
Internet Application
Protocols

For more info see http://dsv.su.se/jpalme/abook/

Copyright © Jacob Palme 2000, 2001, 2002, 2003
Copyright conditions: This document may in the future become part of a

book. Copying for non-commercial purposes is allowed on a temporary basis.

At some time in the future, the copyright owner may withdraw the right to

copy the text. Check for the current copyright conditions at the web site of the

author, http://dsv.su.se/jpalme/abook/.
This document contains quotes from various IETF standards. These stan-

dards are copyright (C) The Internet Society (date). All Rights Reserved. For

those quotes, the following copyright conditions apply:

This document and translations of it may be copied and furnished to oth-

ers, and derivative works that comment on or otherwise explain it or assist in

its implementation may be prepared, copied, published and distributed, in

whole or in part, without restriction of any kind, provided that the above

copyright notice and this paragraph are included on all such copies and de-

rivative works. However, this document itself may not be modified in any

way, such as by removing the copyright notice or references to the Internet

Society or other Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for copyrights de-

fined in the Internet Standards process must be followed, or as required to

translate it into languages other than English.

Publisher
Not yet published • City

Preliminary Table of Contents

Contents
Introduction

Overview of the most common Internet protocols and
services

Understanding layering
Ports and protocols
Some registered port numbers
Architectures
Protocols: Two entities talking to each other using a

controlled language
Ending a connection
Connection retention
Chaining, referral, multicasting
Protocol extension problem
Intermediaries
Replication
IETF standards terminology
The IETF Golden rules
Names in the Internet, the Domain Naming System

(DNS)
Basic security techniques

1.1 URL, Uniform Resource Locator
1.2 URL schemes standardized in RFC 1738
1.3 Character set in URLs (not in referenced document)

Encoding of unsafe characters in URL-s
1.4 Top-level URL Syntax:

Common Internet Scheme Syntax
1.5 Relative URLs
1.6 HTTP URL syntax

Example of an HTTP Query URL

1.7 Reference to fragments of an HTML document
Part of the URL?

1.8 URL, URI, URN, URC

Preliminary Table of Contents iii
1. Introduction to Coding 7

1.1. Why is coding important? 8

1.2. Character sets 10

1.1.1. The UTF-8 encoding of ISO 10646 12
1.1.2. Limited subsets of character sets 12

1.3. Textual and binary encoding 13

1.1.3. Encoding of information structure 14
1.1.4. Encoding of the start and end of data

elements 15
1.1.5. Encoding of binary data with textual

encoding 17
1.1.6. More About Encoding of Information

Structure 17

2. Augmented Backus-Naur Form, ABNF 21
1.1.7. Linear White Space 22
1.1.8. Versions of ABNF 23

1.4. An overview of ABNF syntax constructs 24

1.1.9. Either-or construct 24
1.1.10. A series of elements of the same kind 24
1.1.11. Comments in ABNF 25
1.1.12. Linear White Space (LWSP) 25
1.1.13. Comma-separated list 25
1.1.14. ABNF syntax rules, parentheses 26
1.1.15. Optional elements 26

1.5. Examples of use of ABNF 29

1.1.16. Examples of values matching the syntax in
example 4 above: 29

1.1.17. Example 7 (from RFC822): 30
1.1.18. Examples of value matching the syntax in

example 7 above 30

1.6. RFC 822 lexical scanner specified in ABNF 30

3. Abstract Syntax Notation, ASN.1 32

1.7. ASN.1 basic 37

1.1.19. ASN.1 value notation 37
1.1.20. ASN.1 terminology 37
1.1.21. Pre-defined, built-in types in ASN.1 38
1.1.22. Comments 39
1.1.23. Format of identifiers 39

1.8. Simple Types 39

1.1.24. Integer Type 39
1.1.25. Subtypes 40
1.1.26. Boolean Type 41
1.1.27. Enumerated 42
1.1.28. Real Type 42
1.1.29. Bit String 43
1.1.30. Subtypes 43
1.1.31. Variants of Bit Strings 44
1.1.32. Octet String Type 46
1.1.33. Null Type 46
1.1.34. Examples of the Use of Size 47
1.1.35. Character String Types 47

1.9. Structured types 48

1.1.36. Inner subtyping 49
1.1.37. Choice Type 52
1.1.38. Any Type 53
1.1.39. Tags 54
1.1.40. Explicit and Implicit tags 57

1.10. Special types and Concepts 61

1.1.41. Time Types 61
1.1.42. Use of Object Identifiers, Any, External 61
1.1.43. Object Descriptor and External types 64
1.1.44. Modules 65

1.11. Encoding Rules 67

1.1.45. Basic Encoding Rules (BER) 67
1.1.46. The Tag or Identifier field 68
1.1.47. The Length Field in BER 69
1.1.48. The BER Value Octet 70
1.1.49. Variants of the encoding of a string with tag 70
1.1.50. Example of the coding of a SEQUENCE 71
1.1.51. Different Encoding Rules for ASN.1 73

1.12. ASN.1 compilers 74

4. HTML and CSS 76

1.13. (Hypertext Markup Language) 77
1.14. Cascading Style Sheets (CSS) 79

5. Extensible Markup Language, XML 82
1.15. Extensible Markup Language (XML) Introduction 83

1.1.52. XML versus HTML 84
1.16. Document Type Definition (DTD) 85
1.17. XML ELEMENT and its contents 87

1.1.53. Reserved characters 89
1.1.54. Empty Elements 90
1.1.55. Any Specification 90
1.1.56. Repeated subelements 90
1.1.57. Choice subelements 92

1.18. Attributes of XML elements 92
1.1.58. Use attributes or subelements? 95

1.19. Formatting XML layout when shown to users (CSS
and XLST) 97

1.20. XML special problems and methods 100
1.1.59. Putting binary data into XML encodings 100
1.1.60. Reusing DTD information 100
1.1.61. Entities 101
1.1.62. Name Spaces 101
1.1.63. XLinks and XPointers 102
1.1.64. Processing instructions 103
1.1.65. Standalone declarations 103
1.1.66. XML validation 103
1.1.67. XHMTL 104

1.21. A comparison of ABNF, ASN.1-BER/PER and DTD-
XML 104
1.1.68. Comparion RFC822-style headings versus

XML and ASN.1 108
1.22. Other Encoding Languages 109

6. References 110
7. Acknowledgements 112
8. Solutions to exercises 114

1. Introduction to Coding

Objectives

This chapter describes why coding is so important, and introduces the

problems which coding attempts to solve

Keywords

coding

records

data structures

characters

8 1. Introduction to coding

1.1. Why is coding important?

The underlaying network protocols, like the transport layer of TCP/IP, pro-

vide a way of sending a sequence of octets (containers with 8 bits, also often

called “bytes”) from the sending port to the receiving port. All information

must thus be transformed into a sequence of octets. And the protocol will

probably not work, unless the sending and receiving computer agree on how

to interpret these octets. The procedure of transforming information into a se-

quence of octets, is known as “coding”. The procedure of transforming infor-

mation from this sequence of octets to a data structure easily interpreted by

the receiving application, is the reverse process, “uncoding”.
Well, if you have defined your data using a struct in C or a set of records

in Pascal, like for example the Pascal code below, cannot you just send these

structures as they are from one host to another across the network?
flightpointer = ^flight;

flight = RECORD
 airline : String[2];
 flightnumber : Integer;
 nextflight : flightpointer;
END;

passenger = RECORD
 personalname : String [60];
 age : Integer;
 weight : Real;
 gender : Boolean;
 usertexts : ARRAY [1..5] OF flightpointer;
END;

In a Pascal program, you can send a record, like a“passenger” record in tje

code above, to a procedure (= function, method) by just making passenger a

parameter in the procedure call. Why can you not do the same when two pro-

grams on two different computers communicate through the Internet? Well,

there are many reasons why this will not work:

1. The String may not be stored in the same way in the sending and receiving computers.

For example, many computers store four 8-bit characters in one 32-bit word. This means

that the characters are grouped into groups of four characters and stored in a word. But

different computers store characters into words in different order. This means that the

sending computer may send A B C D E F G H , but the receiving computer may re-

1. Introduction to coding 9

ceive ABCD EFGH (this has actually happended to me in a development many

years ago, which used a protocol between a Unix server and an MSDOS-based PC).

Table 1: Coding of the character “Ä”

Character set Representation of “Ä”
(hexadecimal)

ISO Latin One C4

Unicode (ISO 10646), UTF-32 000000C4

Unicode, UTF-8 coding E2C4

CP850 (old MS-DOS) 8E

ISO 6937/1 C861

old Mac OS 80

2. Different computers might store the same character in different ways, i.e. they may use

different bit patterns to represent the same character. As an example, Table 1 shows dif-

ferent ways in which the character “Ä”, which is common in the German and Scandina-

vian languages, might be represented:

3. Different computers store integers in different ways. Some use 16, some 32, some 64

bits to store an integer. And negative integers are stored in two common different ways,

the 1-complement and 2-complement notation.

4. Different computers store floating point numbers in different ways. They assign different

number of bits to the mantissa and the exponent, and some use 2, some 10, some 16 as

the base.

5. Different computers store Boolean values in different ways. Some computers store Boo-

lean values in an octet, where all non-zero values represent TRUE, other computers use

just 1 and 0 for TRUE and FALSE.

6. The receiving computer will have problems with the reference (pointer) “flightpointer”,

since it cannot access data in the sending computer.

Thus, if one computer sends data in its internal representation, and another

computer recieves this, believing it to be in the internal representation of the

receiving computer, the data will obviously be misinterpreted. It may work in

the special case where both computers have the same architecture, which in

some cases might work for some small intranets. But a standard for sending

data between any kind of computer must specify exactly how data is to be

coded.

10 1. Introduction to coding

1.2. Character sets

The character, as you see it when you read it on paper or on a screen, is called

a glyph. Thus, for example, the glyph for the letter “O” is an vertical ellipse

“O”, and the glyph for the digit “0” is a more narrow vertical ellipse “0”. The

same glyph may look somewhat different in different fonts, but it is still the
same glyph, for example “A”, “A” and “A”. A font might even render a glyph

as quite another graphical form, but it is still the same glyph. The Braggadoco

font will for example render the letter “O” as “ ”.
A character set is a set of glyphs combined with information on how each

glyph is to be coded into one or more octets. In Internet standards, several dif-

ferent character sets are used, and a common cause of error in Internet pro-

grams is that a character is sent using one character set and one encoding, but

received believing it to be another character set and/or another encoding.

Many character sets are variants of the Latin character set, based on the

letters A to Z. But there are also completely different character sets, like Cy-

rillic (), Arabic (), Hebrew (), Browallia (), Ja-

pananse (), Korean () and Chinese ().

The same character set can have more than one encoding specified for that

character set. There are also additional encodings which some protocols apply

to the sequence of bytes from any character set.

The most common character sets in Internet standards are listed in Table 2.

Table 2: The most common character sets

Name Included characters Encoding

US-ASCII This set has 128 characters. 95 of these are
printable characters, the rest are control charac-
ters like Carriage Return and Line Feed.

Each character is en-
coded as one 7-bit byte.
This is usually sent as
an octet, with the first
bit always 0.

ISO 646 This is very similar to US-ASCII, but a few of
the characters are called national characters,
and can be substituted with other characters in
different national variants of ISO 646.

The following characters may be replaced with
other characters in national sets, and their use
can thus cause problems, especially in text files

Same encoding as US-
ASCII.

1. Introduction to coding 11

Name Included characters Encoding

transported between computers:
£ # $ € @ [] ^ \ ` { } | ~

ISO 8859-1,
also known
under the name
ISO Latin 1

This set has 256 characters, 190 of them are
printable, the rest are control characters. It in-
cludes US-ASCII plus a number of additional
characters suitable for Western European Lan-
guages, like Ä, É and ¿.

Each character is en-
coded as exactly one
octet. This makes the
standard easy to proc-
ess, but reduces the
number of possible
characters.

ISO 8859-? There are a number of different variants of ISO
8859 for different languages or language
groups. For example, ISO 8859-2 is suitable for
most Eastern European Languages using latin
character sets, like Hungarian or Polish. Each
set has 256 characters, 190 of which are print-
able. Many of the sets contain US-ASCII as a
subset.

Similar encoding to ISO
8859-1.

ISO 10646,
also known as
Unicode.

This is the character set meant to replace all
other character sets. It has space to hold mil-
lions of characters. Every character needed in
every language are there, or will be added.

ISO 10646 has more
than one encoding. The
basic encoding is called
UTF-32. It uses two
octets for each charac-
ter. There is also room
for more space, if
needed, through UTF-32,
which uses four octets
for each character.

The mostly used coding
of ISO 10646 in Inter-
net protocols is UTF-8
(see page 12). UTF-8
uses between one and
four octets for each
character. Special for
UTF-8 is that all the
US-ASCII characters
have exactly the same
coding as in US-ASCII.
This is important, since
many Internet protocols
use syntax containing
US-ASCII characters
and words.

ISO 2022 This is an older solution than ISO 10646 to the
problem of including characters from many sets
in the same message, for example putting an
East European name into a text in a West Euro-
pean language, or showing a dictionary be-
tween languages with different sets, such as
between Russian and English.

ISO 2022 codes a text
as segments. Each seg-
ment uses one character
set, usually one of the
ISO 8859 variants or
the ISO 646 variants.
Special so-called es-
cape-sequences are put

12 1. Introduction to coding

Name Included characters Encoding

In the Internet, ISO 2022 is mostly used by
Asian countries like Japan, China or Korea to
switch between English and their native charac-
ter sets.

into the text to switch
between segments.

1.1.1. The UTF-8 encoding of ISO 10646

The UTF-8 [RFC 2279] is an encoding of Unicode with the very important
property that all US-ASCII characters have the same coding in UTF-8 as in

US-ASCII. This means that protocols, in which special US-ASCII characters

have special significance, will work, also with UTF-8. They start with the two

or four-octet encodings of ISO 10646 (UTF-32):

UTF-32 range (hex.) UTF-8 octet sequence (binary)
0000 0000-0000 007F 0xxxxxxx
0000 0080-0000 07FF 110xxxxx 10xxxxxx
0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0020 0000-03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx
0400 0000-7FFF FFFF 1111110x 10xxxxxx ... 10xxxxxx

The high-order bits are set as specified in the second column above. The rest

of the bits, marked with x in the second column above, are filled with those

bits from the UTF-32 character whose information is not determined by the

high-order bits.

1.1.2. Limited subsets of character sets

In addition to the sets listed in Table 2, many Internet standards use a subset

of these standards, for special purposes. Examples of some such subsets are

shown in Table 3.

1. Introduction to coding 13

Table 3: Subsets used in some standards

Name Subset description Where it is used

specials “(”, “)”, “<”, “>”,
“@”, “,”, “;”, “:”,
“\”, “"”, “.”, “[” and

“]”

Must be coded when used in e-mail
addresses.

non-specials All printable US-ASCII charac-
ters except specials and space

Can be used without special coding
in e-mail addresses.

Unsafe "{", "}", "|", "\", "^", "~",

 "[", "]" and "`"

Must be coded when used in URLs

Reserved “;”, “/”, “?”, “:”,
“@”, “=” and “&”

These characters have special mean-
ing in URLs, and must be coded if
used without the reserved meaning.

Safe All printable US-ASCII charac-
ters except Unsafe and Re-
served characters and space.

Can be used without special coding
in URLs.

1.3. Textual and binary encoding

There are two main coding methods, the textual and the binary method.

Textual method: All information is transformed to text format before transmission. Examples:

A floating point number might be transformed to the textual string of char-

acters: 41,3 95141,3 951 , and this string is then coded using some char-

acter set, for example ISO Latin 1, where each character is sent as one octet.

A Boolean value might be transferred as either the textual string EURT EURT
or the textual string SLAF ESLAF E , or as the characters 00 or 11 .

Binary method: Information is transformed to a standardized binary format, not dependent on

the architecture of a particular computer. For a floating point number, the

base, mantissa and exponent are sent as bit strings. Text strings are sent as

text strings also with the binary method.

Examples of Internet protocols which use the textual method are:

14 1. Introduction to coding

SMTP Simple Mail Transfer Protocol

HTTP Hypertext Transfer Protocol

Examples of Internet protocols which use the binary method are:

LDAP Lightweight Directory Access Protocol

DNS Domain Naming System

1.1.3. Encoding of information structure

The information transmitted through networks is not only individual data

elements like a number or a text string. There is also structural information.

Structural information indicates:

• Where one data element ends and another begins.

• What kind of information is carried by a data element, for example if a num-

ber in a metheorological application represents temperature, wind velocity or

Table 4: Encoding of start and end of elements

Method Description Example of encoding of the name “John
Smith”

Fixed length
encoding

A data element has a
length specified in the
protocol.

J O H N S M I T HJ O H N S M I T H

Length encod-
ing

The length of the data
element, usually in
number of octets, is sent
before the element it-
self.

J O H N-01 S M I T HJ O H N-01 S M I T H

Delimeter en-
coding

The end of the data
element is marked with
some delimiter, some
special code which will
not appear inside the
data element.

J O H N ;S M I T H

Chunked
transmission

The information is split
into a number of
chunks, each chunk is
sent using length encod-
ing, but the total length
need not be known
when sending starts.

4 J O H S M I T HN 5- -4 J O H S M I T HN 5- -

1. Introduction to coding 15

humidity.

• Which data elements belong together in structures, for example in a me-

theorological application, a set of one temperature, one wind velocity and one

humidity value may belong together to represent the weather measurements in

a certain place at a certain time.

1.1.4. Encoding of the start and end of data elements

Table 4 shows some methods of encoding the start and end of a data element.

All of these methods have their particular advantages and disadvantages.

Fixed length encoding has the problem that there is a maximum size of the

data (length of the string in the example above). You cannot send data re-

quiring more than the allocated space. An extreme example of the risks with

fixed-length encoding is the so-called Y2K or Year 2000 problems, which has

caused billions of dollars of cost to companies who used a fixed length of 2

digits instead of 4 for storing the year.

Length encoding has problems for very large objects, where it may be dif-

ficult or impossible to compute the size before starting to send. One example

is the sending of live sound or video, where you do not know the length of the

sound when you begin sending it.

Delimeter encoding has the problem that the delimeter or delimeters can-

not be included in the data sent, unless the delimeter is coded in some par-

ticular way. Some common methods in Internet protocols of handling this:

7. Have a special escape character preceding a delimeter. For example, if “;” is used as a

delimeter, the string “ABC;DEF” might be encoded as “ABC\;DEF”. Any occurence of

the escape character must also be encoded, so that the string “AB\CD;DE” will be en-

coded as “AB\\CD\;DE”. This method is used in many Internet standards, for example

in SMTP.

8. Require duplication of the escape character. For example, if the escape character is “"”,

the string “AB"BC""DE” is encoded as “AB""BC""""DE”.

9. Surround the data with double-apostrophe, and duplicate any double-apostrophe in the

text. For example, the string “AB"BC""DE” is encoded as “"AB""BC""""DE"”. This

method is used in many Internet standards, for example in SMTP.

10. Encode the data into a limited character set, and then use as delimeters characters outside

this set. An example of this is the BASE64 and UUENCODE formats.

16 1. Introduction to coding

11. Encode

the special

characters

with some

sequence

of char-

acters

which

contains

the nu-

merical

value of

the char-

acter

code. Ex-

amples:

• The Quoted-Printable encoding method in MIME will encode the

ISO Latin 1 character “Ä” as “=C4”, since “C4” is the hexadeci-

mal byte value of this character.

• The HTML Character Entity encoding method of the character

“Ä” as “Ä”, where ““196”” is the decimal byte value of

this character.

• The MIME header encoding method, where the character “Ä” is

encodes as “=?iso-8859-1?q?=C4?=”. Here, “iso-8859-

1” is the ISO identification of the ISO Latin One character set,

“q” indicates that the quoted-printable encoding method is used,

and “=C4” is the quoted-printable encoding of “Ä”.

• The URL encoding method, where the character “Ä” is encoded

as “%C4”, where “C4” is the hexadecimal value of the ISO Latin

One character “Ä”.

12. Encode the special characters with some sequence of characters which describe the char-

acter in words. One example is the encoding of the “Ä” character in HTML (see page 77)

as “Ä” where “Auml” means “A with umlaut”, “umlaut” is the German word for

putting two dots on top of a wovel.

Text shown
to the user

HTML text

Base64 text

Mail transport

HTML text

Base64 text

Mail transport

Text shown
to the user

HTML encoding HTML decoding

Base 64 encoding Base 64 decoding

Text shown
to the user

HTML text

Base64 text

Mail transport

HTML text

Base64 text

Mail transport

Text shown
to the user

HTML encoding HTML decoding

Base 64 encoding Base 64 decoding

Figure 1: Encoding in several layers

1. Introduction to coding 17

In some cases, several different character encoding methods are used on top

of each other. They must then be undone in the reverse order to get back the

original text. For example, if HTML text is sent in e-mail with the base64 en-

coding method, then, as shown in Figure 1, the text might first be encoded

with the HTML method, and the resulting text might then be encoded once

more with the BASE64 method, before it is sent through e-mail.

1.1.5. Encoding of binary data with textual encoding

How do you transport binary data with textual encoding? There are two meth-

ods:
➀ If you have an eight-bit transparent transport channels, you can just split

the binary data into eight-bit octets and send them as they are. This is

usually combined with the length method of delimiting the end of the bi-

nary data element, to allow any eight-bit value within the binary data.
➁ Encode the binary data as text. The two most common methods for this

are UUENCODING and BASE64.

BASE64 is more reliable and works as follows: Take

three octets (24 bits), split them into four 6-bit bytes,

and encode each 6-bit byte as one character. Since 6-

bit bytes can have 64 different values, 64 different

characters are needed. These have been chosen to be those 64 ASCII charac-

ters which are known not to be perverted in transport. Since BASE64 requires

4 octets, 32 bits, to encode 24 bits of binary data, the overhead is 8/24 or 33

%.

1.1.6. More About Encoding of Information Structure

Often you need to transport a complex set of related information elements in a

networked protocol. Suppose, for example, that you have the following data

structure:

Personal record consists of age, weight and name.

Name consists of two strings, given name and surname.

Age consists of a positive integer.

Weight consists of a positive decimal value in kilograms.

The two most common methods of encoding this kind of information is the

8 8 8

888 8
6 6 6 6
8 8 8

888 8
6 6 6 6

18 1. Introduction to coding

tag-length-value encoding and the textual encoding.

1.1.1.1. Tag-Length-Value encoding

With the tag-length-value encoding, each element in the data structure is split

into three parts, a tag, which specifies whether this is a age, weight, name,

given name or surname value, a length, giving the number of octets needed

for the value, and then the value. If the value contains several elements, it can

consist of a new set of Tag-Length-Value encodings, as shown in Figure 2.
NameAge Weight

LengthTag Value LengthTag Value LengthTag Value

Given name Surname

LengthTag Value LengthTag Value

NameAge Weight

LengthTag Value LengthTag Value LengthTag Value

Given name Surname

LengthTag Value LengthTag Value

Figure 2: Example of tag-lenght-value encoding

A fuller description of this encoding is shown in Table 1 on page 19.

1. Introduction to coding 19

1.1.1.2. Textual encoding

With textual encoding, the same information might be encoded as the fol-

lowing text string (CR LF represents carriage return+line feed = a line

break).

Age: 58; Weight: 74.6; Name: John,

Smith CR LF

or as the following string:

Table 5: Example of tag-length-value encoding

Information element Part Octets Encoding

Tag 1 The value “0” is chosen to
represent “Age” in this
protocol.

Length 1 Always 1
Age

Value 1 Binary value
Tag 1 The value “1” is chosen to

represent “Weight” in this
protocol.

Length 1 Always 4
Weight Value 4 First octet exponent with

the base 10, then three
octets with mantissa, both
exponent and mantissa in
binary form.

Tag 1 The value “2” is chosen to
represent “Name” in this
protocol.

Name

Length 1 The total length of the
components.

Tag 1 The value “3” is chosen to
represent “Given name”
in this protocol.

Length 1 The length of the stringGiven
name

Value As many octets as
needed for this

string

ISO 8859-1

Tag 1 The value “4” is chosen to
represent “Surname” in
this protocol.

Length 1 The length of the string

Com-
ponents of
Name

Sur-
name

Value As many octets as
needed for this

string

ISO 8859-1

20 1. Introduction to coding

Age: 58 CR LF

Weight: 74.6 CR LF

Name: CR LF

Given Name: John CR LF

Surname: Smith CR LF

An example of textual encoding from an actual Internet standard is the e-mail

header, an example of which might be:

Received: from mail.ietf.net CR LF

by info.dsv.su.se (8.8.8/8.8.8) with ESMTP CR LF

id HAA06480 for <jpalme@dsv.su.se>; CR LF

Wed, 22 Jul 1998 07:51:54 +0200 CR LF

Message-ID: <AF4C1AD5F8662ED305D823AF@ietf.net> CR LF

From: Erik Nielsen <erikn@ietf.net> CR LF

To: Jacob Palme <jpalme@dsv.su.se> CR LF

Subject: Example of an e-mail header CR LF

Date: Tue, 24 Jul 1998 21:25:21 -0700 CR LF

Textual encoding usually uses the delimeter method. In the example above,
“:”, “;”, “<”, “>”, “from”, “by”, “id” and space are used as delimeters. “Re-

ceived”, “Message-ID”, “From”, “To”, “Subject” and “Date” are

used as tags, but in the “Received” field there are subtags “from”, “by”,

a n d “id”.

2. Augmented Backus-Naur Form, ABNF

Objectives

This chapter describes the most commonly used coding specification

method

Keywords

ABNF

coding

22 2. Augmented Backus Naur Form, ABNF

When writing syntax specifications for protocols, a special language for syn-

tax specifications is used. There are three common such languages, ABNF

(Chapter 2) and XML (Chapter 0) for specifying the syntax of textual proto-

cols, and ASN.1 (Chapter 0) for specifying the syntax of binary tag-length-

value-encoded protocols. ABNF was first standardized in [RFC 822] and a

revised version was standardized in [RFC 2234]. ABNF and ASN.1 are both

based on the Backus-Naur Form, BNF, which became first widely known in

the Algol 60 specification in 1958. BNF syntax specifications consists of pro-

duction rules. Take for example a personal record which might look like this:

Age: 58; Weight: 74.6; Name: John,

Smith CR LF

Its ABNF specification might be:

personal-record = age "; " weight "; " name CR LF
age = "Age: " integer
weight = "Weight: " decimal-value
name = given-name "," surname
given-name = 1*LETTER ; one or more letters
surname = 1*LETTER
integer = 1*D ; one or more digits
decimal-value = 1*D "." 0*D ; zero or more decimals

1.1.7. Linear White Space

ABNF has traditionally had problems with indicating where white space is

permitted. White space is composed of one or more of the following character

codes:

Space A non-printing break with the same width as a single letter

Horizontal Tab, HT Moves to the next tab position, sometimes, but not always, there
are tab position at every eight column for fixed-width fonts

Line Feed, LF Moves the cursor to the next line

Carriage Return, CR Moves the cursor the start of the line

CRLF CR followed by LF, moves the cursor to the start of the next line

Note: Many computer systems use either only the LF or only the CR as a

character to move to the start of the next line. Some Internet standards, for ex-

ample HTML and HTTP, allows line breaks to be either LF or CR or CRLF.

Other Internet standards, for example SMTP, require that all line breaks must

2. Augmented Backus Naur Form, ABNF 23

be CRLF.

Here is an example from an old Internet standard, RFC822, the standard for

the format of e-mail messages:

date = 1*2DIGIT month 2DIGIT ; day month year

Literally, the ABNF below should generate date formats like “25Jul98”.

But in reality, the correct date format is “25 Jul 98”, with a space between

the words. Some, but not all, later Internet standards specify explicitly where

white space is allowed, for example:

date = 1*2DIGIT " " month " " 4DIGIT ; day month year

Often (but not in the case of the gap between day, month and year above)

where one space is allowed, also a sequence of linear white space characters

is allowed. For example, the following three variants are identical according

to the e-mail standards:

From: "Autumn publishers" <books@autumn.net>

From: "Autumn publishers" <books@autumn.net>

From: "Autumn publishers"
 <books@autumn.net>

Some standards even allow comments in parenthesis where white space is al-
lowed. Thus, in e-mail, a fourth equivalent alternative to the “From” field

above might be:

From: (good books) "Autumn publishers"
 (write to us) <books@autumn.net> (to order our books)

1.1.8. Versions of ABNF

There are two commonly used versions of ABNF. The first is the 1982 ver-

sion, specified in RFC 822 and used, sometimes a little modified, in many

Internet standards. Typical of standards using the old ABNF is that they do

not specify clearly where comments and linenar white space is allowed or re-

quired.
The 1997 version, specified in RFC 2234, is when this is written (2000)

not yet very much used. It has some new features, which allows the exact

specification of things which could only be specified by plain text comments

in the old ABNF (see section “RFC 822 lexical scanner specified in ABNF”

on page 30).

24 2. Augmented Backus Naur Form, ABNF

1.4. An overview of ABNF syntax constructs

1.1.9. Either-or construct

The “/" means either the specification to the left or the specification to the

right. Example:

answer = "Answer: " ("Yes" / "No")

will specify the following two alternative values:

Answer: Yes and Answer: No

1.1.10. A series of elements of the same kind

There is often a need to specify a series of elements of the same kind. For ex-

ample, to specify a series of "yes" and "no" we can specify:

yes-no-series = *("yes " / "no ")

This specifies that when we send a yes-no-series from one computer to an-

other, we can send for example one of the following strings (double-quote not

included):

“yes ” “yes no ”
“yes yes yes ” “” (an empty string)

The “*” symbol in ABNF means “repeat zero, one or more times”, so yes-no-

series, as defined above, will also match an empty string. A number can be

written before the “*” to indicate a minimum, and a number after the “*” to

indicate a maximum. Thus “1*2” means one or two ocurrences of the fol-

lowing construct, “1*” means one or more, “*5” means between zero and five

occurences.
If we want to specify a series of exactly five yes or no, we can thus

specify:

five-yes-or-no = 5*5("yes " / "no ")

and if we want to specify a series of between one and five yes or no, we can

specify:

2. Augmented Backus Naur Form, ABNF 25
one-to-five-yes-or-no = 1*5("yes " / "no ")

1.1.11. Comments in ABNF

A semi-colon, set off some distance to the right of rule text, starts a com-

ment that continues to the end of line.

1.1.12. Linear White Space (LWSP)

There is often a need to specify that one or more characters which just show

up as white space (blanks) on the screen is allowed. In newer standards, this is

done by defining Linear White Space:

LWSP char = (SPACE / HTAB) ; either one space or one tab
LWSP = 1*LWSP-char ; one or more space characters

LWSP, as defined above, is thus one or more SPACE and HTAB characters.

Using LWSP, we can specify for example:

yes-no-series = * (("yes" / "no") LWSP)

examples of a string of this format is:

“yes ” “yes no ”
“no ” “yes yes yes ”
“” “yes yes no ”

1.1.13. Comma-separated list

Older ABNF specifications often uses a construct "#" which means the same

as "*" but with a comma between the elements. Thus, in older ABNF specifi-

cations:

yes-no-series = *("yes" / "no")

is meant to match for example the strings

“yes” “yes no”
“no” “yes yes yes”
while
yes-no-series = #("yes" / "no")

is meant to match the strings

“yes” “yes, no”
“no” “yes, yes, yes”

The problem with this, however, is that neither of the notations above specify

26 2. Augmented Backus Naur Form, ABNF

where LWSP is allowed. Thus, newer ABNF specifications would instead

use:
yes-or-no = ("yes" / "no")
yes-no-series = yes-or-no *(LWSP yes-or-no)

to indicate a series of “yes” or “no” separated by LWSP, or
yes-no-series = yes-or-no *("," LWSP yes-or-no)

to indicate a series of “yes” or “no” separated by “,” and LWSP.

1.1.14. ABNF syntax rules, parentheses

Elements enclosed in parentheses are treated as a single element. Thus,
“(elem (foo / bar) elem)” allows the token sequences

“elem foo elem” and “elem bar elem”. Example of use of this (from

RFC822):

authentic = "From" ":" mailbox ; Single author
 / ("Sender" ":" mailbox ; Actual submittor
 "From" ":" 1#mailbox) ; Multiple authors
 ; or not sender

Example 3, value a:
 From: Donald Duck <dduck@disney.com>

Example 3, value b:
 Sender: Walt Disney <walt@disney.com>
 From: Donald Duck <dduck@disney.com>

1.1.15. Optional elements

There is often the need to specify that something can occur or can be omitted.

This is specified by square brackets. Example:

answer = ("yes" / "no") [", maybe"]

will match the strings
“yes” “no”
“yes, maybe” “no, maybe”

Square brackets is actually the same as "0*1, the ABNF production above

could as well be written as:
answer = ("yes" / "no") 0*1(", maybe")

or

2. Augmented Backus Naur Form, ABNF 27
answer = ("yes" / "no") *1(", maybe")

Table 6: Summary of ABNF notation

Notation Meaning

“/” either or

n*m(element) Repetition of between n and m elements

n*n(element) Repetition exactly n times

n*(element) Repetition n or more times

*n(element) Repetition not more than n times

n#m(element) Same as n*m but comma-separated

[element] Optional emenent, same as *1(element)

Example Meaning

Yes / No Either Yes or No

1*2(DIGIT) One or two digits

2*2(DIGIT) Exactly two digits

1*(DIGIT) A series of at least one digit

*4(DIGIT) Zero, one, two, three or four digits

2#3("A") “A, A” or “A, A, A”

[";" para] The parameter string can be included or omitted

; Text from a semicolon (;) to the end of a line is a comment

Exercise 1

Specify, using ABNF, the syntax for a directory path, like “users/smith/file”

or

“users/smith/WWW/file” with none, one or more directory names, followed

by a file name.

(Solutions to the exercises can be found on page 112.)

Exercise 2

Specify, using ABNF, the syntax for Folding Linear White Space, i.e. any se-

quences of spaces or tabs or newlines, provided there is at least one space or

tab after each newline.

Examples:

“ HTHT HTHT ”

28 2. Augmented Backus Naur Form, ABNF

“ HTHT CRCR LFLF
HTHT ”

“

CRCR LFLF HTHT ”

Assume SP = Space, HT = Tab, CR = Carriage Return, LF = Line Feed

2. Augmented Backus Naur Form, ABNF 29

1.5. Examples of use of ABNF

Example 1, ABNF (from RFC 822):
LWSP-char = SPACE / HTAB ; semantics = SPACE

Example 2, ABNF (from RFC822):
mailbox = addr-spec ; simple address
 / phrase route-addr ; name & addr-spec
 addr-spec = local-part "@" domain ; global address
 phrase = 1*word ; Sequence of words
 word = atom / quoted-string

Examples of values matching the syntax in Example 2 above:
jpalme@dsv.su.se
Jacob Palme <jpalme@dsv.su.se>

Example 3 (from RFC822):
optional-field =
 / "Message-ID" ":" msg-id
 / "Resent-Message-ID" ":" msg-id
 / "In-Reply-To" ":" *(phrase / msg-id)
 / "References" ":" *(phrase / msg-id)
 / "Keywords" ":" #phrase
 / "Subject" ":" *text
 / "Comments" ":" *text
 / "Encrypted" ":" 1#2word
 / extension-field ; To be defined
 / user-defined-field ; May be pre-empted

Examples of values matching the syntax in Example 3 above:
In-Reply-To: <12345*jpalme@dsv.su.se>

In-Reply-To: <12345*jpalme@dsv.su.se> <5678*jpalme@dsv.su.se>

In-Reply-To: Your message of July 26 <12345*jpalme@dsv.su.se>

Keywords: flowers, tropics, evolution

Example 4 (from RFC822) demonstrating the use of square brackets ([)
and (]):
received = "Received" ":" ; one per relay
 ["from" domain] ; sending host
 ["by" domain] ; receiving host
 ["via" atom] ; physical path
 *("with" atom) ; link/mail protocol
 ["id" msg-id] ; receiver msg id
 ["for" addr-spec] ; initial form

1.1.16. Examples of values matching the syntax in example 4 above:

Received: from mars.su.se (root@mars.su.se Ä130.237.158.10Å)
by zaphod.sisu.se (8.6.10/8.6.9) with ESMTP
id MAA29032 for <cecilia@sisu.se>

30 2. Augmented Backus Naur Form, ABNF

1.1.17. Example 7 (from RFC822):

authentic = "From" ":" mailbox ; Single author
 / ("Sender" ":" mailbox ; Actual submittor
 "From" ":" 1#mailbox) ; Multiple authors
 ; or not sender

1.1.18. Examples of value matching the syntax in example 7 above

From: Sven Svensson <ss@foo.bar>, Per Persson <pp@foo.bar>
Sender: Sven Svensson <ss@foo.bar>

Exercise 3

Specify the syntax of a new e-mail header field with the following properties:

Name: “Weather”

Values: “Sunny” or “Cloudy” or “Raining” or “Snowing”

Optional parameters: ";" followed by parameter, "=" and integer value

Parameters: “temperature” and “humidity”

1.1.1.3. Examples of values:

Weather: Sunny ; temperature=20; humidity=50

Weather: Cloudy

Exercise 4

An identifier in a programming language is allowed to contain between 1 and

6 letters and digits, the first character must be a letter. Only upper case char-

acter are used. Write an ABNF specification for the syntax of such an identi-

fier.

1.6. RFC 822 lexical scanner specified in ABNF

By a lexical scanner is meant the lowest level of the syntax, the rules for

scanning characters and combining them into words. Below is part of the

lexical scanner from RFC822 as an example of how such a scanner can be

specified using ABNF.

2. Augmented Backus Naur Form, ABNF 31
CHAR = <any ASCII character> ; (0-177, 0.-127.)
ALPHA = <any ASCII alphabetic character>
 ; (101-132, 65.- 90.)
 ; (141-172, 97.-122.)
DIGIT = <any ASCII decimal digit> ; (60- 71, 48.- 57.)
CTL = <any ASCII control ; (0- 37, 0.- 31.)
 character and DEL> ; (177, 127.)
CR = <ASCII CR, carriage return> ; (15, 13.)
LF = <ASCII LF, linefeed> ; (12, 10.)
SPACE = <ASCII SP, space> ; (40, 32.)
HTAB = <ASCII HT, horizontal-tab> ; (11, 9.)
<"> = <ASCII quote mark> ; (42, 34.)
CRLF = CR LF
LWSP-char = SPACE / HTAB ; semantics = SPACE

Note that much important information above is specified in plain text and not

using ABNF constructs. The 1997 version of ABNF includes constructs

which mean that much of this can be specified using ABNF constructs. With

these new constructs, a code roughly defining the same is specified in the

ABNF standard itself as:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
BIT = "0" / "1"
CHAR = %x01-7F ; any 7-bit US-ASCII character, excluding NUL
CR = %x0D ; carriage return
CRLF = CR LF ; Internet standard newline
CTL = %x00-1F / %x7F ; controls
DIGIT = %x30-39 ; 0-9
DQUOTE = %x22 ; " (Double Quote)
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HTAB = %x09 ; horizontal tab
LF = %x0A ; linefeed
LWSP = *(WSP / CRLF WSP) ; linear white space (past newline)
OCTET = %x00-FF ; 8 bits of data
SP = %x20

The new constructs allow the specification of character codes using binary

(b), decimal (d) or hexadecimal (x) notation.

%d13 is the character with decimal value 13, which is carriage return.

%x0D is the character with hexadecimal value 0D, which is another way of specifying
the carriage return character.

b1101 is the character with binary value 1101, which is a third way of specifying the
carriage return character.

%x30-39 means all characters with hexadecimal values from 30 to 39, which is the digits
0-9 in the ASCII character set.

%d13.10 is a short form for %d13 %d10, which is carriage return followed by line feed.

32 2. Augmented Backus Naur Form, ABNF

3. Abstract Syntax Notation, ASN.1

Objectives

ASN.1 is a strongly typed coding langauge which gives readable code

descriptions and very compact, but difficult to read, binary encoding

Keywords

ASN.1

BER

3. Abstract Syntax Notation, ASN.1 33

ASN.1 (Abstract syntax notation 1 [Larmouth 1999, Kaliski 1993]) is an al-

ternative to ABNF for specifying the syntax of complex data structures. While

ABNF is mostly used to specify textual encodings, ASN.1 is mostly used to

specify binary encodings. The same syntax specification in ASN.1 can be

used with different encoding rules, but of course the sending and receiving

computer must agree on which encoding rules to use, if they are to understand

each other using ASN.1. The mostly used encoding rule for ASN.1 is called

BER (Basic Encoding Rules). A short overview of BER can be found on page

67. This book does not give a complete description of all the features of

ASN.1.
 Most Internet application layer standards use ABNF and textual enco d-

ings, but a few use ASN.1, for example SMIME, LDAP and Kerberos.

The main principle of ASN.1 is that new data types can be defined based

on simpler types. The example below shows how this is done.

Assume that a meteorological station needs to send a temperature meas-

urement to a meteorological center. The temperature is one single value, it can

be encoded in different ways. It can be sent as a real value (which in a com-

puter is encoded as a floating-point number, with a mantissa and an exponent)

or it can be sent as an integer value. It can be given in degrees Celsius, Kelvin

or Fahrenheit.

A standard for sending meteorological information must define this. The

ASN.1 definition of how temperature information is transferred might look

like this:

Temperature ::= REAL - - In degrees Kelvin

This statement just says that the temperature is to be encoded using the ASN.1

rules for encoding floating-point (real) values. REAL is a built-in ASN.1 type.

ASN.1 has a number of built-in simple data types, like REAL, INTEGER,

BOOLEAN, STRING, etc. Information which cannot be coded formally in the

ASN.1 language can be added as a comment, which is preceded by “- -” as “- -

In degrees Kelvin” in the example above.
But how does the recipient know that the value sent is a temperature value

and not, for example, the floating-point value of the wind velocity or humid-

ity? One way of doing this is to introduce a tag. A tag is a label which is sent

34 3. Abstract Syntax Notation, ASN.1

before the data value and indicates what kind of information is sent. The

ASN.1 definition in that case might be:

Temperature ::= [APPLICATION 0] REAL - - In degrees Kelvin

This statement says that, in this application (the protocol for sending mete-

orological data), we let the tag “[APPLICATION 0]” indicate that the data which

follows is a temperature reading. Wind velocity and humidity might have dif-

ferent tags:

Temperature ::= [APPLICATION 0] REAL

WindVelocity ::= [APPLICATION 1] REAL

Humidity ::= [APPLICATION 2] REAL

The three lines above define three new data types, Temperature, WindVelocity,

and Humidity, all encoded using the ASN.1 REAL type. Note that it is only in

this special application that 0, 1 and 2 are tags for Temperature, WindVelocity, and

Humidity. In other applications, the tags 0, 1 and 2 may mean something else.
The definition:

Temperature ::= [APPLICATION 0] REAL - - In degrees Kelvin

will actually define a new tagged data type, based on REAL. With explicit

tagging, both tags are sent on the line as shown by this figure:

Application 0-tag Real-tag Length ValueLength

Real data type

Tagged data type

Sometimes, a new data type requires a combination of several values. A

complex number, for example, can be coded as two floating-point values, one

for the imaginary and one for the real element of the number. In ASN.1 this

might be defined as follows:

ComplexNumber ::= [APPLICATION 3] SEQUENCE {

imaginaryPart REAL,

realPart REAL }

More complex data types can thus, as in the example, be defined by a combi-

nation of more than one element of simpler types.
One type definition may use separately defined types. For example, the

3. Abstract Syntax Notation, ASN.1 35

type for a record containing temperature, wind velocity, and humidity may be

defined as:

WeatherReading ::= [APPLICATION 4] SEQUENCE {

temperatureReading Temperature,

velocityReading WindVelocity,

humidityReading Humidity }

Note that this definition of the new type WeatherReading uses the previous defi-

nitions of the three types Temperature, WindVelocity, and Humidity as elements. In

this way, more and more complex data structures which are needed for some

applications can be built using previously defined simpler types. For example,

we may want to send a series of weather readings from different altitudes in

one transmission as an even more complex object:

SeriesOfReadings ::= [APPLICATION 5] SEQUENCE OF AltituteReading

AltitudeReading ::= [APPLICATION 6] SEQUENCE {

altitude Altitude,

weatherReading WeatherReading }

Altitude ::= [APPLICATION 7] REAL - - Meters above sea level

This contains three ASN.1 productions, where each production refers to types

defined in a later production. ASN.1 productions are usually written in this

top-down order, but ASN.1 does not require any particular ordering of the

productions.
Using the definitions above, the actual bit string (octet string) sent may be

partitioned as shown in Figure 3.

36 3. Abstract Syntax Notation, ASN.1

App-
lica-

tion 4

tempe-
rature-

Reading

App-
lica-
tion 0

REAL

velo-
city-

Reading

App-
lica-

tion 1
REAL

humi-
dity-

Reading

App-
lica-

tion 2
REAL

weatherReading

altitude

App-
lica-
tion 7

REAL

App-
lica-

tion 5
AltitudeReading AltitudeReading AltitudeReading

SeriesOfReadings

The basic octet-string

Figure 3: How ASN.1 and BER is used to produce an octet string.

Here is an example of the actual ASN.1 used in an Internet standard. The ex-

cerpt below is taken from the LDAP standard (RFC 2251):

BindRequest ::= [APPLICATION 0] SEQUENCE {

version INTEGER (1 .. 127),

name LDAPDN,

authentication AuthenticationChoice }

AuthenticationChoice ::= CHOICE {

simple [0] OCTET STRING, -- 1 and 2 reserved

sasl [3] SaslCredentials }

SaslCredentials ::= SEQUENCE {

mechanism LDAPString,

credentials OCTET STRING OPTIONAL }

3. Abstract Syntax Notation, ASN.1 37

1.7. ASN.1 basic

1.1.19. ASN.1 value notation

Information sent via protocols between computers is usually not constant,

since there is no need to send constant information. Thus, ASN.1 is mostly

used to specify information which is not constant. There is however a notation

in ASN.1 for specifying constants, the ASN.1 value notation. It is mostly used

to specify constants which are to be used in other ASN.1 declarations. For ex-

ample, instead of the ASN.1 specification:

Windowline ::= GeneralString (SIZE (80))

we might use:

Windowline ::= GeneralString (SIZE (lineLength))

lineLength ::= 80

The advantage with this is that it is easier to change the lineLength, it may be

used in many places but defined only once. It is also neat to collect all con-

stants like line lengthes in a special area of a standards document.

1.1.20. ASN.1 terminology

A type or a data type is a set of permitted values. A type can be defined by

enumerating all permitted values, or it can be defined to have an unlimited

number of values, like the data types Integer and Real. A new type, which is

defined by a combination of elements of already defined types, is called a

structured type. Example of a definition of a structured type:

ComplexNumber::= [APPLICATION 3] SEQUENCE

{ imaginaryPart REAL,

realPart REAL }

A specification of a syntax isn ASN.1 is called an abstract syntax. The syntax

used in actual communication between two computers is called a transfer

syntax. The specification of how an abstract syntax is to be implemented in a

transfer syntax is an encoding rule, like the Basic Encoding Rules (BER).
An ASN.1 production is a rule to define one type, based on other already

defined types. The syntax for an ASN.1 production is:

38 3. Abstract Syntax Notation, ASN.1

1. The name of the new data type (must begin with an upper case letter, A-Z)

2. The operator ::=

3. The definition of the new data type.

Exercise 5

You are to define a protocol for communication between an automatic scale

and a packing machine. The scale measures the weight in grams as a floating

point number and the code number of the merchandise as an integer. Define a

data type ScaleReading which the scale can use to report this to the packing

machine.

Exercise 6

Some countries use, as an alternative to the metric system, a measurement

system based on inches, feet and yeards. Define a data type Measurement which

gives one value in this system, and Box which gives the height, length and

width of an object in this measurement system. Feet and yards are integers,

inches is a decimal value (=floating point value with the base 10).

1.1.21. Pre-defined, built-in types in ASN.1

Table 7 lists the pre-defined, built-in types of ASN.1.

3. Abstract Syntax Notation, ASN.1 39

1.1.22. Comments

Comments in ASN.1 start with two hyphens in direct succession, “--” , and

end with either two hyphens again, “--” or the end of the row.

1.1.23. Format of identifiers

Field names and constant values in ASN.1 must have names beginning with a

lower case letter (a-z). Types must have names beginning with an upper-case

letter (A-Z). The case is thus significant in ASN.1 names. Both field names

and values can contain all letters (a-z, A-Z, numbers (0-9) and the hyphen
character ("-"). Two hyphens in succession are however not allowed, since

they are used to indicate the start of a comment.

1.8. Simple Types

1.1.24. Integer Type

The INTEGER simple type can have as values all positive and negative integers

including 0. Note that there is no maximum value. This is different from inte-

gers in computer programming languages, which usually are limited to 32 or

64 bits.

Table 7: Built-in types in ASN.1

Simple types Character string types Structured types ”Useful
types”

BOOLEAN
INTEGER
ENUMERATED
REAL
BIT STRING
OCTET STRING
NULL
OBJECT IDENTIFIER

NumericString
PrintableString
TeletexString
VideotexString
VisibleString
IA5String
GraphicString
GeneralString
UniversalString
BMPString
UTF8String
CharacterString

SET
SET OF
SEQUENCE
SEQUENCE OF
CHOICE
ANY
[Tagged]

<Different vari-
ants
< of ISO 10646,
not
< in the 1998
< version

GeneralizedTime
UTCTime
EXTERNAL
ObjectDescriptor

Warning: Constraints
are strongly recom-
mended for Graphic,
General, Universal,
BMP and UTF8
strings

40 3. Abstract Syntax Notation, ASN.1

An example of use of an INTEGER declaration:

Number-of-years ::= INTEGER

An INTEGER declaration may include names of certain values. Example:

Weekday ::= INTEGER { monday(1), tuesday(2), wednesday(3), thursday(4), friday(5),

saturday(6), sunday(7) }

This does not limit the value of Weekday to integers between 1 and 7. Weekday,

as defined above, can still have as value any positive or negative integer.

1.1.25. Subtypes

It is, however, possible to restrict a new type, based on the INTEGER type, to

only some values. This is done using the subtyping notation. Example:

Weekday ::= INTEGER { monday(1), tuesday(2), wednesday(3), thursday(4), friday(5),

saturday(6), sunday(7) } (1 .. 7)

Subtypes are specified with information in parenthesises after a type specifi-

cation, as in the example above. Subtype will limit the set of allowed values

to only a subset of the allowed values of the parent type. In the case of the

INTEGER type, the following commands are allowed in subtype specifica-

tions:

Example Description
1 .. 7 all values between the lower and upper bound
5 a single value
INCLUDES
Weekday

all values from another, defined type

2 | 10 list of values, separated by |

Additional constructs are allowed in subtypes to other types than INTEGER, this

will be described later. Here are some examples of subtype declarations on

the INTEGER type:

OddSingleDigitPrimes ::= INTEGER (3 | 5 | 7)

SingleDigitPrimes ::= INTEGER (2 | INCLUDES OddSingleDigitPrimes)

PositiveNumber ::= INTEGER (1 .. MAX)

Month ::= (1 .. 12)

Month ::= (1 .. <13)

3. Abstract Syntax Notation, ASN.1 41

The two declarations of Month above define the same value set. MAX and MIN

means that there is no limit. This is not the same thing as +∞ and -∞), an

INTEGER cannot have infinity as a value, but it can be of arbitrary size.

Exercise 7

Change the definition of Measurement in Exercise 2 so that feet can only have

the values 0, 1 or 2 (since 3 feet will be a yeard), and so that inches is speci-

fied as an integer between 0 and 1199 giving the value in hundreds of an inch

(since 1200 or 12 inces will be a foot).

1.1.26. Boolean Type

The Boolean type has only two values, TRUE and FALSE. Example:

ShopOpen ::= BOOLEAN

It is not permitted to write:

Gender ::= BOOLEAN {male (TRUE), female (FALSE) }

but instead, you can write

Gender ::= BOOLEAN

male Gender ::= TRUE

female Gender ::= FALSE

Exercise 8

In an opinion poll, made at the exit door from the election rooms, every voter

is asked to indicate which party they voted for. Allowed values are Labour,

Liberals, Conservatives or “other”. The age of each voter is also registered as

a positive integer above the voting age of 18 years, and the gender is regis-

tered. Define a data type to transfer this information from the poll station to a

server.

Exercise 9

In the local election in Hometown, there are also two local parties, the

Hometown party and the Drivers party. Extend solution 1 to exercise 8 to a

new datatype HometownVoter where also these two additional parties are al-

lowed.

42 3. Abstract Syntax Notation, ASN.1

1.1.27. Enumerated

The ENUMERATED type can only have the values which are enumerated in its

declaration. The syntax is similar to the INTEGER type. Example:

DayOfTheWeek ::= ENUMERATED {monday (1), tuesday (2), wednesday (3), thursday (4),
friday (5), saturday (6), sunday (7) }

A difference between ENUMERATED and INTEGER is that the values of the

ENUMERATED type are not ordered. The following construct:

WeekDayNumber ::= INTEGER {monday (1), tuesday (2), wednesday (3), thursday (4),

friday (5), saturday (6), sunday (7) }

WorkingDayNumber ::= WeekDayNumber (1 .. 5)

is thus not permitted, with ENUMERATED, you have to define this subtype as:

WorkingDay ::= DayOfTheWeek (monday | tuesday | wednesday | thursday | friday |
saturday | sunday)

Compare the following three definitions of DayOfTheWeek:

� DayOfTheWeek ::= INTEGER { monday(1), tuesday(2), wednesday(3),

thursday(4), friday(5), saturday(6), sunday(7) }

� DayOfTheWeek ::= INTEGER { monday(1), tuesday(2), wednesday(3),

thursday(4), friday(5), saturday(6), sunday(7) } (1..7)

� DayOfTheWeek ::= ENUMERATED { monday(1), tuesday(2), wednesday(3),

thursday(4), friday(5), saturday(6), sunday(7) }

Case � allows all possible integers as values, case � and � only allows the

seven values 1 to 7. Case � has a defined order, case � has no defined order

of the values.

1.1.28. Real Type

The REAL type includes the following allowed values:

+∞, --∞ and values of the form

M * BE, where M and E can be any ASN.1 INTEGER and B can only have the

value 2 or 10. Examples:

3. Abstract Syntax Notation, ASN.1 43

Weight ::= [APPLICATION 0] REAL -- Measured in grams

pi REAL ::= {314159265358793238462433, 10, 25 }

zero REAL ::= 0

topValue REAL ::= PLUS-INFINITY

Exercise 10

In the armed forces, three degrees of secrecy are used: open, secret and top

secret. Suggest a suitable datatype to convey the secrecy of a document which

is transferred electronically.

Exercise 11

Given the solution to Exercise 10, assume that a new degree extra high secret

is wanted. Define an extended version of the protocol defined in Exercise 6 to

allow also this value.

1.1.29. Bit String

A BIT STRING has as value an ordered string of 0 or more bits. The first bit is

numbered 0, the second 1, etc. Examples

Gender ::= BIT STRING -- This BITSTRING indicates the gender of each

-- of several individuals

DotPattern ::= BIT STRING (SIZE (25)) -- This BITSTRING always contains

-- exactly 25 bits

Person ::= BIT STRING { gender (0), married (1), adult (2) }

Note: BER will encode a BIT STRING more compactly than a SEQUENCE OF

BOOLEAN. With the Packed Encoding Rules (PER) there is no difference.

1.1.30. Subtypes

A subtype specification takes an existing type, and specifies a subtype of its

values. The following constructs can be used to specify subtypes of a type:

44 3. Abstract Syntax Notation, ASN.1

1.1.31. Variants of Bit Strings

� Characteristics ::= BIT STRING {gender(0), adult(1), blueEyed(2), caucasian(3) }

� Characteristics ::= BIT STRING {gender(0), adult(1), blueEyed(2), caucasian(3) }

(SIZE (0 .. 4))

� Characteristics ::= BIT STRING {gender(0), adult(1), blueEyed(2), caucasian(3) }

(SIZE (4))

� Specifies a BIT STRING of any length, but with defined names only for its

Table 8 Different kinds of subtypes

Kind of sub-
type

Allowed for Examples

Single value All types
RetirementAge ::= INTEGER (65)

Range INTEGER and
REAL AdultAge ::= INTEGER (15 .. MAX)

Child ::= INTEGER (1 .. 14)

Contained
subtype

All types
Age ::= INTEGER (INCLUDES Child | INCLUDES

AdultAge)

Size range SEQUENCE OF
, SET OF and
all string types

Line ::= General String (SIZE (1..80))

Couple ::= SET SIZE(2) OF Person

Alphabet limi-
tation

Character string
types OctalDigit ::= General String (FROM ("0" | "1" | "2"

| "3" | "4" | "5" | "6" | "7"))

Inner subtyp-
ing

SET, SET OF,
SEQUENCE,
SEQUENCE OF
, CHOICE

Person ::= CHOICE { Male, Female }

Males ::= SET WITH Component (Male) OF Person

List of several
subtype values

All types
Base ::= INTEGER (2 | 8 | 10 | 16)

Constraint (the
actual subtyp-
ing restrictions
are specified in
a comment)

All types
ENCRYPTED { ToBeEnciphered } ::=

BIT STRING

(CONSTRAINED-BY {

-- must be enciphermed using the

-- DES encipherment standard

})

3. Abstract Syntax Notation, ASN.1 45

first four values.

� Is similar to �, but cannot be longer than 4 bits.

� Is similar to �, but always has exactly 4 bits.

Exercise 12

Assume that you want to define a pattern to cover a monochrome screen.

Each pixel on the screen can be either black or white. The pattern is made by

repeating a rectangle of N times M pixels over the whole screen. Examples

of possible patterns are:

Base Example of use Base Example of use

Specify an ASN.1 data type which you can use to de-

scribe different such patterns.

Exercise 13

A store holds paper in the formats A3, A4, A5 and A6. A user wants to know
if sheets are available in each of these four formats. Specify a data type to re-
port this to the user.

46 3. Abstract Syntax Notation, ASN.1

Exercise 14

What is the difference between these two types, and what does monday
mean for each of them?

DayOfTheWeek ::= ENUMERATED { monday(0), tuesday(1), wednesday(2),

thursday(3), friday(4), saturday(5), sunday(6) } }

DaysOpen ::= BIT STRING { monday(0), tuesday(1), wednesday(2),

thursday(3), friday(4), saturday(5), sunday(6) } (SIZE(7))

1.1.32. Octet String TypeAn Octet String specifies a string of zero, one or more oc-

tets. This type is often used when you want to transfer data specified accord-

ing to some other syntax than ASN.1, such as a GIF file. Example:
GifPicture ::= OCTET STRING

1.1.33. Null Type

The Null type has only one allowed value, the value null. It can be used to in-

dicate a placeholder for something to be added in the future, or it can be used

combined with OPTIONAL, where the existence of a value or its absence indi-

cates some information. Example:

Prisoner ::= SEQUENCE {

name GeneralString,

dangerous NULL OPTIONAL }

Which conveys the same information as

Prisoner ::= SEQUENCE {

name GeneralString,

dangerous BOOLEAN }

3. Abstract Syntax Notation, ASN.1 47

1.1.34. Examples of the Use of Size

MonthNumber ::= NumericString (SIZE (1 ..2))

 MonthNumber ::= NumericString (SIZE (1 |2))

 Base ::= BIT STRING (SIZE (0 | 2 .. 7 | 10))

 Couple ::= SET SIZE(2) OFHuman

 BridgeDeal ::= SET SIZE (13) OFPlayingCard

 BridgeHand ::= SET SIZE (0..13) OFPlayingCard

 lineLength INTEGER 80

Line ::= VisibleString (SIZE (0 .. lineLength)

Exercise 15

The X.400 standard specifies that a name can consist of several subfields. One

of the subfields is called OrganizationName and can have as value between 1

and 64 characters from the character se PrintableString. Suggest a definition

of this in ASN.1.

1.1.35. Character String Types

ASN.1 has several Character String types for different charactersets.

NumericString“ “0” .. “9” and “ ”

PrintableString “a”..“z”, “A”..“Z”, “0”..“9” ' () + , - . / : = ?

TeletexString

T61String

The T.61 or ISO 6937 character set, a set which uses one or two octets
to specify more than 255 different characters, for example, the character
É is specified by the two characters “'E”.

VisibleString

ISO646String

Printable characters, including space, from ISO 646 (”ASCII”), but no
format control characters like Carriage Return or Line Feed.

IA5String IA5 (ISO 646, ”ASCII”).

GraphicString Can contain characters from several different character sets, using
ISO 2022 codes to switch from one character set to another character set
within the string. Can only contain printable characters and space, not
format control characters.

GeneralString Same as GraphicString, but can also contain formatting characters.

UniversalString ISO 10646.

CharacterString Can contain characters from multiple character sets, using ISO 2022
codes to switch between the sets.

Character Strings have a special kind of subtype only available for Character

Strings. It is called Permitted Alphabet, and uses a list of characters allowed
in a new type. Example:PrintableString (FROM("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"))

48 3. Abstract Syntax Notation, ASN.1

1.9. Structured types

Structured types specify new types by combining several components of one

or more already defined types. This table lists the basic constructed types in

ASN.1.

SET A list of component
fields, like a record in
a data base. the com-
ponents can be in-
cluded in any order,
and the order of the
components when
transmitted does not
convey any informa-
tion.

Chairmen ::= SET {

democratic chairman [0] General

String, republican chairman

[1] General String }

SEQUENCE Similar to SET, but
the fields must be sent
in a certain order.

Ingredients ::= SEQUENCE {

peas REAL,

eggs INTEGER }

SET OF Zero, one or more
components, all of the
same type. The order
of the components
conveys no informa-
tion.

Ingredients ::= SET OF Ingredient

Couple ::= SET SIZE (2) OF Person

SEQUENCE
OF

Like SET OF, but
order has signifi-
cance.

Children ::= SET OF Person

CHOICE Has as value one of a
listed number of al-
ternative types.

Vehicle ::= CHOICE {

Bus, Car, Bicycle }

For the SET OF and SEQUENCE OF types, it is possible to indicate that one or

more of the components need not be included. Example:

KnownParents ::= SEQUENCE OF {

father Male OPTIONAL,

mother Female OPTIONAL }

3. Abstract Syntax Notation, ASN.1 49

Exercise 16

In a protocol for transferring personal data between two computers, a social

security number is transferred. This number consists of only digits, blanks and

dashes. Name (not split into first name and surname, max 40 characters) can

also be transferred if known, and an estimated yearly income can be trans-

ferred if known. Both of these values are optional, only the social security

number is mandatory. Specify using the SET construct of ASN.1 a datatype to

transfer this information.

Exercise 17

Assume that a name is to be transferred as two fields, one for given name and

one for surname. How can the solution to Exercise 16 be changed to suit this

case?

Exercise 18

Define a datatype FullName which consists of three elements in given order:

Given name, Initials and Surname. Given name and Initials are optional, but

Surname is mandatory.

Exercise 19

Define a data type BasicFamily consisting of 0 or 1 husband, 0 or 1 wife and 0, 1

or more children. Each of these components are specified as an IA5String.

Exercise 20

Define a datatype ChildLessFamily, based on BasicFamily from Exercise 16.

Exercise 21 be changed to suit this case?

1.1.36. Inner subtyping

A special kind of subtypes can be specified for constructed types. This is an

inner subtype. By this is meant that you specify a subtype for one or more of

the components.
For SET OF and SEQUENCE OF, the construct WITH COMPONENT is used to

50 3. Abstract Syntax Notation, ASN.1

specify a subtype of the type of the element. Example:

Age ::= INTEGER

People ::= SET OF Age

Childen ::= People (WITH COMPONENT (1 .. 14))

For SET and SEQUENCE, the construct WITH COMPONENTS is used to specify

subtypes for one or more of the components. Example 1:

Person ::= SEQUENCE {

name GeneralString,

age INTEGER }

Adult ::= Person WITH COMPONENTS { ... , age (15 .. MAX) }

Example 2:

Parents ::= SEQUENCE {

father Person OPTIONAL,

mother Person OPTIONAL }

SingleMother ::= Parents (WITH COMPONENTS { Father ABSENT, ... }

Thus, in a subtype, an element which was OPTIONAL in the original type

may be specifed as PRESENT, ABSENT or OPTIONAL in the subtype.

SingleMother is a subtype of Person, specified by specifying a subtype of

one of its components, the age component. “...” specifies that all the other

components are unchanged.

Example 3:

NormalName ::= SEQUENCE {

givenName [0] GraphicString OPTIONAL,

surName [1] GraphicString OPTIONAL,

generation [2] GraphicString OPTIONAL,

age [3] INTEGER

}

3. Abstract Syntax Notation, ASN.1 51

RoyalName ::= NormalName

(WITH COMPONENTS {

givenName PRESENT,

surName ABSENT,

generation PRESENT

age (18.. MAX) }

)

Exercise 21

Define a datatype FullName which consists of three elements in given order:

Given name, Initials and Surname. Given name and Initials are optional, but

Surname is mandatory.

Exercise 22

Define a data type BasicFamily consisting of 0 or 1 husband, 0 or 1 wife and 0, 1

or more children. Each of these components are specified as an IA5String.

Exercise 23

Define a datatype ChildLessFamily, based on BasicFamily from Exercise 16.

Exercise 24

Given the ASN.1-type:

XYCoordinate ::= SEQUENCE {

x REAL,

y REAL

}

Define a subtype which only allows values in the positive quadrant (where

both x and y are >= 0).

52 3. Abstract Syntax Notation, ASN.1

Exercise 25

Given the ASN.1 type:

SET {

author Name OPTIONAL,

textbody IA5String }

Define a subtype to this, called AnonymousMessage, in which no author is

specified.

1.1.37. Choice Type

The possible values for the Choice type is the total of all the values of all the

component types. The choice type indicates that always exactly one of the al-

terantives will be sent. Example:

Identification ::= CHOICE {

textualname GeneralString,

identitynumber NumericString }

If you want to define a subtype which can only have one of the alternatives in

a choice, this can be specified as:

TextualIdentification ::= Identification (WITH COMPONENTS {textualname})

There is a shortcut notation for this,

TextualIdentification ::= textualname < Identification

Exercise 26

Given the data types Aircraft, Ship, Train and MotorCar, define a datatype Vessel

whose value can be any of these datatypes.

Exercise 27

What is the difference between the data type:

NameListA ::= CHOICE {

ia5 [0] SEQUENCE OF IA5String,

gs [1] SEQUENCE OF GeneralString

}

and the data type:

3. Abstract Syntax Notation, ASN.1 53

NamelistB ::= SEQUENCE OF CHOICE {

ia5 [0] IA5String,

gs [1] GeneralString

}

How is it in both alternatives above possible to define a new data type Gener-

alNameList which only can contain a GeneralString element?

Exercise 28

The by-laws of a society allows two kinds of votes:

(a) The voters can select one and only one of 1 .. N alternatives. The alterna-

tive which gets the most total votes wins.

(b) The voters can indicate a score of between 0 and 10 for each of the

choices 1 .. N. The choice which gets highest total score wins.

Specify an ASN.1 data type which can be used to report the votings of a per-

son to the vote collection agent, and which can be used for both kinds of

votes. The name of the voter shall be included in the report as an IA5String.

Exercise 29

Suggest a textual encoding for Exercise 25 using ABNF.

1.1.38. Any Type

The Any type is a way of introducing something, whose format is not defined

in the standard, and where you expect future usage to use different format at

different times. There are two variants:

� Vehicle ::= ANY

� SEQUENCE {

type-of-vehicle INTEGER,

Vehicle ::= ANY DEFINED BY type-of-vehicle }

With �, the receiving computer will have to analyse the value to find out

which format it has. With �, the number (type-of-vehicle in the example) will

give some kind of information to the receiving computer about the format of

54 3. Abstract Syntax Notation, ASN.1

the ANY-formatted data.

With the � syntax, type-of-vehicle can either be an INTEGER or an OBJECT-

IDENTIFIER. The difference between an INTEGER and an OBJECT-IDENTIFIER is

that if two different groups, independently define two different extensions,

with different format for what they put in the ANY, they might choose the same

value for type-of-vehicle, and then the receiving agent might confuse the two

values. OBJECT-IDENTIFIER is a special kind of identification tag, which is al-

ways globally unique. No two will ever define two OBJECT IDENTIFIERs with

the same value. The method for defining globally unique OBJECT IDENTI-

FIERs is similar to the method of assigning globally unique domains in the

Domain Name System (DNS). The tree structure in Figure 4 is used to dis-

tribute OBJECT IDENTIFIERs.

0 ITU standard
1 ITU question
2 ITU country
3 ITU member

0 ISO standard
1 registration-authority
2 ISO member organisation
3 identified-organization

0 ASN.1 itself
1 presentation layer
2 acse
3 rtse
4 rose
5 OSI directory (X.500)
6 MHS
7 document interchange
. . .

0 ITU

1 ISO

2 joint ISO-ITU

root

0 ITU standard
1 ITU question
2 ITU country
3 ITU member

0 ISO standard
1 registration-authority
2 ISO member organisation
3 identified-organization

0 ASN.1 itself
1 presentation layer
2 acse
3 rtse
4 rose
5 OSI directory (X.500)
6 MHS
7 document interchange
. . .

0 ITU

1 ISO

2 joint ISO-ITU

root

Figure 4: Domain name tree used in selecting OBJECT IDENTIFIERs

1.1.39. Tags

Look at the three examples below:

Name ::= SEQUENCE {

givenName [0] VisibleString OPTIONAL,

surName [1] VisibleString OPTIONAL }

3. Abstract Syntax Notation, ASN.1 55

Name ::= SET {

givenName [0] VisibleString,

surName [1] VisibleString }

Name ::= CHOICE {

numericName NumericString,

alphabeticName VisibleString }

In example �, both elements are optional. The tags [0] and [1] are neces-

sary, because otherwise the receiving computer would not know, when it got

only one string, whether this string was givenName or surName.

In example �, the tags are necessary, because otherwise the receiving

computer would not know if the first string was the givenName or the sur-

Name, since values of SET types can be sent in arbitrary order.

In example �, the alternatives have different base type, NumericString and

VisibleString, so the receiving computer can look at the UNIVERSAL tag to

know which of the alternatives it got.

In summary, the tags for the elements must be different for components in

a SET, for components in SEQUENCEs with OPTIONAL elements, and for

components in a CHOICE. If the base type is not different, tags must be

added to make them different.

Tags are labels used to differentiate between types. Tags are necessary in

certain cases, but can be used also when they are not required. It is regarded

as good ASN.1 usage to use the tags, also when they are not absolutely neces-

sary. The advantage with using tags, even when they are not needed, is that

they will make it easier for an old implementation to handle data in a new

format, defined in a newer version of the standard. (This is not true if the

Packed Encoding Rules, PER, are used.)

A tag has two components, a class component and a number component.

There are four classes of tags as shown in Table 1.

56 3. Abstract Syntax Notation, ASN.1

Table 9: Tag classes

Class Example Description

Application
[APPLICATION 3]

Is used in the same way everywhere in an ASN.1 mod-
ule. Use of this tag has problems, mainly when ASN.1
definitions are exported from one module to another.

Private
[PRIVATE 4]

Allows a company to make its own extensions. Also this
tag has problems, because it is not possible to distin-
guish between two extensions made by different compa-
nies.

Context
[7]

This tag is only valid in its immediate context, such as a
SET, SEQUENCE or CHOICE. It is the best tag to use if
the UNIVERSAL tag is not enough.

The 1994 extension of ASN.1 introduced a fifth tag declaration AUTOMATIC.

But AUTOMATIC does not define a new tag class, it specifies that the tag is

to be computed automatically when compiling the ASN.1 code.
Here is an example of the use of tags:

� Name ::= SET {

given name [0] VisibleString,

surname [1] VisibleString }

� PersonnelRecord ::= SET {

name [0] Name,

wage [1] INTEGER }

Even if these two ASN.1 type declarations occur in the same module, they

will not be confused. The tag [0] means something different in the � and the

� type declaration.

The pre-defined UNIVERSAL tags are listed in Table 10.

3. Abstract Syntax Notation, ASN.1 57

Table 10: UNIVERSAL tags in ASN.1

Simple types

1 BOOLEAN

2 INTEGER

3 BIT STRING

4 OCTET STRING

5 NULL

6 OBJECT IDENTIFIER

9 REAL

10 ENUMERATED

Structured types

16 SEQUENCE

16 SEQUENCE OF

17 SET

17 SET OF

(i) CHOICE

(ii) ANY

(i) No special tag is needed,
the tags of the components
are used

(ii) The tag is specified inside
the ANY value, and can
thus be any possible ASN.1
tag

Character String Types

12 UTF8String

18 NumericString

19 PrintableString

20 TeletexString

21 VideotexString

22 IA5String

25 GraphicString

26 VisibleString

27 GeneralString

28 UniversalString

29 CharacterString

30 BMPString

UsefulTypes

7 ObjectDescriptor

8 EXTERNAL

23 UTCTime

24 GeneralizedTime

1.1.40. Explicit and Implicit tags

Suppose you have the following ASN.1 declaration:

Name ::= SEQUENCE {

givenName [0] VisibleString OPTIONAL,

initials [1] VisibleString OPTIONAL,

surName [2] VisibleString OPTIONAL }

58 3. Abstract Syntax Notation, ASN.1

When this is encoded using the Basic Encoding Rules (BER), two tags will

be sent for every element. First the Context-Dependent tag [0], [1] or [2], and

then the UNIVERSAL tag for VisibleString (28, see Table 10). This is not really

necessary. The declaration can then be changed to:

Name ::= SEQUENCE {

givenName [0] IMPLICIT VisibleString OPTIONAL,

initials [1] IMPLICIT VisibleString OPTIONAL,

surName [2] IMPLICIT VisibleString OPTIONAL }

The word IMPLICIT specifies that only the tag defined in the text ([0], [1] or

[2],) need be sent, not the UNIVERSAL tag for VisibleString.

It is also possible, in the head of an ASN.1 module, to specify that all tags

are to be IMPLICIT where possible, even if this is not explicitly specified.

The head of an ASN.1 module can be

DEFINITIONS ::= - - Implies Explicit tags

DEFINITIONS IMPLICIT TAGS ::=

DEFINITIONS EXPLICIT TAGS ::=

DEFINITIONS AUTOMATIC TAGS ::= (In the 1994 version ASN.1)

If the module head specifies IMPLICIT TAGS, the ASN.1 code within the module

must use EXPLICIT where this kind of tag is wanted. If the module head speci-

fies EXPLICIT TAGS, the ASN.1 code within the module must use IMPLICIT

where this is wanted (more about this in the section Modules on page 65).

Exercise 30

Assume an ASN.1-module which looks like shown below; Change this

ASN.1 module, so that the same coding is specified, but with tag defaults

IMPLICIT instead of EXPLICIT.

WeatherReporting {2 6 6 247 1} DEFINITIONS EXPLICIT TAGS ::=

BEGIN

WeatherReport ::= SEQUENCE {

 height [0] IMPLICIT REAL,

 weather [1] IMPLICIT Wrecord

}

3. Abstract Syntax Notation, ASN.1 59

Wrecord ::= [APPLICATION 3] SEQUENCE {

 temp Temperature,

 moist Moisture

 wspeed [0] Windspeed OPTIONAL

}

Temperature ::= [APPLICATION 0] IMPLICIT REAL

Moisture ::= [APPLICATION 1] REAL

Windspeed ::= [APPLICATION 2] REAL

END - - of module WeatherReporting

Exercise 31

Which of the tags in the example below can be removed while the receiving

computer will still be able to interpret what you send?

Record ::= SEQUENCE {

GivenName [0] PrintableString

SurName [1] PrintableString }

Record ::= SET {

GivenName [0] PrintableString

SurName [1] PrintableString }

Record ::= SEQUENCE {

GivenName [0] PrintableString OPTIONAL

SurName [1] PrintableString OPTIONAL }

Exercise 32

Which of the tags in the examples below can be removed, while the receiving

computer will still be able to deduce what you meant, and assuming that

AUTOMATIC tagging is not specified.

Colour ::= [APPLICATION 0] CHOICE {

rgb [1] RGB-Colour,

cmg [2] CMG-Colour,

freq [3] Frequency

}

60 3. Abstract Syntax Notation, ASN.1

RGB-Colour ::= [APPLICATION 1] SEQUENCE {

red [0] REAL,

green [1] REAL OPTIONAL,

blue [2] REAL

}

CMG-Colour ::= SET { cyan [1] REAL,

magenta [2] REAL,

green [3] REAL

}

Frequency ::= SET {fullness [0] REAL,

freq [1] REAL

}

Exercise 33

The following ASN.1 construct is taken from the 1988 version of the X.500

standard. (OPTIONALLY-SIGNED is a macro, macros were replaced with a new

construct in the 1994 version of ASN.1.)

ListResult ::= OPTIONALLY-SIGNED

CHOICE {

listInfo SET {

DistinguishedName OPTIONAL,

subordinates [1]SET OF SEQUENCE {

RelativeDistinguishedName,

aliasEntry [0] BOOLEAN DEFAULT FALSE

fromEntry [1] BOOLEAN DEFAULT TRUE},

partialOutcomeQualifier [2]

PartialOutcomeQualifier OPTIONAL

COMPONENTS OF CommonResults },

uncorrelatedListInfo[0] SET OF ListResult }

Exercise 34

Is there anything wrong in the ASN.1 code in Exercise 33.

Exercise 35

Why is there no identifier on the element COMPONENTS OF? What does it

3. Abstract Syntax Notation, ASN.1 61

mean?

Exercise 36

Why are there no context-dependent tags on some of the elements, but not on

all of them?

1.10. Special types and Concepts

1.1.41. Time Types

GeneralizedTime is a built-in type for specificing time and date. Its format fol-

lows an ISO standard for dates. UTCTime is a shorter variant, where year is

specied with only two digits (beware!). The same point in time, 9 minutes and

25.2 seconds after 9 p.m in the U.S. Eastern Time Zone can be specified in

three ways using GeneralizedTime:

time-to-stop-working GeneralizedTime ::= "19880726210925.2" or

time-to-stop-working GeneralizedTime ::= "19880726210925.2Z" or

time-to-stop-working GeneralizedTime ::= "19880726210925.2-0500"

1.1.42. Use of Object Identifiers, Any, External

Data in an
older format

Data in a
newer format

Older version
of a program

Newer version
of a program

Figure 5:Allow communication between old and new programs

Figure 5 shows a common problem in distributed systems, where many pieces

62 3. Abstract Syntax Notation, ASN.1

of software, which have been developed at different times by different people,

need to work together. Thus, an older version of a program may receive data

from a newer version, in a newer format, which did not even exist when the

older version of the program was produced.
ASN.1 contains special constructs to make this possible: constructs for

specifying data elements which can be bypassed by older versions of a pro-

gram and interpreted by newer versions of the same program.

Here is an excerpt from the ASN.1 in the 1988 version of X.420, which

shows one way of using these extension facilities:

ExtensionsField ::= SET OF HeadingExtension

HeadingExtension ::= SEQUENCE {

type OBJECT IDENTIFIER,

value ANY DEFINED BY type DEFAULT NULL NULL }

}

HEADING-EXTENSION MACRO ::=

BEGIN

TYPE NOTATION ::= "VALUE" type | empty

VALUE NOTATION ::= VALUE (VALUE OBJECT IDENTIFIER)

END

One heading extension, defined in the 1988 version of X.400 using this con-

struct, is:

languages HEADING-EXTENSION

VALUE SET OF Language

::= id-hex-languages

Language ::= PrintableString (SIZE (2..2))

In the 1992 version of ASN.1, the ANY and MACRO constructs were abol-

ished, and replaced by the new CLASS construct. The above extension facil-

ity is with the 1994 X.420 syntax instead defined as:

ExtensionsField ::= SET OF IPMSExtension

IPMSExtension ::= SEQUENCE {

type IPMS-EXTENSION.&id,

value IPMS-EXTENSION.&Type DEFAULT NULL:NULL }

3. Abstract Syntax Notation, ASN.1 63

IPMS-EXTENSION ::= CLASS {

&id OBJECT IDENTIFIER UNIQUE,

&Type DEFAULT NULL }

WITH SYNTAX { [VALUE &Type ,] IDENTIFIED BY &id }

The heading extension for languages is with the new 1992 syntax defined as:

languages IPMS-EXTENSION ::= {VALUE SET OF Language,

IDENTIFIED BY id-hex-languages}

Language ::= PrintableString (SIZE (2..5))

As is shown in the example above, a typical such extensible element has two

subfields, one field with the name type and one field with the name value. The

type field is particular for every kind of extended field. The value field has a

structure which is called ANY DEFINED BY type with the 1988 notation and IPMS-

EXTENSION.&Type with the 1992 notation. This means that, for different values

of type, different ASN.1 specifications will describe the value. A new exten-

sion can then be identified by a new type value, and a new ASN.1 specifica-

tion of the value structure, like SET OF Language in the example above.
The type field in the example above is specified as an OBJECT IDENTIFIER. It

can also be specified as an INTEGER. The difference between OBJECT

IDENTIFIER and INTEGER is that there are rules defined which allows anyone to

obtain a new OBJECT IDENTIFIER, which will then be different from any other

OBJECT IDENTIFIER obtained by anyone else. In the case of integer, there is no

protection against two different developers using the same integer for two dif-

ferent extensions, which would, of course, create a mess if their systems were

connected. Thus, in practice, integer only allows extensions made by the inter-

national standards organizations, while OBJECT IDENTIFIER allows anyone to

make his own extension, without risk of a conflict with another extension

made by some other person or organization.

The value of an extension can (with the 1988 notation) be either ANY or

EXTERNAL. The difference between the two is that ANY refers to an extension

specified in ASN.1, while EXTERNAL allows an extension specified in some

language other than ASN.1.

An implementation, which encounters an extended field, can react to the

extended field in four different ways:

1. The implementation knows about the extension and utilizes it in the way it

64 3. Abstract Syntax Notation, ASN.1

was intended to be used.

2. The implementation receives the unknown fields, removes them and con-

tinues handling the message as if they had never been there.

3. The implementation receives the unknown fields, saves them, and transfers

them further along with the other data, even though the implementation

does not understand and cannot use the information in the extended field.

4. The implementation recognizes that this is an extended field and then gives

an error code saying that it cannot handle the data because it contains an

extension it does not understand.

Note that (4) is different from the kind of error that was produced when the

incoming data were incorrect. Such errors, called protocol violations, carry a

risk that a program will crash completely or react in unpredictable ways.
For envelope extensions, the X.400 standard for electronic mail specifies

for each extension whether reaction (3) (noncritical extension) or (4) (critical

extension) should be used by an implementation which does not understand

the extension. For heading extensions, X.400 states that reaction (3) is suit-

able.

1.1.43. Object Descriptor and External types

Example of use of the ObjectDescriptor type:

ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

This types is used when you use the ANY or EXTERNAL types, to give a human-

readable description of the data type, in addition to the machine-parseable

type code.

The EXTERNAL type can actually be specified in ASN.1. Its structure is:

EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE

{ direct-reference OBJECT-IDENTFIER OPTIONAL,

indirect-reference INTEGER OPTIONAL,

data-value-descriptor ObjectDescriptor OPTIONAL,

encoding CHOICE {

single-ASN1-type [0] ANY,

octet-aligned [1] IMPLICIT OCTET STRING,

arbitrary [2] IMPLICIT BIT STRING

}

}

3. Abstract Syntax Notation, ASN.1 65

This is a more advanced version of ANY, where the type of the unspecified

data is specified in one or more of three ways: An OBJECT IDENTIFIER, An

INTEGER or a text string. At least one of them must be specified.

1.1.44. Modules

A module is a named collection of ASN.1 type and value definitions. Its

structure is as follows:

<moduleReference> <obj-id > DEFINITIONS <tag-defaults> ::=

BEGIN

EXPORTS <type and value references>;

IMPORTS <type and value references>

FROM <moduleReference> <obj-id>;

...

<type and value definitions>

...

END

EXPORTS and IMPORTS are tools for using type definitions from one module in

another module. Example of modules with IMPORTS and EXPORTS:

CargoHandling { 1 2 4711 17 } DEFINITIONS EXPLICIT TAGS ::=

BEGIN EXPORTS Box, Container ;

Box ::= SEQUENCE {

height INTEGER, - - in centimeters

width INTEGER, - - in centimeters

length INTEGER } - - in centimeters

Container ::= SEQUENCE

weight INTEGER, - - in kilograms

volume Box }

END - - of CargoHandling

TrainCargo { 1 2 4711 18 } DEFINITIONS EXPLICIT TAGS ::=

BEGIN IMPORTS Box, Container FROM CargoHandling { 1 2 4711 17 };

66 3. Abstract Syntax Notation, ASN.1

TrainContainer ::= Container

(WITH COMPONENTS

{ weight (0 .. 5000), volume }

)

Carriage ::= SET SIZE (2..4) OF Container

END - - of TrainCargo

Example of a module specification using dot notation:

CargoHandling { 1 2 4711 17 } DEFINITIONS EXPLICIT TAGS ::=

BEGIN EXPORTS Box, Container ;

Box ::= SEQUENCE {

height INTEGER, -- in centimeters

width INTEGER, -- in centimeters

length INTEGER } -- in centimeters

Container ::= SEQUENCE

weight INTEGER, -- in kilograms

volume Box }

END -- of CargoHandling

TrainCargo { 1 2 4711 18 } DEFINITIONS EXPLICIT TAGS ::=

BEGIN

Container ::= CargoHandling{ 1 2 4711 17 }.Container

(WITH COMPONENTS

{ weight (0 .. 5000), volume }

)

Carriage ::= SET SIZE (2..4) OF Container

END -- of TrainCargo

Exercise 37

Given the following ASN.1 module:

Driving {1 2 4711 17} DEFINITIONS EXPLICIT TAGS ::=

BEGIN

3. Abstract Syntax Notation, ASN.1 67

MainOperation ::= SEQUENCE {

wheel [0] REAL,

brake [1] REAL,

gas [2] REAL }

END

Define an ASN.1 module CarDriving, which imports MainOperation from the

module above, and defines a new datatype FullOperation which in addition to

MainOperation also includes switching on and of the left and right blinking

lights, and setting the lights as unlit, parking lights, dimmed light and full

beam.

1.11. Encoding Rules

1.1.45. Basic Encoding Rules (BER)

The Basic Encoding Rules (BER) are the most commonly used encoding rules

for interpreting ASN.1 syntax into protocol units to be sent over the net. BER

is based on the length-value format (see page 18). Figure 6 shows two exam-

ples of BER encodings. Primitive encoding is used for simple types, types

which have no components. Constructed encoding is used for constructed

types, for example SET, SET OF, SEQUENCE, SEQUENCE OF. As is shown by the

figure, the value of a constructed type is itself split into a series of Tag-

Length-Value objects.

68 3. Abstract Syntax Notation, ASN.1

Primitive:

T L V
(a string of octets)

Constructed:

T L V
(a string of nested encodings)

T L V T L V T L V

T L V

T= Tag octets L = Length octets V = Value octets

Figure 6 Tag-Length-Value encoding in BER

1.1.46. The Tag or Identifier field

One-Octet-Variant

01 1 1 1 1 11

Tag-class Primitive
or
constructed

Tag-number

...

Multiple-Octet-Variant

One-Octet-Variant

01 1 1 1 1 11

Tag-class Primitive
or
constructed

Tag-number

...

Multiple-Octet-Variant

One-Octet-Variant

01 1 1 1 1 11

Tag-class Primitive
or
constructed

Tag-number

...

Multiple-Octet-Variant

One-Octet-Variant

01 1 1 1 1 11

Tag-class Primitive
or
constructed

Tag-number

...

Multiple-Octet-Variant

One-Octet-Variant

01 1 1 1 1 11

Tag-class Primitive
or
constructed

Tag-number

...

Multiple-Octet-Variant

Figure 7: Use of bits in BER encoding

The first two bits contain the tag class, with 00=Universal tag,

01=Application tag, 10=Context tag and 11=Private tag. The third bit is 0 for

a primitive type and 1 for a constructed type. If the tag number is between 0

and 30, it is encoded in the remaining give bits (One-Octet-Variant in Figure

3. Abstract Syntax Notation, ASN.1 69

7). If the tag class is higher than 30 (Multiple-Octet-Variant in Figure 7), the

remaining five bits are all 1-s, and the tag value is encoded in the last 7 bits of

one or more succeeding octets. The first bit of each such suceeding octet is 0

for the last octet, 1 for all but the last octet.

1.1.47. The Length Field in BER

0

1 0 0 0 0 0 0 0

1 ...

0 1 n0 < n < 127

Short form

Long form

Unlimited form, ends with an octet with eight 0-s

0

1 0 0 0 0 0 0 0

1 ...

0 1 n0 < n < 127

Short form

Long form

Unlimited form, ends with an octet with eight 0-s

0

1 0 0 0 0 0 0 0

1 ...

0 1 n0 < n < 127

Short form

Long form

Unlimited form, ends with an octet with eight 0-s

0

1 0 0 0 0 0 0 0

1 ...

0 1 n0 < n < 127

Short form

Long form

Unlimited form, ends with an octet with eight 0-s

0

1 0 0 0 0 0 0 0

1 ...

0 1 n0 < n < 127

Short form

Long form

Unlimited form, ends with an octet with eight 0-s

Figure 8: The Length field in BER

As is shown in Figure 8, the length field in BER also has a short, one-octet

form and a long, multiple-octet form. The short form has the first bit 0, and

the remaining 7 bit can contain a length between 0 and 127. In the long form,

the first bit is 1, and the remaining 7 bits of the first cotet contains the number

of additional octets. The length is then encoded as a binary number in the rest

of the bits.
There is also an unlimited form. It starts with an octet with 1 in the first 1

and 0 in the rest of the bits, and ends with an octet with eight 0-s. The unlim-

ited form is always constructed, i.e. its value must always be organized into

Tag-Length-Value groups. Even though the end is marked with an octet with

eight 0-s, it is sitll possible to have octets with all 0-s in the value, if these

octets occur inside the Tag-Length-Value groups. An octet with eight 0-s is

70 3. Abstract Syntax Notation, ASN.1

only interpreted as an end of the unlimited form, if it occurs immediately after

the end of a Tag-Length-Value group, as is shown below.

I 1 0 0 0 0 0 0 0 I L C ... I L C 0 0 0 0 0 0 0 0

1.1.48. The BER Value Octet

Table 11 shows how the BER value octet is defined for different types.

Table 11: The BER value octet

Boolean One Single Octet.

FALSE = 00000000
TRUE = all other values.

Integer Two-complement notation, coded using the smallest number
of necessary bits.

Enumerated Same coding as Integer.

Null No value octet at all.

Object Identifier A packed sequence of integers. The first integer contains the
first two labels, after that, one label in each encoded integer.

Set, Sequence,
Set-of, Sequence-
of

Nested sequences of coding of the components.

Choice, Any Same code as for the selected element.

Real Four variants:

0 is represented by no value octets,
01000000 represents PLUS-INFINITY and 01000001 repre-
sents MINUS-INFINITY
Other values are coded as binary values with the base 2, 8 or
16, or as decimal values according to the ISO 6093 standard.
The first octet indicates which coding method is used.

String Strings have two encoding variants, primitive and con-
structed. In the primitive form, the values are directly put
into the value octets. In the constructed form, the string is
split into a series of substring, as if the ASN.1 definition had
been:

BIT STRING ::= [UNIVERSAL 3] IMPLICIT SEQUENCE OF BIT STRING

OCTET STRING ::= [UNIVERSAL 4] IMPLICIT SEQUENCE OF OCTET STRING

IA5String ::= [UNIVERSAL 22] IMPLICIT SEQUENCE OF OCTET STRING

1.1.49. Variants of the encoding of a string with tag

Figure 9 shows some examples of the encoding of a string, with and without a

3. Abstract Syntax Notation, ASN.1 71

preceding context-sensitive tag.

Original-type
IA5String "Fred" 16 04 "F" "R" "E" "D"

A7 06 16 04 "F" "R" "E" "D"
Explicit tag
[7] IA5String "Fred"

87 04 "F" "R" "E" "D"
Implicit tag
[7] IMPLICIT IA5String "Fred"

Tag

Length

Content

A7 = 1010

Context Constructed
IA5 string

Length

87 = 1000

Context Primitive

Original-type
IA5String "Fred" 16 04 "F" "R" "E" "D"

A7 06 16 04 "F" "R" "E" "D"
Explicit tag
[7] IA5String "Fred"

87 04 "F" "R" "E" "D"
Implicit tag
[7] IMPLICIT IA5String "Fred"

Tag

Length

Content

A7 = 1010

Context Constructed
IA5 string

Length

87 = 1000

Context Primitive

Original-type
IA5String "Fred" 16 04 "F" "R" "E" "D"

A7 06 16 04 "F" "R" "E" "D"
Explicit tag
[7] IA5String "Fred"

87 04 "F" "R" "E" "D"
Implicit tag
[7] IMPLICIT IA5String "Fred"

Tag

Length

Content

A7 = 1010

Context Constructed
IA5 string

Length

87 = 1000

Context Primitive

Original-type
IA5String "Fred" 16 04 "F" "R" "E" "D"

A7 06 16 04 "F" "R" "E" "D"
Explicit tag
[7] IA5String "Fred"

87 04 "F" "R" "E" "D"
Implicit tag
[7] IMPLICIT IA5String "Fred"

Tag

Length

Content

A7 = 1010

Context Constructed
IA5 string

Length

87 = 1000

Context Primitive

Original-type
IA5String "Fred" 16 04 "F" "R" "E" "D"

A7 06 16 04 "F" "R" "E" "D"
Explicit tag
[7] IA5String "Fred"

87 04 "F" "R" "E" "D"
Implicit tag
[7] IMPLICIT IA5String "Fred"

Tag

Length

Content

A7 = 1010

Context Constructed
IA5 string

Length

87 = 1000

Context Primitive

Figure 9: Encoding of a tagged string

1.1.50. Example of the coding of a SEQUENCE

HeadOfState ::= [APPLICATION 17] SEQUENCE

{ name IA5 STRING,

type ENUMERATED {

president (0),

emperor (1),

king (2) }

birthyear INTEGER OPTIIONAL }

swedishKing ::= {

name "Carl XVI Gustav",

type king,

birthyear 1946 }

72 3. Abstract Syntax Notation, ASN.1

This might be coded as shown below (hexadecimal numbers):

49 18 Application tag 17 and Length of the whole construct

16 0F C a r l X V I G u s t a v Name

0A 01 02 type = king

02 02 1E 14 birthyear = 1946

The hexadecimal value 16 in the first octet of the second line, the tag of the

text string, is made up as follows:

2210 = 1616= class universal(00),
form primitive(0), tag number
IA5String(22)

0 0 0 1 0 1 1 0

Exercise 38

Given the ASN.1 definition

Surname ::= [APPLICATION 1] IA5String

hername Surname ::= "Mary"

Show its coding in BER

Exercise 39

Given the ASN.1 definitions

Light ::= ENUMERATED {

dark (0),

parkingLight (1),

halfLight (2),

fullLight (3) }

daylight Light ::= halflight

give a BER encoding of this value.

Exercise 40

Given the following ASN.1 defintions and explicit tags

3. Abstract Syntax Notation, ASN.1 73

BreakFast ::= CHOICE {

continental [0] Continental,

english [1] English,

american [2] American }

Continental ::= SEQUENCE {

beverage [1] ENUMERATED {

coffea (0), tea(1), milk(2), chocolade (3) } OPTIONAL,

jam [2] ENUMERATED {

orange(0), strawberry(1), lingonberry(3) } OPTIONAL }

English ::= SEQUENCE {

continentalpart Continental,

eggform ENUMERATED {

soft(0), hard(1), scrambled(2), fried(3) }

Order ::= SEQUENCE {

customername IA5String,

typeofbreakfast Breakfast }

firstorder Order ::= {

customername "Johan",

typeofbreakfast {

english {

continentalpart {

beverage tea,

jam orange

}

eggform fried

} } }

Give an encoding of firstorder with BER.

1.1.51. Different Encoding Rules for ASN.1

Most standards based on ASN.1 use the Basic Encoding Rules. They are not

very efficient, the redundancy causes about twice as many octets as the

Packed Encoding rules. In addition to BER, DER and CER are also used, be-

cause they are better suited to security applications. BER allows the same in-

formation to be coded in different ways. For example, TRUE can in BER be

represented by any nonzero octet value, and strings can in BER be encoded

74 3. Abstract Syntax Notation, ASN.1

with either definite length or indefinite length encoding. This means that a se-

curity checksum may fail for two different BER encodings of exactly the

same data. With DER and CER, there are no options for coding the same in-

formation in more than one way, and security checksums will thus work bet-

ter with DER and CER than with BER. See Table 12 for a list of different en-

coding rules for ASN.1.

Table 12: Different encoding rules

BER = Basic Encoding Rules Not very efficient, much redundancy, good sup-
port for extensions

DER = Distinguished Encoding Rules No encoding options (for security hashing),
always use definite length encoding

CER = Canonical Encoding Rules No encoding options (for security hashing),
always use indefinite length encoding

PER = Packed Encoding Rules Very compact, less extensible

LWER = Light Weight Encoding Rules Almost internal structure, fast encod-
ing/decoding

1.12. ASN.1 compilers

ASN.1
source file

ASN.1
compiler

.h and .c-files (C declarations
and functions)

Standard library User implementation

Figure 10: ASN.1 compilers

As shown in Figure 10, the ASN.1 compiler takes ASN.1 declaration files and

3. Abstract Syntax Notation, ASN.1 75

compiles this into, usually, source code in the C programming language. This

source code is then combined with standard libraries and included as part of

the user application source code. Some ASN.1 compilers produce code which

directly compiles the ASN.1 into code for exactly this rule. Such compilers

need less standard libraries. Other compilers compile to ASN.1 source code

into some kind of data structure, which is then interpreted during execution.

They need more standard libraries, since these libraries will include the inter-

preter code.

76 3. Abstract Syntax Notation, ASN.1

4. HTML and CSS

Objectives

HTML and CSS encode text with markup. The markup controls the lay-

out and gives some structural information about the text.

Keywords

HTML

CSS

W3C

4. HTML and CSS 77

1.13. (Hypertext Markup Language)

This book is not a complete guide to HTML [W3C HTML401]. Here is just a

short description of some central concepts of HTML, since these concepts are

used later in this book.
A HTML document is a document which contains special codes called

markup, which control the layout of the document. Example:

HTML document: What the user sees:
<p>First paragraph containing one
boldface word.
<p>Second paragraph with a line
break
text after the line break.

First paragraph containing one boldface word.

Second paragraph with a line break
text after the line break.

As shown in this example, the <p> tag indicates the start of a new paragraph,

the tag indicates bold-face text, the tag indicates the end of bold-face

text, and the
 tag indicates a line break.
Since certain characters are used for markup, such as “<”, “>”, “&” and

“"”, they must be coded if they are to be included as text and not as markup.

Example:

HTML document: What the user sees:
Jim's e-mail address is Jim Sim
>jsim&foo.bar>.

Jim's e-mail address is Jim Sim <jsim@foo.bar>.

An HTML document can contain links to other documents. Example:

HTML document: What the user sees:
Read the

web pageassociated with this book.

Read the web page associated with this book.

The links to other document contain URIs (see chapter ¿¿¿). To include pic-

tures in an HTML document, you include a link to a separate file, containing

the picture in some graphics format, such as for example GIF. Example:

78 4. HTML and CSS

HTML document: What the user sees:
This is
the logo of the Internet Engineering Task
Force.

This is the logo of
the Internet Engi-
neering Task
Force.

An HTML document is split into main sections as shown in this example:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>

Heading line which identifies which
dialect of HTML is used

 <HEAD>
 <TITLE>Caves and Caverns in Sweden</TITLE>

 <META name="description"
 content="This site gives an overview of
 the most famous Swedish caves.">
 <META name="keywords" content="Sweden,
 cave, cavern, speleology, Lummelunda">
 </HEAD>

The head section contains information
for the whole document and not di-
rected at some particular part of the
document. The head can also contain
style sheets and executable code.

 <BODY BGCOLOR="#FFFFFF">
 <H1>Caves and Caverns in Sweden</H1>
 <P>The most famous Swedish cave is the
 Lummelunda Cave on the Island of Gotland
 in the Baltic Sea.

</BODY></HTML>

The body section contains the actual
text shown to users.

An HTML document can refer to other HTML documents, which are com-

bined to produce the text shown to the user. Example:

4. HTML and CSS 79

HTML documents: What the user
sees:

frameset.html <HTML><HEAD>

<TITLE>Framed document</TITLE>
</HEAD>

<FRAMESET COLS="25%,75%">
<FRAME NAME=left scrolling=no
 src="left.html">
<FRAMESET ROWS="50%,50%">
<FRAME NAME=top scrolling=no
 src="top.html">
<FRAME NAME=right scrolling=no
src="bottom.html">
</FRAMESET>
</FRAMESET>
</HTML>

left.html <HTML><HEAD>

<TITLE>Left frame</TITLE>
</HEAD><BODY>

This is the left frame.
</BODY></HTML>

This is the top frame.

top.html <HTML><HEAD>

<TITLE>Top frame</TITLE>
</HEAD><BODY>

This is the top frame.
</BODY></HTML>

bottom.html <HTML><HEAD>

<TITLE>Bottom frame</TITLE>
</HEAD><BODY>

This is the bottom frame.
</BODY></HTML>

This is the left
frame.

This is the bottom frame.

1.14. Cascading Style Sheets (CSS)

HTML documents can be combined with style sheets, which specify how dif-

ferent parts of the HTML documents are to be shown to users. The language

for these style sheets is called “Cascading Style Sheets” [WR3C CSS1, W3C

CSS2]. Example:

80 4. HTML and CSS

HTML document: What the user sees:
<html>
<head>
<title>CSS Example</title>
<style type="text/css">
<!--
h1 { font-family: Helvetica; font-size: 16pt}
.maintext { font-family: Times; font-size: 12pt}
-->
</style>
</head>
<body>
<h1>This is the main heading</h1>
<div class=maintext>
<p>This is the text below the main heading.</p>
</div></body></html>

This is the main heading
This is the text below the main
heading.

The style sheet in the example above specifies that all text with the tag <h1>

should be shown with the font Helvetica and the size 16pt, and that all text

whose tag has the attribute “class=maintext” should be shown with the font

Times and the size 12 pt.
The <!-- and --> commands above will make this text look like comments

to old browsers. In the future, when web browsers generally understand the

<style> element, this will not be necessary any more.

Style sheets can either be put into the <head> of the HTML document, or

they can be put into separate files, which are referenced by the HTML docu-

ment. The document above could thus instead have consisted of two files:

HTML document: What the user sees:
<html>
<head>
<title>CSS Example</title>
< L I N K r e l = " s t y l e s h e e t "
href="styles.css"></style>
</head>
<body>
<h1>This is the main heading.</h1>
<div class=maintext>
<p>This is the text below the main
heading.</p>
</div></body></html>

This is the main heading
This is the text below the main heading.

4. HTML and CSS 81

CSS style sheet file “styles.css”:
h1 { font-family: Helvetica; font-
size: 16pt}
.maintext { font-family: Times; font-size:
12pt}

One central idea in Cascading Style Sheets is that there can be several differ-

ent Style Sheets from the same document, which will show it in different

ways. Different users may best be supported by style sheets suited to their

needs. There is also an option for a user override the style sheet specified by

the provider of a web page with his own alternative style sheet.

CSS can also be used with XML, see section 1.19 on page 97.

82 4. HTML and CSS

5. Extensible Markup Language, XML

Objectives

XML is a coding format which can combine structural information with

layout information to control how XML is shown to users.

Keywords

XML

DTD

CSS

XSLT

5. Extensible Markup Language, XML 83

1.15. Extensible Markup Language (XML) Introduction

XML (Extensible Markup Language), like ABNF, is a method for specifying

nested textual encoding. XML is, however, similar to ASN.1 in that it easily

allows complex structures. A particular property of XML is that it can be

combined with layout information (using separate standards CSS = Cascading

Style Sheets, and XSLT = Extensible Style Language Transformations) to

convert the information into human-friendly text.
Like ASN.1, XML consists of two languages, one language for specifying

the coding format, corresponding to ASN.1, called DTD (Document Type

Definition) and another languages for the actual encoded data, corresponding

to BER, called XML. DTD (like ASN.1 and ABNF) is a metalanguage, a lan-

guage for specifying another language used for the actual encoded data.

XML has many superficial similarities to HTML. It is, however, different

from HTML in that HTML has a fixed set of tags and attributes, specified in

the HTML specification, while XML allows every application to specify its

own tags and their attributes.

When describing ASN.1 and ABNF, it is natural to start by describing the

metalanguage, and then go on to describe the actual coding format. With

XML, descriptions usually start with the actual coding format, before de-

scribing the metalanguage. The reason for this is that the XML coding format

is very easy to read and understand, while the metalanguage DTD is rather

complex.

The octets sent to describe a person in XML might be:

(Boldface is not part of XML, just used here to make the text more
readable.)

<PERSON>
<NAME>John Smith</NAME>
<BIRTHYEAR>1941</BIRTHYEAR>
<WAGE>57000</WAGE>
</PERSON>

If you prefer to separate the name into components, the octets sent might

84 6. References

instead be:
<PERSON>
<NAME>
<FIRST-NAME>John</FIRST-NAME>
<SURNAME>Smith</SURNAME>

</NAME>
<BIRTHYEAR>1941</BIRTHYEAR>
<WAGE>57000</WAGE>
</PERSON>

From these examples, you can see that XML-encoded data consists of a

nested structure of tags and data within the tags. In this way, XML is very

similar to HTML.

An XML element has a start-tag, contents, and an end-tag. Thus, in the ex-

ample above, <BIRTHYEAR>1941</BIRTHYEAR> is an element, and <BIRTHYEAR>

is the start-tag and </BIRTHYEAR> is the end-tag of this element.

The definition of the tags used, in the example <PERSON>, <NAME>, <FIRST-

NAME> , <SURNAME>, <BIRTHYEAR> and <WAGE> are not pre-defined in XML, they

are chosen by the user or application to suit its needs.

Exercise 41

Here is an example of part of an e-mail heading according to current e-mail

standards.
From: Nancy Nice <nnice@good.net>
To: Percy Devil <pdevil@hell.net>
Cc: Mary Clever <mclever@intelligence.net>, Rupert Happy
<rhappy@fun.net>

How might the same information be encoded using XML?

1.1.52. XML versus HTML

Here is a comparison of the main similarities and differences between XML

and HTML:

Function HTML XML

Set of tags Built-in, predefined set of tags specified
in the HTML standard.

Every application or user can define its own
element types and select their tags to suite the
needs of this particular application.

End-tag Not always required. Always required.

Case sensitive No, for example, <TITLE> and <ti-
tle> are identical.

Yes, <TITLE> and <title> are two different
tags, specifying two different element types. An
element which starts with <TITLE> must end
with </TITLE>, not with </title>.

5. Extensible Markup Language, XML 85

Function HTML XML

Acceptance of coding er-
rors

Most web browsers accept many coding
errors.

Code must be syntactically correct, and only
syntactically correct XML-encoded data should
be accepted by an XML processor.

Example:

<I>Bold-italic text</I>

is not correct HTML, but accepted by most web browsers. The example is incorrect, be-
cause the elements are incorrectly nested. The element <I> is neither inside or outside the
element tag. Correct HTML would be:

<I>Bold italic text</I> (Element <I> inside element)

or

<I>Bold italic text</I> (Element inside element <I>)

According to the liberal-conservative rule, it may still be wise to accept certain kinds of
inaccurate data. But XML is a reaction to the way this rule has come to be interpreted for
HTML, where a web browser is expected to accept and interpet almost any kind of vastly
inccorrect HTML text.

The reason why faults are so common in HTML texts is that they are still often devel-
oped manually. Another reason is the multitude of variants of HTML, which make it diffi-
cult to test HTML for correctness. Some incorrect constructs (example: <CENTER>) do in
fact work in more browsers than the corresponding correct constructs (<DIV
ALIGN=CENTER> instead of <CENTER>). In the case of XML, texts will mostly be pro-
duced by software, which will reduce the amount of incorrect XML data.

Support in web browsers Yes. Yes in some newer ver-
sions.

Text layout and style HTML tags and style sheets. Style sheets and XSLT
transformation code.

1.16. Document Type Definition (DTD)

The Document Type Definition (DTD) is a language for specifying the ele-

ment types for a particular application of XML. The name of an element type

is used in its start and end-tags. To understand this, compare ABNF, ASN.1

and XML:

86 6. References

Table 13: Relation between DTD and XML

Enviroment: “ABNF” “ASN.1” “XML”

Language for specifying the en-
codings for a particular applica-
tion.

ABNF ASN.1 DTD (but not as strong
typing as in ASN.1)

Language used to actually encode
data.

Text, often as a list of
lines beginning with a
name, a colon, followed
by a value.

BER (or some other
ASN.1 encoding rule)

XML

It is not required that XML data has any DTD. You can send XML data with-

out specifying any DTD, but for serious applications you should specify a

DTD, since (i) this allows software to be able to check that your XML is syn-

tactically valid (ii) it can be used as an aid in developing software to encode

and decode the XML data. An XML document which has correct XML syn-

tax, but no DTD, is said to be well-formed. An XML document which also

has a DTD, and whose syntax agrees with the DTD, is said to be valid.
While a big advantage with XML is that its encoded data is so easy to

read, a disadvantage is that the DTD language is not as neat as for example

ASN.1.

When an XML text is based on a DTD, this is indicated by a

<!DOCTYPE> element in the head of the XML text. Thus, an XML text may

look like this:

<?xml version="1.0"?> Specifies that this is XML-encoded
data

<!DOCTYPE person SYSTEM "person.dtd"> Specifies where to find the DTD.
"Person.dtd" can be a complete
URL, which gives a globally unique
reference to this DTD.

<PERSON> Here comes the XML encoded
according to this

<NAME>John Smith</NAME> DTD.
<BIRTHYEAR>1941</BIRTHYEAR>

<WAGE>57000</WAGE>

</PERSON>

In Table 14 is an example of a DTD and an XML text encoded according

to this DTD.

5. Extensible Markup Language, XML 87

Table 14: An example of an XML text and the corresponding DTD

Explanation: DTD text: XML text:

Indicates that this is an XML
document.

<?xml version="1.0"?>

Tells where to find the DTD

file1, which specifies the syntax
of this XML file. "person.dtd"
can be an absolute or a relative
URI.

<!DOCTYPE person
SYSTEM "person.dtd">

Specifies the element type tagged
PERSON and that it should al-
ways contain, within it, elements
tagged NAME, BIRTHYEAR
and WAGE.

<!ELEMENT PERSON (NAME,
BIRTHYEAR, WAGE)>

<PERSON>

Similar to PERSON. <!ELEMENT NAME (FIRST-NAME,
SURNAME)>

<NAME>

<!ELEMENT FIRST-NAME
(#PCDATA)>

<FIRST-NAME>John

</FIRST-NAME>
<!ELEMENT SURNAME (#PCDATA)> <SURNAME>Smith

 </SURNAME>

(#PCDATA) specifies that ele-
ments of this element type will
contain text outside the tags, in
this case “John” and “Smith”.

</NAME>
<!ELEMENT BIRTHYEAR (#PCDATA)> <BIRTHYEAR>1941

</BIRTHYEAR>
<!ELEMENT WAGE (#PCDATA)> <WAGE>57000</WAGE>

There is no way in DTD to spec-
ify that this element type must
contain an integer. This is an
example where XML/DTD is less
strongly typed than ASN.1

</PERSON>

1.17. XML ELEMENT and its contents

1 The demo files used in this book can be found at http://dsv.su.se/jpalme/abook/xml/

88 6. References

<BOOK><AUTHOR>Margaret York</AUTHOR></BOOK>

Element BOOK

Content of BOOK=Element AUTHOR

Content of AUTHOR

ELEMENT and TAG
Start tag Start tag End tag End tag

An XML element has a start-tag (example <PERSON> in Table 14) and an end-

tag (example </PERSON>).
The information between the start-tag and the end-tag is the contents of the

element. The contents can either be a piece of text (like “John” in the example

in Table 14) or it can be further XML elements (like <NAME> inside <PERSON>

in Table 14) or it can be both text and further XML code.

The DTD declaration of an XML element type (example <!ELEMENT

PERSON (NAME, BIRTHYEAR, WAGE)>) begins with <!ELEMENT followed by the

name of the element type, and its contents in parentheses, and ends with >.

When the element type allows are further XML elements as contents, their

names are listed inside the parenthesises, like (NAME, BIRTHYEAR, WAGE) in

<!ELEMENT PERSON (NAME, BIRTHYEAR, WAGE)>. When the element type al-

lows content in plain text, this is specified by the special operator #PCDATA.

Many XML applications will regard multiple white space characters as

logically identical to a single space character. Thus, many applications will

regard the following two XML documents as logically identical:

<NAME><FIRST-NAME>John</FIRST-NAME>
<SURNAME>Smith</SURNAME>
</NAME></PERSON>

<NAME>
<FIRST-NAME>John
</FIRST-NAME>
<SURNAME>Smith
</SURNAME>
</NAME>
</PERSON>

It is, however, up to an XML application to decide whether multiple white

space characters are significant or not. And even if they are not logically sig-

5. Extensible Markup Language, XML 89

nificant, an XML application may let white space influence the layout, in

which a document is presented to a reader.

1.1.53. Reserved characters

XML has the same problems as most other textual encodings: Since certain

characters are used as delimiters to separate different elements, they cannot

occur within plain text. You cannot store:

DTD specification: Illegal XML data:
<!ELEMENT e-mail (#PCDATA)> <?xml version="1.0" ?>

<!DOCTYPE e-mail SYSTEM "e-mail.dtd">
<e-mail>"John Smith" <jsmith@foo.bar>
</e-mail>

The receiving program will have difficulty interpreting the “<” in

“<jsmith@foo.bar>”, it will believe that this is some kind of weird XML tag.

To solve this problem, the plain text string must be encoded as

“<jsmith@foo.bar>”. The characters which require such special coding

are:
Reserved character Special coding to use instead

< <

& &

> >

' '

" "

The inventors av XML apparently have been unhappy with this. Therefore

they have invented another, even more convulated way of handling free text

data in XML. This alternative method starts the free text with the string

“<![CDATA[” and ends it with “]]>”. Example:

DTD specification: XML data:
<!ELEMENT e-mail (#PCDATA)> <?xml version="1.0" ?>

<!DOCTYPE e-mail SYSTEM "e-mail.dtd">
<e-mail>
<![CDATA["John Smith" <jsmith@foo.bar>]]>
</e-mail>

This, of course, means that the string “<![CDATA[” cannot occur in free text in

other uses than for this special purpose, and the internal content of the free

text cannot use the string “]]>”. In Swedish, we have a proverb about such

90 6. References

things, “No matter how you turn, you will have your back behind you”.

1.1.54. Empty Elements

If an XML element type does not allow any content, this is specified in the

DTD with the term EMPTY . Example:

DTD specification: XML data:
<!ELEMENT cup EMPTY> <?xml version="1.0" ?>

<!DOCTYPE cup SYSTEM "cup.dtd">
<cup></cup>

When there is no content, then a shorter variant of the XML data is to put a

“/” at the end of the starting tag, and not specify any end-tag. Thus

<cup></cup> and <cup/> are identical. This is allowed even if the element

type was not defined as EMPTY in the DTD, but happens to have no content in

one particular instance. Such a tag, which is both a start-tag and an end-tag at

the same time, is called an empty element tag.

1.1.55. Any Specification

The ANY specification (example: <!ELEMENT miscellaneous ANY>) allows

any kind of un-specified XML content. This specification should in most

cases be avoided, since it makes it difficult for software to check or interpret

the content.

1.1.56. Repeated subelements

Example DTD specification: XML data:
<!ELEMENT family (husband, wife)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM "family.dtd">
<family>
 <husband>John</husband>
 <wife>Margaret</wife>
</family>

The DTD specification above requires that there is exactly one husband fol-

lowed by exactly one wife in the XML data. If you want to specify that the

family can also, optionally, contain one or more children, you might use the

following specification:

5. Extensible Markup Language, XML 91

Example DTD specification: XML data:
<!ELEMENT family (husband, wife,
child*)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>
<!ELEMENT child (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM "family.dtd">
<family>
 <husband>John</husband>
 <wife>Margaret</wife>
 <child>Eve</child>
 <child>Peter</child>
</family>

If you want to specify that there must be at least one child, you can specify:

Example DTD specification: XML data:
<!ELEMENT child-family (husband,
wife, child+)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>
<!ELEMENT child (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE child-family SYSTEM "child-
family.dtd">
<child-family>
 <husband>John</husband>
 <wife>Margaret</wife>
 <child>Eve</child>
 <child>Peter</child>
</child-family>

Thus, the following operators can be used in a list of subelements:

Code: Explanation:
a, b Mandatory a followed by mandatory b.

a | b Either a or b.

a* 0, 1 or more occurences of a.

a+ 1 or more occurences of a.

a? 0 or one occurences of a.

92 6. References

Exercise 42

Write a DTD for an XML-variant of the e-mail header in Exercise 41.
From: Nancy Nice <nnice@good.net>
To: Percy Devil <pdevil@hell.net>
Cc: Mary Clever <mclever@intelligence.net>, Rupert Happy <rhappy@fun.net>

1.1.57. Choice subelements

Example DTD specification: XML data:
<!ELEMENT vehicles (vehicle*)>
<!ELEMENT vehicle (bike | car)>
<!ELEMENT bike (#PCDATA)>
<!ELEMENT car (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE vehicles SYSTEM "vehicles.dtd">
<vehicles>
 <vehicle><bike>Crescent</bike></vehicle>
 <vehicle><car>Volvo</car></vehicle>
</vehicles>

The character “|” specifies either/or as is shown in the example above. It is

often combined with additional parenthesis levels, example:

Example DTD specification: XML data:
<!ELEMENT transport ((bike | car)*)>
<!ELEMENT bike (#PCDATA)>
<!ELEMENT car (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE transport SYSTEM "transport.dtd">
<transport>
 <bike>Crescent</bike>
 <car>Volvo</car>
</transport>

Exercise 43

Specify DTD and an XML example for a protocol to send either a name (single string), a social-

security number (another single string) or both.

1.18. Attributes of XML elements

Like in HTML, an XML element can have attributes on its start-tag. An XML

element might for example look like this:
<book author ="Margaret Yorke" title="False Pretences"></book>

The DTD describing the type for this element might be:

5. Extensible Markup Language, XML 93

<!ELEMENT book EMPTY>
<!ATTLIST book
author CDATA #REQUIRED
title CDATA #REQUIRED
>

CDATA is the type of the attribute. An XML attribute can have the types

listed in Table 16.

An element can have both attributes and content. Example:

DTD specification XML data
<!ELEMENT book (author, title)>
<!ATTLIST book
 binding (hardback | paperback) #REQUIRED
 color-mode (CMYK | RGB | GREYS | BITMAP)
 #REQUIRED
>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE book SYSTEM "book.dtd">
<book
 binding="paperback"
 colormode="CMYK"
>
<author>Margaret Yorke</author>
<title>False Pretences</title>
</book>

For an XML attribute, the DTD can control the use of default values.

94 6. References

Table 15: Default values for XML attributes

DTD term: Example: Description:

A single value
within quotes at the
end of the attribute.

<!ATTLIST book
binding (hardback | paperback)
"hardback">

This default value should be assumed if
the attribute is not specified in the XML
text.

#REQUIRED <!ATTLIST book
binding (hardback | paperback)
#REQUIRED>

No default value is allowed, the attrib-
ute must always be specified in the
XML text.

#IMPLIED <!ATTLIST book
binding (hardback | paperback) #IMPLIED>

No default value, but the attribute is not
required. If the attribute is not given,
this might mean that it is unknown or
not valid.

#FIXED <!ATTLIST book
binding (hardback | paperback) #FIXED
"hardback">

The XML can either contain this attrib-
ute or not, but if it is there, it must al-
ways have this particular value.

Table 16: Types of XML attributes

Type: Example: Description:
CDATA <!ATTLIST book

title CDATA #REQUIRED>
Any character string.

A list of
enumerated
values

<!ATTLIST book
binding (hardback | paperback)
"hardback">

Restricted to the listed values only.

ID <!ATTLIST book entryno ID #REQUIRED> Gives a name to this particular element. No
other element in the XML text can have the
same name. Unique names on elements are
useful in some cases for programs which ma-
nipulate the XML text.

IDREF <!ATTLIST author authorid ID
#REQUIRED>
<!ATTLIST book authorid IDREF
#REQUIRED>

Reference to the unique name, which was given
to another element in the XML text. In the ex-
ample, every element of type author has an ID
authorid, and every element of type book has an
IDREF referring to the ID of the element for the
author of that book.

IDREFS <!ATTLIST author authorid ID
#REQUIRED>
<!ATTLIST book authorids IDREFS
#REQUIRED>

Similar to IDREF , but allows a list of more than
one value. Needed in this example, if a book
can have more than one author.

ENTITY DTD text:
<!ELEMENT LOGO EMPTY>
<!ATTLIST LOGO GIF-FILE ENTITY
#REQUIRED>
<!ENTITY DSV-LOGO SYSTEM "dsv-
logo.gif">

XML text:

This is one way to include binary data in an
XML file, by referring to the URI of the binary
data. Just like with tags in HTML, the
actual binary file is not included, just refer-
enced.

5. Extensible Markup Language, XML 95

Type: Example: Description:
<LOGO GIF-FILE="DSV-LOGO"/>

ENTITIES DTD text:
<!ELEMENT LOGO EMPTY>
<!ATTLIST LOGO GIF-FILE ENTITIES
#REQUIRED>
<!ENTITY DSV-LOGO SYSTEM "dsv-
logo.gif">
<!ENTITY KTH-LOGO SYSTEM "kth-
logo.gif">

XML text:
<LOGO GIF-FILE="DSV-LOGO KTH-LOGO"/>

A list of more than one entity.

NMTOKEN <!ATTLIST variable-name #NMTOKEN> A name, formatted like a variable name in a
computer program. Useful when you use XML
to generate source program code.

NMTOKENS <!ATTLIST variables #NMTOKENS> A list of names, similar as for NMTOKEN
above.

NOTATION <!ATTLIST SPEECH PLAYER NOTATION (
MP3 | QUICKTIME) #REQUIRED>

The name of a non-XML encoding.

Exercise 44

Specify DTD and an XML example for a protocol to send a record describing a movie. The record

contains a title and a list of people. Each person is identified by the attributes name, and option-

ally, the attribute role as either actor, photographer, director, author or administrator. As an XML

example, use the movie “The Postman Always Rings Twice”, directed by Tay Garnet based on a

book by James M. Cain with leading actors Lana Turner and John Garfield.

1.1.58. Use attributes or subelements?

In many cases, you have a choice between use of attributes and subelements.

Example:

96 6. References

DTD specification using attributes: XML data:
<!ELEMENT book-att EMPTY>
<!ATTLIST book-att
 author #REQUIRED
 title #REQUIRED
>

<?xml version="1.0" ?>
<!DOCTYPE book-att SYSTEM "book-
att.dtd">
<book-att
author="Margaret Yorke"
title="False Pretences"/>

DTD specification using subelements: XML data:
<!ELEMENT book-sub (author, title)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE book-sub SYSTEM "book-
sub.dtd">
<book-sub>
<author>Margaret Yorke</author>
<title>False Pretences</title>
</book-sub>

There are no fixed rules for when data should be encoded as attributes and as

subelements. Both choices above are equally correct. Note however the fol-

lowing differences between attributes and subelements:
Advantage with attributes: There is some rudimentary type control, for ex-

ample using enumerated attributes, even if the type control is not at all as

complete as with ASN.1. Example:

DTD specification: XML data:
<!ELEMENT book EMPTY>
<!ATTLIST book
 binding (hardback | paperback) #REQUIRED
 color-mode (CMYK | RGB | GREYS | BITMAP)
 #REQUIRED
>

<?xml version="1.0" ?>
<!DOCTYPE book SYSTEM "book.dtd">
<book
 binding="paperback"
 colormode="CMYK"
/>

Advantage with subelements: Subelements can be repeated multiple times,

and can have further inner subelements. Example:

5. Extensible Markup Language, XML 97

DTD specification: XML data:
<!ELEMENT child-family (husband, wife,
child+)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>
<!ELEMENT child (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE child-family SYSTEM "child-
family.dtd">
<child-family>
 <husband>John</husband>
 <wife>Margaret</wife>
 <child>Eve</child>
 <child>Peter</child>
</child-family>

1.19. Formatting XML layout when shown to users (CSS and
XLST)

XML can be used as a replacement for HTML. To achieve this, XML is com-

bined with layout information. Special layout languages (CSS and XLST) are

available for adding layout information to XML data. CSS or XLST layout

specifications are associated with an XML document with a <?xml-

stylesheet> element in the preamble of an XML document. Example:

<?xml version="1.0" ?>
<?xml-stylesheet type="text/css"
href="mystyles.css"?>

Cascading Style Sheets (see chapter 1.14 on page 79) can be applied to

HTML tags or XML elements.
Here is an example of an XML document with a style sheet and how it

might be rendered:

98 6. References

File ticket.css:
TITLE { position: absolute; width: 121px; height: 31px; top:25px; left: 86px;

font-family: Verdana, sans-serif; font-size: 24pt; font-weight: bold}
CLASS { position: absolute; width: 106px; height: 15px; top: 115px; left: 13px;

font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }
FROM { position: absolute; width: 150px; height: 15px; top: 70px; left: 12px;

font-family: Verdana, sans-serif; font-size: 14pt; font-weight: bold }
TO { position: absolute; width: 150px; height: 15px; top: 70px; left: 166px;

font-family: Verdana, sans-serif; font-size: 14pt; font-weight: bold; }
DEPART { position: absolute; width: 142px; height: 15px; top: 95px; left: 11px;

font-family: Verdana, sans-serif; font-size: 10pt }
ARRIVE { position: absolute; width: 128px; height: 15px; top: 95px; left: 167px;

font-family: Verdana, sans-serif; font-size: 10pt }
CABIN { position: absolute; width: 138px; height: 18px; top: 115px; left: 167px;

font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }
SEAT { position: absolute; width: 138px; height: 18px; top: 115px; left: 247px;

font-family: Verdana, sans-serif; font-size: 12pt; font-weight: bold }

File ticket.xml: Visual rendering:
<?xml version="1.0" ?>
<!DOCTYPE TICKET SYSTEM "ticket.dtd">
<?XML:stylesheet type="text/css"
href="ticket.css" ?>
<TICKET><TITLE>TICKET</TITLE>
<CLASS>2 Class</CLASS>
<FROM>Oslo</FROM>
<TO>Stockholm</TO>
<DEPART>Mon 13 Jan 12:13</DEPART>
<ARRIVE>Mon 13 Jan 18:45</ARRIVE>
<CABIN>Cabin 3</CABIN>
<SEAT>Seat 55</SEAT></TICKET>

TICKET
Oslo Stockholm

Mon 13 Jan 12:13 Mon 13 Jan 18:45

2 Class Cabin 3 Seat 5

Note that with style sheets, you cannot get words like From and To and Class

and Cabin and Seat inserted into the visual rendering, if they are not part of

the XML values. To solve this problem, you need XSLT. Extensible Style

Language Transformations (XSLT) [W3C XSLT 1999] is a more powerful

language than CSS. It can be used to describe a series of transformations,

which will successively transform an XML document to an HTML document.
Transformation from XML to HTML encoding can be done either in the

server or in the client as shown in Figure 11.

5. Extensible Markup Language, XML 99

Figure 11: Conversion from XML to HTML

Sending XML to the PC and conversion in the PC
(often built into the web browser)

Intermediate
HTML document

Converter from
XML to HTML

User Web
Browser

XML document

CSS and/or XSL
layout information

Server
User PC

Conversion from XML to HTML in the server, before transmission to the PC

Intermediate
HTML document

Converter from
XML to HTML

User Web
Browser

XML document

CSS and/or XSL
layout information

Server
User PC

Conversion from XML to HTML before
storage in the server. The pages are
then stored as static pages on the web
server, which usually enables faster
delivery than if the result must be
generated on the fly by the web server
before delivery to the user.

User Web
Browser

Server
User PC

Converter from
XML to HTML

Intermediate
HTML document

XML document

CSS and/or XSL
layout information

Intermediate
HTML document

Ordinary HTTP server
dispatching web pages
on request

Store of prepared
HTML pages

HTML does not support alternative versions of the same information for dif-

100 6. References

ferent readers, but with XML, you can use the same XML source data, com-

bined with different CSS and/or XLST layout specifications, in order to pro-

duce your data in different format for different readers.

1.20. XML special problems and methods

1.1.59. Putting binary data into XML encodings

All textual encodings have a common problem in that they will not allow bi-

nary data, like, for example, a picture in GIF format. There are three ways of

handling this problem in XML:
� Encode the binary data, using, for example, the BASE64 method (see page 17).

� Put the binary data in a separate file, like GIF pictures in HTML:

� Use method �, but combine it with the MHTML method (see page ¿¿¿) to concatenate all

the files into a single compound file.

1.1.60. Reusing DTD information

You may have a need to define some general DTD element types, and then

use them in several other DTD element types. This can be done by an include

functionality. The name of the include functionality in XML is ENTITY. Ex-

ample of use of ENTITIES in DTD files::

eneral DTD specifications:
le name person.dtd) XML data:
ELEMENT person (name, birthyear)>
ELEMENT name (#PCDATA)>
ELEMENT birthyear (#PCDATA)>
ATTLIST person
gender (male | female)
 #REQUIRED
status (unmarried | married |
 divorced | widow |
 widower) #REQUIRED

TD using this specification:
ile name family.dtd)
ELEMENT family (person+)>
ENTITY % person SYSTEM "person.dtd">
erson;

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM "family.dtd">
<family>
 <person gender="male"
 status="married">
 <name>John Smith</name>
 <birthyear>1958
 </birthyear>
 </person>
 <person gender="female"
 status="married">
 <name>Eliza
 Tennyson</name>
 <birthyear>1959
 </birthyear>
 </person>
</family>

After defining person in the file person.dtd above, this element type can

5. Extensible Markup Language, XML 101

then be used in a number of different new DTDs by just referencing them as

shown in the file family.dtd above.

1.1.61. Entities

Entities are ways of referencing data defined elsewhere. They can be external,

as in the example in section 1.1.60, or they can be internal references within a

file. Example:

<!ENTITY KTH "Kungliga Tekniska Högskolan">
<DESCRIPTION>&KTH; is a technical university.</DESCRIPTION>

is identical to

<DESCRIPTION>Kungliga Tekniska Högskolan is a technical
university.</DESCRIPTION>

In fact, the special codes for certain characters defined in section 1.1.53, like

" are built-in entitites.

1.1.62. Name Spaces

When you want to combine different DTD sets, perhaps developed by differ-

ent people at different times, there is a risk that several of the sets will use the

same element type name for different purposes.
Example: Suppose you have two DTDs, one about war, one about geogra-

phy. Both contain elements with the same tag <desert>. In the war DTD, this

element describes the act of deserting from an army. In the geography DTD,

this element describes a kind of arid region. Suppose now that for a particular

application, you want to combine element types from both these DTDs.

102 6. References

Part of the war DTD:
(file name war.dtd)

XML data:

<!ELEMENT war:desert (deserter*)>
<!ELEMENT war:deserter (#PCDATA)>

Part of the geography DTD:
(file name geography.dtd)
<!ELEMENT geography:desert (#PCDATA)>

Use of these two DTDs in a new DTD:
(file name desertaions-in-deserts.dtd)

<!ENTITY % war:desert SYSTEM "war.dtd">
%war;
<!ENTITY % geography:desert SYSTEM
"geography.dtd">
%geography;
<!ELEMENT desertations-in-deserts
(war:desert, geography:desert)>
<!ATTLIST desertaions-in-deserts
xmlns:war CDATA #IMPLIED
xmlns:geography CDATA #IMPLIED>

<?xml version="1.0" ?>
<!DOCTYPE desertations-in-deserts SYSTEM
"desertations-in-deserts.dtd">
<desertations-in-deserts
xmlns:war="http://dsv.su.se/jpalme/a-
book/xml/war.dtd"
xmlns:geography="http://dsv.su.se/jpalme/a-
book/xml/geography.dtd">
 <war:desert>
 <deserter>John Smith</deserter>
 </war:desert>
 <geography:desert>
 Sahara</geography:desert>
</desertations-in-deserts>

The xmlns:war="http://dsv.su.se/jpalme/a-book/xml/war.dtd" and

xmlns:geography="http://dsv.su.se/jpalme/a-book/xml/geography.dtd"

attributes need not refer to any real file, but should contain a unique URL for

this name space.

The character “:” is not permitted in XML identifiers except to separate the

name space name and the following identifier from that name space.

1.1.63. XLinks and XPointers

It is possible to put links into an XML document in the same way as in an

HTML document, for example:

Web pages for this
book

If you do this in XML, you should define the <a> element type and its attrib-

ute href in the DTD, just like you define other XML element types. Addition-

aly, XML has special constructs XLinks and XPointers. They are more pow-

erful than the <a> tag in HTML: An element defined for other purposes can at

the same time become a link, you have better ways of linking to parts of a tar-

get document than in HTML, and with Xlinks (specified in the Extensible

Linking Language, XLL) you can create bi-directional links, links which are

5. Extensible Markup Language, XML 103

fully specified in both linked documents.

1.1.64. Processing instructions

Elements like

<?xml version="1.0" ?>
<?xml-stylesheet type="text/css" href="mystyles.css"?>

are called processing instructions, because they instruct the recipient how to

process the XML document.
The default character set in XML is UTF-8. If you are using some other

character set, such as ISO 8859-1, you have to indicate this in the first proc-

essing instruction in the XML file. For example, you can specify

<?xml version="1.0" encoding="ISO-8859-1" ?>

to indicate that the character set used in the XML document is ISO 8859-1.

1.1.65. Standalone declarations

When you look at XML files, you may find that the first line is not

<?xml version="1.0" ?> but instead <?xml version="1.0" standa-

lone="yes" ?> or <?xml version="1.0" standalone="no" ?>. This is supposed

to indicate whether some information in some other file (like a DTD declara-

tion) is needed to understand the XML content. You need not specify standa-

lone="no" in every XML file which is based on a DTD. standalone="no" is

required only if information in the DTD (or some other external file, such as

one reference in an ENTITY declaration) is required in order to correctly in-

terpret the XML. For example, if the DTD specifies defaults or fixed values

for attributes, then this information is necessary to correctly interpret the

XML code, and then this declaration should be standalone="no" . The whole

standalone declaration is optional, and many XML applications do not use it

at all.

1.1.66. XML validation

When you are developing specifications using DTD and XML, it is essential

to be able to check your specifications for correctness. There is software

available to do this. I have been using the validator on the net at

http://www.stg.brown.edu/service/xmlvalid/ to validate the examples given in

104 6. References

this book.

1.1.67. XHMTL

XHTML is a variant of HTML which is at the same time also correct XML.

The main differences from ordinary HTML are:
• All tags must be lower case, e.g. <a href> and not

• All tags must be ended, e.g. <p>First paragraph
second

line.</p>

• No syntax errors allowed, e.g. not <p>Strong text</p>

1.21. A comparison of ABNF, ASN.1-BER/PER and DTD-
XML

Table 17 shows an example of the same information as encoded with ABNF,

ASN.1-BER and DTD-XML.

Table 18 compares some properties of the three encoding methods.

5. Extensible Markup Language, XML 105

Table 17: The same information with ABNF, ASN.1 and XML

BNF specification: ASN.1 specification: DTD specification:

mily = "Family"
 CRLF *(Person)
 "End of Family"

rson = "Person" CRLF
 " Name: " 1*A CRLF
 " Birthyear: " 4D CRLF
 " Gender: "
 ("Male"/"Female") CRLF
 " Status: "
 ("unmarried"/ "married"/
 "divorced"/ "widow"/
 "widower")

= SEQUENCE OF Person

:= SEQUENCE {

name VisibleString,

birthyear INTEGER,

gender Gender,

status Status }

:= ENUMERATED {

male(0), female(1) }

= ENUMERATED {

unmarried(0), married(1), divorced(2),

widow(3), widower(4) }

<!ELEMENT family
 (person+)>
<!ELEMENT person (name,
 birthyear)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthyear
 (#PCDATA)>
<!ATTLIST person
 gender (male | female)
 #REQUIRED
 status (unmarried |
 married | divorced |
 widow | widower)
 #REQUIRED
>

xample of textual encoding: Example of BER encoding: Example of XML encoding:

mily
rson
Name: John Smith
Birthyear: 1958
Gender: Male
Status: Married
rson
Name: Eliza Tennyson
Birthyear: 1959
Gender: Female
Status: Married
d of Family

(Each box represents one octet. Two-character
codes are hexadecimal numbers, one character
codes are characters)

30 34

30 16

1A 0A J o h n S m i t h

02 02 07 A6

0A 01 00

0A 01 01

30 1A

1A 0E E l i z a T e n n y s o n

02 02 07 A7

0A 01 01

0A 01 01

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM
"family.dtd">
<family>
 <person gender="male"
 status="married">
 <name>John Smith</name>
 <birthyear>1958
 </birthyear>
 </person>
 <person gender="female"
 status="married">
 <name>Eliza
 Tennyson</name>
 <birthyear>1959
 </birthyear>
 </person>
</family>

9 octets (excluding newlines) 54 octets 258 octets (excluding newlines and leading
spaces)

% efficiency2 57 % efficiency1 12 % efficiency1

2 As compared to PER.

106 6. References

The PER (unaligned variant) encoding of the same ASN.1 and the same data would be the

following 31 octets:
00000010 (number of persons in family)
00001010 (10 characters)
 1001010 J
1 101111 o
11 01000 h
110 1110 n
0100 000
10100 11 S
110110 1 m
1101001 i
 1110100 t
1 101000 h
00 000010 (2 octets)
00 00011110 100110 (1958)
0 (male)
 0 01 (married)

000011 10 (14 characters)
100010 1 E
1101100 l
 1101001 i
1 111010 z
11 00001 a
010 0000
1010 100 T
11001 01 e
110111 0 n
1101110 n
1111001 y
1 110011 s
11 01111 o
110 1110 n
0000 0010 (2 bytes)
0000 01111010 0111 (1959)
1 (female)
001 (married)

Note 1: Many thanks to Jean-Paul Lemaire, who helped me with the BER and PER encodings.

Note 2: The success of many Internet application layer protocols with very inefficient textual

encodings apparently indicates that the efficiency is not a very important factor in de-

termining the success of an application layer protocol.

Note 3: Compression programs (like zip, gz, etc.) can compress almost any textual encoding to

near-maximal efficiency. This, however, only works for large files. Small files are not

compressed very efficiently with compression programs. To test this, I tried to compress

the XML encoding above using the Zip encoding. It actually becaome 14 % larger after

compression. I also tested a file where I repeated the XML encoding above 11 times,

with the same XML elements and tags, but different content. This larger file, after com-

pression with Zip encoding, became 53 % as efficient as the PER encoding, or about as

high efficiency as with the BER encoding.

5. Extensible Markup Language, XML 107

Table 18: Comparison of ABNF, ASN.1-BER and DTD-XML

ABNF ASN.1 DTD+XML
Level Low level, can specify al-

most any textual encoding.
High level, strongly typed,
you define the exact data
types to use .

High level, but not as good
type facilities as ASN.1.

Encoded format Text. With for example Basic En-
coding Rules (BER), a binary
format, or Packed Encoding
Rules (PER), a very efficient
binary format, or other encod-
ing rules.

Text.

Readability of meta-
language

OK. Good. Acceptable.

Readability of en-
coded data

Very good. Very bad unless special reader
program is used.

Very good.

Efficiency of data
packing, as compared
to maximum effi-
ciency.

Usually not so good. About 50 % with BER, almost
100 % with PER.

Not so good.

Binary data Must be encoded, for exam-
ple using BASE64, which
however adds 33 % redun-
dancy.

Can easily be included as is. Must be encoded, for example
using BASE64, or sent as
separate files.

Layout facilities None, but the high freedom
allows specification of
rather readable formats.

None. Can be combined with layout
languages to produce highly
readable output (comparable
to HTML-based web docu-
ments).

Below are quoted two messages from an e-mail discussion about the pros and

cons of ASN.1:

From: Marshall T. Rose <mrose@dbc.mtview.ca.us>
Date: 12 jul 1995 05:12
... ...

Combining ASN.1 and high-performance is oxymornonic.

ASN.1 is probably the greatest failure of the OSI effort, it led
hundreds of engineers, including myself, to devise data structures that
were far too complicated for their own good.

(Oxymoron = Self-contradiction)
(Marshall T. Rose is a well-known previous OSI expert who has turned

into one of the most vocal OSI enemies. OSI is a set of standards which in the

1980s were competing with the Internet standards. Today, most OSI standards

108 6. References

have failed, a few of them have been accepted in the Internet, for example

X.500 as used in the LDAP standard.)

From: Colin Robbins <c.robbins@nexor.co.uk>
Date 13 Jul 1995 16:58

Let me see if I have understood this debate.
X.400 is a brontosarus, because it uses ASN.1.
SMTP is a monkey because it does not.

Where does that leave the SNMPv2 Protocol, desgined by the Internet
community, co-auther one Marshall T. Rose. It uses ASN.1. I thought
leopards didn't change their spots!

There are plenty or reasons to knock X.400, but the use of ASN.1 is not
one of them. Sure it has its faults, but BOTH the Internet and OSI
communities are using it.

1.1.68. Comparion RFC822-style headings versus XML and ASN.1

Many standards have used the so-called RFC822-style header format, which

is usually specified using ABNF. Below is an example of how the same in-

formation can be encoded in this format as compared to XML:

RFC822 example:
From: Father Christmas <fchristmas@northpole.arctic>

XML encoding of the same information:
<from>
 <user-friendly-name>Father Christmas</user-friendly-name>
 <e-mail-address>
 <localpart>fchristmas</localpart>
 <domainpart>
 <domainelement>northpole</domainelement>
 <domainelement>arctic</domainelement>
 </domainpart>
</from>

Besides noting that XML in this example requires about five times as many

characters, another difference is that XML uses the same characters for fram-

ing in all levels, while the RFC822 example uses three different notations in

five levels:

Level 1: Newline between headers.

Level 2: “:” between header name and header value.

Level 3: “<” and “>” to separate localpart from e-mail address.

Level 4: “@” to separate localpart from domainlist.

Level 5: “.” to separate the domain component in the list of domain ele-

ments.

It is of course an advantage with XML that you do not have to invent new

5. Extensible Markup Language, XML 109

framing characters at each level, and also maybe new rules about forbidden

characters or characters that need to be quoted at each level.

1.22. Other Encoding Languages

ABNF, ASN.1 and XML are not the only encoding languages. Some other

existing languages are Corba and XDR (External Data Representation, [RFC

1832]). Both XDR and Corba represent data in a format which is more similar

to the way it is stored internally in data handled by common programming

languages like C and Pascal. XDR is somewhat similar to ASN.1, but tags and

length encoding are used more sparsely. An application using XDR may then

have to include type and length information into the defined data structures,

while with ASN.1 tag and length are included in the encoding rules. On the

other hand, XDR avoids some unnecessary tags, and will thus probably give

somewhat more efficient encodings than BER. XDR is used in the ONC RPC

(Remote Procedure Call) and the NFS* (Network File System).

Corba is is integrated with a programming API for transmission of data be-

tween applications running on different hosts. And some protocols, for exam-

ple the Domain Naming System (DNS) do not use any encoding language at

all, their encodings are specified in the form of English-language text and ta-

bles.

110 6. References

6. References

Objectives

Books and websites for further reading

Keywords

Book

Web site

Reference Source Comment
Larmouth 1999: ASN.1 Complete, by John Larmouth, Morgan Kaufmann Publishers

1999.
An ASN.1 tutorial.

Kaliski 1993: A Layman's Guide to a Subset of ASN.1, BER, and DER, by Burton S.
Kaliski Jr. 1993, http://www.rsa.com/rsalabs/pkcs/.

A 36-page introduction to the of
BER.

RFC 822: RFC822 Standard for the format of ARPA Internet text messages. D.
Crocker. Aug-13-1982. (Status: STANDARD)

This early e-mail standard specif
monly used version of ABNF.

RFC 2234: RFC2234 Augmented BNF for Syntax Specifications: ABNF. D.
Crocker, Ed., P. Overell. November 1997.

New version of ABNF used in so
standards.

RFC 2279: RFC2279 UTF-8, a transformation format of ISO 10646. F. Yergeau.
January 1998. (Obsoletes RFC2044)

Specification of the UTF-8 enco
for the ISO 10646=Unicode char

RFC 1345: RFC1345 Character Mnemonics and Character Sets. K. Simonsen.
June 1992.

A comprehensive listing of chara
and the characters within them.

RFC 1832: RFC 1832 XDR: External Data Representation Standard. Specification of the XDR encodi

RFC 2045: 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies. N. Freed & N. Borenstein. November
1996.

Contains specification of the Qu
Printable and BASE64 encoding

Harold 1999: XML Bible, by Eliott Rusty Harold, IDG Books, Foster City, CA,
U.S.A., 1999.

A very thorough and readable gu
aspects of XML. Some chapters
updated after publication, and ca
loaded from the web.

W3C XSLT
1999:

XSL Transformations (XSLT), W3C Recommendation 16 November
1999, http://www.w3.org/TR/xslt

A language for transforming XM
ments to HTML documents for n
when shown to users.

W3C CSS1 1996: Cascading Style Sheets, level 1,W3C Recommendation 17 Dec 1996,
http://www.w3.org/TR/REC-CSS1

The standard for level 1 of casca
sheets.

W3C CSS2 1998: Cascading Style Sheets, level 2, CSS2 Specification, W3C Recom-
mendation 12-May-1998, http://www.w3.org/TR/REC-CSS2/

The standard for level 2 of casca
sheets.

W3C HTML401
1999:

HTML 4.01 Specification, W3C Recommendation 24 December 1999,
http://www.w3.org/TR/html401/

The standard describing the HTM
markup language.

Bourett 2000: XML Namespaces FAQ, by Ronald Bourett, February 2000,
http://www.informatik.tu-darmstadt.de/DSV1/staff/bourett/xml/Names
pacesFAQ.htm

Tries to explain the complex issu
spaces in XML.

112 6. References

7. Acknowledgements

Objectives

People who helped getting this book better.

Keywords

Expert

Mailing list

6. References 113

Many people have helped me in the writing of this book. I have sent draft

chapters of various chapters to mailing lists with experts on the varioups pro-

tocols and methods and got very useful feedback. Here are some of the people

who have helped me: Andrew Waugh, Olivier Dubuisson, Jean-Paul Lemaire,

Richard Lander, Lars Marius Garshol.

114 6. References

8. Solutions to exercises

Objectives

Solving the exercises.

Keywords

Solution

Facit

8. Solutions to exercises 115

Exercise 1 solution

path = ["/"] *(directory-name "/") file-name

Exercise 2 solution

LWSP = 1*(SP / HT / (CR LF (SP / HT))

Exercise 3 solution

weather-header = "Weather:" LWSP weathertype 0*2(parameter)
weathertype = "Sunny" / "Cloudy" / "Raining" / "Snowing"
parameter = (";" (LWSP "temperature" / "humidity")) "=" 1*DIGIT

Exercise 4 solution

ALPHA = "A" / "B" / "C" / "D" / "E" / "F" / "G" / "H" / "I" / "J" / "K"
/ "L" / "M" / "N" / "O" / "P" / "Q" / "R" / "S" / "T" / "U" / "V" / "X"
/ "Y" / "Z"
DIGIT = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9"
Identifier = ALPHA *5(ALPHA / DIGIT)

Exercise 5 solution

1.1.1.4. Solution alternative 1 to Exercise 1

ScaleReading ::= [APPLICATION 0] SEQUENCE { weight Weight,

itemno Itemno

}

Weight ::= [APPLICATION 1] REAL - - in grams

Itemno ::= [APPLICATION 2] INTEGER

1.1.1.5. Solution alternative 2 to Exercise 1

ScaleReading ::= [APPLICATION 0] SEQUENCE {

weight REAL, - - in grams

itemno INTEGER

}

Warning: The use of the APPLICATION tag is not recommended in the 1994 ver-

sion of ASN.1. So with the 1994 style of ASN.1, use:

116 8. Solutions to exercises

1.1.1.6. Solution alternative 3 to Exercise 1

ScaleReading ::= SEQUENCE { weight Weight,

itemno Itemno

}

Weight ::= REAL - - in grams

Itemno ::= INTEGER

Exercise 6 solution

Box ::= SEQUENCE{

height Measurement,

width Measurement,

length Measurement

}

Measurement ::= SEQUENCE {

yards INTEGER,

feet INTEGER,

inches REAL

Exercise 7 solution

Measurement ::= SEQUENCE {

yards INTEGER,

feet INTEGER (0 .. 2),

inches INTEGER (0 .. 1199)

}

Exercise 8 solution

Voter ::= SEQUENCE {

vote Vote,

age Age,

gender Gender

}

Age ::= INTEGER (18 .. MAX)

Vote ::= INTEGER {

labour(0),

liberals (1),

conservatives (2),

other (3)

} (0 .. 3)

8. Solutions to exercises 117

Gender ::= BOOLEAN

Alternative definiton of “Vote”:

Vote ::= ENUMERATED {

labour(0),

liberals (1),

conservatives (2),

other (3)

}

Exercise 9 solution

HomeTownVoter ::= SEQUENCE {

hometownvote Sthvote,

age Age,

gender Gender

}

HomeTownVoter ::= SEQUENCE {

hometownvote Sthvote,

age Age,

gender Gender

}

Note, some people claim that it would be allowed to write:

} (INCLUDES Vote | 4 | 5)

as the last line above, but other people claim this is not allowed.

Exercise 10 solution

1.1.1.7. Alternative 1

Secrecy ::= INTEGER { open(1), secret(2), topsecret(3) } (1..3)

1.1.1.8. Alternative 2 (better)

Secrecy ::= ENUMERATED { open(1), secret(2), topsecret(3) }

Exercise 11 solution

1.1.1.9. Alternative 1

StabSecrecy ::= INTEGER { open(1), secret(2), topsecret(3), extratopsecret(4) }

(INCLUDES Secrecy | 4)

118 8. Solutions to exercises

1.1.1.10. Alternative 2 (better)

(better according to ASN.1 experts)

StabSecrecy ::= ENUMERATED { open(1), secret(2), topsecret(3), extratopsecret(4) }

Exercise 12 Solution

Alternative 1 Alternative 2

Pattern ::= SEQUENCE {

height INTEGER,

width INTEGER,

pattern BIT STRING - - row by row

}

Row ::= BIT STRING

Pattern ::= SEQUENCE {

height INTEGER,

width INTEGER,

pattern SEQUENCE OF Row

}

Exercise 13 Solution

InStore ::= BIT STRING {

a3 (0),

a4 (1),

a5 (2),

a6 (3)

} (SIZE(4))

Exercise 14

What is the difference between these two types, and what does monday
mean for each of them?

DayOfTheWeek ::= ENUMERATED { monday(0), tuesday(1), wednesday(2),

thursday(3), friday(4), saturday(5), sunday(6) } }

DaysOpen ::= BIT STRING { monday(0), tuesday(1), wednesday(2),

thursday(3), friday(4), saturday(5), sunday(6) } (SIZE(7))

 Solution

DayOfTheWeek can have as value one of the seven days, and the value monday

8. Solutions to exercises 119

designates that single day.

DaysOpen can have as value a bit string, which specifies for each day, whether

a shop is open or not on that day. monday is the name of the first bit, which is

true if the shop is open on mondays, and false if it is closed on mondays.

Exercise 15 Solution

1.1.1.13. Solution taken from X.411, 1998 version

ub-organization-name-length INTEGER ::= 64

OrganizationName ::= PrintableString

(SIZE (1 .. ub-organization-name-length))

1.1.1.14. Solution, using new constructs from the 1994 version of ASN.1:

Name {INTEGER : name-length} ::= PrintableString (Size(1..name-length))

OrganizationDirectorName ::= Name {64}

Exercise 16 solution

1.1.1.15. Solution 1

PersonRecord ::= SET {

pnumber Pnumber,

name Nametype OPTIONAL,

income Incometype OPTIONAL

}

Pnumber1 ::= [APPLICATION 1] PrintableString

(FROM ("0" | "1" | "2" | "3" | "4"|"5" | "6" | "7" | "8" | "9"| "-" | " "))

Pnumber ::= Pnumber1 (SIZE (13))

Nametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

120 8. Solutions to exercises

1.1.1.16. Solution 2

PersonRecord ::= SET {

pnumber Pnumber,

name Nametype OPTIONAL,

income Incometype OPTIONAL

}

Pnumber1 ::= PrintableString (FROM ("0" | "1" | "2" | "3" | "4"|"5" | "6" | "7" | "8" | "9"| "-" | " "))

Pnumber ::= Pnumber1 (SIZE (13))

Nametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

1.1.1.17. Solution 3

Pnumber1 ::= PrintableString (FROM ("0" | "1" | "2" | "3" | "4"|"5" | "6" | "7" | "8" | "9"| "-" | " "))

PersonRecord ::= [APPLICATION 0] SET {

pnumber Pnumber1 (SIZE (13))

name GeneralString (SIZE (1 .. 40)) OPTIONAL,

income INTEGER (0 .. MAX) OPTIONAL

}

Note: With the 1994 version of ASN.1, you might also write:

Pnumber1 ::= PrintableString (FROM ("0" .. "9" | "-" | " "))

Exercise 17 Solution

1.1.1.18. Solution 1

PersonRecord ::= SET {

pnumber Pnumber,

gname GNametype OPTIONAL,

sname SNametype OPTIONAL,

Income Incometype OPTIONAL

}

Pnumber1 ::= PrintableString

(FROM ("0" | "1" | "2" | "3" | "4"|"5" | "6" | "7" | "8" | "9"| "-" | " "))

Pnumber ::= Pnumber1 (SIZE (13))

8. Solutions to exercises 121

GNametype ::= [APPLICATION 0] GeneralString (SIZE (1 .. 40))

SNametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

1.1.1.19. Solution 2

PersonRecord ::= SET {

pnumber Pnumber,

name Nametype OPTIONAL,

income Incometype OPTIONAL

}

Pnumber1 ::= PrintableString

(FROM ("0" | "1" | "2" | "3" | "4"|"5" | "6" | "7" | "8" | "9"| "-" | " "))

Pnumber ::= Pnumber1 (SIZE (13))

Nametype ::= SEQUENCE {

sName GeneralString (SIZE (1 .. 40)),

gName GeneralString (SIZE(1 .. 40))

}

Incometype ::= [APPLICATION 3] INTEGER (0 .. MAX)

Question: Why is the solution below not correct?

PersonRecord ::= [APPLICATION 0] SET {

pnumber Pnumber,

gname Nametype OPTIONAL,

sname Nametype OPTIONAL,

income Incometype OPTIONAL

}

Pnumber1 ::= PrintableString

(FROM ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"| "-" | " "))

Pnumber ::= Pnumber1 (SIZE (13))

Nametype ::= GeneralString (SIZE (1 .. 40))

Incometype ::= INTEGER (0 .. MAX)

Answer: The receiving computers cannot know if a name with only one com-

ponent is only a gname or only a sname.

122 8. Solutions to exercises

Exercise 21 solution

FullName ::= SEQUENCE {

givenName [0] IA5String OPTIONAL,

initials [1] IA5String OPTIONAL,

surname [2] IA5STring

}

Question: Can the tags in the solution above be removed?
Yes, you can always remove one of the tags, since it will then get the

UNIVERSAL tag of IA5String, which is different than the other user-defined tags.

If you have AUTOMATIC tagging set, you can remove all the tags. Otherwise,

two of them must be kept, since the elements must have different tags to sepa-

rate them. If the first two elements had not been OPTIONAL, then the tags

would not have been required, since then the elements could be separated by

their order in the SEQUENCE.

Exercise 22 solution

BasicFamily ::= SEQUENCE {

husband [0] IA5String OPTIONAL,

wife [1] IA5String OPTIONAL,

children [2] SEQUENCE OF IA5String OPTIONAL

}

With automatic tagging, the tags above can be removed.
Question: Is SEQUENCE OF or SET OF best in this exercise? Answer: If you

want to indicate the order of birth the children, SEQUENCE OF is better.

Exercise 23 solution

ChildLessFamily ::= BasicFamily

(WITH COMPONENTS {

... , children ABSENT

}

) }

8. Solutions to exercises 123

Exercise 24

Given the ASN.1-type:

XYCoordinate ::= SEQUENCE {

x REAL,

y REAL

}

Define a subtype which only allows values in the positive quadrant (where

both x and y are >= 0).

 solution

PositiveCoordinate ::= XYCoordinate

(WITH COMPONENTS {

x (0 .. MAX)

y (0 .. MAX)

}

)

Exercise 25

Given the ASN.1 type:

SET {

author Name OPTIONAL,

textbody IA5String }

Define a subtype to this, called AnonymousMessage, in which no author is

specified.

 solution

1.1.1.20. Solution 1

AnonymousMessage ::= Message

(WITH COMPONENTS {... , author ABSENT }

)

124 8. Solutions to exercises

1.1.1.21. Solution 2

AnonymousMessage ::= Message

(WITH COMPONENTS {

author ABSENT,

textbody }

Exercise 26 solution

Vessel ::= CHOICE {

aircraft Aircraft,

ship Ship,

train Train,

motorcar MotorCar

Exercise 27 solution

1.1.1.22. Solution 1

GeneralNameListA ::= gs < NameListA

GeneralNameListB ::= NamelistB

(WITH COMPONENT

(WITH COMPONENTS {gs})

)

1.1.1.23. Solution 2

GeneralNameListA ::= NameListA (WITH COMPONENTS {gs})

GeneralNameListB ::= NamelistB

(WITH COMPONENT

(WITH COMPONENTS {gs}))

8. Solutions to exercises 125

Exercise 28 solution

Vote ::= SEQUENCE {

voterName IA5String,

votevalue CHOICE {

chosenAlternative AlternativeNumber,

setvalue SET OF SEQUENCE {

alternative AlternativeNumber,

score INTEGER (0 .. 10)

}

}

}

Exercise 29 solution

vote = voter-name "," (One-choice / Choice-list)
voter-name = """ name """
name = 1*namechar
namechar = <any printable ASCII character except """>
One-choice = "Single:" 1*DIGIT
Choice-list = "Multiple:" 1#(alternative LWSP score)
alternative = 1*DIGIT
Score = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" / "10"

Exercise 30 solution

WeatherReporting {2 6 6 247 1} DEFINITIONS IMPLICIT TAGS ::=

BEGIN

WeatherReport ::= SEQUENCE {

height [0] REAL,

weather [1] Wrecord

}

Wrecord ::= [APPLICATION 3] EXPLICIT SEQUENCE {

temp Temperature,

moist Moisture

wspeed [0] EXPLICIT Windspeed OPTIONAL

}

Temperature ::= [APPLICATION 0] REAL

Moisture ::= [APPLICATION 1] EXPLICIT REAL

Windspeed ::= [APPLICATION 2] EXPLICIT REAL

126 8. Solutions to exercises

END - - of module

WeaterhReporting

Exercise 31 solution

Record ::= SEQUENCE {

GivenName [0] PrintableString

SurName [1] PrintableString }

Both tags can be removed

Record ::= SET {

GivenName [0] PrintableString

SurName [1] PrintableString }

Record ::= SEQUENCE {

GivenName [0] PrintableString OPTIONAL

SurName [1] PrintableString OPTIONAL }

One of the tags can be re-
moved, since if you remove
one of them, that element will
have the UNIVERSAL tag for
PrintableString, which is dif-
ferent from the context-
dependent tag [1].

Exercise 32 solution

The tags which can be removed are those shown in italics below.

Colour ::= [APPLICATION 0] CHOICE {

rgb [1] RGB-Colour,

cmg [2] CMG-Colour,

freq [3] Frequency

}

RGB-Colour ::= [APPLICATION 1] SEQUENCE {

red [0] REAL,

green [1] REAL OPTIONAL,

blue [2] REAL

}

CMG-Colour ::= SET {

cyan [1] REAL,

magenta [2] REAL,

green [3] REAL

}

8. Solutions to exercises 127

Frequency ::= SET {

fullness [0] REAL,

freq [1] REAL

}

Exercise 33 solution

ListResult ::= OPTIONALLY-SIGNED

CHOICE {

listInfo SET {

DistinguishedName OPTIONAL,

subordinates [1] SET OF SEQUENCE {

RelativeDistinguishedName,

aliasEntry [0] BOOLEAN DEFAULT FALSE

fromEntry [1] BOOLEAN DEFAULT TRUE},

partialOutcomeQualifier [2]

PartialOutcomeQualifier OPTIONAL

COMPONENTS OF CommonResults },

uncorrelatedListInfo [0] SET OF Listresult }

Exercise 34 solution

Yes, two comma characters are missing:
ListResult ::= OPTIONALLY-SIGNED

CHOICE {
listInfo SET {

DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {

RelativeDistinguishedName,

aliasEntry [0] BOOLEAN DEFAULT FALSE, -- This comma is missing
fromEntry [1] BOOLEAN DEFAULT TRUE},

partialOutcomeQualifier [2]

PartialOutcomeQualifier OPTIONAL, -- This comma is missing
COMPONENTS OF CommonResults },
uncorrelatedListInfo [0] SET OF Listresult }

Exercise 35 solution

COMPONENTS OF is not a data type, and can thus not have any identifier. It

copies a series of separately defined type elements, and is useful if you have a

series of standard elements, like CommonResults, which is to be used in many

places.

128 8. Solutions to exercises

Exercise 36 solution

In a SET all the elements must have different type. It is then necessary to give

a context tag only on all but one of the elements.

Exercise 37 solution

CarDriving { 1 2 4711 18 } DEFINITIONS EXPLICIT TAGS ::=

BEGIN

IMPORTS MainOperation FROM Driving {1 2 4711 17};

FullOperation ::= SEQUENCE {

COMPONENTS OF MainOperation,

blink SEQUENCE {

on BOOLEAN,

left BOOLEAN },

light ENUMERATED {

dark(0),

parkingLight (1),

dimmedLight (2),

fullBeam (3)

} }

END - - of module CarDriving

Note: Since there was no EXPORTS statement in Driving, all objects in it are

exported.

Exercise 38 solution

APPLI-
CATION

CON-
STRUC-

TED

Tag nr. Length UNI-
VER-
SAL

PRIMI-
TIVE

IA5STRING Length Character
codes

01 1 00001 6 00 0 10110 4 M a r y

61 06 16 04 M a r y

8. Solutions to exercises 129

Exercise 39 solution

00 0 01010

UNI-
VERSAL

PRIMI-
TIVE

LENGTH halflight

ENUME-
RATED

01 0000001000 0 01010

UNI-
VERSAL

PRIMI-
TIVE

LENGTH halflight

ENUME-
RATED

01 00000010

Exercise 40 solution

element encoding Octet

beverage (context explicit tag)101 00001

(ENUMERATED) 000 01010

2

tea (length) 1 (value) 00000001
2

jam (contextexplicit tag) 101 00010

(ENUMERATED) 000 01010

2

orange (length) 1 (value) 00000000
2

continentalpart (SEQUENCE) 001 10000 (length) 8

beverage tea jam orange

10

eggform fried (ENUMERATED) 000 01010 (length) 1

(value) 00000101

3

english (SEQUENCE) 001 10000 (length) 10

continentalpart

12

typeofbreakfast (context explicit tag) 100 00001

(length) 12 english

14

customername (IA5string) 00010110 (length) 5

("Johan") "J" "o" "h" "a" "n"

7

firstorder (SEQUENCE) 001 10000 (length) 21 customername typeofbreakfast
23

130 8. Solutions to exercises

Exercise 41 solution

<?xml version="1.0" ?>
<!DOCTYPE header SYSTEM "header.dtd">
<header>
<from>
<person>
<user-friendly-name>Nancy Nice</user-friendly-name>
<local-id>nnice</local-id>
<domain>good.net</domain>

</person>
</from>
<to>
<person>
<user-friendly-name>Percy Devil</user-friendly-name>
<local-id>pdevil</local-id>
<domain>hell.net</domain>

</person>
</to>
<cc>
<person>
<user-friendly-name>Mary Clever</user-friendly-name>
<local-id>mclever</local-id>
<domain>intelligence.net</domain>

</person>
<person>
<user-friendly-name>rupert happy</user-friendly-name>
<local-id>rhappy</local-id>
<domain>fun.net</domain>

</person>
</cc>
</header>

Exercise 42 solution

<!ELEMENT header (from, to?, cc?)>
<!ELEMENT from (person)>
<!ELEMENT to (person+)>
<!ELEMENT cc (person+)>
<!ELEMENT person (user-friendly-name,local-id,domain)>
<!ELEMENT user-friendly-name (#PCDATA)>
<!ELEMENT local-id (#PCDATA)>
<!ELEMENT domain (#PCDATA)>

Exercise 43 solution

DTD specification: XML examples:
<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">
<id><social-security-no>410201-
1410
</social-security-no></id>

<!ELEMENT id (name | social-
security-no | both)>
<!ELEMENT both (name, social-
security-no)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT social-security-no
(#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">
<id><both><name>Eliza
Doolittle</name>
<social-security-no>410201-1410
</social-security-
no></both></id>

8. Solutions to exercises 131

<?xml version="1.0" ?>
<!DOCTYPE id SYSTEM "id.dtd">
<id><name>Eliza
Doolittle</name>
</id>

Note: The following will not work:
<!ELEMENT id (name | social-security-no | (name, social-security-
no))>
<!ELEMENT name (#PCDATA)>
<!ELEMENT social-security-no (#PCDATA)>

This will not work, because the receiving program will not be able to know,

when it starts to scan <name> whether this is the first or the third branch of

the choice.

Exercise 44 solution

DTD specification: XML data:
<!ELEMENT movie (title, person+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT person EMPTY>
<!ATTLIST person
 name CDATA #REQUIRED
 role (actor | photographer |
 director | author | administrator)
 #IMPLIED
>

<?xml version="1.0" ?>
<!DOCTYPE movie SYSTEM
"movie.dtd">
<movie>
<title>
The Postman Always Rings
Twice</title>
<person name="Lana Turner"
 role="actor"/>
<person name="John Garfield"
 role="actor"/>
<person name="Tay Garnet"
 role="director"/>
<person name="James M. Cain"
 role="author"/>
</movie>

132 8. Solutions to exercises

