
1.1. A comparison of ABNF, ASN.1-BER/PER and DTD-XML

Table 1 shows an example of the same information as encoded with ABNF, ASN.1-

BER and DTD-XML.

Table 2 compares some properties of the three encoding methods.

Table 1: The same information with ABNF, ASN.1 and XML

ABNF specification: ASN.1 specification: DTD specification:

Family = "Family"
 CRLF *(Person)
 "End of Family"

Person = "Person" CRLF
 " Name: " 1*A CRLF
 " Birthyear: " 4D CRLF
 " Gender: "
 ("Male"/"Female") CRLF
 " Status: "
 ("unmarried"/ "married"/
 "divorced"/ "widow"/
 "widower")

= SEQUENCE OF Person

:= SEQUENCE {

name VisibleString,

birthyear INTEGER,

gender Gender,

status Status }

:= ENUMERATED {

male(0), female(1) }

= ENUMERATED {

unmarried(0), married(1), divorced(2),

widow(3), widower(4) }

<!ELEMENT family
 (person+)>
<!ELEMENT person (name,
 birthyear)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthyear
 (#PCDATA)>
<!ATTLIST person
 gender (male | female)
 #REQUIRED
 status (unmarried |
 married | divorced |
 widow | widower)
 #REQUIRED
>

Example of textual encoding: Example of BER encoding: Example of XML encoding:

Family
Person
 Name: John Smith
 Birthyear: 1958
 Gender: Male
 Status: Married
Person
 Name: Eliza Tennyson
 Birthyear: 1959
 Gender: Female
 Status: Married
End of Family

(Each box represents one octet. Two-character
codes are hexadecimal numbers, one character
codes are characters)

30 34

30 16

1A 0A J o h n S m i t h

02 02 07 A6

0A 01 00

0A 01 01

30 1A

1A 0E E l i z a T e n n y s o n

02 02 07 A7

0A 01 01

0A 01 01

<?xml version="1.0" ?>
<!DOCTYPE family SYSTEM
"family.dtd">
<family>
 <person gender="male"
 status="married">
 <name>John Smith</name>
 <birthyear>1958
 </birthyear>
 </person>
 <person gender="female"
 status="married">
 <name>Eliza
 Tennyson</name>
 <birthyear>1959
 </birthyear>
 </person>
</family>

169 octets (excluding newlines) 54 octets 258 octets (excluding newlines and leading
spaces)

18 % efficiency1 57 % efficiency1 12 % efficiency1

1 As compared to PER.

2 8. Solutions to exercises

The PER (unaligned variant) encoding of the same ASN.1 and the same

data would be the following 31 octets:
00000010 (number of persons in family)
00001010 (10 characters)
 1001010 J
1 101111 o
11 01000 h
110 1110 n
0100 000
10100 11 S
110110 1 m
1101001 i
 1110100 t
1 101000 h
00 000010 (2 octets)
00 00011110 100110 (1958)
0 (male)
 0 01 (married)

000011 10 (14 characters)
100010 1 E
1101100 l
 1101001 i
1 111010 z
11 00001 a
010 0000
1010 100 T
11001 01 e
110111 0 n
1101110 n
1111001 y
1 110011 s
11 01111 o
110 1110 n
0000 0010 (2 bytes)
0000 01111010 0111 (1959)
1 (female)
001 (married)

Note 1: Many thanks to Jean-Paul Lemaire, who helped me with the BER and PER encodings.

Note 2: The success of many Internet application layer protocols with very inefficient textual encodings

apparently indicates that the efficiency is not a very important factor in determining the success of

an application layer protocol.

Note 3: Compression programs (like zip, gz, etc.) can compress almost any textual encoding to near-

maximal efficiency. This, however, only works for large files. Small files are not compressed

very efficiently with compression programs. To test this, I tried to compress the XML encoding

above using the Zip encoding. It actually becaome 14 % larger after compression. I also tested a

file where I repeated the XML encoding above 11 times, with the same XML elements and tags,

but different content. This larger file, after compression with Zip encoding, became 53 % as effi-

cient as the PER encoding, or about as high efficiency as with the BER encoding.

Table 2: Comparison of ABNF, ASN.1-BER and DTD-XML

ABNF ASN.1 DTD+XML
Level Low level, can specify al-

most any textual encoding.
High level, strongly typed,
you define the exact data
types to use .

High level, but not as good
type facilities as ASN.1.

Encoded format Text. With for example Basic En-
coding Rules (BER), a binary
format, or Packed Encoding
Rules (PER), a very efficient
binary format, or other encod-
ing rules.

Text.

Readability of meta-
language

OK. Good. Acceptable.

Readability of en-
coded data

Very good. Very bad unless special reader
program is used.

Very good.

Efficiency of data
packing, as compared
to maximum effi-
ciency.

Usually not so good. About 50 % with BER, almost
100 % with PER.

Not so good.

Binary data Must be encoded, for exam-
ple using BASE64, which
however adds 33 % redun-
dancy.

Can easily be included as is. Must be encoded, for example
using BASE64, or sent as
separate files.

Layout facilities None, but the high freedom
allows specification of
rather readable formats.

None. Can be combined with layout
languages to produce highly
readable output (comparable
to HTML-based web docu-
ments).

1.1.1. Comparing RFC822-style headings with XML and ASN.1

Many standards have used the so-called RFC822-style header format, which is usually

specified using ABNF. Below is an example of how the same information can be en-

coded in this format as compared to XML:

RFC822 example (54 characters):
From: Father Christmas <fchristmas@northpole.arctic>

XML encoding of the same information (248 characters):
<from>
 <user-friendly-name>Father Christmas</user-friendly-name>
 <e-mail-address>
 <localpart>fchristmas</localpart>
 <domainpart>
 <domainelement>northpole</domainelement>
 <domainelement>arctic</domainelement>
 </domainpart>
</from>

Besides noting that XML in this example requires about five times as many characters,

another difference is that XML uses the same characters for framing in all levels, while

the RFC822 example uses three different notations in five levels:

Level 1: Newline between headers.

Level 2: “:” between header name and header value.

Level 3: “<” and “>” to separate localpart from e-mail address.

Level 4: “@” to separate localpart from domainlist.

4 8. Solutions to exercises

Level 5: “.” to separate the domain component in the list of domain elements.

It is of course an advantage with XML that you do not have to invent new framing

characters at each level, and also maybe new rules about forbidden characters or char-

acters that need to be quoted at each level.

