments,
 implementors should consider all of the following before they add
 interactive display of PostScript bodies to their MIME readers.

 The remainder of this section outlines some, though probably not all,
 of the possible problems with the transport of PostScript entities.

 (1) Dangerous operations in the PostScript language
 include, but may not be limited to, the PostScript
 operators "deletefile", "renamefile", "filenameforall",
 and "file". "File" is only dangerous when applied to
 something other than standard input or output.
 Implementations may also define additional nonstandard
 file operators; these may also pose a threat to
 security. "Filenameforall", the wildcard file search
 operator, may appear at first glance to be harmless.

Freed & Borenstein Standards Track [Page 14]

C
om

pendium
 1 page 138

RFC 2046 Media Types November 1996

 Note, however, that this operator has the potential to
 reveal information about what files the recipient has
 access to, and this information may itself be
 sensitive. Message senders should avoid the use of
 potentially dangerous file operators, since these
 operators are quite likely to be unavailable in secure
 PostScript implementations. Message receiving and
 displaying software should either completely disable
 all potentially dangerous file operators or take
 special care not to delegate any special authority to
 their operation. These operators should be viewed as
 being done by an outside agency when interpreting
 PostScript documents. Such disabling and/or checking
 should be done completely outside of the reach of the
 PostScript language itself; care should be taken to
 insure that no method exists for re-enabling full-
 function versions of these operators.

 (2) The PostScript language provides facilities for exiting
 the normal interpreter, or server, loop. Changes made
 in this "outer" environment are customarily retained
 across documents, and may in some cases be retained
 semipermanently in nonvolatile memory. The operators
 associated with exiting the interpreter loop have the
 potential to interfere with subsequent document
 processing. As such, their unrestrained use
 constitutes a threat of service denial. PostScript
 operators that exit the interpreter loop include, but
 may not be limited to, the exitserver and startjob
 operators. Message sending software should not
 generate PostScript that depends on exiting the
 interpreter loop to operate, since the ability to exit
 will probably be unavailable in secure PostScript
 implementations. Message receiving and displaying
 software should completely disable the ability to make
 retained changes to the PostScript environment by
 eliminating or disabling the "startjob" and
 "exitserver" operations. If these operations cannot be
 eliminated or completely disabled the password
 associated with them should at least be set to a hard-
 to-guess value.

 (3) PostScript provides operators for setting system-wide
 and device-specific parameters. These parameter
 settings may be retained across jobs and may
 potentially pose a threat to the correct operation of
 the interpreter. The PostScript operators that set
 system and device parameters include, but may not be

Freed & Borenstein Standards Track [Page 15]

RFC 2046 Media Types November 1996

 limited to, the "setsystemparams" and "setdevparams"
 operators. Message sending software should not
 generate PostScript that depends on the setting of
 system or device parameters to operate correctly. The
 ability to set these parameters will probably be
 unavailable in secure PostScript implementations.
 Message receiving and displaying software should
 disable the ability to change system and device
 parameters. If these operators cannot be completely
 disabled the password associated with them should at
 least be set to a hard-to-guess value.

 (4) Some PostScript implementations provide nonstandard
 facilities for the direct loading and execution of
 machine code. Such facilities are quite obviously open
 to substantial abuse. Message sending software should
 not make use of such features. Besides being totally
 hardware-specific, they are also likely to be
 unavailable in secure implementations of PostScript.
 Message receiving and displaying software should not
 allow such operators to be used if they exist.

 (5) PostScript is an extensible language, and many, if not
 most, implementations of it provide a number of their
 own extensions. This document does not deal with such
 extensions explicitly since they constitute an unknown
 factor. Message sending software should not make use
 of nonstandard extensions; they are likely to be
 missing from some implementations. Message receiving
 and displaying software should make sure that any
 nonstandard PostScript operators are secure and don't
 present any kind of threat.

 (6) It is possible to write PostScript that consumes huge
 amounts of various system resources. It is also
 possible to write PostScript programs that loop
 indefinitely. Both types of programs have the
 potential to cause damage if sent to unsuspecting
 recipients. Message-sending software should avoid the
 construction and dissemination of such programs, which
 is antisocial. Message receiving and displaying
 software should provide appropriate mechanisms to abort
 processing after a reasonable amount of time has
 elapsed. In addition, PostScript interpreters should be
 limited to the consumption of only a reasonable amount
 of any given system resource.

Freed & Borenstein Standards Track [Page 16]

C
om

pendium
 1 page 139

RFC 2046 Media Types November 1996

 (7) It is possible to include raw binary information inside
 PostScript in various forms. This is not recommended
 for use in Internet mail, both because it is not
 supported by all PostScript interpreters and because it
 significantly complicates the use of a MIME Content-
 Transfer-Encoding. (Without such binary, PostScript
 may typically be viewed as line-oriented data. The
 treatment of CRLF sequences becomes extremely
 problematic if binary and line-oriented data are mixed
 in a single Postscript data stream.)

 (8) Finally, bugs may exist in some PostScript interpreters
 which could possibly be exploited to gain unauthorized
 access to a recipient's system. Apart from noting this
 possibility, there is no specific action to take to
 prevent this, apart from the timely correction of such
 bugs if any are found.

4.5.3. Other Application Subtypes

 It is expected that many other subtypes of "application" will be
 defined in the future. MIME implementations must at a minimum treat
 any unrecognized subtypes as being equivalent to "application/octet-
 stream".

5. Composite Media Type Values

 The remaining two of the seven initial Content-Type values refer to
 composite entities. Composite entities are handled using MIME
 mechanisms -- a MIME processor typically handles the body directly.

5.1. Multipart Media Type

 In the case of multipart entities, in which one or more different
 sets of data are combined in a single body, a "multipart" media type
 field must appear in the entity's header. The body must then contain
 one or more body parts, each preceded by a boundary delimiter line,
 and the last one followed by a closing boundary delimiter line.
 After its boundary delimiter line, each body part then consists of a
 header area, a blank line, and a body area. Thus a body part is
 similar to an RFC 822 message in syntax, but different in meaning.

 A body part is an entity and hence is NOT to be interpreted as
 actually being an RFC 822 message. To begin with, NO header fields
 are actually required in body parts. A body part that starts with a
 blank line, therefore, is allowed and is a body part for which all
 default values are to be assumed. In such a case, the absence of a
 Content-Type header usually indicates that the corresponding body has

Freed & Borenstein Standards Track [Page 17]

RFC 2046 Media Types November 1996

 a content-type of "text/plain; charset=US-ASCII".

 The only header fields that have defined meaning for body parts are
 those the names of which begin with "Content-". All other header
 fields may be ignored in body parts. Although they should generally
 be retained if at all possible, they may be discarded by gateways if
 necessary. Such other fields are permitted to appear in body parts
 but must not be depended on. "X-" fields may be created for
 experimental or private purposes, with the recognition that the
 information they contain may be lost at some gateways.

 NOTE: The distinction between an RFC 822 message and a body part is
 subtle, but important. A gateway between Internet and X.400 mail,
 for example, must be able to tell the difference between a body part
 that contains an image and a body part that contains an encapsulated
 message, the body of which is a JPEG image. In order to represent
 the latter, the body part must have "Content-Type: message/rfc822",
 and its body (after the blank line) must be the encapsulated message,
 with its own "Content-Type: image/jpeg" header field. The use of
 similar syntax facilitates the conversion of messages to body parts,
 and vice versa, but the distinction between the two must be
 understood by implementors. (For the special case in which parts
 actually are messages, a "digest" subtype is also defined.)

 As stated previously, each body part is preceded by a boundary
 delimiter line that contains the boundary delimiter. The boundary
 delimiter MUST NOT appear inside any of the encapsulated parts, on a
 line by itself or as the prefix of any line. This implies that it is
 crucial that the composing agent be able to choose and specify a
 unique boundary parameter value that does not contain the boundary
 parameter value of an enclosing multipart as a prefix.

 All present and future subtypes of the "multipart" type must use an
 identical syntax. Subtypes may differ in their semantics, and may
 impose additional restrictions on syntax, but must conform to the
 required syntax for the "multipart" type. This requirement ensures
 that all conformant user agents will at least be able to recognize
 and separate the parts of any multipart entity, even those of an
 unrecognized subtype.

 As stated in the definition of the Content-Transfer-Encoding field
 [RFC 2045], no encoding other than "7bit", "8bit", or "binary" is
 permitted for entities of type "multipart". The "multipart" boundary
 delimiters and header fields are always represented as 7bit US-ASCII
 in any case (though the header fields may encode non-US-ASCII header
 text as per RFC 2047) and data within the body parts can be encoded
 on a part-by-part basis, with Content-Transfer-Encoding fields for
 each appropriate body part.

Freed & Borenstein Standards Track [Page 18]

C
om

pendium
 1 page 140

RFC 2046 Media Types November 1996

5.1.1. Common Syntax

 This section defines a common syntax for subtypes of "multipart".
 All subtypes of "multipart" must use this syntax. A simple example
 of a multipart message also appears in this section. An example of a
 more complex multipart message is given in RFC 2049.

 The Content-Type field for multipart entities requires one parameter,
 "boundary". The boundary delimiter line is then defined as a line
 consisting entirely of two hyphen characters ("-", decimal value 45)
 followed by the boundary parameter value from the Content-Type header
 field, optional linear whitespace, and a terminating CRLF.

 NOTE: The hyphens are for rough compatibility with the earlier RFC
 934 method of message encapsulation, and for ease of searching for
 the boundaries in some implementations. However, it should be noted
 that multipart messages are NOT completely compatible with RFC 934
 encapsulations; in particular, they do not obey RFC 934 quoting
 conventions for embedded lines that begin with hyphens. This
 mechanism was chosen over the RFC 934 mechanism because the latter
 causes lines to grow with each level of quoting. The combination of
 this growth with the fact that SMTP implementations sometimes wrap
 long lines made the RFC 934 mechanism unsuitable for use in the event
 that deeply-nested multipart structuring is ever desired.

 WARNING TO IMPLEMENTORS: The grammar for parameters on the Content-
 type field is such that it is often necessary to enclose the boundary
 parameter values in quotes on the Content-type line. This is not
 always necessary, but never hurts. Implementors should be sure to
 study the grammar carefully in order to avoid producing invalid
 Content-type fields. Thus, a typical "multipart" Content-Type header
 field might look like this:

 Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p

 But the following is not valid:

 Content-Type: multipart/mixed; boundary=gc0pJq0M:08jU534c0p

 (because of the colon) and must instead be represented as

 Content-Type: multipart/mixed; boundary="gc0pJq0M:08jU534c0p"

 This Content-Type value indicates that the content consists of one or
 more parts, each with a structure that is syntactically identical to
 an RFC 822 message, except that the header area is allowed to be
 completely empty, and that the parts are each preceded by the line

Freed & Borenstein Standards Track [Page 19]

RFC 2046 Media Types November 1996

 --gc0pJq0M:08jU534c0p

 The boundary delimiter MUST occur at the beginning of a line, i.e.,
 following a CRLF, and the initial CRLF is considered to be attached
 to the boundary delimiter line rather than part of the preceding
 part. The boundary may be followed by zero or more characters of
 linear whitespace. It is then terminated by either another CRLF and
 the header fields for the next part, or by two CRLFs, in which case
 there are no header fields for the next part. If no Content-Type
 field is present it is assumed to be "message/rfc822" in a
 "multipart/digest" and "text/plain" otherwise.

 NOTE: The CRLF preceding the boundary delimiter line is conceptually
 attached to the boundary so that it is possible to have a part that
 does not end with a CRLF (line break). Body parts that must be
 considered to end with line breaks, therefore, must have two CRLFs
 preceding the boundary delimiter line, the first of which is part of
 the preceding body part, and the second of which is part of the
 encapsulation boundary.

 Boundary delimiters must not appear within the encapsulated material,
 and must be no longer than 70 characters, not counting the two
 leading hyphens.

 The boundary delimiter line following the last body part is a
 distinguished delimiter that indicates that no further body parts
 will follow. Such a delimiter line is identical to the previous
 delimiter lines, with the addition of two more hyphens after the
 boundary parameter value.

 --gc0pJq0M:08jU534c0p--

 NOTE TO IMPLEMENTORS: Boundary string comparisons must compare the
 boundary value with the beginning of each candidate line. An exact
 match of the entire candidate line is not required; it is sufficient
 that the boundary appear in its entirety following the CRLF.

 There appears to be room for additional information prior to the
 first boundary delimiter line and following the final boundary
 delimiter line. These areas should generally be left blank, and
 implementations must ignore anything that appears before the first
 boundary delimiter line or after the last one.

 NOTE: These "preamble" and "epilogue" areas are generally not used
 because of the lack of proper typing of these parts and the lack of
 clear semantics for handling these areas at gateways, particularly
 X.400 gateways. However, rather than leaving the preamble area
 blank, many MIME implementations have found this to be a convenient

Freed & Borenstein Standards Track [Page 20]

C
om

pendium
 1 page 141

RFC 2046 Media Types November 1996

 place to insert an explanatory note for recipients who read the
 message with pre-MIME software, since such notes will be ignored by
 MIME-compliant software.

 NOTE: Because boundary delimiters must not appear in the body parts
 being encapsulated, a user agent must exercise care to choose a
 unique boundary parameter value. The boundary parameter value in the
 example above could have been the result of an algorithm designed to
 produce boundary delimiters with a very low probability of already
 existing in the data to be encapsulated without having to prescan the
 data. Alternate algorithms might result in more "readable" boundary
 delimiters for a recipient with an old user agent, but would require
 more attention to the possibility that the boundary delimiter might
 appear at the beginning of some line in the encapsulated part. The
 simplest boundary delimiter line possible is something like "---",
 with a closing boundary delimiter line of "-----".

 As a very simple example, the following multipart message has two
 parts, both of them plain text, one of them explicitly typed and one
 of them implicitly typed:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Sun, 21 Mar 1993 23:56:48 -0800 (PST)
 Subject: Sample message
 MIME-Version: 1.0
 Content-type: multipart/mixed; boundary="simple boundary"

 This is the preamble. It is to be ignored, though it
 is a handy place for composition agents to include an
 explanatory note to non-MIME conformant readers.

 --simple boundary

 This is implicitly typed plain US-ASCII text.
 It does NOT end with a linebreak.
 --simple boundary
 Content-type: text/plain; charset=us-ascii

 This is explicitly typed plain US-ASCII text.
 It DOES end with a linebreak.

 --simple boundary--

 This is the epilogue. It is also to be ignored.

Freed & Borenstein Standards Track [Page 21]

RFC 2046 Media Types November 1996

 The use of a media type of "multipart" in a body part within another
 "multipart" entity is explicitly allowed. In such cases, for obvious
 reasons, care must be taken to ensure that each nested "multipart"
 entity uses a different boundary delimiter. See RFC 2049 for an
 example of nested "multipart" entities.

 The use of the "multipart" media type with only a single body part
 may be useful in certain contexts, and is explicitly permitted.

 NOTE: Experience has shown that a "multipart" media type with a
 single body part is useful for sending non-text media types. It has
 the advantage of providing the preamble as a place to include
 decoding instructions. In addition, a number of SMTP gateways move
 or remove the MIME headers, and a clever MIME decoder can take a good
 guess at multipart boundaries even in the absence of the Content-Type
 header and thereby successfully decode the message.

 The only mandatory global parameter for the "multipart" media type is
 the boundary parameter, which consists of 1 to 70 characters from a
 set of characters known to be very robust through mail gateways, and
 NOT ending with white space. (If a boundary delimiter line appears to
 end with white space, the white space must be presumed to have been
 added by a gateway, and must be deleted.) It is formally specified
 by the following BNF:

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 Overall, the body of a "multipart" entity may be specified as
 follows:

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation
 close-delimiter transport-padding
 [CRLF epilogue]

Freed & Borenstein Standards Track [Page 22]

C
om

pendium
 1 page 142

RFC 2046 Media Types November 1996

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 encapsulation := delimiter transport-padding
 CRLF body-part

 delimiter := CRLF dash-boundary

 close-delimiter := delimiter "--"

 preamble := discard-text

 epilogue := discard-text

 discard-text := *(*text CRLF) *text
 ; May be ignored or discarded.

 body-part := MIME-part-headers [CRLF *OCTET]
 ; Lines in a body-part must not start
 ; with the specified dash-boundary and
 ; the delimiter must not appear anywhere
 ; in the body part. Note that the
 ; semantics of a body-part differ from
 ; the semantics of a message, as
 ; described in the text.

 OCTET := <any 0-255 octet value>

 IMPORTANT: The free insertion of linear-white-space and RFC 822
 comments between the elements shown in this BNF is NOT allowed since
 this BNF does not specify a structured header field.

 NOTE: In certain transport enclaves, RFC 822 restrictions such as
 the one that limits bodies to printable US-ASCII characters may not
 be in force. (That is, the transport domains may exist that resemble
 standard Internet mail transport as specified in RFC 821 and assumed
 by RFC 822, but without certain restrictions.) The relaxation of
 these restrictions should be construed as locally extending the
 definition of bodies, for example to include octets outside of the
 US-ASCII range, as long as these extensions are supported by the
 transport and adequately documented in the Content- Transfer-Encoding
 header field. However, in no event are headers (either message
 headers or body part headers) allowed to contain anything other than
 US-ASCII characters.

Freed & Borenstein Standards Track [Page 23]

RFC 2046 Media Types November 1996

 NOTE: Conspicuously missing from the "multipart" type is a notion of
 structured, related body parts. It is recommended that those wishing
 to provide more structured or integrated multipart messaging
 facilities should define subtypes of multipart that are syntactically
 identical but define relationships between the various parts. For
 example, subtypes of multipart could be defined that include a
 distinguished part which in turn is used to specify the relationships
 between the other parts, probably referring to them by their
 Content-ID field. Old implementations will not recognize the new
 subtype if this approach is used, but will treat it as
 multipart/mixed and will thus be able to show the user the parts that
 are recognized.

5.1.2. Handling Nested Messages and Multiparts

 The "message/rfc822" subtype defined in a subsequent section of this
 document has no terminating condition other than running out of data.
 Similarly, an improperly truncated "multipart" entity may not have
 any terminating boundary marker, and can turn up operationally due to
 mail system malfunctions.

 It is essential that such entities be handled correctly when they are
 themselves imbedded inside of another "multipart" structure. MIME
 implementations are therefore required to recognize outer level
 boundary markers at ANY level of inner nesting. It is not sufficient
 to only check for the next expected marker or other terminating
 condition.

5.1.3. Mixed Subtype

 The "mixed" subtype of "multipart" is intended for use when the body
 parts are independent and need to be bundled in a particular order.
 Any "multipart" subtypes that an implementation does not recognize
 must be treated as being of subtype "mixed".

5.1.4. Alternative Subtype

 The "multipart/alternative" type is syntactically identical to
 "multipart/mixed", but the semantics are different. In particular,
 each of the body parts is an "alternative" version of the same
 information.

 Systems should recognize that the content of the various parts are
 interchangeable. Systems should choose the "best" type based on the
 local environment and references, in some cases even through user
 interaction. As with "multipart/mixed", the order of body parts is
 significant. In this case, the alternatives appear in an order of
 increasing faithfulness to the original content. In general, the

Freed & Borenstein Standards Track [Page 24]

C
om

pendium
 1 page 143

RFC 2046 Media Types November 1996

 best choice is the LAST part of a type supported by the recipient
 system's local environment.

 "Multipart/alternative" may be used, for example, to send a message
 in a fancy text format in such a way that it can easily be displayed
 anywhere:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Mon, 22 Mar 1993 09:41:09 -0800 (PST)
 Subject: Formatted text mail
 MIME-Version: 1.0
 Content-Type: multipart/alternative; boundary=boundary42

 --boundary42
 Content-Type: text/plain; charset=us-ascii

 ... plain text version of message goes here ...

 --boundary42
 Content-Type: text/enriched

 ... RFC 1896 text/enriched version of same message
 goes here ...

 --boundary42
 Content-Type: application/x-whatever

 ... fanciest version of same message goes here ...

 --boundary42--

 In this example, users whose mail systems understood the
 "application/x-whatever" format would see only the fancy version,
 while other users would see only the enriched or plain text version,
 depending on the capabilities of their system.

 In general, user agents that compose "multipart/alternative" entities
 must place the body parts in increasing order of preference, that is,
 with the preferred format last. For fancy text, the sending user
 agent should put the plainest format first and the richest format
 last. Receiving user agents should pick and display the last format
 they are capable of displaying. In the case where one of the
 alternatives is itself of type "multipart" and contains unrecognized
 sub-parts, the user agent may choose either to show that alternative,
 an earlier alternative, or both.

Freed & Borenstein Standards Track [Page 25]

RFC 2046 Media Types November 1996

 NOTE: From an implementor's perspective, it might seem more sensible
 to reverse this ordering, and have the plainest alternative last.
 However, placing the plainest alternative first is the friendliest
 possible option when "multipart/alternative" entities are viewed
 using a non-MIME-conformant viewer. While this approach does impose
 some burden on conformant MIME viewers, interoperability with older
 mail readers was deemed to be more important in this case.

 It may be the case that some user agents, if they can recognize more
 than one of the formats, will prefer to offer the user the choice of
 which format to view. This makes sense, for example, if a message
 includes both a nicely- formatted image version and an easily-edited
 text version. What is most critical, however, is that the user not
 automatically be shown multiple versions of the same data. Either
 the user should be shown the last recognized version or should be
 given the choice.

 THE SEMANTICS OF CONTENT-ID IN MULTIPART/ALTERNATIVE: Each part of a
 "multipart/alternative" entity represents the same data, but the
 mappings between the two are not necessarily without information
 loss. For example, information is lost when translating ODA to
 PostScript or plain text. It is recommended that each part should
 have a different Content-ID value in the case where the information
 content of the two parts is not identical. And when the information
 content is identical -- for example, where several parts of type
 "message/external-body" specify alternate ways to access the
 identical data -- the same Content-ID field value should be used, to
 optimize any caching mechanisms that might be present on the
 recipient's end. However, the Content-ID values used by the parts
 should NOT be the same Content-ID value that describes the
 "multipart/alternative" as a whole, if there is any such Content-ID
 field. That is, one Content-ID value will refer to the
 "multipart/alternative" entity, while one or more other Content-ID
 values will refer to the parts inside it.

5.1.5. Digest Subtype

 This document defines a "digest" subtype of the "multipart" Content-
 Type. This type is syntactically identical to "multipart/mixed", but
 the semantics are different. In particular, in a digest, the default
 Content-Type value for a body part is changed from "text/plain" to
 "message/rfc822". This is done to allow a more readable digest
 format that is largely compatible (except for the quoting convention)
 with RFC 934.

 Note: Though it is possible to specify a Content-Type value for a
 body part in a digest which is other than "message/rfc822", such as a
 "text/plain" part containing a description of the material in the

Freed & Borenstein Standards Track [Page 26]

C
om

pendium
 1 page 144

RFC 2046 Media Types November 1996

 digest, actually doing so is undesireble. The "multipart/digest"
 Content-Type is intended to be used to send collections of messages.
 If a "text/plain" part is needed, it should be included as a seperate
 part of a "multipart/mixed" message.

 A digest in this format might, then, look something like this:

 From: Moderator-Address
 To: Recipient-List
 Date: Mon, 22 Mar 1994 13:34:51 +0000
 Subject: Internet Digest, volume 42
 MIME-Version: 1.0
 Content-Type: multipart/mixed;
 boundary="---- main boundary ----"

 ------ main boundary ----

 ...Introductory text or table of contents...

 ------ main boundary ----
 Content-Type: multipart/digest;
 boundary="---- next message ----"

 ------ next message ----

 From: someone-else
 Date: Fri, 26 Mar 1993 11:13:32 +0200
 Subject: my opinion

 ...body goes here ...

 ------ next message ----

 From: someone-else-again
 Date: Fri, 26 Mar 1993 10:07:13 -0500
 Subject: my different opinion

 ... another body goes here ...

 ------ next message ------

 ------ main boundary ------

5.1.6. Parallel Subtype

 This document defines a "parallel" subtype of the "multipart"
 Content-Type. This type is syntactically identical to
 "multipart/mixed", but the semantics are different. In particular,

Freed & Borenstein Standards Track [Page 27]

RFC 2046 Media Types November 1996

 in a parallel entity, the order of body parts is not significant.

 A common presentation of this type is to display all of the parts
 simultaneously on hardware and software that are capable of doing so.
 However, composing agents should be aware that many mail readers will
 lack this capability and will show the parts serially in any event.

5.1.7. Other Multipart Subtypes

 Other "multipart" subtypes are expected in the future. MIME
 implementations must in general treat unrecognized subtypes of
 "multipart" as being equivalent to "multipart/mixed".

5.2. Message Media Type

 It is frequently desirable, in sending mail, to encapsulate another
 mail message. A special media type, "message", is defined to
 facilitate this. In particular, the "rfc822" subtype of "message" is
 used to encapsulate RFC 822 messages.

 NOTE: It has been suggested that subtypes of "message" might be
 defined for forwarded or rejected messages. However, forwarded and
 rejected messages can be handled as multipart messages in which the
 first part contains any control or descriptive information, and a
 second part, of type "message/rfc822", is the forwarded or rejected
 message. Composing rejection and forwarding messages in this manner
 will preserve the type information on the original message and allow
 it to be correctly presented to the recipient, and hence is strongly
 encouraged.

 Subtypes of "message" often impose restrictions on what encodings are
 allowed. These restrictions are described in conjunction with each
 specific subtype.

 Mail gateways, relays, and other mail handling agents are commonly
 known to alter the top-level header of an RFC 822 message. In
 particular, they frequently add, remove, or reorder header fields.
 These operations are explicitly forbidden for the encapsulated
 headers embedded in the bodies of messages of type "message."

5.2.1. RFC822 Subtype

 A media type of "message/rfc822" indicates that the body contains an
 encapsulated message, with the syntax of an RFC 822 message.
 However, unlike top-level RFC 822 messages, the restriction that each
 "message/rfc822" body must include a "From", "Date", and at least one
 destination header is removed and replaced with the requirement that
 at least one of "From", "Subject", or "Date" must be present.

Freed & Borenstein Standards Track [Page 28]

C
om

pendium
 1 page 145

RFC 2046 Media Types November 1996

 It should be noted that, despite the use of the numbers "822", a
 "message/rfc822" entity isn't restricted to material in strict
 conformance to RFC822, nor are the semantics of "message/rfc822"
 objects restricted to the semantics defined in RFC822. More
 specifically, a "message/rfc822" message could well be a News article
 or a MIME message.

 No encoding other than "7bit", "8bit", or "binary" is permitted for
 the body of a "message/rfc822" entity. The message header fields are
 always US-ASCII in any case, and data within the body can still be
 encoded, in which case the Content-Transfer-Encoding header field in
 the encapsulated message will reflect this. Non-US-ASCII text in the
 headers of an encapsulated message can be specified using the
 mechanisms described in RFC 2047.

5.2.2. Partial Subtype

 The "partial" subtype is defined to allow large entities to be
 delivered as several separate pieces of mail and automatically
 reassembled by a receiving user agent. (The concept is similar to IP
 fragmentation and reassembly in the basic Internet Protocols.) This
 mechanism can be used when intermediate transport agents limit the
 size of individual messages that can be sent. The media type
 "message/partial" thus indicates that the body contains a fragment of
 a larger entity.

 Because data of type "message" may never be encoded in base64 or
 quoted-printable, a problem might arise if "message/partial" entities
 are constructed in an environment that supports binary or 8bit
 transport. The problem is that the binary data would be split into
 multiple "message/partial" messages, each of them requiring binary
 transport. If such messages were encountered at a gateway into a
 7bit transport environment, there would be no way to properly encode
 them for the 7bit world, aside from waiting for all of the fragments,
 reassembling the inner message, and then encoding the reassembled
 data in base64 or quoted-printable. Since it is possible that
 different fragments might go through different gateways, even this is
 not an acceptable solution. For this reason, it is specified that
 entities of type "message/partial" must always have a content-
 transfer-encoding of 7bit (the default). In particular, even in
 environments that support binary or 8bit transport, the use of a
 content- transfer-encoding of "8bit" or "binary" is explicitly
 prohibited for MIME entities of type "message/partial". This in turn
 implies that the inner message must not use "8bit" or "binary"
 encoding.

Freed & Borenstein Standards Track [Page 29]

RFC 2046 Media Types November 1996

 Because some message transfer agents may choose to automatically
 fragment large messages, and because such agents may use very
 different fragmentation thresholds, it is possible that the pieces of
 a partial message, upon reassembly, may prove themselves to comprise
 a partial message. This is explicitly permitted.

 Three parameters must be specified in the Content-Type field of type
 "message/partial": The first, "id", is a unique identifier, as close
 to a world-unique identifier as possible, to be used to match the
 fragments together. (In general, the identifier is essentially a
 message-id; if placed in double quotes, it can be ANY message-id, in
 accordance with the BNF for "parameter" given in RFC 2045.) The
 second, "number", an integer, is the fragment number, which indicates
 where this fragment fits into the sequence of fragments. The third,
 "total", another integer, is the total number of fragments. This
 third subfield is required on the final fragment, and is optional
 (though encouraged) on the earlier fragments. Note also that these
 parameters may be given in any order.

 Thus, the second piece of a 3-piece message may have either of the
 following header fields:

 Content-Type: Message/Partial; number=2; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Content-Type: Message/Partial;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com";
 number=2

 But the third piece MUST specify the total number of fragments:

 Content-Type: Message/Partial; number=3; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Note that fragment numbering begins with 1, not 0.

 When the fragments of an entity broken up in this manner are put
 together, the result is always a complete MIME entity, which may have
 its own Content-Type header field, and thus may contain any other
 data type.

5.2.2.1. Message Fragmentation and Reassembly

 The semantics of a reassembled partial message must be those of the
 "inner" message, rather than of a message containing the inner
 message. This makes it possible, for example, to send a large audio
 message as several partial messages, and still have it appear to the
 recipient as a simple audio message rather than as an encapsulated

Freed & Borenstein Standards Track [Page 30]

C
om

pendium
 1 page 146

RFC 2046 Media Types November 1996

 message containing an audio message. That is, the encapsulation of
 the message is considered to be "transparent".

 When generating and reassembling the pieces of a "message/partial"
 message, the headers of the encapsulated message must be merged with
 the headers of the enclosing entities. In this process the following
 rules must be observed:

 (1) Fragmentation agents must split messages at line
 boundaries only. This restriction is imposed because
 splits at points other than the ends of lines in turn
 depends on message transports being able to preserve
 the semantics of messages that don't end with a CRLF
 sequence. Many transports are incapable of preserving
 such semantics.

 (2) All of the header fields from the initial enclosing
 message, except those that start with "Content-" and
 the specific header fields "Subject", "Message-ID",
 "Encrypted", and "MIME-Version", must be copied, in
 order, to the new message.

 (3) The header fields in the enclosed message which start
 with "Content-", plus the "Subject", "Message-ID",
 "Encrypted", and "MIME-Version" fields, must be
 appended, in order, to the header fields of the new
 message. Any header fields in the enclosed message
 which do not start with "Content-" (except for the
 "Subject", "Message-ID", "Encrypted", and "MIME-
 Version" fields) will be ignored and dropped.

 (4) All of the header fields from the second and any
 subsequent enclosing messages are discarded by the
 reassembly process.

5.2.2.2. Fragmentation and Reassembly Example

 If an audio message is broken into two pieces, the first piece might
 look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 1 of 2)
 Message-ID: <id1@host.com>
 MIME-Version: 1.0
 Content-type: message/partial; id="ABC@host.com";

Freed & Borenstein Standards Track [Page 31]

RFC 2046 Media Types November 1996

 number=1; total=2

 X-Weird-Header-1: Bar
 X-Weird-Header-2: Hello
 Message-ID: <anotherid@foo.com>
 Subject: Audio mail
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...

 and the second half might look something like this:

 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 2 of 2)
 MIME-Version: 1.0
 Message-ID: <id2@host.com>
 Content-type: message/partial;
 id="ABC@host.com"; number=2; total=2

 ... second half of encoded audio data goes here ...

 Then, when the fragmented message is reassembled, the resulting
 message to be displayed to the user should look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail
 Message-ID: <anotherid@foo.com>
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...
 ... second half of encoded audio data goes here ...

 The inclusion of a "References" field in the headers of the second
 and subsequent pieces of a fragmented message that references the
 Message-Id on the previous piece may be of benefit to mail readers
 that understand and track references. However, the generation of
 such "References" fields is entirely optional.

Freed & Borenstein Standards Track [Page 32]

C
om

pendium
 1 page 147

RFC 2046 Media Types November 1996

 Finally, it should be noted that the "Encrypted" header field has
 been made obsolete by Privacy Enhanced Messaging (PEM) [RFC-1421,
 RFC-1422, RFC-1423, RFC-1424], but the rules above are nevertheless
 believed to describe the correct way to treat it if it is encountered
 in the context of conversion to and from "message/partial" fragments.

5.2.3. External-Body Subtype

 The external-body subtype indicates that the actual body data are not
 included, but merely referenced. In this case, the parameters
 describe a mechanism for accessing the external data.

 When a MIME entity is of type "message/external-body", it consists of
 a header, two consecutive CRLFs, and the message header for the
 encapsulated message. If another pair of consecutive CRLFs appears,
 this of course ends the message header for the encapsulated message.
 However, since the encapsulated message's body is itself external, it
 does NOT appear in the area that follows. For example, consider the
 following message:

 Content-type: message/external-body;
 access-type=local-file;
 name="/u/nsb/Me.jpeg"

 Content-type: image/jpeg
 Content-ID: <id42@guppylake.bellcore.com>
 Content-Transfer-Encoding: binary

 THIS IS NOT REALLY THE BODY!

 The area at the end, which might be called the "phantom body", is
 ignored for most external-body messages. However, it may be used to
 contain auxiliary information for some such messages, as indeed it is
 when the access-type is "mail- server". The only access-type defined
 in this document that uses the phantom body is "mail-server", but
 other access-types may be defined in the future in other
 specifications that use this area.

 The encapsulated headers in ALL "message/external-body" entities MUST
 include a Content-ID header field to give a unique identifier by
 which to reference the data. This identifier may be used for caching
 mechanisms, and for recognizing the receipt of the data when the
 access-type is "mail-server".

 Note that, as specified here, the tokens that describe external-body
 data, such as file names and mail server commands, are required to be
 in the US-ASCII character set.

Freed & Borenstein Standards Track [Page 33]

RFC 2046 Media Types November 1996

 If this proves problematic in practice, a new mechanism may be
 required as a future extension to MIME, either as newly defined
 access-types for "message/external-body" or by some other mechanism.

 As with "message/partial", MIME entities of type "message/external-
 body" MUST have a content-transfer-encoding of 7bit (the default).
 In particular, even in environments that support binary or 8bit
 transport, the use of a content- transfer-encoding of "8bit" or
 "binary" is explicitly prohibited for entities of type
 "message/external-body".

5.2.3.1. General External-Body Parameters

 The parameters that may be used with any "message/external- body"
 are:

 (1) ACCESS-TYPE -- A word indicating the supported access
 mechanism by which the file or data may be obtained.
 This word is not case sensitive. Values include, but
 are not limited to, "FTP", "ANON-FTP", "TFTP", "LOCAL-
 FILE", and "MAIL-SERVER". Future values, except for
 experimental values beginning with "X-", must be
 registered with IANA, as described in RFC 2048.
 This parameter is unconditionally mandatory and MUST be
 present on EVERY "message/external-body".

 (2) EXPIRATION -- The date (in the RFC 822 "date-time"
 syntax, as extended by RFC 1123 to permit 4 digits in
 the year field) after which the existence of the
 external data is not guaranteed. This parameter may be
 used with ANY access-type and is ALWAYS optional.

 (3) SIZE -- The size (in octets) of the data. The intent
 of this parameter is to help the recipient decide
 whether or not to expend the necessary resources to
 retrieve the external data. Note that this describes
 the size of the data in its canonical form, that is,
 before any Content-Transfer-Encoding has been applied
 or after the data have been decoded. This parameter
 may be used with ANY access-type and is ALWAYS
 optional.

 (4) PERMISSION -- A case-insensitive field that indicates
 whether or not it is expected that clients might also
 attempt to overwrite the data. By default, or if
 permission is "read", the assumption is that they are
 not, and that if the data is retrieved once, it is
 never needed again. If PERMISSION is "read-write",

Freed & Borenstein Standards Track [Page 34]

C
om

pendium
 1 page 148

RFC 2046 Media Types November 1996

 this assumption is invalid, and any local copy must be
 considered no more than a cache. "Read" and "Read-
 write" are the only defined values of permission. This
 parameter may be used with ANY access-type and is
 ALWAYS optional.

 The precise semantics of the access-types defined here are described
 in the sections that follow.

5.2.3.2. The 'ftp' and 'tftp' Access-Types

 An access-type of FTP or TFTP indicates that the message body is
 accessible as a file using the FTP [RFC-959] or TFTP [RFC- 783]
 protocols, respectively. For these access-types, the following
 additional parameters are mandatory:

 (1) NAME -- The name of the file that contains the actual
 body data.

 (2) SITE -- A machine from which the file may be obtained,
 using the given protocol. This must be a fully
 qualified domain name, not a nickname.

 (3) Before any data are retrieved, using FTP, the user will
 generally need to be asked to provide a login id and a
 password for the machine named by the site parameter.
 For security reasons, such an id and password are not
 specified as content-type parameters, but must be
 obtained from the user.

 In addition, the following parameters are optional:

 (1) DIRECTORY -- A directory from which the data named by
 NAME should be retrieved.

 (2) MODE -- A case-insensitive string indicating the mode
 to be used when retrieving the information. The valid
 values for access-type "TFTP" are "NETASCII", "OCTET",
 and "MAIL", as specified by the TFTP protocol [RFC-
 783]. The valid values for access-type "FTP" are
 "ASCII", "EBCDIC", "IMAGE", and "LOCALn" where "n" is a
 decimal integer, typically 8. These correspond to the
 representation types "A" "E" "I" and "L n" as specified
 by the FTP protocol [RFC-959]. Note that "BINARY" and
 "TENEX" are not valid values for MODE and that "OCTET"
 or "IMAGE" or "LOCAL8" should be used instead. IF MODE
 is not specified, the default value is "NETASCII" for
 TFTP and "ASCII" otherwise.

Freed & Borenstein Standards Track [Page 35]

RFC 2046 Media Types November 1996

5.2.3.3. The 'anon-ftp' Access-Type

 The "anon-ftp" access-type is identical to the "ftp" access type,
 except that the user need not be asked to provide a name and password
 for the specified site. Instead, the ftp protocol will be used with
 login "anonymous" and a password that corresponds to the user's mail
 address.

5.2.3.4. The 'local-file' Access-Type

 An access-type of "local-file" indicates that the actual body is
 accessible as a file on the local machine. Two additional parameters
 are defined for this access type:

 (1) NAME -- The name of the file that contains the actual
 body data. This parameter is mandatory for the
 "local-file" access-type.

 (2) SITE -- A domain specifier for a machine or set of
 machines that are known to have access to the data
 file. This optional parameter is used to describe the
 locality of reference for the data, that is, the site
 or sites at which the file is expected to be visible.
 Asterisks may be used for wildcard matching to a part
 of a domain name, such as "*.bellcore.com", to indicate
 a set of machines on which the data should be directly
 visible, while a single asterisk may be used to
 indicate a file that is expected to be universally
 available, e.g., via a global file system.

5.2.3.5. The 'mail-server' Access-Type

 The "mail-server" access-type indicates that the actual body is
 available from a mail server. Two additional parameters are defined
 for this access-type:

 (1) SERVER -- The addr-spec of the mail server from which
 the actual body data can be obtained. This parameter
 is mandatory for the "mail-server" access-type.

 (2) SUBJECT -- The subject that is to be used in the mail
 that is sent to obtain the data. Note that keying mail
 servers on Subject lines is NOT recommended, but such
 mail servers are known to exist. This is an optional
 parameter.

Freed & Borenstein Standards Track [Page 36]

C
om

pendium
 1 page 149

RFC 2046 Media Types November 1996

 Because mail servers accept a variety of syntaxes, some of which is
 multiline, the full command to be sent to a mail server is not
 included as a parameter in the content-type header field. Instead,
 it is provided as the "phantom body" when the media type is
 "message/external-body" and the access-type is mail-server.

 Note that MIME does not define a mail server syntax. Rather, it
 allows the inclusion of arbitrary mail server commands in the phantom
 body. Implementations must include the phantom body in the body of
 the message it sends to the mail server address to retrieve the
 relevant data.

 Unlike other access-types, mail-server access is asynchronous and
 will happen at an unpredictable time in the future. For this reason,
 it is important that there be a mechanism by which the returned data
 can be matched up with the original "message/external-body" entity.
 MIME mail servers must use the same Content-ID field on the returned
 message that was used in the original "message/external-body"
 entities, to facilitate such matching.

5.2.3.6. External-Body Security Issues

 "Message/external-body" entities give rise to two important security
 issues:

 (1) Accessing data via a "message/external-body" reference
 effectively results in the message recipient performing
 an operation that was specified by the message
 originator. It is therefore possible for the message
 originator to trick a recipient into doing something
 they would not have done otherwise. For example, an
 originator could specify a action that attempts
 retrieval of material that the recipient is not
 authorized to obtain, causing the recipient to
 unwittingly violate some security policy. For this
 reason, user agents capable of resolving external
 references must always take steps to describe the
 action they are to take to the recipient and ask for
 explicit permisssion prior to performing it.

 The 'mail-server' access-type is particularly
 vulnerable, in that it causes the recipient to send a
 new message whose contents are specified by the
 original message's originator. Given the potential for
 abuse, any such request messages that are constructed
 should contain a clear indication that they were
 generated automatically (e.g. in a Comments: header
 field) in an attempt to resolve a MIME

Freed & Borenstein Standards Track [Page 37]

RFC 2046 Media Types November 1996

 "message/external-body" reference.

 (2) MIME will sometimes be used in environments that
 provide some guarantee of message integrity and
 authenticity. If present, such guarantees may apply
 only to the actual direct content of messages -- they
 may or may not apply to data accessed through MIME's
 "message/external-body" mechanism. In particular, it
 may be possible to subvert certain access mechanisms
 even when the messaging system itself is secure.

 It should be noted that this problem exists either with
 or without the availabilty of MIME mechanisms. A
 casual reference to an FTP site containing a document
 in the text of a secure message brings up similar
 issues -- the only difference is that MIME provides for
 automatic retrieval of such material, and users may
 place unwarranted trust is such automatic retrieval
 mechanisms.

5.2.3.7. Examples and Further Explanations

 When the external-body mechanism is used in conjunction with the
 "multipart/alternative" media type it extends the functionality of
 "multipart/alternative" to include the case where the same entity is
 provided in the same format but via different accces mechanisms.
 When this is done the originator of the message must order the parts
 first in terms of preferred formats and then by preferred access
 mechanisms. The recipient's viewer should then evaluate the list
 both in terms of format and access mechanisms.

 With the emerging possibility of very wide-area file systems, it
 becomes very hard to know in advance the set of machines where a file
 will and will not be accessible directly from the file system.
 Therefore it may make sense to provide both a file name, to be tried
 directly, and the name of one or more sites from which the file is
 known to be accessible. An implementation can try to retrieve remote
 files using FTP or any other protocol, using anonymous file retrieval
 or prompting the user for the necessary name and password. If an
 external body is accessible via multiple mechanisms, the sender may
 include multiple entities of type "message/external-body" within the
 body parts of an enclosing "multipart/alternative" entity.

 However, the external-body mechanism is not intended to be limited to
 file retrieval, as shown by the mail-server access-type. Beyond
 this, one can imagine, for example, using a video server for external
 references to video clips.

Freed & Borenstein Standards Track [Page 38]

C
om

pendium
 1 page 150

RFC 2046 Media Types November 1996

 The embedded message header fields which appear in the body of the
 "message/external-body" data must be used to declare the media type
 of the external body if it is anything other than plain US-ASCII
 text, since the external body does not have a header section to
 declare its type. Similarly, any Content-transfer-encoding other
 than "7bit" must also be declared here. Thus a complete
 "message/external-body" message, referring to an object in PostScript
 format, might look like this:

 From: Whomever
 To: Someone
 Date: Whenever
 Subject: whatever
 MIME-Version: 1.0
 Message-ID: <id1@host.com>
 Content-Type: multipart/alternative; boundary=42
 Content-ID: <id001@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; name="BodyFormats.ps";
 site="thumper.bellcore.com"; mode="image";
 access-type=ANON-FTP; directory="pub";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; access-type=local-file;
 name="/u/nsb/writing/rfcs/RFC-MIME.ps";
 site="thumper.bellcore.com";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body;
 access-type=mail-server
 server="listserv@bogus.bitnet";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 get RFC-MIME.DOC

 --42--

Freed & Borenstein Standards Track [Page 39]

RFC 2046 Media Types November 1996

 Note that in the above examples, the default Content-transfer-
 encoding of "7bit" is assumed for the external postscript data.

 Like the "message/partial" type, the "message/external-body" media
 type is intended to be transparent, that is, to convey the data type
 in the external body rather than to convey a message with a body of
 that type. Thus the headers on the outer and inner parts must be
 merged using the same rules as for "message/partial". In particular,
 this means that the Content-type and Subject fields are overridden,
 but the From field is preserved.

 Note that since the external bodies are not transported along with
 the external body reference, they need not conform to transport
 limitations that apply to the reference itself. In particular,
 Internet mail transports may impose 7bit and line length limits, but
 these do not automatically apply to binary external body references.
 Thus a Content-Transfer-Encoding is not generally necessary, though
 it is permitted.

 Note that the body of a message of type "message/external-body" is
 governed by the basic syntax for an RFC 822 message. In particular,
 anything before the first consecutive pair of CRLFs is header
 information, while anything after it is body information, which is
 ignored for most access-types.

5.2.4. Other Message Subtypes

 MIME implementations must in general treat unrecognized subtypes of
 "message" as being equivalent to "application/octet-stream".

 Future subtypes of "message" intended for use with email should be
 restricted to "7bit" encoding. A type other than "message" should be
 used if restriction to "7bit" is not possible.

6. Experimental Media Type Values

 A media type value beginning with the characters "X-" is a private
 value, to be used by consenting systems by mutual agreement. Any
 format without a rigorous and public definition must be named with an
 "X-" prefix, and publicly specified values shall never begin with
 "X-". (Older versions of the widely used Andrew system use the "X-
 BE2" name, so new systems should probably choose a different name.)

 In general, the use of "X-" top-level types is strongly discouraged.
 Implementors should invent subtypes of the existing types whenever
 possible. In many cases, a subtype of "application" will be more
 appropriate than a new top-level type.

Freed & Borenstein Standards Track [Page 40]

C
om

pendium
 1 page 151

RFC 2046 Media Types November 1996

7. Summary

 The five discrete media types provide provide a standardized
 mechanism for tagging entities as "audio", "image", or several other
 kinds of data. The composite "multipart" and "message" media types
 allow mixing and hierarchical structuring of entities of different
 types in a single message. A distinguished parameter syntax allows
 further specification of data format details, particularly the
 specification of alternate character sets. Additional optional
 header fields provide mechanisms for certain extensions deemed
 desirable by many implementors. Finally, a number of useful media
 types are defined for general use by consenting user agents, notably
 "message/partial" and "message/external-body".

9. Security Considerations

 Security issues are discussed in the context of the
 "application/postscript" type, the "message/external-body" type, and
 in RFC 2048. Implementors should pay special attention to the
 security implications of any media types that can cause the remote
 execution of any actions in the recipient's environment. In such
 cases, the discussion of the "application/postscript" type may serve
 as a model for considering other media types with remote execution
 capabilities.

Freed & Borenstein Standards Track [Page 41]

RFC 2046 Media Types November 1996

9. Authors' Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 Nathaniel S. Borenstein
 First Virtual Holdings
 25 Washington Avenue
 Morristown, NJ 07960
 USA

 Phone: +1 201 540 8967
 Fax: +1 201 993 3032
 EMail: nsb@nsb.fv.com

 MIME is a result of the work of the Internet Engineering Task Force
 Working Group on RFC 822 Extensions. The chairman of that group,
 Greg Vaudreuil, may be reached at:

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 42]

C
om

pendium
 1 page 152

RFC 2046 Media Types November 1996

Appendix A -- Collected Grammar

 This appendix contains the complete BNF grammar for all the syntax
 specified by this document.

 By itself, however, this grammar is incomplete. It refers by name to
 several syntax rules that are defined by RFC 822. Rather than
 reproduce those definitions here, and risk unintentional differences
 between the two, this document simply refers the reader to RFC 822
 for the remaining definitions. Wherever a term is undefined, it
 refers to the RFC 822 definition.

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 body-part := <"message" as defined in RFC 822, with all
 header fields optional, not starting with the
 specified dash-boundary, and with the
 delimiter not occurring anywhere in the
 body part. Note that the semantics of a
 part differ from the semantics of a message,
 as described in the text.>

 close-delimiter := delimiter "--"

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 delimiter := CRLF dash-boundary

 discard-text := *(*text CRLF)
 ; May be ignored or discarded.

 encapsulation := delimiter transport-padding
 CRLF body-part

 epilogue := discard-text

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation

Freed & Borenstein Standards Track [Page 43]

RFC 2046 Media Types November 1996

 close-delimiter transport-padding
 [CRLF epilogue]

 preamble := discard-text

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

Freed & Borenstein Standards Track [Page 44]

C
om

pendium
 1 page 153

Network Working Group K. Moore
Request for Comments: 2047 University of Tennessee
Obsoletes: 1521, 1522, 1590 November 1996
Category: Standards Track

 MIME (Multipurpose Internet Mail Extensions) Part Three:
 Message Header Extensions for Non-ASCII Text

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822, defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, and leaves the
 message content, or message body, as flat US-ASCII text. This set of
 documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than US-ASCII,

 (2) an extensible set of different formats for non-textual message
 bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 This particular document is the third document in the series. It
 describes extensions to RFC 822 to allow non-US-ASCII text data in
 Internet mail header fields.

Moore Standards Track [Page 1]

RFC 2047 Message Header Extensions November 1996

 Other documents in this series include:

 + RFC 2045, which specifies the various headers used to describe
 the structure of MIME messages.

 + RFC 2046, which defines the general structure of the MIME media
 typing system and defines an initial set of media types,

 + RFC 2048, which specifies various IANA registration procedures
 for MIME-related facilities, and

 + RFC 2049, which describes MIME conformance criteria and
 provides some illustrative examples of MIME message formats,
 acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521, 1522, and 1590, which
 themselves were revisions of RFCs 1341 and 1342. An appendix in RFC
 2049 describes differences and changes from previous versions.

1. Introduction

 RFC 2045 describes a mechanism for denoting textual body parts which
 are coded in various character sets, as well as methods for encoding
 such body parts as sequences of printable US-ASCII characters. This
 memo describes similar techniques to allow the encoding of non-ASCII
 text in various portions of a RFC 822 [2] message header, in a manner
 which is unlikely to confuse existing message handling software.

 Like the encoding techniques described in RFC 2045, the techniques
 outlined here were designed to allow the use of non-ASCII characters
 in message headers in a way which is unlikely to be disturbed by the
 quirks of existing Internet mail handling programs. In particular,
 some mail relaying programs are known to (a) delete some message
 header fields while retaining others, (b) rearrange the order of
 addresses in To or Cc fields, (c) rearrange the (vertical) order of
 header fields, and/or (d) "wrap" message headers at different places
 than those in the original message. In addition, some mail reading
 programs are known to have difficulty correctly parsing message
 headers which, while legal according to RFC 822, make use of
 backslash-quoting to "hide" special characters such as "<", ",", or
 ":", or which exploit other infrequently-used features of that
 specification.

 While it is unfortunate that these programs do not correctly
 interpret RFC 822 headers, to "break" these programs would cause
 severe operational problems for the Internet mail system. The
 extensions described in this memo therefore do not rely on little-
 used features of RFC 822.

Moore Standards Track [Page 2]

RFC 2047 Message Header Extensions November 1996

 Instead, certain sequences of "ordinary" printable ASCII characters
 (known as "encoded-words") are reserved for use as encoded data. The
 syntax of encoded-words is such that they are unlikely to
 "accidentally" appear as normal text in message headers.
 Furthermore, the characters used in encoded-words are restricted to
 those which do not have special meanings in the context in which the
 encoded-word appears.

 Generally, an "encoded-word" is a sequence of printable ASCII
 characters that begins with "=?", ends with "?=", and has two "?"s in
 between. It specifies a character set and an encoding method, and
 also includes the original text encoded as graphic ASCII characters,
 according to the rules for that encoding method.

C
om

pendium
 1 page 155

 A mail composer that implements this specification will provide a
 means of inputting non-ASCII text in header fields, but will
 translate these fields (or appropriate portions of these fields) into
 encoded-words before inserting them into the message header.

 A mail reader that implements this specification will recognize
 encoded-words when they appear in certain portions of the message
 header. Instead of displaying the encoded-word "as is", it will
 reverse the encoding and display the original text in the designated
 character set.

NOTES

 This memo relies heavily on notation and terms defined RFC 822 and
 RFC 2045. In particular, the syntax for the ABNF used in this memo
 is defined in RFC 822, as well as many of the terminal or nonterminal
 symbols from RFC 822 are used in the grammar for the header
 extensions defined here. Among the symbols defined in RFC 822 and
 referenced in this memo are: 'addr-spec', 'atom', 'CHAR', 'comment',
 'CTLs', 'ctext', 'linear-white-space', 'phrase', 'quoted-pair'.
 'quoted-string', 'SPACE', and 'word'. Successful implementation of
 this protocol extension requires careful attention to the RFC 822
 definitions of these terms.

 When the term "ASCII" appears in this memo, it refers to the "7-Bit
 American Standard Code for Information Interchange", ANSI X3.4-1986.
 The MIME charset name for this character set is "US-ASCII". When not
 specifically referring to the MIME charset name, this document uses
 the term "ASCII", both for brevity and for consistency with RFC 822.
 However, implementors are warned that the character set name must be
 spelled "US-ASCII" in MIME message and body part headers.

Moore Standards Track [Page 3]

RFC 2047 Message Header Extensions November 1996

 This memo specifies a protocol for the representation of non-ASCII
 text in message headers. It specifically DOES NOT define any
 translation between "8-bit headers" and pure ASCII headers, nor is
 any such translation assumed to be possible.

2. Syntax of encoded-words

 An 'encoded-word' is defined by the following ABNF grammar. The
 notation of RFC 822 is used, with the exception that white space
 characters MUST NOT appear between components of an 'encoded-word'.

 encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

 charset = token ; see section 3

 encoding = token ; see section 4

 token = 1*<Any CHAR except SPACE, CTLs, and especials>

 especials = "(" / ")" / "<" / ">" / "@" / "," / ";" / ":" / "
 <"> / "/" / "[" / "]" / "?" / "." / "="

 encoded-text = 1*<Any printable ASCII character other than "?"
 or SPACE>

 ; (but see "Use of encoded-words in message
 ; headers", section 5)

 Both 'encoding' and 'charset' names are case-independent. Thus the
 charset name "ISO-8859-1" is equivalent to "iso-8859-1", and the
 encoding named "Q" may be spelled either "Q" or "q".

 An 'encoded-word' may not be more than 75 characters long, including
 'charset', 'encoding', 'encoded-text', and delimiters. If it is
 desirable to encode more text than will fit in an 'encoded-word' of
 75 characters, multiple 'encoded-word's (separated by CRLF SPACE) may
 be used.

 While there is no limit to the length of a multiple-line header
 field, each line of a header field that contains one or more
 'encoded-word's is limited to 76 characters.

 The length restrictions are included both to ease interoperability
 through internetwork mail gateways, and to impose a limit on the
 amount of lookahead a header parser must employ (while looking for a
 final ?= delimiter) before it can decide whether a token is an
 "encoded-word" or something else.

Moore Standards Track [Page 4]

RFC 2047 Message Header Extensions November 1996

 IMPORTANT: 'encoded-word's are designed to be recognized as 'atom's
 by an RFC 822 parser. As a consequence, unencoded white space
 characters (such as SPACE and HTAB) are FORBIDDEN within an
 'encoded-word'. For example, the character sequence

 =?iso-8859-1?q?this is some text?=

 would be parsed as four 'atom's, rather than as a single 'atom' (by
 an RFC 822 parser) or 'encoded-word' (by a parser which understands
 'encoded-words'). The correct way to encode the string "this is some
 text" is to encode the SPACE characters as well, e.g.

 =?iso-8859-1?q?this=20is=20some=20text?=

 The characters which may appear in 'encoded-text' are further
 restricted by the rules in section 5.

3. Character sets

 The 'charset' portion of an 'encoded-word' specifies the character
 set associated with the unencoded text. A 'charset' can be any of
 the character set names allowed in an MIME "charset" parameter of a
 "text/plain" body part, or any character set name registered with
 IANA for use with the MIME text/plain content-type.

 Some character sets use code-switching techniques to switch between
 "ASCII mode" and other modes. If unencoded text in an 'encoded-word'
 contains a sequence which causes the charset interpreter to switch
 out of ASCII mode, it MUST contain additional control codes such that
 ASCII mode is again selected at the end of the 'encoded-word'. (This
 rule applies separately to each 'encoded-word', including adjacent
 'encoded-word's within a single header field.)

 When there is a possibility of using more than one character set to

C
om

pendium
 1 page 156

 represent the text in an 'encoded-word', and in the absence of
 private agreements between sender and recipients of a message, it is
 recommended that members of the ISO-8859-* series be used in
 preference to other character sets.

4. Encodings

 Initially, the legal values for "encoding" are "Q" and "B". These
 encodings are described below. The "Q" encoding is recommended for
 use when most of the characters to be encoded are in the ASCII
 character set; otherwise, the "B" encoding should be used.
 Nevertheless, a mail reader which claims to recognize 'encoded-word's
 MUST be able to accept either encoding for any character set which it
 supports.

Moore Standards Track [Page 5]

RFC 2047 Message Header Extensions November 1996

 Only a subset of the printable ASCII characters may be used in
 'encoded-text'. Space and tab characters are not allowed, so that
 the beginning and end of an 'encoded-word' are obvious. The "?"
 character is used within an 'encoded-word' to separate the various
 portions of the 'encoded-word' from one another, and thus cannot
 appear in the 'encoded-text' portion. Other characters are also
 illegal in certain contexts. For example, an 'encoded-word' in a
 'phrase' preceding an address in a From header field may not contain
 any of the "specials" defined in RFC 822. Finally, certain other
 characters are disallowed in some contexts, to ensure reliability for
 messages that pass through internetwork mail gateways.

 The "B" encoding automatically meets these requirements. The "Q"
 encoding allows a wide range of printable characters to be used in
 non-critical locations in the message header (e.g., Subject), with
 fewer characters available for use in other locations.

4.1. The "B" encoding

 The "B" encoding is identical to the "BASE64" encoding defined by RFC
 2045.

4.2. The "Q" encoding

 The "Q" encoding is similar to the "Quoted-Printable" content-
 transfer-encoding defined in RFC 2045. It is designed to allow text
 containing mostly ASCII characters to be decipherable on an ASCII
 terminal without decoding.

 (1) Any 8-bit value may be represented by a "=" followed by two
 hexadecimal digits. For example, if the character set in use
 were ISO-8859-1, the "=" character would thus be encoded as
 "=3D", and a SPACE by "=20". (Upper case should be used for
 hexadecimal digits "A" through "F".)

 (2) The 8-bit hexadecimal value 20 (e.g., ISO-8859-1 SPACE) may be
 represented as "_" (underscore, ASCII 95.). (This character may
 not pass through some internetwork mail gateways, but its use
 will greatly enhance readability of "Q" encoded data with mail
 readers that do not support this encoding.) Note that the "_"
 always represents hexadecimal 20, even if the SPACE character
 occupies a different code position in the character set in use.

 (3) 8-bit values which correspond to printable ASCII characters other

 than "=", "?", and "_" (underscore), MAY be represented as those
 characters. (But see section 5 for restrictions.) In
 particular, SPACE and TAB MUST NOT be represented as themselves
 within encoded words.

Moore Standards Track [Page 6]

RFC 2047 Message Header Extensions November 1996

5. Use of encoded-words in message headers

 An 'encoded-word' may appear in a message header or body part header
 according to the following rules:

(1) An 'encoded-word' may replace a 'text' token (as defined by RFC 822)
 in any Subject or Comments header field, any extension message
 header field, or any MIME body part field for which the field body
 is defined as '*text'. An 'encoded-word' may also appear in any
 user-defined ("X-") message or body part header field.

 Ordinary ASCII text and 'encoded-word's may appear together in the
 same header field. However, an 'encoded-word' that appears in a
 header field defined as '*text' MUST be separated from any adjacent
 'encoded-word' or 'text' by 'linear-white-space'.

(2) An 'encoded-word' may appear within a 'comment' delimited by "(" and
 ")", i.e., wherever a 'ctext' is allowed. More precisely, the RFC
 822 ABNF definition for 'comment' is amended as follows:

 comment = "(" *(ctext / quoted-pair / comment / encoded-word) ")"

 A "Q"-encoded 'encoded-word' which appears in a 'comment' MUST NOT
 contain the characters "(", ")" or "
 'encoded-word' that appears in a 'comment' MUST be separated from
 any adjacent 'encoded-word' or 'ctext' by 'linear-white-space'.

 It is important to note that 'comment's are only recognized inside
 "structured" field bodies. In fields whose bodies are defined as
 '*text', "(" and ")" are treated as ordinary characters rather than
 comment delimiters, and rule (1) of this section applies. (See RFC
 822, sections 3.1.2 and 3.1.3)

(3) As a replacement for a 'word' entity within a 'phrase', for example,
 one that precedes an address in a From, To, or Cc header. The ABNF
 definition for 'phrase' from RFC 822 thus becomes:

 phrase = 1*(encoded-word / word)

 In this case the set of characters that may be used in a "Q"-encoded
 'encoded-word' is restricted to: <upper and lower case ASCII
 letters, decimal digits, "!", "*", "+", "-", "/", "=", and "_"
 (underscore, ASCII 95.)>. An 'encoded-word' that appears within a
 'phrase' MUST be separated from any adjacent 'word', 'text' or
 'special' by 'linear-white-space'.

Moore Standards Track [Page 7]

C
om

pendium
 1 page 157

RFC 2047 Message Header Extensions November 1996

 These are the ONLY locations where an 'encoded-word' may appear. In
 particular:

 + An 'encoded-word' MUST NOT appear in any portion of an 'addr-spec'.

 + An 'encoded-word' MUST NOT appear within a 'quoted-string'.

 + An 'encoded-word' MUST NOT be used in a Received header field.

 + An 'encoded-word' MUST NOT be used in parameter of a MIME
 Content-Type or Content-Disposition field, or in any structured
 field body except within a 'comment' or 'phrase'.

 The 'encoded-text' in an 'encoded-word' must be self-contained;
 'encoded-text' MUST NOT be continued from one 'encoded-word' to
 another. This implies that the 'encoded-text' portion of a "B"
 'encoded-word' will be a multiple of 4 characters long; for a "Q"
 'encoded-word', any "=" character that appears in the 'encoded-text'
 portion will be followed by two hexadecimal characters.

 Each 'encoded-word' MUST encode an integral number of octets. The
 'encoded-text' in each 'encoded-word' must be well-formed according
 to the encoding specified; the 'encoded-text' may not be continued in
 the next 'encoded-word'. (For example, "=?charset?Q?=?=
 =?charset?Q?AB?=" would be illegal, because the two hex digits "AB"
 must follow the "=" in the same 'encoded-word'.)

 Each 'encoded-word' MUST represent an integral number of characters.
 A multi-octet character may not be split across adjacent 'encoded-
 word's.

 Only printable and white space character data should be encoded using
 this scheme. However, since these encoding schemes allow the
 encoding of arbitrary octet values, mail readers that implement this
 decoding should also ensure that display of the decoded data on the
 recipient's terminal will not cause unwanted side-effects.

 Use of these methods to encode non-textual data (e.g., pictures or
 sounds) is not defined by this memo. Use of 'encoded-word's to
 represent strings of purely ASCII characters is allowed, but
 discouraged. In rare cases it may be necessary to encode ordinary
 text that looks like an 'encoded-word'.

Moore Standards Track [Page 8]

RFC 2047 Message Header Extensions November 1996

6. Support of 'encoded-word's by mail readers

6.1. Recognition of 'encoded-word's in message headers

 A mail reader must parse the message and body part headers according
 to the rules in RFC 822 to correctly recognize 'encoded-word's.

 'encoded-word's are to be recognized as follows:

 (1) Any message or body part header field defined as '*text', or any
 user-defined header field, should be parsed as follows: Beginning
 at the start of the field-body and immediately following each
 occurrence of 'linear-white-space', each sequence of up to 75
 printable characters (not containing any 'linear-white-space')
 should be examined to see if it is an 'encoded-word' according to
 the syntax rules in section 2. Any other sequence of printable
 characters should be treated as ordinary ASCII text.

 (2) Any header field not defined as '*text' should be parsed
 according to the syntax rules for that header field. However,
 any 'word' that appears within a 'phrase' should be treated as an
 'encoded-word' if it meets the syntax rules in section 2.
 Otherwise it should be treated as an ordinary 'word'.

 (3) Within a 'comment', any sequence of up to 75 printable characters
 (not containing 'linear-white-space'), that meets the syntax
 rules in section 2, should be treated as an 'encoded-word'.
 Otherwise it should be treated as normal comment text.

 (4) A MIME-Version header field is NOT required to be present for
 'encoded-word's to be interpreted according to this
 specification. One reason for this is that the mail reader is
 not expected to parse the entire message header before displaying
 lines that may contain 'encoded-word's.

6.2. Display of 'encoded-word's

 Any 'encoded-word's so recognized are decoded, and if possible, the
 resulting unencoded text is displayed in the original character set.

 NOTE: Decoding and display of encoded-words occurs *after* a
 structured field body is parsed into tokens. It is therefore
 possible to hide 'special' characters in encoded-words which, when
 displayed, will be indistinguishable from 'special' characters in the
 surrounding text. For this and other reasons, it is NOT generally
 possible to translate a message header containing 'encoded-word's to
 an unencoded form which can be parsed by an RFC 822 mail reader.

Moore Standards Track [Page 9]

RFC 2047 Message Header Extensions November 1996

 When displaying a particular header field that contains multiple
 'encoded-word's, any 'linear-white-space' that separates a pair of
 adjacent 'encoded-word's is ignored. (This is to allow the use of
 multiple 'encoded-word's to represent long strings of unencoded text,
 without having to separate 'encoded-word's where spaces occur in the
 unencoded text.)

 In the event other encodings are defined in the future, and the mail
 reader does not support the encoding used, it may either (a) display
 the 'encoded-word' as ordinary text, or (b) substitute an appropriate
 message indicating that the text could not be decoded.

 If the mail reader does not support the character set used, it may
 (a) display the 'encoded-word' as ordinary text (i.e., as it appears
 in the header), (b) make a "best effort" to display using such
 characters as are available, or (c) substitute an appropriate message
 indicating that the decoded text could not be displayed.

C
om

pendium
 1 page 158

 If the character set being used employs code-switching techniques,
 display of the encoded text implicitly begins in "ASCII mode". In
 addition, the mail reader must ensure that the output device is once
 again in "ASCII mode" after the 'encoded-word' is displayed.

6.3. Mail reader handling of incorrectly formed 'encoded-word's

 It is possible that an 'encoded-word' that is legal according to the
 syntax defined in section 2, is incorrectly formed according to the
 rules for the encoding being used. For example:

 (1) An 'encoded-word' which contains characters which are not legal
 for a particular encoding (for example, a "-" in the "B"
 encoding, or a SPACE or HTAB in either the "B" or "Q" encoding),
 is incorrectly formed.

 (2) Any 'encoded-word' which encodes a non-integral number of
 characters or octets is incorrectly formed.

 A mail reader need not attempt to display the text associated with an
 'encoded-word' that is incorrectly formed. However, a mail reader
 MUST NOT prevent the display or handling of a message because an
 'encoded-word' is incorrectly formed.

7. Conformance

 A mail composing program claiming compliance with this specification
 MUST ensure that any string of non-white-space printable ASCII
 characters within a '*text' or '*ctext' that begins with "=?" and
 ends with "?=" be a valid 'encoded-word'. ("begins" means: at the

Moore Standards Track [Page 10]

RFC 2047 Message Header Extensions November 1996

 start of the field-body, immediately following 'linear-white-space',
 or immediately following a "(" for an 'encoded-word' within '*ctext';
 "ends" means: at the end of the field-body, immediately preceding
 'linear-white-space', or immediately preceding a ")" for an
 'encoded-word' within '*ctext'.) In addition, any 'word' within a
 'phrase' that begins with "=?" and ends with "?=" must be a valid
 'encoded-word'.

 A mail reading program claiming compliance with this specification
 must be able to distinguish 'encoded-word's from 'text', 'ctext', or
 'word's, according to the rules in section 6, anytime they appear in
 appropriate places in message headers. It must support both the "B"
 and "Q" encodings for any character set which it supports. The
 program must be able to display the unencoded text if the character
 set is "US-ASCII". For the ISO-8859-* character sets, the mail
 reading program must at least be able to display the characters which
 are also in the ASCII set.

8. Examples

 The following are examples of message headers containing 'encoded-
 word's:

 From: =?US-ASCII?Q?Keith_Moore?= <moore@cs.utk.edu>
 To: =?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>
 CC: =?ISO-8859-1?Q?Andr=E9?= Pirard <PIRARD@vm1.ulg.ac.be>
 Subject: =?ISO-8859-1?B?SWYgeW91IGNhbiByZWFkIHRoaXMgeW8=?=

 =?ISO-8859-2?B?dSB1bmRlcnN0YW5kIHRoZSBleGFtcGxlLg==?=

 Note: In the first 'encoded-word' of the Subject field above, the
 last "=" at the end of the 'encoded-text' is necessary because each
 'encoded-word' must be self-contained (the "=" character completes a
 group of 4 base64 characters representing 2 octets). An additional
 octet could have been encoded in the first 'encoded-word' (so that
 the encoded-word would contain an exact multiple of 3 encoded
 octets), except that the second 'encoded-word' uses a different
 'charset' than the first one.

 From: =?ISO-8859-1?Q?Olle_J=E4rnefors?= <ojarnef@admin.kth.se>
 To: ietf-822@dimacs.rutgers.edu, ojarnef@admin.kth.se
 Subject: Time for ISO 10646?

 To: Dave Crocker <dcrocker@mordor.stanford.edu>
 Cc: ietf-822@dimacs.rutgers.edu, paf@comsol.se
 From: =?ISO-8859-1?Q?Patrik_F=E4ltstr=F6m?= <paf@nada.kth.se>
 Subject: Re: RFC-HDR care and feeding

Moore Standards Track [Page 11]

RFC 2047 Message Header Extensions November 1996

 From: Nathaniel Borenstein <nsb@thumper.bellcore.com>
 (=?iso-8859-8?b?7eXs+SDv4SDp7Oj08A==?=)
 To: Greg Vaudreuil <gvaudre@NRI.Reston.VA.US>, Ned Freed
 <ned@innosoft.com>, Keith Moore <moore@cs.utk.edu>
 Subject: Test of new header generator
 MIME-Version: 1.0
 Content-type: text/plain; charset=ISO-8859-1

 The following examples illustrate how text containing 'encoded-word's
 which appear in a structured field body. The rules are slightly
 different for fields defined as '*text' because "(" and ")" are not
 recognized as 'comment' delimiters. [Section 5, paragraph (1)].

 In each of the following examples, if the same sequence were to occur
 in a '*text' field, the "displayed as" form would NOT be treated as
 encoded words, but be identical to the "encoded form". This is
 because each of the encoded-words in the following examples is
 adjacent to a "(" or ")" character.

 encoded form displayed as

 (=?ISO-8859-1?Q?a?=) (a)

 (=?ISO-8859-1?Q?a?= b) (a b)

 Within a 'comment', white space MUST appear between an
 'encoded-word' and surrounding text. [Section 5,
 paragraph (2)]. However, white space is not needed between
 the initial "(" that begins the 'comment', and the
 'encoded-word'.

 (=?ISO-8859-1?Q?a?= =?ISO-8859-1?Q?b?=) (ab)

 White space between adjacent 'encoded-word's is not
 displayed.

C
om

pendium
 1 page 159

 (=?ISO-8859-1?Q?a?= =?ISO-8859-1?Q?b?=) (ab)

 Even multiple SPACEs between 'encoded-word's are ignored
 for the purpose of display.

 (=?ISO-8859-1?Q?a?= (ab)
 =?ISO-8859-1?Q?b?=)

 Any amount of linear-space-white between 'encoded-word's,
 even if it includes a CRLF followed by one or more SPACEs,
 is ignored for the purposes of display.

Moore Standards Track [Page 12]

RFC 2047 Message Header Extensions November 1996

 (=?ISO-8859-1?Q?a_b?=) (a b)

 In order to cause a SPACE to be displayed within a portion
 of encoded text, the SPACE MUST be encoded as part of the
 'encoded-word'.

 (=?ISO-8859-1?Q?a?= =?ISO-8859-2?Q?_b?=) (a b)

 In order to cause a SPACE to be displayed between two strings
 of encoded text, the SPACE MAY be encoded as part of one of
 the 'encoded-word's.

9. References

 [RFC 822] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982.

 [RFC 2049] Borenstein, N., and N. Freed, "Multipurpose Internet Mail
 Extensions (MIME) Part Five: Conformance Criteria and Examples",
 RFC 2049, November 1996.

 [RFC 2045] Borenstein, N., and N. Freed, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [RFC 2046] Borenstein N., and N. Freed, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC 2048] Freed, N., Klensin, J., and J. Postel, "Multipurpose
 Internet Mail Extensions (MIME) Part Four: Registration
 Procedures", RFC 2048, November 1996.

Moore Standards Track [Page 13]

RFC 2047 Message Header Extensions November 1996

10. Security Considerations

 Security issues are not discussed in this memo.

11. Acknowledgements

 The author wishes to thank Nathaniel Borenstein, Issac Chan, Lutz
 Donnerhacke, Paul Eggert, Ned Freed, Andreas M. Kirchwitz, Olle
 Jarnefors, Mike Rosin, Yutaka Sato, Bart Schaefer, and Kazuhiko
 Yamamoto, for their helpful advice, insightful comments, and
 illuminating questions in response to earlier versions of this
 specification.

12. Author's Address

 Keith Moore
 University of Tennessee
 107 Ayres Hall
 Knoxville TN 37996-1301

 EMail: moore@cs.utk.edu

Moore Standards Track [Page 14]

RFC 2047 Message Header Extensions November 1996

C
om

pendium
 1 page 160

Appendix - changes since RFC 1522 (in no particular order)

 + explicitly state that the MIME-Version is not requried to use
 'encoded-word's.

 + add explicit note that SPACEs and TABs are not allowed within
 'encoded-word's, explaining that an 'encoded-word' must look like an
 'atom' to an RFC822 parser.values, to be precise).

 + add examples from Olle Jarnefors (thanks!) which illustrate how
 encoded-words with adjacent linear-white-space are displayed.

 + explicitly list terms defined in RFC822 and referenced in this memo

 + fix transcription typos that caused one or two lines and a couple of
 characters to disappear in the resulting text, due to nroff quirks.

 + clarify that encoded-words are allowed in '*text' fields in both
 RFC822 headers and MIME body part headers, but NOT as parameter
 values.

 + clarify the requirement to switch back to ASCII within the encoded
 portion of an 'encoded-word', for any charset that uses code switching
 sequences.

 + add a note about 'encoded-word's being delimited by "(" and ")"
 within a comment, but not in a *text (how bizarre!).

 + fix the Andre Pirard example to get rid of the trailing "_" after
 the =E9. (no longer needed post-1342).

 + clarification: an 'encoded-word' may appear immediately following
 the initial "(" or immediately before the final ")" that delimits a
 comment, not just adjacent to "(" and ")" *within* *ctext.

 + add a note to explain that a "B" 'encoded-word' will always have a
 multiple of 4 characters in the 'encoded-text' portion.

 + add note about the "=" in the examples

 + note that processing of 'encoded-word's occurs *after* parsing, and
 some of the implications thereof.

 + explicitly state that you can't expect to translate between
 1522 and either vanilla 822 or so-called "8-bit headers".

 + explicitly state that 'encoded-word's are not valid within a
 'quoted-string'.

Moore Standards Track [Page 15]

C
om

pendium
 1 page 161

Network Working Group N. Freed
Request for Comments: 2048 Innosoft
BCP: 13 J. Klensin
Obsoletes: 1521, 1522, 1590 MCI
Category: Best Current Practice J. Postel
 ISI
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part Four:
 Registration Procedures

Status of this Memo

 This document specifies an Internet Best Current Practices for the
 Internet Community, and requests discussion and suggestions for
 improvements. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822, defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, and leaves the
 message content, or message body, as flat US-ASCII text. This set of
 documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

Freed, et. al. Best Current Practice [Page 1]

RFC 2048 MIME Registration Procedures November 1996

 This fourth document, RFC 2048, specifies various IANA registration
 procedures for the following MIME facilities:

 (1) media types,

 (2) external body access types,

 (3) content-transfer-encodings.

 Registration of character sets for use in MIME is covered elsewhere
 and is no longer addressed by this document.

 These documents are revisions of RFCs 1521 and 1522, which themselves
 were revisions of RFCs 1341 and 1342. An appendix in RFC 2049
 describes differences and changes from previous versions.

Table of Contents

 1. Introduction ... 3
 2. Media Type Registration 4
 2.1 Registration Trees and Subtype Names 4
 2.1.1 IETF Tree ... 4
 2.1.2 Vendor Tree 4
 2.1.3 Personal or Vanity Tree 5
 2.1.4 Special `x.' Tree 5
 2.1.5 Additional Registration Trees 6
 2.2 Registration Requirements 6
 2.2.1 Functionality Requirement 6
 2.2.2 Naming Requirements 6
 2.2.3 Parameter Requirements 7
 2.2.4 Canonicalization and Format Requirements 7
 2.2.5 Interchange Recommendations 8
 2.2.6 Security Requirements 8
 2.2.7 Usage and Implementation Non-requirements 9
 2.2.8 Publication Requirements 10
 2.2.9 Additional Information 10
 2.3 Registration Procedure 11
 2.3.1 Present the Media Type to the Community for Review 11
 2.3.2 IESG Approval 12
 2.3.3 IANA Registration 12
 2.4 Comments on Media Type Registrations 12
 2.5 Location of Registered Media Type List 12
 2.6 IANA Procedures for Registering Media Types 12
 2.7 Change Control 13
 2.8 Registration Template 14
 3. External Body Access Types 14
 3.1 Registration Requirements 15
 3.1.1 Naming Requirements 15

Freed, et. al. Best Current Practice [Page 2]

C
om

pendium
 1 page 162

RFC 2048 MIME Registration Procedures November 1996

 3.1.2 Mechanism Specification Requirements 15
 3.1.3 Publication Requirements 15
 3.1.4 Security Requirements 15
 3.2 Registration Procedure 15
 3.2.1 Present the Access Type to the Community 16
 3.2.2 Access Type Reviewer 16
 3.2.3 IANA Registration 16
 3.3 Location of Registered Access Type List 16
 3.4 IANA Procedures for Registering Access Types 16
 4. Transfer Encodings 17
 4.1 Transfer Encoding Requirements 17
 4.1.1 Naming Requirements 17
 4.1.2 Algorithm Specification Requirements 18
 4.1.3 Input Domain Requirements 18
 4.1.4 Output Range Requirements 18
 4.1.5 Data Integrity and Generality Requirements 18
 4.1.6 New Functionality Requirements 18
 4.2 Transfer Encoding Definition Procedure 19
 4.3 IANA Procedures for Transfer Encoding Registration... 19
 4.4 Location of Registered Transfer Encodings List 19
 5. Authors' Addresses 20
 A. Grandfathered Media Types 21

1. Introduction

 Recent Internet protocols have been carefully designed to be easily
 extensible in certain areas. In particular, MIME [RFC 2045] is an
 open-ended framework and can accommodate additional object types,
 character sets, and access methods without any changes to the basic
 protocol. A registration process is needed, however, to ensure that
 the set of such values is developed in an orderly, well-specified,
 and public manner.

 This document defines registration procedures which use the Internet
 Assigned Numbers Authority (IANA) as a central registry for such
 values.

 Historical Note: The registration process for media types was
 initially defined in the context of the asynchronous Internet mail
 environment. In this mail environment there is a need to limit the
 number of possible media types to increase the likelihood of
 interoperability when the capabilities of the remote mail system are
 not known. As media types are used in new environments, where the
 proliferation of media types is not a hindrance to interoperability,
 the original procedure was excessively restrictive and had to be
 generalized.

Freed, et. al. Best Current Practice [Page 3]

RFC 2048 MIME Registration Procedures November 1996

2. Media Type Registration

 Registration of a new media type or types starts with the
 construction of a registration proposal. Registration may occur in
 several different registration trees, which have different
 requirements as discussed below. In general, the new registration
 proposal is circulated and reviewed in a fashion appropriate to the
 tree involved. The media type is then registered if the proposal is
 acceptable. The following sections describe the requirements and
 procedures used for each of the different registration trees.

2.1. Registration Trees and Subtype Names

 In order to increase the efficiency and flexibility of the
 registration process, different structures of subtype names may be
 registered to accomodate the different natural requirements for,
 e.g., a subtype that will be recommended for wide support and
 implementation by the Internet Community or a subtype that is used to
 move files associated with proprietary software. The following
 subsections define registration "trees", distinguished by the use of
 faceted names (e.g., names of the form "tree.subtree...type"). Note
 that some media types defined prior to this document do not conform
 to the naming conventions described below. See Appendix A for a
 discussion of them.

2.1.1. IETF Tree

 The IETF tree is intended for types of general interest to the
 Internet Community. Registration in the IETF tree requires approval
 by the IESG and publication of the media type registration as some
 form of RFC.

 Media types in the IETF tree are normally denoted by names that are
 not explicitly faceted, i.e., do not contain period (".", full stop)
 characters.

 The "owner" of a media type registration in the IETF tree is assumed
 to be the IETF itself. Modification or alteration of the
 specification requires the same level of processing (e.g. standards
 track) required for the initial registration.

2.1.2. Vendor Tree

 The vendor tree is used for media types associated with commercially
 available products. "Vendor" or "producer" are construed as
 equivalent and very broadly in this context.

Freed, et. al. Best Current Practice [Page 4]

C
om

pendium
 1 page 163

RFC 2048 MIME Registration Procedures November 1996

 A registration may be placed in the vendor tree by anyone who has
 need to interchange files associated with the particular product.
 However, the registration formally belongs to the vendor or
 organization producing the software or file format. Changes to the
 specification will be made at their request, as discussed in
 subsequent sections.

 Registrations in the vendor tree will be distinguished by the leading
 facet "vnd.". That may be followed, at the discretion of the
 registration, by either a media type name from a well-known producer
 (e.g., "vnd.mudpie") or by an IANA-approved designation of the
 producer's name which is then followed by a media type or product
 designation (e.g., vnd.bigcompany.funnypictures).

 While public exposure and review of media types to be registered in
 the vendor tree is not required, using the ietf-types list for review
 is strongly encouraged to improve the quality of those
 specifications. Registrations in the vendor tree may be submitted
 directly to the IANA.

2.1.3. Personal or Vanity Tree

 Registrations for media types created experimentally or as part of
 products that are not distributed commercially may be registered in
 the personal or vanity tree. The registrations are distinguished by
 the leading facet "prs.".

 The owner of "personal" registrations and associated specifications
 is the person or entity making the registration, or one to whom
 responsibility has been transferred as described below.

 While public exposure and review of media types to be registered in
 the personal tree is not required, using the ietf-types list for
 review is strongly encouraged to improve the quality of those
 specifications. Registrations in the personl tree may be submitted
 directly to the IANA.

2.1.4. Special `x.' Tree

 For convenience and symmetry with this registration scheme, media
 type names with "x." as the first facet may be used for the same
 purposes for which names starting in "x-" are normally used. These
 types are unregistered, experimental, and should be used only with
 the active agreement of the parties exchanging them.

Freed, et. al. Best Current Practice [Page 5]

RFC 2048 MIME Registration Procedures November 1996

 However, with the simplified registration procedures described above
 for vendor and personal trees, it should rarely, if ever, be
 necessary to use unregistered experimental types, and as such use of
 both "x-" and "x." forms is discouraged.

2.1.5. Additional Registration Trees

 From time to time and as required by the community, the IANA may,
 with the advice and consent of the IESG, create new top-level
 registration trees. It is explicitly assumed that these trees may be
 created for external registration and management by well-known
 permanent bodies, such as scientific societies for media types
 specific to the sciences they cover. In general, the quality of
 review of specifications for one of these additional registration
 trees is expected to be equivalent to that which IETF would give to
 registrations in its own tree. Establishment of these new trees will
 be announced through RFC publication approved by the IESG.

2.2. Registration Requirements

 Media type registration proposals are all expected to conform to
 various requirements laid out in the following sections. Note that
 requirement specifics sometimes vary depending on the registration
 tree, again as detailed in the following sections.

2.2.1. Functionality Requirement

 Media types must function as an actual media format: Registration of
 things that are better thought of as a transfer encoding, as a
 character set, or as a collection of separate entities of another
 type, is not allowed. For example, although applications exist to
 decode the base64 transfer encoding [RFC 2045], base64 cannot be
 registered as a media type.

 This requirement applies regardless of the registration tree
 involved.

2.2.2. Naming Requirements

 All registered media types must be assigned MIME type and subtype
 names. The combination of these names then serves to uniquely
 identify the media type and the format of the subtype name identifies
 the registration tree.

 The choice of top-level type name must take the nature of media type
 involved into account. For example, media normally used for
 representing still images should be a subtype of the image content
 type, whereas media capable of representing audio information belongs

Freed, et. al. Best Current Practice [Page 6]

C
om

pendium
 1 page 164

RFC 2048 MIME Registration Procedures November 1996

 under the audio content type. See RFC 2046 for additional information
 on the basic set of top-level types and their characteristics.

 New subtypes of top-level types must conform to the restrictions of
 the top-level type, if any. For example, all subtypes of the
 multipart content type must use the same encapsulation syntax.

 In some cases a new media type may not "fit" under any currently
 defined top-level content type. Such cases are expected to be quite
 rare. However, if such a case arises a new top-level type can be
 defined to accommodate it. Such a definition must be done via
 standards-track RFC; no other mechanism can be used to define
 additional top-level content types.

 These requirements apply regardless of the registration tree
 involved.

2.2.3. Parameter Requirements

 Media types may elect to use one or more MIME content type
 parameters, or some parameters may be automatically made available to
 the media type by virtue of being a subtype of a content type that
 defines a set of parameters applicable to any of its subtypes. In
 either case, the names, values, and meanings of any parameters must
 be fully specified when a media type is registered in the IETF tree,
 and should be specified as completely as possible when media types
 are registered in the vendor or personal trees.

 New parameters must not be defined as a way to introduce new
 functionality in types registered in the IETF tree, although new
 parameters may be added to convey additional information that does
 not otherwise change existing functionality. An example of this
 would be a "revision" parameter to indicate a revision level of an
 external specification such as JPEG. Similar behavior is encouraged
 for media types registered in the vendor or personal trees but is not
 required.

2.2.4. Canonicalization and Format Requirements

 All registered media types must employ a single, canonical data
 format, regardless of registration tree.

 A precise and openly available specification of the format of each
 media type is required for all types registered in the IETF tree and
 must at a minimum be referenced by, if it isn't actually included in,
 the media type registration proposal itself.

Freed, et. al. Best Current Practice [Page 7]

RFC 2048 MIME Registration Procedures November 1996

 The specifications of format and processing particulars may or may
 not be publically available for media types registered in the vendor
 tree, and such registration proposals are explicitly permitted to
 include only a specification of which software and version produce or
 process such media types. References to or inclusion of format
 specifications in registration proposals is encouraged but not
 required.

 Format specifications are still required for registration in the
 personal tree, but may be either published as RFCs or otherwise
 deposited with IANA. The deposited specifications will meet the same
 criteria as those required to register a well-known TCP port and, in
 particular, need not be made public.

 Some media types involve the use of patented technology. The
 registration of media types involving patented technology is
 specifically permitted. However, the restrictions set forth in RFC
 1602 on the use of patented technology in standards-track protocols
 must be respected when the specification of a media type is part of a
 standards-track protocol.

2.2.5. Interchange Recommendations

 Media types should, whenever possible, interoperate across as many
 systems and applications as possible. However, some media types will
 inevitably have problems interoperating across different platforms.
 Problems with different versions, byte ordering, and specifics of
 gateway handling can and will arise.

 Universal interoperability of media types is not required, but known
 interoperability issues should be identified whenever possible.
 Publication of a media type does not require an exhaustive review of
 interoperability, and the interoperability considerations section is
 subject to continuing evaluation.

 These recommendations apply regardless of the registration tree
 involved.

2.2.6. Security Requirements

 An analysis of security issues is required for for all types
 registered in the IETF Tree. (This is in accordance with the basic
 requirements for all IETF protocols.) A similar analysis for media
 types registered in the vendor or personal trees is encouraged but
 not required. However, regardless of what security analysis has or
 has not been done, all descriptions of security issues must be as
 accurate as possible regardless of registration tree. In particular,
 a statement that there are "no security issues associated with this

Freed, et. al. Best Current Practice [Page 8]

C
om

pendium
 1 page 165

RFC 2048 MIME Registration Procedures November 1996

 type" must not be confused with "the security issues associates with
 this type have not been assessed".

 There is absolutely no requirement that media types registered in any
 tree be secure or completely free from risks. Nevertheless, all
 known security risks must be identified in the registration of a
 media type, again regardless of registration tree.

 The security considerations section of all registrations is subject
 to continuing evaluation and modification, and in particular may be
 extended by use of the "comments on media types" mechanism described
 in subsequent sections.

 Some of the issues that should be looked at in a security analysis of
 a media type are:

 (1) Complex media types may include provisions for
 directives that institute actions on a recipient's
 files or other resources. In many cases provision is
 made for originators to specify arbitrary actions in an
 unrestricted fashion which may then have devastating
 effects. See the registration of the
 application/postscript media type in RFC 2046 for
 an example of such directives and how to handle them.

 (2) Complex media types may include provisions for
 directives that institute actions which, while not
 directly harmful to the recipient, may result in
 disclosure of information that either facilitates a
 subsequent attack or else violates a recipient's
 privacy in some way. Again, the registration of the
 application/postscript media type illustrates how such
 directives can be handled.

 (3) A media type might be targeted for applications that
 require some sort of security assurance but not provide
 the necessary security mechanisms themselves. For
 example, a media type could be defined for storage of
 confidential medical information which in turn requires
 an external confidentiality service.

2.2.7. Usage and Implementation Non-requirements

 In the asynchronous mail environment, where information on the
 capabilities of the remote mail agent is frequently not available to
 the sender, maximum interoperability is attained by restricting the
 number of media types used to those "common" formats expected to be
 widely implemented. This was asserted in the past as a reason to

Freed, et. al. Best Current Practice [Page 9]

RFC 2048 MIME Registration Procedures November 1996

 limit the number of possible media types and resulted in a
 registration process with a significant hurdle and delay for those
 registering media types.

 However, the need for "common" media types does not require limiting
 the registration of new media types. If a limited set of media types
 is recommended for a particular application, that should be asserted
 by a separate applicability statement specific for the application
 and/or environment.

 As such, universal support and implementation of a media type is NOT
 a requirement for registration. If, however, a media type is
 explicitly intended for limited use, this should be noted in its
 registration.

2.2.8. Publication Requirements

 Proposals for media types registered in the IETF tree must be
 published as RFCs. RFC publication of vendor and personal media type
 proposals is encouraged but not required. In all cases IANA will
 retain copies of all media type proposals and "publish" them as part
 of the media types registration tree itself.

 Other than in the IETF tree, the registration of a data type does not
 imply endorsement, approval, or recommendation by IANA or IETF or
 even certification that the specification is adequate. To become
 Internet Standards, protocol, data objects, or whatever must go
 through the IETF standards process. This is too difficult and too
 lengthy a process for the convenient registration of media types.

 The IETF tree exists for media types that do require require a
 substantive review and approval process with the vendor and personal
 trees exist for those that do not. It is expected that applicability
 statements for particular applications will be published from time to
 time that recommend implementation of, and support for, media types
 that have proven particularly useful in those contexts.

 As discussed above, registration of a top-level type requires
 standards-track processing and, hence, RFC publication.

2.2.9. Additional Information

 Various sorts of optional information may be included in the
 specification of a media type if it is available:

 (1) Magic number(s) (length, octet values). Magic numbers
 are byte sequences that are always present and thus can
 be used to identify entities as being of a given media

Freed, et. al. Best Current Practice [Page 10]

C
om

pendium
 1 page 166

RFC 2048 MIME Registration Procedures November 1996

 type.

 (2) File extension(s) commonly used on one or more
 platforms to indicate that some file containing a given
 type of media.

 (3) Macintosh File Type code(s) (4 octets) used to label
 files containing a given type of media.

 Such information is often quite useful to implementors and if
 available should be provided.

2.3. Registration Procedure

 The following procedure has been implemented by the IANA for review
 and approval of new media types. This is not a formal standards
 process, but rather an administrative procedure intended to allow
 community comment and sanity checking without excessive time delay.
 For registration in the IETF tree, the normal IETF processes should
 be followed, treating posting of an internet-draft and announcement
 on the ietf-types list (as described in the next subsection) as a
 first step. For registrations in the vendor or personal tree, the
 initial review step described below may be omitted and the type
 registered directly by submitting the template and an explanation
 directly to IANA (at iana@iana.org). However, authors of vendor or
 personal media type specifications are encouraged to seek community
 review and comment whenever that is feasible.

2.3.1. Present the Media Type to the Community for Review

 Send a proposed media type registration to the "ietf-types@iana.org"
 mailing list for a two week review period. This mailing list has
 been established for the purpose of reviewing proposed media and
 access types. Proposed media types are not formally registered and
 must not be used; the "x-" prefix specified in RFC 2045 can be used
 until registration is complete.

 The intent of the public posting is to solicit comments and feedback
 on the choice of type/subtype name, the unambiguity of the references
 with respect to versions and external profiling information, and a
 review of any interoperability or security considerations. The
 submitter may submit a revised registration, or withdraw the
 registration completely, at any time.

Freed, et. al. Best Current Practice [Page 11]

RFC 2048 MIME Registration Procedures November 1996

2.3.2. IESG Approval

 Media types registered in the IETF tree must be submitted to the IESG
 for approval.

2.3.3. IANA Registration

 Provided that the media type meets the requirements for media types
 and has obtained approval that is necessary, the author may submit
 the registration request to the IANA, which will register the media
 type and make the media type registration available to the community.

2.4. Comments on Media Type Registrations

 Comments on registered media types may be submitted by members of the
 community to IANA. These comments will be passed on to the "owner"
 of the media type if possible. Submitters of comments may request
 that their comment be attached to the media type registration itself,
 and if IANA approves of this the comment will be made accessible in
 conjunction with the type registration itself.

2.5. Location of Registered Media Type List

 Media type registrations will be posted in the anonymous FTP
 directory "ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/"
 and all registered media types will be listed in the periodically
 issued "Assigned Numbers" RFC [currently STD 2, RFC 1700]. The media
 type description and other supporting material may also be published
 as an Informational RFC by sending it to "rfc-editor@isi.edu" (please
 follow the instructions to RFC authors [RFC-1543]).

2.6. IANA Procedures for Registering Media Types

 The IANA will only register media types in the IETF tree in response
 to a communication from the IESG stating that a given registration
 has been approved. Vendor and personal types will be registered by
 the IANA automatically and without any formal review as long as the
 following minimal conditions are met:

 (1) Media types must function as an actual media format.
 In particular, character sets and transfer encodings
 may not be registered as media types.

 (2) All media types must have properly formed type and
 subtype names. All type names must be defined by a
 standards-track RFC. All subtype names must be unique,
 must conform to the MIME grammar for such names, and
 must contain the proper tree prefix.

Freed, et. al. Best Current Practice [Page 12]

C
om

pendium
 1 page 167

RFC 2048 MIME Registration Procedures November 1996

 (3) Types registered in the personal tree must either
 provide a format specification or a pointer to one.

 (4) Any security considerations given must not be obviously
 bogus. (It is neither possible nor necessary for the
 IANA to conduct a comprehensive security review of
 media type registrations. Nevertheless, IANA has the
 authority to identify obviously incompetent material
 and exclude it.)

2.7. Change Control

 Once a media type has been published by IANA, the author may request
 a change to its definition. The descriptions of the different
 registration trees above designate the "owners" of each type of
 registration. The change request follows the same procedure as the
 registration request:

 (1) Publish the revised template on the ietf-types list.

 (2) Leave at least two weeks for comments.

 (3) Publish using IANA after formal review if required.

 Changes should be requested only when there are serious omission or
 errors in the published specification. When review is required, a
 change request may be denied if it renders entities that were valid
 under the previous definition invalid under the new definition.

 The owner of a content type may pass responsibility for the content
 type to another person or agency by informing IANA and the ietf-types
 list; this can be done without discussion or review.

 The IESG may reassign responsibility for a media type. The most
 common case of this will be to enable changes to be made to types
 where the author of the registration has died, moved out of contact
 or is otherwise unable to make changes that are important to the
 community.

 Media type registrations may not be deleted; media types which are no
 longer believed appropriate for use can be declared OBSOLETE by a
 change to their "intended use" field; such media types will be
 clearly marked in the lists published by IANA.

Freed, et. al. Best Current Practice [Page 13]

RFC 2048 MIME Registration Procedures November 1996

2.8. Registration Template

 To: ietf-types@iana.org
 Subject: Registration of MIME media type XXX/YYY

 MIME media type name:

 MIME subtype name:

 Required parameters:

 Optional parameters:

 Encoding considerations:

 Security considerations:

 Interoperability considerations:

 Published specification:

 Applications which use this media type:

 Additional information:

 Magic number(s):
 File extension(s):
 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Intended usage:

 (One of COMMON, LIMITED USE or OBSOLETE)

 Author/Change controller:

 (Any other information that the author deems interesting may be
 added below this line.)

3. External Body Access Types

 RFC 2046 defines the message/external-body media type, whereby a MIME
 entity can act as pointer to the actual body data in lieu of
 including the data directly in the entity body. Each
 message/external-body reference specifies an access type, which
 determines the mechanism used to retrieve the actual body data. RFC
 2046 defines an initial set of access types, but allows for the

Freed, et. al. Best Current Practice [Page 14]

C
om

pendium
 1 page 168

RFC 2048 MIME Registration Procedures November 1996

 registration of additional access types to accommodate new retrieval
 mechanisms.

3.1. Registration Requirements

 New access type specifications must conform to a number of
 requirements as described below.

3.1.1. Naming Requirements

 Each access type must have a unique name. This name appears in the
 access-type parameter in the message/external-body content-type
 header field, and must conform to MIME content type parameter syntax.

3.1.2. Mechanism Specification Requirements

 All of the protocols, transports, and procedures used by a given
 access type must be described, either in the specification of the
 access type itself or in some other publicly available specification,
 in sufficient detail for the access type to be implemented by any
 competent implementor. Use of secret and/or proprietary methods in
 access types are expressly prohibited. The restrictions imposed by
 RFC 1602 on the standardization of patented algorithms must be
 respected as well.

3.1.3. Publication Requirements

 All access types must be described by an RFC. The RFC may be
 informational rather than standards-track, although standard-track
 review and approval are encouraged for all access types.

3.1.4. Security Requirements

 Any known security issues that arise from the use of the access type
 must be completely and fully described. It is not required that the
 access type be secure or that it be free from risks, but that the
 known risks be identified. Publication of a new access type does not
 require an exhaustive security review, and the security
 considerations section is subject to continuing evaluation.
 Additional security considerations should be addressed by publishing
 revised versions of the access type specification.

3.2. Registration Procedure

 Registration of a new access type starts with the construction of a
 draft of an RFC.

Freed, et. al. Best Current Practice [Page 15]

RFC 2048 MIME Registration Procedures November 1996

3.2.1. Present the Access Type to the Community

 Send a proposed access type specification to the "ietf-
 types@iana.org" mailing list for a two week review period. This
 mailing list has been established for the purpose of reviewing
 proposed access and media types. Proposed access types are not
 formally registered and must not be used.

 The intent of the public posting is to solicit comments and feedback
 on the access type specification and a review of any security
 considerations.

3.2.2. Access Type Reviewer

 When the two week period has passed, the access type reviewer, who is
 appointed by the IETF Applications Area Director, either forwards the
 request to iana@isi.edu, or rejects it because of significant
 objections raised on the list.

 Decisions made by the reviewer must be posted to the ietf-types
 mailing list within 14 days. Decisions made by the reviewer may be
 appealed to the IESG.

3.2.3. IANA Registration

 Provided that the access type has either passed review or has been
 successfully appealed to the IESG, the IANA will register the access
 type and make the registration available to the community. The
 specification of the access type must also be published as an RFC.
 Informational RFCs are published by sending them to "rfc-
 editor@isi.edu" (please follow the instructions to RFC authors [RFC-
 1543]).

3.3. Location of Registered Access Type List

 Access type registrations will be posted in the anonymous FTP
 directory "ftp://ftp.isi.edu/in-notes/iana/assignments/access-types/"
 and all registered access types will be listed in the periodically
 issued "Assigned Numbers" RFC [currently RFC-1700].

3.4. IANA Procedures for Registering Access Types

 The identity of the access type reviewer is communicated to the IANA
 by the IESG. The IANA then only acts in response to access type
 definitions that either are approved by the access type reviewer and
 forwarded by the reviewer to the IANA for registration, or in
 response to a communication from the IESG that an access type
 definition appeal has overturned the access type reviewer's ruling.

Freed, et. al. Best Current Practice [Page 16]

C
om

pendium
 1 page 169

RFC 2048 MIME Registration Procedures November 1996

4. Transfer Encodings

 Transfer encodings are tranformations applied to MIME media types
 after conversion to the media type's canonical form. Transfer
 encodings are used for several purposes:

 (1) Many transports, especially message transports, can
 only handle data consisting of relatively short lines
 of text. There can also be severe restrictions on what
 characters can be used in these lines of text -- some
 transports are restricted to a small subset of US-ASCII
 and others cannot handle certain character sequences.
 Transfer encodings are used to transform binary data
 into textual form that can survive such transports.
 Examples of this sort of transfer encoding include the
 base64 and quoted-printable transfer encodings defined
 in RFC 2045.

 (2) Image, audio, video, and even application entities are
 sometimes quite large. Compression algorithms are often
 quite effective in reducing the size of large entities.
 Transfer encodings can be used to apply general-purpose
 non-lossy compression algorithms to MIME entities.

 (3) Transport encodings can be defined as a means of
 representing existing encoding formats in a MIME
 context.

 IMPORTANT: The standardization of a large numbers of different
 transfer encodings is seen as a significant barrier to widespread
 interoperability and is expressely discouraged. Nevertheless, the
 following procedure has been defined to provide a means of defining
 additional transfer encodings, should standardization actually be
 justified.

4.1. Transfer Encoding Requirements

 Transfer encoding specifications must conform to a number of
 requirements as described below.

4.1.1. Naming Requirements

 Each transfer encoding must have a unique name. This name appears in
 the Content-Transfer-Encoding header field and must conform to the
 syntax of that field.

Freed, et. al. Best Current Practice [Page 17]

RFC 2048 MIME Registration Procedures November 1996

4.1.2. Algorithm Specification Requirements

 All of the algorithms used in a transfer encoding (e.g. conversion
 to printable form, compression) must be described in their entirety
 in the transfer encoding specification. Use of secret and/or
 proprietary algorithms in standardized transfer encodings are
 expressly prohibited. The restrictions imposed by RFC 1602 on the
 standardization of patented algorithms must be respected as well.

4.1.3. Input Domain Requirements

 All transfer encodings must be applicable to an arbitrary sequence of
 octets of any length. Dependence on particular input forms is not
 allowed.

 It should be noted that the 7bit and 8bit encodings do not conform to
 this requirement. Aside from the undesireability of having
 specialized encodings, the intent here is to forbid the addition of
 additional encodings along the lines of 7bit and 8bit.

4.1.4. Output Range Requirements

 There is no requirement that a particular tranfer encoding produce a
 particular form of encoded output. However, the output format for
 each transfer encoding must be fully and completely documented. In
 particular, each specification must clearly state whether the output
 format always lies within the confines of 7bit data, 8bit data, or is
 simply pure binary data.

4.1.5. Data Integrity and Generality Requirements

 All transfer encodings must be fully invertible on any platform; it
 must be possible for anyone to recover the original data by
 performing the corresponding decoding operation. Note that this
 requirement effectively excludes all forms of lossy compression as
 well as all forms of encryption from use as a transfer encoding.

4.1.6. New Functionality Requirements

 All transfer encodings must provide some sort of new functionality.
 Some degree of functionality overlap with previously defined transfer
 encodings is acceptable, but any new transfer encoding must also
 offer something no other transfer encoding provides.

Freed, et. al. Best Current Practice [Page 18]

C
om

pendium
 1 page 170

RFC 2048 MIME Registration Procedures November 1996

4.2. Transfer Encoding Definition Procedure

 Definition of a new transfer encoding starts with the construction of
 a draft of a standards-track RFC. The RFC must define the transfer
 encoding precisely and completely, and must also provide substantial
 justification for defining and standardizing a new transfer encoding.
 This specification must then be presented to the IESG for
 consideration. The IESG can

 (1) reject the specification outright as being
 inappropriate for standardization,

 (2) approve the formation of an IETF working group to work
 on the specification in accordance with IETF
 procedures, or,

 (3) accept the specification as-is and put it directly on
 the standards track.

 Transfer encoding specifications on the standards track follow normal
 IETF rules for standards track documents. A transfer encoding is
 considered to be defined and available for use once it is on the
 standards track.

4.3. IANA Procedures for Transfer Encoding Registration

 There is no need for a special procedure for registering Transfer
 Encodings with the IANA. All legitimate transfer encoding
 registrations must appear as a standards-track RFC, so it is the
 IESG's responsibility to notify the IANA when a new transfer encoding
 has been approved.

4.4. Location of Registered Transfer Encodings List

 Transfer encoding registrations will be posted in the anonymous FTP
 directory "ftp://ftp.isi.edu/in-notes/iana/assignments/transfer-
 encodings/" and all registered transfer encodings will be listed in
 the periodically issued "Assigned Numbers" RFC [currently RFC-1700].

Freed, et. al. Best Current Practice [Page 19]

RFC 2048 MIME Registration Procedures November 1996

5. Authors' Addresses

 For more information, the authors of this document are best
 contacted via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 John Klensin
 MCI
 2100 Reston Parkway
 Reston, VA 22091

 Phone: +1 703 715-7361
 Fax: +1 703 715-7436
 EMail: klensin@mci.net

 Jon Postel
 USC/Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292
 USA

 Phone: +1 310 822 1511
 Fax: +1 310 823 6714
 EMail: Postel@ISI.EDU

Freed, et. al. Best Current Practice [Page 20]

C
om

pendium
 1 page 171

RFC 2048 MIME Registration Procedures November 1996

Appendix A -- Grandfathered Media Types

 A number of media types, registered prior to 1996, would, if
 registered under the guidelines in this document, be placed into
 either the vendor or personal trees. Reregistration of those types
 to reflect the appropriate trees is encouraged, but not required.
 Ownership and change control principles outlined in this document
 apply to those types as if they had been registered in the trees
 described above.

Freed, et. al. Best Current Practice [Page 21]

C
om

pendium
 1 page 172

Network Working Group N. Freed
Request for Comments: 2049 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part Five:
 Conformance Criteria and Examples

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822, defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, and leaves the
 message content, or message body, as flat US-ASCII text. This set of
 documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 The initial document in this set, RFC 2045, specifies the various
 headers used to describe the structure of MIME messages. The second
 document defines the general structure of the MIME media typing
 system and defines an initial set of media types. The third
 document, RFC 2047, describes extensions to RFC 822 to allow non-US-

Freed & Borenstein Standards Track [Page 1]

RFC 2049 MIME Conformance November 1996

 ASCII text data in Internet mail header fields. The fourth document,
 RFC 2048, specifies various IANA registration procedures for MIME-
 related facilities. This fifth and final document describes MIME
 conformance criteria as well as providing some illustrative examples
 of MIME message formats, acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521, 1522, and 1590, which
 themselves were revisions of RFCs 1341 and 1342. Appendix B of this
 document describes differences and changes from previous versions.

Table of Contents

 1. Introduction .. 2
 2. MIME Conformance 2
 3. Guidelines for Sending Email Data 6
 4. Canonical Encoding Model 9
 5. Summary ... 12
 6. Security Considerations 12
 7. Authors' Addresses 12
 8. Acknowledgements 13
 A. A Complex Multipart Example 15
 B. Changes from RFC 1521, 1522, and 1590 16
 C. References .. 20

1. Introduction

 The first and second documents in this set define MIME header fields
 and the initial set of MIME media types. The third document
 describes extensions to RFC822 formats to allow for character sets
 other than US-ASCII. This document describes what portions of MIME
 must be supported by a conformant MIME implementation. It also
 describes various pitfalls of contemporary messaging systems as well
 as the canonical encoding model MIME is based on.

2. MIME Conformance

 The mechanisms described in these documents are open-ended. It is
 definitely not expected that all implementations will support all
 available media types, nor that they will all share the same
 extensions. In order to promote interoperability, however, it is
 useful to define the concept of "MIME-conformance" to define a
 certain level of implementation that allows the useful interworking
 of messages with content that differs from US-ASCII text. In this
 section, we specify the requirements for such conformance.

Freed & Borenstein Standards Track [Page 2]

C
om

pendium
 1 page 173

RFC 2049 MIME Conformance November 1996

 A mail user agent that is MIME-conformant MUST:

 (1) Always generate a "MIME-Version: 1.0" header field in
 any message it creates.

 (2) Recognize the Content-Transfer-Encoding header field
 and decode all received data encoded by either quoted-
 printable or base64 implementations. The identity
 transformations 7bit, 8bit, and binary must also be
 recognized.

 Any non-7bit data that is sent without encoding must be
 properly labelled with a content-transfer-encoding of
 8bit or binary, as appropriate. If the underlying
 transport does not support 8bit or binary (as SMTP
 [RFC-821] does not), the sender is required to both
 encode and label data using an appropriate Content-
 Transfer-Encoding such as quoted-printable or base64.

 (3) Must treat any unrecognized Content-Transfer-Encoding
 as if it had a Content-Type of "application/octet-
 stream", regardless of whether or not the actual
 Content-Type is recognized.

 (4) Recognize and interpret the Content-Type header field,
 and avoid showing users raw data with a Content-Type
 field other than text. Implementations must be able
 to send at least text/plain messages, with the
 character set specified with the charset parameter if
 it is not US-ASCII.

 (5) Ignore any content type parameters whose names they do
 not recognize.

 (6) Explicitly handle the following media type values, to
 at least the following extents:

 Text:

 -- Recognize and display "text" mail with the
 character set "US-ASCII."

 -- Recognize other character sets at least to the
 extent of being able to inform the user about what
 character set the message uses.

Freed & Borenstein Standards Track [Page 3]

RFC 2049 MIME Conformance November 1996

 -- Recognize the "ISO-8859-*" character sets to the
 extent of being able to display those characters that
 are common to ISO-8859-* and US-ASCII, namely all
 characters represented by octet values 1-127.

 -- For unrecognized subtypes in a known character
 set, show or offer to show the user the "raw" version
 of the data after conversion of the content from
 canonical form to local form.

 -- Treat material in an unknown character set as if
 it were "application/octet-stream".

 Image, audio, and video:

 -- At a minumum provide facilities to treat any
 unrecognized subtypes as if they were
 "application/octet-stream".

 Application:

 -- Offer the ability to remove either of the quoted-
 printable or base64 encodings defined in this
 document if they were used and put the resulting
 information in a user file.

 Multipart:

 -- Recognize the mixed subtype. Display all relevant
 information on the message level and the body part
 header level and then display or offer to display
 each of the body parts individually.

 -- Recognize the "alternative" subtype, and avoid
 showing the user redundant parts of
 multipart/alternative mail.

 -- Recognize the "multipart/digest" subtype,
 specifically using "message/rfc822" rather than
 "text/plain" as the default media type for body parts
 inside "multipart/digest" entities.

 -- Treat any unrecognized subtypes as if they were
 "mixed".

Freed & Borenstein Standards Track [Page 4]

C
om

pendium
 1 page 174

RFC 2049 MIME Conformance November 1996

 Message:

 -- Recognize and display at least the RFC822 message
 encapsulation (message/rfc822) in such a way as to
 preserve any recursive structure, that is, displaying
 or offering to display the encapsulated data in
 accordance with its media type.

 -- Treat any unrecognized subtypes as if they were
 "application/octet-stream".

 (7) Upon encountering any unrecognized Content-Type field,
 an implementation must treat it as if it had a media
 type of "application/octet-stream" with no parameter
 sub-arguments. How such data are handled is up to an
 implementation, but likely options for handling such
 unrecognized data include offering the user to write it
 into a file (decoded from its mail transport format) or
 offering the user to name a program to which the
 decoded data should be passed as input.

 (8) Conformant user agents are required, if they provide
 non-standard support for non-MIME messages employing
 character sets other than US-ASCII, to do so on
 received messages only. Conforming user agents must not
 send non-MIME messages containing anything other than
 US-ASCII text.

 In particular, the use of non-US-ASCII text in mail
 messages without a MIME-Version field is strongly
 discouraged as it impedes interoperability when sending
 messages between regions with different localization
 conventions. Conforming user agents MUST include proper
 MIME labelling when sending anything other than plain
 text in the US-ASCII character set.

 In addition, non-MIME user agents should be upgraded if
 at all possible to include appropriate MIME header
 information in the messages they send even if nothing
 else in MIME is supported. This upgrade will have
 little, if any, effect on non-MIME recipients and will
 aid MIME in correctly displaying such messages. It
 also provides a smooth transition path to eventual
 adoption of other MIME capabilities.

 (9) Conforming user agents must ensure that any string of
 non-white-space printable US-ASCII characters within a
 "*text" or "*ctext" that begins with "=?" and ends with

Freed & Borenstein Standards Track [Page 5]

RFC 2049 MIME Conformance November 1996

 "?=" be a valid encoded-word. ("begins" means: At the
 start of the field-body or immediately following
 linear-white-space; "ends" means: At the end of the
 field-body or immediately preceding linear-white-
 space.) In addition, any "word" within a "phrase" that
 begins with "=?" and ends with "?=" must be a valid
 encoded-word.

 (10) Conforming user agents must be able to distinguish
 encoded-words from "text", "ctext", or "word"s,
 according to the rules in section 4, anytime they
 appear in appropriate places in message headers. It
 must support both the "B" and "Q" encodings for any
 character set which it supports. The program must be
 able to display the unencoded text if the character set
 is "US-ASCII". For the ISO-8859-* character sets, the
 mail reading program must at least be able to display
 the characters which are also in the US-ASCII set.

 A user agent that meets the above conditions is said to be MIME-
 conformant. The meaning of this phrase is that it is assumed to be
 "safe" to send virtually any kind of properly-marked data to users of
 such mail systems, because such systems will at least be able to
 treat the data as undifferentiated binary, and will not simply splash
 it onto the screen of unsuspecting users.

 There is another sense in which it is always "safe" to send data in a
 format that is MIME-conformant, which is that such data will not
 break or be broken by any known systems that are conformant with RFC
 821 and RFC 822. User agents that are MIME-conformant have the
 additional guarantee that the user will not be shown data that were
 never intended to be viewed as text.

3. Guidelines for Sending Email Data

 Internet email is not a perfect, homogeneous system. Mail may become
 corrupted at several stages in its travel to a final destination.
 Specifically, email sent throughout the Internet may travel across
 many networking technologies. Many networking and mail technologies
 do not support the full functionality possible in the SMTP transport
 environment. Mail traversing these systems is likely to be modified
 in order that it can be transported.

 There exist many widely-deployed non-conformant MTAs in the Internet.
 These MTAs, speaking the SMTP protocol, alter messages on the fly to
 take advantage of the internal data structure of the hosts they are
 implemented on, or are just plain broken.

Freed & Borenstein Standards Track [Page 6]

C
om

pendium
 1 page 175

RFC 2049 MIME Conformance November 1996

 The following guidelines may be useful to anyone devising a data
 format (media type) that is supposed to survive the widest range of
 networking technologies and known broken MTAs unscathed. Note that
 anything encoded in the base64 encoding will satisfy these rules, but
 that some well-known mechanisms, notably the UNIX uuencode facility,
 will not. Note also that anything encoded in the Quoted-Printable
 encoding will survive most gateways intact, but possibly not some
 gateways to systems that use the EBCDIC character set.

 (1) Under some circumstances the encoding used for data may
 change as part of normal gateway or user agent
 operation. In particular, conversion from base64 to
 quoted-printable and vice versa may be necessary. This
 may result in the confusion of CRLF sequences with line
 breaks in text bodies. As such, the persistence of
 CRLF as something other than a line break must not be
 relied on.

 (2) Many systems may elect to represent and store text data
 using local newline conventions. Local newline
 conventions may not match the RFC822 CRLF convention --
 systems are known that use plain CR, plain LF, CRLF, or
 counted records. The result is that isolated CR and LF
 characters are not well tolerated in general; they may
 be lost or converted to delimiters on some systems, and
 hence must not be relied on.

 (3) The transmission of NULs (US-ASCII value 0) is
 problematic in Internet mail. (This is largely the
 result of NULs being used as a termination character by
 many of the standard runtime library routines in the C
 programming language.) The practice of using NULs as
 termination characters is so entrenched now that
 messages should not rely on them being preserved.

 (4) TAB (HT) characters may be misinterpreted or may be
 automatically converted to variable numbers of spaces.
 This is unavoidable in some environments, notably those
 not based on the US-ASCII character set. Such
 conversion is STRONGLY DISCOURAGED, but it may occur,
 and mail formats must not rely on the persistence of
 TAB (HT) characters.

 (5) Lines longer than 76 characters may be wrapped or
 truncated in some environments. Line wrapping or line
 truncation imposed by mail transports is STRONGLY
 DISCOURAGED, but unavoidable in some cases.
 Applications which require long lines must somehow

Freed & Borenstein Standards Track [Page 7]

RFC 2049 MIME Conformance November 1996

 differentiate between soft and hard line breaks. (A
 simple way to do this is to use the quoted-printable
 encoding.)

 (6) Trailing "white space" characters (SPACE, TAB (HT)) on
 a line may be discarded by some transport agents, while
 other transport agents may pad lines with these
 characters so that all lines in a mail file are of
 equal length. The persistence of trailing white space,
 therefore, must not be relied on.

 (7) Many mail domains use variations on the US-ASCII
 character set, or use character sets such as EBCDIC
 which contain most but not all of the US-ASCII
 characters. The correct translation of characters not
 in the "invariant" set cannot be depended on across
 character converting gateways. For example, this
 situation is a problem when sending uuencoded
 information across BITNET, an EBCDIC system. Similar
 problems can occur without crossing a gateway, since
 many Internet hosts use character sets other than US-
 ASCII internally. The definition of Printable Strings
 in X.400 adds further restrictions in certain special
 cases. In particular, the only characters that are
 known to be consistent across all gateways are the 73
 characters that correspond to the upper and lower case
 letters A-Z and a-z, the 10 digits 0-9, and the
 following eleven special characters:

 "'" (US-ASCII decimal value 39)
 "(" (US-ASCII decimal value 40)
 ")" (US-ASCII decimal value 41)
 "+" (US-ASCII decimal value 43)
 "," (US-ASCII decimal value 44)
 "-" (US-ASCII decimal value 45)
 "." (US-ASCII decimal value 46)
 "/" (US-ASCII decimal value 47)
 ":" (US-ASCII decimal value 58)
 "=" (US-ASCII decimal value 61)
 "?" (US-ASCII decimal value 63)

 A maximally portable mail representation will confine
 itself to relatively short lines of text in which the
 only meaningful characters are taken from this set of
 73 characters. The base64 encoding follows this rule.

 (8) Some mail transport agents will corrupt data that
 includes certain literal strings. In particular, a

Freed & Borenstein Standards Track [Page 8]

C
om

pendium
 1 page 176

RFC 2049 MIME Conformance November 1996

 period (".") alone on a line is known to be corrupted
 by some (incorrect) SMTP implementations, and a line
 that starts with the five characters "From " (the fifth
 character is a SPACE) are commonly corrupted as well.
 A careful composition agent can prevent these
 corruptions by encoding the data (e.g., in the quoted-
 printable encoding using "=46rom " in place of "From "
 at the start of a line, and "=2E" in place of "." alone
 on a line).

 Please note that the above list is NOT a list of recommended
 practices for MTAs. RFC 821 MTAs are prohibited from altering the
 character of white space or wrapping long lines. These BAD and
 invalid practices are known to occur on established networks, and
 implementations should be robust in dealing with the bad effects they
 can cause.

4. Canonical Encoding Model

 There was some confusion, in earlier versions of these documents,
 regarding the model for when email data was to be converted to
 canonical form and encoded, and in particular how this process would
 affect the treatment of CRLFs, given that the representation of
 newlines varies greatly from system to system. For this reason, a
 canonical model for encoding is presented below.

 The process of composing a MIME entity can be modeled as being done
 in a number of steps. Note that these steps are roughly similar to
 those steps used in PEM [RFC-1421] and are performed for each
 "innermost level" body:

 (1) Creation of local form.

 The body to be transmitted is created in the system's
 native format. The native character set is used and,
 where appropriate, local end of line conventions are
 used as well. The body may be a UNIX-style text file,
 or a Sun raster image, or a VMS indexed file, or audio
 data in a system-dependent format stored only in
 memory, or anything else that corresponds to the local
 model for the representation of some form of
 information. Fundamentally, the data is created in the
 "native" form that corresponds to the type specified by
 the media type.

Freed & Borenstein Standards Track [Page 9]

RFC 2049 MIME Conformance November 1996

 (2) Conversion to canonical form.

 The entire body, including "out-of-band" information
 such as record lengths and possibly file attribute
 information, is converted to a universal canonical
 form. The specific media type of the body as well as
 its associated attributes dictate the nature of the
 canonical form that is used. Conversion to the proper
 canonical form may involve character set conversion,
 transformation of audio data, compression, or various
 other operations specific to the various media types.
 If character set conversion is involved, however, care
 must be taken to understand the semantics of the media
 type, which may have strong implications for any
 character set conversion, e.g. with regard to
 syntactically meaningful characters in a text subtype
 other than "plain".

 For example, in the case of text/plain data, the text
 must be converted to a supported character set and
 lines must be delimited with CRLF delimiters in
 accordance with RFC 822. Note that the restriction on
 line lengths implied by RFC 822 is eliminated if the
 next step employs either quoted-printable or base64
 encoding.

 (3) Apply transfer encoding.

 A Content-Transfer-Encoding appropriate for this body
 is applied. Note that there is no fixed relationship
 between the media type and the transfer encoding. In
 particular, it may be appropriate to base the choice of
 base64 or quoted-printable on character frequency
 counts which are specific to a given instance of a
 body.

 (4) Insertion into entity.

 The encoded body is inserted into a MIME entity with
 appropriate headers. The entity is then inserted into
 the body of a higher-level entity (message or
 multipart) as needed.

 Conversion from entity form to local form is accomplished by
 reversing these steps. Note that reversal of these steps may produce
 differing results since there is no guarantee that the original and
 final local forms are the same.

Freed & Borenstein Standards Track [Page 10]

C
om

pendium
 1 page 177

RFC 2049 MIME Conformance November 1996

 It is vital to note that these steps are only a model; they are
 specifically NOT a blueprint for how an actual system would be built.
 In particular, the model fails to account for two common designs:

 (1) In many cases the conversion to a canonical form prior
 to encoding will be subsumed into the encoder itself,
 which understands local formats directly. For example,
 the local newline convention for text bodies might be
 carried through to the encoder itself along with
 knowledge of what that format is.

 (2) The output of the encoders may have to pass through one
 or more additional steps prior to being transmitted as
 a message. As such, the output of the encoder may not
 be conformant with the formats specified by RFC 822.
 In particular, once again it may be appropriate for the
 converter's output to be expressed using local newline
 conventions rather than using the standard RFC 822 CRLF
 delimiters.

 Other implementation variations are conceivable as well. The vital
 aspect of this discussion is that, in spite of any optimizations,
 collapsings of required steps, or insertion of additional processing,
 the resulting messages must be consistent with those produced by the
 model described here. For example, a message with the following
 header fields:

 Content-type: text/foo; charset=bar
 Content-Transfer-Encoding: base64

 must be first represented in the text/foo form, then (if necessary)
 represented in the "bar" character set, and finally transformed via
 the base64 algorithm into a mail-safe form.

 NOTE: Some confusion has been caused by systems that represent
 messages in a format which uses local newline conventions which
 differ from the RFC822 CRLF convention. It is important to note that
 these formats are not canonical RFC822/MIME. These formats are
 instead *encodings* of RFC822, where CRLF sequences in the canonical
 representation of the message are encoded as the local newline
 convention. Note that formats which encode CRLF sequences as, for
 example, LF are not capable of representing MIME messages containing
 binary data which contains LF octets not part of CRLF line separation
 sequences.

Freed & Borenstein Standards Track [Page 11]

RFC 2049 MIME Conformance November 1996

5. Summary

 This document defines what is meant by MIME Conformance. It also
 details various problems known to exist in the Internet email system
 and how to use MIME to overcome them. Finally, it describes MIME's
 canonical encoding model.

6. Security Considerations

 Security issues are discussed in the second document in this set, RFC
 2046.

7. Authors' Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 Nathaniel S. Borenstein
 First Virtual Holdings
 25 Washington Avenue
 Morristown, NJ 07960
 USA

 Phone: +1 201 540 8967
 Fax: +1 201 993 3032
 EMail: nsb@nsb.fv.com

 MIME is a result of the work of the Internet Engineering Task Force
 Working Group on RFC 822 Extensions. The chairman of that group,
 Greg Vaudreuil, may be reached at:

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 12]

C
om

pendium
 1 page 178

RFC 2049 MIME Conformance November 1996

8. Acknowledgements

 This document is the result of the collective effort of a large
 number of people, at several IETF meetings, on the IETF-SMTP and
 IETF-822 mailing lists, and elsewhere. Although any enumeration
 seems doomed to suffer from egregious omissions, the following are
 among the many contributors to this effort:

 Harald Tveit Alvestrand Marc Andreessen
 Randall Atkinson Bob Braden
 Philippe Brandon Brian Capouch
 Kevin Carosso Uhhyung Choi
 Peter Clitherow Dave Collier-Brown
 Cristian Constantinof John Coonrod
 Mark Crispin Dave Crocker
 Stephen Crocker Terry Crowley
 Walt Daniels Jim Davis
 Frank Dawson Axel Deininger
 Hitoshi Doi Kevin Donnelly
 Steve Dorner Keith Edwards
 Chris Eich Dana S. Emery
 Johnny Eriksson Craig Everhart
 Patrik Faltstrom Erik E. Fair
 Roger Fajman Alain Fontaine
 Martin Forssen James M. Galvin
 Stephen Gildea Philip Gladstone
 Thomas Gordon Keld Simonsen
 Terry Gray Phill Gross
 James Hamilton David Herron
 Mark Horton Bruce Howard
 Bill Janssen Olle Jarnefors
 Risto Kankkunen Phil Karn
 Alan Katz Tim Kehres
 Neil Katin Steve Kille
 Kyuho Kim Anders Klemets
 John Klensin Valdis Kletniek
 Jim Knowles Stev Knowles
 Bob Kummerfeld Pekka Kytolaakso
 Stellan Lagerstrom Vincent Lau
 Timo Lehtinen Donald Lindsay
 Warner Losh Carlyn Lowery
 Laurence Lundblade Charles Lynn
 John R. MacMillan Larry Masinter
 Rick McGowan Michael J. McInerny
 Leo Mclaughlin Goli Montaser-Kohsari
 Tom Moore John Gardiner Myers
 Erik Naggum Mark Needleman
 Chris Newman John Noerenberg

Freed & Borenstein Standards Track [Page 13]

RFC 2049 MIME Conformance November 1996

 Mats Ohrman Julian Onions
 Michael Patton David J. Pepper
 Erik van der Poel Blake C. Ramsdell
 Christer Romson Luc Rooijakkers
 Marshall T. Rose Jonathan Rosenberg
 Guido van Rossum Jan Rynning
 Harri Salminen Michael Sanderson
 Yutaka Sato Markku Savela
 Richard Alan Schafer Masahiro Sekiguchi
 Mark Sherman Bob Smart
 Peter Speck Henry Spencer
 Einar Stefferud Michael Stein
 Klaus Steinberger Peter Svanberg
 James Thompson Steve Uhler
 Stuart Vance Peter Vanderbilt
 Greg Vaudreuil Ed Vielmetti
 Larry W. Virden Ryan Waldron
 Rhys Weatherly Jay Weber
 Dave Wecker Wally Wedel
 Sven-Ove Westberg Brian Wideen
 John Wobus Glenn Wright
 Rayan Zachariassen David Zimmerman

 The authors apologize for any omissions from this list, which are
 certainly unintentional.

Freed & Borenstein Standards Track [Page 14]

C
om

pendium
 1 page 179

RFC 2049 MIME Conformance November 1996

Appendix A -- A Complex Multipart Example

 What follows is the outline of a complex multipart message. This
 message contains five parts that are to be displayed serially: two
 introductory plain text objects, an embedded multipart message, a
 text/enriched object, and a closing encapsulated text message in a
 non-ASCII character set. The embedded multipart message itself
 contains two objects to be displayed in parallel, a picture and an
 audio fragment.

 MIME-Version: 1.0
 From: Nathaniel Borenstein <nsb@nsb.fv.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Fri, 07 Oct 1994 16:15:05 -0700 (PDT)
 Subject: A multipart example
 Content-Type: multipart/mixed;
 boundary=unique-boundary-1

 This is the preamble area of a multipart message.
 Mail readers that understand multipart format
 should ignore this preamble.

 If you are reading this text, you might want to
 consider changing to a mail reader that understands
 how to properly display multipart messages.

 --unique-boundary-1

 ... Some text appears here ...

 [Note that the blank between the boundary and the start
 of the text in this part means no header fields were
 given and this is text in the US-ASCII character set.
 It could have been done with explicit typing as in the
 next part.]

 --unique-boundary-1
 Content-type: text/plain; charset=US-ASCII

 This could have been part of the previous part, but
 illustrates explicit versus implicit typing of body
 parts.

 --unique-boundary-1
 Content-Type: multipart/parallel; boundary=unique-boundary-2

 --unique-boundary-2
 Content-Type: audio/basic

Freed & Borenstein Standards Track [Page 15]

RFC 2049 MIME Conformance November 1996

 Content-Transfer-Encoding: base64

 ... base64-encoded 8000 Hz single-channel
 mu-law-format audio data goes here ...

 --unique-boundary-2
 Content-Type: image/jpeg
 Content-Transfer-Encoding: base64

 ... base64-encoded image data goes here ...

 --unique-boundary-2--

 --unique-boundary-1
 Content-type: text/enriched

 This is <bold><italic>enriched.</italic></bold>
 <smaller>as defined in RFC 1896</smaller>

 Isn't it
 <bigger><bigger>cool?</bigger></bigger>

 --unique-boundary-1
 Content-Type: message/rfc822

 From: (mailbox in US-ASCII)
 To: (address in US-ASCII)
 Subject: (subject in US-ASCII)
 Content-Type: Text/plain; charset=ISO-8859-1
 Content-Transfer-Encoding: Quoted-printable

 ... Additional text in ISO-8859-1 goes here ...

 --unique-boundary-1--

Appendix B -- Changes from RFC 1521, 1522, and 1590

 These documents are a revision of RFC 1521, 1522, and 1590. For the
 convenience of those familiar with the earlier documents, the changes
 from those documents are summarized in this appendix. For further
 history, note that Appendix H in RFC 1521 specified how that document
 differed from its predecessor, RFC 1341.

 (1) This document has been completely reformatted and split
 into multiple documents. This was done to improve the
 quality of the plain text version of this document,
 which is required to be the reference copy.

Freed & Borenstein Standards Track [Page 16]

C
om

pendium
 1 page 180

RFC 2049 MIME Conformance November 1996

 (2) BNF describing the overall structure of MIME object
 headers has been added. This is a documentation change
 only -- the underlying syntax has not changed in any
 way.

 (3) The specific BNF for the seven media types in MIME has
 been removed. This BNF was incorrect, incomplete, amd
 inconsistent with the type-indendependent BNF. And
 since the type-independent BNF already fully specifies
 the syntax of the various MIME headers, the type-
 specific BNF was, in the final analysis, completely
 unnecessary and caused more problems than it solved.

 (4) The more specific "US-ASCII" character set name has
 replaced the use of the informal term ASCII in many
 parts of these documents.

 (5) The informal concept of a primary subtype has been
 removed.

 (6) The term "object" was being used inconsistently. The
 definition of this term has been clarified, along with
 the related terms "body", "body part", and "entity",
 and usage has been corrected where appropriate.

 (7) The BNF for the multipart media type has been
 rearranged to make it clear that the CRLF preceeding
 the boundary marker is actually part of the marker
 itself rather than the preceeding body part.

 (8) The prose and BNF describing the multipart media type
 have been changed to make it clear that the body parts
 within a multipart object MUST NOT contain any lines
 beginning with the boundary parameter string.

 (9) In the rules on reassembling "message/partial" MIME
 entities, "Subject" is added to the list of headers to
 take from the inner message, and the example is
 modified to clarify this point.

 (10) "Message/partial" fragmenters are restricted to
 splitting MIME objects only at line boundaries.

 (11) In the discussion of the application/postscript type,
 an additional paragraph has been added warning about
 possible interoperability problems caused by embedding
 of binary data inside a PostScript MIME entity.

Freed & Borenstein Standards Track [Page 17]

RFC 2049 MIME Conformance November 1996

 (12) Added a clarifying note to the basic syntax rules for
 the Content-Type header field to make it clear that the
 following two forms:

 Content-type: text/plain; charset=us-ascii (comment)

 Content-type: text/plain; charset="us-ascii"

 are completely equivalent.

 (13) The following sentence has been removed from the
 discussion of the MIME-Version header: "However,
 conformant software is encouraged to check the version
 number and at least warn the user if an unrecognized
 MIME-version is encountered."

 (14) A typo was fixed that said "application/external-body"
 instead of "message/external-body".

 (15) The definition of a character set has been reorganized
 to make the requirements clearer.

 (16) The definition of the "image/gif" media type has been
 moved to a separate document. This change was made
 because of potential conflicts with IETF rules
 governing the standardization of patented technology.

 (17) The definitions of "7bit" and "8bit" have been
 tightened so that use of bare CR, LF can only be used
 as end-of-line sequences. The document also no longer
 requires that NUL characters be preserved, which brings
 MIME into alignment with real-world implementations.

 (18) The definition of canonical text in MIME has been
 tightened so that line breaks must be represented by a
 CRLF sequence. CR and LF characters are not allowed
 outside of this usage. The definition of quoted-
 printable encoding has been altered accordingly.

 (19) The definition of the quoted-printable encoding now
 includes a number of suggestions for how quoted-
 printable encoders might best handle improperly encoded
 material.

 (20) Prose was added to clarify the use of the "7bit",
 "8bit", and "binary" transfer-encodings on multipart or
 message entities encapsulating "8bit" or "binary" data.

Freed & Borenstein Standards Track [Page 18]

C
om

pendium
 1 page 181

RFC 2049 MIME Conformance November 1996

 (21) In the section on MIME Conformance, "multipart/digest"
 support was added to the list of requirements for
 minimal MIME conformance. Also, the requirement for
 "message/rfc822" support were strengthened to clarify
 the importance of recognizing recursive structure.

 (22) The various restrictions on subtypes of "message" are
 now specified entirely on a subtype by subtype basis.

 (23) The definition of "message/rfc822" was changed to
 indicate that at least one of the "From", "Subject", or
 "Date" headers must be present.

 (24) The required handling of unrecognized subtypes as
 "application/octet-stream" has been made more explicit
 in both the type definitions sections and the
 conformance guidelines.

 (25) Examples using text/richtext were changed to
 text/enriched.

 (26) The BNF definition of subtype has been changed to make
 it clear that either an IANA registered subtype or a
 nonstandard "X-" subtype must be used in a Content-Type
 header field.

 (27) MIME media types that are simply registered for use and
 those that are standardized by the IETF are now
 distinguished in the MIME BNF.

 (28) All of the various MIME registration procedures have
 been extensively revised. IANA registration procedures
 for character sets have been moved to a separate
 document that is no included in this set of documents.

 (29) The use of escape and shift mechanisms in the US-ASCII
 and ISO-8859-X character sets these documents define
 have been clarified: Such mechanisms should never be
 used in conjunction with these character sets and their
 effect if they are used is undefined.

 (30) The definition of the AFS access-type for
 message/external-body has been removed.

 (31) The handling of the combination of
 multipart/alternative and message/external-body is now
 specifically addressed.

Freed & Borenstein Standards Track [Page 19]

RFC 2049 MIME Conformance November 1996

 (32) Security issues specific to message/external-body are
 now discussed in some detail.

Appendix C -- References

 [ATK]
 Borenstein, Nathaniel S., Multimedia Applications
 Development with the Andrew Toolkit, Prentice-Hall, 1990.

 [ISO-2022]
 International Standard -- Information Processing --
 Character Code Structure and Extension Techniques,
 ISO/IEC 2022:1994, 4th ed.

 [ISO-8859]
 International Standard -- Information Processing -- 8-bit
 Single-Byte Coded Graphic Character Sets
 - Part 1: Latin Alphabet No. 1, ISO 8859-1:1987, 1st ed.
 - Part 2: Latin Alphabet No. 2, ISO 8859-2:1987, 1st ed.
 - Part 3: Latin Alphabet No. 3, ISO 8859-3:1988, 1st ed.
 - Part 4: Latin Alphabet No. 4, ISO 8859-4:1988, 1st ed.
 - Part 5: Latin/Cyrillic Alphabet, ISO 8859-5:1988, 1st
 ed.
 - Part 6: Latin/Arabic Alphabet, ISO 8859-6:1987, 1st ed.
 - Part 7: Latin/Greek Alphabet, ISO 8859-7:1987, 1st ed.
 - Part 8: Latin/Hebrew Alphabet, ISO 8859-8:1988, 1st ed.
 - Part 9: Latin Alphabet No. 5, ISO/IEC 8859-9:1989, 1st
 ed.
 International Standard -- Information Technology -- 8-bit
 Single-Byte Coded Graphic Character Sets
 - Part 10: Latin Alphabet No. 6, ISO/IEC 8859-10:1992,
 1st ed.

 [ISO-646]
 International Standard -- Information Technology -- ISO
 7-bit Coded Character Set for Information Interchange,
 ISO 646:1991, 3rd ed..

 [JPEG]
 JPEG Draft Standard ISO 10918-1 CD.

 [MPEG]
 Video Coding Draft Standard ISO 11172 CD, ISO
 IEC/JTC1/SC2/WG11 (Motion Picture Experts Group), May,
 1991.

Freed & Borenstein Standards Track [Page 20]

C
om

pendium
 1 page 182

RFC 2049 MIME Conformance November 1996

 [PCM]
 CCITT, Fascicle III.4 - Recommendation G.711, "Pulse Code
 Modulation (PCM) of Voice Frequencies", Geneva, 1972.

 [POSTSCRIPT]
 Adobe Systems, Inc., PostScript Language Reference
 Manual, Addison-Wesley, 1985.

 [POSTSCRIPT2]
 Adobe Systems, Inc., PostScript Language Reference
 Manual, Addison-Wesley, Second Ed., 1990.

 [RFC-783]
 Sollins, K.R., "TFTP Protocol (revision 2)", RFC-783,
 MIT, June 1981.

 [RFC-821]
 Postel, J.B., "Simple Mail Transfer Protocol", STD 10,
 RFC 821, USC/Information Sciences Institute, August 1982.

 [RFC-822]
 Crocker, D., "Standard for the Format of ARPA Internet
 Text Messages", STD 11, RFC 822, UDEL, August 1982.

 [RFC-934]
 Rose, M. and E. Stefferud, "Proposed Standard for Message
 Encapsulation", RFC 934, Delaware and NMA, January 1985.

 [RFC-959]
 Postel, J. and J. Reynolds, "File Transfer Protocol", STD
 9, RFC 959, USC/Information Sciences Institute, October
 1985.

 [RFC-1049]
 Sirbu, M., "Content-Type Header Field for Internet
 Messages", RFC 1049, CMU, March 1988.

 [RFC-1154]
 Robinson, D., and R. Ullmann, "Encoding Header Field for
 Internet Messages", RFC 1154, Prime Computer, Inc., April
 1990.

 [RFC-1341]
 Borenstein, N., and N. Freed, "MIME (Multipurpose
 Internet Mail Extensions): Mechanisms for Specifying and
 Describing the Format of Internet Message Bodies", RFC
 1341, Bellcore, Innosoft, June 1992.

Freed & Borenstein Standards Track [Page 21]

RFC 2049 MIME Conformance November 1996

 [RFC-1342]
 Moore, K., "Representation of Non-Ascii Text in Internet
 Message Headers", RFC 1342, University of Tennessee, June
 1992.

 [RFC-1344]
 Borenstein, N., "Implications of MIME for Internet Mail
 Gateways", RFC 1344, Bellcore, June 1992.

 [RFC-1345]
 Simonsen, K., "Character Mnemonics & Character Sets", RFC
 1345, Rationel Almen Planlaegning, June 1992.

 [RFC-1421]
 Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I -- Message Encryption and Authentication
 Procedures", RFC 1421, IAB IRTF PSRG, IETF PEM WG,
 February 1993.

 [RFC-1422]
 Kent, S., "Privacy Enhancement for Internet Electronic
 Mail: Part II -- Certificate-Based Key Management", RFC
 1422, IAB IRTF PSRG, IETF PEM WG, February 1993.

 [RFC-1423]
 Balenson, D., "Privacy Enhancement for Internet
 Electronic Mail: Part III -- Algorithms, Modes, and
 Identifiers", IAB IRTF PSRG, IETF PEM WG, February 1993.

 [RFC-1424]
 Kaliski, B., "Privacy Enhancement for Internet Electronic
 Mail: Part IV -- Key Certification and Related
 Services", IAB IRTF PSRG, IETF PEM WG, February 1993.

 [RFC-1521]
 Borenstein, N., and Freed, N., "MIME (Multipurpose
 Internet Mail Extensions): Mechanisms for Specifying and
 Describing the Format of Internet Message Bodies", RFC
 1521, Bellcore, Innosoft, September, 1993.

 [RFC-1522]
 Moore, K., "Representation of Non-ASCII Text in Internet
 Message Headers", RFC 1522, University of Tennessee,
 September 1993.

Freed & Borenstein Standards Track [Page 22]

C
om

pendium
 1 page 183

RFC 2049 MIME Conformance November 1996

 [RFC-1524]
 Borenstein, N., "A User Agent Configuration Mechanism for
 Multimedia Mail Format Information", RFC 1524, Bellcore,
 September 1993.

 [RFC-1543]
 Postel, J., "Instructions to RFC Authors", RFC 1543,
 USC/Information Sciences Institute, October 1993.

 [RFC-1556]
 Nussbacher, H., "Handling of Bi-directional Texts in
 MIME", RFC 1556, Israeli Inter-University Computer
 Center, December 1993.

 [RFC-1590]
 Postel, J., "Media Type Registration Procedure", RFC
 1590, USC/Information Sciences Institute, March 1994.

 [RFC-1602]
 Internet Architecture Board, Internet Engineering
 Steering Group, Huitema, C., Gross, P., "The Internet
 Standards Process -- Revision 2", March 1994.

 [RFC-1652]
 Klensin, J., (WG Chair), Freed, N., (Editor), Rose, M.,
 Stefferud, E., and Crocker, D., "SMTP Service Extension
 for 8bit-MIME transport", RFC 1652, United Nations
 University, Innosoft, Dover Beach Consulting, Inc.,
 Network Management Associates, Inc., The Branch Office,
 March 1994.

 [RFC-1700]
 Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
 RFC 1700, USC/Information Sciences Institute, October
 1994.

 [RFC-1741]
 Faltstrom, P., Crocker, D., and Fair, E., "MIME Content
 Type for BinHex Encoded Files", December 1994.

 [RFC-1896]
 Resnick, P., and A. Walker, "The text/enriched MIME
 Content-type", RFC 1896, February, 1996.

Freed & Borenstein Standards Track [Page 23]

RFC 2049 MIME Conformance November 1996

 [RFC-2045]
 Freed, N., and and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, Innosoft, First Virtual Holdings,
 November 1996.

 [RFC-2046]
 Freed, N., and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 Innosoft, First Virtual Holdings, November 1996.

 [RFC-2047]
 Moore, K., "Multipurpose Internet Mail Extensions (MIME)
 Part Three: Representation of Non-ASCII Text in Internet
 Message Headers", RFC 2047, University of
 Tennessee, November 1996.

 [RFC-2048]
 Freed, N., Klensin, J., and J. Postel, "Multipurpose
 Internet Mail Extensions (MIME) Part Four: MIME
 Registration Procedures", RFC 2048, Innosoft, MCI,
 ISI, November 1996.

 [RFC-2049]
 Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Five: Conformance Criteria and
 Examples", RFC 2049 (this document), Innosoft, First
 Virtual Holdings, November 1996.

 [US-ASCII]
 Coded Character Set -- 7-Bit American Standard Code for
 Information Interchange, ANSI X3.4-1986.

 [X400]
 Schicker, Pietro, "Message Handling Systems, X.400",
 Message Handling Systems and Distributed Applications, E.
 Stefferud, O-j. Jacobsen, and P. Schicker, eds., North-
 Holland, 1989, pp. 3-41.

Freed & Borenstein Standards Track [Page 24]

C
om

pendium
 1 page 184

Network Working Group K. Moore
Request for Comments: 1891 University of Tennessee
Category: Standards Track January 1996

 SMTP Service Extension
 for Delivery Status Notifications

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

1. Abstract

 This memo defines an extension to the SMTP service, which allows an
 SMTP client to specify (a) that delivery status notifications (DSNs)
 should be generated under certain conditions, (b) whether such
 notifications should return the contents of the message, and (c)
 additional information, to be returned with a DSN, that allows the
 sender to identify both the recipient(s) for which the DSN was
 issued, and the transaction in which the original message was sent.

 Any questions, comments, and reports of defects or ambiguities in
 this specification may be sent to the mailing list for the NOTARY
 working group of the IETF, using the address
 <notifications@cs.utk.edu>. Requests to subscribe to the mailing
 list should be addressed to <notifications-request@cs.utk.edu>.
 Implementors of this specification are encouraged to subscribe to the
 mailing list, so that they will quickly be informed of any problems
 which might hinder interoperability.

 NOTE: This document is a Proposed Standard. If and when this
 protocol is submitted for Draft Standard status, any normative text
 (phrases containing SHOULD, SHOULD NOT, MUST, MUST NOT, or MAY) in
 this document will be re-evaluated in light of implementation
 experience, and are thus subject to change.

2. Introduction

 The SMTP protocol [1] requires that an SMTP server provide
 notification of delivery failure, if it determines that a message
 cannot be delivered to one or more recipients. Traditionally, such
 notification consists of an ordinary Internet mail message (format
 defined by [2]), sent to the envelope sender address (the argument of

Moore Standards Track [Page 1]

RFC 1891 SMTP Delivery Status Notifications January 1996

 the SMTP MAIL command), containing an explanation of the error and at
 least the headers of the failed message.

 Experience with large mail distribution lists [3] indicates that such
 messages are often insufficient to diagnose problems, or even to
 determine at which host or for which recipients a problem occurred.
 In addition, the lack of a standardized format for delivery
 notifications in Internet mail makes it difficult to exchange such
 notifications with other message handling systems.

 Such experience has demonstrated a need for a delivery status
 notification service for Internet electronic mail, which:

(a) is reliable, in the sense that any DSN request will either be
 honored at the time of final delivery, or result in a response
 that indicates that the request cannot be honored,

(b) when both success and failure notifications are requested,
 provides an unambiguous and nonconflicting indication of whether
 delivery of a message to a recipient succeeded or failed,

(c) is stable, in that a failed attempt to deliver a DSN should never
 result in the transmission of another DSN over the network,

(d) preserves sufficient information to allow the sender to identify
 both the mail transaction and the recipient address which caused
 the notification, even when mail is forwarded or gatewayed to
 foreign environments, and

(e) interfaces acceptably with non-SMTP and non-822-based mail
 systems, both so that notifications returned from foreign mail
 systems may be useful to Internet users, and so that the
 notification requests from foreign environments may be honored.
 Among the requirements implied by this goal are the ability to
 request non-return-of-content, and the ability to specify whether
 positive delivery notifications, negative delivery notifications,
 both, or neither, should be issued.

 In an attempt to provide such a service, this memo uses the mechanism
 defined in [4] to define an extension to the SMTP protocol. Using
 this mechanism, an SMTP client may request that an SMTP server issue
 or not issue a delivery status notification (DSN) under certain
 conditions. The format of a DSN is defined in [5].

Moore Standards Track [Page 2]

C
om

pendium
 1 page 185

RFC 1891 SMTP Delivery Status Notifications January 1996

3. Framework for the Delivery Status Notification Extension

 The following service extension is therefore defined:

(1) The name of the SMTP service extension is "Delivery Status
 Notification";

(2) the EHLO keyword value associated with this extension is "DSN",
 the meaning of which is defined in section 4 of this memo;

(3) no parameters are allowed with this EHLO keyword value;

(4) two optional parameters are added to the RCPT command, and two
 optional parameters are added to the MAIL command:

 An optional parameter for the RCPT command, using the
 esmtp-keyword "NOTIFY", (to specify the conditions under which a
 delivery status notification should be generated), is defined in
 section 5.1,

 An optional parameter for the RCPT command, using the
 esmtp-keyword "ORCPT", (used to convey the "original"
 (sender-specified) recipient address), is defined in section 5.2,
 and

 An optional parameter for the MAIL command, using the
 esmtp-keyword "RET", (to request that DSNs containing an
 indication of delivery failure either return the entire contents
 of a message or only the message headers), is defined in section
 5.3,

 An optional parameter for the MAIL command, using the
 esmtp-keyword "ENVID", (used to propagate an identifier for this
 message transmission envelope, which is also known to the sender
 and will, if present, be returned in any DSNs issued for this
 transmission), is defined in section 5.4;

(5) no additional SMTP verbs are defined by this extension.

 The remainder of this memo specifies how support for the extension
 effects the behavior of a message transfer agent.

4. The Delivery Status Notification service extension

 An SMTP client wishing to request a DSN for a message may issue the
 EHLO command to start an SMTP session, to determine if the server
 supports any of several service extensions. If the server responds
 with code 250 to the EHLO command, and the response includes the EHLO

Moore Standards Track [Page 3]

RFC 1891 SMTP Delivery Status Notifications January 1996

 keyword DSN, then the Delivery Status Notification extension (as
 described in this memo) is supported.

 Ordinarily, when an SMTP server returns a positive (2xx) reply code
 in response to a RCPT command, it agrees to accept responsibility for
 either delivering the message to the named recipient, or sending a
 notification to the sender of the message indicating that delivery
 has failed. However, an extended SMTP ("ESMTP") server which
 implements this service extension will accept an optional NOTIFY
 parameter with the RCPT command. If present, the NOTIFY parameter
 alters the conditions for generation of delivery status notifications
 from the default (issue notifications only on failure) specified in
 [1]. The ESMTP client may also request (via the RET parameter)
 whether the entire contents of the original message should be
 returned (as opposed to just the headers of that message), along with
 the DSN.

 In general, an ESMTP server which implements this service extension
 will propagate delivery status notification requests when relaying
 mail to other SMTP-based MTAs which also support this extension, and
 make a "best effort" to ensure that such requests are honored when
 messages are passed into other environments.

 In order that any delivery status notifications thus generated will
 be meaningful to the sender, any ESMTP server which supports this
 extension will attempt to propagate the following information to any
 other MTAs that are used to relay the message, for use in generating
 DSNs:

(a) for each recipient, a copy of the original recipient address, as
 used by the sender of the message.

 This address need not be the same as the mailbox specified in the
 RCPT command. For example, if a message was originally addressed
 to A@B.C and later forwarded to A@D.E, after such forwarding has
 taken place, the RCPT command will specify a mailbox of A@D.E.
 However, the original recipient address remains A@B.C.

 Also, if the message originated from an environment which does not
 use Internet-style user@domain addresses, and was gatewayed into
 SMTP, the original recipient address will preserve the original
 form of the recipient address.

(b) for the entire SMTP transaction, an envelope identification
 string, which may be used by the sender to associate any delivery
 status notifications with the transaction used to send the
 original message.

Moore Standards Track [Page 4]

C
om

pendium
 1 page 186

RFC 1891 SMTP Delivery Status Notifications January 1996

5. Additional parameters for RCPT and MAIL commands

 The extended RCPT and MAIL commands are issued by a client when it
 wishes to request a DSN from the server, under certain conditions,
 for a particular recipient. The extended RCPT and MAIL commands are
 identical to the RCPT and MAIL commands defined in [1], except that
 one or more of the following parameters appear after the sender or
 recipient address, respectively. The general syntax for extended
 SMTP commands is defined in [4].

 NOTE: Although RFC 822 ABNF is used to describe the syntax of these
 parameters, they are not, in the language of that document,
 "structured field bodies". Therefore, while parentheses MAY appear
 within an emstp-value, they are not recognized as comment delimiters.

 The syntax for "esmtp-value" in [4] does not allow SP, "=", control
 characters, or characters outside the traditional ASCII range of 1-
 127 decimal to be transmitted in an esmtp-value. Because the ENVID
 and ORCPT parameters may need to convey values outside this range,
 the esmtp-values for these parameters are encoded as "xtext".
 "xtext" is formally defined as follows:

 xtext = *(xchar / hexchar)

 xchar = any ASCII CHAR between "!" (33) and "~" (126) inclusive,
 except for "+" and "=".

; "hexchar"s are intended to encode octets that cannot appear
; as ASCII characters within an esmtp-value.

 hexchar = ASCII "+" immediately followed by two upper case
 hexadecimal digits

When encoding an octet sequence as xtext:

+ Any ASCII CHAR between "!" and "~" inclusive, except for "+" and "=",
 MAY be encoded as itself. (A CHAR in this range MAY instead be
 encoded as a "hexchar", at the implementor's discretion.)

+ ASCII CHARs that fall outside the range above must be encoded as
 "hexchar".

5.1 The NOTIFY parameter of the ESMTP RCPT command

 A RCPT command issued by a client may contain the optional esmtp-
 keyword "NOTIFY", to specify the conditions under which the SMTP
 server should generate DSNs for that recipient. If the NOTIFY
 esmtp-keyword is used, it MUST have an associated esmtp-value,

Moore Standards Track [Page 5]

RFC 1891 SMTP Delivery Status Notifications January 1996

 formatted according to the following rules, using the ABNF of RFC
 822:

 notify-esmtp-value = "NEVER" / 1#notify-list-element

 notify-list-element = "SUCCESS" / "FAILURE" / "DELAY"

Notes:

a. Multiple notify-list-elements, separated by commas, MAY appear in a
 NOTIFY parameter; however, the NEVER keyword MUST appear by itself.

b. Any of the keywords NEVER, SUCCESS, FAILURE, or DELAY may be spelled
 in any combination of upper and lower case letters.

The meaning of the NOTIFY parameter values is generally as follows:

+ A NOTIFY parameter value of "NEVER" requests that a DSN not be
 returned to the sender under any conditions.

+ A NOTIFY parameter value containing the "SUCCESS" or "FAILURE"
 keywords requests that a DSN be issued on successful delivery or
 delivery failure, respectively.

+ A NOTIFY parameter value containing the keyword "DELAY" indicates the
 sender's willingness to receive "delayed" DSNs. Delayed DSNs may be
 issued if delivery of a message has been delayed for an unusual amount
 of time (as determined by the MTA at which the message is delayed),
 but the final delivery status (whether successful or failure) cannot
 be determined. The absence of the DELAY keyword in a NOTIFY parameter
 requests that a "delayed" DSN NOT be issued under any conditions.

 The actual rules governing interpretation of the NOTIFY parameter are
 given in section 6.

 For compatibility with SMTP clients that do not use the NOTIFY
 facility, the absence of a NOTIFY parameter in a RCPT command may be
 interpreted as either NOTIFY=FAILURE or NOTIFY=FAILURE,DELAY.

5.2 The ORCPT parameter to the ESMTP RCPT command

 The ORCPT esmtp-keyword of the RCPT command is used to specify an
 "original" recipient address that corresponds to the actual recipient
 to which the message is to be delivered. If the ORCPT esmtp-keyword
 is used, it MUST have an associated esmtp-value, which consists of
 the original recipient address, encoded according to the rules below.
 The ABNF for the ORCPT parameter is:

Moore Standards Track [Page 6]

C
om

pendium
 1 page 187

RFC 1891 SMTP Delivery Status Notifications January 1996

 orcpt-parameter = "ORCPT=" original-recipient-address

 original-recipient-address = addr-type ";" xtext

 addr-type = atom

 The "addr-type" portion MUST be an IANA-registered electronic mail
 address-type (as defined in [5]), while the "xtext" portion contains
 an encoded representation of the original recipient address using the
 rules in section 5 of this document. The entire ORCPT parameter MAY
 be up to 500 characters in length.

 When initially submitting a message via SMTP, if the ORCPT parameter
 is used, it MUST contain the same address as the RCPT TO address
 (unlike the RCPT TO address, the ORCPT parameter will be encoded as
 xtext). Likewise, when a mailing list submits a message via SMTP to
 be distributed to the list subscribers, if ORCPT is used, the ORCPT
 parameter MUST match the new RCPT TO address of each recipient, not
 the address specified by the original sender of the message.)

 The "addr-type" portion of the original-recipient-address is used to
 indicate the "type" of the address which appears in the ORCPT
 parameter value. However, the address associated with the ORCPT
 keyword is NOT constrained to conform to the syntax rules for that
 "addr-type".

 Ideally, the "xtext" portion of the original-recipient-address should
 contain, in encoded form, the same sequence of characters that the
 sender used to specify the recipient. However, for a message
 gatewayed from an environment (such as X.400) in which a recipient
 address is not a simple string of printable characters, the
 representation of recipient address must be defined by a
 specification for gatewaying between DSNs and that environment.

5.3 The RET parameter of the ESMTP MAIL command

 The RET esmtp-keyword on the extended MAIL command specifies whether
 or not the message should be included in any failed DSN issued for
 this message transmission. If the RET esmtp-keyword is used, it MUST
 have an associated esmtp-value, which is one of the following
 keywords:

 FULL requests that the entire message be returned in any "failed"
 delivery status notification issued for this recipient.

 HDRS requests that only the headers of the message be returned.

Moore Standards Track [Page 7]

RFC 1891 SMTP Delivery Status Notifications January 1996

 The FULL and HDRS keywords may be spelled in any combination of upper
 and lower case letters.

 If no RET parameter is supplied, the MTA MAY return either the
 headers of the message or the entire message for any DSN containing
 indication of failed deliveries.

 Note that the RET parameter only applies to DSNs that indicate
 delivery failure for at least one recipient. If a DSN contains no
 indications of delivery failure, only the headers of the message
 should be returned.

5.4 The ENVID parameter to the ESMTP MAIL command

 The ENVID esmtp-keyword of the SMTP MAIL command is used to specify
 an "envelope identifier" to be transmitted along with the message and
 included in any DSNs issued for any of the recipients named in this
 SMTP transaction. The purpose of the envelope identifier is to allow
 the sender of a message to identify the transaction for which the DSN
 was issued.

 The ABNF for the ENVID parameter is:

 envid-parameter = "ENVID=" xtext

 The ENVID esmtp-keyword MUST have an associated esmtp-value. No
 meaning is assigned by the mail system to the presence or absence of
 this parameter or to any esmtp-value associated with this parameter;
 the information is used only by the sender or his user agent. The
 ENVID parameter MAY be up to 100 characters in length.

5.5 Restrictions on the use of Delivery Status Notification parameters

 The RET and ENVID parameters MUST NOT appear more than once each in
 any single MAIL command. If more than one of either of these
 parameters appears in a MAIL command, the ESMTP server SHOULD respond
 with "501 syntax error in parameters or arguments".

 The NOTIFY and ORCPT parameters MUST NOT appear more than once in any
 RCPT command. If more than one of either of these parameters appears
 in a RCPT command, the ESMTP server SHOULD respond with "501 syntax
 error in parameters or arguments".

6. Conformance requirements

 The Simple Mail Transfer Protocol (SMTP) is used by Message Transfer
 Agents (MTAs) when accepting, relaying, or gatewaying mail, as well
 as User Agents (UAs) when submitting mail to the mail transport

Moore Standards Track [Page 8]

C
om

pendium
 1 page 188

RFC 1891 SMTP Delivery Status Notifications January 1996

 system. The DSN extension to SMTP may be used to allow UAs to convey
 the sender's requests as to when DSNs should be issued. A UA which
 claims to conform to this specification must meet certain
 requirements as described below.

 Typically, a message transfer agent (MTA) which supports SMTP will
 assume, at different times, both the role of a SMTP client and an
 SMTP server, and may also provide local delivery, gatewaying to
 foreign environments, forwarding, and mailing list expansion. An MTA
 which, when acting as an SMTP server, issues the DSN keyword in
 response to the EHLO command, MUST obey the rules below for a
 "conforming SMTP client" when acting as a client, and a "conforming
 SMTP server" when acting as a server. The term "conforming MTA"
 refers to an MTA which conforms to this specification, independent of
 its role of client or server.

6.1 SMTP protocol interactions

 The following rules apply to SMTP transactions in which any of the
 ENVID, NOTIFY, RET, or ORCPT keywords are used:

(a) If an SMTP client issues a MAIL command containing a valid ENVID
 parameter and associated esmtp-value and/or a valid RET parameter
 and associated esmtp-value, a conforming SMTP server MUST return
 the same reply-code as it would to the same MAIL command without
 the ENVID and/or RET parameters. A conforming SMTP server MUST
 NOT refuse a MAIL command based on the absence or presence of
 valid ENVID or RET parameters, or on their associated
 esmtp-values.

 However, if the associated esmtp-value is not valid (i.e. contains
 illegal characters), or if there is more than one ENVID or RET
 parameter in a particular MAIL command, the server MUST issue the
 reply-code 501 with an appropriate message (e.g. "syntax error in
 parameter").

(b) If an SMTP client issues a RCPT command containing any valid
 NOTIFY and/or ORCPT parameters, a conforming SMTP server MUST
 return the same response as it would to the same RCPT command
 without those NOTIFY and/or ORCPT parameters. A conforming SMTP
 server MUST NOT refuse a RCPT command based on the presence or
 absence of any of these parameters.

 However, if any of the associated esmtp-values are not valid, or
 if there is more than one of any of these parameters in a
 particular RCPT command, the server SHOULD issue the response "501
 syntax error in parameter".

Moore Standards Track [Page 9]

RFC 1891 SMTP Delivery Status Notifications January 1996

6.2 Handling of messages received via SMTP

 This section describes how a conforming MTA should handle any
 messages received via SMTP.

 NOTE: A DSN MUST NOT be returned to the sender for any message for
 which the return address from the SMTP MAIL command was NULL ("<>"),
 even if the sender's address is available from other sources (e.g.
 the message header). However, the MTA which would otherwise issue a
 DSN SHOULD inform the local postmaster of delivery failures through
 some appropriate mechanism that will not itself result in the
 generation of DSNs.

 DISCUSSION: RFC 1123, section 2.3.3 requires error notifications to
 be sent with a NULL return address ("reverse-path"). This creates an
 interesting situation when a message arrives with one or more
 nonfunctional recipient addresses in addition to a nonfunctional
 return address. When delivery to one of the recipient addresses
 fails, the MTA will attempt to send a nondelivery notification to the
 return address, setting the return address on the notification to
 NULL. When the delivery of this notification fails, the MTA
 attempting delivery of that notification sees a NULL return address.
 If that MTA were not to inform anyone of the situation, the original
 message would be silently lost. Furthermore, a nonfunctional return
 address is often indicative of a configuration problem in the
 sender's MTA. Reporting the condition to the local postmaster may
 help to speed correction of such errors.

6.2.1 Relay of messages to other conforming SMTP servers

 The following rules govern the behavior of a conforming MTA, when
 relaying a message which was received via the SMTP protocol, to an
 SMTP server that supports the Delivery Status Notification service
 extension:

(a) Any ENVID parameter included in the MAIL command when a message was
 received, MUST also appear on the MAIL command with which the
 message is relayed, with the same associated esmtp-value. If no
 ENVID parameter was included in the MAIL command when the message
 was received, the ENVID parameter MUST NOT be supplied when the
 message is relayed.

(b) Any RET parameter included in the MAIL command when a message was
 received, MUST also appear on the MAIL command with which the
 message is relayed, with the same associated esmtp-value. If no RET
 parameter was included in the MAIL command when the message was
 received, the RET parameter MUST NOT supplied when the message is
 relayed.

Moore Standards Track [Page 10]

C
om

pendium
 1 page 189

RFC 1891 SMTP Delivery Status Notifications January 1996

(c) If the NOTIFY parameter was supplied for a recipient when the
 message was received, the RCPT command issued when the message is
 relayed MUST also contain the NOTIFY parameter along with its
 associated esmtp-value. If the NOTIFY parameter was not supplied
 for a recipient when the message was received, the NOTIFY parameter
 MUST NOT be supplied for that recipient when the message is relayed.

(d) If any ORCPT parameter was present in the RCPT command for a
 recipient when the message was received, an ORCPT parameter with the
 identical original-recipient-address MUST appear in the RCPT command
 issued for that recipient when relaying the message. (For example,
 the MTA therefore MUST NOT change the case of any alphabetic
 characters in an ORCPT parameter.)

 If no ORCPT parameter was present in the RCPT command when the
 message was received, an ORCPT parameter MAY be added to the RCPT
 command when the message is relayed. If an ORCPT parameter is added
 by the relaying MTA, it MUST contain the recipient address from the
 RCPT command used when the message was received by that MTA.

6.2.2 Relay of messages to non-conforming SMTP servers

 The following rules govern the behavior of a conforming MTA (in the
 role of client), when relaying a message which was received via the
 SMTP protocol, to an SMTP server that does not support the Delivery
 Status Notification service extension:

(a) ENVID, NOTIFY, RET, or ORCPT parameters MUST NOT be issued when
 relaying the message.

(b) If the NOTIFY parameter was supplied for a recipient, with an esmtp-
 value containing the keyword SUCCESS, and the SMTP server returns a
 success (2xx) reply-code in response to the RCPT command, the client
 MUST issue a "relayed" DSN for that recipient.

(c) If the NOTIFY parameter was supplied for a recipient with an esmtp-
 value containing the keyword FAILURE, and the SMTP server returns a
 permanent failure (5xx) reply-code in response to the RCPT command,
 the client MUST issue a "failed" DSN for that recipient.

(d) If the NOTIFY parameter was supplied for a recipient with an esmtp-
 value of NEVER, the client MUST NOT issue a DSN for that recipient,
 regardless of the reply-code returned by the SMTP server. However,
 if the server returned a failure (5xx) reply-code, the client MAY
 inform the local postmaster of the delivery failure via an
 appropriate mechanism that will not itself result in the generation
 of DSNs.

Moore Standards Track [Page 11]

RFC 1891 SMTP Delivery Status Notifications January 1996

 When attempting to relay a message to an SMTP server that does not
 support this extension, and if NOTIFY=NEVER was specified for some
 recipients of that message, a conforming SMTP client MAY relay the
 message for those recipients in a separate SMTP transaction, using
 an empty reverse-path in the MAIL command. This will prevent DSNs
 from being issued for those recipients by MTAs that conform to [1].

(e) If a NOTIFY parameter was not supplied for a recipient, and the SMTP
 server returns a success (2xx) reply-code in response to a RCPT
 command, the client MUST NOT issue any DSN for that recipient.

(f) If a NOTIFY parameter was not supplied for a recipient, and the SMTP
 server returns a permanent failure (5xx) reply-code in response to a
 RCPT command, the client MUST issue a "failed" DSN for that
 recipient.

6.2.3 Local delivery of messages

 The following rules govern the behavior of a conforming MTA upon
 successful delivery of a message that was received via the SMTP
 protocol, to a local recipient's mailbox:

 "Delivery" means that the message has been placed in the recipient's
 mailbox. For messages which are transmitted to a mailbox for later
 retrieval via IMAP [6], POP [7] or a similar message access protocol,
 "delivery" occurs when the message is made available to the IMAP
 (POP, etc.) service, rather than when the message is retrieved by the
 recipient's user agent.

 Similarly, for a recipient address which corresponds to a mailing
 list exploder, "delivery" occurs when the message is made available
 to that list exploder, even though the list exploder might refuse to
 deliver that message to the list recipients.

(a) If the NOTIFY parameter was supplied for that recipient, with an
 esmtp-value containing the SUCCESS keyword, the MTA MUST issue a
 "delivered" DSN for that recipient.

(b) If the NOTIFY parameter was supplied for that recipient which did
 not contain the SUCCESS keyword, the MTA MUST NOT issue a DSN for
 that recipient.

(c) If the NOTIFY parameter was not supplied for that recipient, the MTA
 MUST NOT issue a DSN.

Moore Standards Track [Page 12]

C
om

pendium
 1 page 190

RFC 1891 SMTP Delivery Status Notifications January 1996

6.2.4 Gatewaying a message into a foreign environment

 The following rules govern the behavior of a conforming MTA, when
 gatewaying a message that was received via the SMTP protocol, into a
 foreign (non-SMTP) environment:

(a) If the the foreign environment is capable of issuing appropriate
 notifications under the conditions requested by the NOTIFY
 parameter, and the conforming MTA can ensure that any notification
 thus issued will be translated into a DSN and delivered to the
 original sender, then the MTA SHOULD gateway the message into the
 foreign environment, requesting notification under the desired
 conditions, without itself issuing a DSN.

(b) If a NOTIFY parameter was supplied with the SUCCESS keyword, but the
 destination environment cannot return an appropriate notification on
 successful delivery, the MTA SHOULD issue a "relayed" DSN for that
 recipient.

(c) If a NOTIFY parameter was supplied with an esmtp-keyword of NEVER, a
 DSN MUST NOT be issued. If possible, the MTA SHOULD direct the
 destination environment to not issue delivery notifications for that
 recipient.

(d) If the NOTIFY parameter was not supplied for a particular recipient,
 a DSN SHOULD NOT be issued by the gateway. The gateway SHOULD
 attempt to ensure that appropriate notification will be provided by
 the foreign mail environment if eventual delivery failure occurs,
 and that no notification will be issued on successful delivery.

(e) When gatewaying a message into a foreign environment, the return-of-
 content conditions specified by any RET parameter are nonbinding;
 however, the MTA SHOULD attempt to honor the request using whatever
 mechanisms exist in the foreign environment.

6.2.5 Delays in delivery

 If a conforming MTA receives a message via the SMTP protocol, and is
 unable to deliver or relay the message to one or more recipients for
 an extended length of time (to be determined by the MTA), it MAY
 issue a "delayed" DSN for those recipients, subject to the following
 conditions:

(a) If the NOTIFY parameter was supplied for a recipient and its value
 included the DELAY keyword, a "delayed" DSN MAY be issued.

(b) If the NOTIFY parameter was not supplied for a recipient, a
 "delayed" DSN MAY be issued.

Moore Standards Track [Page 13]

RFC 1891 SMTP Delivery Status Notifications January 1996

(c) If the NOTIFY parameter was supplied which did not contain the DELAY
 keyword, a "delayed" DSN MUST NOT be issued.

 NOTE: Although delay notifications are common in present-day
 electronic mail, a conforming MTA is never required to issue
 "delayed" DSNs. The DELAY keyword of the NOTIFY parameter is
 provided to allow the SMTP client to specifically request (by
 omitting the DELAY parameter) that "delayed" DSNs NOT be issued.

6.2.6 Failure of a conforming MTA to deliver a message

 The following rules govern the behavior of a conforming MTA which
 received a message via the SMTP protocol, and is unable to deliver a
 message to a recipient specified in the SMTP transaction:

(a) If a NOTIFY parameter was supplied for the recipient with an esmtp-
 keyword containing the value FAILURE, a "failed" DSN MUST be issued
 by the MTA.

(b) If a NOTIFY parameter was supplied for the recipient which did not
 contain the value FAILURE, a DSN MUST NOT be issued for that
 recipient. However, the MTA MAY inform the local postmaster of the
 delivery failure via some appropriate mechanism which does not
 itself result in the generation of DSNs.

(c) If no NOTIFY parameter was supplied for the recipient, a "failed"
 DSN MUST be issued.

 NOTE: Some MTAs are known to forward undeliverable messages to the
 local postmaster or "dead letter" mailbox. This is still considered
 delivery failure, and does not diminish the requirement to issue a
 "failed" DSN under the conditions defined elsewhere in this memo. If
 a DSN is issued for such a recipient, the Action value MUST be
 "failed".

6.2.7 Forwarding, aliases, and mailing lists

 Delivery of a message to a local email address usually causes the
 message to be stored in the recipient's mailbox. However, MTAs
 commonly provide a facility where a local email address can be
 designated as an "alias" or "mailing list"; delivery to that address
 then causes the message to be forwarded to each of the (local or
 remote) recipient addresses associated with the alias or list. It is
 also common to allow a user to optionally "forward" her mail to one
 or more alternate addresses. If this feature is enabled, her mail is
 redistributed to those addresses instead of being deposited in her
 mailbox.

Moore Standards Track [Page 14]

C
om

pendium
 1 page 191

RFC 1891 SMTP Delivery Status Notifications January 1996

 Following the example of [9] (section 5.3.6), this document defines
 the difference between an "alias" and "mailing list" as follows: When
 forwarding a message to the addresses associated with an "alias", the
 envelope return address (e.g. SMTP MAIL FROM) remains intact.
 However, when forwarding a message to the addresses associated with a
 "mailing list", the envelope return address is changed to that of the
 administrator of the mailing list. This causes DSNs and other
 nondelivery reports resulting from delivery to the list members to be
 sent to the list administrator rather than the sender of the original
 message.

 The DSN processing for aliases and mailing lists is as follows:

6.2.7.1 mailing lists

 When a message is delivered to a list submission address (i.e. placed
 in the list's mailbox for incoming mail, or accepted by the process
 that redistributes the message to the list subscribers), this is
 considered final delivery for the original message. If the NOTIFY
 parameter for the list submission address contained the SUCCESS
 keyword, a "delivered" DSN MUST be returned to the sender of the
 original message.

 NOTE: Some mailing lists are able to reject message submissions,
 based on the content of the message, the sender's address, or some
 other criteria. While the interface between such a mailing list and
 its MTA is not well-defined, it is important that DSNs NOT be issued
 by both the MTA (to report successful delivery to the list), and the
 list (to report message rejection using a "failure" DSN.)

 However, even if a "delivered" DSN was issued by the MTA, a mailing
 list which rejects a message submission MAY notify the sender that
 the message was rejected using an ordinary message instead of a DSN.

 Whenever a message is redistributed to an mailing list,

(a) The envelope return address is rewritten to point to the list
 maintainer. This address MAY be that of a process that recognizes
 DSNs and processes them automatically, but it MUST forward
 unrecognized messages to the human responsible for the list.

(b) The ENVID, NOTIFY, RET, and ORCPT parameters which accompany the
 redistributed message MUST NOT be derived from those of the original
 message.

(c) The NOTIFY and RET parameters MAY be specified by the local
 postmaster or the list administrator. If ORCPT parameters are
 supplied during redistribution to the list subscribers, they SHOULD

Moore Standards Track [Page 15]

RFC 1891 SMTP Delivery Status Notifications January 1996

 contain the addresses of the list subscribers in the format used by
 the mailing list.

6.2.7.2 single-recipient aliases

 Under normal circumstances, when a message arrives for an "alias"
 which has a single forwarding address, a DSN SHOULD NOT be issued.
 Any ENVID, NOTIFY, RET, or ORCPT parameters SHOULD be propagated with
 the message as it is redistributed to the forwarding address.

6.2.7.3 multiple-recipient aliases

 An "alias" with multiple recipient addresses may be handled in any of
 the following ways:

(a) Any ENVID, NOTIFY, RET, or ORCPT parameters are NOT propagated when
 relaying the message to any of the forwarding addresses. If the
 NOTIFY parameter for the alias contained the SUCCESS keyword, the
 MTA issues a "relayed" DSN. (In effect, the MTA treats the message
 as if it were being relayed into an environment that does not
 support DSNs.)

(b) Any ENVID, NOTIFY, RET, or ORCPT parameters (or the equivalent
 requests if the message is gatewayed) are propagated to EXACTLY one
 of the forwarding addresses. No DSN is issued. (This is
 appropriate when aliasing is used to forward a message to a
 "vacation" auto-responder program in addition to the local mailbox.)

(c) Any ENVID, RET, or ORCPT parameters are propagated to all forwarding
 addresses associated with that alias. The NOTIFY parameter is
 propagated to the forwarding addresses, except that it any SUCCESS
 keyword is removed. If the original NOTIFY parameter for the alias
 contained the SUCCESS keyword, an "expanded" DSN is issued for the
 alias. If the NOTIFY parameter for the alias did not contain the
 SUCCESS keyword, no DSN is issued for the alias.

6.2.7.4 confidential forwarding addresses

 If it is desired to maintain the confidentiality of a recipient's
 forwarding address, the forwarding may be treated as if it were a
 mailing list. A DSN will be issued, if appropriate, upon "delivery"
 to the recipient address specified by the sender. When the message
 is forwarded it will have a new envelope return address. Any DSNs
 which result from delivery failure of the forwarded message will not
 be returned to the original sender of the message and thus not expose
 the recipient's forwarding address.

Moore Standards Track [Page 16]

C
om

pendium
 1 page 192

RFC 1891 SMTP Delivery Status Notifications January 1996

6.2.8 DSNs describing delivery to multiple recipients

 A single DSN may describe attempts to deliver a message to multiple
 recipients of that message. If a DSN is issued for some recipients
 in an SMTP transaction and not for others according to the rules
 above, the DSN SHOULD NOT contain information for recipients for whom
 DSNs would not otherwise have been issued.

6.3 Handling of messages from other sources

 For messages which originated from "local" users (whatever that
 means), the specifications under which DSNs should be generated can
 be communicated to the MTA via any protocol agreed on between the
 sender's mail composer (user agent) and the MTA. The local MTA can
 then either relay the message, or issue appropriate delivery status
 notifications. However, if such requests are transmitted within the
 message itself (for example in the message headers), the requests
 MUST be removed from the message before it is transmitted via SMTP.

 For messages gatewayed from non-SMTP sources and further relayed by
 SMTP, the gateway SHOULD, using the SMTP extensions described here,
 attempt to provide the delivery reporting conditions expected by the
 source mail environment. If appropriate, any DSNs returned to the
 source environment SHOULD be translated into the format expected in
 that environment.

6.4 Implementation limits

 A conforming MTA MUST accept ESMTP parameters of at least the
 following sizes:

 (a) ENVID parameter: 100 characters.

 (b) NOTIFY parameter: 28 characters.

 (c) ORCPT parameter: 500 characters.

 (d) RET parameter: 8 characters.

 The maximum sizes for the ENVID and ORCPT parameters are intended to
 be adequate for the transmission of "foreign" envelope identifier and
 original recipient addresses. However, user agents which use SMTP as
 a message submission protocol SHOULD NOT generate ENVID parameters
 which are longer than 38 characters in length.

 A conforming MTA MUST be able to accept SMTP command-lines which are
 at least 1036 characters long (530 characters for the ORCPT and
 NOTIFY parameters of the RCPT command, in addition to the 512

Moore Standards Track [Page 17]

RFC 1891 SMTP Delivery Status Notifications January 1996

 characters required by [1]). If other SMTP extensions are supported
 by the MTA, the MTA MUST be able to accept a command-line large
 enough for each SMTP command and any combination of ESMTP parameters
 which may be used with that command.

7. Format of delivery notifications

 The format of delivery status notifications is defined in [5], which
 uses the framework defined in [8]. Delivery status notifications are
 to be returned to the sender of the original message as outlined
 below.

7.1 SMTP Envelope to be used with delivery status notifications

 The DSN sender address (in the SMTP MAIL command) MUST be a null
 reverse-path ("<>"), as required by section 5.3.3 of [9]. The DSN
 recipient address (in the RCPT command) is copied from the MAIL
 command which accompanied the message for which the DSN is being
 issued. When transmitting a DSN via SMTP, the RET parameter MUST NOT
 be used. The NOTIFY parameter MAY be used, but its value MUST be
 NEVER. The ENVID parameter (with a newly generated envelope-id)
 and/or ORCPT parameter MAY be used.

7.2 Contents of the DSN

 A DSN is transmitted as a MIME message with a top-level content-type
 of multipart/report (as defined in [5]).

 The multipart/report content-type may be used for any of several
 kinds of reports generated by the mail system. When multipart/report
 is used to convey a DSN, the report-type parameter of the
 multipart/report content-type is "delivery-status".

 As described in [8], the first component of a multipart/report
 content-type is a human readable explanation of the report. For a
 DSN, the second component of the multipart/report is of content-type
 message/delivery-status (defined in [5]). The third component of the
 multipart/report consists of the original message or some portion
 thereof. When the value of the RET parameter is FULL, the full
 message SHOULD be returned for any DSN which conveys notification of
 delivery failure. (However, if the length of the message is greater
 than some implementation-specified length, the MTA MAY return only
 the headers even if the RET parameter specified FULL.) If a DSN
 contains no notifications of delivery failure, the MTA SHOULD return
 only the headers.

 The third component must have an appropriate content-type label.
 Issues concerning selection of the content-type are discussed in [8].

Moore Standards Track [Page 18]

C
om

pendium
 1 page 193

RFC 1891 SMTP Delivery Status Notifications January 1996

7.3 Message/delivery-status fields

 The message/delivery-status content-type defines a number of fields,
 with general specifications for their contents. The following
 requirements for any DSNs generated in response to a message received
 by the SMTP protocol by a conforming SMTP server, are in addition to
 the requirements defined in [5] for the message/delivery-status type.

 When generating a DSN for a message which was received via the SMTP
 protocol, a conforming MTA will generate the following fields of the
 message/delivery-status body part:

(a) if an ENVID parameter was present on the MAIL command, an Original-
 Envelope-ID field MUST be supplied, and the value associated with
 the ENVID parameter must appear in that field. If the message was
 received via SMTP with no ENVID parameter, the Original-Envelope-ID
 field MUST NOT be supplied.

 Since the ENVID parameter is encoded as xtext, but the Original-
 Envelope-ID header is NOT encoded as xtext, the MTA must decode the
 xtext encoding when copying the ENVID value to the Original-
 Envelope-ID field.

(b) The Reporting-MTA field MUST be supplied. If Reporting MTA can
 determine its fully-qualified Internet domain name, the MTA-name-
 type subfield MUST be "dns", and the field MUST contain the fully-
 qualified domain name of the Reporting MTA. If the fully-qualified
 Internet domain name of the Reporting MTA is not known (for example,
 for an SMTP server which is not directly connected to the Internet),
 the Reporting-MTA field may contain any string identifying the MTA,
 however, in this case the MTA-name-type subfield MUST NOT be "dns".
 A MTA-name-type subfield value of "x-local-hostname" is suggested.

(c) Other per-message fields as defined in [5] MAY be supplied as
 appropriate.

(d) If the ORCPT parameter was provided for this recipient, the
 Original-Recipient field MUST be supplied, with its value taken from
 the ORCPT parameter. If no ORCPT parameter was provided for this
 recipient, the Original-Recipient field MUST NOT appear.

(e) The Final-Recipient field MUST be supplied. It MUST contain the
 recipient address from the message envelope. If the message was
 received via SMTP, the address-type will be "rfc822".

(f) The Action field MUST be supplied.

Moore Standards Track [Page 19]

RFC 1891 SMTP Delivery Status Notifications January 1996

(g) The Status field MUST be supplied, using a status-code from [10].
 If there is no specific code which suitably describes a delivery
 failure, either 4.0.0 (temporary failure), or 5.0.0 (permanent
 failure) MUST be used.

(h) For DSNs resulting from attempts to relay a message to one or more
 recipients via SMTP, the Remote-MTA field MUST be supplied for each
 of those recipients. The mta-name-type subfields of those Remote-
 MTA fields will be "dns".

(i) For DSNs resulting from attempts to relay a message to one or more
 recipients via SMTP, the Diagnostic-Code MUST be supplied for each
 of those recipients. The diagnostic-type subfield will be "smtp".
 See section 9.2(a) of this document for a description of the "smtp"
 diagnostic-code.

(j) For DSNs resulting from attempts to relay a message to one or more
 recipients via SMTP, an SMTP-Remote-Recipient extension field MAY be
 supplied for each recipient, which contains the address of that
 recpient which was presented to the remote SMTP server.

(k) Other per-recipient fields defined in [5] MAY appear, as
 appropriate.

8. Acknowledgments

 The author wishes to thank Eric Allman, Harald Alvestrand, Jim
 Conklin, Bryan Costales, Peter Cowen, Dave Crocker, Roger Fajman, Ned
 Freed, Marko Kaittola, Steve Kille, John Klensin, Anastasios
 Kotsikonas, John Gardiner Myers, Julian Onions, Jacob Palme, Marshall
 Rose, Greg Vaudreuil, and Klaus Weide for their suggestions for
 improvement of this document.

Moore Standards Track [Page 20]

C
om

pendium
 1 page 194

RFC 1891 SMTP Delivery Status Notifications January 1996

9. Appendix - Type-Name Definitions

 The following type names are defined for use in DSN fields generated
 by conforming SMTP-based MTAs:

9.1 "rfc822" address-type

 The "rfc822" address-type is to be used when reporting Internet
 electronic mail address in the Original-Recipient and Final-Recipient
 DSN fields.

(a) address-type name: rfc822

(b) syntax for mailbox addresses

 RFC822 mailbox addresses are generally expected to be of the form

 [route] addr-spec

 where "route" and "addr-spec" are defined in [2], and the "domain"
 portions of both "route" and "addr-spec" are fully-qualified domain
 names that are registered in the DNS. However, an MTA MUST NOT
 modify an address obtained from the message envelope to force it to
 conform to syntax rules.

(c) If addresses of this type are not composed entirely of graphic
characters from the US-ASCII repertoire, a specification for how they
are to be encoded as graphic US-ASCII characters in a DSN Original-
Recipient or Final-Recipient DSN field.

 RFC822 addresses consist entirely of graphic characters from the US-
 ASCII repertoire, so no translation is necessary.

9.2 "smtp" diagnostic-type

 The "smtp" diagnostic-type is to be used when reporting SMTP reply-
 codes in Diagnostic-Code DSN fields.

(a) diagnostic-type name: SMTP

(b) A description of the syntax to be used for expressing diagnostic
codes of this type as graphic characters from the US-ASCII repertoire.

 An SMTP diagnostic-code is of the form

 *(3*DIGIT "-" *text) 3*DIGIT SPACE *text

Moore Standards Track [Page 21]

RFC 1891 SMTP Delivery Status Notifications January 1996

 For a single-line SMTP reply to an SMTP command, the diagnostic-code
 SHOULD be an exact transcription of the reply. For multi-line SMTP
 replies, it is necessary to insert a SPACE before each line after
 the first. For example, an SMTP reply of:

 550-mailbox unavailable
 550 user has moved with no forwarding address

 could appear as follows in a Diagnostic-Code DSN field:

 Diagnostic-Code: smtp ; 550-mailbox unavailable
 550 user has moved with no forwarding address

(c) A list of valid diagnostic codes of this type and the meaning of
each code.

 SMTP reply-codes are currently defined in [1], [4], and [9].
 Additional codes may be defined by other RFCs.

9.3 "dns" MTA-name-type

 The "dns" MTA-name-type should be used in the Reporting-MTA field.
 An MTA-name of type "dns" is a fully-qualified domain name. The name
 must be registered in the DNS, and the address Postmaster@{mta-name}
 must be valid.

(a) MTA-name-type name: dns

(b) A description of the syntax of MTA names of this type, using BNF,
regular expressions, ASN.1, or other non-ambiguous language.

 MTA names of type "dns" SHOULD be valid Internet domain names. If
 such domain names are not available, a domain-literal containing the
 internet protocol address is acceptable. Such domain names
 generally conform to the following syntax:

 domain = real-domain / domain-literal

 real-domain = sub-domain *("." sub-domain)

 sub-domain = atom

 domain-literal = "[" 1*3DIGIT 3("." 1*3DIGIT) "]"

 where "atom" and "DIGIT" are defined in [2].

Moore Standards Track [Page 22]

C
om

pendium
 1 page 195

RFC 1891 SMTP Delivery Status Notifications January 1996

(c) If MTA names of this type do not consist entirely of graphic
characters from the US-ASCII repertoire, a specification for how an MTA
name of this type should be expressed as a sequence of graphic US-ASCII
characters.

 MTA names of type "dns" consist entirely of graphic US-ASCII
 characters, so no translation is needed.

10. Appendix - Example

 This example traces the flow of a single message addressed to
 multiple recipients. The message is sent by Alice@Pure-Heart.ORG to
 Bob@Big-Bucks.COM, Carol@Ivory.EDU, Dana@Ivory.EDU,
 Eric@Bombs.AF.MIL, Fred@Bombs.AF.MIL, and George@Tax-ME.GOV, with a
 variety of per-recipient options. The message is successfully
 delivered to Bob, Dana (via a gateway), Eric, and Fred. Delivery
 fails for Carol and George.

 NOTE: Formatting rules for RFCs require that no line be longer than
 72 characters. Therefore, in the following examples, some SMTP
 commands longer than 72 characters are printed on two lines, with the
 first line ending in "\". In an actual SMTP transaction, such a
 command would be sent as a single line (i.e. with no embedded CRLFs),
 and without the "\" character that appears in these examples.

10.1 Submission

 Alice's user agent sends the message to the SMTP server at Pure-
 Heart.ORG. Note that while this example uses SMTP as a mail
 submission protocol, other protocols could also be used.

<<< 220 Pure-Heart.ORG SMTP server here
>>> EHLO Pure-Heart.ORG
<<< 250-Pure-Heart.ORG
<<< 250-DSN
<<< 250-EXPN
<<< 250 SIZE
>>> MAIL FROM:<Alice@Pure-Heart.ORG> RET=HDRS ENVID=QQ314159
<<< 250 <Alice@Pure-Heart.ORG> sender ok
>>> RCPT TO:<Bob@Big-Bucks.COM> NOTIFY=SUCCESS \
 ORCPT=rfc822;Bob@Big-Bucks.COM
<<< 250 <Bob@Big-Bucks.COM> recipient ok
>>> RCPT TO:<Carol@Ivory.EDU> NOTIFY=FAILURE \
 ORCPT=rfc822;Carol@Ivory.EDU
<<< 250 <Carol@Ivory.EDU> recipient ok
>>> RCPT TO:<Dana@Ivory.EDU> NOTIFY=SUCCESS,FAILURE \
 ORCPT=rfc822;Dana@Ivory.EDU
<<< 250 <Dana@Ivory.EDU> recipient ok

Moore Standards Track [Page 23]

RFC 1891 SMTP Delivery Status Notifications January 1996

>>> RCPT TO:<Eric@Bombs.AF.MIL> NOTIFY=FAILURE \
 ORCPT=rfc822;Eric@Bombs.AF.MIL
<<< 250 <Eric@Bombs.AF.MIL> recipient ok
>>> RCPT TO:<Fred@Bombs.AF.MIL> NOTIFY=NEVER
<<< 250 <Fred@Bombs.AF.MIL> recipient ok
>>> RCPT TO:<George@Tax-ME.GOV> NOTIFY=FAILURE \
 ORCPT=rfc822;George@Tax-ME.GOV
<<< 250 <George@Tax-ME.GOV> recipient ok
>>> DATA
<<< 354 okay, send message
>>> (message goes here)
>>> .
<<< 250 message accepted
>>> QUIT
<<< 221 goodbye

10.2 Relay to Big-Bucks.COM

 The SMTP at Pure-Heart.ORG then relays the message to Big-Bucks.COM.
 (For the purpose of this example, mail.Big-Bucks.COM is the primary
 mail exchanger for Big-Bucks.COM).

<<< 220 mail.Big-Bucks.COM says hello
>>> EHLO Pure-Heart.ORG
<<< 250-mail.Big-Bucks.COM
<<< 250 DSN
>>> MAIL FROM:<Alice@Pure-Heart.ORG> RET=HDRS ENVID=QQ314159
<<< 250 sender okay
>>> RCPT TO:<Bob@Big-Bucks.COM> NOTIFY=SUCCESS \
 ORCPT=rfc822;Bob@Big-Bucks.COM
<<< 250 recipient okay
>>> DATA
<<< 354 send message
>>> (message goes here)
>>> .
<<< 250 message received
>>> QUIT
<<< 221 bcnu

10.3 Relay to Ivory.EDU

 The SMTP at Pure-Heart.ORG relays the message to Ivory.EDU, which (as
 it happens) is a gateway to a LAN-based mail system that accepts SMTP
 mail and supports the DSN extension.

<<< 220 Ivory.EDU gateway to FooMail(tm) here
>>> EHLO Pure-Heart.ORG
<<< 250-Ivory.EDU

Moore Standards Track [Page 24]

C
om

pendium
 1 page 196

RFC 1891 SMTP Delivery Status Notifications January 1996

<<< 250 DSN
>>> MAIL FROM:<Alice@Pure-Heart.ORG> RET=HDRS ENVID=QQ314159
<<< 250 ok
>>> RCPT TO:<Carol@Ivory.EDU> NOTIFY=FAILURE \
 ORCPT=rfc822;Carol@Ivory.EDU
<<< 550 error - no such recipient
>>> RCPT TO:<Dana@Ivory.EDU> NOTIFY=SUCCESS,FAILURE \
 ORCPT=rfc822;Dana@Ivory.EDU
<<< 250 recipient ok
>>> DATA
<<< 354 send message, end with '.'
>>> (message goes here)
>>> .
<<< 250 message received
>>> QUIT
<<< 221 bye

 Note that since the Ivory.EDU refused to accept mail for
 Carol@Ivory.EDU, and the sender specified NOTIFY=FAILURE, the
 sender-SMTP (in this case Pure-Heart.ORG) must generate a DSN.

10.4 Relay to Bombs.AF.MIL

 The SMTP at Pure-Heart.ORG relays the message to Bombs.AF.MIL, which
 does not support the SMTP extension. Because the sender specified
 NOTIFY=NEVER for recipient Fred@Bombs.AF.MIL, the SMTP at Pure-
 Heart.ORG chooses to send the message for that recipient in a
 separate transaction with a reverse-path of <>.

<<< 220-Bombs.AF.MIL reporting for duty.
<<< 220 Electronic mail is to be used for official business only.
>>> EHLO Pure-Heart.ORG
<<< 502 command not implemented
>>> RSET
<<< 250 reset
>>> HELO Pure-Heart.ORG
<<< 250 Bombs.AF.MIL
>>> MAIL FROM:<Alice@Pure-Heart.ORG>
<<< 250 ok
>>> RCPT TO:<Eric@Bombs.AF.MIL>
<<< 250 ok
>>> DATA
<<< 354 send message
>>> (message goes here)
>>> .
<<< 250 message accepted
>>> MAIL FROM:<>
<<< 250 ok

Moore Standards Track [Page 25]

RFC 1891 SMTP Delivery Status Notifications January 1996

>>> RCPT TO:<Fred@Bombs.AF.MIL>
<<< 250 ok
>>> DATA
<<< 354 send message
>>> (message goes here)
>>> .
<<< 250 message accepted
>>> QUIT
<<< 221 Bombs.AF.MIL closing connection

10.5 Forward from George@Tax-ME.GOV to Sam@Boondoggle.GOV

 The SMTP at Pure-Heart.ORG relays the message to Tax-ME.GOV. (this
 step is not shown). MTA Tax-ME.GOV then forwards the message to
 Sam@Boondoggle.GOV (shown below). Both Tax-ME.GOV and Pure-Heart.ORG
 support the SMTP DSN extension. Note that RET, ENVID, and ORCPT all
 retain their original values.

<<< 220 BoonDoggle.GOV says hello
>>> EHLO Pure-Heart.ORG
<<< 250-mail.Big-Bucks.COM
<<< 250 DSN
>>> MAIL FROM:<Alice@Pure-Heart.ORG> RET=HDRS ENVID=QQ314159
<<< 250 sender okay
>>> RCPT TO:<Sam@Boondoggle.GOV> NOTIFY=SUCCESS \
 ORCPT=rfc822;George@Tax-ME.GOV
<<< 250 recipient okay
>>> DATA
<<< 354 send message
>>> (message goes here)
>>> .
<<< 250 message received
>>> QUIT
<<< 221 bcnu

Moore Standards Track [Page 26]

C
om

pendium
 1 page 197

RFC 1891 SMTP Delivery Status Notifications January 1996

10.6 "Delivered" DSN for Bob@Big-Bucks.COM

 MTA mail.Big-Bucks.COM successfully delivers the message to Bob@Big-
 Bucks.COM. Because the sender specified NOTIFY=SUCCESS, mail.Big-
 Bucks.COM issues the following DSN, and sends it to Alice@Pure-
 Heart.ORG.

To: Alice@Pure-Heart.ORG
From: postmaster@mail.Big-Bucks.COM
Subject: Delivery Notification (success) for Bob@Big-Bucks.COM
Content-Type: multipart/report; report-type=delivery-status;
 boundary=abcde
MIME-Version: 1.0

--abcde
Content-type: text/plain; charset=us-ascii

Your message (id QQ314159) was successfully delivered to
Bob@Big-Bucks.COM.

--abcde
Content-type: message/delivery-status

Reporting-MTA: dns; mail.Big-Bucks.COM
Original-Envelope-ID: QQ314159

Original-Recipient: rfc822;Bob@Big-Bucks.COM
Final-Recipient: rfc822;Bob@Big-Bucks.COM
Action: delivered
Status: 2.0.0

--abcde
Content-type: message/rfc822

(headers of returned message go here)

--abcde--

Moore Standards Track [Page 27]

RFC 1891 SMTP Delivery Status Notifications January 1996

10.7 Failed DSN for Carol@Ivory.EDU

 Because delivery to Carol failed and the sender specified
 NOTIFY=FAILURE for Carol@Ivory.EDU, MTA Pure-Heart.ORG (the SMTP
 client to which the failure was reported via SMTP) issues the
 following DSN.

To: Alice@Pure-Heart.ORG
From: postmaster@Pure-Heart.ORG
Subject: Delivery Notification (failure) for Carol@Ivory.EDU
Content-Type: multipart/report; report-type=delivery-status;
 boundary=bcdef
MIME-Version: 1.0

--bcdef
Content-type: text/plain; charset=us-ascii

Your message (id QQ314159) could not be delivered to
Carol@Ivory.EDU.

A transcript of the session follows:

(while talking to Ivory.EDU)
>>> RCPT TO:<Carol@Ivory.EDU> NOTIFY=FAILURE
<<< 550 error - no such recipient

--bcdef
Content-type: message/delivery-status

Reporting-MTA: dns; Pure-Heart.ORG
Original-Envelope-ID: QQ314159

Original-Recipient: rfc822;Carol@Ivory.EDU
Final-Recipient: rfc822;Carol@Ivory.EDU
SMTP-Remote-Recipient: Carol@Ivory.EDU
Diagnostic-Code: smtp; 550 error - no such recipient
Action: failed
Status: 5.0.0

--bcdef
Content-type: message/rfc822

(headers of returned message go here)

--bcdef--

Moore Standards Track [Page 28]

C
om

pendium
 1 page 198

RFC 1891 SMTP Delivery Status Notifications January 1996

10.8 Relayed DSN For Dana@Ivory.EDU

 Although the mail gateway Ivory.EDU supports the DSN SMTP extension,
 the LAN mail system attached to its other side does not generate
 positive delivery confirmations. So Ivory.EDU issues a "relayed"
 DSN:

To: Alice@Pure-Heart.ORG
From: postmaster@Ivory.EDU
Subject: mail relayed for Dana@Ivory.EDU
Content-Type: multipart/report; report-type=delivery-status;
 boundary=cdefg
MIME-Version: 1.0

--cdefg
Content-type: text/plain; charset=us-ascii

Your message (addressed to Dana@Ivory.EDU) was successfully
relayed to:

ymail!Dana

by the FooMail gateway at Ivory.EDU.

Unfortunately, the remote mail system does not support
confirmation of actual delivery. Unless delivery to ymail!Dana
fails, this will be the only delivery status notification sent.

--cdefg
Content-type: message/delivery-status

Reporting-MTA: dns; Ivory.EDU
Original-Envelope-ID: QQ314159

Original-Recipient: rfc822;Dana@Ivory.EDU
Final-Recipient: rfc822;Dana@Ivory.EDU
Action: relayed
Status: 2.0.0

--cdefg
Content-type: message/rfc822

(headers of returned message go here)

--cdefg--

Moore Standards Track [Page 29]

RFC 1891 SMTP Delivery Status Notifications January 1996

10.9 Failure notification for Sam@Boondoggle.GOV

 The message originally addressed to George@Tax-ME.GOV was forwarded
 to Sam@Boondoggle.GOV, but the MTA for Boondoggle.GOV was unable to
 deliver the message due to a lack of disk space in Sam's mailbox.
 After trying for several days, Boondoggle.GOV returned the following
 DSN:

To: Alice@BigHeart.ORG
From: Postmaster@Boondoggle.GOV
Subject: Delivery failure for Sam@Boondoggle.GOV
Content-Type: multipart/report; report-type=delivery-status;
 boundary=defgh
MIME-Version: 1.0

--defgh
Your message, originally addressed to George@Tax-ME.GOV, and forwarded
from there to Sam@Boondoggle.GOV could not be delivered, for the
following reason:

write error to mailbox, disk quota exceeded

--defgh
Content-type: message/delivery-status

Reporting-MTA: Boondoggle.GOV
Original-Envelope-ID: QQ314159

Original-Recipient: rfc822;George@Tax-ME.GOV
Final-Recipient: rfc822;Sam@Boondoggle.GOV
Action: failed
Status: 4.2.2 (disk quota exceeded)

--defgh
Content-type: message/rfc822

(headers of returned message go here)

--defgh--

Moore Standards Track [Page 30]

C
om

pendium
 1 page 199

RFC 1891 SMTP Delivery Status Notifications January 1996

11. References

 [1] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 USC/Information Sciences Institute, August 1982.

 [2] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982.

 [3] Westine, A., and J. Postel, "Problems with the Maintenance of
 Large Mailing Lists.", RFC 1211, USC/Information Sciences
 Institute, March 1991.

 [4] Klensin, J., Freed, N., Rose, M., Stefferud, E., and D. Crocker,
 "SMTP Service Extensions", RFC 1651, MCI, Innosoft, Dover Beach
 Consulting, Inc., Network Management Associates, Inc., Silicon
 Graphics, Inc., July 1994.

 [5] Moore, K., and G. Vaudreuil, "An Extensible Message Format for
 Delivery Status Notifications", RFC 1894, University of Tennessee,
 Octel Network Services, January 1996.

 [6] Crispin, M., "Internet Message Access Protocol - Version 4", RFC
 1730, University of Washington, 20 December 1994.

 [7] Myers, J., and M. Rose, "Post Office Protocol - Version 3", RFC
 1725, Carnegie Mellon, Dover Beach Consulting, November 1994.

 [8] Vaudreuil, G., "The Multipart/Report Content Type for the
 Reporting of Mail System Administrative Messages", RFC 1892, Octel
 Network Services, January 1996.

 [9] Braden, R., Editor, "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, IETF, October 1989.

 [10] Vaudreuil, G., "Enhanced Mail System Status Codes", RFC 1893,
 Octel Network Services, January 1996.

12. Author's Address

 Keith Moore
 University of Tennessee
 107 Ayres Hall
 Knoxville, TN 37996-1301
 USA

 EMail: moore@cs.utk.edu

Moore Standards Track [Page 31]

C
om

pendium
 1 page 200

Network Working Group G. Vaudreuil
Request for Comments: 1892 Octel Network Services
Category: Standards Track January 1996

 The Multipart/Report Content Type
 for the Reporting of
 Mail System Administrative Messages

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

1. The Multipart/Report MIME content-type

 The Multipart/Report MIME content-type is a general "family" or
 "container" type for electronic mail reports of any kind. Although
 this memo defines only the use of the Multipart/Report content-type
 with respect to delivery status reports, mail processing programs
 will benefit if a single content-type is used to for all kinds of
 reports.

 The Multipart/Report content-type is defined as follows:

 MIME type name: multipart
 MIME subtype name: report
 Required parameters: boundary, report-type
 Optional parameters: none
 Encoding considerations: 7bit should always be adequate
 Security considerations: see section 4 of this memo.

 The syntax of Multipart/Report is identical to the Multipart/Mixed
 content type defined in [MIME]. When used to send a report, the
 Multipart/Report content-type must be the top-level MIME content type
 for any report message. The report-type parameter identifies the
 type of report. The parameter is the MIME content sub-type of the
 second body part of the Multipart/Report.

 User agents and gateways must be able to automatically determine
 that a message is a mail system report and should be processed as
 such. Placing the Multipart/Report as the outermost content
 provides a mechanism whereby an auto-processor may detect through
 parsing the RFC 822 headers that the message is a report.

Vaudreuil Standards Track [Page 1]

RFC 1892 Multipart/Report January 1996

 The Multipart/Report content-type contains either two or three sub-
 parts, in the following order:

 (1) [required] The first body part contains human readable message.
 The purpose of this message is to provide an easily-understood
 description of the condition(s) that caused the report to be
 generated, for a human reader who may not have an user agent
 capable of interpreting the second section of the
 Multipart/Report.

 The text in the first section may be in any MIME standards-track
 content-type, charset, or language. Where a description of the
 error is desired in several languages or several media, a
 Multipart/Alternative construct may be used.

 This body part may also be used to send detailed information
 that cannot be easily formatted into a Message/Report body part.

 (2) [required] A machine parsable body part containing an account
 of the reported message handling event. The purpose of this body
 part is to provide a machine-readable description of the
 condition(s) which caused the report to be generated, along with
 details not present in the first body part that may be useful to
 human experts. An initial body part, Message/delivery-status is
 defined in [DSN]

 (3) [optional] A body part containing the returned message or a
 portion thereof. This information may be useful to aid human
 experts in diagnosing problems. (Although it may also be useful
 to allow the sender to identify the message which the report was
 issued, it is hoped that the envelope-id and original-recipient-
 address returned in the Message/Report body part will replace
 the traditional use of the returned content for this purpose.)

 Return of content may be wasteful of network bandwidth and a variety
 of implementation strategies can be used. Generally the sender
 should choose the appropriate strategy and inform the recipient of
 the required level of returned content required. In the absence of
 an explicit request for level of return of content such as that
 provided in [DRPT], the agent which generated the delivery service
 report should return the full message content.

 When data not encoded in 7 bits is to be returned, and the return
 path is not guaranteed to be 8-bit capable, two options are
 available. The origional message MAY be reencoded into a legal 7 bit
 MIME message or the Text/RFC822-Headers content-type MAY be used to
 return only the origional message headers.

Vaudreuil Standards Track [Page 2]

C
om

pendium
 1 page 201

RFC 1892 Multipart/Report January 1996

2. The Text/RFC822-Headers MIME content-type

 The Text/RFC822-Headers MIME content-type provides a mechanism to
 label and return only the RFC 822 headers of a failed message. These
 headers are not the complete message and should not be returned as a
 Message/RFC822. The returned headers are useful for identifying the
 failed message and for diagnostics based on the received: lines.

 The Text/RFC822-Headers content-type is defined as follows:

 MIME type name: Text
 MIME subtype name: RFC822-Headers
 Required parameters: None
 Optional parameters: none
 Encoding considerations: 7 bit is sufficient for normal RFC822
 headers, however, if the headers are broken and require
 encoding, they may be encoded in quoted-printable.
 Security considerations: see section 4 of this memo.

 The Text/RFC822-headers body part should contain all the RFC822
 header lines from the message which caused the report. The RFC822
 headers include all lines prior to the blank line in the message.
 They include the MIME-Version and MIME Content- headers.

3. References

 [DSN] Moore, K., and G. Vaudreuil, "An Extensible Message Format for
 Delivery Status Notifications", RFC 1894, University of
 Tennessee, Octel Network Services, January 1996.

 [RFC822] Crocker, D., "Standard for the format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982.

 [MIME] Borenstein, N., and N. Freed, "Multipurpose Internet Mail
 Extensions", RFC 1521, Bellcore, Innosoft, June 1992.

 [DRPT] Moore, K., "SMTP Service Extension for Delivery Status
 Notifications", RFC 1891, University of Tennessee, January 1996.

4. Security Considerations

 Automated use of report types without authentication presents several
 security issues. Forging negative reports presents the opportunity
 for denial-of-service attacks when the reports are used for automated
 maintenance of directories or mailing lists. Forging positive
 reports may cause the sender to incorrectly believe a message was
 delivered when it was not.

Vaudreuil Standards Track [Page 3]

RFC 1892 Multipart/Report January 1996

5. Author's Address

 Gregory M. Vaudreuil
 Octel Network Services
 17060 Dallas Parkway
 Dallas, TX 75248-1905

 Phone: +1-214-733-2722
 EMail: Greg.Vaudreuil@Octel.com

Vaudreuil Standards Track [Page 4]

C
om

pendium
 1 page 202

Network Working Group G. Vaudreuil
Request for Comments: 1893 Octel Network Services
Category: Standards Track January 1996

 Enhanced Mail System Status Codes

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

1. Overview

 There currently is not a standard mechanism for the reporting of mail
 system errors except for the limited set offered by SMTP and the
 system specific text descriptions sent in mail messages. There is a
 pressing need for a rich machine readable status code for use in
 delivery status notifications [DSN]. This document proposes a new
 set of status codes for this purpose.

 SMTP [SMTP] error codes have historically been used for reporting
 mail system errors. Because of limitations in the SMTP code design,
 these are not suitable for use in delivery status notifications.
 SMTP provides about 12 useful codes for delivery reports. The
 majority of the codes are protocol specific response codes such as
 the 354 response to the SMTP data command. Each of the 12 useful
 codes are each overloaded to indicate several error conditions each.
 SMTP suffers some scars from history, most notably the unfortunate
 damage to the reply code extension mechanism by uncontrolled use.
 This proposal facilitates future extensibility by requiring the
 client to interpret unknown error codes according to the theory of
 codes while requiring servers to register new response codes.

 The SMTP theory of reply codes partitioned in the number space such a
 manner that the remaining available codes will not provide the space
 needed. The most critical example is the existence of only 5
 remaining codes for mail system errors. The mail system
 classification includes both host and mailbox error conditions. The
 remaining third digit space would be completely consumed as needed to
 indicate MIME and media conversion errors and security system errors.

 A revision to the SMTP theory of reply codes to better distribute the
 error conditions in the number space will necessarily be incompatible
 with SMTP. Further, consumption of the remaining reply-code number

Vaudreuil Standards Track [Page 1]

RFC 1893 Mail System Status Codes January 1996

 space for delivery notification reporting will reduce the available
 codes for new ESMTP extensions.

 The following proposal is based on the SMTP theory of reply codes.
 It adopts the success, permanent error, and transient error semantics
 of the first value, with a further description and classification in
 the second. This proposal re-distributes the classifications to
 better distribute the error conditions, such as separating mailbox
 from host errors.

2. Status Codes

 This document defines a new set of status codes to report mail system
 conditions. These status codes are intended to be used for media and
 language independent status reporting. They are not intended for
 system specific diagnostics.

 The syntax of the new status codes is defined as:

 status-code = class "." subject "." detail
 class = "2"/"4"/"5"
 subject = 1*3digit
 detail = 1*3digit

 White-space characters and comments are NOT allowed within a status-
 code. Each numeric sub-code within the status-code MUST be expressed
 without leading zero digits.

 Status codes consist of three numerical fields separated by ".". The
 first sub-code indicates whether the delivery attempt was successful.
 The second sub-code indicates the probable source of any delivery
 anomalies, and the third sub-code indicates a precise error
 condition.

 The codes space defined is intended to be extensible only by
 standards track documents. Mail system specific status codes should
 be mapped as close as possible to the standard status codes. Servers
 should send only defined, registered status codes. System specific
 errors and diagnostics should be carried by means other than status
 codes.

 New subject and detail codes will be added over time. Because the
 number space is large, it is not intended that published status codes
 will ever be redefined or eliminated. Clients should preserve the
 extensibility of the code space by reporting the general error
 described in the subject sub-code when the specific detail is
 unrecognized.

Vaudreuil Standards Track [Page 2]

C
om

pendium
 1 page 203

RFC 1893 Mail System Status Codes January 1996

 The class sub-code provides a broad classification of the status.
 The enumerated values the class are defined as:

 2.X.X Success

 Success specifies that the DSN is reporting a positive delivery
 action. Detail sub-codes may provide notification of
 transformations required for delivery.

 4.X.X Persistent Transient Failure

 A persistent transient failure is one in which the message as
 sent is valid, but some temporary event prevents the successful
 sending of the message. Sending in the future may be successful.

 5.X.X Permanent Failure

 A permanent failure is one which is not likely to be resolved by
 resending the message in the current form. Some change to the
 message or the destination must be made for successful delivery.

 A client must recognize and report class sub-code even where
 subsequent subject sub-codes are unrecognized.

 The subject sub-code classifies the status. This value applies to
 each of the three classifications. The subject sub-code, if
 recognized, must be reported even if the additional detail provided
 by the detail sub-code is not recognized. The enumerated values for
 the subject sub-code are:

 X.0.X Other or Undefined Status

 There is no additional subject information available.

 X.1.X Addressing Status

 The address status reports on the originator or destination
 address. It may include address syntax or validity. These
 errors can generally be corrected by the sender and retried.

 X.2.X Mailbox Status

 Mailbox status indicates that something having to do with the
 mailbox has cause this DSN. Mailbox issues are assumed to be
 under the general control of the recipient.

Vaudreuil Standards Track [Page 3]

RFC 1893 Mail System Status Codes January 1996

 X.3.X Mail System Status

 Mail system status indicates that something having to do
 with the destination system has caused this DSN. System
 issues are assumed to be under the general control of the
 destination system administrator.

 X.4.X Network and Routing Status

 The networking or routing codes report status about the
 delivery system itself. These system components include any
 necessary infrastructure such as directory and routing
 services. Network issues are assumed to be under the
 control of the destination or intermediate system
 administrator.

 X.5.X Mail Delivery Protocol Status

 The mail delivery protocol status codes report failures
 involving the message delivery protocol. These failures
 include the full range of problems resulting from
 implementation errors or an unreliable connection. Mail
 delivery protocol issues may be controlled by many parties
 including the originating system, destination system, or
 intermediate system administrators.

 X.6.X Message Content or Media Status

 The message content or media status codes report failures
 involving the content of the message. These codes report
 failures due to translation, transcoding, or otherwise
 unsupported message media. Message content or media issues
 are under the control of both the sender and the receiver,
 both of whom must support a common set of supported
 content-types.

 X.7.X Security or Policy Status

 The security or policy status codes report failures
 involving policies such as per-recipient or per-host
 filtering and cryptographic operations. Security and policy
 status issues are assumed to be under the control of either
 or both the sender and recipient. Both the sender and
 recipient must permit the exchange of messages and arrange
 the exchange of necessary keys and certificates for
 cryptographic operations.

Vaudreuil Standards Track [Page 4]

C
om

pendium
 1 page 204

RFC 1893 Mail System Status Codes January 1996

3. Enumerated Status Codes

 The following section defines and describes the detail sub-code. The
 detail value provides more information about the status and is
 defined relative to the subject of the status.

 3.1 Other or Undefined Status

 X.0.0 Other undefined Status

 Other undefined status is the only undefined error code. It
 should be used for all errors for which only the class of the
 error is known.

 3.2 Address Status

 X.1.0 Other address status

 Something about the address specified in the message caused
 this DSN.

 X.1.1 Bad destination mailbox address

 The mailbox specified in the address does not exist. For
 Internet mail names, this means the address portion to the
 left of the "@" sign is invalid. This code is only useful
 for permanent failures.

 X.1.2 Bad destination system address

 The destination system specified in the address does not
 exist or is incapable of accepting mail. For Internet mail
 names, this means the address portion to the right of the
 "@" is invalid for mail. This codes is only useful for
 permanent failures.

 X.1.3 Bad destination mailbox address syntax

 The destination address was syntactically invalid. This can
 apply to any field in the address. This code is only useful
 for permanent failures.

 X.1.4 Destination mailbox address ambiguous

 The mailbox address as specified matches one or more
 recipients on the destination system. This may result if a
 heuristic address mapping algorithm is used to map the
 specified address to a local mailbox name.

Vaudreuil Standards Track [Page 5]

RFC 1893 Mail System Status Codes January 1996

 X.1.5 Destination address valid

 This mailbox address as specified was valid. This status
 code should be used for positive delivery reports.

 X.1.6 Destination mailbox has moved, No forwarding address

 The mailbox address provided was at one time valid, but mail
 is no longer being accepted for that address. This code is
 only useful for permanent failures.

 X.1.7 Bad sender's mailbox address syntax

 The sender's address was syntactically invalid. This can
 apply to any field in the address.

 X.1.8 Bad sender's system address

 The sender's system specified in the address does not exist
 or is incapable of accepting return mail. For domain names,
 this means the address portion to the right of the "@" is
 invalid for mail.

 3.3 Mailbox Status

 X.2.0 Other or undefined mailbox status

 The mailbox exists, but something about the destination
 mailbox has caused the sending of this DSN.

 X.2.1 Mailbox disabled, not accepting messages

 The mailbox exists, but is not accepting messages. This may
 be a permanent error if the mailbox will never be re-enabled
 or a transient error if the mailbox is only temporarily
 disabled.

 X.2.2 Mailbox full

 The mailbox is full because the user has exceeded a
 per-mailbox administrative quota or physical capacity. The
 general semantics implies that the recipient can delete
 messages to make more space available. This code should be
 used as a persistent transient failure.

Vaudreuil Standards Track [Page 6]

C
om

pendium
 1 page 205

RFC 1893 Mail System Status Codes January 1996

 X.2.3 Message length exceeds administrative limit

 A per-mailbox administrative message length limit has been
 exceeded. This status code should be used when the
 per-mailbox message length limit is less than the general
 system limit. This code should be used as a permanent
 failure.

 X.2.4 Mailing list expansion problem

 The mailbox is a mailing list address and the mailing list
 was unable to be expanded. This code may represent a
 permanent failure or a persistent transient failure.

 3.4 Mail system status

 X.3.0 Other or undefined mail system status

 The destination system exists and normally accepts mail, but
 something about the system has caused the generation of this
 DSN.

 X.3.1 Mail system full

 Mail system storage has been exceeded. The general
 semantics imply that the individual recipient may not be
 able to delete material to make room for additional
 messages. This is useful only as a persistent transient
 error.

 X.3.2 System not accepting network messages

 The host on which the mailbox is resident is not accepting
 messages. Examples of such conditions include an immanent
 shutdown, excessive load, or system maintenance. This is
 useful for both permanent and permanent transient errors.

 X.3.3 System not capable of selected features

 Selected features specified for the message are not
 supported by the destination system. This can occur in
 gateways when features from one domain cannot be mapped onto
 the supported feature in another.

Vaudreuil Standards Track [Page 7]

RFC 1893 Mail System Status Codes January 1996

 X.3.4 Message too big for system

 The message is larger than per-message size limit. This
 limit may either be for physical or administrative reasons.
 This is useful only as a permanent error.

 X.3.5 System incorrectly configured

 The system is not configured in a manner which will permit
 it to accept this message.

 3.5 Network and Routing Status

 X.4.0 Other or undefined network or routing status

 Something went wrong with the networking, but it is not
 clear what the problem is, or the problem cannot be well
 expressed with any of the other provided detail codes.

 X.4.1 No answer from host

 The outbound connection attempt was not answered, either
 because the remote system was busy, or otherwise unable to
 take a call. This is useful only as a persistent transient
 error.

 X.4.2 Bad connection

 The outbound connection was established, but was otherwise
 unable to complete the message transaction, either because
 of time-out, or inadequate connection quality. This is
 useful only as a persistent transient error.

 X.4.3 Directory server failure

 The network system was unable to forward the message,
 because a directory server was unavailable. This is useful
 only as a persistent transient error.

 The inability to connect to an Internet DNS server is one
 example of the directory server failure error.

 X.4.4 Unable to route

 The mail system was unable to determine the next hop for the
 message because the necessary routing information was
 unavailable from the directory server. This is useful for
 both permanent and persistent transient errors.

Vaudreuil Standards Track [Page 8]

C
om

pendium
 1 page 206

RFC 1893 Mail System Status Codes January 1996

 A DNS lookup returning only an SOA (Start of Administration)
 record for a domain name is one example of the unable to
 route error.

 X.4.5 Mail system congestion

 The mail system was unable to deliver the message because
 the mail system was congested. This is useful only as a
 persistent transient error.

 X.4.6 Routing loop detected

 A routing loop caused the message to be forwarded too many
 times, either because of incorrect routing tables or a user
 forwarding loop. This is useful only as a persistent
 transient error.

 X.4.7 Delivery time expired

 The message was considered too old by the rejecting system,
 either because it remained on that host too long or because
 the time-to-live value specified by the sender of the
 message was exceeded. If possible, the code for the actual
 problem found when delivery was attempted should be returned
 rather than this code. This is useful only as a persistent
 transient error.

 3.6 Mail Delivery Protocol Status

 X.5.0 Other or undefined protocol status

 Something was wrong with the protocol necessary to deliver
 the message to the next hop and the problem cannot be well
 expressed with any of the other provided detail codes.

 X.5.1 Invalid command

 A mail transaction protocol command was issued which was
 either out of sequence or unsupported. This is useful only
 as a permanent error.

 X.5.2 Syntax error

 A mail transaction protocol command was issued which could
 not be interpreted, either because the syntax was wrong or
 the command is unrecognized. This is useful only as a
 permanent error.

Vaudreuil Standards Track [Page 9]

RFC 1893 Mail System Status Codes January 1996

 X.5.3 Too many recipients

 More recipients were specified for the message than could
 have been delivered by the protocol. This error should
 normally result in the segmentation of the message into two,
 the remainder of the recipients to be delivered on a
 subsequent delivery attempt. It is included in this list in
 the event that such segmentation is not possible.

 X.5.4 Invalid command arguments

 A valid mail transaction protocol command was issued with
 invalid arguments, either because the arguments were out of
 range or represented unrecognized features. This is useful
 only as a permanent error.

 X.5.5 Wrong protocol version

 A protocol version mis-match existed which could not be
 automatically resolved by the communicating parties.

 3.7 Message Content or Message Media Status

 X.6.0 Other or undefined media error

 Something about the content of a message caused it to be
 considered undeliverable and the problem cannot be well
 expressed with any of the other provided detail codes.

 X.6.1 Media not supported

 The media of the message is not supported by either the
 delivery protocol or the next system in the forwarding path.
 This is useful only as a permanent error.

 X.6.2 Conversion required and prohibited

 The content of the message must be converted before it can
 be delivered and such conversion is not permitted. Such
 prohibitions may be the expression of the sender in the
 message itself or the policy of the sending host.

 X.6.3 Conversion required but not supported

 The message content must be converted to be forwarded but
 such conversion is not possible or is not practical by a
 host in the forwarding path. This condition may result when
 an ESMTP gateway supports 8bit transport but is not able to

Vaudreuil Standards Track [Page 10]

C
om

pendium
 1 page 207

RFC 1893 Mail System Status Codes January 1996

 downgrade the message to 7 bit as required for the next hop.

 X.6.4 Conversion with loss performed

 This is a warning sent to the sender when message delivery
 was successfully but when the delivery required a conversion
 in which some data was lost. This may also be a permanant
 error if the sender has indicated that conversion with loss
 is prohibited for the message.

 X.6.5 Conversion Failed

 A conversion was required but was unsuccessful. This may be
 useful as a permanent or persistent temporary notification.

 3.8 Security or Policy Status

 X.7.0 Other or undefined security status

 Something related to security caused the message to be
 returned, and the problem cannot be well expressed with any
 of the other provided detail codes. This status code may
 also be used when the condition cannot be further described
 because of security policies in force.

 X.7.1 Delivery not authorized, message refused

 The sender is not authorized to send to the destination.
 This can be the result of per-host or per-recipient
 filtering. This memo does not discuss the merits of any
 such filtering, but provides a mechanism to report such.
 This is useful only as a permanent error.

 X.7.2 Mailing list expansion prohibited

 The sender is not authorized to send a message to the
 intended mailing list. This is useful only as a permanent
 error.

 X.7.3 Security conversion required but not possible

 A conversion from one secure messaging protocol to another
 was required for delivery and such conversion was not
 possible. This is useful only as a permanent error.

Vaudreuil Standards Track [Page 11]

RFC 1893 Mail System Status Codes January 1996

 X.7.4 Security features not supported

 A message contained security features such as secure
 authentication which could not be supported on the delivery
 protocol. This is useful only as a permanent error.

 X.7.5 Cryptographic failure

 A transport system otherwise authorized to validate or
 decrypt a message in transport was unable to do so because
 necessary information such as key was not available or such
 information was invalid.

 X.7.6 Cryptographic algorithm not supported

 A transport system otherwise authorized to validate or
 decrypt a message was unable to do so because the necessary
 algorithm was not supported.

 X.7.7 Message integrity failure

 A transport system otherwise authorized to validate a
 message was unable to do so because the message was
 corrupted or altered. This may be useful as a permanent,
 transient persistent, or successful delivery code.

4. References

 [SMTP] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 USC/Information Sciences Institute, August 1982.

 [DSN] Moore, K., and G. Vaudreuil, "An Extensible Message Format for
 Delivery Status Notifications", RFC 1894, University of
 Tennessee, Octel Network Services, January 1996.

5. Security Considerations

 This document describes a status code system with increased
 precision. Use of these status codes may disclose additional
 information about how an internal mail system is implemented beyond
 that currently available.

6. Acknowledgments

 The author wishes to offer special thanks to Harald Alvestrand, Marko
 Kaittola, and Keith Moore for their extensive review and constructive
 suggestions.

Vaudreuil Standards Track [Page 12]

C
om

pendium
 1 page 208

RFC 1893 Mail System Status Codes January 1996

7. Author's Address

 Gregory M. Vaudreuil
 Octel Network Services
 17060 Dallas Parkway
 Suite 214
 Dallas, TX 75248-1905

 Voice/Fax: +1-214-733-2722
 EMail: Greg.Vaudreuil@Octel.com

Vaudreuil Standards Track [Page 13]

RFC 1893 Mail System Status Codes January 1996

8. Appendix - Collected Status Codes

 X.1.0 Other address status
 X.1.1 Bad destination mailbox address
 X.1.2 Bad destination system address
 X.1.3 Bad destination mailbox address syntax
 X.1.4 Destination mailbox address ambiguous
 X.1.5 Destination mailbox address valid
 X.1.6 Mailbox has moved
 X.1.7 Bad sender's mailbox address syntax
 X.1.8 Bad sender's system address

 X.2.0 Other or undefined mailbox status
 X.2.1 Mailbox disabled, not accepting messages
 X.2.2 Mailbox full
 X.2.3 Message length exceeds administrative limit.
 X.2.4 Mailing list expansion problem

 X.3.0 Other or undefined mail system status
 X.3.1 Mail system full
 X.3.2 System not accepting network messages
 X.3.3 System not capable of selected features
 X.3.4 Message too big for system

 X.4.0 Other or undefined network or routing status
 X.4.1 No answer from host
 X.4.2 Bad connection
 X.4.3 Routing server failure
 X.4.4 Unable to route
 X.4.5 Network congestion
 X.4.6 Routing loop detected
 X.4.7 Delivery time expired

 X.5.0 Other or undefined protocol status
 X.5.1 Invalid command
 X.5.2 Syntax error
 X.5.3 Too many recipients
 X.5.4 Invalid command arguments
 X.5.5 Wrong protocol version

 X.6.0 Other or undefined media error
 X.6.1 Media not supported
 X.6.2 Conversion required and prohibited
 X.6.3 Conversion required but not supported
 X.6.4 Conversion with loss performed
 X.6.5 Conversion failed

Vaudreuil Standards Track [Page 14]

C
om

pendium
 1 page 209

RFC 1893 Mail System Status Codes January 1996

 X.7.0 Other or undefined security status
 X.7.1 Delivery not authorized, message refused
 X.7.2 Mailing list expansion prohibited
 X.7.3 Security conversion required but not possible
 X.7.4 Security features not supported
 X.7.5 Cryptographic failure
 X.7.6 Cryptographic algorithm not supported
 X.7.7 Message integrity failure

Vaudreuil Standards Track [Page 15]

C
om

pendium
 1 page 210

Network Working Group K. Moore
Request for Comments: 1894 University of Tennessee
Category: Standards Track G. Vaudreuil
 Octel Network Services
 January 1996

 An Extensible Message Format for Delivery Status Notifications

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This memo defines a MIME content-type that may be used by a message
 transfer agent (MTA) or electronic mail gateway to report the result
 of an attempt to deliver a message to one or more recipients. This
 content-type is intended as a machine-processable replacement for the
 various types of delivery status notifications currently used in
 Internet electronic mail.

 Because many messages are sent between the Internet and other
 messaging systems (such as X.400 or the so-called "LAN-based"
 systems), the DSN protocol is designed to be useful in a multi-
 protocol messaging environment. To this end, the protocol described
 in this memo provides for the carriage of "foreign" addresses and
 error codes, in addition to those normally used in Internet mail.
 Additional attributes may also be defined to support "tunneling" of
 foreign notifications through Internet mail.

 Any questions, comments, and reports of defects or ambiguities in
 this specification may be sent to the mailing list for the NOTARY
 working group of the IETF, using the address
 <notifications@cs.utk.edu>. Requests to subscribe to the mailing
 list should be addressed to <notifications-request@cs.utk.edu>.
 Implementors of this specification are encouraged to subscribe to the
 mailing list, so that they will quickly be informed of any problems
 which might hinder interoperability.

 NOTE: This document is a Proposed Standard. If and when this
 protocol is submitted for Draft Standard status, any normative text
 (phrases containing SHOULD, SHOULD NOT, MUST, MUST NOT, or MAY) in
 this document will be re-evaluated in light of implementation

Moore & Vaudreuil Standards Track [Page 1]

RFC 1894 Delivery Status Notifications January 1996

 experience, and are thus subject to change.

1. Introduction

 This memo defines a MIME [1] content-type for delivery status
 notifications (DSNs). A DSN can be used to notify the sender of a
 message of any of several conditions: failed delivery, delayed
 delivery, successful delivery, or the gatewaying of a message into an
 environment that may not support DSNs. The "message/delivery-status"
 content-type defined herein is intended for use within the framework
 of the "multipart/report" content type defined in [2].

 This memo defines only the format of the notifications. An extension
 to the Simple Message Transfer Protocol (SMTP) [3] to fully support
 such notifications is the subject of a separate memo [4].

1.1 Purposes

 The DSNs defined in this memo are expected to serve several purposes:

(a) Inform human beings of the status of message delivery processing, as
 well as the reasons for any delivery problems or outright failures,
 in a manner which is largely independent of human language;

(b) Allow mail user agents to keep track of the delivery status of
 messages sent, by associating returned DSNs with earlier message
 transmissions;

(c) Allow mailing list exploders to automatically maintain their
 subscriber lists when delivery attempts repeatedly fail;

(d) Convey delivery and non-delivery notifications resulting from
 attempts to deliver messages to "foreign" mail systems via a
 gateway;

(e) Allow "foreign" notifications to be tunneled through a MIME-capable
 message system and back into the original messaging system that
 issued the original notification, or even to a third messaging
 system;

(f) Allow language-independent, yet reasonably precise, indications of
 the reason for the failure of a message to be delivered (once status
 codes of sufficient precision are defined); and

(g) Provide sufficient information to remote MTA maintainers (via
 "trouble tickets") so that they can understand the nature of
 reported errors. This feature is used in the case that failure to
 deliver a message is due to the malfunction of a remote MTA and the

Moore & Vaudreuil Standards Track [Page 2]

C
om

pendium
 1 page 211

RFC 1894 Delivery Status Notifications January 1996

 sender wants to report the problem to the remote MTA administrator.

1.2 Requirements

 These purposes place the following constraints on the notification
 protocol:

(a) It must be readable by humans as well as being machine-parsable.

(b) It must provide enough information to allow message senders (or the
 user agents) to unambiguously associate a DSN with the message that
 was sent and the original recipient address for which the DSN is
 issued (if such information is available), even if the message was
 forwarded to another recipient address.

(c) It must be able to preserve the reason for the success or failure of
 a delivery attempt in a remote messaging system, using the
 "language" (mailbox addresses and status codes) of that remote
 system.

(d) It must also be able to describe the reason for the success or
 failure of a delivery attempt, independent of any particular human
 language or of the "language" of any particular mail system.

(e) It must preserve enough information to allow the maintainer of a
 remote MTA to understand (and if possible, reproduce) the conditions
 that caused a delivery failure at that MTA.

(f) For any notifications issued by foreign mail systems, which are
 translated by a mail gateway to the DSN format, the DSN must
 preserve the "type" of the foreign addresses and error codes, so
 that these may be correctly interpreted by gateways.

 A DSN contains a set of per-message fields which identify the message
 and the transaction during which the message was submitted, along
 with other fields that apply to all delivery attempts described by
 the DSN. The DSN also includes a set of per-recipient fields to
 convey the result of the attempt to deliver the message to each of
 one or more recipients.

1.3 Terminology

 A message may be transmitted through several message transfer agents
 (MTAs) on its way to a recipient. For a variety of reasons,
 recipient addresses may be rewritten during this process, so each MTA
 may potentially see a different recipient address. Depending on the
 purpose for which a DSN is used, different formats of a particular
 recipient address will be needed.

Moore & Vaudreuil Standards Track [Page 3]

RFC 1894 Delivery Status Notifications January 1996

 Several DSN fields are defined in terms of the view from a particular
 MTA in the transmission. The MTAs are assigned the following names:

 (a) Original MTA

 The Original MTA is the one to which the message is submitted for
 delivery by the sender of the message.

 (b) Reporting MTA

 For any DSN, the Reporting MTA is the one which is reporting the
 results of delivery attempts described in the DSN.

 If the delivery attempts described occurred in a "foreign" (non-
 Internet) mail system, and the DSN was produced by translating the
 foreign notice into DSN format, the Reporting MTA will still identify
 the "foreign" MTA where the delivery attempts occurred.

 (c) Received-From MTA

 The Received-From MTA is the MTA from which the Reporting MTA
 received the message, and accepted responsibility for delivery of the
 message.

 (d) Remote MTA

 If an MTA determines that it must relay a message to one or more
 recipients, but the message cannot be transferred to its "next hop"
 MTA, or if the "next hop" MTA refuses to accept responsibility for
 delivery of the message to one or more of its intended recipients,
 the relaying MTA may need to issue a DSN on behalf of the recipients
 for whom the message cannot be delivered. In this case the relaying
 MTA is the Reporting MTA, and the "next hop" MTA is known as the
 Remote MTA.

Moore & Vaudreuil Standards Track [Page 4]

C
om

pendium
 1 page 212

RFC 1894 Delivery Status Notifications January 1996

Figure 1 illustrates the relationship between the various MTAs.

+-----+ +--------+ +---------+ +---------+ +------+
				Received-				
	=>	Original	=> ... =>	From	=>	Reporting	===>	Remote
user		MTA		MTA		MTA	<No!	MTA
agent	+--------+ +---------+ +----v----+ +------+							
	<---+							
+-----+ (DSN returned to sender by Reporting MTA)

 Figure 1. Original, Received-From, Reporting and Remote MTAs

 Each of these MTAs may provide information which is useful in a DSN:

+ Ideally, the DSN will contain the address of each recipient as
 originally specified to the Original MTA by the sender of the message.
 This version of the address is needed (rather than a forwarding
 address or some modified version of the original address) so that the
 sender may compare the recipient address in the DSN with the address
 in the sender's records (e.g. an address book for an individual, the
 list of subscribers for a mailing list) and take appropriate action.

 Similarly, the DSN might contain an "envelope identifier" that was
 known to both the sender's user agent and the Original MTA at the time
 of message submission, and which, if included in the DSN, can be used
 by the sender to keep track of which messages were or were not
 delivered.

+ If a message was (a) forwarded to a different address than that
 specified by the sender, (b) gatewayed to a different mail system than
 that used by the sender, or (c) subjected to address rewriting during
 transmission, the "final" form of the recipient address (i.e. the one
 seen by the Reporting MTA) will be different than the original
 (sender-specified) recipient address. Just as the sender's user agent
 (or the sender) prefers the original recipient address, so the "final"
 address is needed when reporting a problem to the postmaster of the
 site where message delivery failed, because only the final recipient
 address will allow her to reproduce the conditions that caused the
 failure.

+ A "failed" DSN should contain the most accurate explanation for the
 delivery failure that is available. For ease of interpretation, this
 information should be a format which is independent of the mail
 transport system that issued the DSN. However, if a foreign error

Moore & Vaudreuil Standards Track [Page 5]

RFC 1894 Delivery Status Notifications January 1996

 code is translated into some transport-independent format, some
 information may be lost. It is therefore desirable to provide both a
 transport-independent status code and a mechanism for reporting
 transport-specific codes. Depending on the circumstances that
 produced delivery failure, the transport-specific code might be
 obtained from either the Reporting MTA or the Remote MTA.

 Since different values for "recipient address" and "delivery status
 code" are needed according to the circumstance in which a DSN will be
 used, and since the MTA that issues the DSN cannot anticipate those
 circumstances, the DSN format described here may contain both the
 original and final forms of a recipient address, and both a
 transport-independent and a transport-specific indication of delivery
 status.

 Extension fields may also be added by the Reporting MTA as needed to
 provide additional information for use in a trouble ticket or to
 preserve information for tunneling of foreign delivery reports
 through Internet DSNs.

 The Original, Reporting, and Remote MTAs may exist in very different
 environments and use dissimilar transport protocols, MTA names,
 address formats, and delivery status codes. DSNs therefore do not
 assume any particular format for mailbox addresses, MTA names, or
 transport-specific status codes. Instead, the various DSN fields
 that carry such quantities consist of a "type" subfield followed by a
 subfield whose contents are ordinary text characters, and the format
 of which is indicated by the "type" subfield. This allows a DSN to
 convey these quantities regardless of format.

2. Format of a Delivery Status Notification

 A DSN is a MIME message with a top-level content-type of
 multipart/report (defined in [2]). When a multipart/report content
 is used to transmit a DSN:

(a) The report-type parameter of the multipart/report content is
 "delivery-status".

(b) The first component of the multipart/report contains a human-
 readable explanation of the DSN, as described in [2].

(c) The second component of the multipart/report is of content-type
 message/delivery-status, described in section 2.1 of this document.

(d) If the original message or a portion of the message is to be
 returned to the sender, it appears as the third component of the
 multipart/report.

Moore & Vaudreuil Standards Track [Page 6]

C
om

pendium
 1 page 213

RFC 1894 Delivery Status Notifications January 1996

 NOTE: For delivery status notifications gatewayed from foreign
 systems, the headers of the original message may not be available.
 In this case the third component of the DSN may be omitted, or it
 may contain "simulated" RFC 822 headers which contain equivalent
 information. In particular, it is very desirable to preserve the
 subject, date, and message-id (or equivalent) fields from the
 original message.

 The DSN MUST be addressed (in both the message header and the
 transport envelope) to the return address from the transport envelope
 which accompanied the original message for which the DSN was
 generated. (For a message that arrived via SMTP, the envelope return
 address appears in the MAIL FROM command.)

 The From field of the message header of the DSN SHOULD contain the
 address of a human who is responsible for maintaining the mail system
 at the Reporting MTA site (e.g. Postmaster), so that a reply to the
 DSN will reach that person. Exception: if a DSN is translated from a
 foreign delivery report, and the gateway performing the translation
 cannot determine the appropriate address, the From field of the DSN
 MAY be the address of a human who is responsible for maintaining the
 gateway.

 The envelope sender address of the DSN SHOULD be chosen to ensure
 that no delivery status reports will be issued in response to the DSN
 itself, and MUST be chosen so that DSNs will not generate mail loops.
 Whenever an SMTP transaction is used to send a DSN, the MAIL FROM
 command MUST use a NULL return address, i.e. "MAIL FROM:<>".

 A particular DSN describes the delivery status for exactly one
 message. However, an MTA MAY report on the delivery status for
 several recipients of the same message in a single DSN. Due to the
 nature of the mail transport system (where responsibility for
 delivery of a message to its recipients may be split among several
 MTAs, and delivery to any particular recipient may be delayed),
 multiple DSNs may be still be issued in response to a single message
 submission.

Moore & Vaudreuil Standards Track [Page 7]

RFC 1894 Delivery Status Notifications January 1996

2.1 The message/delivery-status content-type

 The message/delivery-status content-type is defined as follows:

 MIME type name: message
 MIME subtype name: delivery-status
 Optional parameters: none
 Encoding considerations: "7bit" encoding is sufficient and
 MUST be used to maintain readability
 when viewed by non-MIME mail
 readers.
 Security considerations: discussed in section 4 of this memo.

 The message/delivery-status report type for use in the
 multipart/report is "delivery-status".

 The body of a message/delivery-status consists of one or more
 "fields" formatted according to the ABNF of RFC 822 header "fields"
 (see [6]). The per-message fields appear first, followed by a blank
 line. Following the per-message fields are one or more groups of
 per-recipient fields. Each group of per-recipient fields is preceded
 by a blank line. Using the ABNF of RFC 822, the syntax of the
 message/delivery-status content is as follows:

 delivery-status-content =
 per-message-fields 1*(CRLF per-recipient-fields)

 The per-message fields are described in section 2.2. The per-
 recipient fields are described in section 2.3.

2.1.1 General conventions for DSN fields

 Since these fields are defined according to the rules of RFC 822, the
 same conventions for continuation lines and comments apply.
 Notification fields may be continued onto multiple lines by beginning
 each additional line with a SPACE or HTAB. Text which appears in
 parentheses is considered a comment and not part of the contents of
 that notification field. Field names are case-insensitive, so the
 names of notification fields may be spelled in any combination of
 upper and lower case letters. Comments in DSN fields may use the
 "encoded-word" construct defined in [7].

 A number of DSN fields are defined to have a portion of a field body
 of "xtext". "xtext" is used to allow encoding sequences of octets
 which contain values outside the range [1-127 decimal] of traditional
 ASCII characters, and also to allow comments to be inserted in the
 data. Any octet may be encoded as "+" followed by two upper case

Moore & Vaudreuil Standards Track [Page 8]

C
om

pendium
 1 page 214

RFC 1894 Delivery Status Notifications January 1996

 hexadecimal digits. (The "+" character MUST be encoded as "+2B".)
 With certain exceptions, octets that correspond to ASCII characters
 may be represented as themselves. SPACE and HTAB characters are
 ignored. Comments may be included by enclosing them in parenthesis.
 Except within comments, encoded-words such as defined in [7] may NOT
 be used in xtext.

 "xtext" is formally defined as follows:

 xtext = *(xchar / hexchar / linear-white-space / comment)

 xchar = any ASCII CHAR between "!" (33) and "~" (126) inclusive,
 except for "+", "\" and "(".

 "hexchar"s are intended to encode octets that cannot be represented
 as plain text, either because they are reserved, or because they are
 non-printable. However, any octet value may be represented by a
 "hexchar".

 hexchar = ASCII "+" immediately followed by two upper case
 hexadecimal digits

 When encoding an octet sequence as xtext:

 + Any ASCII CHAR between "!" and "~" inclusive, except for "+", "\",
 and "(", MAY be encoded as itself. (Some CHARs in this range may
 also be encoded as "hexchar"s, at the implementor's discretion.)

 + ASCII CHARs that fall outside the range above must be encoded as
 "hexchar".

 + Line breaks (CR LF SPACE) MAY be inserted as necessary to keep line
 lengths from becoming excessive.

 + Comments MAY be added to clarify the meaning for human readers.

2.1.2 "*-type" subfields

 Several DSN fields consist of a "-type" subfield, followed by a
 semicolon, followed by "*text". For these fields, the keyword used
 in the address-type, diagnostic-type, or MTA-name-type subfield
 indicates the expected format of the address, status-code, or MTA-
 name which follows.

Moore & Vaudreuil Standards Track [Page 9]

RFC 1894 Delivery Status Notifications January 1996

 The "-type" subfields are defined as follows:

(a) An "address-type" specifies the format of a mailbox address. For
 example, Internet mail addresses use the "rfc822" address-type.

 address-type = atom

(b) A "diagnostic-type" specifies the format of a status code. For
 example, when a DSN field contains a reply code reported via the
 Simple Mail Transfer Protocol [3], the "smtp" diagnostic-type is
 used.

 diagnostic-type = atom

(c) An "MTA-name-type" specifies the format of an MTA name. For
 example, for an SMTP server on an Internet host, the MTA name is the
 domain name of that host, and the "dns" MTA-name-type is used.

 mta-name-type = atom

 Values for address-type, diagnostic-type, and MTA-name-type are
 case-insensitive. Thus address-type values of "RFC822" and "rfc822"
 are equivalent.

 The Internet Assigned Numbers Authority (IANA) will maintain a
 registry of address-types, diagnostic-types, and MTA-name-types,
 along with descriptions of the meanings and acceptable values of
 each, or a reference to a one or more specifications that provide
 such descriptions. (The "rfc822" address-type, "smtp" diagnostic-
 type, and "dns" MTA-name-type are defined in [4].) Registration
 forms for address-type, diagnostic-type, and MTA-name-type appear in
 section 8 of this document.

 IANA will not accept registrations for any address-type, diagnostic-
 type, or MTA-name-type name that begins with "X-". These type names
 are reserved for experimental use.

2.1.3 Lexical tokens imported from RFC 822

 The following lexical tokens, defined in [6], are used in the ABNF
 grammar for DSNs: atom, CHAR, comment, CR, CRLF, DIGIT, LF, linear-
 white-space, SPACE, text. The date-time lexical token is defined in
 [8].

Moore & Vaudreuil Standards Track [Page 10]

C
om

pendium
 1 page 215

RFC 1894 Delivery Status Notifications January 1996

2.2 Per-Message DSN Fields

 Some fields of a DSN apply to all of the delivery attempts described
 by that DSN. These fields may appear at most once in any DSN. These
 fields are used to correlate the DSN with the original message
 transaction and to provide additional information which may be useful
 to gateways.

 per-message-fields =
 [original-envelope-id-field CRLF]
 reporting-mta-field CRLF
 [dsn-gateway-field CRLF]
 [received-from-mta-field CRLF]
 [arrival-date-field CRLF]
 *(extension-field CRLF)

2.2.1 The Original-Envelope-Id field

 The optional Original-Envelope-Id field contains an "envelope
 identifier" which uniquely identifies the transaction during which
 the message was submitted, and was either (a) specified by the sender
 and supplied to the sender's MTA, or (b) generated by the sender's
 MTA and made available to the sender when the message was submitted.
 Its purpose is to allow the sender (or her user agent) to associate
 the returned DSN with the specific transaction in which the message
 was sent.

 If such an envelope identifier was present in the envelope which
 accompanied the message when it arrived at the Reporting MTA, it
 SHOULD be supplied in the Original-Envelope-Id field of any DSNs
 issued as a result of an attempt to deliver the message. Except when
 a DSN is issued by the sender's MTA, an MTA MUST NOT supply this
 field unless there is an envelope-identifier field in the envelope
 which accompanied this message on its arrival at the Reporting MTA.

 The Original-Envelope-Id field is defined as follows:

 original-envelope-id-field =
 "Original-Envelope-Id" ":" envelope-id

 envelope-id = *text

 There may be at most one Original-Envelope-Id field per DSN.

 The envelope-id is CASE-SENSITIVE. The DSN MUST preserve the
 original case and spelling of the envelope-id.

Moore & Vaudreuil Standards Track [Page 11]

RFC 1894 Delivery Status Notifications January 1996

 NOTE: The Original-Envelope-Id is NOT the same as the Message-Id from
 the message header. The Message-Id identifies the content of the
 message, while the Original-Envelope-Id identifies the transaction in
 which the message is sent.

2.2.2 The Reporting-MTA DSN field

 reporting-mta-field =
 "Reporting-MTA" ":" mta-name-type ";" mta-name

 mta-name = *text

 The Reporting-MTA field is defined as follows:

 A DSN describes the results of attempts to deliver, relay, or gateway
 a message to one or more recipients. In all cases, the Reporting-MTA
 is the MTA which attempted to perform the delivery, relay, or gateway
 operation described in the DSN. This field is required.

 Note that if an SMTP client attempts to relay a message to an SMTP
 server and receives an error reply to a RCPT command, the client is
 responsible for generating the DSN, and the client's domain name will
 appear in the Reporting-MTA field. (The server's domain name will
 appear in the Remote-MTA field.)

 Note that the Reporting-MTA is not necessarily the MTA which actually
 issued the DSN. For example, if an attempt to deliver a message
 outside of the Internet resulted in a nondelivery notification which
 was gatewayed back into Internet mail, the Reporting-MTA field of the
 resulting DSN would be that of the MTA that originally reported the
 delivery failure, not that of the gateway which converted the foreign
 notification into a DSN. See Figure 2.

Moore & Vaudreuil Standards Track [Page 12]

C
om

pendium
 1 page 216

RFC 1894 Delivery Status Notifications January 1996

sender's environment recipient's environment
............................ ..
 : :
 (1) : : (2)
 +-----+ +--------+ +--------+ +---------+ +---------+ +------+
						Received-				
	=>	Original	=>		->	From	->	Reporting	-->	Remote
user		MTA				MTA		MTA	<No	MTA
agent	+--------+	Gateway	+---------+ +----v----+ +------+							
	<============		<-------------------+							
 +-----+ | |(4) (3)
 +--------+
 : :
...........................: :...

 Figure 2. DSNs in the presence of gateways

 (1) message is gatewayed into recipient's environment
 (2) attempt to relay message fails
 (3) reporting-mta (in recipient's environment) returns nondelivery
 notification
 (4) gateway translates foreign notification into a DSN

 The mta-name portion of the Reporting-MTA field is formatted
 according to the conventions indicated by the mta-name-type subfield.
 If an MTA functions as a gateway between dissimilar mail environments
 and thus is known by multiple names depending on the environment, the
 mta-name subfield SHOULD contain the name used by the environment
 from which the message was accepted by the Reporting-MTA.

 Because the exact spelling of an MTA name may be significant in a
 particular environment, MTA names are CASE-SENSITIVE.

2.2.3 The DSN-Gateway field

 The DSN-Gateway field indicates the name of the gateway or MTA which
 translated a foreign (non-Internet) delivery status notification into
 this DSN. This field MUST appear in any DSN which was translated by
 a gateway from a foreign system into DSN format, and MUST NOT appear
 otherwise.

 dsn-gateway-field = "DSN-Gateway" ":" mta-name-type ";" mta-name

Moore & Vaudreuil Standards Track [Page 13]

RFC 1894 Delivery Status Notifications January 1996

 For gateways into Internet mail, the MTA-name-type will normally be
 "smtp", and the mta-name will be the Internet domain name of the
 gateway.

2.2.4 The Received-From-MTA DSN field

 The optional Received-From-MTA field indicates the name of the MTA
 from which the message was received.

 received-from-mta-field =
 "Received-From-MTA" ":" mta-name-type ";" mta-name

 If the message was received from an Internet host via SMTP, the
 contents of the mta-name subfield SHOULD be the Internet domain name
 supplied in the HELO or EHLO command, and the network address used by
 the SMTP client SHOULD be included as a comment enclosed in
 parentheses. (In this case, the MTA-name-type will be "smtp".)

 The mta-name portion of the Received-From-MTA field is formatted
 according to the conventions indicated by the MTA-name-type subfield.

 Since case is significant in some mail systems, the exact spelling,
 including case, of the MTA name SHOULD be preserved.

2.2.5 The Arrival-Date DSN field

 The optional Arrival-Date field indicates the date and time at which
 the message arrived at the Reporting MTA. If the Last-Attempt-Date
 field is also provided in a per-recipient field, this can be used to
 determine the interval between when the message arrived at the
 Reporting MTA and when the report was issued for that recipient.

 arrival-date-field = "Arrival-Date" ":" date-time

 The date and time are expressed in RFC 822 'date-time' format, as
 modified by [8]. Numeric timezones ([+/-]HHMM format) MUST be used.

2.3 Per-Recipient DSN fields

 A DSN contains information about attempts to deliver a message to one
 or more recipients. The delivery information for any particular
 recipient is contained in a group of contiguous per-recipient fields.
 Each group of per-recipient fields is preceded by a blank line.

Moore & Vaudreuil Standards Track [Page 14]

C
om

pendium
 1 page 217

RFC 1894 Delivery Status Notifications January 1996

 The syntax for the group of per-recipient fields is as follows:

 per-recipient-fields =
 [original-recipient-field CRLF]
 final-recipient-field CRLF
 action-field CRLF
 status-field CRLF
 [remote-mta-field CRLF]
 [diagnostic-code-field CRLF]
 [last-attempt-date-field CRLF]
 [will-retry-until-field CRLF]
 *(extension-field CRLF)

2.3.1 Original-Recipient field

 The Original-Recipient field indicates the original recipient address
 as specified by the sender of the message for which the DSN is being
 issued.

 original-recipient-field =
 "Original-Recipient" ":" address-type ";" generic-address

 generic-address = *text

 The address-type field indicates the type of the original recipient
 address. If the message originated within the Internet, the
 address-type field field will normally be "rfc822", and the address
 will be according to the syntax specified in [6]. The value
 "unknown" should be used if the Reporting MTA cannot determine the
 type of the original recipient address from the message envelope.

 This field is optional. It should be included only if the sender-
 specified recipient address was present in the message envelope, such
 as by the SMTP extensions defined in [4]. This address is the same
 as that provided by the sender and can be used to automatically
 correlate DSN reports and message transactions.

2.3.2 Final-Recipient field

 The Final-Recipient field indicates the recipient for which this set
 of per-recipient fields applies. This field MUST be present in each
 set of per-recipient data.

Moore & Vaudreuil Standards Track [Page 15]

RFC 1894 Delivery Status Notifications January 1996

 The syntax of the field is as follows:

 final-recipient-field =
 "Final-Recipient" ":" address-type ";" generic-address

 The generic-address subfield of the Final-Recipient field MUST
 contain the mailbox address of the recipient (from the transport
 envelope) as it was when the message was accepted for delivery by the
 Reporting MTA.

 The Final-Recipient address may differ from the address originally
 provided by the sender, because it may have been transformed during
 forwarding and gatewaying into an totally unrecognizable mess.
 However, in the absence of the optional Original-Recipient field, the
 Final-Recipient field and any returned content may be the only
 information available with which to correlate the DSN with a
 particular message submission.

 The address-type subfield indicates the type of address expected by
 the reporting MTA in that context. Recipient addresses obtained via
 SMTP will normally be of address-type "rfc822".

 NOTE: The Reporting MTA is not expected to ensure that the address
 actually conforms to the syntax conventions of the address-type.
 Instead, it MUST report exactly the address received in the envelope,
 unless that address contains characters such as CR or LF which may
 not appear in a DSN field.

 Since mailbox addresses (including those used in the Internet) may be
 case sensitive, the case of alphabetic characters in the address MUST
 be preserved.

2.3.3 Action field

 The Action field indicates the action performed by the Reporting-MTA
 as a result of its attempt to deliver the message to this recipient
 address. This field MUST be present for each recipient named in the
 DSN.

 The syntax for the action-field is:

 action-field = "Action" ":" action-value

 action-value =
 "failed" / "delayed" / "delivered" / "relayed" / "expanded"

Moore & Vaudreuil Standards Track [Page 16]

C
om

pendium
 1 page 218

RFC 1894 Delivery Status Notifications January 1996

 The action-value may be spelled in any combination of upper and lower
 case characters.

"failed" indicates that the message could not be delivered to the
 recipient. The Reporting MTA has abandoned any attempts to
 deliver the message to this recipient. No further
 notifications should be expected.

"delayed" indicates that the Reporting MTA has so far been unable to
 deliver or relay the message, but it will continue to
 attempt to do so. Additional notification messages may be
 issued as the message is further delayed or successfully
 delivered, or if delivery attempts are later abandoned.

"delivered" indicates that the message was successfully delivered to
 the recipient address specified by the sender, which
 includes "delivery" to a mailing list exploder. It does
 not indicate that the message has been read. This is a
 terminal state and no further DSN for this recipient should
 be expected.

"relayed" indicates that the message has been relayed or gatewayed
 into an environment that does not accept responsibility for
 generating DSNs upon successful delivery. This action-
 value SHOULD NOT be used unless the sender has requested
 notification of successful delivery for this recipient.

"expanded" indicates that the message has been successfully delivered
 to the recipient address as specified by the sender, and
 forwarded by the Reporting-MTA beyond that destination to
 multiple additional recipient addresses. An action-value
 of "expanded" differs from "delivered" in that "expanded"
 is not a terminal state. Further "failed" and/or "delayed"
 notifications may be provided.

 Using the terms "mailing list" and "alias" as defined in
 [4], section 7.2.7: An action-value of "expanded" is only
 to be used when the message is delivered to a multiple-
 recipient "alias". An action-value of "expanded" SHOULD
 NOT be used with a DSN issued on delivery of a message to a
 "mailing list".

 NOTE ON ACTION VS. STATUS CODES: Although the 'action' field might
 seem to be redundant with the 'status' field, this is not the case.
 In particular, a "temporary failure" ("4") status code could be used
 with an action-value of either "delayed" or "failed". For example,
 assume that an SMTP client repeatedly tries to relay a message to the
 mail exchanger for a recipient, but fails because a query to a domain

Moore & Vaudreuil Standards Track [Page 17]

RFC 1894 Delivery Status Notifications January 1996

 name server timed out. After a few hours, it might issue a "delayed"
 DSN to inform the sender that the message had not yet been delivered.
 After a few days, the MTA might abandon its attempt to deliver the
 message and return a "failed" DSN. The status code (which would
 begin with a "4" to indicate "temporary failure") would be the same
 for both DSNs.

 Another example for which the action and status codes may appear
 contradictory: If an MTA or mail gateway cannot deliver a message
 because doing so would entail conversions resulting in an
 unacceptable loss of information, it would issue a DSN with the
 'action' field of "failure" and a status code of 'XXX'. If the
 message had instead been relayed, but with some loss of information,
 it might generate a DSN with the same XXX status-code, but with an
 action field of "relayed".

2.3.4 Status field

 The per-recipient Status field contains a transport-independent
 status code which indicates the delivery status of the message to
 that recipient. This field MUST be present for each delivery attempt
 which is described by a DSN.

 The syntax of the status field is:

 status-field = "Status" ":" status-code

 status-code = DIGIT "." 1*3DIGIT "." 1*3DIGIT

 ; White-space characters and comments are NOT allowed within a
 ; status-code, though a comment enclosed in parentheses MAY follow
 ; the last numeric subfield of the status-code. Each numeric
 ; subfield within the status-code MUST be expressed without
 ; leading zero digits.

 Status codes thus consist of three numerical fields separated by ".".
 The first sub-field indicates whether the delivery attempt was
 successful (2 = success, 4 = persistent temporary failure, 5 =
 permanent failure). The second sub-field indicates the probable
 source of any delivery anomalies, and the third sub-field denotes a
 precise error condition, if known.

 The initial set of status-codes is defined in [5].

Moore & Vaudreuil Standards Track [Page 18]

C
om

pendium
 1 page 219

RFC 1894 Delivery Status Notifications January 1996

2.3.5 Remote-MTA field

 The value associated with the Remote-MTA DSN field is a printable
 ASCII representation of the name of the "remote" MTA that reported
 delivery status to the "reporting" MTA.

 remote-mta-field = "Remote-MTA" ":" mta-name-type ";" mta-name

 NOTE: The Remote-MTA field preserves the "while talking to"
 information that was provided in some pre-existing nondelivery
 reports.

 This field is optional. It MUST NOT be included if no remote MTA was
 involved in the attempted delivery of the message to that recipient.

2.3.6 Diagnostic-Code field

 For a "failed" or "delayed" recipient, the Diagnostic-Code DSN field
 contains the actual diagnostic code issued by the mail transport.
 Since such codes vary from one mail transport to another, the
 diagnostic-type subfield is needed to specify which type of
 diagnostic code is represented.

 diagnostic-code-field =
 "Diagnostic-Code" ":" diagnostic-type ";" *text

 NOTE: The information in the Diagnostic-Code field may be somewhat
 redundant with that from the Status field. The Status field is
 needed so that any DSN, regardless of origin, may be understood by
 any user agent or gateway that parses DSNs. Since the Status code
 will sometimes be less precise than the actual transport diagnostic
 code, the Diagnostic-Code field is provided to retain the latter
 information. Such information may be useful in a trouble ticket sent
 to the administrator of the Reporting MTA, or when tunneling foreign
 nondelivery reports through DSNs.

 If the Diagnostic Code was obtained from a Remote MTA during an
 attempt to relay the message to that MTA, the Remote-MTA field should
 be present. When interpreting a DSN, the presence of a Remote-MTA
 field indicates that the Diagnostic Code was issued by the Remote
 MTA. The absence of a Remote-MTA indicates that the Diagnostic Code
 was issued by the Reporting MTA.

 In addition to the Diagnostic-Code itself, additional textual
 description of the diagnostic, MAY appear in a comment enclosed in
 parentheses.

Moore & Vaudreuil Standards Track [Page 19]

RFC 1894 Delivery Status Notifications January 1996

 This field is optional, because some mail systems supply no
 additional information beyond that which is returned in the 'action'
 and 'status' fields. However, this field SHOULD be included if
 transport-specific diagnostic information is available.

2.3.7 Last-Attempt-Date field

 The Last-Attempt-Date field gives the date and time of the last
 attempt to relay, gateway, or deliver the message (whether successful
 or unsuccessful) by the Reporting MTA. This is not necessarily the
 same as the value of the Date field from the header of the message
 used to transmit this delivery status notification: In cases where
 the DSN was generated by a gateway, the Date field in the message
 header contains the time the DSN was sent by the gateway and the DSN
 Last-Attempt-Date field contains the time the last delivery attempt
 occurred.

 last-attempt-date-field = "Last-Attempt-Date" ":" date-time

 This field is optional. It MUST NOT be included if the actual date
 and time of the last delivery attempt are not available (which might
 be the case if the DSN were being issued by a gateway).

 The date and time are expressed in RFC 822 'date-time' format, as
 modified by [8]. Numeric timezones ([+/-]HHMM format) MUST be used.

 3.2.1.5 final-log-id field

 The "final-log-id" field gives the final-log-id of the message that
 was used by the final-mta. This can be useful as an index to the
 final-mta's log entry for that delivery attempt.

 final-log-id-field = "Final-Log-ID" ":" *text

 This field is optional.

2.3.8 Will-Retry-Until field

 For DSNs of type "delayed", the Will-Retry-Until field gives the date
 after which the Reporting MTA expects to abandon all attempts to
 deliver the message to that recipient. The Will-Retry-Until field is
 optional for "delay" DSNs, and MUST NOT appear in other DSNs.

 will-retry-until-field = "Will-Retry-Until" ":" date-time

 The date and time are expressed in RFC 822 'date-time' format, as
 modified by [8]. Numeric timezones ([+/-]HHMM format) MUST be used.

Moore & Vaudreuil Standards Track [Page 20]

C
om

pendium
 1 page 220

RFC 1894 Delivery Status Notifications January 1996

2.4 Extension fields

 Additional per-message or per-recipient DSN fields may be defined in
 the future by later revisions or extensions to this specification.
 Extension-field names beginning with "X-" will never be defined as
 standard fields; such names are reserved for experimental use. DSN
 field names NOT beginning with "X-" MUST be registered with the
 Internet Assigned Numbers Authority (IANA) and published in an RFC.

 Extension DSN fields may be defined for the following reasons:

 (a) To allow additional information from foreign delivery status
 reports to be tunneled through Internet DSNs. The names of such
 DSN fields should begin with an indication of the foreign
 environment name (e.g. X400-Physical-Forwarding-Address).

 (b) To allow the transmission of diagnostic information which is
 specific to a particular mail transport protocol. The names of
 such DSN fields should begin with an indication of the mail
 transport being used (e.g. SMTP-Remote-Recipient-Address). Such
 fields should be used for diagnostic purposes only and not by
 user agents or mail gateways.

 (c) To allow transmission of diagnostic information which is specific
 to a particular message transfer agent (MTA). The names of such
 DSN fields should begin with an indication of the MTA
 implementation which produced the DSN. (e.g. Foomail-Queue-ID).

 MTA implementors are encouraged to provide adequate information, via
 extension fields if necessary, to allow an MTA maintainer to
 understand the nature of correctable delivery failures and how to fix
 them. For example, if message delivery attempts are logged, the DSN
 might include information which allows the MTA maintainer to easily
 find the log entry for a failed delivery attempt.

 If an MTA developer does not wish to register the meanings of such
 extension fields, "X-" fields may be used for this purpose. To avoid
 name collisions, the name of the MTA implementation should follow the
 "X-", (e.g. "X-Foomail-Log-ID").

3. Conformance and Usage Requirements

 An MTA or gateway conforms to this specification if it generates DSNs
 according to the protocol defined in this memo. For MTAs and
 gateways that do not support requests for positive delivery
 notification (such as in [4]), it is sufficient that delivery failure
 reports use this protocol.

Moore & Vaudreuil Standards Track [Page 21]

RFC 1894 Delivery Status Notifications January 1996

 A minimal implementation of this specification need generate only the
 Reporting-MTA per-message field, and the Final-Recipient, Action, and
 Status fields for each attempt to deliver a message to a recipient
 described by the DSN. Generation of the other fields, when
 appropriate, is strongly recommended.

 MTAs and gateways MUST NOT generate the Original-Recipient field of a
 DSN unless the mail transfer protocol provides the address originally
 specified by the sender at the time of submission. (Ordinary SMTP
 does not make that guarantee, but the SMTP extension defined in [4]
 permits such information to be carried in the envelope if it is
 available.)

 Each sender-specified recipient address SHOULD result in at most one
 "delivered" or "failed" DSN for that recipient. If a positive DSN is
 requested (e.g. one using NOTIFY=SUCCESS in SMTP) for a recipient
 that is forwarded to multiple recipients of an "alias" (as defined in
 [4], section 7.2.7), the forwarding MTA SHOULD normally issue a
 "expanded" DSN for the originally-specified recipient and not
 propagate the request for a DSN to the forwarding addresses.
 Alternatively, the forwarding MTA MAY relay the request for a DSN to
 exactly one of the forwarding addresses and not propagate the request
 to the others.

 By contrast, successful submission of a message to a mailing list
 exploder is considered final delivery of the message. Upon delivery
 of a message to a recipient address corresponding to a mailing list
 exploder, the Reporting MTA SHOULD issue an appropriate DSN exactly
 as if the recipient address were that of an ordinary mailbox.

 NOTE: This is actually intended to make DSNs usable by mailing lists
 themselves. Any message sent to a mailing list subscriber should
 have its envelope return address pointing to the list maintainer [see
 RFC 1123, section 5.3.7(E)]. Since DSNs are sent to the envelope
 return address, all DSNs resulting from delivery to the recipients of
 a mailing list will be sent to the list maintainer. The list
 maintainer may elect to mechanically process DSNs upon receipt, and
 thus automatically delete invalid addresses from the list. (See
 section 7 of this memo.)

 This specification places no restrictions on the processing of DSNs
 received by user agents or distribution lists.

4. Security Considerations

 The following security considerations apply when using DSNs:

Moore & Vaudreuil Standards Track [Page 22]

C
om

pendium
 1 page 221

RFC 1894 Delivery Status Notifications January 1996

4.1 Forgery

 DSNs may be forged as easily as ordinary Internet electronic mail.
 User agents and automatic mail handling facilities (such as mail
 distribution list exploders) that wish to make automatic use of DSNs
 should take appropriate precautions to minimize the potential damage
 from denial-of-service attacks.

 Security threats related to forged DSNs include the sending of:

(a) A falsified delivery notification when the message is not delivered
 to the indicated recipient,
(b) A falsified non-delivery notification when the message was in fact
 delivered to the indicated recipient,
(c) A falsified Final-Recipient address,
(d) A falsified Remote-MTA identification,
(e) A falsified relay notification when the message is "dead ended".
(f) Unsolicited DSNs

4.2 Confidentiality

 Another dimension of security is confidentiality. There may be cases
 in which a message recipient is autoforwarding messages but does not
 wish to divulge the address to which the messages are autoforwarded.
 The desire for such confidentiality will probably be heightened as
 "wireless mailboxes", such as pagers, become more widely used as
 autoforward addresses.

 MTA authors are encouraged to provide a mechanism which enables the
 end user to preserve the confidentiality of a forwarding address.
 Depending on the degree of confidentiality required, and the nature
 of the environment to which a message were being forwarded, this
 might be accomplished by one or more of:

(a) issuing a "relayed" DSN (if a positive DSN was requested) when a
 message is forwarded to a confidential forwarding address, and
 disabling requests for positive DSNs for the forwarded message,

(b) declaring the message to be delivered, issuing a "delivered" DSN,
 re-sending the message to the confidential forwarding address, and
 arranging for no DSNs to be issued for the re-sent message,

(c) omitting "Remote-*" or extension fields of a DSN whenever they would
 otherwise contain confidential information (such as a confidential
 forwarding address),

(d) for messages forwarded to a confidential address, setting the
 envelope return address (e.g. SMTP MAIL FROM address) to the NULL

Moore & Vaudreuil Standards Track [Page 23]

RFC 1894 Delivery Status Notifications January 1996

 reverse-path ("<>") (so that no DSNs would be sent from a downstream
 MTA to the original sender),

(e) for messages forwarded to a confidential address, disabling delivery
 notifications for the forwarded message (e.g. if the "next-hop" MTA
 uses ESMTP and supports the DSN extension, by using the NOTIFY=NEVER
 parameter to the RCPT command), or

(f) when forwarding mail to a confidential address, having the
 forwarding MTA rewrite the envelope return address for the forwarded
 message and attempt delivery of that message as if the forwarding
 MTA were the originator. On its receipt of final delivery status,
 the forwarding MTA would issue a DSN to the original sender.

 In general, any optional DSN field may be omitted if the Reporting
 MTA site determines that inclusion of the field would impose too
 great a compromise of site confidentiality. The need for such
 confidentiality must be balanced against the utility of the omitted
 information in trouble reports and DSNs gatewayed to foreign
 environments.

 Implementors are cautioned that many existing MTAs will send
 nondelivery notifications to a return address in the message header
 (rather than to the one in the envelope), in violation of SMTP and
 other protocols. If a message is forwarded through such an MTA, no
 reasonable action on the part of the forwarding MTA will prevent the
 downstream MTA from compromising the forwarding address. Likewise,
 if the recipient's MTA automatically responds to messages based on a
 request in the message header (such as the nonstandard, but widely
 used, Return-Receipt-To extension header), it will also compromise
 the forwarding address.

4.3 Non-Repudiation

 Within the framework of today's internet mail, the DSNs defined in
 this memo provide valuable information to the mail user; however,
 even a "failed" DSN can not be relied upon as a guarantee that a
 message was not received by the recipient. Even if DSNs are not
 actively forged, conditions exist under which a message can be
 delivered despite the fact that a failure DSN was issued.

Moore & Vaudreuil Standards Track [Page 24]

C
om

pendium
 1 page 222

RFC 1894 Delivery Status Notifications January 1996

 For example, a race condition in the SMTP protocol allows for the
 duplication of messages if the connection is dropped following a
 completed DATA command, but before a response is seen by the SMTP
 client. This will cause the SMTP client to retransmit the message,
 even though the SMTP server has already accepted it.[9] If one of
 those delivery attempts succeeds and the other one fails, a "failed"
 DSN could be issued even though the message actually reached the
 recipient.

Moore & Vaudreuil Standards Track [Page 25]

RFC 1894 Delivery Status Notifications January 1996

5. Appendix - collected grammar

 NOTE: The following lexical tokens are defined in RFC 822: atom,
 CHAR, comment, CR, CRLF, DIGIT, LF, linear-white-space, SPACE, text.
 The date-time lexical token is defined in [8].

action-field = "Action" ":" action-value

action-value =
 "failed" / "delayed" / "delivered" / "relayed" / "expanded"

address-type = atom

arrival-date-field = "Arrival-Date" ":" date-time

delivery-status-content =
 per-message-fields 1*(CRLF per-recipient-fields)

diagnostic-code-field =
 "Diagnostic-Code" ":" diagnostic-type ";" *text

diagnostic-type = atom

dsn-gateway-field = "DSN-Gateway" ":" mta-name-type ";" mta-name

envelope-id = *text

extension-field = extension-field-name ":" *text

extension-field-name = atom

final-recipient-field =
 "Final-Recipient" ":" address-type ";" generic-address

generic-address = *text

last-attempt-date-field = "Last-Attempt-Date" ":" date-time

mta-name = *text

mta-name-type = atom

original-envelope-id-field =
 "Original-Envelope-Id" ":" envelope-id

original-recipient-field =
 "Original-Recipient" ":" address-type ";" generic-address

Moore & Vaudreuil Standards Track [Page 26]

C
om

pendium
 1 page 223

RFC 1894 Delivery Status Notifications January 1996

per-message-fields =
 [original-envelope-id-field CRLF]
 reporting-mta-field CRLF
 [dsn-gateway-field CRLF]
 [received-from-mta-field CRLF]
 [arrival-date-field CRLF]
 *(extension-field CRLF)

per-recipient-fields =
 [original-recipient-field CRLF]
 final-recipient-field CRLF
 action-field CRLF
 status-field CRLF
 [remote-mta-field CRLF]
 [diagnostic-code-field CRLF]
 [last-attempt-date-field CRLF]
 [will-retry-until-field CRLF]
 *(extension-field CRLF)

received-from-mta-field =
 "Received-From-MTA" ":" mta-name-type ";" mta-name

remote-mta-field = "Remote-MTA" ":" mta-name-type ";" mta-name

reporting-mta-field =
 "Reporting-MTA" ":" mta-name-type ";" mta-name

status-code = DIGIT "." 1*3DIGIT "." 1*3DIGIT

 ; White-space characters and comments are NOT allowed within a
 ; status-code, though a comment enclosed in parentheses MAY follow
 ; the last numeric subfield of the status-code. Each numeric
 ; subfield within the status-code MUST be expressed without
 ; leading zero digits.

status-field = "Status" ":" status-code

will-retry-until-field = "Will-Retry-Until" ":" date-time

Moore & Vaudreuil Standards Track [Page 27]

RFC 1894 Delivery Status Notifications January 1996

6. Appendix - Guidelines for gatewaying DSNs

 NOTE: This section provides non-binding recommendations for the
 construction of mail gateways that wish to provide semi-transparent
 delivery reports between the Internet and another electronic mail
 system. Specific DSN gateway requirements for a particular pair of
 mail systems may be defined by other documents.

6.1 Gatewaying from other mail systems to DSNs

 A mail gateway may issue a DSN to convey the contents of a "foreign"
 delivery or non-delivery notification over Internet mail. When there
 are appropriate mappings from the foreign notification elements to
 DSN fields, the information may be transmitted in those DSN fields.
 Additional information (such as might be useful in a trouble ticket
 or needed to tunnel the foreign notification through the Internet)
 may be defined in extension DSN fields. (Such fields should be given
 names that identify the foreign mail protocol, e.g. X400-* for X.400
 NDN or DN protocol elements)

 The gateway must attempt to supply reasonable values for the
 Reporting-MTA, Final-Recipient, Action, and Status fields. These
 will normally be obtained by translating the values from the remote
 delivery or non-delivery notification into their Internet-style
 equivalents. However, some loss of information is to be expected.
 For example, the set of status-codes defined for DSNs may not be
 adequate to fully convey the delivery diagnostic code from the
 foreign system. The gateway should assign the most precise code
 which describes the failure condition, falling back on "generic"
 codes such as 2.0.0 (success), 4.0.0 (temporary failure), and 5.0.0
 (permanent failure) when necessary. The actual foreign diagnostic
 code should be retained in the Diagnostic-Code field (with an
 appropriate diagnostic-type value) for use in trouble tickets or
 tunneling.

 The sender-specified recipient address, and the original envelope-id,
 if present in the foreign transport envelope, should be preserved in
 the Original-Recipient and Original-Envelope-ID fields.

 The gateway should also attempt to preserve the "final" recipient
 addresses and MTA names from the foreign system. Whenever possible,
 foreign protocol elements should be encoded as meaningful printable
 ASCII strings.

 For DSNs produced from foreign delivery or nondelivery notifications,
 the name of the gateway MUST appear in the DSN-Gateway field of the
 DSN.

Moore & Vaudreuil Standards Track [Page 28]

C
om

pendium
 1 page 224

RFC 1894 Delivery Status Notifications January 1996

6.2 Gatewaying from DSNs to other mail systems

 It may be possible to gateway DSNs from the Internet into a foreign
 mail system. The primary purpose of such gatewaying is to convey
 delivery status information in a form that is usable by the
 destination system. A secondary purpose is to allow "tunneling" of
 DSNs through foreign mail systems, in case the DSN may be gatewayed
 back into the Internet.

 In general, the recipient of the DSN (i.e., the sender of the
 original message) will want to know, for each recipient: the closest
 available approximation to the original recipient address, the
 delivery status (success, failure, or temporary failure), and for
 failed deliveries, a diagnostic code that describes the reason for
 the failure.

 If possible, the gateway should attempt to preserve the Original-
 Recipient address and Original-Envelope-ID (if present), in the
 resulting foreign delivery status report.

 When reporting delivery failures, if the diagnostic-type subfield of
 the Diagnostic-Code field indicates that the original diagnostic code
 is understood by the destination environment, the information from
 the Diagnostic-Code field should be used. Failing that, the
 information in the Status field should be mapped into the closest
 available diagnostic code used in the destination environment.

 If it is possible to tunnel a DSN through the destination
 environment, the gateway specification may define a means of
 preserving the DSN information in the delivery status reports used by
 that environment.

Moore & Vaudreuil Standards Track [Page 29]

RFC 1894 Delivery Status Notifications January 1996

7. Appendix - Guidelines for use of DSNs by mailing list exploders

 NOTE: This section pertains only to the use of DSNs by "mailing
 lists" as defined in [4], section 7.2.7.

 DSNs are designed to be used by mailing list exploders to allow them
 to detect and automatically delete recipients for whom mail delivery
 fails repeatedly.

 When forwarding a message to list subscribers, the mailing list
 exploder should always set the envelope return address (e.g. SMTP
 MAIL FROM address) to point to a special address which is set up to
 received nondelivery reports. A "smart" mailing list exploder can
 therefore intercept such nondelivery reports, and if they are in the
 DSN format, automatically examine them to determine for which
 recipients a message delivery failed or was delayed.

 The Original-Recipient field should be used if available, since it
 should exactly match the subscriber address known to the list. If
 the Original-Recipient field is not available, the recipient field
 may resemble the list subscriber address. Often, however, the list
 subscriber will have forwarded his mail to a different address, or
 the address may be subject to some re-writing, so heuristics may be
 required to successfully match an address from the recipient field.
 Care is needed in this case to minimize the possibility of false
 matches.

 The reason for delivery failure can be obtained from the Status and
 Action fields, and from the Diagnostic-Code field (if the status-type
 is recognized). Reports for recipients with action values other than
 "failed" can generally be ignored; in particular, subscribers should
 not be removed from a list due to "delayed" reports.

 In general, almost any failure status code (even a "permanent" one)
 can result from a temporary condition. It is therefore recommended
 that a list exploder not delete a subscriber based on any single
 failure DSN (regardless of the status code), but only on the
 persistence of delivery failure over a period of time.

 However, some kinds of failures are less likely than others to have
 been caused by temporary conditions, and some kinds of failures are
 more likely to be noticed and corrected quickly than others. Once
 more precise status codes are defined, it may be useful to
 differentiate between the status codes when deciding whether to
 delete a subscriber. For example, on a list with a high message
 volume, it might be desirable to temporarily suspend delivery to a
 recipient address which causes repeated "temporary" failures, rather
 than simply deleting the recipient. The duration of the suspension

Moore & Vaudreuil Standards Track [Page 30]

C
om

pendium
 1 page 225

RFC 1894 Delivery Status Notifications January 1996

 might depend on the type of error. On the other hand, a "user
 unknown" error which persisted for several days could be considered a
 reliable indication that address were no longer valid.

8. Appendix - IANA registration forms for DSN types

 The forms below are for use when registering a new address-type,
 diagnostic-type, or MTA-name-type with the Internet Assigned Numbers
 Authority (IANA). Each piece of information requested by a
 registration form may be satisfied either by providing the
 information on the form itself, or by including a reference to a
 published, publicly available specification which includes the
 necessary information. IANA MAY reject DSN type registrations
 because of incomplete registration forms, imprecise specifications,
 or inappropriate type names.

 To register a DSN type, complete the applicable form below and send
 it via Internet electronic mail to <IANA@IANA.ORG>.

8.1 IANA registration form for address-type

 A registration for a DSN address-type MUST include the following
 information:

(a) The proposed address-type name.

(b) The syntax for mailbox addresses of this type, specified using BNF,
 regular expressions, ASN.1, or other non-ambiguous language.

(c) If addresses of this type are not composed entirely of graphic
 characters from the US-ASCII repertoire, a specification for how
 they are to be encoded as graphic US-ASCII characters in a DSN
 Original-Recipient or Final-Recipient DSN field.

(d) [optional] A specification for how addresses of this type are to be
 translated to and from Internet electronic mail addresses.

8.2 IANA registration form for diagnostic-type

 A registration for a DSN address-type MUST include the following
 information:

(a) The proposed diagnostic-type name.

(b) A description of the syntax to be used for expressing diagnostic
 codes of this type as graphic characters from the US-ASCII
 repertoire.

Moore & Vaudreuil Standards Track [Page 31]

RFC 1894 Delivery Status Notifications January 1996

(c) A list of valid diagnostic codes of this type and the meaning of
 each code.

(d) [optional] A specification for mapping from diagnostic codes of this
 type to DSN status codes (as defined in [5]).

8.3 IANA registration form for MTA-name-type

 A registration for a DSN MTA-name-type must include the following
 information:

(a) The proposed MTA-name-type name.

(b) A description of the syntax of MTA names of this type, using BNF,
 regular expressions, ASN.1, or other non-ambiguous language.

(c) If MTA names of this type do not consist entirely of graphic
 characters from the US-ASCII repertoire, a specification for how an
 MTA name of this type should be expressed as a sequence of graphic
 US-ASCII characters.

Moore & Vaudreuil Standards Track [Page 32]

C
om

pendium
 1 page 226

RFC 1894 Delivery Status Notifications January 1996

9. Appendix - Examples

 NOTE: These examples are provided as illustration only, and are not
 considered part of the DSN protocol specification. If an example
 conflicts with the protocol definition above, the example is wrong.

 Likewise, the use of *-type subfield names or extension fields in
 these examples is not to be construed as a definition for those type
 names or extension fields.

 These examples were manually translated from bounced messages using
 whatever information was available.

Moore & Vaudreuil Standards Track [Page 33]

RFC 1894 Delivery Status Notifications January 1996

9.1 This is a simple DSN issued after repeated attempts
 to deliver a message failed. In this case, the DSN is
 issued by the same MTA from which the message was originated.

 Date: Thu, 7 Jul 1994 17:16:05 -0400
 From: Mail Delivery Subsystem <MAILER-DAEMON@CS.UTK.EDU>
 Message-Id: <199407072116.RAA14128@CS.UTK.EDU>
 Subject: Returned mail: Cannot send message for 5 days
 To: <owner-info-mime@cs.utk.edu>
 MIME-Version: 1.0
 Content-Type: multipart/report; report-type=delivery-status;
 boundary="RAA14128.773615765/CS.UTK.EDU"

 --RAA14128.773615765/CS.UTK.EDU

 The original message was received at Sat, 2 Jul 1994 17:10:28 -0400
 from root@localhost

 ----- The following addresses had delivery problems -----
 <louisl@larry.slip.umd.edu> (unrecoverable error)

 ----- Transcript of session follows -----
 <louisl@larry.slip.umd.edu>... Deferred: Connection timed out
 with larry.slip.umd.edu.
 Message could not be delivered for 5 days
 Message will be deleted from queue

 --RAA14128.773615765/CS.UTK.EDU
 content-type: message/delivery-status

 Reporting-MTA: dns; cs.utk.edu

 Original-Recipient: rfc822;louisl@larry.slip.umd.edu
 Final-Recipient: rfc822;louisl@larry.slip.umd.edu
 Action: failed
 Status: 4.0.0
 Diagnostic-Code: smtp; 426 connection timed out
 Last-Attempt-Date: Thu, 7 Jul 1994 17:15:49 -0400

 --RAA14128.773615765/CS.UTK.EDU
 content-type: message/rfc822

 [original message goes here]
 --RAA14128.773615765/CS.UTK.EDU--

Moore & Vaudreuil Standards Track [Page 34]

C
om

pendium
 1 page 227

RFC 1894 Delivery Status Notifications January 1996

9.2 This is another DSN issued by the sender's MTA, which
 contains details of multiple delivery attempts. Some of
 these were detected locally, and others by a remote MTA.

 Date: Fri, 8 Jul 1994 09:21:47 -0400
 From: Mail Delivery Subsystem <MAILER-DAEMON@CS.UTK.EDU>
 Subject: Returned mail: User unknown
 To: <owner-ups-mib@CS.UTK.EDU>
 MIME-Version: 1.0
 Content-Type: multipart/report; report-type=delivery-status;
 boundary="JAA13167.773673707/CS.UTK.EDU"

 --JAA13167.773673707/CS.UTK.EDU
 content-type: text/plain; charset=us-ascii

 ----- The following addresses had delivery problems -----
 <arathib@vnet.ibm.com> (unrecoverable error)
 <wsnell@sdcc13.ucsd.edu> (unrecoverable error)

 --JAA13167.773673707/CS.UTK.EDU
 content-type: message/delivery-status

 Reporting-MTA: dns; cs.utk.edu

 Original-Recipient: rfc822;arathib@vnet.ibm.com
 Final-Recipient: rfc822;arathib@vnet.ibm.com
 Action: failed
 Status: 5.0.0 (permanent failure)
 Diagnostic-Code: smtp;
 550 'arathib@vnet.IBM.COM' is not a registered gateway user
 Remote-MTA: dns; vnet.ibm.com

 Original-Recipient: rfc822;johnh@hpnjld.njd.hp.com
 Final-Recipient: rfc822;johnh@hpnjld.njd.hp.com
 Action: delayed
 Status: 4.0.0 (hpnjld.njd.jp.com: host name lookup failure)

 Original-Recipient: rfc822;wsnell@sdcc13.ucsd.edu
 Final-Recipient: rfc822;wsnell@sdcc13.ucsd.edu
 Action: failed
 Status: 5.0.0
 Diagnostic-Code: smtp; 550 user unknown
 Remote-MTA: dns; sdcc13.ucsd.edu

 --JAA13167.773673707/CS.UTK.EDU
 content-type: message/rfc822

Moore & Vaudreuil Standards Track [Page 35]

RFC 1894 Delivery Status Notifications January 1996

 [original message goes here]
 --JAA13167.773673707/CS.UTK.EDU--

9.3 A delivery report generated by Message Router (MAILBUS) and
 gatewayed by PMDF_MR to a DSN. In this case the gateway did not
 have sufficient information to supply an original-recipient address.

 Disclose-recipients: prohibited
 Date: Fri, 08 Jul 1994 09:21:25 -0400 (EDT)
 From: Message Router Submission Agent <AMMGR@corp.timeplex.com>
 Subject: Status of : Re: Battery current sense
 To: owner-ups-mib@CS.UTK.EDU
 Message-id: <01HEGJ0WNBY28Y95LN@mr.timeplex.com>
 MIME-version: 1.0
 content-type: multipart/report; report-type=delivery-status;
 boundary="84229080704991.122306.SYS30"

 --84229080704991.122306.SYS30
 content-type: text/plain

 Invalid address - nair_s
 %DIR-E-NODIRMTCH, No matching Directory Entry found

 --84229080704991.122306.SYS30
 content-type: message/delivery-status

 Reporting-MTA: mailbus; SYS30

 Final-Recipient: unknown; nair_s
 Status: 5.0.0 (unknown permanent failure)
 Action: failed

 --84229080704991.122306.SYS30--

Moore & Vaudreuil Standards Track [Page 36]

C
om

pendium
 1 page 228

RFC 1894 Delivery Status Notifications January 1996

9.4 A delay report from a multiprotocol MTA. Note that there is no
 returned content, so no third body part appears in the DSN.

 From: <postmaster@nsfnet-relay.ac.uk>
 Message-Id: <199407092338.TAA23293@CS.UTK.EDU>
 Received: from nsfnet-relay.ac.uk by sun2.nsfnet-relay.ac.uk
 id <g.12954-0@sun2.nsfnet-relay.ac.uk>;
 Sun, 10 Jul 1994 00:36:51 +0100
 To: owner-info-mime@cs.utk.edu
 Date: Sun, 10 Jul 1994 00:36:51 +0100
 Subject: WARNING: message delayed at "nsfnet-relay.ac.uk"
 content-type: multipart/report; report-type=delivery-status;
 boundary=foobar

 --foobar
 content-type: text/plain

 The following message:

 UA-ID: Reliable PC (...
 Q-ID: sun2.nsf:77/msg.11820-0

 has not been delivered to the intended recipient:

 thomas@de-montfort.ac.uk

 despite repeated delivery attempts over the past 24 hours.

 The usual cause of this problem is that the remote system is
 temporarily unavailable.

 Delivery will continue to be attempted up to a total elapsed
 time of 168 hours, ie 7 days.

 You will be informed if delivery proves to be impossible
 within this time.

 Please quote the Q-ID in any queries regarding this mail.

 --foobar
 content-type: message/delivery-status

 Reporting-MTA: dns; sun2.nsfnet-relay.ac.uk

 Final-Recipient: rfc822;thomas@de-montfort.ac.uk
 Status: 4.0.0 (unknown temporary failure)
 Action: delayed

Moore & Vaudreuil Standards Track [Page 37]

RFC 1894 Delivery Status Notifications January 1996

 --foobar--

10. Acknowledgments

 The authors wish to thank the following people for their reviews of
 earlier drafts of this document and their suggestions for
 improvement: Eric Allman, Harald Alvestrand, Allan Cargille, Jim
 Conklin, Peter Cowen, Dave Crocker, Roger Fajman, Ned Freed, Marko
 Kaittola, Steve Kille, John Klensin, John Gardiner Myers, Mark
 Nahabedian, Julian Onions, Jacob Palme, Jean Charles Roy, and Gregory
 Sheehan.

11. References

[1] Borenstein, N., Freed, N. "Multipurpose Internet Mail Extensions",
 RFC 1521, Bellcore, Innosoft, September 1993.

[2] Vaudreuil, G., "The Multipart/Report Content Type for the Reporting
 of Mail System Administrative Messages", RFC 1892, Octal Network
 Services, January 1996.

[3] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 USC/Information Sciences Institute, August 1982.

[4] Moore, K., "SMTP Service Extension for Delivery Status
 Notifications", RFC 1891, University of Tennessee, January 1996.

[5] Vaudreuil, G., "Enhanced Mail System Status Codes", RFC 1893, Octal
 Network Services, January 1996.

[6] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982.

[7] Moore, K. "MIME (Multipurpose Internet Mail Extensions) Part Two:
 Message Header Extensions for Non-Ascii Text", RFC 1522, University
 of Tennessee, September 1993.

[8] Braden, R. (ed.) "Requirements for Internet Hosts - Application and
 Support", STD 3, RFC 1123, USC/Information Sciences Institute,
 October 1989.

[9] Partridge, C., "Duplicate Messages and SMTP", RFC 1047, BBN,
 February 1988.

Moore & Vaudreuil Standards Track [Page 38]

C
om

pendium
 1 page 229

RFC 1894 Delivery Status Notifications January 1996

11. Authors' Addresses

 Keith Moore
 University of Tennessee
 107 Ayres Hall
 Knoxville, TN 37996-1301
 USA

 EMail: moore@cs.utk.edu
 Phone: +1 615 974 3126
 Fax: +1 615 974 8296

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Moore & Vaudreuil Standards Track [Page 39]

C
om

pendium
 1 page 230

Network Working Group J. Myers
Request for Comments: 1939 Carnegie Mellon
STD: 53 M. Rose
Obsoletes: 1725 Dover Beach Consulting, Inc.
Category: Standards Track May 1996

 Post Office Protocol - Version 3

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

 1. Introduction .. 2
 2. A Short Digression .. 2
 3. Basic Operation ... 3
 4. The AUTHORIZATION State 4
 QUIT Command .. 5
 5. The TRANSACTION State 5
 STAT Command .. 6
 LIST Command .. 6
 RETR Command .. 8
 DELE Command .. 8
 NOOP Command .. 9
 RSET Command .. 9
 6. The UPDATE State .. 10
 QUIT Command .. 10
 7. Optional POP3 Commands 11
 TOP Command ... 11
 UIDL Command .. 12
 USER Command .. 13
 PASS Command .. 14
 APOP Command .. 15
 8. Scaling and Operational Considerations 16
 9. POP3 Command Summary .. 18
 10. Example POP3 Session 19
 11. Message Format ... 19
 12. References ... 20
 13. Security Considerations 20
 14. Acknowledgements ... 20
 15. Authors' Addresses ... 21
 Appendix A. Differences from RFC 1725 22

Myers & Rose Standards Track [Page 1]

RFC 1939 POP3 May 1996

 Appendix B. Command Index 23

1. Introduction

 On certain types of smaller nodes in the Internet it is often
 impractical to maintain a message transport system (MTS). For
 example, a workstation may not have sufficient resources (cycles,
 disk space) in order to permit a SMTP server [RFC821] and associated
 local mail delivery system to be kept resident and continuously
 running. Similarly, it may be expensive (or impossible) to keep a
 personal computer interconnected to an IP-style network for long
 amounts of time (the node is lacking the resource known as
 "connectivity").

 Despite this, it is often very useful to be able to manage mail on
 these smaller nodes, and they often support a user agent (UA) to aid
 the tasks of mail handling. To solve this problem, a node which can
 support an MTS entity offers a maildrop service to these less endowed
 nodes. The Post Office Protocol - Version 3 (POP3) is intended to
 permit a workstation to dynamically access a maildrop on a server
 host in a useful fashion. Usually, this means that the POP3 protocol
 is used to allow a workstation to retrieve mail that the server is
 holding for it.

 POP3 is not intended to provide extensive manipulation operations of
 mail on the server; normally, mail is downloaded and then deleted. A
 more advanced (and complex) protocol, IMAP4, is discussed in
 [RFC1730].

 For the remainder of this memo, the term "client host" refers to a
 host making use of the POP3 service, while the term "server host"
 refers to a host which offers the POP3 service.

2. A Short Digression

 This memo does not specify how a client host enters mail into the
 transport system, although a method consistent with the philosophy of
 this memo is presented here:

 When the user agent on a client host wishes to enter a message
 into the transport system, it establishes an SMTP connection to
 its relay host and sends all mail to it. This relay host could
 be, but need not be, the POP3 server host for the client host. Of
 course, the relay host must accept mail for delivery to arbitrary
 recipient addresses, that functionality is not required of all
 SMTP servers.

Myers & Rose Standards Track [Page 2]

C
om

pendium
 1 page 253

RFC 1939 POP3 May 1996

3. Basic Operation

 Initially, the server host starts the POP3 service by listening on
 TCP port 110. When a client host wishes to make use of the service,
 it establishes a TCP connection with the server host. When the
 connection is established, the POP3 server sends a greeting. The
 client and POP3 server then exchange commands and responses
 (respectively) until the connection is closed or aborted.

 Commands in the POP3 consist of a case-insensitive keyword, possibly
 followed by one or more arguments. All commands are terminated by a
 CRLF pair. Keywords and arguments consist of printable ASCII
 characters. Keywords and arguments are each separated by a single
 SPACE character. Keywords are three or four characters long. Each
 argument may be up to 40 characters long.

 Responses in the POP3 consist of a status indicator and a keyword
 possibly followed by additional information. All responses are
 terminated by a CRLF pair. Responses may be up to 512 characters
 long, including the terminating CRLF. There are currently two status
 indicators: positive ("+OK") and negative ("-ERR"). Servers MUST
 send the "+OK" and "-ERR" in upper case.

 Responses to certain commands are multi-line. In these cases, which
 are clearly indicated below, after sending the first line of the
 response and a CRLF, any additional lines are sent, each terminated
 by a CRLF pair. When all lines of the response have been sent, a
 final line is sent, consisting of a termination octet (decimal code
 046, ".") and a CRLF pair. If any line of the multi-line response
 begins with the termination octet, the line is "byte-stuffed" by
 pre-pending the termination octet to that line of the response.
 Hence a multi-line response is terminated with the five octets
 "CRLF.CRLF". When examining a multi-line response, the client checks
 to see if the line begins with the termination octet. If so and if
 octets other than CRLF follow, the first octet of the line (the
 termination octet) is stripped away. If so and if CRLF immediately
 follows the termination character, then the response from the POP
 server is ended and the line containing ".CRLF" is not considered
 part of the multi-line response.

 A POP3 session progresses through a number of states during its
 lifetime. Once the TCP connection has been opened and the POP3
 server has sent the greeting, the session enters the AUTHORIZATION
 state. In this state, the client must identify itself to the POP3
 server. Once the client has successfully done this, the server
 acquires resources associated with the client's maildrop, and the
 session enters the TRANSACTION state. In this state, the client
 requests actions on the part of the POP3 server. When the client has

Myers & Rose Standards Track [Page 3]

RFC 1939 POP3 May 1996

 issued the QUIT command, the session enters the UPDATE state. In
 this state, the POP3 server releases any resources acquired during
 the TRANSACTION state and says goodbye. The TCP connection is then
 closed.

 A server MUST respond to an unrecognized, unimplemented, or
 syntactically invalid command by responding with a negative status
 indicator. A server MUST respond to a command issued when the
 session is in an incorrect state by responding with a negative status
 indicator. There is no general method for a client to distinguish
 between a server which does not implement an optional command and a
 server which is unwilling or unable to process the command.

 A POP3 server MAY have an inactivity autologout timer. Such a timer
 MUST be of at least 10 minutes' duration. The receipt of any command
 from the client during that interval should suffice to reset the
 autologout timer. When the timer expires, the session does NOT enter
 the UPDATE state--the server should close the TCP connection without
 removing any messages or sending any response to the client.

4. The AUTHORIZATION State

 Once the TCP connection has been opened by a POP3 client, the POP3
 server issues a one line greeting. This can be any positive
 response. An example might be:

 S: +OK POP3 server ready

 The POP3 session is now in the AUTHORIZATION state. The client must
 now identify and authenticate itself to the POP3 server. Two
 possible mechanisms for doing this are described in this document,
 the USER and PASS command combination and the APOP command. Both
 mechanisms are described later in this document. Additional
 authentication mechanisms are described in [RFC1734]. While there is
 no single authentication mechanism that is required of all POP3
 servers, a POP3 server must of course support at least one
 authentication mechanism.

 Once the POP3 server has determined through the use of any
 authentication command that the client should be given access to the
 appropriate maildrop, the POP3 server then acquires an exclusive-
 access lock on the maildrop, as necessary to prevent messages from
 being modified or removed before the session enters the UPDATE state.
 If the lock is successfully acquired, the POP3 server responds with a
 positive status indicator. The POP3 session now enters the
 TRANSACTION state, with no messages marked as deleted. If the
 maildrop cannot be opened for some reason (for example, a lock can
 not be acquired, the client is denied access to the appropriate

Myers & Rose Standards Track [Page 4]

C
om

pendium
 1 page 254

RFC 1939 POP3 May 1996

 maildrop, or the maildrop cannot be parsed), the POP3 server responds
 with a negative status indicator. (If a lock was acquired but the
 POP3 server intends to respond with a negative status indicator, the
 POP3 server must release the lock prior to rejecting the command.)
 After returning a negative status indicator, the server may close the
 connection. If the server does not close the connection, the client
 may either issue a new authentication command and start again, or the
 client may issue the QUIT command.

 After the POP3 server has opened the maildrop, it assigns a message-
 number to each message, and notes the size of each message in octets.
 The first message in the maildrop is assigned a message-number of
 "1", the second is assigned "2", and so on, so that the nth message
 in a maildrop is assigned a message-number of "n". In POP3 commands
 and responses, all message-numbers and message sizes are expressed in
 base-10 (i.e., decimal).

 Here is the summary for the QUIT command when used in the
 AUTHORIZATION state:

 QUIT

 Arguments: none

 Restrictions: none

 Possible Responses:
 +OK

 Examples:
 C: QUIT
 S: +OK dewey POP3 server signing off

5. The TRANSACTION State

 Once the client has successfully identified itself to the POP3 server
 and the POP3 server has locked and opened the appropriate maildrop,
 the POP3 session is now in the TRANSACTION state. The client may now
 issue any of the following POP3 commands repeatedly. After each
 command, the POP3 server issues a response. Eventually, the client
 issues the QUIT command and the POP3 session enters the UPDATE state.

Myers & Rose Standards Track [Page 5]

RFC 1939 POP3 May 1996

 Here are the POP3 commands valid in the TRANSACTION state:

 STAT

 Arguments: none

 Restrictions:
 may only be given in the TRANSACTION state

 Discussion:
 The POP3 server issues a positive response with a line
 containing information for the maildrop. This line is
 called a "drop listing" for that maildrop.

 In order to simplify parsing, all POP3 servers are
 required to use a certain format for drop listings. The
 positive response consists of "+OK" followed by a single
 space, the number of messages in the maildrop, a single
 space, and the size of the maildrop in octets. This memo
 makes no requirement on what follows the maildrop size.
 Minimal implementations should just end that line of the
 response with a CRLF pair. More advanced implementations
 may include other information.

 NOTE: This memo STRONGLY discourages implementations
 from supplying additional information in the drop
 listing. Other, optional, facilities are discussed
 later on which permit the client to parse the messages
 in the maildrop.

 Note that messages marked as deleted are not counted in
 either total.

 Possible Responses:
 +OK nn mm

 Examples:
 C: STAT
 S: +OK 2 320

 LIST [msg]

 Arguments:
 a message-number (optional), which, if present, may NOT
 refer to a message marked as deleted

Myers & Rose Standards Track [Page 6]

C
om

pendium
 1 page 255

RFC 1939 POP3 May 1996

 Restrictions:
 may only be given in the TRANSACTION state

 Discussion:
 If an argument was given and the POP3 server issues a
 positive response with a line containing information for
 that message. This line is called a "scan listing" for
 that message.

 If no argument was given and the POP3 server issues a
 positive response, then the response given is multi-line.
 After the initial +OK, for each message in the maildrop,
 the POP3 server responds with a line containing
 information for that message. This line is also called a
 "scan listing" for that message. If there are no
 messages in the maildrop, then the POP3 server responds
 with no scan listings--it issues a positive response
 followed by a line containing a termination octet and a
 CRLF pair.

 In order to simplify parsing, all POP3 servers are
 required to use a certain format for scan listings. A
 scan listing consists of the message-number of the
 message, followed by a single space and the exact size of
 the message in octets. Methods for calculating the exact
 size of the message are described in the "Message Format"
 section below. This memo makes no requirement on what
 follows the message size in the scan listing. Minimal
 implementations should just end that line of the response
 with a CRLF pair. More advanced implementations may
 include other information, as parsed from the message.

 NOTE: This memo STRONGLY discourages implementations
 from supplying additional information in the scan
 listing. Other, optional, facilities are discussed
 later on which permit the client to parse the messages
 in the maildrop.

 Note that messages marked as deleted are not listed.

 Possible Responses:
 +OK scan listing follows
 -ERR no such message

 Examples:
 C: LIST
 S: +OK 2 messages (320 octets)
 S: 1 120

Myers & Rose Standards Track [Page 7]

RFC 1939 POP3 May 1996

 S: 2 200
 S: .
 ...
 C: LIST 2
 S: +OK 2 200
 ...
 C: LIST 3
 S: -ERR no such message, only 2 messages in maildrop

 RETR msg

 Arguments:
 a message-number (required) which may NOT refer to a
 message marked as deleted

 Restrictions:
 may only be given in the TRANSACTION state

 Discussion:
 If the POP3 server issues a positive response, then the
 response given is multi-line. After the initial +OK, the
 POP3 server sends the message corresponding to the given
 message-number, being careful to byte-stuff the termination
 character (as with all multi-line responses).

 Possible Responses:
 +OK message follows
 -ERR no such message

 Examples:
 C: RETR 1
 S: +OK 120 octets
 S: <the POP3 server sends the entire message here>
 S: .

 DELE msg

 Arguments:
 a message-number (required) which may NOT refer to a
 message marked as deleted

 Restrictions:
 may only be given in the TRANSACTION state

Myers & Rose Standards Track [Page 8]

C
om

pendium
 1 page 256

RFC 1939 POP3 May 1996

 Discussion:
 The POP3 server marks the message as deleted. Any future
 reference to the message-number associated with the message
 in a POP3 command generates an error. The POP3 server does
 not actually delete the message until the POP3 session
 enters the UPDATE state.

 Possible Responses:
 +OK message deleted
 -ERR no such message

 Examples:
 C: DELE 1
 S: +OK message 1 deleted
 ...
 C: DELE 2
 S: -ERR message 2 already deleted

 NOOP

 Arguments: none

 Restrictions:
 may only be given in the TRANSACTION state

 Discussion:
 The POP3 server does nothing, it merely replies with a
 positive response.

 Possible Responses:
 +OK

 Examples:
 C: NOOP
 S: +OK

 RSET

 Arguments: none

 Restrictions:
 may only be given in the TRANSACTION state

 Discussion:
 If any messages have been marked as deleted by the POP3
 server, they are unmarked. The POP3 server then replies

Myers & Rose Standards Track [Page 9]

RFC 1939 POP3 May 1996

 with a positive response.

 Possible Responses:
 +OK

 Examples:
 C: RSET
 S: +OK maildrop has 2 messages (320 octets)

6. The UPDATE State

 When the client issues the QUIT command from the TRANSACTION state,
 the POP3 session enters the UPDATE state. (Note that if the client
 issues the QUIT command from the AUTHORIZATION state, the POP3
 session terminates but does NOT enter the UPDATE state.)

 If a session terminates for some reason other than a client-issued
 QUIT command, the POP3 session does NOT enter the UPDATE state and
 MUST not remove any messages from the maildrop.

 QUIT

 Arguments: none

 Restrictions: none

 Discussion:
 The POP3 server removes all messages marked as deleted
 from the maildrop and replies as to the status of this
 operation. If there is an error, such as a resource
 shortage, encountered while removing messages, the
 maildrop may result in having some or none of the messages
 marked as deleted be removed. In no case may the server
 remove any messages not marked as deleted.

 Whether the removal was successful or not, the server
 then releases any exclusive-access lock on the maildrop
 and closes the TCP connection.

 Possible Responses:
 +OK
 -ERR some deleted messages not removed

 Examples:
 C: QUIT
 S: +OK dewey POP3 server signing off (maildrop empty)
 ...
 C: QUIT

Myers & Rose Standards Track [Page 10]

C
om

pendium
 1 page 257

RFC 1939 POP3 May 1996

 S: +OK dewey POP3 server signing off (2 messages left)
 ...

7. Optional POP3 Commands

 The POP3 commands discussed above must be supported by all minimal
 implementations of POP3 servers.

 The optional POP3 commands described below permit a POP3 client
 greater freedom in message handling, while preserving a simple POP3
 server implementation.

 NOTE: This memo STRONGLY encourages implementations to support
 these commands in lieu of developing augmented drop and scan
 listings. In short, the philosophy of this memo is to put
 intelligence in the part of the POP3 client and not the POP3
 server.

 TOP msg n

 Arguments:
 a message-number (required) which may NOT refer to to a
 message marked as deleted, and a non-negative number
 of lines (required)

 Restrictions:
 may only be given in the TRANSACTION state

 Discussion:
 If the POP3 server issues a positive response, then the
 response given is multi-line. After the initial +OK, the
 POP3 server sends the headers of the message, the blank
 line separating the headers from the body, and then the
 number of lines of the indicated message's body, being
 careful to byte-stuff the termination character (as with
 all multi-line responses).

 Note that if the number of lines requested by the POP3
 client is greater than than the number of lines in the
 body, then the POP3 server sends the entire message.

 Possible Responses:
 +OK top of message follows
 -ERR no such message

 Examples:
 C: TOP 1 10
 S: +OK

Myers & Rose Standards Track [Page 11]

RFC 1939 POP3 May 1996

 S: <the POP3 server sends the headers of the
 message, a blank line, and the first 10 lines
 of the body of the message>
 S: .
 ...
 C: TOP 100 3
 S: -ERR no such message

 UIDL [msg]

 Arguments:
 a message-number (optional), which, if present, may NOT
 refer to a message marked as deleted

 Restrictions:
 may only be given in the TRANSACTION state.

 Discussion:
 If an argument was given and the POP3 server issues a positive
 response with a line containing information for that message.
 This line is called a "unique-id listing" for that message.

 If no argument was given and the POP3 server issues a positive
 response, then the response given is multi-line. After the
 initial +OK, for each message in the maildrop, the POP3 server
 responds with a line containing information for that message.
 This line is called a "unique-id listing" for that message.

 In order to simplify parsing, all POP3 servers are required to
 use a certain format for unique-id listings. A unique-id
 listing consists of the message-number of the message,
 followed by a single space and the unique-id of the message.
 No information follows the unique-id in the unique-id listing.

 The unique-id of a message is an arbitrary server-determined
 string, consisting of one to 70 characters in the range 0x21
 to 0x7E, which uniquely identifies a message within a
 maildrop and which persists across sessions. This
 persistence is required even if a session ends without
 entering the UPDATE state. The server should never reuse an
 unique-id in a given maildrop, for as long as the entity
 using the unique-id exists.

 Note that messages marked as deleted are not listed.

 While it is generally preferable for server implementations
 to store arbitrarily assigned unique-ids in the maildrop,

Myers & Rose Standards Track [Page 12]

C
om

pendium
 1 page 258

RFC 1939 POP3 May 1996

 this specification is intended to permit unique-ids to be
 calculated as a hash of the message. Clients should be able
 to handle a situation where two identical copies of a
 message in a maildrop have the same unique-id.

 Possible Responses:
 +OK unique-id listing follows
 -ERR no such message

 Examples:
 C: UIDL
 S: +OK
 S: 1 whqtswO00WBw418f9t5JxYwZ
 S: 2 QhdPYR:00WBw1Ph7x7
 S: .
 ...
 C: UIDL 2
 S: +OK 2 QhdPYR:00WBw1Ph7x7
 ...
 C: UIDL 3
 S: -ERR no such message, only 2 messages in maildrop

 USER name

 Arguments:
 a string identifying a mailbox (required), which is of
 significance ONLY to the server

 Restrictions:
 may only be given in the AUTHORIZATION state after the POP3
 greeting or after an unsuccessful USER or PASS command

 Discussion:
 To authenticate using the USER and PASS command
 combination, the client must first issue the USER
 command. If the POP3 server responds with a positive
 status indicator ("+OK"), then the client may issue
 either the PASS command to complete the authentication,
 or the QUIT command to terminate the POP3 session. If
 the POP3 server responds with a negative status indicator
 ("-ERR") to the USER command, then the client may either
 issue a new authentication command or may issue the QUIT
 command.

 The server may return a positive response even though no
 such mailbox exists. The server may return a negative
 response if mailbox exists, but does not permit plaintext

Myers & Rose Standards Track [Page 13]

RFC 1939 POP3 May 1996

 password authentication.

 Possible Responses:
 +OK name is a valid mailbox
 -ERR never heard of mailbox name

 Examples:
 C: USER frated
 S: -ERR sorry, no mailbox for frated here
 ...
 C: USER mrose
 S: +OK mrose is a real hoopy frood

 PASS string

 Arguments:
 a server/mailbox-specific password (required)

 Restrictions:
 may only be given in the AUTHORIZATION state immediately
 after a successful USER command

 Discussion:
 When the client issues the PASS command, the POP3 server
 uses the argument pair from the USER and PASS commands to
 determine if the client should be given access to the
 appropriate maildrop.

 Since the PASS command has exactly one argument, a POP3
 server may treat spaces in the argument as part of the
 password, instead of as argument separators.

 Possible Responses:
 +OK maildrop locked and ready
 -ERR invalid password
 -ERR unable to lock maildrop

 Examples:
 C: USER mrose
 S: +OK mrose is a real hoopy frood
 C: PASS secret
 S: -ERR maildrop already locked
 ...
 C: USER mrose
 S: +OK mrose is a real hoopy frood
 C: PASS secret
 S: +OK mrose's maildrop has 2 messages (320 octets)

Myers & Rose Standards Track [Page 14]

C
om

pendium
 1 page 259

RFC 1939 POP3 May 1996

 APOP name digest

 Arguments:
 a string identifying a mailbox and a MD5 digest string
 (both required)

 Restrictions:
 may only be given in the AUTHORIZATION state after the POP3
 greeting or after an unsuccessful USER or PASS command

 Discussion:
 Normally, each POP3 session starts with a USER/PASS
 exchange. This results in a server/user-id specific
 password being sent in the clear on the network. For
 intermittent use of POP3, this may not introduce a sizable
 risk. However, many POP3 client implementations connect to
 the POP3 server on a regular basis -- to check for new
 mail. Further the interval of session initiation may be on
 the order of five minutes. Hence, the risk of password
 capture is greatly enhanced.

 An alternate method of authentication is required which
 provides for both origin authentication and replay
 protection, but which does not involve sending a password
 in the clear over the network. The APOP command provides
 this functionality.

 A POP3 server which implements the APOP command will
 include a timestamp in its banner greeting. The syntax of
 the timestamp corresponds to the `msg-id' in [RFC822], and
 MUST be different each time the POP3 server issues a banner
 greeting. For example, on a UNIX implementation in which a
 separate UNIX process is used for each instance of a POP3
 server, the syntax of the timestamp might be:

 <process-ID.clock@hostname>

 where `process-ID' is the decimal value of the process's
 PID, clock is the decimal value of the system clock, and
 hostname is the fully-qualified domain-name corresponding
 to the host where the POP3 server is running.

 The POP3 client makes note of this timestamp, and then
 issues the APOP command. The `name' parameter has
 identical semantics to the `name' parameter of the USER
 command. The `digest' parameter is calculated by applying
 the MD5 algorithm [RFC1321] to a string consisting of the
 timestamp (including angle-brackets) followed by a shared

Myers & Rose Standards Track [Page 15]

RFC 1939 POP3 May 1996

 secret. This shared secret is a string known only to the
 POP3 client and server. Great care should be taken to
 prevent unauthorized disclosure of the secret, as knowledge
 of the secret will allow any entity to successfully
 masquerade as the named user. The `digest' parameter
 itself is a 16-octet value which is sent in hexadecimal
 format, using lower-case ASCII characters.

 When the POP3 server receives the APOP command, it verifies
 the digest provided. If the digest is correct, the POP3
 server issues a positive response, and the POP3 session
 enters the TRANSACTION state. Otherwise, a negative
 response is issued and the POP3 session remains in the
 AUTHORIZATION state.

 Note that as the length of the shared secret increases, so
 does the difficulty of deriving it. As such, shared
 secrets should be long strings (considerably longer than
 the 8-character example shown below).

 Possible Responses:
 +OK maildrop locked and ready
 -ERR permission denied

 Examples:
 S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
 C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
 S: +OK maildrop has 1 message (369 octets)

 In this example, the shared secret is the string `tan-
 staaf'. Hence, the MD5 algorithm is applied to the string

 <1896.697170952@dbc.mtview.ca.us>tanstaaf

 which produces a digest value of

 c4c9334bac560ecc979e58001b3e22fb

8. Scaling and Operational Considerations

 Since some of the optional features described above were added to the
 POP3 protocol, experience has accumulated in using them in large-
 scale commercial post office operations where most of the users are
 unrelated to each other. In these situations and others, users and
 vendors of POP3 clients have discovered that the combination of using
 the UIDL command and not issuing the DELE command can provide a weak
 version of the "maildrop as semi-permanent repository" functionality
 normally associated with IMAP. Of course the other capabilities of

Myers & Rose Standards Track [Page 16]

C
om

pendium
 1 page 260

RFC 1939 POP3 May 1996

 IMAP, such as polling an existing connection for newly arrived
 messages and supporting multiple folders on the server, are not
 present in POP3.

 When these facilities are used in this way by casual users, there has
 been a tendency for already-read messages to accumulate on the server
 without bound. This is clearly an undesirable behavior pattern from
 the standpoint of the server operator. This situation is aggravated
 by the fact that the limited capabilities of the POP3 do not permit
 efficient handling of maildrops which have hundreds or thousands of
 messages.

 Consequently, it is recommended that operators of large-scale multi-
 user servers, especially ones in which the user's only access to the
 maildrop is via POP3, consider such options as:

 * Imposing a per-user maildrop storage quota or the like.

 A disadvantage to this option is that accumulation of messages may
 result in the user's inability to receive new ones into the
 maildrop. Sites which choose this option should be sure to inform
 users of impending or current exhaustion of quota, perhaps by
 inserting an appropriate message into the user's maildrop.

 * Enforce a site policy regarding mail retention on the server.

 Sites are free to establish local policy regarding the storage and
 retention of messages on the server, both read and unread. For
 example, a site might delete unread messages from the server after
 60 days and delete read messages after 7 days. Such message
 deletions are outside the scope of the POP3 protocol and are not
 considered a protocol violation.

 Server operators enforcing message deletion policies should take
 care to make all users aware of the policies in force.

 Clients must not assume that a site policy will automate message
 deletions, and should continue to explicitly delete messages using
 the DELE command when appropriate.

 It should be noted that enforcing site message deletion policies
 may be confusing to the user community, since their POP3 client
 may contain configuration options to leave mail on the server
 which will not in fact be supported by the server.

 One special case of a site policy is that messages may only be
 downloaded once from the server, and are deleted after this has
 been accomplished. This could be implemented in POP3 server

Myers & Rose Standards Track [Page 17]

RFC 1939 POP3 May 1996

 software by the following mechanism: "following a POP3 login by a
 client which was ended by a QUIT, delete all messages downloaded
 during the session with the RETR command". It is important not to
 delete messages in the event of abnormal connection termination
 (ie, if no QUIT was received from the client) because the client
 may not have successfully received or stored the messages.
 Servers implementing a download-and-delete policy may also wish to
 disable or limit the optional TOP command, since it could be used
 as an alternate mechanism to download entire messages.

9. POP3 Command Summary

 Minimal POP3 Commands:

 USER name valid in the AUTHORIZATION state
 PASS string
 QUIT

 STAT valid in the TRANSACTION state
 LIST [msg]
 RETR msg
 DELE msg
 NOOP
 RSET
 QUIT

 Optional POP3 Commands:

 APOP name digest valid in the AUTHORIZATION state

 TOP msg n valid in the TRANSACTION state
 UIDL [msg]

 POP3 Replies:

 +OK
 -ERR

 Note that with the exception of the STAT, LIST, and UIDL commands,
 the reply given by the POP3 server to any command is significant
 only to "+OK" and "-ERR". Any text occurring after this reply
 may be ignored by the client.

Myers & Rose Standards Track [Page 18]

C
om

pendium
 1 page 261

RFC 1939 POP3 May 1996

10. Example POP3 Session

 S: <wait for connection on TCP port 110>
 C: <open connection>
 S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
 C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
 S: +OK mrose's maildrop has 2 messages (320 octets)
 C: STAT
 S: +OK 2 320
 C: LIST
 S: +OK 2 messages (320 octets)
 S: 1 120
 S: 2 200
 S: .
 C: RETR 1
 S: +OK 120 octets
 S: <the POP3 server sends message 1>
 S: .
 C: DELE 1
 S: +OK message 1 deleted
 C: RETR 2
 S: +OK 200 octets
 S: <the POP3 server sends message 2>
 S: .
 C: DELE 2
 S: +OK message 2 deleted
 C: QUIT
 S: +OK dewey POP3 server signing off (maildrop empty)
 C: <close connection>
 S: <wait for next connection>

11. Message Format

 All messages transmitted during a POP3 session are assumed to conform
 to the standard for the format of Internet text messages [RFC822].

 It is important to note that the octet count for a message on the
 server host may differ from the octet count assigned to that message
 due to local conventions for designating end-of-line. Usually,
 during the AUTHORIZATION state of the POP3 session, the POP3 server
 can calculate the size of each message in octets when it opens the
 maildrop. For example, if the POP3 server host internally represents
 end-of-line as a single character, then the POP3 server simply counts
 each occurrence of this character in a message as two octets. Note
 that lines in the message which start with the termination octet need
 not (and must not) be counted twice, since the POP3 client will
 remove all byte-stuffed termination characters when it receives a
 multi-line response.

Myers & Rose Standards Track [Page 19]

RFC 1939 POP3 May 1996

12. References

 [RFC821] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC
 821, USC/Information Sciences Institute, August 1982.

 [RFC822] Crocker, D., "Standard for the Format of ARPA-Internet Text
 Messages", STD 11, RFC 822, University of Delaware, August 1982.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 MIT Laboratory for Computer Science, April 1992.

 [RFC1730] Crispin, M., "Internet Message Access Protocol - Version
 4", RFC 1730, University of Washington, December 1994.

 [RFC1734] Myers, J., "POP3 AUTHentication command", RFC 1734,
 Carnegie Mellon, December 1994.

13. Security Considerations

 It is conjectured that use of the APOP command provides origin
 identification and replay protection for a POP3 session.
 Accordingly, a POP3 server which implements both the PASS and APOP
 commands should not allow both methods of access for a given user;
 that is, for a given mailbox name, either the USER/PASS command
 sequence or the APOP command is allowed, but not both.

 Further, note that as the length of the shared secret increases, so
 does the difficulty of deriving it.

 Servers that answer -ERR to the USER command are giving potential
 attackers clues about which names are valid.

 Use of the PASS command sends passwords in the clear over the
 network.

 Use of the RETR and TOP commands sends mail in the clear over the
 network.

 Otherwise, security issues are not discussed in this memo.

14. Acknowledgements

 The POP family has a long and checkered history. Although primarily
 a minor revision to RFC 1460, POP3 is based on the ideas presented in
 RFCs 918, 937, and 1081.

 In addition, Alfred Grimstad, Keith McCloghrie, and Neil Ostroff
 provided significant comments on the APOP command.

Myers & Rose Standards Track [Page 20]

C
om

pendium
 1 page 262

RFC 1939 POP3 May 1996

15. Authors' Addresses

 John G. Myers
 Carnegie-Mellon University
 5000 Forbes Ave
 Pittsburgh, PA 15213

 EMail: jgm+@cmu.edu

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 420 Whisman Court
 Mountain View, CA 94043-2186

 EMail: mrose@dbc.mtview.ca.us

Myers & Rose Standards Track [Page 21]

RFC 1939 POP3 May 1996

Appendix A. Differences from RFC 1725

 This memo is a revision to RFC 1725, a Draft Standard. It makes the
 following changes from that document:

 - clarifies that command keywords are case insensitive.

 - specifies that servers must send "+OK" and "-ERR" in
 upper case.

 - specifies that the initial greeting is a positive response,
 instead of any string which should be a positive response.

 - clarifies behavior for unimplemented commands.

 - makes the USER and PASS commands optional.

 - clarified the set of possible responses to the USER command.

 - reverses the order of the examples in the USER and PASS
 commands, to reduce confusion.

 - clarifies that the PASS command may only be given immediately
 after a successful USER command.

 - clarified the persistence requirements of UIDs and added some
 implementation notes.

 - specifies a UID length limitation of one to 70 octets.

 - specifies a status indicator length limitation
 of 512 octets, including the CRLF.

 - clarifies that LIST with no arguments on an empty mailbox
 returns success.

 - adds a reference from the LIST command to the Message Format
 section

 - clarifies the behavior of QUIT upon failure

 - clarifies the security section to not imply the use of the
 USER command with the APOP command.

 - adds references to RFCs 1730 and 1734

 - clarifies the method by which a UA may enter mail into the
 transport system.

Myers & Rose Standards Track [Page 22]

C
om

pendium
 1 page 263

RFC 1939 POP3 May 1996

 - clarifies that the second argument to the TOP command is a
 number of lines.

 - changes the suggestion in the Security Considerations section
 for a server to not accept both PASS and APOP for a given user
 from a "must" to a "should".

 - adds a section on scaling and operational considerations

Appendix B. Command Index

 APOP ... 15
 DELE ... 8
 LIST ... 6
 NOOP ... 9
 PASS ... 14
 QUIT ... 5
 QUIT ... 10
 RETR ... 8
 RSET ... 9
 STAT ... 6
 TOP .. 11
 UIDL ... 12
 USER ... 13

Myers & Rose Standards Track [Page 23]

C
om

pendium
 1 page 264

Network Working Group M. Crispin
Request for Comments: 2060 University of Washington
Obsoletes: 1730 December 1996
Category: Standards Track

 INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The Internet Message Access Protocol, Version 4rev1 (IMAP4rev1)
 allows a client to access and manipulate electronic mail messages on
 a server. IMAP4rev1 permits manipulation of remote message folders,
 called "mailboxes", in a way that is functionally equivalent to local
 mailboxes. IMAP4rev1 also provides the capability for an offline
 client to resynchronize with the server (see also [IMAP-DISC]).

 IMAP4rev1 includes operations for creating, deleting, and renaming
 mailboxes; checking for new messages; permanently removing messages;
 setting and clearing flags; [RFC-822] and [MIME-IMB] parsing;
 searching; and selective fetching of message attributes, texts, and
 portions thereof. Messages in IMAP4rev1 are accessed by the use of
 numbers. These numbers are either message sequence numbers or unique
 identifiers.

 IMAP4rev1 supports a single server. A mechanism for accessing
 configuration information to support multiple IMAP4rev1 servers is
 discussed in [ACAP].

 IMAP4rev1 does not specify a means of posting mail; this function is
 handled by a mail transfer protocol such as [SMTP].

 IMAP4rev1 is designed to be upwards compatible from the [IMAP2] and
 unpublished IMAP2bis protocols. In the course of the evolution of
 IMAP4rev1, some aspects in the earlier protocol have become obsolete.
 Obsolete commands, responses, and data formats which an IMAP4rev1
 implementation may encounter when used with an earlier implementation
 are described in [IMAP-OBSOLETE].

Crispin Standards Track [Page 1]

RFC 2060 IMAP4rev1 December 1996

 Other compatibility issues with IMAP2bis, the most common variant of
 the earlier protocol, are discussed in [IMAP-COMPAT]. A full
 discussion of compatibility issues with rare (and presumed extinct)
 variants of [IMAP2] is in [IMAP-HISTORICAL]; this document is
 primarily of historical interest.

Table of Contents

IMAP4rev1 Protocol Specification 4
1. How to Read This Document 4
1.1. Organization of This Document 4
1.2. Conventions Used in This Document 4
2. Protocol Overview ... 5
2.1. Link Level .. 5
2.2. Commands and Responses 6
2.2.1. Client Protocol Sender and Server Protocol Receiver 6
2.2.2. Server Protocol Sender and Client Protocol Receiver 7
2.3. Message Attributes .. 7
2.3.1. Message Numbers ... 7
2.3.1.1. Unique Identifier (UID) Message Attribute 7
2.3.1.2. Message Sequence Number Message Attribute 9
2.3.2. Flags Message Attribute 9
2.3.3. Internal Date Message Attribute 10
2.3.4. [RFC-822] Size Message Attribute 11
2.3.5. Envelope Structure Message Attribute 11
2.3.6. Body Structure Message Attribute 11
2.4. Message Texts ... 11
3. State and Flow Diagram 11
3.1. Non-Authenticated State 11
3.2. Authenticated State 11
3.3. Selected State .. 12
3.4. Logout State .. 12
4. Data Formats .. 12
4.1. Atom .. 13
4.2. Number .. 13
4.3. String ... 13
4.3.1. 8-bit and Binary Strings 13
4.4. Parenthesized List .. 14
4.5. NIL ... 14
5. Operational Considerations 14
5.1. Mailbox Naming .. 14
5.1.1. Mailbox Hierarchy Naming 14
5.1.2. Mailbox Namespace Naming Convention 14
5.1.3. Mailbox International Naming Convention 15
5.2. Mailbox Size and Message Status Updates 16
5.3. Response when no Command in Progress 16
5.4. Autologout Timer .. 16
5.5. Multiple Commands in Progress 17

Crispin Standards Track [Page 2]

C
om

pendium
 1 page 265

RFC 2060 IMAP4rev1 December 1996

6. Client Commands ... 17
6.1. Client Commands - Any State 18
6.1.1. CAPABILITY Command .. 18
6.1.2. NOOP Command .. 19
6.1.3. LOGOUT Command .. 20
6.2. Client Commands - Non-Authenticated State 20
6.2.1. AUTHENTICATE Command 21
6.2.2. LOGIN Command ... 22
6.3. Client Commands - Authenticated State 22
6.3.1. SELECT Command .. 23
6.3.2. EXAMINE Command ... 24
6.3.3. CREATE Command .. 25
6.3.4. DELETE Command .. 26
6.3.5. RENAME Command .. 27
6.3.6. SUBSCRIBE Command ... 29
6.3.7. UNSUBSCRIBE Command 30
6.3.8. LIST Command .. 30
6.3.9. LSUB Command .. 32
6.3.10. STATUS Command .. 33
6.3.11. APPEND Command .. 34
6.4. Client Commands - Selected State 35
6.4.1. CHECK Command ... 36
6.4.2. CLOSE Command ... 36
6.4.3. EXPUNGE Command ... 37
6.4.4. SEARCH Command .. 37
6.4.5. FETCH Command ... 41
6.4.6. STORE Command ... 45
6.4.7. COPY Command .. 46
6.4.8. UID Command ... 47
6.5. Client Commands - Experimental/Expansion 48
6.5.1. X<atom> Command ... 48
7. Server Responses .. 48
7.1. Server Responses - Status Responses 49
7.1.1. OK Response ... 51
7.1.2. NO Response ... 51
7.1.3. BAD Response .. 52
7.1.4. PREAUTH Response .. 52
7.1.5. BYE Response .. 52
7.2. Server Responses - Server and Mailbox Status 53
7.2.1. CAPABILITY Response 53
7.2.2. LIST Response .. 54
7.2.3. LSUB Response ... 55
7.2.4 STATUS Response ... 55
7.2.5. SEARCH Response ... 55
7.2.6. FLAGS Response .. 56
7.3. Server Responses - Mailbox Size 56
7.3.1. EXISTS Response ... 56
7.3.2. RECENT Response ... 57

Crispin Standards Track [Page 3]

RFC 2060 IMAP4rev1 December 1996

7.4. Server Responses - Message Status 57
7.4.1. EXPUNGE Response .. 57
7.4.2. FETCH Response .. 58
7.5. Server Responses - Command Continuation Request 63
8. Sample IMAP4rev1 connection 63
9. Formal Syntax ... 64
10. Author's Note ... 74
11. Security Considerations 74
12. Author's Address .. 75
Appendices .. 76
A. References .. 76
B. Changes from RFC 1730 77
C. Key Word Index .. 79

IMAP4rev1 Protocol Specification

1. How to Read This Document

1.1. Organization of This Document

 This document is written from the point of view of the implementor of
 an IMAP4rev1 client or server. Beyond the protocol overview in
 section 2, it is not optimized for someone trying to understand the
 operation of the protocol. The material in sections 3 through 5
 provides the general context and definitions with which IMAP4rev1
 operates.

 Sections 6, 7, and 9 describe the IMAP commands, responses, and
 syntax, respectively. The relationships among these are such that it
 is almost impossible to understand any of them separately. In
 particular, do not attempt to deduce command syntax from the command
 section alone; instead refer to the Formal Syntax section.

1.2. Conventions Used in This Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The following terms are used in this document to signify the
 requirements of this specification.

 1) MUST, or the adjective REQUIRED, means that the definition is
 an absolute requirement of the specification.

 2) MUST NOT that the definition is an absolute prohibition of the
 specification.

Crispin Standards Track [Page 4]

C
om

pendium
 1 page 266

RFC 2060 IMAP4rev1 December 1996

 3) SHOULD means that there may exist valid reasons in particular
 circumstances to ignore a particular item, but the full
 implications MUST be understood and carefully weighed before
 choosing a different course.

 4) SHOULD NOT means that there may exist valid reasons in
 particular circumstances when the particular behavior is
 acceptable or even useful, but the full implications SHOULD be
 understood and the case carefully weighed before implementing
 any behavior described with this label.

 5) MAY, or the adjective OPTIONAL, means that an item is truly
 optional. One vendor may choose to include the item because a
 particular marketplace requires it or because the vendor feels
 that it enhances the product while another vendor may omit the
 same item. An implementation which does not include a
 particular option MUST be prepared to interoperate with another
 implementation which does include the option.

 "Can" is used instead of "may" when referring to a possible
 circumstance or situation, as opposed to an optional facility of
 the protocol.

 "User" is used to refer to a human user, whereas "client" refers
 to the software being run by the user.

 "Connection" refers to the entire sequence of client/server
 interaction from the initial establishment of the network
 connection until its termination. "Session" refers to the
 sequence of client/server interaction from the time that a mailbox
 is selected (SELECT or EXAMINE command) until the time that
 selection ends (SELECT or EXAMINE of another mailbox, CLOSE
 command, or connection termination).

 Characters are 7-bit US-ASCII unless otherwise specified. Other
 character sets are indicated using a "CHARSET", as described in
 [MIME-IMT] and defined in [CHARSET]. CHARSETs have important
 additional semantics in addition to defining character set; refer
 to these documents for more detail.

2. Protocol Overview

2.1. Link Level

 The IMAP4rev1 protocol assumes a reliable data stream such as
 provided by TCP. When TCP is used, an IMAP4rev1 server listens on
 port 143.

Crispin Standards Track [Page 5]

RFC 2060 IMAP4rev1 December 1996

2.2. Commands and Responses

 An IMAP4rev1 connection consists of the establishment of a
 client/server network connection, an initial greeting from the
 server, and client/server interactions. These client/server
 interactions consist of a client command, server data, and a server
 completion result response.

 All interactions transmitted by client and server are in the form of
 lines; that is, strings that end with a CRLF. The protocol receiver
 of an IMAP4rev1 client or server is either reading a line, or is
 reading a sequence of octets with a known count followed by a line.

2.2.1. Client Protocol Sender and Server Protocol Receiver

 The client command begins an operation. Each client command is
 prefixed with an identifier (typically a short alphanumeric string,
 e.g. A0001, A0002, etc.) called a "tag". A different tag is
 generated by the client for each command.

 There are two cases in which a line from the client does not
 represent a complete command. In one case, a command argument is
 quoted with an octet count (see the description of literal in String
 under Data Formats); in the other case, the command arguments require
 server feedback (see the AUTHENTICATE command). In either case, the
 server sends a command continuation request response if it is ready
 for the octets (if appropriate) and the remainder of the command.
 This response is prefixed with the token "+".

 Note: If, instead, the server detected an error in the command, it
 sends a BAD completion response with tag matching the command (as
 described below) to reject the command and prevent the client from
 sending any more of the command.

 It is also possible for the server to send a completion response
 for some other command (if multiple commands are in progress), or
 untagged data. In either case, the command continuation request
 is still pending; the client takes the appropriate action for the
 response, and reads another response from the server. In all
 cases, the client MUST send a complete command (including
 receiving all command continuation request responses and command
 continuations for the command) before initiating a new command.

 The protocol receiver of an IMAP4rev1 server reads a command line
 from the client, parses the command and its arguments, and transmits
 server data and a server command completion result response.

Crispin Standards Track [Page 6]

C
om

pendium
 1 page 267

RFC 2060 IMAP4rev1 December 1996

2.2.2. Server Protocol Sender and Client Protocol Receiver

 Data transmitted by the server to the client and status responses
 that do not indicate command completion are prefixed with the token
 "*", and are called untagged responses.

 Server data MAY be sent as a result of a client command, or MAY be
 sent unilaterally by the server. There is no syntactic difference
 between server data that resulted from a specific command and server
 data that were sent unilaterally.

 The server completion result response indicates the success or
 failure of the operation. It is tagged with the same tag as the
 client command which began the operation. Thus, if more than one
 command is in progress, the tag in a server completion response
 identifies the command to which the response applies. There are
 three possible server completion responses: OK (indicating success),
 NO (indicating failure), or BAD (indicating protocol error such as
 unrecognized command or command syntax error).

 The protocol receiver of an IMAP4rev1 client reads a response line
 from the server. It then takes action on the response based upon the
 first token of the response, which can be a tag, a "*", or a "+".

 A client MUST be prepared to accept any server response at all times.
 This includes server data that was not requested. Server data SHOULD
 be recorded, so that the client can reference its recorded copy
 rather than sending a command to the server to request the data. In
 the case of certain server data, the data MUST be recorded.

 This topic is discussed in greater detail in the Server Responses
 section.

2.3. Message Attributes

 In addition to message text, each message has several attributes
 associated with it. These attributes may be retrieved individually
 or in conjunction with other attributes or message texts.

2.3.1. Message Numbers

 Messages in IMAP4rev1 are accessed by one of two numbers; the unique
 identifier and the message sequence number.

2.3.1.1. Unique Identifier (UID) Message Attribute

 A 32-bit value assigned to each message, which when used with the
 unique identifier validity value (see below) forms a 64-bit value

Crispin Standards Track [Page 7]

RFC 2060 IMAP4rev1 December 1996

 that is permanently guaranteed not to refer to any other message in
 the mailbox. Unique identifiers are assigned in a strictly ascending
 fashion in the mailbox; as each message is added to the mailbox it is
 assigned a higher UID than the message(s) which were added
 previously.

 Unlike message sequence numbers, unique identifiers are not
 necessarily contiguous. Unique identifiers also persist across
 sessions. This permits a client to resynchronize its state from a
 previous session with the server (e.g. disconnected or offline access
 clients); this is discussed further in [IMAP-DISC].

 Associated with every mailbox is a unique identifier validity value,
 which is sent in an UIDVALIDITY response code in an OK untagged
 response at mailbox selection time. If unique identifiers from an
 earlier session fail to persist to this session, the unique
 identifier validity value MUST be greater than the one used in the
 earlier session.

 Note: Unique identifiers MUST be strictly ascending in the mailbox
 at all times. If the physical message store is re-ordered by a
 non-IMAP agent, this requires that the unique identifiers in the
 mailbox be regenerated, since the former unique identifers are no
 longer strictly ascending as a result of the re-ordering. Another
 instance in which unique identifiers are regenerated is if the
 message store has no mechanism to store unique identifiers.
 Although this specification recognizes that this may be
 unavoidable in certain server environments, it STRONGLY ENCOURAGES
 message store implementation techniques that avoid this problem.

 Another cause of non-persistance is if the mailbox is deleted and
 a new mailbox with the same name is created at a later date, Since
 the name is the same, a client may not know that this is a new
 mailbox unless the unique identifier validity is different. A
 good value to use for the unique identifier validity value is a
 32-bit representation of the creation date/time of the mailbox.
 It is alright to use a constant such as 1, but only if it
 guaranteed that unique identifiers will never be reused, even in
 the case of a mailbox being deleted (or renamed) and a new mailbox
 by the same name created at some future time.

 The unique identifier of a message MUST NOT change during the
 session, and SHOULD NOT change between sessions. However, if it is
 not possible to preserve the unique identifier of a message in a
 subsequent session, each subsequent session MUST have a new unique
 identifier validity value that is larger than any that was used
 previously.

Crispin Standards Track [Page 8]

C
om

pendium
 1 page 268

RFC 2060 IMAP4rev1 December 1996

2.3.1.2. Message Sequence Number Message Attribute

 A relative position from 1 to the number of messages in the mailbox.
 This position MUST be ordered by ascending unique identifier. As
 each new message is added, it is assigned a message sequence number
 that is 1 higher than the number of messages in the mailbox before
 that new message was added.

 Message sequence numbers can be reassigned during the session. For
 example, when a message is permanently removed (expunged) from the
 mailbox, the message sequence number for all subsequent messages is
 decremented. Similarly, a new message can be assigned a message
 sequence number that was once held by some other message prior to an
 expunge.

 In addition to accessing messages by relative position in the
 mailbox, message sequence numbers can be used in mathematical
 calculations. For example, if an untagged "EXISTS 11" is received,
 and previously an untagged "8 EXISTS" was received, three new
 messages have arrived with message sequence numbers of 9, 10, and 11.
 Another example; if message 287 in a 523 message mailbox has UID
 12345, there are exactly 286 messages which have lesser UIDs and 236
 messages which have greater UIDs.

2.3.2. Flags Message Attribute

 A list of zero or more named tokens associated with the message. A
 flag is set by its addition to this list, and is cleared by its
 removal. There are two types of flags in IMAP4rev1. A flag of
 either type may be permanent or session-only.

 A system flag is a flag name that is pre-defined in this
 specification. All system flags begin with "\". Certain system
 flags (\Deleted and \Seen) have special semantics described
 elsewhere. The currently-defined system flags are:

 \Seen Message has been read

 \Answered Message has been answered

 \Flagged Message is "flagged" for urgent/special attention

 \Deleted Message is "deleted" for removal by later EXPUNGE

 \Draft Message has not completed composition (marked as a
 draft).

Crispin Standards Track [Page 9]

RFC 2060 IMAP4rev1 December 1996

 \Recent Message is "recently" arrived in this mailbox. This
 session is the first session to have been notified
 about this message; subsequent sessions will not see
 \Recent set for this message. This flag can not be
 altered by the client.

 If it is not possible to determine whether or not
 this session is the first session to be notified
 about a message, then that message SHOULD be
 considered recent.

 If multiple connections have the same mailbox
 selected simultaneously, it is undefined which of
 these connections will see newly-arrives messages
 with \Recent set and which will see it without
 \Recent set.

 A keyword is defined by the server implementation. Keywords do
 not begin with "\". Servers MAY permit the client to define new
 keywords in the mailbox (see the description of the
 PERMANENTFLAGS response code for more information).

 A flag may be permanent or session-only on a per-flag basis.
 Permanent flags are those which the client can add or remove
 from the message flags permanently; that is, subsequent sessions
 will see any change in permanent flags. Changes to session
 flags are valid only in that session.

 Note: The \Recent system flag is a special case of a
 session flag. \Recent can not be used as an argument in a
 STORE command, and thus can not be changed at all.

2.3.3. Internal Date Message Attribute

 The internal date and time of the message on the server. This is not
 the date and time in the [RFC-822] header, but rather a date and time
 which reflects when the message was received. In the case of
 messages delivered via [SMTP], this SHOULD be the date and time of
 final delivery of the message as defined by [SMTP]. In the case of
 messages delivered by the IMAP4rev1 COPY command, this SHOULD be the
 internal date and time of the source message. In the case of
 messages delivered by the IMAP4rev1 APPEND command, this SHOULD be
 the date and time as specified in the APPEND command description.
 All other cases are implementation defined.

Crispin Standards Track [Page 10]

C
om

pendium
 1 page 269

RFC 2060 IMAP4rev1 December 1996

2.3.4. [RFC-822] Size Message Attribute

 The number of octets in the message, as expressed in [RFC-822]
 format.

2.3.5. Envelope Structure Message Attribute

 A parsed representation of the [RFC-822] envelope information (not to
 be confused with an [SMTP] envelope) of the message.

2.3.6. Body Structure Message Attribute

 A parsed representation of the [MIME-IMB] body structure information
 of the message.

2.4. Message Texts

 In addition to being able to fetch the full [RFC-822] text of a
 message, IMAP4rev1 permits the fetching of portions of the full
 message text. Specifically, it is possible to fetch the [RFC-822]
 message header, [RFC-822] message body, a [MIME-IMB] body part, or a
 [MIME-IMB] header.

3. State and Flow Diagram

 An IMAP4rev1 server is in one of four states. Most commands are
 valid in only certain states. It is a protocol error for the client
 to attempt a command while the command is in an inappropriate state.
 In this case, a server will respond with a BAD or NO (depending upon
 server implementation) command completion result.

3.1. Non-Authenticated State

 In non-authenticated state, the client MUST supply authentication
 credentials before most commands will be permitted. This state is
 entered when a connection starts unless the connection has been pre-
 authenticated.

3.2. Authenticated State

 In authenticated state, the client is authenticated and MUST select a
 mailbox to access before commands that affect messages will be
 permitted. This state is entered when a pre-authenticated connection
 starts, when acceptable authentication credentials have been
 provided, or after an error in selecting a mailbox.

Crispin Standards Track [Page 11]

RFC 2060 IMAP4rev1 December 1996

3.3. Selected State

 In selected state, a mailbox has been selected to access. This state
 is entered when a mailbox has been successfully selected.

3.4. Logout State

 In logout state, the connection is being terminated, and the server
 will close the connection. This state can be entered as a result of
 a client request or by unilateral server decision.

 +--------------------------------------+
 |initial connection and server greeting|
 +--------------------------------------+
 || (1) || (2) || (3)
 VV || ||
 +-----------------+ || ||
 |non-authenticated| || ||
 +-----------------+ || ||
 || (7) || (4) || || | |
 || VV VV ||
 || +----------------+ ||
 || | authenticated |<=++ ||
 || +----------------+ || ||
 || || (7) || (5) || (6) ||
 || || VV || ||
 || || +--------+ || ||
 || || |selected|==++ ||
 || || +--------+ ||
 || || || (7) ||
 VV VV VV VV
 +--------------------------------------+
 | logout and close connection |
 +--------------------------------------+

 (1) connection without pre-authentication (OK greeting)
 (2) pre-authenticated connection (PREAUTH greeting)
 (3) rejected connection (BYE greeting)
 (4) successful LOGIN or AUTHENTICATE command
 (5) successful SELECT or EXAMINE command
 (6) CLOSE command, or failed SELECT or EXAMINE command
 (7) LOGOUT command, server shutdown, or connection closed

4. Data Formats

 IMAP4rev1 uses textual commands and responses. Data in IMAP4rev1 can
 be in one of several forms: atom, number, string, parenthesized list,
 or NIL.

Crispin Standards Track [Page 12]

C
om

pendium
 1 page 270

RFC 2060 IMAP4rev1 December 1996

4.1. Atom

 An atom consists of one or more non-special characters.

4.2. Number

 A number consists of one or more digit characters, and represents a
 numeric value.

4.3. String

 A string is in one of two forms: literal and quoted string. The
 literal form is the general form of string. The quoted string form
 is an alternative that avoids the overhead of processing a literal at
 the cost of limitations of characters that can be used in a quoted
 string.

 A literal is a sequence of zero or more octets (including CR and LF),
 prefix-quoted with an octet count in the form of an open brace ("{"),
 the number of octets, close brace ("}"), and CRLF. In the case of
 literals transmitted from server to client, the CRLF is immediately
 followed by the octet data. In the case of literals transmitted from
 client to server, the client MUST wait to receive a command
 continuation request (described later in this document) before
 sending the octet data (and the remainder of the command).

 A quoted string is a sequence of zero or more 7-bit characters,
 excluding CR and LF, with double quote (<">) characters at each end.

 The empty string is represented as either "" (a quoted string with
 zero characters between double quotes) or as {0} followed by CRLF (a
 literal with an octet count of 0).

 Note: Even if the octet count is 0, a client transmitting a
 literal MUST wait to receive a command continuation request.

4.3.1. 8-bit and Binary Strings

 8-bit textual and binary mail is supported through the use of a
 [MIME-IMB] content transfer encoding. IMAP4rev1 implementations MAY
 transmit 8-bit or multi-octet characters in literals, but SHOULD do
 so only when the [CHARSET] is identified.

Crispin Standards Track [Page 13]

RFC 2060 IMAP4rev1 December 1996

 Although a BINARY body encoding is defined, unencoded binary strings
 are not permitted. A "binary string" is any string with NUL
 characters. Implementations MUST encode binary data into a textual
 form such as BASE64 before transmitting the data. A string with an
 excessive amount of CTL characters MAY also be considered to be
 binary.

4.4. Parenthesized List

 Data structures are represented as a "parenthesized list"; a sequence
 of data items, delimited by space, and bounded at each end by
 parentheses. A parenthesized list can contain other parenthesized
 lists, using multiple levels of parentheses to indicate nesting.

 The empty list is represented as () -- a parenthesized list with no
 members.

4.5. NIL

 The special atom "NIL" represents the non-existence of a particular
 data item that is represented as a string or parenthesized list, as
 distinct from the empty string "" or the empty parenthesized list ().

5. Operational Considerations

5.1. Mailbox Naming

 The interpretation of mailbox names is implementation-dependent.
 However, the case-insensitive mailbox name INBOX is a special name
 reserved to mean "the primary mailbox for this user on this server".

5.1.1. Mailbox Hierarchy Naming

 If it is desired to export hierarchical mailbox names, mailbox names
 MUST be left-to-right hierarchical using a single character to
 separate levels of hierarchy. The same hierarchy separator character
 is used for all levels of hierarchy within a single name.

5.1.2. Mailbox Namespace Naming Convention

 By convention, the first hierarchical element of any mailbox name
 which begins with "#" identifies the "namespace" of the remainder of
 the name. This makes it possible to disambiguate between different
 types of mailbox stores, each of which have their own namespaces.

Crispin Standards Track [Page 14]

C
om

pendium
 1 page 271

RFC 2060 IMAP4rev1 December 1996

 For example, implementations which offer access to USENET
 newsgroups MAY use the "#news" namespace to partition the USENET
 newsgroup namespace from that of other mailboxes. Thus, the
 comp.mail.misc newsgroup would have an mailbox name of
 "#news.comp.mail.misc", and the name "comp.mail.misc" could refer
 to a different object (e.g. a user's private mailbox).

5.1.3. Mailbox International Naming Convention

 By convention, international mailbox names are specified using a
 modified version of the UTF-7 encoding described in [UTF-7]. The
 purpose of these modifications is to correct the following problems
 with UTF-7:

 1) UTF-7 uses the "+" character for shifting; this conflicts with
 the common use of "+" in mailbox names, in particular USENET
 newsgroup names.

 2) UTF-7's encoding is BASE64 which uses the "/" character; this
 conflicts with the use of "/" as a popular hierarchy delimiter.

 3) UTF-7 prohibits the unencoded usage of "\"; this conflicts with
 the use of "\" as a popular hierarchy delimiter.

 4) UTF-7 prohibits the unencoded usage of "~"; this conflicts with
 the use of "~" in some servers as a home directory indicator.

 5) UTF-7 permits multiple alternate forms to represent the same
 string; in particular, printable US-ASCII chararacters can be
 represented in encoded form.

 In modified UTF-7, printable US-ASCII characters except for "&"
 represent themselves; that is, characters with octet values 0x20-0x25
 and 0x27-0x7e. The character "&" (0x26) is represented by the two-
 octet sequence "&-".

 All other characters (octet values 0x00-0x1f, 0x7f-0xff, and all
 Unicode 16-bit octets) are represented in modified BASE64, with a
 further modification from [UTF-7] that "," is used instead of "/".
 Modified BASE64 MUST NOT be used to represent any printing US-ASCII
 character which can represent itself.

 "&" is used to shift to modified BASE64 and "-" to shift back to US-
 ASCII. All names start in US-ASCII, and MUST end in US-ASCII (that
 is, a name that ends with a Unicode 16-bit octet MUST end with a "-
 ").

Crispin Standards Track [Page 15]

RFC 2060 IMAP4rev1 December 1996

 For example, here is a mailbox name which mixes English, Japanese,
 and Chinese text: ~peter/mail/&ZeVnLIqe-/&U,BTFw-

5.2. Mailbox Size and Message Status Updates

 At any time, a server can send data that the client did not request.
 Sometimes, such behavior is REQUIRED. For example, agents other than
 the server MAY add messages to the mailbox (e.g. new mail delivery),
 change the flags of message in the mailbox (e.g. simultaneous access
 to the same mailbox by multiple agents), or even remove messages from
 the mailbox. A server MUST send mailbox size updates automatically
 if a mailbox size change is observed during the processing of a
 command. A server SHOULD send message flag updates automatically,
 without requiring the client to request such updates explicitly.
 Special rules exist for server notification of a client about the
 removal of messages to prevent synchronization errors; see the
 description of the EXPUNGE response for more detail.

 Regardless of what implementation decisions a client makes on
 remembering data from the server, a client implementation MUST record
 mailbox size updates. It MUST NOT assume that any command after
 initial mailbox selection will return the size of the mailbox.

5.3. Response when no Command in Progress

 Server implementations are permitted to send an untagged response
 (except for EXPUNGE) while there is no command in progress. Server
 implementations that send such responses MUST deal with flow control
 considerations. Specifically, they MUST either (1) verify that the
 size of the data does not exceed the underlying transport's available
 window size, or (2) use non-blocking writes.

5.4. Autologout Timer

 If a server has an inactivity autologout timer, that timer MUST be of
 at least 30 minutes' duration. The receipt of ANY command from the
 client during that interval SHOULD suffice to reset the autologout
 timer.

Crispin Standards Track [Page 16]

C
om

pendium
 1 page 272

RFC 2060 IMAP4rev1 December 1996

5.5. Multiple Commands in Progress

 The client MAY send another command without waiting for the
 completion result response of a command, subject to ambiguity rules
 (see below) and flow control constraints on the underlying data
 stream. Similarly, a server MAY begin processing another command
 before processing the current command to completion, subject to
 ambiguity rules. However, any command continuation request responses
 and command continuations MUST be negotiated before any subsequent
 command is initiated.

 The exception is if an ambiguity would result because of a command
 that would affect the results of other commands. Clients MUST NOT
 send multiple commands without waiting if an ambiguity would result.
 If the server detects a possible ambiguity, it MUST execute commands
 to completion in the order given by the client.

 The most obvious example of ambiguity is when a command would affect
 the results of another command; for example, a FETCH of a message's
 flags and a STORE of that same message's flags.

 A non-obvious ambiguity occurs with commands that permit an untagged
 EXPUNGE response (commands other than FETCH, STORE, and SEARCH),
 since an untagged EXPUNGE response can invalidate sequence numbers in
 a subsequent command. This is not a problem for FETCH, STORE, or
 SEARCH commands because servers are prohibited from sending EXPUNGE
 responses while any of those commands are in progress. Therefore, if
 the client sends any command other than FETCH, STORE, or SEARCH, it
 MUST wait for a response before sending a command with message
 sequence numbers.

 For example, the following non-waiting command sequences are invalid:

 FETCH + NOOP + STORE
 STORE + COPY + FETCH
 COPY + COPY
 CHECK + FETCH

 The following are examples of valid non-waiting command sequences:

 FETCH + STORE + SEARCH + CHECK
 STORE + COPY + EXPUNGE

6. Client Commands

 IMAP4rev1 commands are described in this section. Commands are
 organized by the state in which the command is permitted. Commands
 which are permitted in multiple states are listed in the minimum

Crispin Standards Track [Page 17]

RFC 2060 IMAP4rev1 December 1996

 permitted state (for example, commands valid in authenticated and
 selected state are listed in the authenticated state commands).

 Command arguments, identified by "Arguments:" in the command
 descriptions below, are described by function, not by syntax. The
 precise syntax of command arguments is described in the Formal Syntax
 section.

 Some commands cause specific server responses to be returned; these
 are identified by "Responses:" in the command descriptions below.
 See the response descriptions in the Responses section for
 information on these responses, and the Formal Syntax section for the
 precise syntax of these responses. It is possible for server data to
 be transmitted as a result of any command; thus, commands that do not
 specifically require server data specify "no specific responses for
 this command" instead of "none".

 The "Result:" in the command description refers to the possible
 tagged status responses to a command, and any special interpretation
 of these status responses.

6.1. Client Commands - Any State

 The following commands are valid in any state: CAPABILITY, NOOP, and
 LOGOUT.

6.1.1. CAPABILITY Command

 Arguments: none

 Responses: REQUIRED untagged response: CAPABILITY

 Result: OK - capability completed
 BAD - command unknown or arguments invalid

 The CAPABILITY command requests a listing of capabilities that the
 server supports. The server MUST send a single untagged
 CAPABILITY response with "IMAP4rev1" as one of the listed
 capabilities before the (tagged) OK response. This listing of
 capabilities is not dependent upon connection state or user. It
 is therefore not necessary to issue a CAPABILITY command more than
 once in a connection.

Crispin Standards Track [Page 18]

C
om

pendium
 1 page 273

RFC 2060 IMAP4rev1 December 1996

 A capability name which begins with "AUTH=" indicates that the
 server supports that particular authentication mechanism. All
 such names are, by definition, part of this specification. For
 example, the authorization capability for an experimental
 "blurdybloop" authenticator would be "AUTH=XBLURDYBLOOP" and not
 "XAUTH=BLURDYBLOOP" or "XAUTH=XBLURDYBLOOP".

 Other capability names refer to extensions, revisions, or
 amendments to this specification. See the documentation of the
 CAPABILITY response for additional information. No capabilities,
 beyond the base IMAP4rev1 set defined in this specification, are
 enabled without explicit client action to invoke the capability.

 See the section entitled "Client Commands -
 Experimental/Expansion" for information about the form of site or
 implementation-specific capabilities.

 Example: C: abcd CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=KERBEROS_V4
 S: abcd OK CAPABILITY completed

6.1.2. NOOP Command

 Arguments: none

 Responses: no specific responses for this command (but see below)

 Result: OK - noop completed
 BAD - command unknown or arguments invalid

 The NOOP command always succeeds. It does nothing.

 Since any command can return a status update as untagged data, the
 NOOP command can be used as a periodic poll for new messages or
 message status updates during a period of inactivity. The NOOP
 command can also be used to reset any inactivity autologout timer
 on the server.

 Example: C: a002 NOOP
 S: a002 OK NOOP completed
 . . .
 C: a047 NOOP
 S: * 22 EXPUNGE
 S: * 23 EXISTS
 S: * 3 RECENT
 S: * 14 FETCH (FLAGS (\Seen \Deleted))
 S: a047 OK NOOP completed

Crispin Standards Track [Page 19]

RFC 2060 IMAP4rev1 December 1996

6.1.3. LOGOUT Command

 Arguments: none

 Responses: REQUIRED untagged response: BYE

 Result: OK - logout completed
 BAD - command unknown or arguments invalid

 The LOGOUT command informs the server that the client is done with
 the connection. The server MUST send a BYE untagged response
 before the (tagged) OK response, and then close the network
 connection.

 Example: C: A023 LOGOUT
 S: * BYE IMAP4rev1 Server logging out
 S: A023 OK LOGOUT completed
 (Server and client then close the connection)

6.2. Client Commands - Non-Authenticated State

 In non-authenticated state, the AUTHENTICATE or LOGIN command
 establishes authentication and enter authenticated state. The
 AUTHENTICATE command provides a general mechanism for a variety of
 authentication techniques, whereas the LOGIN command uses the
 traditional user name and plaintext password pair.

 Server implementations MAY allow non-authenticated access to certain
 mailboxes. The convention is to use a LOGIN command with the userid
 "anonymous". A password is REQUIRED. It is implementation-dependent
 what requirements, if any, are placed on the password and what access
 restrictions are placed on anonymous users.

 Once authenticated (including as anonymous), it is not possible to
 re-enter non-authenticated state.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 the following commands are valid in non-authenticated state:
 AUTHENTICATE and LOGIN.

Crispin Standards Track [Page 20]

C
om

pendium
 1 page 274

RFC 2060 IMAP4rev1 December 1996

6.2.1. AUTHENTICATE Command

 Arguments: authentication mechanism name

 Responses: continuation data can be requested

 Result: OK - authenticate completed, now in authenticated state
 NO - authenticate failure: unsupported authentication
 mechanism, credentials rejected
 BAD - command unknown or arguments invalid,
 authentication exchange cancelled

 The AUTHENTICATE command indicates an authentication mechanism,
 such as described in [IMAP-AUTH], to the server. If the server
 supports the requested authentication mechanism, it performs an
 authentication protocol exchange to authenticate and identify the
 client. It MAY also negotiate an OPTIONAL protection mechanism
 for subsequent protocol interactions. If the requested
 authentication mechanism is not supported, the server SHOULD
 reject the AUTHENTICATE command by sending a tagged NO response.

 The authentication protocol exchange consists of a series of
 server challenges and client answers that are specific to the
 authentication mechanism. A server challenge consists of a
 command continuation request response with the "+" token followed
 by a BASE64 encoded string. The client answer consists of a line
 consisting of a BASE64 encoded string. If the client wishes to
 cancel an authentication exchange, it issues a line with a single
 "*". If the server receives such an answer, it MUST reject the
 AUTHENTICATE command by sending a tagged BAD response.

 A protection mechanism provides integrity and privacy protection
 to the connection. If a protection mechanism is negotiated, it is
 applied to all subsequent data sent over the connection. The
 protection mechanism takes effect immediately following the CRLF
 that concludes the authentication exchange for the client, and the
 CRLF of the tagged OK response for the server. Once the
 protection mechanism is in effect, the stream of command and
 response octets is processed into buffers of ciphertext. Each
 buffer is transferred over the connection as a stream of octets
 prepended with a four octet field in network byte order that
 represents the length of the following data. The maximum
 ciphertext buffer length is defined by the protection mechanism.

 Authentication mechanisms are OPTIONAL. Protection mechanisms are
 also OPTIONAL; an authentication mechanism MAY be implemented
 without any protection mechanism. If an AUTHENTICATE command
 fails with a NO response, the client MAY try another

Crispin Standards Track [Page 21]

RFC 2060 IMAP4rev1 December 1996

 authentication mechanism by issuing another AUTHENTICATE command,
 or MAY attempt to authenticate by using the LOGIN command. In
 other words, the client MAY request authentication types in
 decreasing order of preference, with the LOGIN command as a last
 resort.

 Example: S: * OK KerberosV4 IMAP4rev1 Server
 C: A001 AUTHENTICATE KERBEROS_V4
 S: + AmFYig==
 C: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
 +nZImJjnTNHJUtxAA+o0KPKfHEcAFs9a3CL5Oebe/ydHJUwYFd
 WwuQ1MWiy6IesKvjL5rL9WjXUb9MwT9bpObYLGOKi1Qh
 S: + or//EoAADZI=
 C: DiAF5A4gA+oOIALuBkAAmw==
 S: A001 OK Kerberos V4 authentication successful

 Note: the line breaks in the first client answer are for editorial
 clarity and are not in real authenticators.

6.2.2. LOGIN Command

 Arguments: user name
 password

 Responses: no specific responses for this command

 Result: OK - login completed, now in authenticated state
 NO - login failure: user name or password rejected
 BAD - command unknown or arguments invalid

 The LOGIN command identifies the client to the server and carries
 the plaintext password authenticating this user.

 Example: C: a001 LOGIN SMITH SESAME
 S: a001 OK LOGIN completed

6.3. Client Commands - Authenticated State

 In authenticated state, commands that manipulate mailboxes as atomic
 entities are permitted. Of these commands, the SELECT and EXAMINE
 commands will select a mailbox for access and enter selected state.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 the following commands are valid in authenticated state: SELECT,
 EXAMINE, CREATE, DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, LSUB,
 STATUS, and APPEND.

Crispin Standards Track [Page 22]

C
om

pendium
 1 page 275

RFC 2060 IMAP4rev1 December 1996

6.3.1. SELECT Command

 Arguments: mailbox name

 Responses: REQUIRED untagged responses: FLAGS, EXISTS, RECENT
 OPTIONAL OK untagged responses: UNSEEN, PERMANENTFLAGS

 Result: OK - select completed, now in selected state
 NO - select failure, now in authenticated state: no
 such mailbox, can't access mailbox
 BAD - command unknown or arguments invalid

 The SELECT command selects a mailbox so that messages in the
 mailbox can be accessed. Before returning an OK to the client,
 the server MUST send the following untagged data to the client:

 FLAGS Defined flags in the mailbox. See the description
 of the FLAGS response for more detail.

 <n> EXISTS The number of messages in the mailbox. See the
 description of the EXISTS response for more detail.

 <n> RECENT The number of messages with the \Recent flag set.
 See the description of the RECENT response for more
 detail.

 OK [UIDVALIDITY <n>]
 The unique identifier validity value. See the
 description of the UID command for more detail.

 to define the initial state of the mailbox at the client.

 The server SHOULD also send an UNSEEN response code in an OK
 untagged response, indicating the message sequence number of the
 first unseen message in the mailbox.

 If the client can not change the permanent state of one or more of
 the flags listed in the FLAGS untagged response, the server SHOULD
 send a PERMANENTFLAGS response code in an OK untagged response,
 listing the flags that the client can change permanently.

 Only one mailbox can be selected at a time in a connection;
 simultaneous access to multiple mailboxes requires multiple
 connections. The SELECT command automatically deselects any
 currently selected mailbox before attempting the new selection.
 Consequently, if a mailbox is selected and a SELECT command that
 fails is attempted, no mailbox is selected.

Crispin Standards Track [Page 23]

RFC 2060 IMAP4rev1 December 1996

 If the client is permitted to modify the mailbox, the server
 SHOULD prefix the text of the tagged OK response with the
 "[READ-WRITE]" response code.

 If the client is not permitted to modify the mailbox but is
 permitted read access, the mailbox is selected as read-only, and
 the server MUST prefix the text of the tagged OK response to
 SELECT with the "[READ-ONLY]" response code. Read-only access
 through SELECT differs from the EXAMINE command in that certain
 read-only mailboxes MAY permit the change of permanent state on a
 per-user (as opposed to global) basis. Netnews messages marked in
 a server-based .newsrc file are an example of such per-user
 permanent state that can be modified with read-only mailboxes.

 Example: C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: A142 OK [READ-WRITE] SELECT completed

6.3.2. EXAMINE Command

 Arguments: mailbox name

 Responses: REQUIRED untagged responses: FLAGS, EXISTS, RECENT
 OPTIONAL OK untagged responses: UNSEEN, PERMANENTFLAGS

 Result: OK - examine completed, now in selected state
 NO - examine failure, now in authenticated state: no
 such mailbox, can't access mailbox
 BAD - command unknown or arguments invalid

 The EXAMINE command is identical to SELECT and returns the same
 output; however, the selected mailbox is identified as read-only.
 No changes to the permanent state of the mailbox, including
 per-user state, are permitted.

Crispin Standards Track [Page 24]

C
om

pendium
 1 page 276

RFC 2060 IMAP4rev1 December 1996

 The text of the tagged OK response to the EXAMINE command MUST
 begin with the "[READ-ONLY]" response code.

 Example: C: A932 EXAMINE blurdybloop
 S: * 17 EXISTS
 S: * 2 RECENT
 S: * OK [UNSEEN 8] Message 8 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS ()] No permanent flags permitted
 S: A932 OK [READ-ONLY] EXAMINE completed

6.3.3. CREATE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - create completed
 NO - create failure: can't create mailbox with that name
 BAD - command unknown or arguments invalid

 The CREATE command creates a mailbox with the given name. An OK
 response is returned only if a new mailbox with that name has been
 created. It is an error to attempt to create INBOX or a mailbox
 with a name that refers to an extant mailbox. Any error in
 creation will return a tagged NO response.

 If the mailbox name is suffixed with the server's hierarchy
 separator character (as returned from the server by a LIST
 command), this is a declaration that the client intends to create
 mailbox names under this name in the hierarchy. Server
 implementations that do not require this declaration MUST ignore
 it.

 If the server's hierarchy separator character appears elsewhere in
 the name, the server SHOULD create any superior hierarchical names
 that are needed for the CREATE command to complete successfully.
 In other words, an attempt to create "foo/bar/zap" on a server in
 which "/" is the hierarchy separator character SHOULD create foo/
 and foo/bar/ if they do not already exist.

 If a new mailbox is created with the same name as a mailbox which
 was deleted, its unique identifiers MUST be greater than any
 unique identifiers used in the previous incarnation of the mailbox
 UNLESS the new incarnation has a different unique identifier
 validity value. See the description of the UID command for more
 detail.

Crispin Standards Track [Page 25]

RFC 2060 IMAP4rev1 December 1996

 Example: C: A003 CREATE owatagusiam/
 S: A003 OK CREATE completed
 C: A004 CREATE owatagusiam/blurdybloop
 S: A004 OK CREATE completed

 Note: the interpretation of this example depends on whether "/"
 was returned as the hierarchy separator from LIST. If "/" is the
 hierarchy separator, a new level of hierarchy named "owatagusiam"
 with a member called "blurdybloop" is created. Otherwise, two
 mailboxes at the same hierarchy level are created.

6.3.4. DELETE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - delete completed
 NO - delete failure: can't delete mailbox with that name
 BAD - command unknown or arguments invalid

 The DELETE command permanently removes the mailbox with the given
 name. A tagged OK response is returned only if the mailbox has
 been deleted. It is an error to attempt to delete INBOX or a
 mailbox name that does not exist.

 The DELETE command MUST NOT remove inferior hierarchical names.
 For example, if a mailbox "foo" has an inferior "foo.bar"
 (assuming "." is the hierarchy delimiter character), removing
 "foo" MUST NOT remove "foo.bar". It is an error to attempt to
 delete a name that has inferior hierarchical names and also has
 the \Noselect mailbox name attribute (see the description of the
 LIST response for more details).

 It is permitted to delete a name that has inferior hierarchical
 names and does not have the \Noselect mailbox name attribute. In
 this case, all messages in that mailbox are removed, and the name
 will acquire the \Noselect mailbox name attribute.

 The value of the highest-used unique identifier of the deleted
 mailbox MUST be preserved so that a new mailbox created with the
 same name will not reuse the identifiers of the former
 incarnation, UNLESS the new incarnation has a different unique
 identifier validity value. See the description of the UID command
 for more detail.

Crispin Standards Track [Page 26]

C
om

pendium
 1 page 277

RFC 2060 IMAP4rev1 December 1996

 Examples: C: A682 LIST "" *
 S: * LIST () "/" blurdybloop
 S: * LIST (\Noselect) "/" foo
 S: * LIST () "/" foo/bar
 S: A682 OK LIST completed
 C: A683 DELETE blurdybloop
 S: A683 OK DELETE completed
 C: A684 DELETE foo
 S: A684 NO Name "foo" has inferior hierarchical names
 C: A685 DELETE foo/bar
 S: A685 OK DELETE Completed
 C: A686 LIST "" *
 S: * LIST (\Noselect) "/" foo
 S: A686 OK LIST completed
 C: A687 DELETE foo
 S: A687 OK DELETE Completed

 C: A82 LIST "" *
 S: * LIST () "." blurdybloop
 S: * LIST () "." foo
 S: * LIST () "." foo.bar
 S: A82 OK LIST completed
 C: A83 DELETE blurdybloop
 S: A83 OK DELETE completed
 C: A84 DELETE foo
 S: A84 OK DELETE Completed
 C: A85 LIST "" *
 S: * LIST () "." foo.bar
 S: A85 OK LIST completed
 C: A86 LIST "" %
 S: * LIST (\Noselect) "." foo
 S: A86 OK LIST completed

6.3.5. RENAME Command

 Arguments: existing mailbox name
 new mailbox name

 Responses: no specific responses for this command

 Result: OK - rename completed
 NO - rename failure: can't rename mailbox with that name,
 can't rename to mailbox with that name
 BAD - command unknown or arguments invalid

 The RENAME command changes the name of a mailbox. A tagged OK
 response is returned only if the mailbox has been renamed. It is

Crispin Standards Track [Page 27]

RFC 2060 IMAP4rev1 December 1996

 an error to attempt to rename from a mailbox name that does not
 exist or to a mailbox name that already exists. Any error in
 renaming will return a tagged NO response.

 If the name has inferior hierarchical names, then the inferior
 hierarchical names MUST also be renamed. For example, a rename of
 "foo" to "zap" will rename "foo/bar" (assuming "/" is the
 hierarchy delimiter character) to "zap/bar".

 The value of the highest-used unique identifier of the old mailbox
 name MUST be preserved so that a new mailbox created with the same
 name will not reuse the identifiers of the former incarnation,
 UNLESS the new incarnation has a different unique identifier
 validity value. See the description of the UID command for more
 detail.

 Renaming INBOX is permitted, and has special behavior. It moves
 all messages in INBOX to a new mailbox with the given name,
 leaving INBOX empty. If the server implementation supports
 inferior hierarchical names of INBOX, these are unaffected by a
 rename of INBOX.

 Examples: C: A682 LIST "" *
 S: * LIST () "/" blurdybloop
 S: * LIST (\Noselect) "/" foo
 S: * LIST () "/" foo/bar
 S: A682 OK LIST completed
 C: A683 RENAME blurdybloop sarasoop
 S: A683 OK RENAME completed
 C: A684 RENAME foo zowie
 S: A684 OK RENAME Completed
 C: A685 LIST "" *
 S: * LIST () "/" sarasoop
 S: * LIST (\Noselect) "/" zowie
 S: * LIST () "/" zowie/bar
 S: A685 OK LIST completed

Crispin Standards Track [Page 28]

C
om

pendium
 1 page 278

RFC 2060 IMAP4rev1 December 1996

 C: Z432 LIST "" *
 S: * LIST () "." INBOX
 S: * LIST () "." INBOX.bar
 S: Z432 OK LIST completed
 C: Z433 RENAME INBOX old-mail
 S: Z433 OK RENAME completed
 C: Z434 LIST "" *
 S: * LIST () "." INBOX
 S: * LIST () "." INBOX.bar
 S: * LIST () "." old-mail
 S: Z434 OK LIST completed

6.3.6. SUBSCRIBE Command

 Arguments: mailbox

 Responses: no specific responses for this command

 Result: OK - subscribe completed
 NO - subscribe failure: can't subscribe to that name
 BAD - command unknown or arguments invalid

 The SUBSCRIBE command adds the specified mailbox name to the
 server's set of "active" or "subscribed" mailboxes as returned by
 the LSUB command. This command returns a tagged OK response only
 if the subscription is successful.

 A server MAY validate the mailbox argument to SUBSCRIBE to verify
 that it exists. However, it MUST NOT unilaterally remove an
 existing mailbox name from the subscription list even if a mailbox
 by that name no longer exists.

 Note: this requirement is because some server sites may routinely
 remove a mailbox with a well-known name (e.g. "system-alerts")
 after its contents expire, with the intention of recreating it
 when new contents are appropriate.

 Example: C: A002 SUBSCRIBE #news.comp.mail.mime
 S: A002 OK SUBSCRIBE completed

Crispin Standards Track [Page 29]

RFC 2060 IMAP4rev1 December 1996

6.3.7. UNSUBSCRIBE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - unsubscribe completed
 NO - unsubscribe failure: can't unsubscribe that name
 BAD - command unknown or arguments invalid

 The UNSUBSCRIBE command removes the specified mailbox name from
 the server's set of "active" or "subscribed" mailboxes as returned
 by the LSUB command. This command returns a tagged OK response
 only if the unsubscription is successful.

 Example: C: A002 UNSUBSCRIBE #news.comp.mail.mime
 S: A002 OK UNSUBSCRIBE completed

6.3..8. LIST Command

 Arguments: reference name
 mailbox name with possible wildcards

 Responses: untagged responses: LIST

 Result: OK - list completed
 NO - list failure: can't list that reference or name
 BAD - command unknown or arguments invalid

 The LIST command returns a subset of names from the complete set
 of all names available to the client. Zero or more untagged LIST
 replies are returned, containing the name attributes, hierarchy
 delimiter, and name; see the description of the LIST reply for
 more detail.

 The LIST command SHOULD return its data quickly, without undue
 delay. For example, it SHOULD NOT go to excess trouble to
 calculate \Marked or \Unmarked status or perform other processing;
 if each name requires 1 second of processing, then a list of 1200
 names would take 20 minutes!

 An empty ("" string) reference name argument indicates that the
 mailbox name is interpreted as by SELECT. The returned mailbox
 names MUST match the supplied mailbox name pattern. A non-empty
 reference name argument is the name of a mailbox or a level of
 mailbox hierarchy, and indicates a context in which the mailbox
 name is interpreted in an implementation-defined manner.

Crispin Standards Track [Page 30]

C
om

pendium
 1 page 279

RFC 2060 IMAP4rev1 December 1996

 An empty ("" string) mailbox name argument is a special request to
 return the hierarchy delimiter and the root name of the name given
 in the reference. The value returned as the root MAY be null if
 the reference is non-rooted or is null. In all cases, the
 hierarchy delimiter is returned. This permits a client to get the
 hierarchy delimiter even when no mailboxes by that name currently
 exist.

 The reference and mailbox name arguments are interpreted, in an
 implementation-dependent fashion, into a canonical form that
 represents an unambiguous left-to-right hierarchy. The returned
 mailbox names will be in the interpreted form.

 Any part of the reference argument that is included in the
 interpreted form SHOULD prefix the interpreted form. It SHOULD
 also be in the same form as the reference name argument. This
 rule permits the client to determine if the returned mailbox name
 is in the context of the reference argument, or if something about
 the mailbox argument overrode the reference argument. Without
 this rule, the client would have to have knowledge of the server's
 naming semantics including what characters are "breakouts" that
 override a naming context.

 For example, here are some examples of how references and mailbox
 names might be interpreted on a UNIX-based server:

 Reference Mailbox Name Interpretation
 ------------ ------------ --------------
 ~smith/Mail/ foo.* ~smith/Mail/foo.*
 archive/ % archive/%
 #news. comp.mail.* #news.comp.mail.*
 ~smith/Mail/ /usr/doc/foo /usr/doc/foo
 archive/ ~fred/Mail/* ~fred/Mail/*

 The first three examples demonstrate interpretations in the
 context of the reference argument. Note that "~smith/Mail" SHOULD
 NOT be transformed into something like "/u2/users/smith/Mail", or
 it would be impossible for the client to determine that the
 interpretation was in the context of the reference.

 The character "*" is a wildcard, and matches zero or more
 characters at this position. The character "%" is similar to "*",
 but it does not match a hierarchy delimiter. If the "%" wildcard
 is the last character of a mailbox name argument, matching levels
 of hierarchy are also returned. If these levels of hierarchy are
 not also selectable mailboxes, they are returned with the
 \Noselect mailbox name attribute (see the description of the LIST
 response for more details).

Crispin Standards Track [Page 31]

RFC 2060 IMAP4rev1 December 1996

 Server implementations are permitted to "hide" otherwise
 accessible mailboxes from the wildcard characters, by preventing
 certain characters or names from matching a wildcard in certain
 situations. For example, a UNIX-based server might restrict the
 interpretation of "*" so that an initial "/" character does not
 match.

 The special name INBOX is included in the output from LIST, if
 INBOX is supported by this server for this user and if the
 uppercase string "INBOX" matches the interpreted reference and
 mailbox name arguments with wildcards as described above. The
 criteria for omitting INBOX is whether SELECT INBOX will return
 failure; it is not relevant whether the user's real INBOX resides
 on this or some other server.

 Example: C: A101 LIST "" ""
 S: * LIST (\Noselect) "/" ""
 S: A101 OK LIST Completed
 C: A102 LIST #news.comp.mail.misc ""
 S: * LIST (\Noselect) "." #news.
 S: A102 OK LIST Completed
 C: A103 LIST /usr/staff/jones ""
 S: * LIST (\Noselect) "/" /
 S: A103 OK LIST Completed
 C: A202 LIST ~/Mail/ %
 S: * LIST (\Noselect) "/" ~/Mail/foo
 S: * LIST () "/" ~/Mail/meetings
 S: A202 OK LIST completed

6.3.9. LSUB Command

 Arguments: reference name
 mailbox name with possible wildcards

 Responses: untagged responses: LSUB

 Result: OK - lsub completed
 NO - lsub failure: can't list that reference or name
 BAD - command unknown or arguments invalid

 The LSUB command returns a subset of names from the set of names
 that the user has declared as being "active" or "subscribed".
 Zero or more untagged LSUB replies are returned. The arguments to
 LSUB are in the same form as those for LIST.

 A server MAY validate the subscribed names to see if they still
 exist. If a name does not exist, it SHOULD be flagged with the
 \Noselect attribute in the LSUB response. The server MUST NOT

Crispin Standards Track [Page 32]

C
om

pendium
 1 page 280

RFC 2060 IMAP4rev1 December 1996

 unilaterally remove an existing mailbox name from the subscription
 list even if a mailbox by that name no longer exists.

 Example: C: A002 LSUB "#news." "comp.mail.*"
 S: * LSUB () "." #news.comp.mail.mime
 S: * LSUB () "." #news.comp.mail.misc
 S: A002 OK LSUB completed

6.3.10. STATUS Command

 Arguments: mailbox name
 status data item names

 Responses: untagged responses: STATUS

 Result: OK - status completed
 NO - status failure: no status for that name
 BAD - command unknown or arguments invalid

 The STATUS command requests the status of the indicated mailbox.
 It does not change the currently selected mailbox, nor does it
 affect the state of any messages in the queried mailbox (in
 particular, STATUS MUST NOT cause messages to lose the \Recent
 flag).

 The STATUS command provides an alternative to opening a second
 IMAP4rev1 connection and doing an EXAMINE command on a mailbox to
 query that mailbox's status without deselecting the current
 mailbox in the first IMAP4rev1 connection.

 Unlike the LIST command, the STATUS command is not guaranteed to
 be fast in its response. In some implementations, the server is
 obliged to open the mailbox read-only internally to obtain certain
 status information. Also unlike the LIST command, the STATUS
 command does not accept wildcards.

 The currently defined status data items that can be requested are:

 MESSAGES The number of messages in the mailbox.

 RECENT The number of messages with the \Recent flag set.

 UIDNEXT The next UID value that will be assigned to a new
 message in the mailbox. It is guaranteed that this
 value will not change unless new messages are added
 to the mailbox; and that it will change when new
 messages are added even if those new messages are
 subsequently expunged.

Crispin Standards Track [Page 33]

RFC 2060 IMAP4rev1 December 1996

 UIDVALIDITY The unique identifier validity value of the
 mailbox.

 UNSEEN The number of messages which do not have the \Seen
 flag set.

 Example: C: A042 STATUS blurdybloop (UIDNEXT MESSAGES)
 S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)
 S: A042 OK STATUS completed

6.3.11. APPEND Command

 Arguments: mailbox name
 OPTIONAL flag parenthesized list
 OPTIONAL date/time string
 message literal

 Responses: no specific responses for this command

 Result: OK - append completed
 NO - append error: can't append to that mailbox, error
 in flags or date/time or message text
 BAD - command unknown or arguments invalid

 The APPEND command appends the literal argument as a new message
 to the end of the specified destination mailbox. This argument
 SHOULD be in the format of an [RFC-822] message. 8-bit characters
 are permitted in the message. A server implementation that is
 unable to preserve 8-bit data properly MUST be able to reversibly
 convert 8-bit APPEND data to 7-bit using a [MIME-IMB] content
 transfer encoding.

 Note: There MAY be exceptions, e.g. draft messages, in which
 required [RFC-822] header lines are omitted in the message literal
 argument to APPEND. The full implications of doing so MUST be
 understood and carefully weighed.

 If a flag parenthesized list is specified, the flags SHOULD be set in
 the resulting message; otherwise, the flag list of the resulting
 message is set empty by default.

 If a date_time is specified, the internal date SHOULD be set in the
 resulting message; otherwise, the internal date of the resulting
 message is set to the current date and time by default.

Crispin Standards Track [Page 34]

C
om

pendium
 1 page 281

RFC 2060 IMAP4rev1 December 1996

 If the append is unsuccessful for any reason, the mailbox MUST be
 restored to its state before the APPEND attempt; no partial appending
 is permitted.

 If the destination mailbox does not exist, a server MUST return an
 error, and MUST NOT automatically create the mailbox. Unless it is
 certain that the destination mailbox can not be created, the server
 MUST send the response code "[TRYCREATE]" as the prefix of the text
 of the tagged NO response. This gives a hint to the client that it
 can attempt a CREATE command and retry the APPEND if the CREATE is
 successful.

 If the mailbox is currently selected, the normal new mail actions
 SHOULD occur. Specifically, the server SHOULD notify the client
 immediately via an untagged EXISTS response. If the server does not
 do so, the client MAY issue a NOOP command (or failing that, a CHECK
 command) after one or more APPEND commands.

 Example: C: A003 APPEND saved-messages (\Seen) {310}
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@Blurdybloop.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND completed

 Note: the APPEND command is not used for message delivery, because
 it does not provide a mechanism to transfer [SMTP] envelope
 information.

6.4. Client Commands - Selected State

 In selected state, commands that manipulate messages in a mailbox are
 permitted.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 and the authenticated state commands (SELECT, EXAMINE, CREATE,
 DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, LSUB, STATUS, and
 APPEND), the following commands are valid in the selected state:
 CHECK, CLOSE, EXPUNGE, SEARCH, FETCH, STORE, COPY, and UID.

Crispin Standards Track [Page 35]

RFC 2060 IMAP4rev1 December 1996

6.4.1. CHECK Command

 Arguments: none

 Responses: no specific responses for this command

 Result: OK - check completed
 BAD - command unknown or arguments invalid

 The CHECK command requests a checkpoint of the currently selected
 mailbox. A checkpoint refers to any implementation-dependent
 housekeeping associated with the mailbox (e.g. resolving the
 server's in-memory state of the mailbox with the state on its
 disk) that is not normally executed as part of each command. A
 checkpoint MAY take a non-instantaneous amount of real time to
 complete. If a server implementation has no such housekeeping
 considerations, CHECK is equivalent to NOOP.

 There is no guarantee that an EXISTS untagged response will happen
 as a result of CHECK. NOOP, not CHECK, SHOULD be used for new
 mail polling.

 Example: C: FXXZ CHECK
 S: FXXZ OK CHECK Completed

6.4.2. CLOSE Command

 Arguments: none

 Responses: no specific responses for this command

 Result: OK - close completed, now in authenticated state
 NO - close failure: no mailbox selected
 BAD - command unknown or arguments invalid

 The CLOSE command permanently removes from the currently selected
 mailbox all messages that have the \Deleted flag set, and returns
 to authenticated state from selected state. No untagged EXPUNGE
 responses are sent.

 No messages are removed, and no error is given, if the mailbox is
 selected by an EXAMINE command or is otherwise selected read-only.

 Even if a mailbox is selected, a SELECT, EXAMINE, or LOGOUT
 command MAY be issued without previously issuing a CLOSE command.
 The SELECT, EXAMINE, and LOGOUT commands implicitly close the
 currently selected mailbox without doing an expunge. However,
 when many messages are deleted, a CLOSE-LOGOUT or CLOSE-SELECT

Crispin Standards Track [Page 36]

C
om

pendium
 1 page 282

RFC 2060 IMAP4rev1 December 1996

 sequence is considerably faster than an EXPUNGE-LOGOUT or
 EXPUNGE-SELECT because no untagged EXPUNGE responses (which the
 client would probably ignore) are sent.

 Example: C: A341 CLOSE
 S: A341 OK CLOSE completed

6.4.3. EXPUNGE Command

 Arguments: none

 Responses: untagged responses: EXPUNGE

 Result: OK - expunge completed
 NO - expunge failure: can't expunge (e.g. permission
 denied)
 BAD - command unknown or arguments invalid

 The EXPUNGE command permanently removes from the currently
 selected mailbox all messages that have the \Deleted flag set.
 Before returning an OK to the client, an untagged EXPUNGE response
 is sent for each message that is removed.

 Example: C: A202 EXPUNGE
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: * 5 EXPUNGE
 S: * 8 EXPUNGE
 S: A202 OK EXPUNGE completed

 Note: in this example, messages 3, 4, 7, and 11 had the
 \Deleted flag set. See the description of the EXPUNGE
 response for further explanation.

6.4.4. SEARCH Command

 Arguments: OPTIONAL [CHARSET] specification
 searching criteria (one or more)

 Responses: REQUIRED untagged response: SEARCH

 Result: OK - search completed
 NO - search error: can't search that [CHARSET] or
 criteria
 BAD - command unknown or arguments invalid

Crispin Standards Track [Page 37]

RFC 2060 IMAP4rev1 December 1996

 The SEARCH command searches the mailbox for messages that match
 the given searching criteria. Searching criteria consist of one
 or more search keys. The untagged SEARCH response from the server
 contains a listing of message sequence numbers corresponding to
 those messages that match the searching criteria.

 When multiple keys are specified, the result is the intersection
 (AND function) of all the messages that match those keys. For
 example, the criteria DELETED FROM "SMITH" SINCE 1-Feb-1994 refers
 to all deleted messages from Smith that were placed in the mailbox
 since February 1, 1994. A search key can also be a parenthesized
 list of one or more search keys (e.g. for use with the OR and NOT
 keys).

 Server implementations MAY exclude [MIME-IMB] body parts with
 terminal content media types other than TEXT and MESSAGE from
 consideration in SEARCH matching.

 The OPTIONAL [CHARSET] specification consists of the word
 "CHARSET" followed by a registered [CHARSET]. It indicates the
 [CHARSET] of the strings that appear in the search criteria.
 [MIME-IMB] content transfer encodings, and [MIME-HDRS] strings in
 [RFC-822]/[MIME-IMB] headers, MUST be decoded before comparing
 text in a [CHARSET] other than US-ASCII. US-ASCII MUST be
 supported; other [CHARSET]s MAY be supported. If the server does
 not support the specified [CHARSET], it MUST return a tagged NO
 response (not a BAD).

 In all search keys that use strings, a message matches the key if
 the string is a substring of the field. The matching is case-
 insensitive.

 The defined search keys are as follows. Refer to the Formal
 Syntax section for the precise syntactic definitions of the
 arguments.

 <message set> Messages with message sequence numbers
 corresponding to the specified message sequence
 number set

 ALL All messages in the mailbox; the default initial
 key for ANDing.

 ANSWERED Messages with the \Answered flag set.

 BCC <string> Messages that contain the specified string in the
 envelope structure's BCC field.

Crispin Standards Track [Page 38]

C
om

pendium
 1 page 283

RFC 2060 IMAP4rev1 December 1996

 BEFORE <date> Messages whose internal date is earlier than the
 specified date.

 BODY <string> Messages that contain the specified string in the
 body of the message.

 CC <string> Messages that contain the specified string in the
 envelope structure's CC field.

 DELETED Messages with the \Deleted flag set.

 DRAFT Messages with the \Draft flag set.

 FLAGGED Messages with the \Flagged flag set.

 FROM <string> Messages that contain the specified string in the
 envelope structure's FROM field.

 HEADER <field-name> <string>
 Messages that have a header with the specified
 field-name (as defined in [RFC-822]) and that
 contains the specified string in the [RFC-822]
 field-body.

 KEYWORD <flag> Messages with the specified keyword set.

 LARGER <n> Messages with an [RFC-822] size larger than the
 specified number of octets.

 NEW Messages that have the \Recent flag set but not the
 \Seen flag. This is functionally equivalent to
 "(RECENT UNSEEN)".

 NOT <search-key>
 Messages that do not match the specified search
 key.

 OLD Messages that do not have the \Recent flag set.
 This is functionally equivalent to "NOT RECENT" (as
 opposed to "NOT NEW").

 ON <date> Messages whose internal date is within the
 specified date.

 OR <search-key1> <search-key2>
 Messages that match either search key.

 RECENT Messages that have the \Recent flag set.

Crispin Standards Track [Page 39]

RFC 2060 IMAP4rev1 December 1996

 SEEN Messages that have the \Seen flag set.

 SENTBEFORE <date>
 Messages whose [RFC-822] Date: header is earlier
 than the specified date.

 SENTON <date> Messages whose [RFC-822] Date: header is within the
 specified date.

 SENTSINCE <date>
 Messages whose [RFC-822] Date: header is within or
 later than the specified date.

 SINCE <date> Messages whose internal date is within or later
 than the specified date.

 SMALLER <n> Messages with an [RFC-822] size smaller than the
 specified number of octets.

 SUBJECT <string>
 Messages that contain the specified string in the
 envelope structure's SUBJECT field.

 TEXT <string> Messages that contain the specified string in the
 header or body of the message.

 TO <string> Messages that contain the specified string in the
 envelope structure's TO field.

 UID <message set>
 Messages with unique identifiers corresponding to
 the specified unique identifier set.

 UNANSWERED Messages that do not have the \Answered flag set.

 UNDELETED Messages that do not have the \Deleted flag set.

 UNDRAFT Messages that do not have the \Draft flag set.

 UNFLAGGED Messages that do not have the \Flagged flag set.

 UNKEYWORD <flag>
 Messages that do not have the specified keyword
 set.

 UNSEEN Messages that do not have the \Seen flag set.

Crispin Standards Track [Page 40]

C
om

pendium
 1 page 284

RFC 2060 IMAP4rev1 December 1996

 Example: C: A282 SEARCH FLAGGED SINCE 1-Feb-1994 NOT FROM "Smith"
 S: * SEARCH 2 84 882
 S: A282 OK SEARCH completed

6.4.5. FETCH Command

 Arguments: message set
 message data item names

 Responses: untagged responses: FETCH

 Result: OK - fetch completed
 NO - fetch error: can't fetch that data
 BAD - command unknown or arguments invalid

 The FETCH command retrieves data associated with a message in the
 mailbox. The data items to be fetched can be either a single atom
 or a parenthesized list.

 The currently defined data items that can be fetched are:

 ALL Macro equivalent to: (FLAGS INTERNALDATE
 RFC822.SIZE ENVELOPE)

 BODY Non-extensible form of BODYSTRUCTURE.

 BODY[<section>]<<partial>>
 The text of a particular body section. The section
 specification is a set of zero or more part
 specifiers delimited by periods. A part specifier
 is either a part number or one of the following:
 HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, MIME, and
 TEXT. An empty section specification refers to the
 entire message, including the header.

 Every message has at least one part number.
 Non-[MIME-IMB] messages, and non-multipart
 [MIME-IMB] messages with no encapsulated message,
 only have a part 1.

 Multipart messages are assigned consecutive part
 numbers, as they occur in the message. If a
 particular part is of type message or multipart,
 its parts MUST be indicated by a period followed by
 the part number within that nested multipart part.

Crispin Standards Track [Page 41]

RFC 2060 IMAP4rev1 December 1996

 A part of type MESSAGE/RFC822 also has nested part
 numbers, referring to parts of the MESSAGE part's
 body.

 The HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, and
 TEXT part specifiers can be the sole part specifier
 or can be prefixed by one or more numeric part
 specifiers, provided that the numeric part
 specifier refers to a part of type MESSAGE/RFC822.
 The MIME part specifier MUST be prefixed by one or
 more numeric part specifiers.

 The HEADER, HEADER.FIELDS, and HEADER.FIELDS.NOT
 part specifiers refer to the [RFC-822] header of
 the message or of an encapsulated [MIME-IMT]
 MESSAGE/RFC822 message. HEADER.FIELDS and
 HEADER.FIELDS.NOT are followed by a list of
 field-name (as defined in [RFC-822]) names, and
 return a subset of the header. The subset returned
 by HEADER.FIELDS contains only those header fields
 with a field-name that matches one of the names in
 the list; similarly, the subset returned by
 HEADER.FIELDS.NOT contains only the header fields
 with a non-matching field-name. The field-matching
 is case-insensitive but otherwise exact. In all
 cases, the delimiting blank line between the header
 and the body is always included.

 The MIME part specifier refers to the [MIME-IMB]
 header for this part.

 The TEXT part specifier refers to the text body of
 the message, omitting the [RFC-822] header.

Crispin Standards Track [Page 42]

C
om

pendium
 1 page 285

RFC 2060 IMAP4rev1 December 1996

 Here is an example of a complex message
 with some of its part specifiers:

 HEADER ([RFC-822] header of the message)
 TEXT MULTIPART/MIXED
 1 TEXT/PLAIN
 2 APPLICATION/OCTET-STREAM
 3 MESSAGE/RFC822
 3.HEADER ([RFC-822] header of the message)
 3.TEXT ([RFC-822] text body of the message)
 3.1 TEXT/PLAIN
 3.2 APPLICATION/OCTET-STREAM
 4 MULTIPART/MIXED
 4.1 IMAGE/GIF
 4.1.MIME ([MIME-IMB] header for the IMAGE/GIF)
 4.2 MESSAGE/RFC822
 4.2.HEADER ([RFC-822] header of the message)
 4.2.TEXT ([RFC-822] text body of the message)
 4.2.1 TEXT/PLAIN
 4.2.2 MULTIPART/ALTERNATIVE
 4.2.2.1 TEXT/PLAIN
 4.2.2.2 TEXT/RICHTEXT

 It is possible to fetch a substring of the
 designated text. This is done by appending an open
 angle bracket ("<"), the octet position of the
 first desired octet, a period, the maximum number
 of octets desired, and a close angle bracket (">")
 to the part specifier. If the starting octet is
 beyond the end of the text, an empty string is
 returned.

 Any partial fetch that attempts to read beyond the
 end of the text is truncated as appropriate. A
 partial fetch that starts at octet 0 is returned as
 a partial fetch, even if this truncation happened.

 Note: this means that BODY[]<0.2048> of a
 1500-octet message will return BODY[]<0>
 with a literal of size 1500, not BODY[].

 Note: a substring fetch of a
 HEADER.FIELDS or HEADER.FIELDS.NOT part
 specifier is calculated after subsetting
 the header.

Crispin Standards Track [Page 43]

RFC 2060 IMAP4rev1 December 1996

 The \Seen flag is implicitly set; if this causes
 the flags to change they SHOULD be included as part
 of the FETCH responses.

 BODY.PEEK[<section>]<<partial>>
 An alternate form of BODY[<section>] that does not
 implicitly set the \Seen flag.

 BODYSTRUCTURE The [MIME-IMB] body structure of the message. This
 is computed by the server by parsing the [MIME-IMB]
 header fields in the [RFC-822] header and
 [MIME-IMB] headers.

 ENVELOPE The envelope structure of the message. This is
 computed by the server by parsing the [RFC-822]
 header into the component parts, defaulting various
 fields as necessary.

 FAST Macro equivalent to: (FLAGS INTERNALDATE
 RFC822.SIZE)

 FLAGS The flags that are set for this message.

 FULL Macro equivalent to: (FLAGS INTERNALDATE
 RFC822.SIZE ENVELOPE BODY)

 INTERNALDATE The internal date of the message.

 RFC822 Functionally equivalent to BODY[], differing in the
 syntax of the resulting untagged FETCH data (RFC822
 is returned).

 RFC822.HEADER Functionally equivalent to BODY.PEEK[HEADER],
 differing in the syntax of the resulting untagged
 FETCH data (RFC822.HEADER is returned).

 RFC822.SIZE The [RFC-822] size of the message.

 RFC822.TEXT Functionally equivalent to BODY[TEXT], differing in
 the syntax of the resulting untagged FETCH data
 (RFC822.TEXT is returned).

 UID The unique identifier for the message.

Crispin Standards Track [Page 44]

C
om

pendium
 1 page 286

RFC 2060 IMAP4rev1 December 1996

 Example: C: A654 FETCH 2:4 (FLAGS BODY[HEADER.FIELDS (DATE FROM)])
 S: * 2 FETCH
 S: * 3 FETCH
 S: * 4 FETCH
 S: A654 OK FETCH completed

6.4.6. STORE Command

 Arguments: message set
 message data item name
 value for message data item

 Responses: untagged responses: FETCH

 Result: OK - store completed
 NO - store error: can't store that data
 BAD - command unknown or arguments invalid

 The STORE command alters data associated with a message in the
 mailbox. Normally, STORE will return the updated value of the
 data with an untagged FETCH response. A suffix of ".SILENT" in
 the data item name prevents the untagged FETCH, and the server
 SHOULD assume that the client has determined the updated value
 itself or does not care about the updated value.

 Note: regardless of whether or not the ".SILENT" suffix was
 used, the server SHOULD send an untagged FETCH response if a
 change to a message's flags from an external source is
 observed. The intent is that the status of the flags is
 determinate without a race condition.

 The currently defined data items that can be stored are:

 FLAGS <flag list>
 Replace the flags for the message with the
 argument. The new value of the flags are returned
 as if a FETCH of those flags was done.

 FLAGS.SILENT <flag list>
 Equivalent to FLAGS, but without returning a new
 value.

 +FLAGS <flag list>
 Add the argument to the flags for the message. The
 new value of the flags are returned as if a FETCH
 of those flags was done.

Crispin Standards Track [Page 45]

RFC 2060 IMAP4rev1 December 1996

 +FLAGS.SILENT <flag list>
 Equivalent to +FLAGS, but without returning a new
 value.

 -FLAGS <flag list>
 Remove the argument from the flags for the message.
 The new value of the flags are returned as if a
 FETCH of those flags was done.

 -FLAGS.SILENT <flag list>
 Equivalent to -FLAGS, but without returning a new
 value.

 Example: C: A003 STORE 2:4 +FLAGS (\Deleted)
 S: * 2 FETCH FLAGS (\Deleted \Seen)
 S: * 3 FETCH FLAGS (\Deleted)
 S: * 4 FETCH FLAGS (\Deleted \Flagged \Seen)
 S: A003 OK STORE completed

6.4.7. COPY Command

 Arguments: message set
 mailbox name

 Responses: no specific responses for this command

 Result: OK - copy completed
 NO - copy error: can't copy those messages or to that
 name
 BAD - command unknown or arguments invalid

 The COPY command copies the specified message(s) to the end of the
 specified destination mailbox. The flags and internal date of the
 message(s) SHOULD be preserved in the copy.

 If the destination mailbox does not exist, a server SHOULD return
 an error. It SHOULD NOT automatically create the mailbox. Unless
 it is certain that the destination mailbox can not be created, the
 server MUST send the response code "[TRYCREATE]" as the prefix of
 the text of the tagged NO response. This gives a hint to the
 client that it can attempt a CREATE command and retry the COPY if
 the CREATE is successful.

Crispin Standards Track [Page 46]

C
om

pendium
 1 page 287

RFC 2060 IMAP4rev1 December 1996

 If the COPY command is unsuccessful for any reason, server
 implementations MUST restore the destination mailbox to its state
 before the COPY attempt.

 Example: C: A003 COPY 2:4 MEETING
 S: A003 OK COPY completed

6.4.8. UID Command

 Arguments: command name
 command arguments

 Responses: untagged responses: FETCH, SEARCH

 Result: OK - UID command completed
 NO - UID command error
 BAD - command unknown or arguments invalid

 The UID command has two forms. In the first form, it takes as its
 arguments a COPY, FETCH, or STORE command with arguments
 appropriate for the associated command. However, the numbers in
 the message set argument are unique identifiers instead of message
 sequence numbers.

 In the second form, the UID command takes a SEARCH command with
 SEARCH command arguments. The interpretation of the arguments is
 the same as with SEARCH; however, the numbers returned in a SEARCH
 response for a UID SEARCH command are unique identifiers instead
 of message sequence numbers. For example, the command UID SEARCH
 1:100 UID 443:557 returns the unique identifiers corresponding to
 the intersection of the message sequence number set 1:100 and the
 UID set 443:557.

 Message set ranges are permitted; however, there is no guarantee
 that unique identifiers be contiguous. A non-existent unique
 identifier within a message set range is ignored without any error
 message generated.

 The number after the "*" in an untagged FETCH response is always a
 message sequence number, not a unique identifier, even for a UID
 command response. However, server implementations MUST implicitly
 include the UID message data item as part of any FETCH response
 caused by a UID command, regardless of whether a UID was specified
 as a message data item to the FETCH.

Crispin Standards Track [Page 47]

RFC 2060 IMAP4rev1 December 1996

 Example: C: A999 UID FETCH 4827313:4828442 FLAGS
 S: * 23 FETCH (FLAGS (\Seen) UID 4827313)
 S: * 24 FETCH (FLAGS (\Seen) UID 4827943)
 S: * 25 FETCH (FLAGS (\Seen) UID 4828442)
 S: A999 UID FETCH completed

6.5. Client Commands - Experimental/Expansion

6.5.1. X<atom> Command

 Arguments: implementation defined

 Responses: implementation defined

 Result: OK - command completed
 NO - failure
 BAD - command unknown or arguments invalid

 Any command prefixed with an X is an experimental command.
 Commands which are not part of this specification, a standard or
 standards-track revision of this specification, or an IESG-
 approved experimental protocol, MUST use the X prefix.

 Any added untagged responses issued by an experimental command
 MUST also be prefixed with an X. Server implementations MUST NOT
 send any such untagged responses, unless the client requested it
 by issuing the associated experimental command.

 Example: C: a441 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=KERBEROS_V4 XPIG-LATIN
 S: a441 OK CAPABILITY completed
 C: A442 XPIG-LATIN
 S: * XPIG-LATIN ow-nay eaking-spay ig-pay atin-lay
 S: A442 OK XPIG-LATIN ompleted-cay

7. Server Responses

 Server responses are in three forms: status responses, server data,
 and command continuation request. The information contained in a
 server response, identified by "Contents:" in the response
 descriptions below, is described by function, not by syntax. The
 precise syntax of server responses is described in the Formal Syntax
 section.

 The client MUST be prepared to accept any response at all times.

Crispin Standards Track [Page 48]

C
om

pendium
 1 page 288

RFC 2060 IMAP4rev1 December 1996

 Status responses can be tagged or untagged. Tagged status responses
 indicate the completion result (OK, NO, or BAD status) of a client
 command, and have a tag matching the command.

 Some status responses, and all server data, are untagged. An
 untagged response is indicated by the token "*" instead of a tag.
 Untagged status responses indicate server greeting, or server status
 that does not indicate the completion of a command (for example, an
 impending system shutdown alert). For historical reasons, untagged
 server data responses are also called "unsolicited data", although
 strictly speaking only unilateral server data is truly "unsolicited".

 Certain server data MUST be recorded by the client when it is
 received; this is noted in the description of that data. Such data
 conveys critical information which affects the interpretation of all
 subsequent commands and responses (e.g. updates reflecting the
 creation or destruction of messages).

 Other server data SHOULD be recorded for later reference; if the
 client does not need to record the data, or if recording the data has
 no obvious purpose (e.g. a SEARCH response when no SEARCH command is
 in progress), the data SHOULD be ignored.

 An example of unilateral untagged server data occurs when the IMAP
 connection is in selected state. In selected state, the server
 checks the mailbox for new messages as part of command execution.
 Normally, this is part of the execution of every command; hence, a
 NOOP command suffices to check for new messages. If new messages are
 found, the server sends untagged EXISTS and RECENT responses
 reflecting the new size of the mailbox. Server implementations that
 offer multiple simultaneous access to the same mailbox SHOULD also
 send appropriate unilateral untagged FETCH and EXPUNGE responses if
 another agent changes the state of any message flags or expunges any
 messages.

 Command continuation request responses use the token "+" instead of a
 tag. These responses are sent by the server to indicate acceptance
 of an incomplete client command and readiness for the remainder of
 the command.

7.1. Server Responses - Status Responses

 Status responses are OK, NO, BAD, PREAUTH and BYE. OK, NO, and BAD
 may be tagged or untagged. PREAUTH and BYE are always untagged.

 Status responses MAY include an OPTIONAL "response code". A response
 code consists of data inside square brackets in the form of an atom,
 possibly followed by a space and arguments. The response code

Crispin Standards Track [Page 49]

RFC 2060 IMAP4rev1 December 1996

 contains additional information or status codes for client software
 beyond the OK/NO/BAD condition, and are defined when there is a
 specific action that a client can take based upon the additional
 information.

 The currently defined response codes are:

 ALERT The human-readable text contains a special alert
 that MUST be presented to the user in a fashion
 that calls the user's attention to the message.

 NEWNAME Followed by a mailbox name and a new mailbox name.
 A SELECT or EXAMINE is failing because the target
 mailbox name no longer exists because it was
 renamed to the new mailbox name. This is a hint to
 the client that the operation can succeed if the
 SELECT or EXAMINE is reissued with the new mailbox
 name.

 PARSE The human-readable text represents an error in
 parsing the [RFC-822] header or [MIME-IMB] headers
 of a message in the mailbox.

 PERMANENTFLAGS Followed by a parenthesized list of flags,
 indicates which of the known flags that the client
 can change permanently. Any flags that are in the
 FLAGS untagged response, but not the PERMANENTFLAGS
 list, can not be set permanently. If the client
 attempts to STORE a flag that is not in the
 PERMANENTFLAGS list, the server will either reject
 it with a NO reply or store the state for the
 remainder of the current session only. The
 PERMANENTFLAGS list can also include the special
 flag *, which indicates that it is possible to
 create new keywords by attempting to store those
 flags in the mailbox.

 READ-ONLY The mailbox is selected read-only, or its access
 while selected has changed from read-write to
 read-only.

 READ-WRITE The mailbox is selected read-write, or its access
 while selected has changed from read-only to
 read-write.

Crispin Standards Track [Page 50]

C
om

pendium
 1 page 289

RFC 2060 IMAP4rev1 December 1996

 TRYCREATE An APPEND or COPY attempt is failing because the
 target mailbox does not exist (as opposed to some
 other reason). This is a hint to the client that
 the operation can succeed if the mailbox is first
 created by the CREATE command.

 UIDVALIDITY Followed by a decimal number, indicates the unique
 identifier validity value.

 UNSEEN Followed by a decimal number, indicates the number
 of the first message without the \Seen flag set.

 Additional response codes defined by particular client or server
 implementations SHOULD be prefixed with an "X" until they are
 added to a revision of this protocol. Client implementations
 SHOULD ignore response codes that they do not recognize.

7.1.1. OK Response

 Contents: OPTIONAL response code
 human-readable text

 The OK response indicates an information message from the server.
 When tagged, it indicates successful completion of the associated
 command. The human-readable text MAY be presented to the user as
 an information message. The untagged form indicates an
 information-only message; the nature of the information MAY be
 indicated by a response code.

 The untagged form is also used as one of three possible greetings
 at connection startup. It indicates that the connection is not
 yet authenticated and that a LOGIN command is needed.

 Example: S: * OK IMAP4rev1 server ready
 C: A001 LOGIN fred blurdybloop
 S: * OK [ALERT] System shutdown in 10 minutes
 S: A001 OK LOGIN Completed

7.1.2. NO Response

 Contents: OPTIONAL response code
 human-readable text

 The NO response indicates an operational error message from the
 server. When tagged, it indicates unsuccessful completion of the
 associated command. The untagged form indicates a warning; the
 command can still complete successfully. The human-readable text
 describes the condition.

Crispin Standards Track [Page 51]

RFC 2060 IMAP4rev1 December 1996

 Example: C: A222 COPY 1:2 owatagusiam
 S: * NO Disk is 98% full, please delete unnecessary data
 S: A222 OK COPY completed
 C: A223 COPY 3:200 blurdybloop
 S: * NO Disk is 98% full, please delete unnecessary data
 S: * NO Disk is 99% full, please delete unnecessary data
 S: A223 NO COPY failed: disk is full

7.1.3. BAD Response

 Contents: OPTIONAL response code
 human-readable text

 The BAD response indicates an error message from the server. When
 tagged, it reports a protocol-level error in the client's command;
 the tag indicates the command that caused the error. The untagged
 form indicates a protocol-level error for which the associated
 command can not be determined; it can also indicate an internal
 server failure. The human-readable text describes the condition.

 Example: C: ...very long command line...
 S: * BAD Command line too long
 C: ...empty line...
 S: * BAD Empty command line
 C: A443 EXPUNGE
 S: * BAD Disk crash, attempting salvage to a new disk!
 S: * OK Salvage successful, no data lost
 S: A443 OK Expunge completed

7.1.4. PREAUTH Response

 Contents: OPTIONAL response code
 human-readable text

 The PREAUTH response is always untagged, and is one of three
 possible greetings at connection startup. It indicates that the
 connection has already been authenticated by external means and
 thus no LOGIN command is needed.

 Example: S: * PREAUTH IMAP4rev1 server logged in as Smith

7.1.5. BYE Response

 Contents: OPTIONAL response code
 human-readable text

Crispin Standards Track [Page 52]

C
om

pendium
 1 page 290

RFC 2060 IMAP4rev1 December 1996

 The BYE response is always untagged, and indicates that the server
 is about to close the connection. The human-readable text MAY be
 displayed to the user in a status report by the client. The BYE
 response is sent under one of four conditions:

 1) as part of a normal logout sequence. The server will close
 the connection after sending the tagged OK response to the
 LOGOUT command.

 2) as a panic shutdown announcement. The server closes the
 connection immediately.

 3) as an announcement of an inactivity autologout. The server
 closes the connection immediately.

 4) as one of three possible greetings at connection startup,
 indicating that the server is not willing to accept a
 connection from this client. The server closes the
 connection immediately.

 The difference between a BYE that occurs as part of a normal
 LOGOUT sequence (the first case) and a BYE that occurs because of
 a failure (the other three cases) is that the connection closes
 immediately in the failure case.

 Example: S: * BYE Autologout; idle for too long

7.2. Server Responses - Server and Mailbox Status

 These responses are always untagged. This is how server and mailbox
 status data are transmitted from the server to the client. Many of
 these responses typically result from a command with the same name.

7.2.1. CAPABILITY Response

 Contents: capability listing

 The CAPABILITY response occurs as a result of a CAPABILITY
 command. The capability listing contains a space-separated
 listing of capability names that the server supports. The
 capability listing MUST include the atom "IMAP4rev1".

 A capability name which begins with "AUTH=" indicates that the
 server supports that particular authentication mechanism.

Crispin Standards Track [Page 53]

RFC 2060 IMAP4rev1 December 1996

 Other capability names indicate that the server supports an
 extension, revision, or amendment to the IMAP4rev1 protocol.
 Server responses MUST conform to this document until the client
 issues a command that uses the associated capability.

 Capability names MUST either begin with "X" or be standard or
 standards-track IMAP4rev1 extensions, revisions, or amendments
 registered with IANA. A server MUST NOT offer unregistered or
 non-standard capability names, unless such names are prefixed with
 an "X".

 Client implementations SHOULD NOT require any capability name
 other than "IMAP4rev1", and MUST ignore any unknown capability
 names.

 Example: S: * CAPABILITY IMAP4rev1 AUTH=KERBEROS_V4 XPIG-LATIN

7.2.2. LIST Response

 Contents: name attributes
 hierarchy delimiter
 name

 The LIST response occurs as a result of a LIST command. It
 returns a single name that matches the LIST specification. There
 can be multiple LIST responses for a single LIST command.

 Four name attributes are defined:

 \Noinferiors It is not possible for any child levels of
 hierarchy to exist under this name; no child levels
 exist now and none can be created in the future.

 \Noselect It is not possible to use this name as a selectable
 mailbox.

 \Marked The mailbox has been marked "interesting" by the
 server; the mailbox probably contains messages that
 have been added since the last time the mailbox was
 selected.

 \Unmarked The mailbox does not contain any additional
 messages since the last time the mailbox was
 selected.

 If it is not feasible for the server to determine whether the
 mailbox is "interesting" or not, or if the name is a \Noselect
 name, the server SHOULD NOT send either \Marked or \Unmarked.

Crispin Standards Track [Page 54]

C
om

pendium
 1 page 291

RFC 2060 IMAP4rev1 December 1996

 The hierarchy delimiter is a character used to delimit levels of
 hierarchy in a mailbox name. A client can use it to create child
 mailboxes, and to search higher or lower levels of naming
 hierarchy. All children of a top-level hierarchy node MUST use
 the same separator character. A NIL hierarchy delimiter means
 that no hierarchy exists; the name is a "flat" name.

 The name represents an unambiguous left-to-right hierarchy, and
 MUST be valid for use as a reference in LIST and LSUB commands.
 Unless \Noselect is indicated, the name MUST also be valid as an
 argument for commands, such as SELECT, that accept mailbox
 names.

 Example: S: * LIST (\Noselect) "/" ~/Mail/foo

7.2.3. LSUB Response

 Contents: name attributes
 hierarchy delimiter
 name

 The LSUB response occurs as a result of an LSUB command. It
 returns a single name that matches the LSUB specification. There
 can be multiple LSUB responses for a single LSUB command. The
 data is identical in format to the LIST response.

 Example: S: * LSUB () "." #news.comp.mail.misc

7.2.4 STATUS Response

 Contents: name
 status parenthesized list

 The STATUS response occurs as a result of an STATUS command. It
 returns the mailbox name that matches the STATUS specification and
 the requested mailbox status information.

 Example: S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)

7.2.5. SEARCH Response

 Contents: zero or more numbers

Crispin Standards Track [Page 55]

RFC 2060 IMAP4rev1 December 1996

 The SEARCH response occurs as a result of a SEARCH or UID SEARCH
 command. The number(s) refer to those messages that match the
 search criteria. For SEARCH, these are message sequence numbers;
 for UID SEARCH, these are unique identifiers. Each number is
 delimited by a space.

 Example: S: * SEARCH 2 3 6

7.2.6. FLAGS Response

 Contents: flag parenthesized list

 The FLAGS response occurs as a result of a SELECT or EXAMINE
 command. The flag parenthesized list identifies the flags (at a
 minimum, the system-defined flags) that are applicable for this
 mailbox. Flags other than the system flags can also exist,
 depending on server implementation.

 The update from the FLAGS response MUST be recorded by the client.

 Example: S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

7.3. Server Responses - Mailbox Size

 These responses are always untagged. This is how changes in the size
 of the mailbox are trasnmitted from the server to the client.
 Immediately following the "*" token is a number that represents a
 message count.

7.3.1. EXISTS Response

 Contents: none

 The EXISTS response reports the number of messages in the mailbox.
 This response occurs as a result of a SELECT or EXAMINE command,
 and if the size of the mailbox changes (e.g. new mail).

 The update from the EXISTS response MUST be recorded by the
 client.

 Example: S: * 23 EXISTS

Crispin Standards Track [Page 56]

C
om

pendium
 1 page 292

RFC 2060 IMAP4rev1 December 1996

7.3.2. RECENT Response

 Contents: none

 The RECENT response reports the number of messages with the
 \Recent flag set. This response occurs as a result of a SELECT or
 EXAMINE command, and if the size of the mailbox changes (e.g. new
 mail).

 Note: It is not guaranteed that the message sequence numbers of
 recent messages will be a contiguous range of the highest n
 messages in the mailbox (where n is the value reported by the
 RECENT response). Examples of situations in which this is not
 the case are: multiple clients having the same mailbox open
 (the first session to be notified will see it as recent, others
 will probably see it as non-recent), and when the mailbox is
 re-ordered by a non-IMAP agent.

 The only reliable way to identify recent messages is to look at
 message flags to see which have the \Recent flag set, or to do
 a SEARCH RECENT.

 The update from the RECENT response MUST be recorded by the
 client.

 Example: S: * 5 RECENT

7.4. Server Responses - Message Status

 These responses are always untagged. This is how message data are
 transmitted from the server to the client, often as a result of a
 command with the same name. Immediately following the "*" token is a
 number that represents a message sequence number.

7.4.1. EXPUNGE Response

 Contents: none

 The EXPUNGE response reports that the specified message sequence
 number has been permanently removed from the mailbox. The message
 sequence number for each successive message in the mailbox is
 immediately decremented by 1, and this decrement is reflected in
 message sequence numbers in subsequent responses (including other
 untagged EXPUNGE responses).

 As a result of the immediate decrement rule, message sequence
 numbers that appear in a set of successive EXPUNGE responses
 depend upon whether the messages are removed starting from lower

Crispin Standards Track [Page 57]

RFC 2060 IMAP4rev1 December 1996

 numbers to higher numbers, or from higher numbers to lower
 numbers. For example, if the last 5 messages in a 9-message
 mailbox are expunged; a "lower to higher" server will send five
 untagged EXPUNGE responses for message sequence number 5, whereas
 a "higher to lower server" will send successive untagged EXPUNGE
 responses for message sequence numbers 9, 8, 7, 6, and 5.

 An EXPUNGE response MUST NOT be sent when no command is in
 progress; nor while responding to a FETCH, STORE, or SEARCH
 command. This rule is necessary to prevent a loss of
 synchronization of message sequence numbers between client and
 server.

 The update from the EXPUNGE response MUST be recorded by the
 client.

 Example: S: * 44 EXPUNGE

7.4.2. FETCH Response

 Contents: message data

 The FETCH response returns data about a message to the client.
 The data are pairs of data item names and their values in
 parentheses. This response occurs as the result of a FETCH or
 STORE command, as well as by unilateral server decision (e.g. flag
 updates).

 The current data items are:

 BODY A form of BODYSTRUCTURE without extension data.

 BODY[<section>]<<origin_octet>>
 A string expressing the body contents of the
 specified section. The string SHOULD be
 interpreted by the client according to the content
 transfer encoding, body type, and subtype.

 If the origin octet is specified, this string is a
 substring of the entire body contents, starting at
 that origin octet. This means that BODY[]<0> MAY
 be truncated, but BODY[] is NEVER truncated.

 8-bit textual data is permitted if a [CHARSET]
 identifier is part of the body parameter
 parenthesized list for this section. Note that
 headers (part specifiers HEADER or MIME, or the
 header portion of a MESSAGE/RFC822 part), MUST be

Crispin Standards Track [Page 58]

C
om

pendium
 1 page 293

RFC 2060 IMAP4rev1 December 1996

 7-bit; 8-bit characters are not permitted in
 headers. Note also that the blank line at the end
 of the header is always included in header data.

 Non-textual data such as binary data MUST be
 transfer encoded into a textual form such as BASE64
 prior to being sent to the client. To derive the
 original binary data, the client MUST decode the
 transfer encoded string.

 BODYSTRUCTURE A parenthesized list that describes the [MIME-IMB]
 body structure of a message. This is computed by
 the server by parsing the [MIME-IMB] header fields,
 defaulting various fields as necessary.

 For example, a simple text message of 48 lines and
 2279 octets can have a body structure of: ("TEXT"
 "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 2279
 48)

 Multiple parts are indicated by parenthesis
 nesting. Instead of a body type as the first
 element of the parenthesized list there is a nested
 body. The second element of the parenthesized list
 is the multipart subtype (mixed, digest, parallel,
 alternative, etc.).

 For example, a two part message consisting of a
 text and a BASE645-encoded text attachment can have
 a body structure of: (("TEXT" "PLAIN" ("CHARSET"
 "US-ASCII") NIL NIL "7BIT" 1152 23)("TEXT" "PLAIN"
 ("CHARSET" "US-ASCII" "NAME" "cc.diff")
 "<960723163407.20117h@cac.washington.edu>"
 "Compiler diff" "BASE64" 4554 73) "MIXED"))

 Extension data follows the multipart subtype.
 Extension data is never returned with the BODY
 fetch, but can be returned with a BODYSTRUCTURE
 fetch. Extension data, if present, MUST be in the
 defined order.

 The extension data of a multipart body part are in
 the following order:

 body parameter parenthesized list
 A parenthesized list of attribute/value pairs
 [e.g. ("foo" "bar" "baz" "rag") where "bar" is
 the value of "foo" and "rag" is the value of

Crispin Standards Track [Page 59]

RFC 2060 IMAP4rev1 December 1996

 "baz"] as defined in [MIME-IMB].

 body disposition
 A parenthesized list, consisting of a
 disposition type string followed by a
 parenthesized list of disposition
 attribute/value pairs. The disposition type and
 attribute names will be defined in a future
 standards-track revision to [DISPOSITION].

 body language
 A string or parenthesized list giving the body
 language value as defined in [LANGUAGE-TAGS].

 Any following extension data are not yet defined in
 this version of the protocol. Such extension data
 can consist of zero or more NILs, strings, numbers,
 or potentially nested parenthesized lists of such
 data. Client implementations that do a
 BODYSTRUCTURE fetch MUST be prepared to accept such
 extension data. Server implementations MUST NOT
 send such extension data until it has been defined
 by a revision of this protocol.

 The basic fields of a non-multipart body part are
 in the following order:

 body type
 A string giving the content media type name as
 defined in [MIME-IMB].

 body subtype
 A string giving the content subtype name as
 defined in [MIME-IMB].

 body parameter parenthesized list
 A parenthesized list of attribute/value pairs
 [e.g. ("foo" "bar" "baz" "rag") where "bar" is
 the value of "foo" and "rag" is the value of
 "baz"] as defined in [MIME-IMB].

 body id
 A string giving the content id as defined in
 [MIME-IMB].

 body description
 A string giving the content description as
 defined in [MIME-IMB].

Crispin Standards Track [Page 60]

C
om

pendium
 1 page 294

RFC 2060 IMAP4rev1 December 1996

 body encoding
 A string giving the content transfer encoding as
 defined in [MIME-IMB].

 body size
 A number giving the size of the body in octets.
 Note that this size is the size in its transfer
 encoding and not the resulting size after any
 decoding.

 A body type of type MESSAGE and subtype RFC822
 contains, immediately after the basic fields, the
 envelope structure, body structure, and size in
 text lines of the encapsulated message.

 A body type of type TEXT contains, immediately
 after the basic fields, the size of the body in
 text lines. Note that this size is the size in its
 content transfer encoding and not the resulting
 size after any decoding.

 Extension data follows the basic fields and the
 type-specific fields listed above. Extension data
 is never returned with the BODY fetch, but can be
 returned with a BODYSTRUCTURE fetch. Extension
 data, if present, MUST be in the defined order.

 The extension data of a non-multipart body part are
 in the following order:

 body MD5
 A string giving the body MD5 value as defined in
 [MD5].

 body disposition
 A parenthesized list with the same content and
 function as the body disposition for a multipart
 body part.

 body language
 A string or parenthesized list giving the body
 language value as defined in [LANGUAGE-TAGS].

 Any following extension data are not yet defined in
 this version of the protocol, and would be as
 described above under multipart extension data.

Crispin Standards Track [Page 61]

RFC 2060 IMAP4rev1 December 1996

 ENVELOPE A parenthesized list that describes the envelope
 structure of a message. This is computed by the
 server by parsing the [RFC-822] header into the
 component parts, defaulting various fields as
 necessary.

 The fields of the envelope structure are in the
 following order: date, subject, from, sender,
 reply-to, to, cc, bcc, in-reply-to, and message-id.
 The date, subject, in-reply-to, and message-id
 fields are strings. The from, sender, reply-to,
 to, cc, and bcc fields are parenthesized lists of
 address structures.

 An address structure is a parenthesized list that
 describes an electronic mail address. The fields
 of an address structure are in the following order:
 personal name, [SMTP] at-domain-list (source
 route), mailbox name, and host name.

 [RFC-822] group syntax is indicated by a special
 form of address structure in which the host name
 field is NIL. If the mailbox name field is also
 NIL, this is an end of group marker (semi-colon in
 RFC 822 syntax). If the mailbox name field is
 non-NIL, this is a start of group marker, and the
 mailbox name field holds the group name phrase.

 Any field of an envelope or address structure that
 is not applicable is presented as NIL. Note that
 the server MUST default the reply-to and sender
 fields from the from field; a client is not
 expected to know to do this.

 FLAGS A parenthesized list of flags that are set for this
 message.

 INTERNALDATE A string representing the internal date of the
 message.

 RFC822 Equivalent to BODY[].

 RFC822.HEADER Equivalent to BODY.PEEK[HEADER].

 RFC822.SIZE A number expressing the [RFC-822] size of the
 message.

 RFC822.TEXT Equivalent to BODY[TEXT].

Crispin Standards Track [Page 62]

C
om

pendium
 1 page 295

RFC 2060 IMAP4rev1 December 1996

 UID A number expressing the unique identifier of the
 message.

 Example: S: * 23 FETCH (FLAGS (\Seen) RFC822.SIZE 44827)

7.5. Server Responses - Command Continuation Request

 The command continuation request response is indicated by a "+" token
 instead of a tag. This form of response indicates that the server is
 ready to accept the continuation of a command from the client. The
 remainder of this response is a line of text.

 This response is used in the AUTHORIZATION command to transmit server
 data to the client, and request additional client data. This
 response is also used if an argument to any command is a literal.

 The client is not permitted to send the octets of the literal unless
 the server indicates that it expects it. This permits the server to
 process commands and reject errors on a line-by-line basis. The
 remainder of the command, including the CRLF that terminates a
 command, follows the octets of the literal. If there are any
 additional command arguments the literal octets are followed by a
 space and those arguments.

 Example: C: A001 LOGIN {11}
 S: + Ready for additional command text
 C: FRED FOOBAR {7}
 S: + Ready for additional command text
 C: fat man
 S: A001 OK LOGIN completed
 C: A044 BLURDYBLOOP {102856}
 S: A044 BAD No such command as "BLURDYBLOOP"

8. Sample IMAP4rev1 connection

 The following is a transcript of an IMAP4rev1 connection. A long
 line in this sample is broken for editorial clarity.

S: * OK IMAP4rev1 Service Ready
C: a001 login mrc secret
S: a001 OK LOGIN completed
C: a002 select inbox
S: * 18 EXISTS
S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
S: * 2 RECENT
S: * OK [UNSEEN 17] Message 17 is the first unseen message
S: * OK [UIDVALIDITY 3857529045] UIDs valid

Crispin Standards Track [Page 63]

RFC 2060 IMAP4rev1 December 1996

S: a002 OK [READ-WRITE] SELECT completed
C: a003 fetch 12 full
S: * 12 FETCH (FLAGS (\Seen) INTERNALDATE "17-Jul-1996 02:44:25 -0700"
 RFC822.SIZE 4286 ENVELOPE ("Wed, 17 Jul 1996 02:23:25 -0700 (PDT)"
 "IMAP4rev1 WG mtg summary and minutes"
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 ((NIL NIL "imap" "cac.washington.edu"))
 ((NIL NIL "minutes" "CNRI.Reston.VA.US")
 ("John Klensin" NIL "KLENSIN" "INFOODS.MIT.EDU")) NIL NIL
 "<B27397-0100000@cac.washington.edu>")
 BODY ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 3028 92))
S: a003 OK FETCH completed
C: a004 fetch 12 body[header]
S: * 12 FETCH (BODY[HEADER] {350}
S: Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
S: From: Terry Gray <gray@cac.washington.edu>
S: Subject: IMAP4rev1 WG mtg summary and minutes
S: To: imap@cac.washington.edu
S: cc: minutes@CNRI.Reston.VA.US, John Klensin <KLENSIN@INFOODS.MIT.EDU>
S: Message-Id: <B27397-0100000@cac.washington.edu>
S: MIME-Version: 1.0
S: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
S:
S:)
S: a004 OK FETCH completed
C: a005 store 12 +flags \deleted
S: * 12 FETCH (FLAGS (\Seen \Deleted))
S: a005 OK +FLAGS completed
C: a006 logout
S: * BYE IMAP4rev1 server terminating connection
S: a006 OK LOGOUT completed

9. Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in [RFC-822] with one exception; the
 delimiter used with the "#" construct is a single space (SPACE) and
 not one or more commas.

 In the case of alternative or optional rules in which a later rule
 overlaps an earlier rule, the rule which is listed earlier MUST take
 priority. For example, "\Seen" when parsed as a flag is the \Seen
 flag name and not a flag_extension, even though "\Seen" could be
 parsed as a flag_extension. Some, but not all, instances of this
 rule are noted below.

Crispin Standards Track [Page 64]

C
om

pendium
 1 page 296

RFC 2060 IMAP4rev1 December 1996

 Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of upper or lower case characters to define
 token strings is for editorial clarity only. Implementations MUST
 accept these strings in a case-insensitive fashion.

address ::= "(" addr_name SPACE addr_adl SPACE addr_mailbox
 SPACE addr_host ")"

addr_adl ::= nstring
 ;; Holds route from [RFC-822] route-addr if
 ;; non-NIL

addr_host ::= nstring
 ;; NIL indicates [RFC-822] group syntax.
 ;; Otherwise, holds [RFC-822] domain name

addr_mailbox ::= nstring
 ;; NIL indicates end of [RFC-822] group; if
 ;; non-NIL and addr_host is NIL, holds
 ;; [RFC-822] group name.
 ;; Otherwise, holds [RFC-822] local-part

addr_name ::= nstring
 ;; Holds phrase from [RFC-822] mailbox if
 ;; non-NIL

alpha ::= "A" / "B" / "C" / "D" / "E" / "F" / "G" / "H" /
 "I" / "J" / "K" / "L" / "M" / "N" / "O" / "P" /
 "Q" / "R" / "S" / "T" / "U" / "V" / "W" / "X" /
 "Y" / "Z" /
 "a" / "b" / "c" / "d" / "e" / "f" / "g" / "h" /
 "i" / "j" / "k" / "l" / "m" / "n" / "o" / "p" /
 "q" / "r" / "s" / "t" / "u" / "v" / "w" / "x" /
 "y" / "z"
 ;; Case-sensitive

append ::= "APPEND" SPACE mailbox [SPACE flag_list]
 [SPACE date_time] SPACE literal

astring ::= atom / string

atom ::= 1*ATOM_CHAR

ATOM_CHAR ::= <any CHAR except atom_specials>

atom_specials ::= "(" / ")" / "{" / SPACE / CTL / list_wildcards /
 quoted_specials

Crispin Standards Track [Page 65]

RFC 2060 IMAP4rev1 December 1996

authenticate ::= "AUTHENTICATE" SPACE auth_type *(CRLF base64)

auth_type ::= atom
 ;; Defined by [IMAP-AUTH]

base64 ::= *(4base64_char) [base64_terminal]

base64_char ::= alpha / digit / "+" / "/"

base64_terminal ::= (2base64_char "==") / (3base64_char "=")

body ::= "(" body_type_1part / body_type_mpart ")"

body_extension ::= nstring / number / "(" 1#body_extension ")"
 ;; Future expansion. Client implementations
 ;; MUST accept body_extension fields. Server
 ;; implementations MUST NOT generate
 ;; body_extension fields except as defined by
 ;; future standard or standards-track
 ;; revisions of this specification.

body_ext_1part ::= body_fld_md5 [SPACE body_fld_dsp
 [SPACE body_fld_lang
 [SPACE 1#body_extension]]]
 ;; MUST NOT be returned on non-extensible
 ;; "BODY" fetch

body_ext_mpart ::= body_fld_param
 [SPACE body_fld_dsp SPACE body_fld_lang
 [SPACE 1#body_extension]]
 ;; MUST NOT be returned on non-extensible
 ;; "BODY" fetch

body_fields ::= body_fld_param SPACE body_fld_id SPACE
 body_fld_desc SPACE body_fld_enc SPACE
 body_fld_octets

body_fld_desc ::= nstring

body_fld_dsp ::= "(" string SPACE body_fld_param ")" / nil

body_fld_enc ::= (<"> ("7BIT" / "8BIT" / "BINARY" / "BASE64"/
 "QUOTED-PRINTABLE") <">) / string

body_fld_id ::= nstring

body_fld_lang ::= nstring / "(" 1#string ")"

Crispin Standards Track [Page 66]

C
om

pendium
 1 page 297

RFC 2060 IMAP4rev1 December 1996

body_fld_lines ::= number

body_fld_md5 ::= nstring

body_fld_octets ::= number

body_fld_param ::= "(" 1#(string SPACE string) ")" / nil

body_type_1part ::= (body_type_basic / body_type_msg / body_type_text)
 [SPACE body_ext_1part]

body_type_basic ::= media_basic SPACE body_fields
 ;; MESSAGE subtype MUST NOT be "RFC822"

body_type_mpart ::= 1*body SPACE media_subtype
 [SPACE body_ext_mpart]

body_type_msg ::= media_message SPACE body_fields SPACE envelope
 SPACE body SPACE body_fld_lines

body_type_text ::= media_text SPACE body_fields SPACE body_fld_lines

capability ::= "AUTH=" auth_type / atom
 ;; New capabilities MUST begin with "X" or be
 ;; registered with IANA as standard or
 ;; standards-track

capability_data ::= "CAPABILITY" SPACE [1#capability SPACE] "IMAP4rev1"
 [SPACE 1#capability]
 ;; IMAP4rev1 servers which offer RFC 1730
 ;; compatibility MUST list "IMAP4" as the first
 ;; capability.

CHAR ::= <any 7-bit US-ASCII character except NUL,
 0x01 - 0x7f>

CHAR8 ::= <any 8-bit octet except NUL, 0x01 - 0xff>

command ::= tag SPACE (command_any / command_auth /
 command_nonauth / command_select) CRLF
 ;; Modal based on state

command_any ::= "CAPABILITY" / "LOGOUT" / "NOOP" / x_command
 ;; Valid in all states

command_auth ::= append / create / delete / examine / list / lsub /
 rename / select / status / subscribe / unsubscribe
 ;; Valid only in Authenticated or Selected state

Crispin Standards Track [Page 67]

RFC 2060 IMAP4rev1 December 1996

command_nonauth ::= login / authenticate
 ;; Valid only when in Non-Authenticated state

command_select ::= "CHECK" / "CLOSE" / "EXPUNGE" /
 copy / fetch / store / uid / search
 ;; Valid only when in Selected state

continue_req ::= "+" SPACE (resp_text / base64)

copy ::= "COPY" SPACE set SPACE mailbox

CR ::= <ASCII CR, carriage return, 0x0D>

create ::= "CREATE" SPACE mailbox
 ;; Use of INBOX gives a NO error

CRLF ::= CR LF

CTL ::= <any ASCII control character and DEL,
 0x00 - 0x1f, 0x7f>

date ::= date_text / <"> date_text <">

date_day ::= 1*2digit
 ;; Day of month

date_day_fixed ::= (SPACE digit) / 2digit
 ;; Fixed-format version of date_day

date_month ::= "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
 "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

date_text ::= date_day "-" date_month "-" date_year

date_year ::= 4digit

date_time ::= <"> date_day_fixed "-" date_month "-" date_year
 SPACE time SPACE zone <">

delete ::= "DELETE" SPACE mailbox
 ;; Use of INBOX gives a NO error

digit ::= "0" / digit_nz

digit_nz ::= "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" /
 "9"

Crispin Standards Track [Page 68]

C
om

pendium
 1 page 298

RFC 2060 IMAP4rev1 December 1996

envelope ::= "(" env_date SPACE env_subject SPACE env_from
 SPACE env_sender SPACE env_reply_to SPACE env_to
 SPACE env_cc SPACE env_bcc SPACE env_in_reply_to
 SPACE env_message_id ")"

env_bcc ::= "(" 1*address ")" / nil

env_cc ::= "(" 1*address ")" / nil

env_date ::= nstring

env_from ::= "(" 1*address ")" / nil

env_in_reply_to ::= nstring

env_message_id ::= nstring

env_reply_to ::= "(" 1*address ")" / nil

env_sender ::= "(" 1*address ")" / nil

env_subject ::= nstring

env_to ::= "(" 1*address ")" / nil

examine ::= "EXAMINE" SPACE mailbox

fetch ::= "FETCH" SPACE set SPACE ("ALL" / "FULL" /
 "FAST" / fetch_att / "(" 1#fetch_att ")")

fetch_att ::= "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
 "RFC822" [".HEADER" / ".SIZE" / ".TEXT"] /
 "BODY" ["STRUCTURE"] / "UID" /
 "BODY" [".PEEK"] section
 ["<" number "." nz_number ">"]

flag ::= "\Answered" / "\Flagged" / "\Deleted" /
 "\Seen" / "\Draft" / flag_keyword / flag_extension

flag_extension ::= "\" atom
 ;; Future expansion. Client implementations
 ;; MUST accept flag_extension flags. Server
 ;; implementations MUST NOT generate
 ;; flag_extension flags except as defined by
 ;; future standard or standards-track
 ;; revisions of this specification.

flag_keyword ::= atom

Crispin Standards Track [Page 69]

RFC 2060 IMAP4rev1 December 1996

flag_list ::= "(" #flag ")"

greeting ::= "*" SPACE (resp_cond_auth / resp_cond_bye) CRLF

header_fld_name ::= astring

header_list ::= "(" 1#header_fld_name ")"

LF ::= <ASCII LF, line feed, 0x0A>

list ::= "LIST" SPACE mailbox SPACE list_mailbox

list_mailbox ::= 1*(ATOM_CHAR / list_wildcards) / string

list_wildcards ::= "%" / "*"

literal ::= "{" number "}" CRLF *CHAR8
 ;; Number represents the number of CHAR8 octets

login ::= "LOGIN" SPACE userid SPACE password

lsub ::= "LSUB" SPACE mailbox SPACE list_mailbox

mailbox ::= "INBOX" / astring
 ;; INBOX is case-insensitive. All case variants of
 ;; INBOX (e.g. "iNbOx") MUST be interpreted as INBOX
 ;; not as an astring. Refer to section 5.1 for
 ;; further semantic details of mailbox names.

mailbox_data ::= "FLAGS" SPACE flag_list /
 "LIST" SPACE mailbox_list /
 "LSUB" SPACE mailbox_list /
 "MAILBOX" SPACE text /
 "SEARCH" [SPACE 1#nz_number] /
 "STATUS" SPACE mailbox SPACE
 "(" #<status_att number ")" /
 number SPACE "EXISTS" / number SPACE "RECENT"

mailbox_list ::= "(" #("\Marked" / "\Noinferiors" /
 "\Noselect" / "\Unmarked" / flag_extension) ")"
 SPACE (<"> QUOTED_CHAR <"> / nil) SPACE mailbox

media_basic ::= (<"> ("APPLICATION" / "AUDIO" / "IMAGE" /
 "MESSAGE" / "VIDEO") <">) / string)
 SPACE media_subtype
 ;; Defined in [MIME-IMT]

media_message ::= <"> "MESSAGE" <"> SPACE <"> "RFC822" <">

Crispin Standards Track [Page 70]

C
om

pendium
 1 page 299

RFC 2060 IMAP4rev1 December 1996

 ;; Defined in [MIME-IMT]

media_subtype ::= string
 ;; Defined in [MIME-IMT]

media_text ::= <"> "TEXT" <"> SPACE media_subtype
 ;; Defined in [MIME-IMT]

message_data ::= nz_number SPACE ("EXPUNGE" /
 ("FETCH" SPACE msg_att))

msg_att ::= "(" 1#("ENVELOPE" SPACE envelope /
 "FLAGS" SPACE "(" #(flag / "\Recent") ")" /
 "INTERNALDATE" SPACE date_time /
 "RFC822" [".HEADER" / ".TEXT"] SPACE nstring /
 "RFC822.SIZE" SPACE number /
 "BODY" ["STRUCTURE"] SPACE body /
 "BODY" section ["<" number ">"] SPACE nstring /
 "UID" SPACE uniqueid) ")"

nil ::= "NIL"

nstring ::= string / nil

number ::= 1*digit
 ;; Unsigned 32-bit integer
 ;; (0 <= n < 4,294,967,296)

nz_number ::= digit_nz *digit
 ;; Non-zero unsigned 32-bit integer
 ;; (0 < n < 4,294,967,296)

password ::= astring

quoted ::= <"> *QUOTED_CHAR <">

QUOTED_CHAR ::= <any TEXT_CHAR except quoted_specials> /
 "\" quoted_specials

quoted_specials ::= <"> / "\"

rename ::= "RENAME" SPACE mailbox SPACE mailbox
 ;; Use of INBOX as a destination gives a NO error

response ::= *(continue_req / response_data) response_done

response_data ::= "*" SPACE (resp_cond_state / resp_cond_bye /
 mailbox_data / message_data / capability_data)

Crispin Standards Track [Page 71]

RFC 2060 IMAP4rev1 December 1996

 CRLF

response_done ::= response_tagged / response_fatal

response_fatal ::= "*" SPACE resp_cond_bye CRLF
 ;; Server closes connection immediately

response_tagged ::= tag SPACE resp_cond_state CRLF

resp_cond_auth ::= ("OK" / "PREAUTH") SPACE resp_text
 ;; Authentication condition

resp_cond_bye ::= "BYE" SPACE resp_text

resp_cond_state ::= ("OK" / "NO" / "BAD") SPACE resp_text
 ;; Status condition

resp_text ::= ["[" resp_text_code "]" SPACE] (text_mime2 / text)
 ;; text SHOULD NOT begin with "[" or "="

resp_text_code ::= "ALERT" / "PARSE" /
 "PERMANENTFLAGS" SPACE "(" #(flag / "*") ")" /
 "READ-ONLY" / "READ-WRITE" / "TRYCREATE" /
 "UIDVALIDITY" SPACE nz_number /
 "UNSEEN" SPACE nz_number /
 atom [SPACE 1*<any TEXT_CHAR except "]">]

search ::= "SEARCH" SPACE ["CHARSET" SPACE astring SPACE]
 1#search_key
 ;; [CHARSET] MUST be registered with IANA

search_key ::= "ALL" / "ANSWERED" / "BCC" SPACE astring /
 "BEFORE" SPACE date / "BODY" SPACE astring /
 "CC" SPACE astring / "DELETED" / "FLAGGED" /
 "FROM" SPACE astring /
 "KEYWORD" SPACE flag_keyword / "NEW" / "OLD" /
 "ON" SPACE date / "RECENT" / "SEEN" /
 "SINCE" SPACE date / "SUBJECT" SPACE astring /
 "TEXT" SPACE astring / "TO" SPACE astring /
 "UNANSWERED" / "UNDELETED" / "UNFLAGGED" /
 "UNKEYWORD" SPACE flag_keyword / "UNSEEN" /
 ;; Above this line were in [IMAP2]
 "DRAFT" /
 "HEADER" SPACE header_fld_name SPACE astring /
 "LARGER" SPACE number / "NOT" SPACE search_key /
 "OR" SPACE search_key SPACE search_key /
 "SENTBEFORE" SPACE date / "SENTON" SPACE date /
 "SENTSINCE" SPACE date / "SMALLER" SPACE number /

Crispin Standards Track [Page 72]

C
om

pendium
 1 page 300

RFC 2060 IMAP4rev1 December 1996

 "UID" SPACE set / "UNDRAFT" / set /
 "(" 1#search_key ")"

section ::= "[" [section_text / (nz_number *["." nz_number]
 ["." (section_text / "MIME")])] "]"

section_text ::= "HEADER" / "HEADER.FIELDS" [".NOT"]
 SPACE header_list / "TEXT"

select ::= "SELECT" SPACE mailbox

sequence_num ::= nz_number / "*"
 ;; * is the largest number in use. For message
 ;; sequence numbers, it is the number of messages
 ;; in the mailbox. For unique identifiers, it is
 ;; the unique identifier of the last message in
 ;; the mailbox.

set ::= sequence_num / (sequence_num ":" sequence_num) /
 (set "," set)
 ;; Identifies a set of messages. For message
 ;; sequence numbers, these are consecutive
 ;; numbers from 1 to the number of messages in
 ;; the mailbox
 ;; Comma delimits individual numbers, colon
 ;; delimits between two numbers inclusive.
 ;; Example: 2,4:7,9,12:* is 2,4,5,6,7,9,12,13,
 ;; 14,15 for a mailbox with 15 messages.

SPACE ::= <ASCII SP, space, 0x20>

status ::= "STATUS" SPACE mailbox SPACE "(" 1#status_att ")"

status_att ::= "MESSAGES" / "RECENT" / "UIDNEXT" / "UIDVALIDITY" /
 "UNSEEN"

store ::= "STORE" SPACE set SPACE store_att_flags

store_att_flags ::= (["+" / "-"] "FLAGS" [".SILENT"]) SPACE
 (flag_list / #flag)

string ::= quoted / literal

subscribe ::= "SUBSCRIBE" SPACE mailbox

tag ::= 1*<any ATOM_CHAR except "+">

text ::= 1*TEXT_CHAR

Crispin Standards Track [Page 73]

RFC 2060 IMAP4rev1 December 1996

text_mime2 ::= "=?" <charset> "?" <encoding> "?"
 <encoded-text> "?="
 ;; Syntax defined in [MIME-HDRS]

TEXT_CHAR ::= <any CHAR except CR and LF>

time ::= 2digit ":" 2digit ":" 2digit
 ;; Hours minutes seconds

uid ::= "UID" SPACE (copy / fetch / search / store)
 ;; Unique identifiers used instead of message
 ;; sequence numbers

uniqueid ::= nz_number
 ;; Strictly ascending

unsubscribe ::= "UNSUBSCRIBE" SPACE mailbox

userid ::= astring

x_command ::= "X" atom <experimental command arguments>

zone ::= ("+" / "-") 4digit
 ;; Signed four-digit value of hhmm representing
 ;; hours and minutes west of Greenwich (that is,
 ;; (the amount that the given time differs from
 ;; Universal Time). Subtracting the timezone
 ;; from the given time will give the UT form.
 ;; The Universal Time zone is "+0000".

10. Author's Note

 This document is a revision or rewrite of earlier documents, and
 supercedes the protocol specification in those documents: RFC 1730,
 unpublished IMAP2bis.TXT document, RFC 1176, and RFC 1064.

11. Security Considerations

 IMAP4rev1 protocol transactions, including electronic mail data, are
 sent in the clear over the network unless privacy protection is
 negotiated in the AUTHENTICATE command.

 A server error message for an AUTHENTICATE command which fails due to
 invalid credentials SHOULD NOT detail why the credentials are
 invalid.

 Use of the LOGIN command sends passwords in the clear. This can be
 avoided by using the AUTHENTICATE command instead.

Crispin Standards Track [Page 74]

C
om

pendium
 1 page 301

RFC 2060 IMAP4rev1 December 1996

 A server error message for a failing LOGIN command SHOULD NOT specify
 that the user name, as opposed to the password, is invalid.

 Additional security considerations are discussed in the section
 discussing the AUTHENTICATE and LOGIN commands.

12. Author's Address

 Mark R. Crispin
 Networks and Distributed Computing
 University of Washington
 4545 15th Aveneue NE
 Seattle, WA 98105-4527

 Phone: (206) 543-5762

 EMail: MRC@CAC.Washington.EDU

Crispin Standards Track [Page 75]

RFC 2060 IMAP4rev1 December 1996

Appendices

A. References

[ACAP] Myers, J. "ACAP -- Application Configuration Access Protocol",
Work in Progress.

[CHARSET] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2,
RFC 1700, USC/Information Sciences Institute, October 1994.

[DISPOSITION] Troost, R., and Dorner, S., "Communicating Presentation
Information in Internet Messages: The Content-Disposition Header",
RFC 1806, June 1995.

[IMAP-AUTH] Myers, J., "IMAP4 Authentication Mechanism", RFC 1731.
Carnegie-Mellon University, December 1994.

[IMAP-COMPAT] Crispin, M., "IMAP4 Compatibility with IMAP2bis", RFC
2061, University of Washington, November 1996.

[IMAP-DISC] Austein, R., "Synchronization Operations for Disconnected
IMAP4 Clients", Work in Progress.

[IMAP-HISTORICAL] Crispin, M. "IMAP4 Compatibility with IMAP2 and
IMAP2bis", RFC 1732, University of Washington, December 1994.

[IMAP-MODEL] Crispin, M., "Distributed Electronic Mail Models in
IMAP4", RFC 1733, University of Washington, December 1994.

[IMAP-OBSOLETE] Crispin, M., "Internet Message Access Protocol -
Obsolete Syntax", RFC 2062, University of Washington, November 1996.

[IMAP2] Crispin, M., "Interactive Mail Access Protocol - Version 2",
RFC 1176, University of Washington, August 1990.

[LANGUAGE-TAGS] Alvestrand, H., "Tags for the Identification of
Languages", RFC 1766, March 1995.

[MD5] Myers, J., and M. Rose, "The Content-MD5 Header Field", RFC
1864, October 1995.

[MIME-IMB] Freed, N., and N. Borenstein, "MIME (Multipurpose Internet
Mail Extensions) Part One: Format of Internet Message Bodies", RFC
2045, November 1996.

[MIME-IMT] Freed, N., and N. Borenstein, "MIME (Multipurpose
Internet Mail Extensions) Part Two: Media Types", RFC 2046,
November 1996.

Crispin Standards Track [Page 76]

C
om

pendium
 1 page 302

RFC 2060 IMAP4rev1 December 1996

[MIME-HDRS] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
Part Three: Message Header Extensions for Non-ASCII Text", RFC
2047, November 1996.

[RFC-822] Crocker, D., "Standard for the Format of ARPA Internet Text
Messages", STD 11, RFC 822, University of Delaware, August 1982.

[SMTP] Postel, J., "Simple Mail Transfer Protocol", STD 10,
RFC 821, USC/Information Sciences Institute, August 1982.

[UTF-7] Goldsmith, D., and Davis, M., "UTF-7: A Mail-Safe
Transformation Format of Unicode", RFC 1642, July 1994.

B. Changes from RFC 1730

1) The STATUS command has been added.

2) Clarify in the formal syntax that the "#" construct can never
refer to multiple spaces.

3) Obsolete syntax has been moved to a separate document.

4) The PARTIAL command has been obsoleted.

5) The RFC822.HEADER.LINES, RFC822.HEADER.LINES.NOT, RFC822.PEEK, and
RFC822.TEXT.PEEK fetch attributes have been obsoleted.

6) The "<" origin "." size ">" suffix for BODY text attributes has
been added.

7) The HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, MIME, and TEXT part
specifiers have been added.

8) Support for Content-Disposition and Content-Language has been
added.

9) The restriction on fetching nested MULTIPART parts has been
removed.

10) Body part number 0 has been obsoleted.

11) Server-supported authenticators are now identified by
capabilities.

Crispin Standards Track [Page 77]

RFC 2060 IMAP4rev1 December 1996

12) The capability that identifies this protocol is now called
"IMAP4rev1". A server that provides backwards support for RFC 1730
SHOULD emit the "IMAP4" capability in addition to "IMAP4rev1" in its
CAPABILITY response. Because RFC-1730 required "IMAP4" to appear as
the first capability, it MUST listed first in the response.

13) A description of the mailbox name namespace convention has been
added.

14) A description of the international mailbox name convention has
been added.

15) The UID-NEXT and UID-VALIDITY status items are now called UIDNEXT
and UIDVALIDITY. This is a change from the IMAP STATUS
Work in Progress and not from RFC-1730

16) Add a clarification that a null mailbox name argument to the LIST
command returns an untagged LIST response with the hierarchy
delimiter and root of the reference argument.

17) Define terms such as "MUST", "SHOULD", and "MUST NOT".

18) Add a section which defines message attributes and more
thoroughly details the semantics of message sequence numbers, UIDs,
and flags.

19) Add a clarification detailing the circumstances when a client may
send multiple commands without waiting for a response, and the
circumstances in which ambiguities may result.

20) Add a recommendation on server behavior for DELETE and RENAME
when inferior hierarchical names of the given name exist.

21) Add a clarification that a mailbox name may not be unilaterally
unsubscribed by the server, even if that mailbox name no longer
exists.

22) Add a clarification that LIST should return its results quickly
without undue delay.

23) Add a clarification that the date_time argument to APPEND sets
the internal date of the message.

24) Add a clarification on APPEND behavior when the target mailbox is
the currently selected mailbox.

Crispin Standards Track [Page 78]

C
om

pendium
 1 page 303

RFC 2060 IMAP4rev1 December 1996

25) Add a clarification that external changes to flags should be
always announced via an untagged FETCH even if the current command is
a STORE with the ".SILENT" suffix.

26) Add a clarification that COPY appends to the target mailbox.

27) Add the NEWNAME response code.

28) Rewrite the description of the untagged BYE response to clarify
its semantics.

29) Change the reference for the body MD5 to refer to the proper RFC.

30) Clarify that the formal syntax contains rules which may overlap,
and that in the event of such an overlap the rule which occurs first
takes precedence.

31) Correct the definition of body_fld_param.

32) More formal syntax for capability_data.

33) Clarify that any case variant of "INBOX" must be interpreted as
INBOX.

34) Clarify that the human-readable text in resp_text should not
begin with "[" or "=".

35) Change MIME references to Draft Standard documents.

36) Clarify \Recent semantics.

37) Additional examples.

C. Key Word Index

 +FLAGS <flag list> (store command data item) 45
 +FLAGS.SILENT <flag list> (store command data item) 46
 -FLAGS <flag list> (store command data item) 46
 -FLAGS.SILENT <flag list> (store command data item) 46
 ALERT (response code) 50
 ALL (fetch item) ... 41
 ALL (search key) ... 38
 ANSWERED (search key) 38
 APPEND (command) ... 34
 AUTHENTICATE (command) 20
 BAD (response) ... 52
 BCC <string> (search key) 38
 BEFORE <date> (search key) 39

Crispin Standards Track [Page 79]

RFC 2060 IMAP4rev1 December 1996

 BODY (fetch item) .. 41
 BODY (fetch result) .. 58
 BODY <string> (search key) 39
 BODY.PEEK[<section>]<<partial>> (fetch item) 44
 BODYSTRUCTURE (fetch item) 44
 BODYSTRUCTURE (fetch result) 59
 BODY[<section>]<<origin_octet>> (fetch result) 58
 BODY[<section>]<<partial>> (fetch item) 41
 BYE (response) ... 52
 Body Structure (message attribute) 11
 CAPABILITY (command) 18
 CAPABILITY (response) 53
 CC <string> (search key) 39
 CHECK (command) .. 36
 CLOSE (command) .. 36
 COPY (command) ... 46
 CREATE (command) ... 25
 DELETE (command) ... 26
 DELETED (search key) 39
 DRAFT (search key) ... 39
 ENVELOPE (fetch item) 44
 ENVELOPE (fetch result) 62
 EXAMINE (command) .. 24
 EXISTS (response) .. 56
 EXPUNGE (command) .. 37
 EXPUNGE (response) ... 57
 Envelope Structure (message attribute) 11
 FAST (fetch item) .. 44
 FETCH (command) .. 41
 FETCH (response) ... 58
 FLAGGED (search key) 39
 FLAGS (fetch item) ... 44
 FLAGS (fetch result) 62
 FLAGS (response) ... 56
 FLAGS <flag list> (store command data item) 45
 FLAGS.SILENT <flag list> (store command data item) 45
 FROM <string> (search key) 39
 FULL (fetch item) .. 44
 Flags (message attribute) 9
 HEADER (part specifier) 41
 HEADER <field-name> <string> (search key) 39
 HEADER.FIELDS <header_list> (part specifier) 41
 HEADER.FIELDS.NOT <header_list> (part specifier) 41
 INTERNALDATE (fetch item) 44
 INTERNALDATE (fetch result) 62
 Internal Date (message attribute) 10
 KEYWORD <flag> (search key) 39
 Keyword (type of flag) 10

Crispin Standards Track [Page 80]

C
om

pendium
 1 page 304

RFC 2060 IMAP4rev1 December 1996

 LARGER <n> (search key) 39
 LIST (command) ... 30
 LIST (response) .. 54
 LOGIN (command) .. 22
 LOGOUT (command) ... 20
 LSUB (command) ... 32
 LSUB (response) .. 55
 MAY (specification requirement term) 5
 MESSAGES (status item) 33
 MIME (part specifier) 42
 MUST (specification requirement term) 4
 MUST NOT (specification requirement term) 4
 Message Sequence Number (message attribute) 9
 NEW (search key) ... 39
 NEWNAME (response code) 50
 NO (response) .. 51
 NOOP (command) ... 19
 NOT <search-key> (search key) 39
 OK (response) .. 51
 OLD (search key) ... 39
 ON <date> (search key) 39
 OPTIONAL (specification requirement term) 5
 OR <search-key1> <search-key2> (search key) 39
 PARSE (response code) 50
 PERMANENTFLAGS (response code) 50
 PREAUTH (response) ... 52
 Permanent Flag (class of flag) 10
 READ-ONLY (response code) 50
 READ-WRITE (response code) 50
 RECENT (response) .. 57
 RECENT (search key) .. 39
 RECENT (status item) 33
 RENAME (command) ... 27
 REQUIRED (specification requirement term) 4
 RFC822 (fetch item) .. 44
 RFC822 (fetch result) 63
 RFC822.HEADER (fetch item) 44
 RFC822.HEADER (fetch result) 62
 RFC822.SIZE (fetch item) 44
 RFC822.SIZE (fetch result) 62
 RFC822.TEXT (fetch item) 44
 RFC822.TEXT (fetch result) 62
 SEARCH (command) ... 37
 SEARCH (response) .. 55
 SEEN (search key) .. 40
 SELECT (command) ... 23
 SENTBEFORE <date> (search key) 40
 SENTON <date> (search key) 40

Crispin Standards Track [Page 81]

RFC 2060 IMAP4rev1 December 1996

 SENTSINCE <date> (search key) 40
 SHOULD (specification requirement term) 5
 SHOULD NOT (specification requirement term) 5
 SINCE <date> (search key) 40
 SMALLER <n> (search key) 40
 STATUS (command) ... 33
 STATUS (response) .. 55
 STORE (command) .. 45
 SUBJECT <string> (search key) 40
 SUBSCRIBE (command) .. 29
 Session Flag (class of flag) 10
 System Flag (type of flag) 9
 TEXT (part specifier) 42
 TEXT <string> (search key) 40
 TO <string> (search key) 40
 TRYCREATE (response code) 51
 UID (command) .. 47
 UID (fetch item) ... 44
 UID (fetch result) ... 63
 UID <message set> (search key) 40
 UIDNEXT (status item) 33
 UIDVALIDITY (response code) 51
 UIDVALIDITY (status item) 34
 UNANSWERED (search key) 40
 UNDELETED (search key) 40
 UNDRAFT (search key) 40
 UNFLAGGED (search key) 40
 UNKEYWORD <flag> (search key) 40
 UNSEEN (response code) 51
 UNSEEN (search key) .. 40
 UNSEEN (status item) 34
 UNSUBSCRIBE (command) 30
 Unique Identifier (UID) (message attribute) 7
 X<atom> (command) .. 48
 [RFC-822] Size (message attribute) 11
 \Answered (system flag) 9
 \Deleted (system flag) 9
 \Draft (system flag) 9
 \Flagged (system flag) 9
 \Marked (mailbox name attribute) 54
 \Noinferiors (mailbox name attribute) 54
 \Noselect (mailbox name attribute) 54
 \Recent (system flag) 10
 \Seen (system flag) .. 9
 \Unmarked (mailbox name attribute) 54

Crispin Standards Track [Page 82]

C
om

pendium
 1 page 305

Network Working Group M. Wahl
Request for Comments: 2251 Critical Angle Inc.
Category: Standards Track T. Howes
 Netscape Communications Corp.
 S. Kille
 Isode Limited
 December 1997

 Lightweight Directory Access Protocol (v3)

1. Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1997). All Rights Reserved.

IESG Note

 This document describes a directory access protocol that provides
 both read and update access. Update access requires secure
 authentication, but this document does not mandate implementation of
 any satisfactory authentication mechanisms.

 In accordance with RFC 2026, section 4.4.1, this specification is
 being approved by IESG as a Proposed Standard despite this
 limitation, for the following reasons:

 a. to encourage implementation and interoperability testing of
 these protocols (with or without update access) before they
 are deployed, and

 b. to encourage deployment and use of these protocols in read-only
 applications. (e.g. applications where LDAPv3 is used as
 a query language for directories which are updated by some
 secure mechanism other than LDAP), and

 c. to avoid delaying the advancement and deployment of other Internet
 standards-track protocols which require the ability to query, but
 not update, LDAPv3 directory servers.

Wahl, et. al. Standards Track [Page 1]

RFC 2251 LDAPv3 December 1997

 Readers are hereby warned that until mandatory authentication
 mechanisms are standardized, clients and servers written according to
 this specification which make use of update functionality are
 UNLIKELY TO INTEROPERATE, or MAY INTEROPERATE ONLY IF AUTHENTICATION
 IS REDUCED TO AN UNACCEPTABLY WEAK LEVEL.

 Implementors are hereby discouraged from deploying LDAPv3 clients or
 servers which implement the update functionality, until a Proposed
 Standard for mandatory authentication in LDAPv3 has been approved and
 published as an RFC.

Table of Contents

 1. Status of this Memo 1
 Copyright Notice 1
 IESG Note .. 1
 2. Abstract ... 3
 3. Models ... 4
 3.1. Protocol Model .. 4
 3.2. Data Model .. 5
 3.2.1. Attributes of Entries 5
 3.2.2. Subschema Entries and Subentries 7
 3.3. Relationship to X.500 8
 3.4. Server-specific Data Requirements 8
 4. Elements of Protocol 9
 4.1. Common Elements 9
 4.1.1. Message Envelope 9
 4.1.1.1. Message ID .. 11
 4.1.2. String Types .. 11
 4.1.3. Distinguished Name and Relative Distinguished Name .. 11
 4.1.4. Attribute Type 12
 4.1.5. Attribute Description 13
 4.1.5.1. Binary Option 14
 4.1.6. Attribute Value 14
 4.1.7. Attribute Value Assertion 15
 4.1.8. Attribute ... 15
 4.1.9. Matching Rule Identifier 15
 4.1.10. Result Message 16
 4.1.11. Referral ... 18
 4.1.12. Controls ... 19
 4.2. Bind Operation .. 20
 4.2.1. Sequencing of the Bind Request 21
 4.2.2. Authentication and Other Security Services 22
 4.2.3. Bind Response 23
 4.3. Unbind Operation 24
 4.4. Unsolicited Notification 24
 4.4.1. Notice of Disconnection 24
 4.5. Search Operation 25

Wahl, et. al. Standards Track [Page 2]

C
om

pendium
 1 page 307

RFC 2251 LDAPv3 December 1997

 4.5.1. Search Request 25
 4.5.2. Search Result 29
 4.5.3. Continuation References in the Search Result 31
 4.5.3.1. Example ... 31
 4.6. Modify Operation 32
 4.7. Add Operation ... 34
 4.8. Delete Operation 35
 4.9. Modify DN Operation 36
 4.10. Compare Operation 37
 4.11. Abandon Operation 38
 4.12. Extended Operation 38
 5. Protocol Element Encodings and Transfer 39
 5.1. Mapping Onto BER-based Transport Services 39
 5.2. Transfer Protocols 40
 5.2.1. Transmission Control Protocol (TCP) 40
 6. Implementation Guidelines 40
 6.1. Server Implementations 40
 6.2. Client Implementations 40
 7. Security Considerations 41
 8. Acknowledgements 41
 9. Bibliography ... 41
 10. Authors' Addresses 42
 Appendix A - Complete ASN.1 Definition 44
 Full Copyright Statement 50

2. Abstract

 The protocol described in this document is designed to provide access
 to directories supporting the X.500 models, while not incurring the
 resource requirements of the X.500 Directory Access Protocol (DAP).
 This protocol is specifically targeted at management applications and
 browser applications that provide read/write interactive access to
 directories. When used with a directory supporting the X.500
 protocols, it is intended to be a complement to the X.500 DAP.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document
 are to be interpreted as described in RFC 2119 [10].

 Key aspects of this version of LDAP are:

 - All protocol elements of LDAPv2 (RFC 1777) are supported. The
 protocol is carried directly over TCP or other transport, bypassing
 much of the session/presentation overhead of X.500 DAP.

 - Most protocol data elements can be encoded as ordinary strings
 (e.g., Distinguished Names).

Wahl, et. al. Standards Track [Page 3]

RFC 2251 LDAPv3 December 1997

 - Referrals to other servers may be returned.

 - SASL mechanisms may be used with LDAP to provide association
 security services.

 - Attribute values and Distinguished Names have been
 internationalized through the use of the ISO 10646 character set.

 - The protocol can be extended to support new operations, and
 controls may be used to extend existing operations.

 - Schema is published in the directory for use by clients.

3. Models

 Interest in X.500 [1] directory technologies in the Internet has led
 to efforts to reduce the high cost of entry associated with use of
 these technologies. This document continues the efforts to define
 directory protocol alternatives, updating the LDAP [2] protocol
 specification.

3.1. Protocol Model

 The general model adopted by this protocol is one of clients
 performing protocol operations against servers. In this model, a
 client transmits a protocol request describing the operation to be
 performed to a server. The server is then responsible for performing
 the necessary operation(s) in the directory. Upon completion of the
 operation(s), the server returns a response containing any results or
 errors to the requesting client.

 In keeping with the goal of easing the costs associated with use of
 the directory, it is an objective of this protocol to minimize the
 complexity of clients so as to facilitate widespread deployment of
 applications capable of using the directory.

 Note that although servers are required to return responses whenever
 such responses are defined in the protocol, there is no requirement
 for synchronous behavior on the part of either clients or servers.
 Requests and responses for multiple operations may be exchanged
 between a client and server in any order, provided the client
 eventually receives a response for every request that requires one.

 In LDAP versions 1 and 2, no provision was made for protocol servers
 returning referrals to clients. However, for improved performance
 and distribution this version of the protocol permits servers to
 return to clients referrals to other servers. This allows servers to
 offload the work of contacting other servers to progress operations.

Wahl, et. al. Standards Track [Page 4]

C
om

pendium
 1 page 308

RFC 2251 LDAPv3 December 1997

 Note that the core protocol operations defined in this document can
 be mapped to a strict subset of the X.500(1997) directory abstract
 service, so it can be cleanly provided by the DAP. However there is
 not a one-to-one mapping between LDAP protocol operations and DAP
 operations: server implementations acting as a gateway to X.500
 directories may need to make multiple DAP requests.

3.2. Data Model

 This section provides a brief introduction to the X.500 data model,
 as used by LDAP.

 The LDAP protocol assumes there are one or more servers which jointly
 provide access to a Directory Information Tree (DIT). The tree is
 made up of entries. Entries have names: one or more attribute values
 from the entry form its relative distinguished name (RDN), which MUST
 be unique among all its siblings. The concatenation of the relative
 distinguished names of the sequence of entries from a particular
 entry to an immediate subordinate of the root of the tree forms that
 entry's Distinguished Name (DN), which is unique in the tree. An
 example of a Distinguished Name is

 CN=Steve Kille, O=Isode Limited, C=GB

 Some servers may hold cache or shadow copies of entries, which can be
 used to answer search and comparison queries, but will return
 referrals or contact other servers if modification operations are
 requested.

 Servers which perform caching or shadowing MUST ensure that they do
 not violate any access control constraints placed on the data by the
 originating server.

 The largest collection of entries, starting at an entry that is
 mastered by a particular server, and including all its subordinates
 and their subordinates, down to the entries which are mastered by
 different servers, is termed a naming context. The root of the DIT
 is a DSA-specific Entry (DSE) and not part of any naming context:
 each server has different attribute values in the root DSE. (DSA is
 an X.500 term for the directory server).

3.2.1. Attributes of Entries

 Entries consist of a set of attributes. An attribute is a type with
 one or more associated values. The attribute type is identified by a
 short descriptive name and an OID (object identifier). The attribute

Wahl, et. al. Standards Track [Page 5]

RFC 2251 LDAPv3 December 1997

 type governs whether there can be more than one value of an attribute
 of that type in an entry, the syntax to which the values must
 conform, the kinds of matching which can be performed on values of
 that attribute, and other functions.

 An example of an attribute is "mail". There may be one or more values
 of this attribute, they must be IA5 (ASCII) strings, and they are
 case insensitive (e.g. "foo@bar.com" will match "FOO@BAR.COM").

 Schema is the collection of attribute type definitions, object class
 definitions and other information which a server uses to determine
 how to match a filter or attribute value assertion (in a compare
 operation) against the attributes of an entry, and whether to permit
 add and modify operations. The definition of schema for use with
 LDAP is given in [5] and [6]. Additional schema elements may be
 defined in other documents.

 Each entry MUST have an objectClass attribute. The objectClass
 attribute specifies the object classes of an entry, which along with
 the system and user schema determine the permitted attributes of an
 entry. Values of this attribute may be modified by clients, but the
 objectClass attribute cannot be removed. Servers may restrict the
 modifications of this attribute to prevent the basic structural class
 of the entry from being changed (e.g. one cannot change a person into
 a country). When creating an entry or adding an objectClass value to
 an entry, all superclasses of the named classes are implicitly added
 as well if not already present, and the client must supply values for
 any mandatory attributes of new superclasses.

 Some attributes, termed operational attributes, are used by servers
 for administering the directory system itself. They are not returned
 in search results unless explicitly requested by name. Attributes
 which are not operational, such as "mail", will have their schema and
 syntax constraints enforced by servers, but servers will generally
 not make use of their values.

 Servers MUST NOT permit clients to add attributes to an entry unless
 those attributes are permitted by the object class definitions, the
 schema controlling that entry (specified in the subschema - see
 below), or are operational attributes known to that server and used
 for administrative purposes. Note that there is a particular
 objectClass 'extensibleObject' defined in [5] which permits all user
 attributes to be present in an entry.

 Entries MAY contain, among others, the following operational
 attributes, defined in [5]. These attributes are maintained
 automatically by the server and are not modifiable by clients:

Wahl, et. al. Standards Track [Page 6]

C
om

pendium
 1 page 309

RFC 2251 LDAPv3 December 1997

 - creatorsName: the Distinguished Name of the user who added this
 entry to the directory.

 - createTimestamp: the time this entry was added to the directory.

 - modifiersName: the Distinguished Name of the user who last modified
 this entry.

 - modifyTimestamp: the time this entry was last modified.

 - subschemaSubentry: the Distinguished Name of the subschema entry
 (or subentry) which controls the schema for this entry.

3.2.2. Subschema Entries and Subentries

 Subschema entries are used for administering information about the
 directory schema, in particular the object classes and attribute
 types supported by directory servers. A single subschema entry
 contains all schema definitions used by entries in a particular part
 of the directory tree.

 Servers which follow X.500(93) models SHOULD implement subschema
 using the X.500 subschema mechanisms, and so these subschemas are not
 ordinary entries. LDAP clients SHOULD NOT assume that servers
 implement any of the other aspects of X.500 subschema. A server
 which masters entries and permits clients to modify these entries
 MUST implement and provide access to these subschema entries, so that
 its clients may discover the attributes and object classes which are
 permitted to be present. It is strongly recommended that all other
 servers implement this as well.

 The following four attributes MUST be present in all subschema
 entries:

 - cn: this attribute MUST be used to form the RDN of the subschema
 entry.

 - objectClass: the attribute MUST have at least the values "top" and
 "subschema".

 - objectClasses: each value of this attribute specifies an object
 class known to the server.

 - attributeTypes: each value of this attribute specifies an attribute
 type known to the server.

 These are defined in [5]. Other attributes MAY be present in
 subschema entries, to reflect additional supported capabilities.

Wahl, et. al. Standards Track [Page 7]

RFC 2251 LDAPv3 December 1997

 These include matchingRules, matchingRuleUse, dITStructureRules,
 dITContentRules, nameForms and ldapSyntaxes.

 Servers SHOULD provide the attributes createTimestamp and
 modifyTimestamp in subschema entries, in order to allow clients to
 maintain their caches of schema information.

 Clients MUST only retrieve attributes from a subschema entry by
 requesting a base object search of the entry, where the search filter
 is "(objectClass=subschema)". (This will allow LDAPv3 servers which
 gateway to X.500(93) to detect that subentry information is being
 requested.)

3.3. Relationship to X.500

 This document defines LDAP in terms of X.500 as an X.500 access
 mechanism. An LDAP server MUST act in accordance with the
 X.500(1993) series of ITU recommendations when providing the service.
 However, it is not required that an LDAP server make use of any X.500
 protocols in providing this service, e.g. LDAP can be mapped onto any
 other directory system so long as the X.500 data and service model as
 used in LDAP is not violated in the LDAP interface.

3.4. Server-specific Data Requirements

 An LDAP server MUST provide information about itself and other
 information that is specific to each server. This is represented as
 a group of attributes located in the root DSE (DSA-Specific Entry),
 which is named with the zero-length LDAPDN. These attributes are
 retrievable if a client performs a base object search of the root
 with filter "(objectClass=*)", however they are subject to access
 control restrictions. The root DSE MUST NOT be included if the
 client performs a subtree search starting from the root.

 Servers may allow clients to modify these attributes.

 The following attributes of the root DSE are defined in section 5 of
 [5]. Additional attributes may be defined in other documents.

 - namingContexts: naming contexts held in the server. Naming contexts
 are defined in section 17 of X.501 [6].

 - subschemaSubentry: subschema entries (or subentries) known by this
 server.

 - altServer: alternative servers in case this one is later
 unavailable.

Wahl, et. al. Standards Track [Page 8]

C
om

pendium
 1 page 310

RFC 2251 LDAPv3 December 1997

 - supportedExtension: list of supported extended operations.

 - supportedControl: list of supported controls.

 - supportedSASLMechanisms: list of supported SASL security features.

 - supportedLDAPVersion: LDAP versions implemented by the server.

 If the server does not master entries and does not know the locations
 of schema information, the subschemaSubentry attribute is not present
 in the root DSE. If the server masters directory entries under one
 or more schema rules, there may be any number of values of the
 subschemaSubentry attribute in the root DSE.

4. Elements of Protocol

 The LDAP protocol is described using Abstract Syntax Notation 1
 (ASN.1) [3], and is typically transferred using a subset of ASN.1
 Basic Encoding Rules [11]. In order to support future extensions to
 this protocol, clients and servers MUST ignore elements of SEQUENCE
 encodings whose tags they do not recognize.

 Note that unlike X.500, each change to the LDAP protocol other than
 through the extension mechanisms will have a different version
 number. A client will indicate the version it supports as part of
 the bind request, described in section 4.2. If a client has not sent
 a bind, the server MUST assume that version 3 is supported in the
 client (since version 2 required that the client bind first).

 Clients may determine the protocol version a server supports by
 reading the supportedLDAPVersion attribute from the root DSE. Servers
 which implement version 3 or later versions MUST provide this
 attribute. Servers which only implement version 2 may not provide
 this attribute.

4.1. Common Elements

 This section describes the LDAPMessage envelope PDU (Protocol Data
 Unit) format, as well as data type definitions which are used in the
 protocol operations.

4.1.1. Message Envelope

 For the purposes of protocol exchanges, all protocol operations are
 encapsulated in a common envelope, the LDAPMessage, which is defined
 as follows:

 LDAPMessage ::= SEQUENCE {

Wahl, et. al. Standards Track [Page 9]

RFC 2251 LDAPv3 December 1997

 messageID MessageID,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindResponse BindResponse,
 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,
 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,
 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse },
 controls [0] Controls OPTIONAL }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 The function of the LDAPMessage is to provide an envelope containing
 common fields required in all protocol exchanges. At this time the
 only common fields are the message ID and the controls.

 If the server receives a PDU from the client in which the LDAPMessage
 SEQUENCE tag cannot be recognized, the messageID cannot be parsed,
 the tag of the protocolOp is not recognized as a request, or the
 encoding structures or lengths of data fields are found to be
 incorrect, then the server MUST return the notice of disconnection
 described in section 4.4.1, with resultCode protocolError, and
 immediately close the connection. In other cases that the server
 cannot parse the request received by the client, the server MUST
 return an appropriate response to the request, with the resultCode
 set to protocolError.

 If the client receives a PDU from the server which cannot be parsed,
 the client may discard the PDU, or may abruptly close the connection.

 The ASN.1 type Controls is defined in section 4.1.12.

Wahl, et. al. Standards Track [Page 10]

C
om

pendium
 1 page 311

RFC 2251 LDAPv3 December 1997

4.1.1.1. Message ID

 All LDAPMessage envelopes encapsulating responses contain the
 messageID value of the corresponding request LDAPMessage.

 The message ID of a request MUST have a value different from the
 values of any other requests outstanding in the LDAP session of which
 this message is a part.

 A client MUST NOT send a second request with the same message ID as
 an earlier request on the same connection if the client has not
 received the final response from the earlier request. Otherwise the
 behavior is undefined. Typical clients increment a counter for each
 request.

 A client MUST NOT reuse the message id of an abandonRequest or of the
 abandoned operation until it has received a response from the server
 for another request invoked subsequent to the abandonRequest, as the
 abandonRequest itself does not have a response.

4.1.2. String Types

 The LDAPString is a notational convenience to indicate that, although
 strings of LDAPString type encode as OCTET STRING types, the ISO
 10646 [13] character set (a superset of Unicode) is used, encoded
 following the UTF-8 algorithm [14]. Note that in the UTF-8 algorithm
 characters which are the same as ASCII (0x0000 through 0x007F) are
 represented as that same ASCII character in a single byte. The other
 byte values are used to form a variable-length encoding of an
 arbitrary character.

 LDAPString ::= OCTET STRING

 The LDAPOID is a notational convenience to indicate that the
 permitted value of this string is a (UTF-8 encoded) dotted-decimal
 representation of an OBJECT IDENTIFIER.

 LDAPOID ::= OCTET STRING

 For example,

 1.3.6.1.4.1.1466.1.2.3

4.1.3. Distinguished Name and Relative Distinguished Name

 An LDAPDN and a RelativeLDAPDN are respectively defined to be the
 representation of a Distinguished Name and a Relative Distinguished
 Name after encoding according to the specification in [4], such that

Wahl, et. al. Standards Track [Page 11]

RFC 2251 LDAPv3 December 1997

 <distinguished-name> ::= <name>

 <relative-distinguished-name> ::= <name-component>

 where <name> and <name-component> are as defined in [4].

 LDAPDN ::= LDAPString

 RelativeLDAPDN ::= LDAPString

 Only Attribute Types can be present in a relative distinguished name
 component; the options of Attribute Descriptions (next section) MUST
 NOT be used in specifying distinguished names.

4.1.4. Attribute Type

 An AttributeType takes on as its value the textual string associated
 with that AttributeType in its specification.

 AttributeType ::= LDAPString

 Each attribute type has a unique OBJECT IDENTIFIER which has been
 assigned to it. This identifier may be written as decimal digits
 with components separated by periods, e.g. "2.5.4.10".

 A specification may also assign one or more textual names for an
 attribute type. These names MUST begin with a letter, and only
 contain ASCII letters, digit characters and hyphens. They are case
 insensitive. (These ASCII characters are identical to ISO 10646
 characters whose UTF-8 encoding is a single byte between 0x00 and
 0x7F.)

 If the server has a textual name for an attribute type, it MUST use a
 textual name for attributes returned in search results. The dotted-
 decimal OBJECT IDENTIFIER is only used if there is no textual name
 for an attribute type.

 Attribute type textual names are non-unique, as two different
 specifications (neither in standards track RFCs) may choose the same
 name.

 A server which masters or shadows entries SHOULD list all the
 attribute types it supports in the subschema entries, using the
 attributeTypes attribute. Servers which support an open-ended set of
 attributes SHOULD include at least the attributeTypes value for the
 'objectClass' attribute. Clients MAY retrieve the attributeTypes
 value from subschema entries in order to obtain the OBJECT IDENTIFIER
 and other information associated with attribute types.

Wahl, et. al. Standards Track [Page 12]

C
om

pendium
 1 page 312

RFC 2251 LDAPv3 December 1997

 Some attribute type names which are used in this version of LDAP are
 described in [5]. Servers may implement additional attribute types.

4.1.5. Attribute Description

 An AttributeDescription is a superset of the definition of the
 AttributeType. It has the same ASN.1 definition, but allows
 additional options to be specified. They are also case insensitive.

 AttributeDescription ::= LDAPString

 A value of AttributeDescription is based on the following BNF:

 <AttributeDescription> ::= <AttributeType> [";" <options>]

 <options> ::= <option> | <option> ";" <options>

 <option> ::= <opt-char> <opt-char>*

 <opt-char> ::= ASCII-equivalent letters, numbers and hyphen

 Examples of valid AttributeDescription:

 cn
 userCertificate;binary

 One option, "binary", is defined in this document. Additional
 options may be defined in IETF standards-track and experimental RFCs.
 Options beginning with "x-" are reserved for private experiments.
 Any option could be associated with any AttributeType, although not
 all combinations may be supported by a server.

 An AttributeDescription with one or more options is treated as a
 subtype of the attribute type without any options. Options present
 in an AttributeDescription are never mutually exclusive.
 Implementations MUST generate the <options> list sorted in ascending
 order, and servers MUST treat any two AttributeDescription with the
 same AttributeType and options as equivalent. A server will treat an
 AttributeDescription with any options it does not implement as an
 unrecognized attribute type.

 The data type "AttributeDescriptionList" describes a list of 0 or
 more attribute types. (A list of zero elements has special
 significance in the Search request.)

 AttributeDescriptionList ::= SEQUENCE OF
 AttributeDescription

Wahl, et. al. Standards Track [Page 13]

RFC 2251 LDAPv3 December 1997

4.1.5.1. Binary Option

 If the "binary" option is present in an AttributeDescription, it
 overrides any string-based encoding representation defined for that
 attribute in [5]. Instead the attribute is to be transferred as a
 binary value encoded using the Basic Encoding Rules [11]. The syntax
 of the binary value is an ASN.1 data type definition which is
 referenced by the "SYNTAX" part of the attribute type definition.

 The presence or absence of the "binary" option only affects the
 transfer of attribute values in protocol; servers store any
 particular attribute in a single format. If a client requests that a
 server return an attribute in the binary format, but the server
 cannot generate that format, the server MUST treat this attribute
 type as an unrecognized attribute type. Similarly, clients MUST NOT
 expect servers to return an attribute in binary format if the client
 requested that attribute by name without the binary option.

 This option is intended to be used with attributes whose syntax is a
 complex ASN.1 data type, and the structure of values of that type is
 needed by clients. Examples of this kind of syntax are "Certificate"
 and "CertificateList".

4.1.6. Attribute Value

 A field of type AttributeValue takes on as its value either a string
 encoding of a AttributeValue data type, or an OCTET STRING containing
 an encoded binary value, depending on whether the "binary" option is
 present in the companion AttributeDescription to this AttributeValue.

 The definition of string encodings for different syntaxes and types
 may be found in other documents, and in particular [5].

 AttributeValue ::= OCTET STRING

 Note that there is no defined limit on the size of this encoding;
 thus protocol values may include multi-megabyte attributes (e.g.
 photographs).

 Attributes may be defined which have arbitrary and non-printable
 syntax. Implementations MUST NEITHER simply display nor attempt to
 decode as ASN.1 a value if its syntax is not known. The
 implementation may attempt to discover the subschema of the source
 entry, and retrieve the values of attributeTypes from it.

 Clients MUST NOT send attribute values in a request which are not
 valid according to the syntax defined for the attributes.

Wahl, et. al. Standards Track [Page 14]

C
om

pendium
 1 page 313

RFC 2251 LDAPv3 December 1997

4.1.7. Attribute Value Assertion

 The AttributeValueAssertion type definition is similar to the one in
 the X.500 directory standards. It contains an attribute description
 and a matching rule assertion value suitable for that type.

 AttributeValueAssertion ::= SEQUENCE {
 attributeDesc AttributeDescription,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 If the "binary" option is present in attributeDesc, this signals to
 the server that the assertionValue is a binary encoding of the
 assertion value.

 For all the string-valued user attributes described in [5], the
 assertion value syntax is the same as the value syntax. Clients may
 use attribute values as assertion values in compare requests and
 search filters.

 Note however that the assertion syntax may be different from the
 value syntax for other attributes or for non-equality matching rules.
 These may have an assertion syntax which contains only part of the
 value. See section 20.2.1.8 of X.501 [6] for examples.

4.1.8. Attribute

 An attribute consists of a type and one or more values of that type.
 (Though attributes MUST have at least one value when stored, due to
 access control restrictions the set may be empty when transferred in
 protocol. This is described in section 4.5.2, concerning the
 PartialAttributeList type.)

 Attribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Each attribute value is distinct in the set (no duplicates). The
 order of attribute values within the vals set is undefined and
 implementation-dependent, and MUST NOT be relied upon.

4.1.9. Matching Rule Identifier

 A matching rule is a means of expressing how a server should compare
 an AssertionValue received in a search filter with an abstract data
 value. The matching rule defines the syntax of the assertion value
 and the process to be performed in the server.

Wahl, et. al. Standards Track [Page 15]

RFC 2251 LDAPv3 December 1997

 An X.501(1993) Matching Rule is identified in the LDAP protocol by
 the printable representation of its OBJECT IDENTIFIER, either as one
 of the strings given in [5], or as decimal digits with components
 separated by periods, e.g. "caseIgnoreIA5Match" or
 "1.3.6.1.4.1.453.33.33".

 MatchingRuleId ::= LDAPString

 Servers which support matching rules for use in the extensibleMatch
 search filter MUST list the matching rules they implement in
 subschema entries, using the matchingRules attributes. The server
 SHOULD also list there, using the matchingRuleUse attribute, the
 attribute types with which each matching rule can be used. More
 information is given in section 4.4 of [5].

4.1.10. Result Message

 The LDAPResult is the construct used in this protocol to return
 success or failure indications from servers to clients. In response
 to various requests servers will return responses containing fields
 of type LDAPResult to indicate the final status of a protocol
 operation request.

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),
 compareTrue (6),

 authMethodNotSupported (7),
 strongAuthRequired (8),
 -- 9 reserved --
 referral (10), -- new
 adminLimitExceeded (11), -- new
 unavailableCriticalExtension (12), -- new
 confidentialityRequired (13), -- new
 saslBindInProgress (14), -- new
 noSuchAttribute (16),
 undefinedAttributeType (17),
 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 -- 22-31 unused --

Wahl, et. al. Standards Track [Page 16]

C
om

pendium
 1 page 314

RFC 2251 LDAPv3 December 1997

 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 -- 35 reserved for undefined isLeaf --
 aliasDereferencingProblem (36),
 -- 37-47 unused --
 inappropriateAuthentication (48),
 invalidCredentials (49),
 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --
 namingViolation (64),
 objectClassViolation (65),
 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 -- 70 reserved for CLDAP --
 affectsMultipleDSAs (71), -- new
 -- 72-79 unused --
 other (80) },
 -- 81-90 reserved for APIs --
 matchedDN LDAPDN,
 errorMessage LDAPString,
 referral [3] Referral OPTIONAL }

 All the result codes with the exception of success, compareFalse and
 compareTrue are to be treated as meaning the operation could not be
 completed in its entirety.

 Most of the result codes are based on problem indications from X.511
 error data types. Result codes from 16 to 21 indicate an
 AttributeProblem, codes 32, 33, 34 and 36 indicate a NameProblem,
 codes 48, 49 and 50 indicate a SecurityProblem, codes 51 to 54
 indicate a ServiceProblem, and codes 64 to 69 and 71 indicates an
 UpdateProblem.

 If a client receives a result code which is not listed above, it is
 to be treated as an unknown error condition.

 The errorMessage field of this construct may, at the server's option,
 be used to return a string containing a textual, human-readable
 (terminal control and page formatting characters should be avoided)
 error diagnostic. As this error diagnostic is not standardized,

Wahl, et. al. Standards Track [Page 17]

RFC 2251 LDAPv3 December 1997

 implementations MUST NOT rely on the values returned. If the server
 chooses not to return a textual diagnostic, the errorMessage field of
 the LDAPResult type MUST contain a zero length string.

 For result codes of noSuchObject, aliasProblem, invalidDNSyntax and
 aliasDereferencingProblem, the matchedDN field is set to the name of
 the lowest entry (object or alias) in the directory that was matched.
 If no aliases were dereferenced while attempting to locate the entry,
 this will be a truncated form of the name provided, or if aliases
 were dereferenced, of the resulting name, as defined in section 12.5
 of X.511 [8]. The matchedDN field is to be set to a zero length
 string with all other result codes.

4.1.11. Referral

 The referral error indicates that the contacted server does not hold
 the target entry of the request. The referral field is present in an
 LDAPResult if the LDAPResult.resultCode field value is referral, and
 absent with all other result codes. It contains a reference to
 another server (or set of servers) which may be accessed via LDAP or
 other protocols. Referrals can be returned in response to any
 operation request (except unbind and abandon which do not have
 responses). At least one URL MUST be present in the Referral.

 The referral is not returned for a singleLevel or wholeSubtree search
 in which the search scope spans multiple naming contexts, and several
 different servers would need to be contacted to complete the
 operation. Instead, continuation references, described in section
 4.5.3, are returned.

 Referral ::= SEQUENCE OF LDAPURL -- one or more

 LDAPURL ::= LDAPString -- limited to characters permitted in URLs

 If the client wishes to progress the operation, it MUST follow the
 referral by contacting any one of servers. All the URLs MUST be
 equally capable of being used to progress the operation. (The
 mechanisms for how this is achieved by multiple servers are outside
 the scope of this document.)

 URLs for servers implementing the LDAP protocol are written according
 to [9]. If an alias was dereferenced, the <dn> part of the URL MUST
 be present, with the new target object name. If the <dn> part is
 present, the client MUST use this name in its next request to
 progress the operation, and if it is not present the client will use
 the same name as in the original request. Some servers (e.g.
 participating in distributed indexing) may provide a different filter
 in a referral for a search operation. If the filter part of the URL

Wahl, et. al. Standards Track [Page 18]

C
om

pendium
 1 page 315

RFC 2251 LDAPv3 December 1997

 is present in an LDAPURL, the client MUST use this filter in its next
 request to progress this search, and if it is not present the client
 MUST use the same filter as it used for that search. Other aspects
 of the new request may be the same or different as the request which
 generated the referral.

 Note that UTF-8 characters appearing in a DN or search filter may not
 be legal for URLs (e.g. spaces) and MUST be escaped using the %
 method in RFC 1738 [7].

 Other kinds of URLs may be returned, so long as the operation could
 be performed using that protocol.

4.1.12. Controls

 A control is a way to specify extension information. Controls which
 are sent as part of a request apply only to that request and are not
 saved.

 Controls ::= SEQUENCE OF Control

 Control ::= SEQUENCE {
 controlType LDAPOID,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL }

 The controlType field MUST be a UTF-8 encoded dotted-decimal
 representation of an OBJECT IDENTIFIER which uniquely identifies the
 control. This prevents conflicts between control names.

 The criticality field is either TRUE or FALSE.

 If the server recognizes the control type and it is appropriate for
 the operation, the server will make use of the control when
 performing the operation.

 If the server does not recognize the control type and the criticality
 field is TRUE, the server MUST NOT perform the operation, and MUST
 instead return the resultCode unsupportedCriticalExtension.

 If the control is not appropriate for the operation and criticality
 field is TRUE, the server MUST NOT perform the operation, and MUST
 instead return the resultCode unsupportedCriticalExtension.

 If the control is unrecognized or inappropriate but the criticality
 field is FALSE, the server MUST ignore the control.

Wahl, et. al. Standards Track [Page 19]

RFC 2251 LDAPv3 December 1997

 The controlValue contains any information associated with the
 control, and its format is defined for the control. The server MUST
 be prepared to handle arbitrary contents of the controlValue octet
 string, including zero bytes. It is absent only if there is no value
 information which is associated with a control of its type.

 This document does not define any controls. Controls may be defined
 in other documents. The definition of a control consists of:

 - the OBJECT IDENTIFIER assigned to the control,

 - whether the control is always noncritical, always critical, or
 critical at the client's option,

 - the format of the controlValue contents of the control.

 Servers list the controls which they recognize in the
 supportedControl attribute in the root DSE.

4.2. Bind Operation

 The function of the Bind Operation is to allow authentication
 information to be exchanged between the client and server.

 The Bind Request is defined as follows:

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),
 name LDAPDN,
 authentication AuthenticationChoice }

 AuthenticationChoice ::= CHOICE {
 simple [0] OCTET STRING,
 -- 1 and 2 reserved
 sasl [3] SaslCredentials }

 SaslCredentials ::= SEQUENCE {
 mechanism LDAPString,
 credentials OCTET STRING OPTIONAL }

 Parameters of the Bind Request are:

 - version: A version number indicating the version of the protocol to
 be used in this protocol session. This document describes version
 3 of the LDAP protocol. Note that there is no version negotiation,
 and the client just sets this parameter to the version it desires.
 If the client requests protocol version 2, a server that supports
 the version 2 protocol as described in [2] will not return any v3-

Wahl, et. al. Standards Track [Page 20]

C
om

pendium
 1 page 316

RFC 2251 LDAPv3 December 1997

 specific protocol fields. (Note that not all LDAP servers will
 support protocol version 2, since they may be unable to generate
 the attribute syntaxes associated with version 2.)

 - name: The name of the directory object that the client wishes to
 bind as. This field may take on a null value (a zero length
 string) for the purposes of anonymous binds, when authentication
 has been performed at a lower layer, or when using SASL credentials
 with a mechanism that includes the LDAPDN in the credentials.

 - authentication: information used to authenticate the name, if any,
 provided in the Bind Request.

 Upon receipt of a Bind Request, a protocol server will authenticate
 the requesting client, if necessary. The server will then return a
 Bind Response to the client indicating the status of the
 authentication.

 Authorization is the use of this authentication information when
 performing operations. Authorization MAY be affected by factors
 outside of the LDAP Bind request, such as lower layer security
 services.

4.2.1. Sequencing of the Bind Request

 For some SASL authentication mechanisms, it may be necessary for the
 client to invoke the BindRequest multiple times. If at any stage the
 client wishes to abort the bind process it MAY unbind and then drop
 the underlying connection. Clients MUST NOT invoke operations
 between two Bind requests made as part of a multi-stage bind.

 A client may abort a SASL bind negotiation by sending a BindRequest
 with a different value in the mechanism field of SaslCredentials, or
 an AuthenticationChoice other than sasl.

 If the client sends a BindRequest with the sasl mechanism field as an
 empty string, the server MUST return a BindResponse with
 authMethodNotSupported as the resultCode. This will allow clients to
 abort a negotiation if it wishes to try again with the same SASL
 mechanism.

 Unlike LDAP v2, the client need not send a Bind Request in the first
 PDU of the connection. The client may request any operations and the
 server MUST treat these as unauthenticated. If the server requires
 that the client bind before browsing or modifying the directory, the
 server MAY reject a request other than binding, unbinding or an
 extended request with the "operationsError" result.

Wahl, et. al. Standards Track [Page 21]

RFC 2251 LDAPv3 December 1997

 If the client did not bind before sending a request and receives an
 operationsError, it may then send a Bind Request. If this also fails
 or the client chooses not to bind on the existing connection, it will
 close the connection, reopen it and begin again by first sending a
 PDU with a Bind Request. This will aid in interoperating with
 servers implementing other versions of LDAP.

 Clients MAY send multiple bind requests on a connection to change
 their credentials. A subsequent bind process has the effect of
 abandoning all operations outstanding on the connection. (This
 simplifies server implementation.) Authentication from earlier binds
 are subsequently ignored, and so if the bind fails, the connection
 will be treated as anonymous. If a SASL transfer encryption or
 integrity mechanism has been negotiated, and that mechanism does not
 support the changing of credentials from one identity to another,
 then the client MUST instead establish a new connection.

4.2.2. Authentication and Other Security Services

 The simple authentication option provides minimal authentication
 facilities, with the contents of the authentication field consisting
 only of a cleartext password. Note that the use of cleartext
 passwords is not recommended over open networks when there is no
 authentication or encryption being performed by a lower layer; see
 the "Security Considerations" section.

 If no authentication is to be performed, then the simple
 authentication option MUST be chosen, and the password be of zero
 length. (This is often done by LDAPv2 clients.) Typically the DN is
 also of zero length.

 The sasl choice allows for any mechanism defined for use with SASL
 [12]. The mechanism field contains the name of the mechanism. The
 credentials field contains the arbitrary data used for
 authentication, inside an OCTET STRING wrapper. Note that unlike
 some Internet application protocols where SASL is used, LDAP is not
 text-based, thus no base64 transformations are performed on the
 credentials.

 If any SASL-based integrity or confidentiality services are enabled,
 they take effect following the transmission by the server and
 reception by the client of the final BindResponse with resultCode
 success.

 The client can request that the server use authentication information
 from a lower layer protocol by using the SASL EXTERNAL mechanism.

Wahl, et. al. Standards Track [Page 22]

C
om

pendium
 1 page 317

RFC 2251 LDAPv3 December 1997

4.2.3. Bind Response

 The Bind Response is defined as follows.

 BindResponse ::= [APPLICATION 1] SEQUENCE {
 COMPONENTS OF LDAPResult,
 serverSaslCreds [7] OCTET STRING OPTIONAL }

 BindResponse consists simply of an indication from the server of he
 status of the client's request for authentication.

 f the bind was successful, the resultCode will be success, therwise
 it will be one of:

 - operationsError: server encountered an internal error,

 - protocolError: unrecognized version number or incorrect PDU
 structure,

 - authMethodNotSupported: unrecognized SASL mechanism name,

 - strongAuthRequired: the server requires authentication be
 performed with a SASL mechanism,

 - referral: this server cannot accept this bind and the client
 should try another,

 - saslBindInProgress: the server requires the client to send a
 new bind request, with the same sasl mechanism, to continue the
 authentication process,

 - inappropriateAuthentication: the server requires the client
 which had attempted to bind anonymously or without supplying
 credentials to provide some form of credentials,

 - invalidCredentials: the wrong password was supplied or the SASL
 credentials could not be processed,

 - unavailable: the server is shutting down.

 If the server does not support the client's requested protocol
 version, it MUST set the resultCode to protocolError.

 If the client receives a BindResponse response where the resultCode
 was protocolError, it MUST close the connection as the server will be
 unwilling to accept further operations. (This is for compatibility
 with earlier versions of LDAP, in which the bind was always the first
 operation, and there was no negotiation.)

Wahl, et. al. Standards Track [Page 23]

RFC 2251 LDAPv3 December 1997

 The serverSaslCreds are used as part of a SASL-defined bind mechanism
 to allow the client to authenticate the server to which it is
 communicating, or to perform "challenge-response" authentication. If
 the client bound with the password choice, or the SASL mechanism does
 not require the server to return information to the client, then this
 field is not to be included in the result.

4.3. Unbind Operation

 The function of the Unbind Operation is to terminate a protocol
 session. The Unbind Operation is defined as follows:

 UnbindRequest ::= [APPLICATION 2] NULL

 The Unbind Operation has no response defined. Upon transmission of an
 UnbindRequest, a protocol client may assume that the protocol session
 is terminated. Upon receipt of an UnbindRequest, a protocol server
 may assume that the requesting client has terminated the session and
 that all outstanding requests may be discarded, and may close the
 connection.

4.4. Unsolicited Notification

 An unsolicited notification is an LDAPMessage sent from the server to
 the client which is not in response to any LDAPMessage received by
 the server. It is used to signal an extraordinary condition in the
 server or in the connection between the client and the server. The
 notification is of an advisory nature, and the server will not expect
 any response to be returned from the client.

 The unsolicited notification is structured as an LDAPMessage in which
 the messageID is 0 and protocolOp is of the extendedResp form. The
 responseName field of the ExtendedResponse is present. The LDAPOID
 value MUST be unique for this notification, and not be used in any
 other situation.

 One unsolicited notification is defined in this document.

4.4.1. Notice of Disconnection

 This notification may be used by the server to advise the client that
 the server is about to close the connection due to an error
 condition. Note that this notification is NOT a response to an
 unbind requested by the client: the server MUST follow the procedures
 of section 4.3. This notification is intended to assist clients in
 distinguishing between an error condition and a transient network

Wahl, et. al. Standards Track [Page 24]

C
om

pendium
 1 page 318

RFC 2251 LDAPv3 December 1997

 failure. As with a connection close due to network failure, the
 client MUST NOT assume that any outstanding requests which modified
 the directory have succeeded or failed.

 The responseName is 1.3.6.1.4.1.1466.20036, the response field is
 absent, and the resultCode is used to indicate the reason for the
 disconnection.

 The following resultCode values are to be used in this notification:

 - protocolError: The server has received data from the client in
 which
 the LDAPMessage structure could not be parsed.

 - strongAuthRequired: The server has detected that an established
 underlying security association protecting communication between
 the client and server has unexpectedly failed or been compromised.

 - unavailable: This server will stop accepting new connections and
 operations on all existing connections, and be unavailable for an
 extended period of time. The client may make use of an alternative
 server.

 After sending this notice, the server MUST close the connection.
 After receiving this notice, the client MUST NOT transmit any further
 on the connection, and may abruptly close the connection.

4.5. Search Operation

 The Search Operation allows a client to request that a search be
 performed on its behalf by a server. This can be used to read
 attributes from a single entry, from entries immediately below a
 particular entry, or a whole subtree of entries.

4.5.1. Search Request

 The Search Request is defined as follows:

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),

Wahl, et. al. Standards Track [Page 25]

RFC 2251 LDAPv3 December 1997

 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeDescriptionList }

 Filter ::= CHOICE {
 and [0] SET OF Filter,
 or [1] SET OF Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeDescription,
 -- at least one must be present
 substrings SEQUENCE OF CHOICE {
 initial [0] LDAPString,
 any [1] LDAPString,
 final [2] LDAPString } }

 MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
 matchValue [3] AssertionValue,
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

 Parameters of the Search Request are:

 - baseObject: An LDAPDN that is the base object entry relative to
 which the search is to be performed.

 - scope: An indicator of the scope of the search to be performed. The
 semantics of the possible values of this field are identical to the
 semantics of the scope field in the X.511 Search Operation.

 - derefAliases: An indicator as to how alias objects (as defined in
 X.501) are to be handled in searching. The semantics of the
 possible values of this field are:

 neverDerefAliases: do not dereference aliases in searching
 or in locating the base object of the search;

Wahl, et. al. Standards Track [Page 26]

C
om

pendium
 1 page 319

RFC 2251 LDAPv3 December 1997

 derefInSearching: dereference aliases in subordinates of
 the base object in searching, but not in locating the
 base object of the search;

 derefFindingBaseObj: dereference aliases in locating
 the base object of the search, but not when searching
 subordinates of the base object;

 derefAlways: dereference aliases both in searching and in
 locating the base object of the search.

 - sizelimit: A sizelimit that restricts the maximum number of entries
 to be returned as a result of the search. A value of 0 in this
 field indicates that no client-requested sizelimit restrictions are
 in effect for the search. Servers may enforce a maximum number of
 entries to return.

 - timelimit: A timelimit that restricts the maximum time (in seconds)
 allowed for a search. A value of 0 in this field indicates that no
 client-requested timelimit restrictions are in effect for the
 search.

 - typesOnly: An indicator as to whether search results will contain
 both attribute types and values, or just attribute types. Setting
 this field to TRUE causes only attribute types (no values) to be
 returned. Setting this field to FALSE causes both attribute types
 and values to be returned.

 - filter: A filter that defines the conditions that must be fulfilled
 in order for the search to match a given entry.

 The 'and', 'or' and 'not' choices can be used to form combinations of
 filters. At least one filter element MUST be present in an 'and' or
 'or' choice. The others match against individual attribute values of
 entries in the scope of the search. (Implementor's note: the 'not'
 filter is an example of a tagged choice in an implicitly-tagged
 module. In BER this is treated as if the tag was explicit.)

 A server MUST evaluate filters according to the three-valued logic
 of X.511(93) section 7.8.1. In summary, a filter is evaluated to
 either "TRUE", "FALSE" or "Undefined". If the filter evaluates
 to TRUE for a particular entry, then the attributes of that entry
 are returned as part of the search result (subject to any applicable
 access control restrictions). If the filter evaluates to FALSE or
 Undefined, then the entry is ignored for the search.

Wahl, et. al. Standards Track [Page 27]

RFC 2251 LDAPv3 December 1997

 A filter of the "and" choice is TRUE if all the filters in the SET
 OF evaluate to TRUE, FALSE if at least one filter is FALSE, and
 otherwise Undefined. A filter of the "or" choice is FALSE if all
 of the filters in the SET OF evaluate to FALSE, TRUE if at least
 one filter is TRUE, and Undefined otherwise. A filter of the "not"
 choice is TRUE if the filter being negated is FALSE, FALSE if it is
 TRUE, and Undefined if it is Undefined.

 The present match evaluates to TRUE where there is an attribute or
 subtype of the specified attribute description present in an entry,
 and FALSE otherwise (including a presence test with an unrecognized
 attribute description.)

 The extensibleMatch is new in this version of LDAP. If the
 matchingRule field is absent, the type field MUST be present, and
 the equality match is performed for that type. If the type field is
 absent and matchingRule is present, the matchValue is compared
 against all attributes in an entry which support that matchingRule,
 and the matchingRule determines the syntax for the assertion value
 (the filter item evaluates to TRUE if it matches with at least
 one attribute in the entry, FALSE if it does not match any attribute
 in the entry, and Undefined if the matchingRule is not recognized
 or the assertionValue cannot be parsed.) If the type field is
 present and matchingRule is present, the matchingRule MUST be one
 permitted for use with that type, otherwise the filter item is
 undefined. If the dnAttributes field is set to TRUE, the match is
 applied against all the attributes in an entry's distinguished name
 as well, and also evaluates to TRUE if there is at least one
 attribute in the distinguished name for which the filter item
 evaluates to TRUE. (Editors note: The dnAttributes field is present
 so that there does not need to be multiple versions of generic
 matching rules such as for word matching, one to apply to entries
 and another to apply to entries and dn attributes as well).

 A filter item evaluates to Undefined when the server would not
 be able to determine whether the assertion value matches an
 entry. If an attribute description in an equalityMatch, substrings,
 greaterOrEqual, lessOrEqual, approxMatch or extensibleMatch
 filter is not recognized by the server, a matching rule id in the
 extensibleMatch is not recognized by the server, the assertion
 value cannot be parsed, or the type of filtering requested is not
 implemented, then the filter is Undefined. Thus for example if a
 server did not recognize the attribute type shoeSize, a filter of
 (shoeSize=*) would evaluate to FALSE, and the filters (shoeSize=12),
 (shoeSize>=12) and (shoeSize<=12) would evaluate to Undefined.

Wahl, et. al. Standards Track [Page 28]

C
om

pendium
 1 page 320

RFC 2251 LDAPv3 December 1997

 Servers MUST NOT return errors if attribute descriptions or matching
 rule ids are not recognized, or assertion values cannot be parsed.
 More details of filter processing are given in section 7.8 of X.511
 [8].

 - attributes: A list of the attributes to be returned from each entry
 which matches the search filter. There are two special values which
 may be used: an empty list with no attributes, and the attribute
 description string "*". Both of these signify that all user
 attributes are to be returned. (The "*" allows the client to
 request all user attributes in addition to specific operational
 attributes).

 Attributes MUST be named at most once in the list, and are returned
 at most once in an entry. If there are attribute descriptions in
 the list which are not recognized, they are ignored by the server.

 If the client does not want any attributes returned, it can specify
 a list containing only the attribute with OID "1.1". This OID was
 chosen arbitrarily and does not correspond to any attribute in use.

 Client implementors should note that even if all user attributes are
 requested, some attributes of the entry may not be included in
 search results due to access control or other restrictions.
 Furthermore, servers will not return operational attributes, such
 as objectClasses or attributeTypes, unless they are listed by name,
 since there may be extremely large number of values for certain
 operational attributes. (A list of operational attributes for use
 in LDAP is given in [5].)

 Note that an X.500 "list"-like operation can be emulated by the client
 requesting a one-level LDAP search operation with a filter checking
 for the existence of the objectClass attribute, and that an X.500
 "read"-like operation can be emulated by a base object LDAP search
 operation with the same filter. A server which provides a gateway to
 X.500 is not required to use the Read or List operations, although it
 may choose to do so, and if it does must provide the same semantics
 as the X.500 search operation.

4.5.2. Search Result

 The results of the search attempted by the server upon receipt of a
 Search Request are returned in Search Responses, which are LDAP
 messages containing either SearchResultEntry, SearchResultReference,
 ExtendedResponse or SearchResultDone data types.

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,

Wahl, et. al. Standards Track [Page 29]

RFC 2251 LDAPv3 December 1997

 attributes PartialAttributeList }

 PartialAttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }
 -- implementors should note that the PartialAttributeList may
 -- have zero elements (if none of the attributes of that entry
 -- were requested, or could be returned), and that the vals set
 -- may also have zero elements (if types only was requested, or
 -- all values were excluded from the result.)

 SearchResultReference ::= [APPLICATION 19] SEQUENCE OF LDAPURL
 -- at least one LDAPURL element must be present

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 Upon receipt of a Search Request, a server will perform the necessary
 search of the DIT.

 If the LDAP session is operating over a connection-oriented transport
 such as TCP, the server will return to the client a sequence of
 responses in separate LDAP messages. There may be zero or more
 responses containing SearchResultEntry, one for each entry found
 during the search. There may also be zero or more responses
 containing SearchResultReference, one for each area not explored by
 this server during the search. The SearchResultEntry and
 SearchResultReference PDUs may come in any order. Following all the
 SearchResultReference responses and all SearchResultEntry responses
 to be returned by the server, the server will return a response
 containing the SearchResultDone, which contains an indication of
 success, or detailing any errors that have occurred.

 Each entry returned in a SearchResultEntry will contain all
 attributes, complete with associated values if necessary, as
 specified in the attributes field of the Search Request. Return of
 attributes is subject to access control and other administrative
 policy. Some attributes may be returned in binary format (indicated
 by the AttributeDescription in the response having the binary option
 present).

 Some attributes may be constructed by the server and appear in a
 SearchResultEntry attribute list, although they are not stored
 attributes of an entry. Clients MUST NOT assume that all attributes
 can be modified, even if permitted by access control.

 LDAPMessage responses of the ExtendedResponse form are reserved for
 returning information associated with a control requested by the
 client. These may be defined in future versions of this document.

Wahl, et. al. Standards Track [Page 30]

C
om

pendium
 1 page 321

RFC 2251 LDAPv3 December 1997

4.5.3. Continuation References in the Search Result

 If the server was able to locate the entry referred to by the
 baseObject but was unable to search all the entries in the scope at
 and under the baseObject, the server may return one or more
 SearchResultReference, each containing a reference to another set of
 servers for continuing the operation. A server MUST NOT return any
 SearchResultReference if it has not located the baseObject and
 thus has not searched any entries; in this case it would return a
 SearchResultDone containing a referral resultCode.

 In the absence of indexing information provided to a server from
 servers holding subordinate naming contexts, SearchResultReference
 responses are not affected by search filters and are always returned
 when in scope.

 The SearchResultReference is of the same data type as the Referral.
 URLs for servers implementing the LDAP protocol are written according
 to [9]. The <dn> part MUST be present in the URL, with the new target
 object name. The client MUST use this name in its next request.
 Some servers (e.g. part of a distributed index exchange system) may
 provide a different filter in the URLs of the SearchResultReference.
 If the filter part of the URL is present in an LDAP URL, the client
 MUST use the new filter in its next request to progress the search,
 and if the filter part is absent the client will use again the same
 filter. Other aspects of the new search request may be the same or
 different as the search which generated the continuation references.

 Other kinds of URLs may be returned so long as the operation could be
 performed using that protocol.

 The name of an unexplored subtree in a SearchResultReference need not
 be subordinate to the base object.

 In order to complete the search, the client MUST issue a new search
 operation for each SearchResultReference that is returned. Note that
 the abandon operation described in section 4.11 applies only to a
 particular operation sent on a connection between a client and server,
 and if the client has multiple outstanding search operations to
 different servers, it MUST abandon each operation individually.

4.5.3.1. Example

 For example, suppose the contacted server (hosta) holds the entry
 "O=MNN,C=WW" and the entry "CN=Manager,O=MNN,C=WW". It knows that
 either LDAP-capable servers (hostb) or (hostc) hold
 "OU=People,O=MNN,C=WW" (one is the master and the other server a

Wahl, et. al. Standards Track [Page 31]

RFC 2251 LDAPv3 December 1997

 shadow), and that LDAP-capable server (hostd) holds the subtree
 "OU=Roles,O=MNN,C=WW". If a subtree search of "O=MNN,C=WW" is
 requested to the contacted server, it may return the following:

 SearchResultEntry for O=MNN,C=WW
 SearchResultEntry for CN=Manager,O=MNN,C=WW
 SearchResultReference {
 ldap://hostb/OU=People,O=MNN,C=WW
 ldap://hostc/OU=People,O=MNN,C=WW
 }
 SearchResultReference {
 ldap://hostd/OU=Roles,O=MNN,C=WW
 }
 SearchResultDone (success)

 Client implementors should note that when following a
 SearchResultReference, additional SearchResultReference may be
 generated. Continuing the example, if the client contacted the
 server (hostb) and issued the search for the subtree
 "OU=People,O=MNN,C=WW", the server might respond as follows:

 SearchResultEntry for OU=People,O=MNN,C=WW
 SearchResultReference {
 ldap://hoste/OU=Managers,OU=People,O=MNN,C=WW
 }
 SearchResultReference {
 ldap://hostf/OU=Consultants,OU=People,O=MNN,C=WW
 }
 SearchResultDone (success)

 If the contacted server does not hold the base object for the search,
 then it will return a referral to the client. For example, if the
 client requests a subtree search of "O=XYZ,C=US" to hosta, the server
 may return only a SearchResultDone containing a referral.

 SearchResultDone (referral) {
 ldap://hostg/
 }

4.6. Modify Operation

 The Modify Operation allows a client to request that a modification
 of an entry be performed on its behalf by a server. The Modify
 Request is defined as follows:

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 modification SEQUENCE OF SEQUENCE {

Wahl, et. al. Standards Track [Page 32]

C
om

pendium
 1 page 322

RFC 2251 LDAPv3 December 1997

 operation ENUMERATED {
 add (0),
 delete (1),
 replace (2) },
 modification AttributeTypeAndValues } }

 AttributeTypeAndValues ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Parameters of the Modify Request are:

 - object: The object to be modified. The value of this field contains
 the DN of the entry to be modified. The server will not perform
 any alias dereferencing in determining the object to be modified.

 - modification: A list of modifications to be performed on the entry.
 The entire list of entry modifications MUST be performed
 in the order they are listed, as a single atomic operation. While
 individual modifications may violate the directory schema, the
 resulting entry after the entire list of modifications is performed
 MUST conform to the requirements of the directory schema. The
 values that may be taken on by the 'operation' field in each
 modification construct have the following semantics respectively:

 add: add values listed to the given attribute, creating
 the attribute if necessary;

 delete: delete values listed from the given attribute,
 removing the entire attribute if no values are listed, or
 if all current values of the attribute are listed for
 deletion;

 replace: replace all existing values of the given attribute
 with the new values listed, creating the attribute if it
 did not already exist. A replace with no value will delete
 the entire attribute if it exists, and is ignored if the
 attribute does not exist.

 The result of the modify attempted by the server upon receipt of a
 Modify Request is returned in a Modify Response, defined as follows:

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 Upon receipt of a Modify Request, a server will perform the necessary
 modifications to the DIT.

Wahl, et. al. Standards Track [Page 33]

RFC 2251 LDAPv3 December 1997

 The server will return to the client a single Modify Response
 indicating either the successful completion of the DIT modification,
 or the reason that the modification failed. Note that due to the
 requirement for atomicity in applying the list of modifications in
 the Modify Request, the client may expect that no modifications of
 the DIT have been performed if the Modify Response received indicates
 any sort of error, and that all requested modifications have been
 performed if the Modify Response indicates successful completion of
 the Modify Operation. If the connection fails, whether the
 modification occurred or not is indeterminate.

 The Modify Operation cannot be used to remove from an entry any of
 its distinguished values, those values which form the entry's
 relative distinguished name. An attempt to do so will result in the
 server returning the error notAllowedOnRDN. The Modify DN Operation
 described in section 4.9 is used to rename an entry.

 If an equality match filter has not been defined for an attribute type,
 clients MUST NOT attempt to delete individual values of that attribute
 from an entry using the "delete" form of a modification, and MUST
 instead use the "replace" form.

 Note that due to the simplifications made in LDAP, there is not a
 direct mapping of the modifications in an LDAP ModifyRequest onto the
 EntryModifications of a DAP ModifyEntry operation, and different
 implementations of LDAP-DAP gateways may use different means of
 representing the change. If successful, the final effect of the
 operations on the entry MUST be identical.

4.7. Add Operation

 The Add Operation allows a client to request the addition of an entry
 into the directory. The Add Request is defined as follows:

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList }

 AttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Parameters of the Add Request are:

 - entry: the Distinguished Name of the entry to be added. Note that
 the server will not dereference any aliases in locating the entry
 to be added.

Wahl, et. al. Standards Track [Page 34]

C
om

pendium
 1 page 323

RFC 2251 LDAPv3 December 1997

 - attributes: the list of attributes that make up the content of the
 entry being added. Clients MUST include distinguished values
 (those forming the entry's own RDN) in this list, the objectClass
 attribute, and values of any mandatory attributes of the listed
 object classes. Clients MUST NOT supply the createTimestamp or
 creatorsName attributes, since these will be generated
 automatically by the server.

 The entry named in the entry field of the AddRequest MUST NOT exist
 for the AddRequest to succeed. The parent of the entry to be added
 MUST exist. For example, if the client attempted to add
 "CN=JS,O=Foo,C=US", the "O=Foo,C=US" entry did not exist, and the
 "C=US" entry did exist, then the server would return the error
 noSuchObject with the matchedDN field containing "C=US". If the
 parent entry exists but is not in a naming context held by the
 server, the server SHOULD return a referral to the server holding the
 parent entry.

 Servers implementations SHOULD NOT restrict where entries can be
 located in the directory. Some servers MAY allow the administrator
 to restrict the classes of entries which can be added to the
 directory.

 Upon receipt of an Add Request, a server will attempt to perform the
 add requested. The result of the add attempt will be returned to the
 client in the Add Response, defined as follows:

 AddResponse ::= [APPLICATION 9] LDAPResult

 A response of success indicates that the new entry is present in the
 directory.

4.8. Delete Operation

 The Delete Operation allows a client to request the removal of an
 entry from the directory. The Delete Request is defined as follows:

 DelRequest ::= [APPLICATION 10] LDAPDN

 The Delete Request consists of the Distinguished Name of the entry to
 be deleted. Note that the server will not dereference aliases while
 resolving the name of the target entry to be removed, and that only
 leaf entries (those with no subordinate entries) can be deleted with
 this operation.

 The result of the delete attempted by the server upon receipt of a
 Delete Request is returned in the Delete Response, defined as
 follows:

Wahl, et. al. Standards Track [Page 35]

RFC 2251 LDAPv3 December 1997

 DelResponse ::= [APPLICATION 11] LDAPResult

 Upon receipt of a Delete Request, a server will attempt to perform
 the entry removal requested. The result of the delete attempt will be
 returned to the client in the Delete Response.

4.9. Modify DN Operation

 The Modify DN Operation allows a client to change the leftmost (least
 significant) component of the name of an entry in the directory, or
 to move a subtree of entries to a new location in the directory. The
 Modify DN Request is defined as follows:

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 Parameters of the Modify DN Request are:

 - entry: the Distinguished Name of the entry to be changed. This
 entry may or may not have subordinate entries.

 - newrdn: the RDN that will form the leftmost component of the new
 name of the entry.

 - deleteoldrdn: a boolean parameter that controls whether the old RDN
 attribute values are to be retained as attributes of the entry, or
 deleted from the entry.

 - newSuperior: if present, this is the Distinguished Name of the entry
 which becomes the immediate superior of the existing entry.

 The result of the name change attempted by the server upon receipt of
 a Modify DN Request is returned in the Modify DN Response, defined
 as follows:

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

 Upon receipt of a ModifyDNRequest, a server will attempt to
 perform the name change. The result of the name change attempt will
 be returned to the client in the Modify DN Response.

 For example, if the entry named in the "entry" parameter was
 "cn=John Smith,c=US", the newrdn parameter was "cn=John Cougar Smith",
 and the newSuperior parameter was absent, then this operation would

Wahl, et. al. Standards Track [Page 36]

C
om

pendium
 1 page 324

RFC 2251 LDAPv3 December 1997

 attempt to rename the entry to be "cn=John Cougar Smith,c=US". If
 there was already an entry with that name, the operation would fail
 with error code entryAlreadyExists.

 If the deleteoldrdn parameter is TRUE, the values forming the old
 RDN are deleted from the entry. If the deleteoldrdn parameter is
 FALSE, the values forming the old RDN will be retained as
 non-distinguished attribute values of the entry. The server may
 not perform the operation and return an error code if the setting of
 the deleteoldrdn parameter would cause a schema inconsistency in the
 entry.

 Note that X.500 restricts the ModifyDN operation to only affect
 entries that are contained within a single server. If the LDAP
 server is mapped onto DAP, then this restriction will apply, and the
 resultCode affectsMultipleDSAs will be returned if this error
 occurred. In general clients MUST NOT expect to be able to perform
 arbitrary movements of entries and subtrees between servers.

4.10. Compare Operation

 The Compare Operation allows a client to compare an assertion
 provided with an entry in the directory. The Compare Request is
 defined as follows:

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion }

 Parameters of the Compare Request are:

 - entry: the name of the entry to be compared with.

 - ava: the assertion with which an attribute in the entry is to be
 compared.

 The result of the compare attempted by the server upon receipt of a
 Compare Request is returned in the Compare Response, defined as
 follows:

 CompareResponse ::= [APPLICATION 15] LDAPResult

 Upon receipt of a Compare Request, a server will attempt to perform
 the requested comparison. The result of the comparison will be
 returned to the client in the Compare Response. Note that errors and
 the result of comparison are all returned in the same construct.

Wahl, et. al. Standards Track [Page 37]

RFC 2251 LDAPv3 December 1997

 Note that some directory systems may establish access controls which
 permit the values of certain attributes (such as userPassword) to be
 compared but not read. In a search result, it may be that an
 attribute of that type would be returned, but with an empty set of
 values.

4.11. Abandon Operation

 The function of the Abandon Operation is to allow a client to request
 that the server abandon an outstanding operation. The Abandon
 Request is defined as follows:

 AbandonRequest ::= [APPLICATION 16] MessageID

 The MessageID MUST be that of a an operation which was requested
 earlier in this connection.

 (The abandon request itself has its own message id. This is distinct
 from the id of the earlier operation being abandoned.)

 There is no response defined in the Abandon Operation. Upon
 transmission of an Abandon Operation, a client may expect that the
 operation identified by the Message ID in the Abandon Request has
 been abandoned. In the event that a server receives an Abandon
 Request on a Search Operation in the midst of transmitting responses
 to the search, that server MUST cease transmitting entry responses to
 the abandoned request immediately, and MUST NOT send the
 SearchResponseDone. Of course, the server MUST ensure that only
 properly encoded LDAPMessage PDUs are transmitted.

 Clients MUST NOT send abandon requests for the same operation
 multiple times, and MUST also be prepared to receive results from
 operations it has abandoned (since these may have been in transit
 when the abandon was requested).

 Servers MUST discard abandon requests for message IDs they do not
 recognize, for operations which cannot be abandoned, and for
 operations which have already been abandoned.

4.12. Extended Operation

 An extension mechanism has been added in this version of LDAP, in
 order to allow additional operations to be defined for services not
 available elsewhere in this protocol, for instance digitally signed
 operations and results.

Wahl, et. al. Standards Track [Page 38]

C
om

pendium
 1 page 325

RFC 2251 LDAPv3 December 1997

 The extended operation allows clients to make requests and receive
 responses with predefined syntaxes and semantics. These may be
 defined in RFCs or be private to particular implementations. Each
 request MUST have a unique OBJECT IDENTIFIER assigned to it.

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 The requestName is a dotted-decimal representation of the OBJECT
 IDENTIFIER corresponding to the request. The requestValue is
 information in a form defined by that request, encapsulated inside an
 OCTET STRING.

 The server will respond to this with an LDAPMessage containing the
 ExtendedResponse.

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 response [11] OCTET STRING OPTIONAL }

 If the server does not recognize the request name, it MUST return
 only the response fields from LDAPResult, containing the
 protocolError result code.

5. Protocol Element Encodings and Transfer

 One underlying service is defined here. Clients and servers SHOULD
 implement the mapping of LDAP over TCP described in 5.2.1.

5.1. Mapping Onto BER-based Transport Services

 The protocol elements of LDAP are encoded for exchange using the
 Basic Encoding Rules (BER) [11] of ASN.1 [3]. However, due to the
 high overhead involved in using certain elements of the BER, the
 following additional restrictions are placed on BER-encodings of LDAP
 protocol elements:

 (1) Only the definite form of length encoding will be used.

 (2) OCTET STRING values will be encoded in the primitive form only.

 (3) If the value of a BOOLEAN type is true, the encoding MUST have
 its contents octets set to hex "FF".

Wahl, et. al. Standards Track [Page 39]

RFC 2251 LDAPv3 December 1997

 (4) If a value of a type is its default value, it MUST be absent.
 Only some BOOLEAN and INTEGER types have default values in this
 protocol definition.

 These restrictions do not apply to ASN.1 types encapsulated inside of
 OCTET STRING values, such as attribute values, unless otherwise
 noted.

5.2. Transfer Protocols

 This protocol is designed to run over connection-oriented, reliable
 transports, with all 8 bits in an octet being significant in the data
 stream.

5.2.1. Transmission Control Protocol (TCP)

 The LDAPMessage PDUs are mapped directly onto the TCP bytestream. It
 is recommended that server implementations running over the TCP MAY
 provide a protocol listener on the assigned port, 389. Servers may
 instead provide a listener on a different port number. Clients MUST
 support contacting servers on any valid TCP port.

6. Implementation Guidelines

 This document describes an Internet protocol.

6.1. Server Implementations

 The server MUST be capable of recognizing all the mandatory attribute
 type names and implement the syntaxes specified in [5]. Servers MAY
 also recognize additional attribute type names.

6.2. Client Implementations

 Clients which request referrals MUST ensure that they do not loop
 between servers. They MUST NOT repeatedly contact the same server for
 the same request with the same target entry name, scope and filter.
 Some clients may be using a counter that is incremented each time
 referral handling occurs for an operation, and these kinds of clients
 MUST be able to handle a DIT with at least ten layers of naming
 contexts between the root and a leaf entry.

 In the absence of prior agreements with servers, clients SHOULD NOT
 assume that servers support any particular schemas beyond those
 referenced in section 6.1. Different schemas can have different
 attribute types with the same names. The client can retrieve the
 subschema entries referenced by the subschemaSubentry attribute in
 the server's root DSE or in entries held by the server.

Wahl, et. al. Standards Track [Page 40]

C
om

pendium
 1 page 326

RFC 2251 LDAPv3 December 1997

7. Security Considerations

 When used with a connection-oriented transport, this version of the
 protocol provides facilities for the LDAP v2 authentication
 mechanism, simple authentication using a cleartext password, as well
 as any SASL mechanism [12]. SASL allows for integrity and privacy
 services to be negotiated.

 It is also permitted that the server can return its credentials to
 the client, if it chooses to do so.

 Use of cleartext password is strongly discouraged where the
 underlying transport service cannot guarantee confidentiality and may
 result in disclosure of the password to unauthorized parties.

 When used with SASL, it should be noted that the name field of the
 BindRequest is not protected against modification. Thus if the
 distinguished name of the client (an LDAPDN) is agreed through the
 negotiation of the credentials, it takes precedence over any value in
 the unprotected name field.

 Implementations which cache attributes and entries obtained via LDAP
 MUST ensure that access controls are maintained if that information
 is to be provided to multiple clients, since servers may have access
 control policies which prevent the return of entries or attributes in
 search results except to particular authenticated clients. For
 example, caches could serve result information only to the client
 whose request caused it to be cache.

8. Acknowledgements

 This document is an update to RFC 1777, by Wengyik Yeong, Tim Howes,
 and Steve Kille. Design ideas included in this document are based on
 those discussed in ASID and other IETF Working Groups. The
 contributions of individuals in these working groups is gratefully
 acknowledged.

9. Bibliography

 [1] ITU-T Rec. X.500, "The Directory: Overview of Concepts, Models
 and Service", 1993.

 [2] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access
 Protocol", RFC 1777, March 1995.

 [3] ITU-T Rec. X.680, "Abstract Syntax Notation One (ASN.1) -
 Specification of Basic Notation", 1994.

Wahl, et. al. Standards Track [Page 41]

RFC 2251 LDAPv3 December 1997

 [4] Kille, S., Wahl, M., and T. Howes, "Lightweight Directory Access
 Protocol (v3): UTF-8 String Representation of Distinguished
 Names", RFC 2253, December 1997.

 [5] Wahl, M., Coulbeck, A., Howes, T., and S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions",
 RFC 2252, December 1997.

 [6] ITU-T Rec. X.501, "The Directory: Models", 1993.

 [7] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [8] ITU-T Rec. X.511, "The Directory: Abstract Service Definition",
 1993.

 [9] Howes, T., and M. Smith, "The LDAP URL Format", RFC 2255,
 December 1997.

 [10] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [11] ITU-T Rec. X.690, "Specification of ASN.1 encoding rules: Basic,
 Canonical, and Distinguished Encoding Rules", 1994.

 [12] Meyers, J., "Simple Authentication and Security Layer",
 RFC 2222, October 1997.

 [13] Universal Multiple-Octet Coded Character Set (UCS) -
 Architecture and Basic Multilingual Plane, ISO/IEC 10646-1 :
 1993.

 [14] Yergeau, F., "UTF-8, a transformation format of Unicode and ISO
 10646", RFC 2044, October 1996.

10. Authors' Addresses

 Mark Wahl
 Critical Angle Inc.
 4815 W Braker Lane #502-385
 Austin, TX 78759
 USA

 Phone: +1 512 372-3160
 EMail: M.Wahl@critical-angle.com

Wahl, et. al. Standards Track [Page 42]

C
om

pendium
 1 page 327

RFC 2251 LDAPv3 December 1997

 Tim Howes
 Netscape Communications Corp.
 501 E. Middlefield Rd., MS MV068
 Mountain View, CA 94043
 USA

 Phone: +1 650 937-3419
 EMail: howes@netscape.com

 Steve Kille
 Isode Limited
 The Dome, The Square
 Richmond
 TW9 1DT
 UK

 Phone: +44-181-332-9091
 EMail: S.Kille@isode.com

Wahl, et. al. Standards Track [Page 43]

RFC 2251 LDAPv3 December 1997

Appendix A - Complete ASN.1 Definition

 Lightweight-Directory-Access-Protocol-V3 DEFINITIONS
 IMPLICIT TAGS ::=

 BEGIN

 LDAPMessage ::= SEQUENCE {
 messageID MessageID,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindResponse BindResponse,
 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,
 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,
 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse },
 controls [0] Controls OPTIONAL }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 LDAPString ::= OCTET STRING

 LDAPOID ::= OCTET STRING

 LDAPDN ::= LDAPString

 RelativeLDAPDN ::= LDAPString

 AttributeType ::= LDAPString

 AttributeDescription ::= LDAPString

Wahl, et. al. Standards Track [Page 44]

C
om

pendium
 1 page 328

RFC 2251 LDAPv3 December 1997

 AttributeDescriptionList ::= SEQUENCE OF
 AttributeDescription

 AttributeValue ::= OCTET STRING

 AttributeValueAssertion ::= SEQUENCE {
 attributeDesc AttributeDescription,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 Attribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 MatchingRuleId ::= LDAPString

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),
 compareTrue (6),
 authMethodNotSupported (7),
 strongAuthRequired (8),
 -- 9 reserved --
 referral (10), -- new
 adminLimitExceeded (11), -- new
 unavailableCriticalExtension (12), -- new
 confidentialityRequired (13), -- new
 saslBindInProgress (14), -- new
 noSuchAttribute (16),
 undefinedAttributeType (17),
 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 -- 22-31 unused --
 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 -- 35 reserved for undefined isLeaf --
 aliasDereferencingProblem (36),
 -- 37-47 unused --
 inappropriateAuthentication (48),

Wahl, et. al. Standards Track [Page 45]

RFC 2251 LDAPv3 December 1997

 invalidCredentials (49),
 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --
 namingViolation (64),
 objectClassViolation (65),
 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 -- 70 reserved for CLDAP --
 affectsMultipleDSAs (71), -- new
 -- 72-79 unused --
 other (80) },
 -- 81-90 reserved for APIs --
 matchedDN LDAPDN,
 errorMessage LDAPString,
 referral [3] Referral OPTIONAL }

 Referral ::= SEQUENCE OF LDAPURL

 LDAPURL ::= LDAPString -- limited to characters permitted in URLs

 Controls ::= SEQUENCE OF Control

 Control ::= SEQUENCE {
 controlType LDAPOID,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL }

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),
 name LDAPDN,
 authentication AuthenticationChoice }

 AuthenticationChoice ::= CHOICE {
 simple [0] OCTET STRING,
 -- 1 and 2 reserved
 sasl [3] SaslCredentials }

 SaslCredentials ::= SEQUENCE {
 mechanism LDAPString,
 credentials OCTET STRING OPTIONAL }

 BindResponse ::= [APPLICATION 1] SEQUENCE {

Wahl, et. al. Standards Track [Page 46]

C
om

pendium
 1 page 329

RFC 2251 LDAPv3 December 1997

 COMPONENTS OF LDAPResult,
 serverSaslCreds [7] OCTET STRING OPTIONAL }

 UnbindRequest ::= [APPLICATION 2] NULL

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),
 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeDescriptionList }

 Filter ::= CHOICE {
 and [0] SET OF Filter,
 or [1] SET OF Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeDescription,
 -- at least one must be present
 substrings SEQUENCE OF CHOICE {
 initial [0] LDAPString,
 any [1] LDAPString,
 final [2] LDAPString } }

 MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
 matchValue [3] AssertionValue,
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

Wahl, et. al. Standards Track [Page 47]

RFC 2251 LDAPv3 December 1997

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,
 attributes PartialAttributeList }

 PartialAttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 SearchResultReference ::= [APPLICATION 19] SEQUENCE OF LDAPURL

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 modification SEQUENCE OF SEQUENCE {
 operation ENUMERATED {
 add (0),
 delete (1),
 replace (2) },
 modification AttributeTypeAndValues } }

 AttributeTypeAndValues ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList }

 AttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 AddResponse ::= [APPLICATION 9] LDAPResult

 DelRequest ::= [APPLICATION 10] LDAPDN

 DelResponse ::= [APPLICATION 11] LDAPResult

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

Wahl, et. al. Standards Track [Page 48]

C
om

pendium
 1 page 330

RFC 2251 LDAPv3 December 1997

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion }

 CompareResponse ::= [APPLICATION 15] LDAPResult

 AbandonRequest ::= [APPLICATION 16] MessageID

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 response [11] OCTET STRING OPTIONAL }

 END

Wahl, et. al. Standards Track [Page 49]

RFC 2251 LDAPv3 December 1997

Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Wahl, et. al. Standards Track [Page 50]

C
om

pendium
 1 page 331

Network Working Group M. Wahl
Request for Comments: 2252 Critical Angle Inc.
Category: Standards Track A. Coulbeck
 Isode Inc.
 T. Howes
 Netscape Communications Corp.
 S. Kille
 Isode Limited
 December 1997

 Lightweight Directory Access Protocol (v3):
 Attribute Syntax Definitions

1. Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1997). All Rights Reserved.

IESG Note

 This document describes a directory access protocol that provides
 both read and update access. Update access requires secure
 authentication, but this document does not mandate implementation of
 any satisfactory authentication mechanisms.

 In accordance with RFC 2026, section 4.4.1, this specification is
 being approved by IESG as a Proposed Standard despite this
 limitation, for the following reasons:

 a. to encourage implementation and interoperability testing of
 these protocols (with or without update access) before they
 are deployed, and

 b. to encourage deployment and use of these protocols in read-only
 applications. (e.g. applications where LDAPv3 is used as
 a query language for directories which are updated by some
 secure mechanism other than LDAP), and

Wahl, et. al. Standards Track [Page 1]

RFC 2252 LADPv3 Attributes December 1997

 c. to avoid delaying the advancement and deployment of other Internet
 standards-track protocols which require the ability to query, but
 not update, LDAPv3 directory servers.

 Readers are hereby warned that until mandatory authentication
 mechanisms are standardized, clients and servers written according to
 this specification which make use of update functionality are
 UNLIKELY TO INTEROPERATE, or MAY INTEROPERATE ONLY IF AUTHENTICATION
 IS REDUCED TO AN UNACCEPTABLY WEAK LEVEL.

 Implementors are hereby discouraged from deploying LDAPv3 clients or
 servers which implement the update functionality, until a Proposed
 Standard for mandatory authentication in LDAPv3 has been approved and
 published as an RFC.

2. Abstract

 The Lightweight Directory Access Protocol (LDAP) [1] requires that
 the contents of AttributeValue fields in protocol elements be octet
 strings. This document defines a set of syntaxes for LDAPv3, and the
 rules by which attribute values of these syntaxes are represented as
 octet strings for transmission in the LDAP protocol. The syntaxes
 defined in this document are referenced by this and other documents
 that define attribute types. This document also defines the set of
 attribute types which LDAP servers should support.

3. Overview

 This document defines the framework for developing schemas for
 directories accessible via the Lightweight Directory Access Protocol.

 Schema is the collection of attribute type definitions, object class
 definitions and other information which a server uses to determine
 how to match a filter or attribute value assertion (in a compare
 operation) against the attributes of an entry, and whether to permit
 add and modify operations.

 Section 4 states the general requirements and notations for attribute
 types, object classes, syntax and matching rule definitions.

 Section 5 lists attributes, section 6 syntaxes and section 7 object
 classes.

 Additional documents define schemas for representing real-world
 objects as directory entries.

Wahl, et. al. Standards Track [Page 2]

C
om

pendium
 1 page 333

RFC 2252 LADPv3 Attributes December 1997

4. General Issues

 This document describes encodings used in an Internet protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [4].

 Attribute Type and Object Class definitions are written in a string
 representation of the AttributeTypeDescription and
 ObjectClassDescription data types defined in X.501(93) [3].
 Implementors are strongly advised to first read the description of
 how schema is represented in X.500 before reading the rest of this
 document.

4.1. Common Encoding Aspects

 For the purposes of defining the encoding rules for attribute
 syntaxes, the following BNF definitions will be used. They are based
 on the BNF styles of RFC 822 [13].

 a = "a" / "b" / "c" / "d" / "e" / "f" / "g" / "h" / "i" /
 "j" / "k" / "l" / "m" / "n" / "o" / "p" / "q" / "r" /
 "s" / "t" / "u" / "v" / "w" / "x" / "y" / "z" / "A" /
 "B" / "C" / "D" / "E" / "F" / "G" / "H" / "I" / "J" /
 "K" / "L" / "M" / "N" / "O" / "P" / "Q" / "R" / "S" /
 "T" / "U" / "V" / "W" / "X" / "Y" / "Z"

 d = "0" / "1" / "2" / "3" / "4" /
 "5" / "6" / "7" / "8" / "9"

 hex-digit = d / "a" / "b" / "c" / "d" / "e" / "f" /
 "A" / "B" / "C" / "D" / "E" / "F"

 k = a / d / "-" / ";"

 p = a / d / """ / "(" / ")" / "+" / "," /
 "-" / "." / "/" / ":" / "?" / " "

 letterstring = 1*a

 numericstring = 1*d

 anhstring = 1*k

 keystring = a [anhstring]

 printablestring = 1*p

Wahl, et. al. Standards Track [Page 3]

RFC 2252 LADPv3 Attributes December 1997

 space = 1*" "

 whsp = [space]

 utf8 = <any sequence of octets formed from the UTF-8 [9]
 transformation of a character from ISO10646 [10]>

 dstring = 1*utf8

 qdstring = whsp "'" dstring "'" whsp

 qdstringlist = [qdstring *(qdstring)]

 qdstrings = qdstring / (whsp "(" qdstringlist ")" whsp)

 In the following BNF for the string representation of OBJECT
 IDENTIFIERs, descr is the syntactic representation of an object
 descriptor, which consists of letters and digits, starting with a
 letter. An OBJECT IDENTIFIER in the numericoid format should not
 have leading zeroes (e.g. "0.9.3" is permitted but "0.09.3" should
 not be generated).

 When encoding 'oid' elements in a value, the descr encoding option
 SHOULD be used in preference to the numericoid. An object descriptor
 is a more readable alias for a number OBJECT IDENTIFIER, and these
 (where assigned and known by the implementation) SHOULD be used in
 preference to numeric oids to the greatest extent possible. Examples
 of object descriptors in LDAP are attribute type, object class and
 matching rule names.

 oid = descr / numericoid

 descr = keystring

 numericoid = numericstring *("." numericstring)

 woid = whsp oid whsp

 ; set of oids of either form
 oids = woid / ("(" oidlist ")")

 oidlist = woid *("$" woid)

 ; object descriptors used as schema element names
 qdescrs = qdescr / (whsp "(" qdescrlist ")" whsp)

 qdescrlist = [qdescr *(qdescr)]

Wahl, et. al. Standards Track [Page 4]

C
om

pendium
 1 page 334

RFC 2252 LADPv3 Attributes December 1997

 qdescr = whsp "'" descr "'" whsp

4.2. Attribute Types

 The attribute types are described by sample values for the subschema
 "attributeTypes" attribute, which is written in the
 AttributeTypeDescription syntax. While lines have been folded for
 readability, the values transferred in protocol would not contain
 newlines.

 The AttributeTypeDescription is encoded according to the following
 BNF, and the productions for oid, qdescrs and qdstring are given in
 section 4.1. Implementors should note that future versions of this
 document may have expanded this BNF to include additional terms.
 Terms which begin with the characters "X-" are reserved for private
 experiments, and MUST be followed by a <qdstrings>.

 AttributeTypeDescription = "(" whsp
 numericoid whsp ; AttributeType identifier
 ["NAME" qdescrs] ; name used in AttributeType
 ["DESC" qdstring] ; description
 ["OBSOLETE" whsp]
 ["SUP" woid] ; derived from this other
 ; AttributeType
 ["EQUALITY" woid ; Matching Rule name
 ["ORDERING" woid ; Matching Rule name
 ["SUBSTR" woid] ; Matching Rule name
 ["SYNTAX" whsp noidlen whsp] ; see section 4.3
 ["SINGLE-VALUE" whsp] ; default multi-valued
 ["COLLECTIVE" whsp] ; default not collective
 ["NO-USER-MODIFICATION" whsp]; default user modifiable
 ["USAGE" whsp AttributeUsage]; default userApplications
 whsp ")"

 AttributeUsage =
 "userApplications" /
 "directoryOperation" /
 "distributedOperation" / ; DSA-shared
 "dSAOperation" ; DSA-specific, value depends on server

 Servers are not required to provide the same or any text in the
 description part of the subschema values they maintain. Servers
 SHOULD provide at least one of the "SUP" and "SYNTAX" fields for each
 AttributeTypeDescription.

 Servers MUST implement all the attribute types referenced in sections
 5.1, 5.2 and 5.3.

Wahl, et. al. Standards Track [Page 5]

RFC 2252 LADPv3 Attributes December 1997

 Servers MAY recognize additional names and attributes not listed in
 this document, and if they do so, MUST publish the definitions of the
 types in the attributeTypes attribute of their subschema entries.

 Schema developers MUST NOT create attribute definitions whose names
 conflict with attributes defined for use with LDAP in existing
 standards-track RFCs.

 An AttributeDescription can be used as the value in a NAME part of an
 AttributeTypeDescription. Note that these are case insensitive.

 Note that the AttributeTypeDescription does not list the matching
 rules which can can be used with that attribute type in an
 extensibleMatch search filter. This is done using the
 matchingRuleUse attribute described in section 4.5.

 This document refines the schema description of X.501 by requiring
 that the syntax field in an AttributeTypeDescription be a string
 representation of an OBJECT IDENTIFIER for the LDAP string syntax
 definition, and an optional indication of the maximum length of a
 value of this attribute (defined in section 4.3.2).

4.3. Syntaxes

 This section defines general requirements for LDAP attribute value
 syntax encodings. All documents defining attribute syntax encodings
 for use with LDAP are expected to conform to these requirements.

 The encoding rules defined for a given attribute syntax must produce
 octet strings. To the greatest extent possible, encoded octet
 strings should be usable in their native encoded form for display
 purposes. In particular, encoding rules for attribute syntaxes
 defining non-binary values should produce strings that can be
 displayed with little or no translation by clients implementing LDAP.
 There are a few cases (e.g. audio) however, when it is not sensible
 to produce a printable representation, and clients MUST NOT assume
 that an unrecognized syntax is a string representation.

 In encodings where an arbitrary string, not a Distinguished Name, is
 used as part of a larger production, and other than as part of a
 Distinguished Name, a backslash quoting mechanism is used to escape
 the following separator symbol character (such as "'", "$" or "#") if
 it should occur in that string. The backslash is followed by a pair
 of hexadecimal digits representing the next character. A backslash
 itself in the string which forms part of a larger syntax is always
 transmitted as '\5C' or '\5c'. An example is given in section 6.27.

Wahl, et. al. Standards Track [Page 6]

C
om

pendium
 1 page 335

RFC 2252 LADPv3 Attributes December 1997

 Syntaxes are also defined for matching rules whose assertion value
 syntax is different from the attribute value syntax.

4.3.1 Binary Transfer of Values

 This encoding format is used if the binary encoding is requested by
 the client for an attribute, or if the attribute syntax name is
 "1.3.6.1.4.1.1466.115.121.1.5". The contents of the LDAP
 AttributeValue or AssertionValue field is a BER-encoded instance of
 the attribute value or a matching rule assertion value ASN.1 data
 type as defined for use with X.500. (The first byte inside the OCTET
 STRING wrapper is a tag octet. However, the OCTET STRING is still
 encoded in primitive form.)

 All servers MUST implement this form for both generating attribute
 values in search responses, and parsing attribute values in add,
 compare and modify requests, if the attribute type is recognized and
 the attribute syntax name is that of Binary. Clients which request
 that all attributes be returned from entries MUST be prepared to
 receive values in binary (e.g. userCertificate;binary), and SHOULD
 NOT simply display binary or unrecognized values to users.

4.3.2. Syntax Object Identifiers

 Syntaxes for use with LDAP are named by OBJECT IDENTIFIERs, which are
 dotted-decimal strings. These are not intended to be displayed to
 users.

 noidlen = numericoid ["{" len "}"]

 len = numericstring

 The following table lists some of the syntaxes that have been defined
 for LDAP thus far. The H-R column suggests whether a value in that
 syntax would likely be a human readable string. Clients and servers
 need not implement all the syntaxes listed here, and MAY implement
 other syntaxes.

 Other documents may define additional syntaxes. However, the
 definition of additional arbitrary syntaxes is strongly deprecated
 since it will hinder interoperability: today's client and server
 implementations generally do not have the ability to dynamically
 recognize new syntaxes. In most cases attributes will be defined
 with the syntax for directory strings.

Wahl, et. al. Standards Track [Page 7]

RFC 2252 LADPv3 Attributes December 1997

 Value being represented H-R OBJECT IDENTIFIER
 ===
 ACI Item N 1.3.6.1.4.1.1466.115.121.1.1
 Access Point Y 1.3.6.1.4.1.1466.115.121.1.2
 Attribute Type Description Y 1.3.6.1.4.1.1466.115.121.1.3
 Audio N 1.3.6.1.4.1.1466.115.121.1.4
 Binary N 1.3.6.1.4.1.1466.115.121.1.5
 Bit String Y 1.3.6.1.4.1.1466.115.121.1.6
 Boolean Y 1.3.6.1.4.1.1466.115.121.1.7
 Certificate N 1.3.6.1.4.1.1466.115.121.1.8
 Certificate List N 1.3.6.1.4.1.1466.115.121.1.9
 Certificate Pair N 1.3.6.1.4.1.1466.115.121.1.10
 Country String Y 1.3.6.1.4.1.1466.115.121.1.11
 DN Y 1.3.6.1.4.1.1466.115.121.1.12
 Data Quality Syntax Y 1.3.6.1.4.1.1466.115.121.1.13
 Delivery Method Y 1.3.6.1.4.1.1466.115.121.1.14
 Directory String Y 1.3.6.1.4.1.1466.115.121.1.15
 DIT Content Rule Description Y 1.3.6.1.4.1.1466.115.121.1.16
 DIT Structure Rule Description Y 1.3.6.1.4.1.1466.115.121.1.17
 DL Submit Permission Y 1.3.6.1.4.1.1466.115.121.1.18
 DSA Quality Syntax Y 1.3.6.1.4.1.1466.115.121.1.19
 DSE Type Y 1.3.6.1.4.1.1466.115.121.1.20
 Enhanced Guide Y 1.3.6.1.4.1.1466.115.121.1.21
 Facsimile Telephone Number Y 1.3.6.1.4.1.1466.115.121.1.22
 Fax N 1.3.6.1.4.1.1466.115.121.1.23
 Generalized Time Y 1.3.6.1.4.1.1466.115.121.1.24
 Guide Y 1.3.6.1.4.1.1466.115.121.1.25
 IA5 String Y 1.3.6.1.4.1.1466.115.121.1.26
 INTEGER Y 1.3.6.1.4.1.1466.115.121.1.27
 JPEG N 1.3.6.1.4.1.1466.115.121.1.28
 LDAP Syntax Description Y 1.3.6.1.4.1.1466.115.121.1.54
 LDAP Schema Definition Y 1.3.6.1.4.1.1466.115.121.1.56
 LDAP Schema Description Y 1.3.6.1.4.1.1466.115.121.1.57
 Master And Shadow Access Points Y 1.3.6.1.4.1.1466.115.121.1.29
 Matching Rule Description Y 1.3.6.1.4.1.1466.115.121.1.30
 Matching Rule Use Description Y 1.3.6.1.4.1.1466.115.121.1.31
 Mail Preference Y 1.3.6.1.4.1.1466.115.121.1.32
 MHS OR Address Y 1.3.6.1.4.1.1466.115.121.1.33
 Modify Rights Y 1.3.6.1.4.1.1466.115.121.1.55
 Name And Optional UID Y 1.3.6.1.4.1.1466.115.121.1.34
 Name Form Description Y 1.3.6.1.4.1.1466.115.121.1.35
 Numeric String Y 1.3.6.1.4.1.1466.115.121.1.36
 Object Class Description Y 1.3.6.1.4.1.1466.115.121.1.37
 Octet String Y 1.3.6.1.4.1.1466.115.121.1.40
 OID Y 1.3.6.1.4.1.1466.115.121.1.38
 Other Mailbox Y 1.3.6.1.4.1.1466.115.121.1.39
 Postal Address Y 1.3.6.1.4.1.1466.115.121.1.41
 Protocol Information Y 1.3.6.1.4.1.1466.115.121.1.42

Wahl, et. al. Standards Track [Page 8]

C
om

pendium
 1 page 336

RFC 2252 LADPv3 Attributes December 1997

 Presentation Address Y 1.3.6.1.4.1.1466.115.121.1.43
 Printable String Y 1.3.6.1.4.1.1466.115.121.1.44
 Substring Assertion Y 1.3.6.1.4.1.1466.115.121.1.58
 Subtree Specification Y 1.3.6.1.4.1.1466.115.121.1.45
 Supplier Information Y 1.3.6.1.4.1.1466.115.121.1.46
 Supplier Or Consumer Y 1.3.6.1.4.1.1466.115.121.1.47
 Supplier And Consumer Y 1.3.6.1.4.1.1466.115.121.1.48
 Supported Algorithm N 1.3.6.1.4.1.1466.115.121.1.49
 Telephone Number Y 1.3.6.1.4.1.1466.115.121.1.50
 Teletex Terminal Identifier Y 1.3.6.1.4.1.1466.115.121.1.51
 Telex Number Y 1.3.6.1.4.1.1466.115.121.1.52
 UTC Time Y 1.3.6.1.4.1.1466.115.121.1.53

 A suggested minimum upper bound on the number of characters in value
 with a string-based syntax, or the number of bytes in a value for all
 other syntaxes, may be indicated by appending this bound count inside
 of curly braces following the syntax name's OBJECT IDENTIFIER in an
 Attribute Type Description. This bound is not part of the syntax
 name itself. For instance, "1.3.6.4.1.1466.0{64}" suggests that
 server implementations should allow a string to be 64 characters
 long, although they may allow longer strings. Note that a single
 character of the Directory String syntax may be encoded in more than
 one byte since UTF-8 is a variable-length encoding.

4.3.3. Syntax Description

 The following BNF may be used to associate a short description with a
 syntax OBJECT IDENTIFIER. Implementors should note that future
 versions of this document may expand this definition to include
 additional terms. Terms whose identifier begins with "X-" are
 reserved for private experiments, and MUST be followed by a
 <qdstrings>.

 SyntaxDescription = "(" whsp
 numericoid whsp
 ["DESC" qdstring]
 whsp ")"

4.4. Object Classes

 The format for representation of object classes is defined in X.501
 [3]. In general every entry will contain an abstract class ("top" or
 "alias"), at least one structural object class, and zero or more
 auxiliary object classes. Whether an object class is abstract,
 structural or auxiliary is defined when the object class identifier
 is assigned. An object class definition should not be changed
 without having a new identifier assigned to it.

Wahl, et. al. Standards Track [Page 9]

RFC 2252 LADPv3 Attributes December 1997

 Object class descriptions are written according to the following BNF.
 Implementors should note that future versions of this document may
 expand this definition to include additional terms. Terms whose
 identifier begins with "X-" are reserved for private experiments, and
 MUST be followed by a <qdstrings> encoding.

 ObjectClassDescription = "(" whsp
 numericoid whsp ; ObjectClass identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 ["SUP" oids] ; Superior ObjectClasses
 [("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]
 ; default structural
 ["MUST" oids] ; AttributeTypes
 ["MAY" oids] ; AttributeTypes
 whsp ")"

 These are described as sample values for the subschema
 "objectClasses" attribute for a server which implements the LDAP
 schema. While lines have been folded for readability, the values
 transferred in protocol would not contain newlines.

 Servers SHOULD implement all the object classes referenced in section
 7, except for extensibleObject, which is optional. Servers MAY
 implement additional object classes not listed in this document, and
 if they do so, MUST publish the definitions of the classes in the
 objectClasses attribute of their subschema entries.

 Schema developers MUST NOT create object class definitions whose
 names conflict with attributes defined for use with LDAP in existing
 standards-track RFCs.

4.5. Matching Rules

 Matching rules are used by servers to compare attribute values
 against assertion values when performing Search and Compare
 operations. They are also used to identify the value to be added or
 deleted when modifying entries, and are used when comparing a
 purported distinguished name with the name of an entry.

 Most of the attributes given in this document will have an equality
 matching rule defined.

 Matching rule descriptions are written according to the following
 BNF. Implementors should note that future versions of this document
 may have expanded this BNF to include additional terms. Terms whose
 identifier begins with "X-" are reserved for private experiments, and

Wahl, et. al. Standards Track [Page 10]

C
om

pendium
 1 page 337

RFC 2252 LADPv3 Attributes December 1997

 MUST be followed by a <qdstrings> encoding.

 MatchingRuleDescription = "(" whsp
 numericoid whsp ; MatchingRule identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 "SYNTAX" numericoid
 whsp ")"

 Values of the matchingRuleUse list the attributes which are suitable
 for use with an extensible matching rule.

 MatchingRuleUseDescription = "(" whsp
 numericoid whsp ; MatchingRule identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE"]
 "APPLIES" oids ; AttributeType identifiers
 whsp ")"

 Servers which support matching rules and the extensibleMatch SHOULD
 implement all the matching rules in section 8.

 Servers MAY implement additional matching rules not listed in this
 document, and if they do so, MUST publish the definitions of the
 matching rules in the matchingRules attribute of their subschema
 entries. If the server supports the extensibleMatch, then the server
 MUST publish the relationship between the matching rules and
 attributes in the matchingRuleUse attribute.

 For example, a server which implements a privately-defined matching
 rule for performing sound-alike matches on Directory String-valued
 attributes would include the following in the subschema entry
 (1.2.3.4.5 is an example, the OID of an actual matching rule would be
 different):

 matchingRule: (1.2.3.4.5 NAME 'soundAlikeMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

 If this matching rule could be used with the attributes 2.5.4.41 and
 2.5.4.15, the following would also be present:

 matchingRuleUse: (1.2.3.4.5 APPLIES (2.5.4.41 $ 2.5.4.15))

Wahl, et. al. Standards Track [Page 11]

RFC 2252 LADPv3 Attributes December 1997

 A client could then make use of this matching rule by sending a
 search operation in which the filter is of the extensibleMatch
 choice, the matchingRule field is "soundAlikeMatch", and the type
 field is "2.5.4.41" or "2.5.4.15".

5. Attribute Types

 All LDAP server implementations MUST recognize the attribute types
 defined in this section.

 Servers SHOULD also recognize all the attributes from section 5 of
 [12].

5.1. Standard Operational Attributes

 Servers MUST maintain values of these attributes in accordance with
 the definitions in X.501(93).

5.1.1. createTimestamp

 This attribute SHOULD appear in entries which were created using the
 Add operation.

 (2.5.18.1 NAME 'createTimestamp' EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE NO-USER-MODIFICATION USAGE directoryOperation)

5.1.2. modifyTimestamp

 This attribute SHOULD appear in entries which have been modified
 using the Modify operation.

 (2.5.18.2 NAME 'modifyTimestamp' EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE NO-USER-MODIFICATION USAGE directoryOperation)

5.1.3. creatorsName

 This attribute SHOULD appear in entries which were created using the
 Add operation.

 (2.5.18.3 NAME 'creatorsName' EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE NO-USER-MODIFICATION USAGE directoryOperation)

Wahl, et. al. Standards Track [Page 12]

C
om

pendium
 1 page 338

RFC 2252 LADPv3 Attributes December 1997

5.1.4. modifiersName

 This attribute SHOULD appear in entries which have been modified
 using the Modify operation.

 (2.5.18.4 NAME 'modifiersName' EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE NO-USER-MODIFICATION USAGE directoryOperation)

5.1.5. subschemaSubentry

 The value of this attribute is the name of a subschema entry (or
 subentry if the server is based on X.500(93)) in which the server
 makes available attributes specifying the schema.

 (2.5.18.10 NAME 'subschemaSubentry'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 NO-USER-MODIFICATION
 SINGLE-VALUE USAGE directoryOperation)

5.1.6. attributeTypes

 This attribute is typically located in the subschema entry.

 (2.5.21.5 NAME 'attributeTypes'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.3 USAGE directoryOperation)

5.1.7. objectClasses

 This attribute is typically located in the subschema entry.

 (2.5.21.6 NAME 'objectClasses'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.37 USAGE directoryOperation)

5.1.8. matchingRules

 This attribute is typically located in the subschema entry.

 (2.5.21.4 NAME 'matchingRules'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.30 USAGE directoryOperation)

Wahl, et. al. Standards Track [Page 13]

RFC 2252 LADPv3 Attributes December 1997

5.1.9. matchingRuleUse

 This attribute is typically located in the subschema entry.

 (2.5.21.8 NAME 'matchingRuleUse'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.31 USAGE directoryOperation)

5.2. LDAP Operational Attributes

 These attributes are only present in the root DSE (see [1] and [3]).

 Servers MUST recognize these attribute names, but it is not required
 that a server provide values for these attributes, when the attribute
 corresponds to a feature which the server does not implement.

5.2.1. namingContexts

 The values of this attribute correspond to naming contexts which this
 server masters or shadows. If the server does not master any
 information (e.g. it is an LDAP gateway to a public X.500 directory)
 this attribute will be absent. If the server believes it contains
 the entire directory, the attribute will have a single value, and
 that value will be the empty string (indicating the null DN of the
 root). This attribute will allow a client to choose suitable base
 objects for searching when it has contacted a server.

 (1.3.6.1.4.1.1466.101.120.5 NAME 'namingContexts'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE dSAOperation)

5.2.2. altServer

 The values of this attribute are URLs of other servers which may be
 contacted when this server becomes unavailable. If the server does
 not know of any other servers which could be used this attribute will
 be absent. Clients may cache this information in case their preferred
 LDAP server later becomes unavailable.

 (1.3.6.1.4.1.1466.101.120.6 NAME 'altServer'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE dSAOperation)

5.2.3. supportedExtension

 The values of this attribute are OBJECT IDENTIFIERs identifying the
 supported extended operations which the server supports.

 If the server does not support any extensions this attribute will be
 absent.

Wahl, et. al. Standards Track [Page 14]

C
om

pendium
 1 page 339

RFC 2252 LADPv3 Attributes December 1997

 (1.3.6.1.4.1.1466.101.120.7 NAME 'supportedExtension'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38 USAGE dSAOperation)

5.2.4. supportedControl

 The values of this attribute are the OBJECT IDENTIFIERs identifying
 controls which the server supports. If the server does not support
 any controls, this attribute will be absent.

 (1.3.6.1.4.1.1466.101.120.13 NAME 'supportedControl'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38 USAGE dSAOperation)

5.2.5. supportedSASLMechanisms

 The values of this attribute are the names of supported SASL
 mechanisms which the server supports. If the server does not support
 any mechanisms this attribute will be absent.

 (1.3.6.1.4.1.1466.101.120.14 NAME 'supportedSASLMechanisms'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

5.2.6. supportedLDAPVersion

 The values of this attribute are the versions of the LDAP protocol
 which the server implements.

 (1.3.6.1.4.1.1466.101.120.15 NAME 'supportedLDAPVersion'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE dSAOperation)

5.3. LDAP Subschema Attribute

 This attribute is typically located in the subschema entry.

5.3.1. ldapSyntaxes

 Servers MAY use this attribute to list the syntaxes which are
 implemented. Each value corresponds to one syntax.

 (1.3.6.1.4.1.1466.101.120.16 NAME 'ldapSyntaxes'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.54 USAGE directoryOperation)

5.4. X.500 Subschema attributes

 These attributes are located in the subschema entry. All servers
 SHOULD recognize their name, although typically only X.500 servers
 will implement their functionality.

Wahl, et. al. Standards Track [Page 15]

RFC 2252 LADPv3 Attributes December 1997

5.4.1. dITStructureRules

 (2.5.21.1 NAME 'dITStructureRules' EQUALITY integerFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.17 USAGE directoryOperation)

5.4.2. nameForms

 (2.5.21.7 NAME 'nameForms'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.35 USAGE directoryOperation)

5.4.3. ditContentRules

 (2.5.21.2 NAME 'dITContentRules'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.16 USAGE directoryOperation)

6. Syntaxes

 Servers SHOULD recognize all the syntaxes described in this section.

6.1. Attribute Type Description

 (1.3.6.1.4.1.1466.115.121.1.3 DESC 'Attribute Type Description')

 Values in this syntax are encoded according to the BNF given at the
 start of section 4.2. For example,

 (2.5.4.0 NAME 'objectClass'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

6.2. Binary

 (1.3.6.1.4.1.1466.115.121.1.5 DESC 'Binary')

 Values in this syntax are encoded as described in section 4.3.1.

6.3. Bit String

 (1.3.6.1.4.1.1466.115.121.1.6 DESC 'Bit String')

 Values in this syntax are encoded according to the following BNF:

 bitstring = "'" *binary-digit "'B"

 binary-digit = "0" / "1"

Wahl, et. al. Standards Track [Page 16]

C
om

pendium
 1 page 340

RFC 2252 LADPv3 Attributes December 1997

 Example:

 '0101111101'B

6.4. Boolean

 (1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean')

 Values in this syntax are encoded according to the following BNF:

 boolean = "TRUE" / "FALSE"

 Boolean values have an encoding of "TRUE" if they are logically true,
 and have an encoding of "FALSE" otherwise.

6.5. Certificate

 (1.3.6.1.4.1.1466.115.121.1.8 DESC 'Certificate')

 Because of the changes from X.509(1988) and X.509(1993) and
 additional changes to the ASN.1 definition to support certificate
 extensions, no string representation is defined, and values in this
 syntax MUST only be transferred using the binary encoding, by
 requesting or returning the attributes with descriptions
 "userCertificate;binary" or "caCertificate;binary". The BNF notation
 in RFC 1778 for "User Certificate" is not recommended to be used.

6.6. Certificate List

 (1.3.6.1.4.1.1466.115.121.1.9 DESC 'Certificate List')

 Because of the incompatibility of the X.509(1988) and X.509(1993)
 definitions of revocation lists, values in this syntax MUST only be
 transferred using a binary encoding, by requesting or returning the
 attributes with descriptions "certificateRevocationList;binary" or
 "authorityRevocationList;binary". The BNF notation in RFC 1778 for
 "Authority Revocation List" is not recommended to be used.

6.7. Certificate Pair

 (1.3.6.1.4.1.1466.115.121.1.10 DESC 'Certificate Pair')

 Because the Certificate is being carried in binary, values in this
 syntax MUST only be transferred using a binary encoding, by
 requesting or returning the attribute description
 "crossCertificatePair;binary". The BNF notation in RFC 1778 for
 "Certificate Pair" is not recommended to be used.

Wahl, et. al. Standards Track [Page 17]

RFC 2252 LADPv3 Attributes December 1997

6.8. Country String

 (1.3.6.1.4.1.1466.115.121.1.11 DESC 'Country String')

 A value in this syntax is encoded the same as a value of Directory
 String syntax. Note that this syntax is limited to values of exactly
 two printable string characters, as listed in ISO 3166 [14].

 CountryString = p p

 Example:
 US

6.9. DN

 (1.3.6.1.4.1.1466.115.121.1.12 DESC 'DN')

 Values in the Distinguished Name syntax are encoded to have the
 representation defined in [5]. Note that this representation is not
 reversible to an ASN.1 encoding used in X.500 for Distinguished
 Names, as the CHOICE of any DirectoryString element in an RDN is no
 longer known.

 Examples (from [5]):
 CN=Steve Kille,O=Isode Limited,C=GB
 OU=Sales+CN=J. Smith,O=Widget Inc.,C=US
 CN=L. Eagle,O=Sue\, Grabbit and Runn,C=GB
 CN=Before\0DAfter,O=Test,C=GB
 1.3.6.1.4.1.1466.0=#04024869,O=Test,C=GB
 SN=Lu\C4\8Di\C4\87

6.10. Directory String

 (1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String')

 A string in this syntax is encoded in the UTF-8 form of ISO 10646 (a
 superset of Unicode). Servers and clients MUST be prepared to
 receive encodings of arbitrary Unicode characters, including
 characters not presently assigned to any character set.

 For characters in the PrintableString form, the value is encoded as
 the string value itself.

 If it is of the TeletexString form, then the characters are
 transliterated to their equivalents in UniversalString, and encoded
 in UTF-8 [9].

Wahl, et. al. Standards Track [Page 18]

C
om

pendium
 1 page 341

RFC 2252 LADPv3 Attributes December 1997

 If it is of the UniversalString or BMPString forms [10], UTF-8 is
 used to encode them.

 Note: the form of DirectoryString is not indicated in protocol unless
 the attribute value is carried in binary. Servers which convert to
 DAP MUST choose an appropriate form. Servers MUST NOT reject values
 merely because they contain legal Unicode characters outside of the
 range of printable ASCII.

 Example:

 This is a string of DirectoryString containing #!%#@

6.11. DIT Content Rule Description

 (1.3.6.1.4.1.1466.115.121.1.16 DESC 'DIT Content Rule Description')

 Values in this syntax are encoded according to the following BNF.
 Implementors should note that future versions of this document may
 have expanded this BNF to include additional terms.

 DITContentRuleDescription = "("
 numericoid ; Structural ObjectClass identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE"]
 ["AUX" oids] ; Auxiliary ObjectClasses
 ["MUST" oids] ; AttributeType identifiers
 ["MAY" oids] ; AttributeType identifiers
 ["NOT" oids] ; AttributeType identifiers
 ")"

6.12. Facsimile Telephone Number

 (1.3.6.1.4.1.1466.115.121.1.22 DESC 'Facsimile Telephone Number')

 Values in this syntax are encoded according to the following BNF:

 fax-number = printablestring ["$" faxparameters]

 faxparameters = faxparm / (faxparm "$" faxparameters)

 faxparm = "twoDimensional" / "fineResolution" /
 "unlimitedLength" /
 "b4Length" / "a3Width" / "b4Width" / "uncompressed"

Wahl, et. al. Standards Track [Page 19]

RFC 2252 LADPv3 Attributes December 1997

 In the above, the first printablestring is the telephone number,
 based on E.123 [15], and the faxparm tokens represent fax parameters.

6.13. Fax

 (1.3.6.1.4.1.1466.115.121.1.23 DESC 'Fax')

 Values in this syntax are encoded as if they were octet strings
 containing Group 3 Fax images as defined in [7].

6.14. Generalized Time

 (1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized Time')

 Values in this syntax are encoded as printable strings, represented
 as specified in X.208. Note that the time zone must be specified.
 It is strongly recommended that GMT time be used. For example,

 199412161032Z

6.15. IA5 String

 (1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 String')

 The encoding of a value in this syntax is the string value itself.

6.16. INTEGER

 (1.3.6.1.4.1.1466.115.121.1.27 DESC 'INTEGER')

 Values in this syntax are encoded as the decimal representation of
 their values, with each decimal digit represented by the its
 character equivalent. So the number 1321 is represented by the
 character string "1321".

6.17. JPEG

 (1.3.6.1.4.1.1466.115.121.1.28 DESC 'JPEG')

 Values in this syntax are encoded as strings containing JPEG images
 in the JPEG File Interchange Format (JFIF), as described in [8].

6.18. Matching Rule Description

 (1.3.6.1.4.1.1466.115.121.1.30 DESC 'Matching Rule Description')

 Values of type matchingRules are encoded as strings according to the
 BNF given in section 4.5.

Wahl, et. al. Standards Track [Page 20]

C
om

pendium
 1 page 342

RFC 2252 LADPv3 Attributes December 1997

6.19. Matching Rule Use Description

 (1.3.6.1.4.1.1466.115.121.1.31 DESC 'Matching Rule Use Description'
)

 Values of type matchingRuleUse are encoded as strings according to
 the BNF given in section 4.5.

6.20. MHS OR Address

 (1.3.6.1.4.1.1466.115.121.1.33 DESC 'MHS OR Address')

 Values in this syntax are encoded as strings, according to the format
 defined in [11].

6.21. Name And Optional UID

 (1.3.6.1.4.1.1466.115.121.1.34 DESC 'Name And Optional UID')

 Values in this syntax are encoded according to the following BNF:

 NameAndOptionalUID = DistinguishedName ["#" bitstring]

 Although the '#' character may occur in a string representation of a
 distinguished name, no additional special quoting is done. This
 syntax has been added subsequent to RFC 1778.

 Example:

 1.3.6.1.4.1.1466.0=#04024869,O=Test,C=GB#'0101'B

6.22. Name Form Description

 (1.3.6.1.4.1.1466.115.121.1.35 DESC 'Name Form Description')

 Values in this syntax are encoded according to the following BNF.
 Implementors should note that future versions of this document may
 have expanded this BNF to include additional terms.

 NameFormDescription = "(" whsp
 numericoid whsp ; NameForm identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 "OC" woid ; Structural ObjectClass
 "MUST" oids ; AttributeTypes
 ["MAY" oids] ; AttributeTypes
 whsp ")"

Wahl, et. al. Standards Track [Page 21]

RFC 2252 LADPv3 Attributes December 1997

6.23. Numeric String

 (1.3.6.1.4.1.1466.115.121.1.36 DESC 'Numeric String')

 The encoding of a string in this syntax is the string value itself.
 Example:

 1997

6.24. Object Class Description

 (1.3.6.1.4.1.1466.115.121.1.37 DESC 'Object Class Description')

 Values in this syntax are encoded according to the BNF in section
 4.4.

6.25. OID

 (1.3.6.1.4.1.1466.115.121.1.38 DESC 'OID')

 Values in the Object Identifier syntax are encoded according to
 the BNF in section 4.1 for "oid".

 Example:

 1.2.3.4
 cn

6.26. Other Mailbox

 (1.3.6.1.4.1.1466.115.121.1.39 DESC 'Other Mailbox')

 Values in this syntax are encoded according to the following BNF:

 otherMailbox = mailbox-type "$" mailbox

 mailbox-type = printablestring

 mailbox = <an encoded IA5 String>

 In the above, mailbox-type represents the type of mail system in
 which the mailbox resides, for example "MCIMail"; and mailbox is the
 actual mailbox in the mail system defined by mailbox-type.

6.27. Postal Address

 (1.3.6.1.4.1.1466.115.121.1.41 DESC 'Postal Address')

Wahl, et. al. Standards Track [Page 22]

C
om

pendium
 1 page 343

RFC 2252 LADPv3 Attributes December 1997

 Values in this syntax are encoded according to the following BNF:

 postal-address = dstring *("$" dstring)

 In the above, each dstring component of a postal address value is
 encoded as a value of type Directory String syntax. Backslashes and
 dollar characters, if they occur in the component, are quoted as
 described in section 4.3. Many servers limit the postal address to
 six lines of up to thirty characters.

 Example:

 1234 Main St.$Anytown, CA 12345$USA
 \241,000,000 Sweepstakes$PO Box 1000000$Anytown, CA 12345$USA

6.28. Presentation Address

 (1.3.6.1.4.1.1466.115.121.1.43 DESC 'Presentation Address')

 Values in this syntax are encoded with the representation described
 in RFC 1278 [6].

6.29. Printable String

 (1.3.6.1.4.1.1466.115.121.1.44 DESC 'Printable String')

 The encoding of a value in this syntax is the string value itself.
 PrintableString is limited to the characters in production p of
 section 4.1.

 Example:

 This is a PrintableString

6.30. Telephone Number

 (1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone Number')

 Values in this syntax are encoded as if they were Printable String
 types. Telephone numbers are recommended in X.520 to be in
 international form, as described in E.123 [15].

 Example:

 +1 512 305 0280

Wahl, et. al. Standards Track [Page 23]

RFC 2252 LADPv3 Attributes December 1997

6.31. UTC Time

 (1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC Time')

 Values in this syntax are encoded as if they were printable strings
 with the strings containing a UTCTime value. This is historical; new
 attribute definitions SHOULD use GeneralizedTime instead.

6.32. LDAP Syntax Description

 (1.3.6.1.4.1.1466.115.121.1.54 DESC 'LDAP Syntax Description')

 Values in this syntax are encoded according to the BNF in section
 4.3.3.

6.33. DIT Structure Rule Description

 (1.3.6.1.4.1.1466.115.121.1.17 DESC 'DIT Structure Rule Description'
)

 Values with this syntax are encoded according to the following BNF:

 DITStructureRuleDescription = "(" whsp
 ruleidentifier whsp ; DITStructureRule identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 "FORM" woid whsp ; NameForm
 ["SUP" ruleidentifiers whsp] ; superior DITStructureRules
 ")"

 ruleidentifier = integer

 ruleidentifiers = ruleidentifier |
 "(" whsp ruleidentifierlist whsp ")"

 ruleidentifierlist = [ruleidentifier *(ruleidentifier)]

7. Object Classes

 Servers SHOULD recognize all the names of standard classes from
 section 7 of [12].

7.1. Extensible Object Class

 The extensibleObject object class, if present in an entry, permits
 that entry to optionally hold any attribute. The MAY attribute list
 of this class is implicitly the set of all attributes.

Wahl, et. al. Standards Track [Page 24]

C
om

pendium
 1 page 344

RFC 2252 LADPv3 Attributes December 1997

 (1.3.6.1.4.1.1466.101.120.111 NAME 'extensibleObject'
 SUP top AUXILIARY)

 The mandatory attributes of the other object classes of this entry
 are still required to be present.

 Note that not all servers will implement this object class, and those
 which do not will reject requests to add entries which contain this
 object class, or modify an entry to add this object class.

7.2. subschema

 This object class is used in the subschema entry.

 (2.5.20.1 NAME 'subschema' AUXILIARY
 MAY (dITStructureRules $ nameForms $ ditContentRules $
 objectClasses $ attributeTypes $ matchingRules $
 matchingRuleUse))

 The ldapSyntaxes operational attribute may also be present in
 subschema entries.

8. Matching Rules

 Servers which implement the extensibleMatch filter SHOULD allow all
 the matching rules listed in this section to be used in the
 extensibleMatch. In general these servers SHOULD allow matching
 rules to be used with all attribute types known to the server, when
 the assertion syntax of the matching rule is the same as the value
 syntax of the attribute.

 Servers MAY implement additional matching rules.

8.1. Matching Rules used in Equality Filters

 Servers SHOULD be capable of performing the following matching rules.

 For all these rules, the assertion syntax is the same as the value
 syntax.

 (2.5.13.0 NAME 'objectIdentifierMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

 If the client supplies a filter using an objectIdentifierMatch whose
 matchValue oid is in the "descr" form, and the oid is not recognized
 by the server, then the filter is Undefined.

 (2.5.13.1 NAME 'distinguishedNameMatch'

Wahl, et. al. Standards Track [Page 25]

RFC 2252 LADPv3 Attributes December 1997

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 (2.5.13.2 NAME 'caseIgnoreMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

 (2.5.13.8 NAME 'numericStringMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.36)

 (2.5.13.11 NAME 'caseIgnoreListMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.41)

 (2.5.13.14 NAME 'integerMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

 (2.5.13.16 NAME 'bitStringMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)

 (2.5.13.20 NAME 'telephoneNumberMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)

 (2.5.13.22 NAME 'presentationAddressMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.43)

 (2.5.13.23 NAME 'uniqueMemberMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.34)

 (2.5.13.24 NAME 'protocolInformationMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.42)

 (2.5.13.27 NAME 'generalizedTimeMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)

 (1.3.6.1.4.1.1466.109.114.1 NAME 'caseExactIA5Match'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 (1.3.6.1.4.1.1466.109.114.2 NAME 'caseIgnoreIA5Match'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 When performing the caseIgnoreMatch, caseIgnoreListMatch,
 telephoneNumberMatch, caseExactIA5Match and caseIgnoreIA5Match,
 multiple adjoining whitespace characters are treated the same as an
 individual space, and leading and trailing whitespace is ignored.

 Clients MUST NOT assume that servers are capable of transliteration
 of Unicode values.

Wahl, et. al. Standards Track [Page 26]

C
om

pendium
 1 page 345

RFC 2252 LADPv3 Attributes December 1997

8.2. Matching Rules used in Inequality Filters

 Servers SHOULD be capable of performing the following matching rules,
 which are used in greaterOrEqual and lessOrEqual filters.

 (2.5.13.28 NAME 'generalizedTimeOrderingMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)

 (2.5.13.3 NAME 'caseIgnoreOrderingMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

 The sort ordering for a caseIgnoreOrderingMatch is implementation-
 dependent.

8.3. Syntax and Matching Rules used in Substring Filters

 The Substring Assertion syntax is used only as the syntax of
 assertion values in the extensible match. It is not used as the
 syntax of attributes, or in the substring filter.

 (1.3.6.1.4.1.1466.115.121.1.58 DESC 'Substring Assertion')

 The Substring Assertion is encoded according to the following BNF:

 substring = [initial] any [final]
 initial = value
 any = "*" *(value "*")
 final = value

 The <value> production is UTF-8 encoded string. Should the backslash
 or asterix characters be present in a production of <value>, they are
 quoted as described in section 4.3.

 Servers SHOULD be capable of performing the following matching rules,
 which are used in substring filters.

 (2.5.13.4 NAME 'caseIgnoreSubstringsMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)

 (2.5.13.21 NAME 'telephoneNumberSubstringsMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)

 (2.5.13.10 NAME 'numericStringSubstringsMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)

Wahl, et. al. Standards Track [Page 27]

RFC 2252 LADPv3 Attributes December 1997

8.4. Matching Rules for Subschema Attributes

 Servers which allow subschema entries to be modified by clients MUST
 support the following matching rules, as they are the equality
 matching rules for several of the subschema attributes.

 (2.5.13.29 NAME 'integerFirstComponentMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

 (2.5.13.30 NAME 'objectIdentifierFirstComponentMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

 Implementors should note that the assertion syntax of these matching
 rules, an INTEGER or OID, is different from the value syntax of
 attributes for which this is the equality matching rule.

 If the client supplies an extensible filter using an
 objectIdentifierFirstComponentMatch whose matchValue is in the
 "descr" form, and the OID is not recognized by the server, then the
 filter is Undefined.

9. Security Considerations

9.1. Disclosure

 Attributes of directory entries are used to provide descriptive
 information about the real-world objects they represent, which can be
 people, organizations or devices. Most countries have privacy laws
 regarding the publication of information about people.

9.2. Use of Attribute Values in Security Applications

 The transformations of an AttributeValue value from its X.501 form to
 an LDAP string representation are not always reversible back to the
 same BER or DER form. An example of a situation which requires the
 DER form of a distinguished name is the verification of an X.509
 certificate.

 For example, a distinguished name consisting of one RDN with one AVA,
 in which the type is commonName and the value is of the TeletexString
 choice with the letters 'Sam' would be represented in LDAP as the
 string CN=Sam. Another distinguished name in which the value is
 still 'Sam' but of the PrintableString choice would have the same
 representation CN=Sam.

 Applications which require the reconstruction of the DER form of the
 value SHOULD NOT use the string representation of attribute syntaxes
 when converting a value to LDAP format. Instead it SHOULD use the

Wahl, et. al. Standards Track [Page 28]

C
om

pendium
 1 page 346

RFC 2252 LADPv3 Attributes December 1997

 Binary syntax.

10. Acknowledgements

 This document is based substantially on RFC 1778, written by Tim
 Howes, Steve Kille, Wengyik Yeong and Colin Robbins.

 Many of the attribute syntax encodings defined in this and related
 documents are adapted from those used in the QUIPU and the IC R3
 X.500 implementations. The contributions of the authors of both these
 implementations in the specification of syntaxes are gratefully
 acknowledged.

Wahl, et. al. Standards Track [Page 29]

RFC 2252 LADPv3 Attributes December 1997

11. Authors' Addresses

 Mark Wahl
 Critical Angle Inc.
 4815 West Braker Lane #502-385
 Austin, TX 78759
 USA

 Phone: +1 512 372-3160
 EMail: M.Wahl@critical-angle.com

 Andy Coulbeck
 Isode Inc.
 9390 Research Blvd Suite 305
 Austin, TX 78759
 USA

 Phone: +1 512 231-8993
 EMail: A.Coulbeck@isode.com

 Tim Howes
 Netscape Communications Corp.
 501 E. Middlefield Rd, MS MV068
 Mountain View, CA 94043
 USA

 Phone: +1 650 937-3419
 EMail: howes@netscape.com

 Steve Kille
 Isode Limited
 The Dome, The Square
 Richmond
 TW9 1DT
 UK

 Phone: +44-181-332-9091
 EMail: S.Kille@isode.com

Wahl, et. al. Standards Track [Page 30]

C
om

pendium
 1 page 347

RFC 2252 LADPv3 Attributes December 1997

12. Bibliography

 [1] Wahl, M., Howes, T., and S. Kille, "Lightweight Directory Access
 Protocol (v3)", RFC 2251, December 1997.

 [2] The Directory: Selected Attribute Types. ITU-T Recommendation
 X.520, 1993.

 [3] The Directory: Models. ITU-T Recommendation X.501, 1993.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [5] Wahl, M., Kille, S., and T. Howes, "Lightweight Directory Access
 Protocol (v3): UTF-8 String Representation of
 Distinguished Names", RFC 2253, December 1997.

 [6] Kille, S., "A String Representation for Presentation Addresses",
 RFC 1278, November 1991.

 [7] Terminal Equipment and Protocols for Telematic Services -
 Standardization of Group 3 facsimile apparatus for document
 transmission. CCITT, Recommendation T.4.

 [8] JPEG File Interchange Format (Version 1.02). Eric Hamilton,
 C-Cube Microsystems, Milpitas, CA, September 1, 1992.

 [9] Yergeau, F., "UTF-8, a transformation format of Unicode and ISO
 10646", RFC 2044, October 1996.

 [10] Universal Multiple-Octet Coded Character Set (UCS) -
 Architecture and Basic Multilingual Plane, ISO/IEC 10646-1 :
 1993 (With amendments).

 [11] Hardcastle-Kille, S., "Mapping between X.400(1988) / ISO 10021
 and RFC 822", RFC 1327, May 1992.

 [12] Wahl, M., "A Summary of the X.500(96) User Schema for use
 with LDAPv3", RFC 2256, December 1997.

 [13] Crocker, D., "Standard of the Format of ARPA-Internet Text
 Messages", STD 11, RFC 822, August 1982.

 [14] ISO 3166, "Codes for the representation of names of countries".

 [15] ITU-T Rec. E.123, Notation for national and international
 telephone numbers, 1988.

Wahl, et. al. Standards Track [Page 31]

RFC 2252 LADPv3 Attributes December 1997

13. Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Wahl, et. al. Standards Track [Page 32]

C
om

pendium
 1 page 348

