

1

Copyright notice

This document contains text which has been copied from the text of
various IETF standards. Fur such text, the following IETF general
copyright rules apply:

This document and translations of it may be copied and
furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implmentation may be
prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright
notice or references to the Internet Society or other Internet
organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights
defined in the Internet Standards process must be followed, or
as required to translate it into languages other than English.

For other text in this document, the text is copyright © Jacob Palme
1999. You may copy the text until the possible future date when this
document is published as a book. After that, copying is not allowed.
You must include this section “Copyright notice” in any copies you
make of the document.

2

Excerpt from:

Internet application layer protocols

By Jacob Palme

3

Table of contents

1 Introduction and Basic Concepts2
1.1 A Simple Example2
1.2 Process, Client, Host, Server4
1.3 Protocols5
1.4 Layering Model6
1.4.1 Layers below the application layer9
1.4.2 Layering within the application layer10
1.5 Ports and Applications10
1.6 Telnet: A Simple Application14
1.6.1 Manual test of e-mail protocols14
1.7 Architectures16
1.8 Chaining, Referral or Multicasting18
1.9 Symmetric and Asymmetric Protocols20
1.10 Transfer of Responsibility21
1.11 Identification22
1.12 Transactions and Sessions23
1.13 Turn-around Time, Pipelining and Windowing25
1.14 Terminating a Connection26
1.15 Intermediaries28
1.16 Names and Addresses29
1.16.1 Domain method of allocating globally unique names29
1.16.2 Hash Code Method of Creating Globally Unique Names32
1.16.3 User-friendly Names33
1.17 The Domain Name System33
1.17.1 MX records35
1.18 Top-level domains36
1.19 The old versus new problem38
1.19.1 Version number39
1.19.2 Feature Selection Method40
1.19.3 Feature naming41
1.19.4 Built-in Extension Points43
1.20 Standards Terminology45
1.21 OSI versus the Internet45

7.1 References47

4

1

Introduction and Basic Concepts

1.1 A Simple Example

Internet application layer protocols were from the beginning very
simple. A computer program on one computer could connect to a pro-
gram running on another computer, and send simple textual com-
mands. Figure 1 shows the interactions needed in a simple case to
send an e-mail message.

The following is all that is necessary to send e-mail from one host
to another (“C:” is text sent by the client, “S:” is text returned by the
server):

C: <connects to server>
S: <accepts connection>
C: HELO mail.duckland.com
S: 250 mail.northpole.com
C: MAIL FROM: donald-duck@duckland.com
S: 250 donald-duck@duckland.com... Sender ok
C: RCPT TO: father-christmas@northpole.com
S: 250 father-christmas@northpole.com... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: From: Donald Duck <donald-duck@duckland.com>
C: To: Father Christmas <father-christmas@northpole.com>
C: Date: 24 Dec 1999
C:

5

C: Peace be with you.
C: .
S: 250 PAA00329 Message accepted for delivery
C: QUIT
S: 221 mail.northpole.com closing connection
S: <closes connection>

So, just by sending a few lines of text back and forwards between two
computers, an e-mail message is transmitted.

Figure 1:

Interactions for sending an e-mail message

HELO (=here I am)

250 (=OK)

MAIL FROM (=specify sender)

250 (=OK)

RCPT TO (=specify recipient)

250 (=OK)

DATA

354 (=Send text)

.... message header and text ...

. (=End of text)

250 (=OK)

Mail
client

Mail
server

6

1.2 Process, Client, Host, Server

Here are some important kinds of objects in network protocols (see
also Figure 2):

Process:

 A program running on a computer. Most computers al-
low several processes to run at the same time.

Agent:

 A process connected to the network. The term “agent” is
also sometimes used for a process which acts without immediate user
control, and which may represent itself as a user to the network.

Client:

 A process which can establish connections to servers and
send requests to them.

User agent:

 A client which represents a user. User agents often
have a user interface, so that human users can directly control them.

Figure 2:

Process, Client, Host, Server, User Agent

Personal computer

E-mail
program
= Client

= User Agent

E-mail
server

= One or
more

processes

Host computer

WWW
server

= One or
more

processes

FTP
server

= One or
more

processes

Connection

7

Server:

 A process which accepts connections from clients and
performs services for them. A server can often handle several simul-
taneous connections from different clients. Technically, this can be
done by running a single process, or by running a separate process for
each client.

Host:

 A computer connected to the network and providing servic-
es. Many different services can be provided by different servers on the
same host.

Note that the same process can be a server for one agent, and a cli-
ent for another agent. Figure 3 shows three agents, one user agent and

two service agents. The middle service agent acts as a server to the
user agent, and as a client to the other user agent.

1.3 Protocols

The word

protocol

 comes from the language of diplomacy. By proto-
col is meant the rules for the language used in communication be-
tween countries. Such rules are intended to ensure that countries
correctly understand each other, to reduce the risk of misunderstand-
ing. And the intention with network protocols is the same. The proto-
cols specify clearly what can be said, and how it is to be said. Like
programming languages, the words and phrases in some network pro-
tocols can have some similarity to natural language. But like pro-

Figure 3:

The middle agent in this figure acts as a server
to a user agent and as a client to another service agent.

Service agent

Server

User agent

Client

Service agent

ClientServer

8

gramming language, the artificial languages are simpler, more
restricted, more exact, and do not allow ambiguities. The similarity to
natural languages is a way of making the protocols easier to under-
stand for humans.

1.4 Layering Model

Layering is easiest to understand if you start with the case where only
one computer and no network is involved. Even in that case, most pro-
grams are structured into layers. Suppose you are designing a pro-
gram for designing flowcharts. Such a program may have the
structure shown in Figure 4:

Figure 4 shows an example of the structure of a program running
on a single computer. The higher layers use features of the lower lay-
ers. Note that it is only the lowest layer which actually writes infor-
mation on the screen or on the hard disk. The higher layers influence

Figure 4:

Structured programming: Routines in higher
layers use features of lower layers.

Routines for saving
data in files

Setting a color to a
pixel on the screen

Routines for drawing
and coloring

lines and rectangels

Routines for
handling flow charts

User interface

Routines for writing
on the hard disk

9

the contents of the screen and the hard disk only indirectly by using
routines in layers below them. The layers piled on top of each other
are often referred to as a “stack”.

Network layering works in the same way. But in networks, there
are more than one program on more than one host computer. So there
is a need for a separate “stack” of layers on each computer. In the sim-
ple case where only two processes running on two computers are in-
volved, this can be depicted as in Figure 5.

Why are the horizontal lines dashed between all the boxes except
in the lowest layer? Think of the example in Figure 5. There, only the
lowest layer physically writes on the screen or the hard disk. All the
higher layers will indirectly write on the screen or the hard disk
through the lowers below them. The principle for networked proto-
cols are the same. The layer “Send bits” does not physically send bits

Figure 5:

Two stacks of layers, one on each host,
communicating with each other.

Send
documents

Send
e-mail

Route
packets

Send packets
of bits

Send
bits

Send electrons
or photons

Receive
documents

Receive
e-mail

Route
packets

Receive
packets of bits

Receive
bits

Receive elec-
trons/photons

10

to the layer “Receive bits”. The layer “Send bits” asks the lower layer
“Send electrons or photons” to send the bits, which are then forward-
ed up to the box “Receive bits”. Since the communication between
“Send bits” and “Receive bits” is indirect and not direct, it is shown
as a dashed line.

There is another way to view layeriing, shown in Figure 6.

The important understandings of this view are two:
1. Each lower layer usually adds information. The amount of infor-

mation transported increases with each added lower layer.
2. The code at each layer only looks at the information added at this

layer. The information in higher layers is just regarded as a set of
bits by the lower layer, it does not understant its inner content or
structure.

For example, the e-mail transport system (SMTP) will transport an e-

Figure 6:

Layering seen as envelopes inside envelopes
inside envelopes.

Data in the innermost
content.

Data in the innermost
content.

Additional information
on the envelope.

Data in the innermost
content.

Additional information
on the envelope.

Additional information
on the outer envelope.

The innermost con-
tent in an envelope
with additional
information on the
envelope.

The next layer down
puts the information
from the layer above
inside a new enve-
lope.

The innermost
content.

11

mail message from its sender to its recipient. This is done using the
information on the e-mail envelope. The contents inside the envelope
are just moved along, but not touched. And the e-mail transport sys-
tem uses another layer below it (TCP), which moves a document from
one host to another host. TCP has its own envelope, and the contents
(the e-mail envelope and content) is just moved along, not touched.

This is not always quite true. For example, e-mail transport sys-
tems will sometimes convert the content of the message from one en-
coding to another encoding. This is regarded as a “layering violation”
and is not regarded as quite neat, but is sometimes necessary.

The major layers in computer networking are listed in Table 1.

1.4.1 Layers below the application layer

This book is only about the application layer. The layers below it are
described in other books. They will only be mentioned as tools used
by the application layer. On the Internet, most communication uses a
standard called TCP/IP for the lower layers. TCP/IP provides a reli-
able way of moving a document from one port on one host to another

Application layer The actual application, such as e-mail or the
WWW.

Session layer Keep an exchange of information going through
interactions back and forward between the two
hosts.

Transport layer Transport a whole document from sender to
recipient.

IP layer Transport small packets of bits through the net-
work.

Physical layer A current or light transports a stream of bits.

Table 1:

The major layers in computer networking.

12

port on another host. Some Internet applications use an alternative to
TCP, called UDB. The difference between TCP and UDB is that TCP
ensures that all the packets, into which a document has been split, are
reliably transported and collected together in the right order. If a pack-
et is lost, TCP will ensure that it is resent. UDB just disregards lost
packets. This makes UDB faster and suitable for same-time protocols
like simultaneous transmission of voice and video. For such voice and
video, it is more important to get a continuous stream at the right
speed. Lost packets are accepted as noise. Most other applications,
like e-mail, FTP (file transfer) and normal WWW communication use
TCP, where reliability is more important than speed and same-time
continuity.

1.4.2 Layering within the application layer

According to a fundamentalist view of networking, networks only
have major layers of the kind shown in Table 1. But in reality, there
are often layers within the application layer. The processing of data
within an application often is structured into a series of operations
performed when sending data, and the reverse series when receiving
data. Many standards implicitly or explicitly specifies this, as is
shown in Figure 7. A simple example of this is the e-mail standards.
Figure 8 shows how the e-mail standards are structured into a “Head-
er and body” layer and a “Mail forwarding layer”.

1.5 Ports and Applications

There are many different application layer protocols. The protocol
used when sending e-mail is different from the protocol used when
downloading web pages. An e-mail client is not able to communicate
with a WWW server, because they speak different languages. Only a

13

client and a server which speak the same language can communicate.
But the same host can have several different client and server applica-
tions. A personal computer can, for example, at the same time run
both mail programs and web browser. And the same host can at the

Figure 7:

Layering within the application layer (layers
below the transport layer omitted)

Figure 8:

Layering within the application layer in e-mail
standards

Application
data

Treatment
type A

Treatment
type B

Transport
layer

Application
data

Reverse of
treatment A

Reverse of
treatment B

Transport
layer

Hi!

From:
Subject:
Hi!

Layers below the application
layer

MAIL FROM:
RCPT TO:
From:
Subject:
Hi!

The message content

Envelope with information
to control forwarding of
the message to the recipients
is added to the header and
content

Header with information
to the recipient and the
recipients’s mailer is
added to the content

14

same time run mail servers and WWW servers.
It is very important that messages sent by an e-mail client are sent

to an e-mail server, and that messages sent by a web browser are sent
to a WWW server. To ensure this, a host computer has different ports,
as is seen in Figure 9. The transport layer establishes hoses between

applications. And the hoses fit into different ports for different appli-
ations. This is done by assigning a port number to each port. When a
client connects to a server, it specifies which port number it wants to
access. There are standard port numbers for each application proto-
col. Thus, when a web browser connects to a web server, it usually ask
for port number 80, because this is the standard port number for web
servers. If there is more than one web server on the same host, they
may use different port numbers. In that case, the client can use the
port number to indicate which server it wants to connect to.

There is a long list of such standard port numbers maintained by
the standards organisation IANA (IANA may soon change to become

Figure 9:

A TCP connection between two computers can
be seen as a hose, through which packets of octets can

be sent between ports. The port are openings to
applications running on the computers.

Application
client

Client-computer

Port

Application-
server

Server
host

Port

Packets

15

a part of ICANN). IANA means Internet Assigned Numbers Author-
ity, and its main task is to distribute numbers and names which are al-
located for particular uses. Some common of these standard port
numbers are listed in Table 2.

Table 2:

Some common port numbers

20 ftp-data File transfer, data

21 ftp File transfer, control

23 telnet Terminal emulator

25 smtp E-mail forwarding

53 dns Domain name lookup

70 gopher Gopher search

79 finger Finding info about a user

80 http Retrieving web pages

109 pop2 Delivering e-mail to its final
recipient

110 pop3 Delivering e-mail to its final
recipient

119 nntp Usenet News

143 imap2 Delivering e-mail to its final
recipient

194 irc Distributed chat system

220 imap3 Delivering e-mail to its final
recipient

993 simamp4 Delivering e-mail to its final
recient through a secure
channel

16

A full list can be found at the IANA web site [1].

1.6 Telnet: A Simple Application

In the 1970s and 1980s, most computer user interfaces were based on
sending one or more single characters to the host, and getting one or
more single characters back. Many applications on unix computers
still use such interfaces. Telnet is an Internet protocol for using such
an interface on another computer than your own. A simple example of
a Telnet usage is shown in Figure 10. Telnet is of special interest, be-
cause it works the same way most application layer protocols work:
Sequences of characters are sent back and forward between two com-
puters. Because of this, telnet clients can sometimes be used to con-
nect to other applications than those designed to use telnet.

Here is an experiment which will make it easier to understand
how network protocols work. All you need to perform this experiment
is a telnet client on a computer connected to the Internet. The telnet
client must have the capability to connect to other ports than the reg-
ular telnet port 23.

1.6.1 Manual test of e-mail protocols

Use the telnet client to connect to port 25 of the computer running
the mail server you are using. Everything you type is underlined in the
text below. Text from the computer is not underlined. The character
“

¶

” means that you should push the Return key. Replace

995 spop3 Delivering e-mail to its final
recient through a secure
channel

Table 2:

Some common port numbers

17

“

mail.foo.bar

” with the domain name of the mail server you are us-
ing, and replace “

mycomputer.foo.bar

” with the domain name of
your own computer.

The first line below is the unix command to start telnet and con-
nect it to port 25 of the server mail.foo.bar. If you are running telnet
from another computer than a unix computer, you replace the first line
below with the command to get your telnet program to do this con-
nection.

unix>telnet mail.foo.bar 25
Connected to mail.foo.bar.
Escape character is '^]'.
220 info.dsv.su.se ESMTP Sendmail 8.8.5/8.8.5; Fri, 24 Dec
1999 15:24:09 +0200 (MET DST)
helo¶
501 helo requires domain address

Figure 10:

Example of a simple telnet usage. The host and
the user take turns sending characters and new line

codes to each other.

OSF1 V4.0 (tellus.dsv.su.se) (ttyp8)

login: jpalme

jpalme's Password:

Last login: Sun Jun 27 18:12:50

Digital UNIX V4.0A;

Fri Jul 11 04:55:52 MET DST 1997

You have new mail.

TERM = (vt100)

This information is
typed by the user

Here the user types
a password, which
is not shown on the
screen

Here the user types
only the Return key to
affirm that his telnet is
using so-called vt100
emulation

Here the user can type
commands to the shell,
which is a line-oriented
interface to manipulate files
and start processes

18

helo mycomputer.foo.bar¶
250 info.dsv.su.se Hello tellus.dsv.su.se 130.237.161.217],
pleased to meet you
MAIL FROM: donald-duck@foo.bar¶
250 donald-duck@foo.bar... Sender ok
RCPT TO: father@northpole.net¶
250 father@northpole.net... Recipient ok
DATA¶
354 Enter mail, end with "." on a line by itself
From: Donald Duck <donald-duck@duckburg.com¶
To: Father Christmas<father@northpole.net>¶
Date: 24 Dec 1999¶
¶
Peace be with you.¶
.¶
250 PAA00329 Message accepted for delivery
quit¶
221 mail.foo.bar closing connection

What you are doing in the example above is to perform a complete
sending of an e-mail message, where you manually simulate the mail
client with text, which you type on your keyboard.

Note that the sending of an e-mail message consists of a series of
phrases sent back and forward between client and server. All applica-
tion protocols do not work that way. HTTP 1.0 uses only a single se-
quence of octets from the client, and a single sequence of octets back
from the server.

1.7 Architectures

Network protocols mean that several processes in different computers
communicate with each other. By “Architecture” is meant the organ-
isation of applications into different modules, and how these modules
communicate.

Figure 11 shows a simple and common architecture, with a single
server, and a number of clients which access this server. With this ar-

19

chitecture, the server is often responsible for a data base stored in the
server, and the operations, which the clients perform on the server,
may get och store data from this common data base. This architecture
is simple to implement because there is only one protocol, the client-
server protocol, and only a single data base, and thus no problems
with co-ordinating information in different data bases. (Unless the cli-
ents have their own data bases, then co-ordination may be needed and
the implementation and protocols may become more complex.)

The architecture in Figure 11 is common in local area networks,
where users at local work stations access a common local data base.

Figure 11:

Simple client-server architecture

Figure 12:

Architecture with several interconnected
servers

Client

Server

Client

Client

Data base

1
1 1

2

22

User agent
User agent User agent

Service agent

Service agentService agent

20

Figure 12 shows a more complex architecture, which is used by
some Internet applications, for example e-mail and Usenet News.
There are (at least) two types of connections, labelled

➀

 and

➁

 in
Figure 12. Connections between a user agent and a service agentis la-
belled

➀

 in the the figure, and connections between two service agen-
tis labelled

➁

 in the figure. The needs may be different, and because
of this, different protocols may be used.

In the case of e-mail, this is even more complex, because different
protocols are used for sending mail from a user agent to a service
agent, and for delivering mail from a service agent to a user agent.

In some cases, the same protocol definition is used both for the
protocol between user agent and service agent, and between two ser-
vice agents. But in such cases, sometimes different elements in the
protocols are used, so that in reality the protocol between user agent
and service agentis not exactly the same as between two service
agents.

Even when a protocol is used between two similar agents, such as
between two service agents, one of the agents is usually the client and
the other the server in that particular connection. The client is the
agent which opens the connection and requests services from the
server, the server is the agent which receives requests from the client
and performs them (or refuses them). Thus, in a connection between
two service agents in Figure 12, one of them may be the client during
that particular connection, and the other may be the server. That is
why the boxes in Figure 12 are labelled “User agent” and “Service
agent” and not simply “Client” and “Server”.

1.8 Chaining, Referral or Multicasting

If a database is distributed on several servers, then the information,
which the client needs, may not be available on a single server. Infor-

21

mation may have to be fetched from another or multiple servers.
There are three common architectures for this,

chaining

,

referral

 and

multicasting

 as shown in Figure 13. With

chaining

, the user agent

connects to only one server. This server may connect to another serv-
er, and that server may connect to yet another server, to get the infor-
mation requested. The information is then returned recursively the
reverse way. With

Referral

, the client connects to the first server. If
this server does not have the requested information, it will tell the cli-
ent to try another server. This is continued until a server with the re-
quested information is found. With

multicasting

, the same question is
sent to several different servers, hoping that one of them has the an-
swer. Multicasting can cost a lot, if you send a query to a number of
servers for information which which you only need from one of the
servers. In such a case, it can be more efficient to organize the data
structure so that information can be located without multicasting.
Multicasting can however be very efficient if the same information is
to be sent at the same time to many recipients. In this case, special
multicasting features in the lower layers are used, so that the same in-

Figure 13:

Chaining, Referral and Multicasting

Multicasting

ServerServer

Server

Server

Client

Referral
(iterative)

Client

Server Server
Server

Chaining
(recursive)Client

Server

Server
Server

22

formation need only be sent once between routers, even if there are
many users of the data on each router. Examples of this is simulta-
neous video and audio broadcasting.

Chaining has an advantage compared to referral. This is that since
the information is returned recursively through the servers, a server
can cache the information, so that the next request can be handled
from the cache instead of through chaining. Another advantage is that
user agents often have slower connections than servers, and it is then
more efficient with chaining, because less network operations have to
be performed by the user agent through low-bandwidth connections.

An example of a system which uses both chaining and referral is
the Internet Domain Name System, the DNS (see page 37). The DNS
standards specify that referral is mandatory, chaining is optional. But
in reality, chaining is used more often than referral, because of the ad-
vantages mentioned above.

1.9 Symmetric and Asymmetric Protocols

Nearly all application layer protocols are asymmetric. By this is
meant that the language sent in one direction is different from the lan-
guage sent in the other direction. Usually, when describing an asymet-
ric protocol, one of the agents is named “client” and one is named
“server”. Note that even between two similar agents, such as between
two service agents, the protocol can still be assymetric. They are
equal, but at a certain moment of time, the protocol is asymetric. For
example, when sending e-mail between two service agents, the client
is the sender, which can send messages, the server is the recieving
agent which can refuse or accept messages.

The e-mail standard for the protocol between two service agents
has a TURN command. The TURN command allows the two agents
to change roles, so that the client becomes server and the reverse. The

23

TURN command is however not used very much, and it might disap-
pear from the standards in the future. And the TURN command does
not make the protocol symmetric, because at a certain moment, the
protocol is still asymetric.

The reason for the TURN command was that earlier, many con-
nections were made through dial-up phone connections. Since such a
connections are expensive and time-consuming to open, one connec-
tion could replace two with the TURN command. Today, however, al-
most all connections between service agents is through leased lines,
so the TURN command is not needed any more.

1.10 Transfer of Responsibility

Protocols are specifications of which statements are sent between two
agents, usually a client and a server. Protocols then specify what the
client can send, and what the server can respond with. The interaction
between client and server may, in some protocols, include several in-
teractions sent back and forward.

An example of a common type of interaction, specified by a pro-
tocol, is the transfer of responsibility. This occurs in e-mail, where a
store-and-forward technique is often used, as shown in Figure 14. The

original sender sends the message to a local mail server close to the
original sender. This local mail server sends the message to a local
mail server close to the final recipient. And this server delivers the
message to the final reicpient. Sometimes, more than two transfer
agents are involved on the route from the original sender to the final

Figure 14: Store-and-forward of e-mail messages

Final
recipient

Original
sender

Transfer
agent

Transfer
agent

24

recipient. With such a store-and-forward structure, it is very important
that the message does not disappear into a “black hole”. At any mo-
ment of time, one computer may crash, or the connection between
two computers may break. Such occurences should not cause a mes-
sage to disappear. To ensure this, each agent stores the message on
disk in a such a way, that the message will still be there when the
agent is restarted after a crash. This means that the responsibility to
deliver the message is transferred between the agents. A typical pro-
tocol for such a transfer of responsibility may work in the following
way:

1a.The clients send the message to the server.
1b.The server receives the message and stores it on non-volatile disk.
2a.The server then sends a response to the client that the message has

been received.
2b.The client receives this response, and notes that the server has tak-

en over responsibility for this message.

Until step 2b, the client continues to regard the message as unsent.
It will thus, if needed, try to send the message once more, until it has
received confirmation in step 2b that the server has taken over respon-
sibility for the message. This means that there is very little risk that a
message disappears. There is, instead, a small risk that a message is
sent more than once.

The transfer of responsibility as described above consists of two
interaction steps, one from the client to the server, and one from the
server to the client. Some interactions use more than two steps.

1.11 Identification

Another common kind of interaction is identification between two
agents. For example, a client can tell the server its name, and the serv-
er wants to confirm that this is really the client it claims to be. Identi-
fication can consist of the following steps:

25

1.The client connects to the server and sends its name.
2.The server sends a string of random digits to the client.
3.The client encrypts this string, and send the encrypted string back

to the server.
4.The server decrypts the encrypted string, checks that it has received

the same random digits it sent in step 2, and tells the client that
identification has succeeded.

Since only the right client knows how to encrypt the random
string in the right way, the server knows that the client is the one it
claims to be. Here, four interactions back and forward between client
and server were needed.

1.12 Transactions and Sessions

A session is a series of interactions back and forward between two
agents, usually a client and a server. The interactions are performed,
one after each other in time. A session often starts with identification
(sometimes called “login” or “bind”), after that sometimes comes ne-
gotiation of capabilities, and then a number of transactions, and final-
ly the end of the session.

Figure 15 shows the basic steps and state changes when transfer-
ring an email message from one agent to another using the SMTP pro-
tocol. As seen in the figure, there are a number of states, and in each
state, only certain commands are permitted. Such a protocol is called
a stateful protocol. A protocol which has no states is called a stateless
protocol.

Stateful protocols allow several interactions back and forward
during a session. With other protocols, the client sends a transaction,
gets a result back, and the connection is then terminated. Such proto-
cols are stateless.

With some protocols, a session is kept open while waiting for the
user to look at the results from previous interactions. Such waits can

26

be very long. This is costly for a server, which may have to keep many
sessions going at the same time. To reduce this cost, servers will often
shut down the session if nothing has been sent for a certain time. This
maximum wait time is called a timeout. If you have been using FTP,
you may have noticed that many FTP servers will terminate the FTP

Figure 15: Session with
changes of state

This figure shows (somewhat simplified) the
changes of state during the transmission of
an e-mail message using the SMTP proto-
col.

1. In the initial state, the server expects the
client to identify it self. No other com-
mands are allowed in this state.

2. When identification is ready, the server
expects the address of the sender.

3. When the sender has been given, the
server expects the address of the first
recipient.

4. When a recipient address has been giv-
en, the server expects either an addi-
tional recipient address, or the message
content.

5. When message content. has been sent,
another message can be sent. This is the
same state as state 2.

Finally, a session ends with a command
from the client to end the session. This can
be given in any state.

1.State: Expects bind

Identification
of sender

Bind =
Identification of
client and server,

capability
negotiation

2. State: Expects sender

3. State: Expects recipient

Identification
of one recipient

4. State: Expects
more recipients
or content

Transmission
of content

5. State: Expects sender

End of session

27

session automatically, if you do not send any commands for a certain
time.

To open and close a session will, however, also cost network and
computer resources. If several interactions are needed to perform an
action, it may be less costly to perform them after each other in the
same session. But if the wait times are too long, it may be less costly
to abort the session and start a new session.

To keep a session open and wait for a timeout is also costly for a
server. It is more efficient, if the client sends a command to abort the
session, so that the server need not wait for any timeout.

1.13 Turn-around Time, Pipelining and
Windowing

A protocol may use a session with a number of interactions back and
forward between client and server. The client has to wait for the re-
sponse from the server on the previous command, before the client
can send the next command. This takes time, because the turn-around
time to send a command and get the response back can be one or sev-
eral seconds. The total time for a session with many such interactions
will then be long.

Here are three methods to reduce these delays:
1. Specify more powerful commands, where more is done in one

command, so that fewer interactions are needed.
2. Open several parallel connections. HTTP clients (web browsers)

often keep four parallel connections for downloading the different
parts of a web page (text, pictures, applets). Too many parallel
connections is costly in resources for both the client and server,
but with too few connections, dead time may occur when the cli-
ent is waiting for data from all the connections.

28

3. In protoocols which use many small interactions, such as SMTP
and NNTP, the delay can be used with a method called pipelining
or windowing. Sometimes the word streaming is also used for
this, although the word streaming also has other uses (see
page 29).

By pipelining is meant that the client can send the next command,
without waiting for the response from the server on the previous com-
mand within the same session. Commands are sent and responses re-
ceived asynchronously. This is shown in Figure 16. (Note: the OK

responses are still sent, they are not shown in the figure to the left to
make the figure less complex.) The advantage with this method is that
the session is performed faster. The disadvantage is that the error han-
dling, if one of the commands is not accepted by the server, will be
more complex. Also, data may have been sent unneccessarily if a pre-
vious command is rejected by the server. Pipelining is sometimes
called windowing, when the number of commands sent in advance is
limited. For example, if the window size is three, this means that after
sending three commands, the client must wait for respone to the first
command before sending the fourth command. Pipelining should
only be done when the protocol specification explicitly says that pipe-
lining is allowed.

Figure 16: Pipelining reduces the time

Sender

Recipient

Content

OK

OK

OK

C

L

I

E

N

T

S

E

R

V

E

R

SenderRecipient
Content

C

L

I

E

N

T

S

E

R

V

E

R

Wait for
response
before
sending
the next
command

Pipelining:
Send
commands
without
waiting for
response

29

TCP itself supports pipelining. A TCP connection is actually two
pipes, one in each direction, and the sending process can send more
data than the receiving process can handle. TCP will just store the
overflow, but can also tell the sending process to make a break in
sending if its buffers are full. %%%check if this is true%%%

1.14 Terminating a Connection

A connection can be terminated if one of the two partners closes the
connection. For example, the server can close the connection if there
has been no activity for a certain timeout period. More reliable and ef-
ficient is if the client sends a command to the server, asking for the
connection to be closed. Such commands are usually named EXIT or
QUIT. The server then closes the connection. The advantage with this
is that both agents know that the connection is closed, and no timeout
is necessary.Figure 17 shows how a session is ended for HTTP 1.0
(World Wide Web) and SMTP (e-mail). Note that in both cases, the
server knows when to end the connection, and no timeout is needed.

1.15 Streaming

By streaming is meant that results are displayed for the user, before
all data has been received by the user agent. For example, the top of a
web page may be shown, while continuing to download the rest of the
page.

The word streaming is also sometimes used in another meaning,
to denote what in this book is called pipelining (see page 28). The
concepts are connected, since pipelining is a way of assisting stream-
ing.

30

In order to make streaming work better, the user agent must get a
suitable selection of data which gives initial information about a web
page. This is one reason why web browsers often open several con-
nections at the same time; they can then download images in the be-
ginning of a large web page, without waiting for the end of the
download of the bottom of the web page.

The creator of data can alleviate streaming by sending data in a
format where some data can be displayed before all has arrived. For
example, many web browsers are not able to show a HTML table be-
fore the end of the table. Even if they can display the table earlier, new

Figure 17: How a connection is ended in HTTP 1.0 and
SMTP. In HTTP, the server closes the connection as

soon as TCP tells it that all data has been transformed.
In SMTP, the client sends a QUIT command, which tells
the server to close the connection. Note that no timeout

wait is necessary in either case.

HTTP GET Operation

SMTP Sending a message

Get info <GET> [<GET>] <GET>U
S
E
R

Close
connection

TCP-closeEOF

<Info><Info><Info>

A
P
P
L

T
C
P

T
C
P

A
P
P
L

[<Info>]

U
S
E
R

QUIT QUIT

Send a
message

250,250,
250,250

A
P
P
L

T
C
P

[HELO],
[MAIL FROM],

[RCPT TO],
[DATA

HELO,
MAIL FROM,

RCPT TO,
DATA

250,250,
250,250

250,250,
250,250

Close
connectionTCP Close

QUIT

HELO,
MAIL FROM,

RCPT TO,
DATA T

C
P

EOF

A
P
P
L

31

information later in the table may force them to reformat the table. It
is therefore often not good to start a web page with a long table. In-
stead, one can have two tables, a small table for the first window, an
d one or more additional tables for the rest of the web page.

Another method to support streaming, which is used with pic-
tures, is to first send for example every 4th line, then every 2nd line,
then the remaining lines. This allows the web browser to show a pic-
ture first in a more blurred form, and then sharper and sharper. This
method of sending a picture is called interlacing.

In some cases, it is not possible to know the full content of a doc-
ument, while sending it. When, for example, sending simultaneous
video and audio, the end of the sending has not yet happended when
the beginning is sent. In such a case, recipients often want to see the
beginning of the broadcast before its end, and then streaming proto-
cols are needed.

1.16 Intermediaries

Sometimes, the communication between two agents is passed through
one or more intermediary computers. There are three main kinds of
intermediaries (Figure 18):

Proxy: A server which caches data, so that some requests from
the client can be answered directly by the proxy. Proxies also some-
times controls and limits what is allowed for various regulatory or se-
curity reasons. Such regulating proxies are called firewalls.

Gateway: A gateway usually is placed between two networks
with different technology, and may transform the format of data from
the format in one of the networks to the format in the other network.
For example, an internal e-mail network within a company may use a
number of enhanced features, which have to be mapped on the more
restricted Internet mail protocols for mail going outside the company.

32

Tunnel: A tunnel is a way of transferring information between
two networks, which both use the same protocol, through some inter-
mediate network which uses another protocol. At the entrance of the
tunnel, the data is transformed to a format which is only used for
transportation. At the end of the tunnel, data is transformed back
again to the original format.

The advantage with tunnels, as compared to gateways, is that no
information is lost. With gateways, only the information supported by
the protocols at both sides can be conveyed. The advantage with gate-
ways, as compared to tunnels, is that you can reach agents using dif-
ferent protocols at either end.

1.17 Names and Addresses

Unique names are useful in many applications. The two most well-
kown unique names on the Internet are WWW addresses (URLs) and
e-mail addresses. Both of them are globally unique. By this is meant
that no two objects on the Internet have the same name. Both are also

Figure 18: Intermediaries between client and server

Tunnel

Proxy

Gateway
Client Server

33

addresses, they can be used to locate an object. The WWW address is
used to find a web page, the e-mail address to send a message to its
recipient.

Sometimes, abbreviated names are used which are unique only
within a certain domain. For example, if a user has the e-mail address
“johnp@honeymelons.com”, then a message inside this company
need sometimes only be addressed to “johnp”. It is however advisable
to translate “johnp” to “johnp@honeymelons.com” as soon as possi-
ble. Otherwise there is a risk that a message with “To: johnp” in the
header gets inadvertently sent to the Internet, where the short, non-
unique form of the address will not work.

Unique names are used to locate objects, but they are also used to
recognize duplicates of the same object, as tools for tracing the trans-
fer of objects, and as tools for handling links between objects.

1.17.1 Domain method of allocating globally unique
names

Most unique names are created using some kind of hierarchical struc-
ture. The domain name “dcs.ed.ac.uk” represents for example the de-
partment of computer science (dcs), within Edinburgh University (ed)
within the academic community (ac) within the United Kingdom
(uk). And an e-mail address “mary.smith@dcs.ed.ac.uk” can repre-
sent a certain person within this department.

The main advantage with such hierarchical names is that the cre-
ation of new unique names can be decentralised. The “dcs” depart-
ment at Edinburgh University can itself create new globally unique
names, as long as these names end with “dcs.ed.ac.uk”. And Edin-
burgh university can itself create globally unique names for its depart-
ments, as long as the names end with “ed.ac.uk”.

Hierarchical names are also easy to understand for humans and
can be used to guide the lookup of a name in a data base. If the names

34

are hierarchical, the data base can be distributed. For example, one
server can store names in Edinburgh university, the end of the domain
name “ed.ac.uk” can then direct a retrieval to the Edinburgh universi-
ty name data base. This means that no inefficient multicasting is nec-
essary to look up a domain name.

Ideally, a name should be unique not only in space but also in
time. No object should ever get the same name as another object al-
ready has had. Schemes which ensure this is however not much used.
There is one such scheme called Object Identifiers. It is sometimes
used to create unique names for data types and other protocol ele-
ments. The Message-IDs of e-mail messages are usually also de-
signed to be unique in both time and space. For object identifiers, the
uniqueness is guaranteed by the registration procedure. For e-mail
Message-IDs, the time when the message was sent is usually included

Figure 19: Hierarchical domain names

Other Edinburgh
university departments

The world

dcs.ed.ac.uk
(Department of Computer Science)

uk
 (United Kingdom) Other countries

ac.uk
 (Academic Community)

Other communities within
the United Kingdom

ed.ac.uk
 (Edinburgh University)

Other universities within
the United Kingdom

Mary.Smith@dcs.ed.ac.uk
(Mary Smith at the dcs department)

Other e-mail addresses
at the dcs department

35

in the Message-ID, to ensure that it will be unique for an unlimited
time in the future.

For ordinary web addresses, however, uniqueness in time is not
guaranteed. If a company named Sunshine Flowers obtains a domain
name sf.com, and that company goes bankrupt, the name sf.com may
be sold to a company named Sexy Feet. And this may be embarrassing
to those who have put links to www.sf.com in their web pages.

Some common types of unique names on the Internet are:

1.17.2 Hash Code Method of Creating Globally Unique
Names

An alternative to the domain method is to give an object a globally
unique name by computing a hash code of the object. There are meth-
ods of creating hash codes, which will make it very unprobable that

Name type Usage Example
Domain names Names of organisations, hosts

and servers
dcs.ed.ac.uk,
www.dcs.ed.ac.uk

E-mail
addresses

Names of e-mail senders and
recipients

Mary.Smith@dcs.edu.ac.uk

Message-IDs Names of e-mail messages. Used
to recognize duplicates, and han-
dle reply links between mes-
sages.

1999-07-23-
131643*Mary.Smi
th@dcs.edu.ac.uk

IP address Physical address of a host [129.215.160.98] (IP
addresses are actually 32-
bit words in IP4 and 128-bit
words in IP6, but they are
usually written in the format
above)

URL A combination name which can
be used for most kinds of names,
but mostly used as addresses for
web pages

http://cmc.dsv.su.se/iaps/

36

two different objects will have the same hash code. The mostly used
method for this is the MD5 [2] algorithm for computing hash codes.

Note that a hash code will only indicate that two objects are iden-
tical, not that they are the same object. Before computing a hash code,
objects need sometimes be converted to a canonical format. For ex-
ample, different platforms indicate line breaks in a text with either
only Carriage Return (CR), only Line Feed (LF), or a Carriage Return
followed by a Line Feed (CRLF). The hash code may be different if
two documents differ in their end-of-line encodings. The algorithm
may then specify that all line breaks must be converted to CRLF be-
fore computing the hash code.

Important is also which parts of an object is included when com-
puting a hash code. For example, if the hash code is only computed
on the body of a message, two messages with different headers may
be regarded as identical, which can cause serious problems. Example:
A message saying “Oh, I love him” may have a very different mean-
ing if it is a reply to a message saying “Do you like Saddam Hussein”
or to a message saying “Do you like Jesus”.

1.17.3 User-friendly Names

Names which are globally unique will never be quite user friendly.
We are accustomed to referring to objects with non-unique names like
“Eliza Clark” or “The London office”. People will still know what we
mean, because of the context in which we use them. Computers are
not very good at that capability. Instead, objects on the Internet often
have two names, one user-friendly name and one globally unique
name. The header of an e-mail message may for example look like in
Figure 20 with both a user-friendly name and a globally unique e-
mail address. Another example is the title of a web page (user friend-
ly) and its URL (globally unique).

37

1.18 The Domain Name System

The Domain Name System (DNS) is a distributed data base which
converts domain names to IP addresses. For example, you can ask the
DNS for the IP address of the domain “dcs.ed.ac.uk” and the DNS
will return “[129.215.160.98]”.

The DNS is probably the most commonly used service on the In-
ternet. Whenever a program uses a domain name, for example “http:/
/www.ed.ac.uk/” or “elizac@foo.bar.net” the first step in locating the
object is to convert the domain name “www.ed.ac.uk” in the first ex-
ample, and “foo.bar.net” in the second example, to an IP address. This
IP address is then used to physically locate the host when a network
connection is established to retrieve a web page or send an e-mail
message.

Figure 21 shows a small excerpt from the conceptual structure of
the DNS. Conceptually, a search for the IP address of www.dsv.su.se
should start at the international root server, and then be directed from
there to the .se server, from there to the .su.se server, and from there
to the .dsv.su.se server. In reality, it does not work like that, otherwise
the top-level name servers would be severly overloaded. Through
caching, most name servers have caches of the addresses of the most
commonly used names, including the top-level domains, so that they
only have to connect to the top-level domains once or twice a day to
verify their cache. Also, all name servers are at least duplicated, so
that if one is down, another can replace it. The higher level name serv-

Figure 20: Use of names in e-mail headers

From: Eliza Clark <elizac@foo.bar.net>

User-friendly name Globally unique e-mail address

38

ers are duplicated more than twice to distribute load and increase re-
liability.

The DNS uses caching, chaining and referral (See “Chaining, Re-
ferral or Multicasting” on page 20).

One peculiar effect has been that small countries with few Internet
servers sell their domain name structures to organisations outside
their own country. A well-known example is the “.nu” domain, which
belongs to the small Island Niue in the Pacific, but its domain names
have become popular all over the world, I myself have registered the
domain “palme.nu” for my family.

Figure 21: Conceptual structure of the DNS server
hierarchy

International
Root server

U.S. server
for the .us domains

U.S. military server
for the .mil domains

DSV department
for the .dsv.su.se domains

Stockholm University
for the .su..se domains

Microsoft server
for the .microsoft.com

domains

Swedish server
for the .se domains

International server
for the .com domains

39

1.18.1 MX records

The DNS actually consists of two data bases stored together.
These two data bases are so-called A records, which are used to look
up Internet hosts (for example to locate a web page) and MX (Mail
Exchange) records, which are used to look up e-mail servers. The rea-
son for this is that companies often have a central e-mail server, to
which all e-mail is to be delivered, and which may be different than
hosts used for other services.

E-mail is also sometimes sent through store-and-forward. Thus, a
look-up in the DNS for an MX record may return a list of hosts in a
priority order. The mail should be sent to the first host, but if this host
is not available, mail can be sent to the second host. The secondary
host will usually forward the mail to the primary host, but it may also
have the capability to deliver the mail to its final recipient.

Since e-mail can be sent through store-and-forward, a server
which receives an e-mail message may contact another server and
send the message to this server. To find out which host to send the
message to, the intermediate server may also use the DNS. There is
then a risk that an e-mail message will be sent for ever in a loop back
and forward between two servers. If server A finds that B can handle
this e-mail address, and server B finds that A can handle this e-mail
address, such a loop may occur. To avoid this, the DNS assigns a pri-
ority to each MX record. Suppose you look for the MX record for the
domain “cs.edu.ac.uk”. You may then be given the following table:

8 mailrelay.ed.ac.uk
5 mailhub.dcs.ed.ac.uk
6 mh2.dcs.ed.ac.uk

A host is not allowed to forward a message from a host with a
lower priority number in the DNS to a host with a higher priority
number. This will protect against mail forwarding loops.

40

1.19 Top-level domains

The top-level domains (the last domain in the domain names in DNS)
are either two-letter country codes or more-than-two-letter codes rep-
resenting different kinds of organisations. For example, the domain
name “dsv.su.se” has the top level domain “se” which is the country
code for Sweden, and the domain name “ietf.org” has the top level do-
main “org” which represents non-commercial organizations.

Each country has an organisation responsible for distributing the
second-level domain names for that country. It is thus this organisa-
tion, which has given Stockholm University the domain name “su.se”.

The country codes are taken from an ISO standard for country
codes, the same codes which are used in car registration numbers, in-
ternational postal codes, etc. There is however one exception. The
United Kingdom of Great Britain has the ISO country code “gb” but
has he DNS top level domain “uk”. Both are abbreviations of different
parts of the full country name. The reason for this is historical. It start-
ed that way, and it was then too late to change it. Possibly the differ-
ence is also because this country is known for wanting to do things
their own way. They drive to the left, while most other European
countries drive to the right, and for a long time they insisted in writing
the domains in reverse order. Thus, instead of “dcs.ed.ac.uk” they
wrote “uk.ac.ed.dcs”. This caused lots of problems, but nowadays
they have changed to the same order as the rest of the world uses.

The set of more-than-two letter codes may be extended. Here are
the codes decided on when this is was written (July 1999):

COM commercial entities
EDU 4-year colleges and universities
NET organizations directly involved in Internet operations, such as net-

work providers and network information centers

41

The first seven domains in this list have been in use for many
years, the rest have been added recently.

The distribution of domain names ending in these generic do-
mains has been a very controversial political issue. A new organiza-
tion, ICANN (The Internet Corporation for Assigned Names and
Numbers). ICANN will also take over the tasks of registration of oth-
er kinds of unique identifiers for Internet, which previously was per-
formed by IANA (Internet Assigned Numbers Authority). When you
read this, ICANN has probably already started operation and taken
over the tasks of IANA.

1.20 The old versus new problem

Internet protocols are usually implemented on many different com-
puters, which are co-working using the protocols. This can make it
difficult to update to new versions of the protocols. Such a change
might require that all the existing agents have to be replaced at exactly
the same time. With standard protocols, like those for e-mail and web
access, there are millions of agents, and such a replacement of all of
them at one time with new versions is very difficult.

ORG miscellaneous organizations that don't fit any other category, such as
non-profit groups

GOV United States Federal Government entities
MIL United States military
FIRM Businesses
STORE Online stores and malls
WEB Web-related organizations
ARTS Cultural and entertainment organizations
REC Recreational organizations like park districts
INFO Organizations who are primarily sources of information
NOM Individual, personal domain names

42

If different companies develop the various agents, this will of
course be even more difficult. Some companies may want to support
new features in a new version of the protocol, other companies may
not want to do this.

It is possible to design a protocol so that it is prepared for future
extensions. If this is done in a suitable way, it may be simpler to add
new features to a standard with less co-working problems.

Many Internet standards had few, or badly planned, features to
support extensions, in their first versions. This forced developers of
new versions of the standards to use very messy and untidy solutions.

A horror example is the MIME standard for sending binary at-
tachments in e-mail. Since the old e-mail standards only supported 7-
bit characters in e-mail messages, anything else had to be encoded in
a 7-bit format.

Here is an overview of good and bad methods of solving these
problems.

1.20.1 Version number

With the version number method (see Figure 23), changes in a proto-
col mean that the protocol is given a new version number. Communi-
cation between client and server starts with exchanging version

Figure 22: Difficulty of co-working between different
versions of protocols

Old client
software

Old server
software

New client
software

New server
software

43

numbers. After this, both agents are expected to adhere to the lowest
version any of them used. This means that all agents have to support
both the new protocol and many or all older versions, which other
agents may be using.

The main disadvantage with the version number method is that if
you make two independent extensions, there is no way of indicating
that you can use only the first, or only the second extension.

Generally, version numbers are used for major changes. And ma-
jor changes are difficult to handle. Some protocols have version num-
bers, but never get any new version number. An example of this is
MIME. All MIME e-mail headers must contain the statement
 MIME-Version: 1.0
but there may never be any new version of MIME. This statement is,
however, not meaningless. It is a way of saying that this message is in
MIME format. So it cannot be removed from the standard.

1.20.2 Feature Selection Method

With the feature selection, interaction starts with the client and the
server each listing which features they support. After that execution
continues, using only features supported by both (plus certain manda-

Figure 23: Version number method

Client Server

I am using version 1.1

I am using version 1.0

Continued interactions
using version 1.0

44

tory basic functions which do not have a feature name).
The advantage with this method is that an agent can choose to

support any set of features, and still co-work with another agent
which has chosen any other set of features. Co-working will of course
work better, if the two agents have more features in common.

Another advantage with feature selection is that standards devel-
oping organizations can specify new extensions, without being sure
that they will be widely accepted. The implementors on the market
can choose whether to support a new feature. There is however a risk
with standardizing too many doubptful features, since the more fea-
tures are implemented by some, but not all vendors, the less weill will
their software be able to communicate.

With feature selection, and if the features are given names which
are more than one character, it is even possible that different imple-
mentors can specify and develop new features, independently of each
other. If they do this, however, there is a risk that two implementors
will choose the same name for two incompatible features. This issue
is discussed more in the next section.

Figure 24: Feature selection method

Client Server

I can do extension A, B and C

I can do extension B, C and F

Continued interactions
using extensions B and C only

45

1.20.3 Feature naming

With many methods to allow extensions to standards in an orderly
manner, new features are identified by some kind of feature name.
There is then a need to avoid two different implementors from defin-
ing two different features, but giving them the same name. If they do
this, and their applications are to interact, serious problems can occur.

To avoid this problem, there is a need to generate globally unique
names for new features. There are two methods commonly used to do
this. One method is to use a hierarchical naming space. For example,
a feature can be identified by a URL. This URL can refer to a web ob-
ject which describes this feature. Another well-known method of ob-
taining globally unique feature tags is the “object identifiers”
standardized as part of the ASN.1 standard. Object identifiers have
got widespread use even when ASN.1 is not used. The advantage with
object identifiers is that they are globally unique in both space and
time, and that anyone can obtain a new object identifier. Since object
identifiers consist of a series of numbers, not a string of characters,
they do not imply any meaning in the choice of words, and there is
thus not so large risk of conflicts as there has been with domain names
(when one company objects to someone else using the name of that
company as a domain name.)

Another method is to use a registration authority. Anyone who
creates a new feature, registers its name with the registration authori-
ty. For Internet IANA (to be taken over by ICANN) is the main organ-
isation for registering such names. IANA has a large number of
different feature lists, which it handles for this method. Here are some
of the most important feature lists handled by IANA:

Character sets See page %%
HTTP parameters HTTP transfer compression methods
IMAP 4 capabilities Feature selection for IMAP, see page %%

46

Some features allow anyone, including a company or another stan-
dards organisation, to register a value. Other features only accept val-
ues defined by official standards. Allowing non-standard features has
some problems. Just by registering a feature name, it is given a kind
of official backing. Standards organisations often want to make some
kind of checking of how reasonable new features are. But if they do
such checking, the allowed features become a kind of standard. And
this may not be good either, because the new features have not been
checked thoroughly enough for an accepted standard.

One solution to this dilemma, which has become more common
in recent years, is to precede non-standard features with “vnd.” fol-
lowed by the vendor name. A vendor name as a prefix of a feature
clearly says that this is a vendor-specific feature, not a standard fea-
ture. Example: “application/vnd.ibm.modcap” is a media type regis-
tered by IBM for “Mixed Object Document Content Architecture”.
Since this method has not always been used, some early vendor-spe-
cific formats do not have such names, for example the media type “ap-
plication/pdf” for the PDF document format used by Adobe Acrobat.

A common practice, explicitly specified in some standards, is to
allow non-registered feature tags, if they begin with “X-”. This was
intended to allow experiments with new feature tags before they are
registered. The experience with this method, however, is not good.

Languages Tags indicating the language of a document
Media feature tags Tags indicating features of print and display media,

such as paper size, color depth, etc.
Media types See page %%
Port numbers See page 12
Transfer encodings Encodings of binary and 8-bit characters in MIME,

see page %%
URL schemes Values allowed in the initial string (before the “:”) in

URLs to indicate various access protocols, see page
%%

47

Some experimental feature tags started out with “X-” and became so
widely accepted, that they had to keep the “X-” even when they be-
came so common that they should have been standardized.

1.20.4 Built-in Extension Points

One method of making extensions easier is to provide built-in exten-
sion points in a protocol. A built-in extension point is a part of a pro-
tocol, where extensions can be added in such a way that old
implementations, which do not understand the new extensions, can at
least recognize that they are extensions.

Some standards have such extension points built into the standard
in specified places. But even standards without such explicitly speci-
fied built-in extension points, may still in their practical usage allow
extensions at certain points. Two examples:

E-mail header fields
E-mail headers contain standardized fields like “To:”, “From:”

and “Date:”. But anyone can add their own header fields. The stan-
dard for e-mail only allows such non-standard header fields if they be-
gin with “X-”, but there are common non-standard e-mail header
fields which do not begin with “X-”, such as “Mailer” or “Return-Re-
ceipt-To”. Some of these are not much liked by standards making or-
ganisations, but they do exist and can be used between agents which
support them in the same way.

HTTP request methods
The HTTP protocol is probably the Internet protocol which most

often is extended to various special protocols for special needs. One
way of extending HTTP is to add your own request methods. HTTP
has certain built-in standard request methods, which are indicated in
the first line of a HTTP request. Examples of such built-in request
methods are GET, HEAD and POST. People who extend HTTP often

48

do this by adding their own request method names. There is, of
course, always the risk that the same name you have chosen for your
own request method, gets used by the standards making organisations
for a different request method in the future, so this extension method
is not very safe. A way to make it safer is to start the new request
method with “X-” or “VND.” followed by a vendor name. This meth-
od of making new methods safer is not (in the case of HTTP) specified
in any official standard, but is becoming more and more common
practice, for various feature tags.

1.21 Standards Terminology

Certain words have a %%%

1.22 OSI versus the Internet

During the 1980s, many people understood that computer net-
works were going to revolutionize society. Two sets of standards were
developed. The International Standards Organisation (ISO) and the
International Telecommunications Union (ITU) developed the Open
Systems Interconnection (OSI) set of standards. And people at univer-
sities and research laboratories developed the Internet. And we all
know that the Internet won over the OSI, even if some Internet stan-
dards have taken over some functions from OSI.

Some reasons for the success of Internet:
(This is a very controversial issue, which many people feel very

strongly about. Some of them will strongly claim that one of the rea-
sons listed below is the primary reason for the success of the Internet.
Other people will claim that another reason is primary.)

49

1. Internet standards were in the beginning much simpler and easier
to implement. However, during the 1990s, there has been a ten-
dency to make Internet standards more complex.

2. The Internet process of developing standards requires, that all fea-
tures not implemented by two independent implementations must
be removed when a standard is progressed from “proposed” to
“draft” standards status. This means that unnecessary or unimple-
mentable features will be removed.

3. The rules for consensus forming are different in the involved
standards organisations. IETF requires “rough consensus” which
means that most reasonable people agree. ITU requires absolute
consensus among ITU members. ISO relies on majority voting.
Too strong requirements on consensus can lead to the inclusion, in
the standards, of different ways of doing the same things, in order
to make everybody happy. But such standards are of course not
good, a good standard should avoid different ways of doing the
same thing. Otherwise, there is a risk that some implementors will
choose one option, other implementors another option, and their
products may then not be able to interwork.

4. OSI tried to develop general and universal solutions to cope with
all existing and anticipated future usage. This made the standards
more logical and wellstructured, but also much more complex.

5. Internet was in the 1980s and the beginning of the 1990s heavily
subsidized by the U.S. government.

6. Because Internet started as a university and research network,
much valuable and free information was made available to give
Internet a good start.

7. OSI was developed by large telecom companies, who wanted to
use the standard to dominate the market. Internet, on the other
side, has always been very strongly oriented towards letting many
different providers develop their own solutions, and letting the
market decide which of them would succeed.

50

When considering this issue, it might be interesting to note that in one
country, France, a network with many similarities to Internet was very
successful already in the 1980s. That network was named Minitel. It
was somewhat OSI-oriented, but a very simple subset, and it was also
subsidized in the beginning by France Telecom. Minitel was also
strongly oriented towards letting many different providers put up dif-
ferent services. And similar networks to Minitel, but more oriented to-
wards central control, did not succeed as well as Minitel in other
countries, like Germany and the United Kingdom.

Because of this, I personally believe that the bottom-up structure
of the Internet (item 7 in the list above) was the most important factor
for its success.

7.1 References

[1] IANA Port numbers Registry. http://www.iana.net/numbers.html#P.

[2] Rivest, R. The MD5 Message-Digest Algorithm. Internet RFC 1321, April
1992

