
1 Message Handling

2 Message Handling

1.1 Message Handling Overview

1.1.1 Same time and different time communication

Message handling systems (MHS systems) are systems for people to send messages to each

other. (Some messages are sometimes sent to or from applications without human

intervention, but the main functionality is messaging between people.) The table below gives

an overview of some major categories of MHS systems:

All participants are active at
the same time.

Different participants can
read and write at different
times.

Non-computer equivalent Face-to-face meeting,
telephone call.

Letter, newspaper.

Two or very few
participants.

Simple chat systems, instant
messaging systems.

Ordinary e-mail.

Communication within
groups of people.

More advanced chat systems. E-mail with mailing lists.
Usenet News, forum
systems.

There is no absolute sharp limit. Ordinary e-mail with multiple recipients is often used to

communicate in small groups. And some chat systems contain archiving, so that those not

present can read the discussion at a later time. There is, however, certain design features

which are more important for the different categories.

For same-time messaging, it is important that everything said or written is immediately

shown to the other participants. Some e-mail systems have an alert facility, where the

recipient is reminded by a beep, whenever a new message arrives. Such e-mail systems can be

used for almost same-time communication. But most textual same-time communication is

done through specially designed chat or instant messaging systems. There are usually separate

panes for reading and writing, sometimes the full discussion scrolls in a combined window for

all participants, sometimes (only with very few participants) there is a separate window

showing what each participant has written.

For different-time messaging, the set of messages which has been read and not read at a

certain time will be different for each participant. People usually want to read only unseen

messages, but they also want to be able to go back and reread old messages. Because of this,

such systems have data bases, where messages are stored, and this data base knows what each

user has seen and not seen and provides facilities for rapidly scanning unseen messages and

searching for old messages. This can either be a personal data base with copies of all the

messages for each recipient, or joint data bases, where the text of the messages need only be

stored once, even if they have multiple recipients.

With different-time messaging, some people will get more messages than they can

comfortably read. It is easier for them to handle the message load, if the software gives them

facilities to organize the message data base. Typical such organization tools sort the messages

from each discussion group into a separate folder, and sort messages in a thread (messages

Message Handling 3

which are direct or indirect replies to each other) together in some ways. The application layer

standards have special facilities to support such functions.

With same-time messaging, it is important that messages are transmitted fast. The store-

and-forward methods used by ordinary e-mail is too slow, but some systems for same-time

messaging use their own kind of fast store-and-forward transmission. Particular for same-time

messaging is that, since messages are written and arrive asynchronously, there can be dead

times when the recipient receives nothing. It is, therefore, useful to have a reminder system,

perhaps using a sound signal, when a new message arrives. There is also a tendency, in same-

time messaging, that the on-going conversation handles more than one topic at the same time.

People unaccustomed to chat systems react against this, and sometimes requre “one subject at

a time”, just as at face-to-face meetings following an agenda. However, one subject at a time

is not the most efficient use of the time. Because people write slower than they read, and

because dead times occurs when you are waiting for a reply to a message, the time is used

more efficiently if you allow multiple topics in parallel.

Two main variants of the user interface are common in chat systems. One variant has a

separate window for each participant, showing what that person has written. The other has a

single sequential window all participants of the same chat channel, listing all messages in

cronological order. A channel is a group of people who are discussing with each other in a

chat system.

1.2 Protocols Used for Message Transport

DNS = Domain
Name Service

MTA = Message
Transfer Agent

MTA = Message
Transfer Agent

Mailboxes

UA =
User Agent,

client
software used
by the user

UA =
User Agent,

client
software used
by the user

SMTP = Simple Mail
Transport Protocol

SMTP

DNS
lookup

POP or
IMAP

Many application layer protocols are commonly used for message transport. Here are some of

the most commonly used:

 The DNS is used to look up the mail host for the recipient, and then in a second step to

look up the IP address of the MTAs of the receiving MTA.

 SMTP is used to transport the message to each handling MTA.

 POP or IMAP is used to download the message from the last MTA to the recipient UA.

 MSGFMT (previously known as RFC822) and MIME are used to format the content of a

message.

 NNTP for distribution of Usenet News Articles.

In addition to this, messages may also be conveyed through usenet news, which has its own

4 Message Handling

set of protocols, partially based on the email protocols, but often with their own variations,

and messages may be conveyed through instant messaging protocols.

Note that the receiving user's mailbox is usually on the last MTA, and not in the personal

computer of the recipient. This is important, because personal computers are not always

online. Messages can thus be delivered to a mailboxes, even if the actual recipients are

travelling, ill, playing games or otherwise not connected to the Internet.

1.3 E-mail: Message Transport

Typical for e-mail and other non-simultaneous message systems is that the messages are

copied, often several times, between different mail servers on their way from sender to

recipient. The picture below shows a simple and common route which a message may take

from sender to recipient:

Sender
mail client

Recipient
mail client

E-mail router close
to the sender

E-mail router close
to the recipient

➁
➀ ➂

When senders submit messages, their mail clients connect to nearby e-mail routers. The

whole message is then copied from sender to mail router. When this copying is ready, this

mail router takes over responsibility for delivering the message to its recipients:

When the receiving computer confirms reciept of the message, the sending computer is no

longer involved. In the second step, the mail router close to the sender connects to a mail

router close to the recipient. Again, the whole message is copied , and responsibility is then

transferred to the e-mail router close to the recipient. In the final step, the message is copied

 to the recipient mail client.

Sending
computer

Receiving
computer

Storage of
incoming
messages on
a secure

Removal of
the message

Confirmation
that the message

is received and stored

Here is
the message

Time

In e-mail terminology, the client of the sender and the recipient are often called User

Agents (UA), and the e-mail routers are often called Message Transfer Agents (MTA).

The transport of a message does not always pass exactly two MTAs as in the figure above.

Message Handling 5

If both sender and recipient work at the same place, only one MTA may be needed. And in a

complex networking situation, more than two MTAs can be used, like in the figure below:

Sender UA Recipient UA

MTA close to
the sender

MTA close to
the recipient

Firewall Gateway Firewall

A firewall is a security device, and a typical function in it may be to scan for viruses in the

message. A gateway is a device which moves messages between two networks using different

e-mail protocols, for example from an Internet mail network to an X.400 mail network.

(X.400 is a mail protocol developed by the Telecom companies, it is today only used in

certain local areas.)

When a message is passed between two agents, a protocol is needed. The most common

protocol for passing messages between agents i SMTP. SMTP is almost universally used for

all mail transport except the transport from the last MTA to the recipient UA. The reason for

this is that SMTP is mainly designed for sender-controlled transmission. In every step

between two agents, it is the sending agent which controls the transmission and decides when

and where to send a message. This is not suitable for recipient UAs, since they often reside on

personal computers, which are not always connected to the network and willing to receive

messages. Thus, for the final step from the last MTA to the recipient UA, a protocol is needed

where the recipient has more control of when to receive a message. The two most common

protocols for this are POP and IMAP. In some cases, the last MTA and the recipient UA run

on the same computer or on two computers sharing a common file storage. In that case, the

protocol for the last step can just be simply file retrieval. Another important difference

between SMTP and the last-step delivery protocols is that identification (usually with a

password) is needed to stop messages being retrieved by other than its intended recipients.

An MTA which receives a message will usually store it in a so-called spool area. This is a

file storage area for temporarily storing files, and where there is some process, the spool

process, which goes through the spool areas and forwards messages from them. An exception

to this is the last MTA before delivery to the final recipient UA. That MTA usually stores

messages in mailboxes, separate areas for each recipient. This means that when a UA

connects to an MTA to download mail, all mail for that particular UA is stored in a special

place and can easily be located. See the figure below:

Sender
mail UA

Recipient
mail UA

MTA close to
the sender

MTA close to
the recipient

SMTP
SMTP

POP or IMAP

Storage in separate
mailbox for each

recipientStorage in
spool area

If a message is sent with more than one recipient, the message may be split into separate

6 Message Handling

copies by one or more MTAs, as shown in the figure below:

Sender
mail client

Recipient
mail client

MTA close to
the sender

MTA close to the
second recipient

MTA close to the
first recipient

Recipient
mail client

Message with
two recipients

Message with
one recipient

Message with
one recipient

The advantage with splitting is that the same message need not be transported more than once

before the splitting. This can also be used to reduce transport costs across large distances. If a

sender in Europe sends a message to two or more recipients in North America, only one copy

might be copied across the expensive Atlantic cables as shown in the figure below:

Sender
mail UA

Recipient
MTA

MTA in
Europe

MTA in North
America

Recipient
MTA

Message with
two recipients

Message with
one recipient

Message with
one recipient

Message with
two recipients

A problem with this, however, is that most MTAs are not willing to handle mail, unless

either the recipient or the sender is local to the MTA. Thus, the saving shown above

requires an agreement with the MTA which splits the message after transport across the

Atlantic. This was not always so. In the beginning of the 1990-s, most MTAs were willing

to forward mail for any recipient. The reason why this was abolished in the middle of the

1990-s was that spammers used this feature to get foreign MTAs to help them split mail to

millions of recipients. Some so-called experts claimed that spamming could be stopped by

forbidding splitting of mail by other than the MTA of the sender or the recipient. They

enforced their view by implementing a program which scanned all MTAs everywhere,

checking that they did not allow foreign splitting, and sending angry letters to non-

conforming MTA administrators (postmasters) threatening to stop receiving mail from

them unless they stopped splitting. This is an interesting example of how the Internet is

regulated in dubious ways by pseudo-police-authorities. Spamming could be counteracted

more efficiently using other methods than this. In fact, there is no proof that spamming has

in any way been reduced by this method.

Here I am flaming:
giving my personal

opinion on a
controversial issue.
Other experts have
different opinion on

this.

1.4 Use of the DNS for mail transport

E-mail has its own special way of using the DNS. The DNS can actually be seen as two

different data bases, one for e-mail and one for all other usage. The special records for e-mail

are called MX (mail exchange) records.

Message Handling 7

If an MTA receives a message for a recipient with the e-mail address mary@bar.net, it will

connect to the DNS and ask for the MX record for the domain “bar.net”. It may then be told

that the MX record for “bar.net” refers to the domain name “mail.bar.net”. It will then make a

second ordinary (not MX) DNS lookup to find the IP number for “mail.bar.net,” and it will

then forward the message to the SMTP port at this IP number.

A special facility of the DNS, when used for e-mail, is that a lookup for the MX record for

a domain (like “bar.net” in the example) may return more than one result. It may return a list

of domains. The reason for this is to increase reliability, by having more than one MTA which

is willing to handle mail for a particular recipient. An organisation may have one primary

mail MTA and another secondary mail MTA to use if the primary mail MTA is not in

operation. A common usage of this is that if each department in an organisation has different

MTAs, the organisation may have a common master MTA, which is used if one of the

department MTAs is out of operation.

There is, however, a risk with this technique. Suppose that an organisation foo.bar has

three different MTAs, mail1.foo.bar, mail2.foo.bar and mail3.foo.bar. Suppose that a

message arrives at mail3.foo.bar, but that the malbox of the recipient actually resides in

mail1.foo.bar. The MTA at mail3.foo.bar will then use the DNS to look up the MX record for

foo.bar, and may get a list of mail1.foo.bar, mail2.foo.bar and mail3.foo.bar. It might then

transfer the message to mail2.foo.bar. The MTA at mail2.foo.bar will make a new MX record

look up, get the same result, and transfer the message back to mail3.foo.bar. In this way, an

infinite loop may occur with the message being sent back and forward between mail2.foo.bar

and mail3.foo.bar.

To avoid such loops, the DNS has a special facility. It stores, with every MX record, a

priority. In the example above, a DNS lookup for foo.bar may return the three MTA names

mail1.foo.bar, mail2.foo.bar and mail3.foo.bar. But they might each have a priority, for

example:

mail1.foo.bar 0

mail2.foo.bar 10

mail3.foo.bar 20

There is then a rule, that an MTA should never transport a message from an MTA with a

lower MX record priority value to an MTA with a higher MX record priority value. Thus,

mail2.foo.bar can never transport the message to mail3.foo.bar, and no loop will occur.

There is then a rule, that an MTA should never transport a message from an MTA with a

lower MX record priority value to an MTA with a higher MX record priority value. Thus,

mail2.foo.bar can never transport the message to mail3.foo.bar, and no loop will occur.

1.5 Mailbox names

Senders and recipients of e-mail are called mailboxes. Note that the recipient mailbox is a box

on the last MTA, from which the recipient can download messages. The mailbox is not a

storage area on the recipient computer, unless the recipient computer and the last MTA is the

same computer (See the figure on page 3).

8 Message Handling

A mailbox in SMTP usually has two names, a user-friendly name and an e-mail address.

For example, my user-friendly name is “Jacob Palme” and my e-mail address is

“jpalme@dsv.su.se”. The two names are often written in sequence in the format shown by

these examples:

Jacob Palme <jpalme@dsv.su.se>

"Nils B. Frändén" <nfranden@foo.bar>

If the user-friendly name contains certain special characters, including periods followed by

spaces and non-latin letters, it must be enclosed in double quotes as shown above. However,

this rule is often broken, so it is advisable to write a mail program so that it accepts user-

friendly names without double-quotes.

As is shown by the examples above, the user-friendly name is not globally unique – two

different people may have the same user-friendly name. The e-mail address must be globally

unique (otherwise it would not be possible to know to which mailbox to deliver the mail), it

consists of a local mailbox name, the “@” character and a globally unique domain name.

(Some servers accept mail with an incomplete domain name, if the address is a local user to

the domain served by the server, but this practice is not recommended. It is much better to

always use globally unique e-mail addresses, because then the address of a user will be the

same independently of where it is sent from.)

1.6 Message format

Subject: RE: Applets in MHTML

Date: Fri, 12 Jan 2001 09:34:09 -0800

From: "Mary Smith" <marys@foo.net>

To: "James Thorn" <jamest@bar.net>

We met, we parted, we met again. We did
not know, then, that what we had was the
best you can have in this life.

MAIL FROM:<dduck@duckville.net>
RCPT TO:<jpalme@dsv.su.se>

Heading

Body

Content

Envelope

A message being sent from sender to recipient consists of an envelope and a content. The

content consists of a message heading and a body.

The envelope contains information used or generated during the transport of the message,

such as the e-mail address of the recipient and the e-mail address of the sender. The sender's

address is needed to be able to send a non-delivery notification if the message cannot be

delivered to the recipient.

The content contains the information which is sent from the original author to the final

recipient. It is, in theory, not meant to be changed during transmission. In reality, it is

sometimes changed. Certain information which logically belongs to the envelope is in reality

Message Handling 9

put in the heading. And the content is sometimes transformed, for example between two

different encoding formats, such as 8BIT and Quoted-Printable.

The body contains any kind of information, such a text, pictures, sound, video and/or file

attachments.

Some information is specified both on the envelope and in the heading, such as the sender

and the recipient. This information is, however, not always the same. The envelope shows

information pertaining to a particular transmission or step in transmission. The heading shows

information created by the sender and intended for the final recipient.

Example 1: If a person sends a message to a mailing list, and the mailing list forwards the

message to the members of the list, then the heading contains the original sender in the

“From:” field and the name of the mailing list in the “To:” field. The envelope contains

different information when transporting the message from the original sender to the mailing

list, and when transporting the message from the mailing list to the final recipients, as is

shown by the figure below:

Original sender

Mailing list

Final recipient

From: Henry Smith <hs@bar.net>
To: Flower lovers <flower-list@foo.net>

MAIL FROM: <hs@bar.net>
RCPT TO: <flower-list@foo.bar>

MAIL FROM: <flower-list-owner@foo.net>
RCPT TO: <marys@bar.net>

From: Henry Smith <hs@bar.net>
To: Flower lovers <flower-list@foo.net>

Envelope

Heading

Envelope

Heading

Example 2: If a message is split into copies to be delivered to different recipients, then each

copy will on the envelope contain the address of the recipient for this copy. A message may,

for example, first be sent with two recipient from the sender UA to the first MTA. The first

MTA may then split the message into two copies for the two recipients. The envelope will

then in the second step of transmission contain only the recipient for this transmission, see the

picture below:

10 Message Handling

Originator

First MTA

MTA for the
first recipient

MTA for the
second recipient

RCPT TO: first@foo.net RCPT TO: second@bar.net

RCPT TO: first@foo.net
RCPT TO: second@bar.net

The body can consist of several body parts, for example a text and an attachment or a HTML-

formatted text and embedded pictures. Each body part can also consist of several body parts.

The figure below shows a complex message with body parts inside body parts; this particular

structure is very common:

Content-Type:
Multipart/related

Content-Type:
Multipart/alternative

Content-Type:
Image/gif

Content-type:
Text/plain

Content-Type:
Text/html

When the body consists of several parts, each part has its own content-heading. A content-

heading contains information about the content part, such as content-type and encoding

method. The set of header fields allowed in a content-heading is a subset of the set of headers

allowed in a message-heading. All the header fields allowed in a content-heading have names

beginning with the string Content- such as “Content-Type”, “Content-Language”, etc.

1.7 E-mail: Message Heading

1.7.1 The Internet Message Format

The format of the messages themselves (corresponding to the P2/P22 protocols of X.400) is

specified in RFC 822 [17], RFC 1036 [19], RFC 1123 [20], and the multi-purpose Internet

mail extension (MIME) standards [21, 22].

The figure below shows an example of a message heading according to the RFC 822

standard. Note that what is shown is not some legible print-out of the heading, but the actual

contents, since RFC 822 uses readable IA5 characters in the heading.

From comp.protocols.iso.x400-outbound-request@ics.uci.edu Wed

 Nov 4 04:16 MET 1992

Received: from sunic.sunet.se by heron.dafa.se (16.6/SiteCap-3.0)

id AA09605; Wed, 4 Nov 92 04:16:24 +0100

Received: from ics.uci.edu by sunic.sunet.se (5.65c8/1.28)

id AA25221; Wed, 4 Nov 1992 04:15:03 +0100

Message Handling 11

Received: from ics.uci.edu by q2.ics.uci.edu id aa14794; 3 Nov 92
13:47 PST

Received: from USENET by q2.ics.uci.edu id aa14789; 3 Nov 92 13:46
PST

From: "Paul.Rarey" <Paul.Rarey@ssf-sys.dhl.com>

Subject: Re: X400 address

Message-ID: <921103134349.16483@maverick.ssf-sys.DHL.COM>

Encoding: 35 TEXT, 12 TEXT SIGNATURE

X-Mailer: Poste 2.0

Date: 3 Nov 92 21:46:13 GMT

To: mhsnews@ics.uci.edu,

Piet Beertema <mcvax!cwi.nl!piet@uunet.uu.net>

cc: ifip65@ics.uci.edu

... Text of the message ...

Example of an RFC 822 message heading.

User names in RFC822 can have both a user-friendly name and an e-mail address (see

page 8).

RFC 822 specifies a heading format, which is intended to be readable for both humans and

computers. It is used for communication between the sender and the recipient and is not used

during transmission. The most important fields in Internet mail headings are:

Received: Contains a trace of the hosts through which a message has passed. It is

mainly used when investigating problems with the mail transfer. Such

a trace could be used for loop control (as in X.400) but in practice

usually is not. Many UA softwares suppress these lines when showing

the header to their users.

From: The e-mail address of the author of the message.

To:, Cc: and Bcc: The recipient(s). Note that this is not the recipient(s) to be used when

delivering the mail (those are given in the SMTP protocol). This is

information to be read by the recipient(s) or their mail program. It can

even contain names which are not proper e-mail addresses.

Message-ID: A globally unique identity code for the current message, which can be

used in the “Reply-To” field to eliminate duplicates of the same

message arriving via different routes.

Reply-To: Used to indicate that personal replies to a message are to be sent to

someone else than the name in the “From” field. Note that the name in

this field should not be used for “group replies,” that is, replies

intended for the group of recipients or the mailing list that received the

In-Reply-To message.

Followup-To: Similar to “Reply-To” but used for group replies. The value must be a

usenet newsgroup name, not an e-mail address. (This is not part of

RFC 822 it is defined in the Usenet News standard, RFC 1036 [19].)

In-Reply-To: Used to coordinate replies with the original message. An intelligent

mail software can use this field to help the user find the original

message of a reply.

References: Similar to “In-Reply-To.” It is used mainly in Usenet News to indicate

references between postings to newsgroups.

12 Message Handling

Date: The date, time, and time zone when the message was sent.

Subject:: A title line describing the topic of the message.

The RFC 822 heading often contains additional fields not defined in the RFC 822 standard.

Some of them may be defined in other standards, while others are not standardized at all. In

the heading abpve, the fields “Encoding” and “X-Mailer” are not part of RFC 822.

The RFC 822 heading ends with a blank line, which marks the beginning of the text of the

message.

1.7.2 References between Messages and Global

Message IDs

There is often a need to let a message refer to previously sent messages: for example, in

replies. It is an important facility for a recipient of a reply to be able to easily ask his

electronic mail system for the message to which the reply replies. It is also useful for users of

electronic mail systems to be able to browse through whole conversations. In order to be able

to transfer a reply link between two messages which are sent at different times, it is useful if

every message has a globally unique identifying code. This is a code which no other message

has or is going to get.

E-mail has some kinds of identifying codes in the heading and sometimes also on the

envelope. The code on the envelope, however, is shortlived, and long-lived references

between messages are handled using the identifying code in the heading. A globally unique

identifying code in the heading is usually produced by combining two subfields. One subfield

is a valid electronic mail name (usually of the originator, but some other valid name can also

be used) plus an identifying code which is unique relative to this electronic mail name. Since

electronic mail names and addresses must be unique (otherwise it would not be possible to

deliver a message to its recipient), this will then produce a globally unique identifying code

for the message itself. Often, these parts are separated with an asterisk. Example:

200107081059*john@foo.bar. The part before the asterisk is usually an encoding of the date

and time when the message was sent in some format. Another variant is to use a sequential

numbering of all messages sent by john@foo.bar. A disadvantage with a sequential number is

that the last used number need not be stored, and if this stored number is lost, duplicate

Message-IDs will not be created. Therefore, the date/time method is usually better.

E-mail has three different kinds of references between messages, all indicated by use of the

Message-ID:

In-Reply-To: for ordinary replies.

References: for other kind of references.

Supersedes: when the new message is a replacement of an old message, for

example, a new version of a text under development or containing a

copy of the original message with an error corrected. Supersedes is not

yet standardized, but is commonly used in Usenet News, but not so

often in e-mail.

A message cannot have an In-Reply-To reference to more than one previous message, while

Message Handling 13

the number of messages it is References: or Supersedes: can be more than one. A con-

sequence of this is that a conversation which is created using the In-Reply-To field will always

have a tree structure, something which is not true for conversations created by References:

and Supersedes:. Another consequence is that two different conversations can be merged into

one if the References: and Supersedes: fields are used to create conversations. Such merging

is not possible if only the In-Reply-To field is used.

The figure below shows how the Message-ID can be used to connect a reply to the original

message, using a data base of Message-ID-s with pointers to the messages they refer to in the

mailbox data base of both the sender and the recipient.

A
A
B

A
A

B

B
Reply
to A

A

Message
data base

ID
file

Message
data base

ID
file

B
Reply
to A

B
Reply
to A

Use of Message-ID to correlate replies with the original message.

When you create a reply link on a message which contains forwarded body parts, you

should carefully consider to which heading the reply link should refer. This is illustrated in

the figure below.

To: B
ID: 12345

Text body

Person
A

Person
C

To: B
ID: 12345

Text body

To: C
ID: 67890

Text
body

To: A, B
ID: 4711

Text body

Person
B

Problem with references to the wrong Message-ID.

Person A writes a message to person B. B forwards the message to C, using the forwarding

mechanism of including the whole text of the original message as a body part of the

forwarded message. C then writes a reply to the original message and sends the reply to both

A and B. It is very important for C to think carefully of whether to use the ID of the original

message (12345, in the example) or the ID of the forwarding message (67890, in the

example). This is important because A has never seen the forwarding message. This means

that a reference in the reply, saying that it is a reply to 67890, will not be understood by A.

Good message systems should be designed to protect users from such mistakes.

Of course, the intention of C may be to reply also or mainly to the text body which B

14 Message Handling

added when the message was forwarded to C. But if that is the case, C should either send the

reply only to B or forward the whole message on to A, since a reply sent to A on the forwarded

body part in 67890 will otherwise not be understood by A.

A person will often get several copies of the same message, forwarded by different users

and distribution lists. It is an important service to the user that his electronic mail system be

able to correlate these copies, so that the person will not have to read the texts more than once

and so that the person can find all comments, appendices, and recipients of the message. Such

correlation should also be done when the recipient receives the same message both directly

and included as forwarded body parts in other messages. The globally unique Message-ID is

the code which is used to provide such correlations. Note the use of the word “correlate,” not

the word “merge.” Since all copies of the same message are not always identical, information

can be destroyed if they are merged carelessly.

1.8 E-mail: Message Body

1.8.1 Types in Internet Mail

1.8.1.1 MIME Introduction

The Internet mail standards used before 1992 could handle only text in the 7-bit ASCII

alphabet and did not allow the additional body-part type facilities available in X.400.

However, in 1992, the Internet mail standards added facilities in an extension called MIME.

MIME is defined in RFC 2045 [21] to RFC 2049 [22]. A good tutorial on MIME is given in

[25]. There is an FAQ2 on MIME [44] which includes a list of known MIME

implementations.

MIME allows Internet mail to contain the following

 Multiple objects in one message.

 Unlimited line length and message length.

 Character sets other than IA5 (7-bit ASCII). In particular, the ISO 8859-1 and the ISO

10646 (Unicode) character set is important.

 Binary and application-specific files.

 Diagrams, pictures, voice, video, and multimedia in messages.

 References to files, which can be retrieved automatically through the net when the

recipient wants to read the message. The contents of the file is thus not transported with

the message.

2 FAQ (frequently asked question) is a document containing answers to often asked

question in Internet discussion groups. There are many FAQs on various topics, and

they often contain a lot of useful information.

Message Handling 15

With MIME, it is possible to have several body parts representing the same information in

different formats. The recipient or his client software can then choose the version which it is

best capable of displaying. For example, a recipient with an IA5-terminal can see a message

in this format, while a recipient with an ISO 8859-1 terminal can see a better version of the

message.

1.8.1.2 MIME Encoding of Data

There was a problem when MIME was defined: it was essential that existing e-mail systems

be able to handle MIME messages in a reasonable way without modification. However, some

previous Internet e-mail systems could not handle messages with 8-bit characters in the text or

with unlimited line length, binary information, etc. in the body.

Because of this, MIME encodes the new body parts in a format which looks like 7-bit

ASCII to old mail software. This is not a very neat solution, but it was necessary since no

extension facility for body parts was included in the old Internet mail standards. MIME

encodes additional information in either of two ways so that it looks like 7-bit ASCII. These

two methods are called base64 and quoted-printable.

Base64 uses four ASCII characters to represent three 8-bit bytes. The 24 bits of the three

8-bit bytes are split into four groups of 6 bits, and each such bit is encoded in a character set

which has 64 different values. These 64 values are those characters in 7-bit ASCII which are

least likely to be corrupted. (This is more fully described in the chapter about coding.)

Quoted-Printable represents those bytes, which have an exact correspondences in 7-bit

ASCII, with their 7-bit ASCII values. Other characters are encoded as an “=” character,

followed by two digits with the hexadecimal value of the byte. An exception is the “=”

character itself, which is coded as “=3D.”

1.8.1.3 Example of a Complete MIME-Encoded Message

The figure below shows a complete example of a MIME message as it is transmitted (not as it

is shown to the user). This message contains two body parts. Each of the body parts contains

the same text in ISO 8859-1.

Test message containing 8-bit characters.

AE=Ä, OE=Ö.

The two lines above are transmitted in both body parts in the MIME message below, but

the text is encoded as quoted-printable in the first body part and as base64 in the second body

part.

Return-Path: <jpalme@ester.dsv.su.se>

Date: Sun, 26 Sep 1993 18:49:01 +0100 (MET)

From: Jacob Palme DSV <jpalme@dsv.su.se>

Subject: A MIME message

To: Lars Enderin <larse@dialog.se>

Message-Id: <3.85.9309261822.A27024-0200000@ester>

Mime-Version: 1.0

Content-Type: MULTIPART/ALTERNATIVE; BOUNDARY="1430317162"

--1430317162

Content-Type: TEXT/PLAIN; CHARSET=ISO 8859-1

Content-Transfer-Encoding: QUOTED-PRINTABLE

Test message containing 8-bit characters.

AE=3D=80, OE=3D=85.

16 Message Handling

--1430317162

Content-Type: TEXT/PLAIN; CHARSET=ISO 8859-1

Content-Transfer-Encoding: BASE64

VGVzdCBtZXNzYWdlIGNvbnRhaW5pbmcgOC1iaXQgY2hhcmFjdGVycy4KQUU9

gCwgT0U9hS4K

--1430317162--

A complete MIME message.

As can be seen from the example in the figure above, quoted-printable has an advantage over

base64 because a recipient whose mail system is not MIME compatible will still be able to

understand much of the content, especially the ordinary English text. In the example, quoted-

printable is also shorter: only 61 characters are required compared to 73 characters for base64.

Base64 is, however, more suitable for pure binary text, such as a graphic bit image or an

encoded sound.

In addition to base64 and quoted-printable, MIME also allows the encodings 7bit, 8bit and

binary. These are not really encodings, since they represent uncoded data. Because of this,

8bit and binary should not be transmitted via mailers which are not MIME-compatible. To

transport such data uncoded, extensions to the SMTP standard for message transport are also

needed.

1.8.1.4 MIME Heading Extensions

MIME defines the following extended fields to the RFC 822 heading:

Content-Type: Specifies the type and subtype of the data in the body.

Content-Type: TEXT Specifies textual information in several different char-
acter sets.

Content-Type: Specifies that the body contains more than one body
part. Each body part can have additional heading
fields at the beginning of the body part.

Content-Type:APPLICATION For application-specific or binary data. Of special im-
portance is
APPLICATION/POSTSCRIPT.

Content-Type: MESSAGE For an encapsulated mail message.

Content-Type: IMAGE For a bitmapped picture using, for example, the graph-
ics interchange format (GIF) or joint photographic ex-
perts group (JPEG) formats.

Content-Type: AUDIO For sound. (Note that the word “voice” is used in
X.400. However, X.400 voice is probably not
intended to be restricted only to spoken sounds.)

Content-Type: VIDEO For video using, for example, the motion picture ex-
perts group (MPEG) format. The video may, but need
not, contain a sound track.

Content-Transfer-Encoding: Specifies how the data is encoded. Encoding type may
also be given in the content-type heading field.

MIME-version: To indicate that MIME is used and which MIME ver-
sion is used.

Content-ID: ID code for the content. Can be used to allow one
body part to refer to another body part in another
message or for references between the body parts in a
message.

Content-Description: Contains a textual description of the content.

IANA (Internet Assigned Numbers Authority), the internet global registration authority,

maintains a register of MIME content types. IANA requires a publicly available description of

Message Handling 17

the new format, or, alternatively, that public domain viewers for the new format are available.

A consequence of this is that some commercial companies have been unwilling to to register

the formats of their products. In such cases, a Content-Type EIGHTBIT has to be used

instead. The disadvantage with this is that the receiving client software cannot automatically

start a viewer for the new format when messages in that format arrives.

1.8.1.5 Multipart messages in MIME

The MULTIPART attribute in a MIME heading specifies that the body contains more than

one body part. Each body part can have additional heading fields at the beginning of the body

part, including recursive use of the multipart attribute to include MULTIPARTs as parts in

higher level MULTIPARTs.

Of special interest are

MULTIPART/MIXED for several parts of different types;

MULTIPART/ALTERNATIVE for the same information in more than one encoding;

MULTIPART/PARALLEL as mixed, but to be viewed at the same time (for exam-
ple, voice in parallel with a drawing); and

MULTIPART/DIGEST to indicate that this is a collection of several messages
written by different authors.

MULTIPART/RELATED several files, which are to be combined into one
document or set of related documents. Used, for
example, to send HTML, SGML or XML with pictures,
applets, etc., as separate files.

1.8.1.6 The Multipart/Related Content Type

The Multipart/related content type is designed when you are sending several files, which are

related by URL-links. It is used, for example, to send HTML, SGML and XML with

embedded pictures or applets as separate files.

Each file is a separate body parts. Each body part is labelled by either Content-ID or Content-

Location. The URL referring to the body part from another body part, is of the URL type

"cid:" to refer to a Content-ID, or can be any kind of URL (absolute or relative) to refer to a

Content-Location with the same content.

Example (abbreviated):

Content-type:
Multipart/related

The compound object of the HTML text and
the embedded message.

Content-Type: Text/html The main text in HTL format.

 Link to an embedded image using a "cid:"
type URL.

 Link to an embedded image using a relative
URL.

Content-Type: Image/gif

Content-ID: 1*foo@bar.net
The first embedded image, identified by a
Content-ID.

Content-Type: Image/gif

Content-Location: picture.gif
The second embedded image, identified by a
Content-Locdation URL.

18 Message Handling

Since some mailers do not support this, messages are usually sent using multipart/alternative,

with plain text in the first branch and HTML in the second branch. This can be done in two

ways:

1.8.1.6.1.1 With the multipart/alternative inside the multipart/related:

Content-Type:
Multipart/related

Content-Type:
Multipart/alternative

Content-Type:
Image/gif

Content-type:
Text/plain

Content-Type:
Text/html

1.8.1.6.1.2 With the multipart/alternative outside the multipart/related:

Content-type:
Text/html

Content-Type:
Image/gif

Content-Type:
Multipart/related

Content-Type:
Text/plain

Content-Type:
Multipart/alternative

Some mailers send messages using each of these methods, so a good mailer will have to be

able to receive messages in both formats.

1.8.1.7 The Message Content Type

The MESSAGE content type is used to forward a message within another message. For

example, you can forward a message you have received, as one body part, with your own

comment as another body part. MESSAGE has the following subtypes:

 MESSAGE/RFC822 when you encapsulate a normal Internet mail message, formatted

according to the RFC822 or MIME formats.

 MESSAGE/PARTIAL if this is one part of a large message, which you have split into

several smaller messages during transport. Information is in this format included to help

the receiving mail client merge the parts together into a complete message again.

 MESSAGE/EXTERNAL-BODY; ACCESS-TYPE= to send, instead of a message, just a

reference to where the message can be retrieved. ACCESS-TYPE can indicate various

ways of retrieving the actual content, like various variants of FTP etc.

1.8.1.8 Mime Heading Character Sets

MIME allows extended character sets also in message headings. The encoding is rather ugly

and some implementations do not support it.

1.8.2 In-line or attachments

In the user interface, a MIME message can either be displayed as a sequence of text passages

and images, or MIME can be used to send attachments to a primary textual message. The

attachments are then not viewed unless the user explicitly asks for them. In practice, the latter

Message Handling 19

usage has been most common. RFC 1806 specifies an e-mail header which can be used to

indicate, separately for each body parts, whether this body part is to be shown inline or as an

attachment. The format is Content-Disposition: followed by either the word

inline or the word attachment. A file name parameter can also be included,

indicating a recommended file name if the attachment is stored in a file.

Note that if the Content-Type: Multipart/related is used to send a document

with inline objects like images, then the techniques described in the MHTML standard should

be used. Content-Disposition can be used, but should be ignored by mailers which

understand Content-Type: Multipart/related.

1.8.3 Sending HTML in e-mail

MIME was planned in order to allow messages to contain pictures, formatted text, sound, etc.

In practice, MIME has mostly been used to send such information as attachments. The

success of the World Wide Web (WWW) means that the HTML (Hypertext Markup

Language) has become a very successful format for documents with formatted text and inline

graphics. There are two ways of sending HTML in e-mail:

(1) Use the message/external-body MIME body part, which means that the e-mail

message only contains the URL (Uniform Resource Locator) of the actual message,

and the recipient mailer will then use this URL to retreieve the message from the net

just like viewing an ordinary web page.

(2) Send the HTML text within the message, using the Content-Type Text/HTML.

The HTML format often uses more than one file to convey a message. For example,

graphics, frames and applets are usually stored in separate files, which are combined by the

web browser when displaying the document. Thus, there is a need to send HTML as a set of

related body parts which together form the document. This is done using the Content-

Type: Multipart/related. The main message will then reference the other parts

either through their Content-IDs or through their URLs. If URLs are used, the other body

parts are given a heading Content-Location which indicates the URL of this body

part.

The MHTML standard is not only useful for sending HTML in e-mail. It can also be used

for archiving of web pages. By archiving web pages in the MHTML format, all information in

a web page can be archived in a single file, instead of separare archiving of the HTML text

and the in-line images and other in-line data.

1.9 SMTP – The Protocol for Message
Transport

The Internet protocol for message transport is SMTP (except for the transmission from the

final MTA to the recipient UA, where other protocols are usually used). SMTP is a protocol

for the transmission of a message from the original UA to the first MTA and from one MTA

to another MTA. SMTP is thus a protocol for transmission one step on the way from

originator to recipient However some information such as the e-mail address of the sender

20 Message Handling

is usually conveyed from one SMTP step to the next SMTP step.

Since SMTP is used to control the transmission, it specifies most of the envelope

information. Some envelope information is however specified in the message heading.

SMTP is a session-oriented protocol. By that is meant that a connection is established

between two agents, and then a series of interactions takes place between the two agents. Here

is an example of a simple SMTP session:

Sending agent command Responding agent response

Opens a connection to port 25 of the
receiving host

Listens for connections on port 25, acknowledges
new connections

HELO dsv.su.se 250 nexor.co.uk

MAIL FROM: <jpalme@dsv.su.se> 250 OK

RCPT TO:
<j.onions@nexor.co.uk>

250 OK

RCPT TO: <seb@nexor.co.uk> 250 OK

DATA 354 Start mail input

... the lines of text in the message ...

. 250 OK

QUIT 221 nexor.co.uk service closing

An SMTP session can include the transmission of more than one message. In that case, a

new MAIL FROM command comes at the place of the QUIT command in the figure above.

The basic SMTP commands are:

“HELO” opens an SMTP session.

“MAIL FROM:” starts the sending of a new message by specifying the sender. Its value is

an e-mail address enclosed in angle brackets.

“RCPT TO:” is repeated once for every recipient. In the original SMTP protocol, an

acknowledgement from the server (the 250 response code) was required after every recipient,

before the next recipient address could be sent. SMTP has later on been extended with an

optional facility to send several recipients in sequence.

“QUIT” indicates the end of an SMTP session, a server receiving a QUIT command

should close the connection.

“DATA” signifies the start of the body of the message. The server response “354”

indicates that the server expects more. After DATA, the body is sent. According to the

original SMTP standard, the body must be a number of text lines, and finished by a line

containing a single period. Line breaks in SMTP must always be a carriage return character

plus a linefeed in sequence (CRLF) and the end of the body is thus signified by CRLF, a

single period, and a second CRLF. In order to allow the sending of messages containing lines

with only a single period, all lines which start with a period have an extra period sent at the

beginning of the line.

Thus, the following text: Is in SMTP sent as:

The next sentence will start with
a period:

.line starting with a period

The next sentence will contain a
single period

.

The next sentence will start with
a period

..line starting with a period

The next sentence will contain a
single period

..

.

In addition to the HELO, MAIL FROM:, RCPT TO:, DATA and QUIT command, the

Message Handling 21

original SMTP protocol contained some additional commands. Most of these are either not

used or not used very much today. Examples of these commands are:

VRFY to ask the server to verify that it has a mailbox with a certain e-mail address. A

server may also give a positive response if it is willing to deliver a message to this recipient,

even though the recipient mailbox is not on the same host as the server. The parameter to

VRFY can be an abbreviated name, the response should be the full e-mail address, if the

abbreviation is non-ambiguous.

TURN is a command which within a single SMTP session switches the roles between

sender and recipient, so that the agent which started the SMTP session can receive mail from

the MTA it connected to. TURN is useful if connection times are long, such as for dial-up

modem connections. The increasing use of fixed lines has reduced the needs for the TURN

command.

The most common digits in the SMTP reply codes are:

1.9.1.1.1.1 First digit:

1 Positive preliminary (not used in SMTP)

2 Success

3 Ready but requires additional info

4 Transient failure

5 Permanent negative

1.9.1.1.1.2 Second digit:

0 Syntax (error)

1 Information requested in reply

2 Transport service problem

5 Application-specific problem

1.9.1.1.1.3 Examples of reply codes to the MAIL FROM command:

250 Originator accepted

452 Out of local storage

500 Command syntax error

A number of proposals for extensions to SMTP have been developed. These extensions allow

the sending of delivery-report requests, binary and 8-bit data, and an SMTP sender can check

if a very large message can be received before sending it. These extensions are only to be

used by extended SMTP servers, so there is also a protocol for two SMTP servers to query

each other’s capabilities at the start of an SMTP session. This protocol thus provides an

extension mechanism to SMTP and is called ESTMP (Extended Simple Mail Transfer

Protocol). The method of protocol extension used by ESTMP is that the server gives the client

a list of which ESTMP extensions it supports, and the client must then only use those

extensions which the server says that it supports. This method has many advantages compared

to the method of indicating protocol level (like HTTP version 0.9 or 1.0 or 1.1) because a

server can choose to provide certain extensions without having to support other less useful

extensions.

In plain ESTMP, a session is started by the client sending the HELO command. A client

which supports ESTMP send the EHLO command instead of the HELO command. The

EHLO command only indicates that the client understands ESTMP, not that the client is

capable of handling any particular ESMTP extension.

22 Message Handling

The table below lists the most important ESMTP extensions:

Service extension Keyword Parameters Verb RFC

Send SEND none SEND 821, 1869

Send or Mail SOML none SOML 821, 1869

Send and Mail SAML none SAML 821, 1869

Expand EXPN none EXPN 821, 1869

Help HELP none HELP 821, 1869

Turn TURN none TURN 821, 1869

Pipelining PIPELINING none none 1854

Message size
declaration

SIZE adds optional parameter
size-value ::=
1*20DIGIT no of octets

none 1870

Checkpoint/ restart CHECKPOINT adds optional parameter
TRANSID to MAIL
FROM command

none 1845

Large and binary
MIME messages

CHUNKING BDAT is used instead of
DATA, and takes as
parameter packet length
and last packet
indication

BDAT 1830

8bit-MIMEtransport 8BITMIME adds optional parameter
BODY to MAIL
FROM, values 7BIT and
8BITMIME

none 1652

Delivery Status
Notification Extension

DSN adds optional
parameters NOTIFY
and ORCPT to RCPT
command and RET and
ENVID to the MAIL
command

none 1891, 1892,
1894

Here are three different examples of ESTMP capability negotiations:

 (1)
Only mandatory SMTP
commands provided

S: <wait for connection on TCP port 25>

C: <open connection to server>

S: 220 dbc.mtview.ca.us SMTP service ready

C: EHLO ymir.claremont.edu

S: 250 dbc.mtview.ca.us says hello

(2) S: <wait for connection on TCP port 25>

C: <open connection to server>

S: 220 dbc.mtview.ca.us SMTP service ready

C: EHLO ymir.claremont.edu

S: 250-dbc.mtview.ca.us says hello

Basic optional services:
EXPN, HELP;

S: 250-EXPN

S: 250-HELP

Standard service extension:
8BITMIME;

S: 250-8BITMIME

Unregistered services:
XONE and XVBR

S: 250-XONE

S: 250 XVRB

(3)
ESTMP not supported

S: wait for connection on TCP port 25>

C: <open connection to server>

S: 220 dbc.mtview.ca.us SMTP service ready

C: EHLO ymir.claremont.edu

S: 500 Command not recognized: EHLO

Message Handling 23

1.9.2 SMTP command pipelining

SMTP often requires many interactions back and forward between client and server. For

example, when a message is to be sent to many recipients, the client is expected to send a

RCPT TO for each recipient and wait for the response from the server before sending the next

RCPT TO. This will make the protocol slow, since interactions across large network distances

often cause a delay of one or more seconds.

In practice, many SMTP clients ignore this rule, and send everything without waiting for

reply codes, and then gets all the reply codes asynchronously. This is not correct, but usually

works, since TCP will provide storage on the net of the data sent in advance. An ESMTP

extension specified in RFC 1854 allows a server to indicate that it is capable ot such

pipelining.

1.9.3 Use of domain addresses for routing

Sender

Name
server

Name
server

Name
server

SE SU.SE DSV.SU.SE

MTA

DSV.SU.SE

Recipient

Transmission of the whole message

Name server
inquiries

Name server look-up followed by direct transmission.

The figure above shows how a series of name servers that know host addresses in domains

successively closer to the recipient can be used to find the network address of the recipient

MTA host. The sender can then transmit directly to the recipient MTA. Of course, the name

servers for SU.SE and DSV.SU.SE might be combined into one name server. And the name

server for SE can cache names and addresses, so that after a second inquiry for the address of

DSV.SU.SE, the SE name server can answer directly without forwarding the query to SU.SE.

The technique of keeping names passing through a name server is called caching. Cached

addresses should only be kept for a limited time, since they may otherwise become out-of-

date.

The technique described in the figure above, where each successive name server connects

to another name server, is called chaining. Another also commonly used technique is called

referral. With referral, the searcher will successively connect to a series of name servers until

the right one is found.

1.9.4 Routing and Use of Name Servers in Internet

The methods for routing mail messages using name servers in Internet is described in RFC

24 Message Handling

974 [18], RFC 1101 [23], RFC 1123 [20], and RFC 1348 [24].

Resolver Name
server MTA

RecipientTransmission of the whole message

Client

DNS qu
ery

(1)

(2)

(3)

(4)

(5)

Use of name servers for Internet mail routing.

E-mail handling in the Internet is usually done in the following stages. (The numbers refers to

numbers in the figure above.)

(1) The originator edits and submits his message for mailing.

(2) For each recipient, the name server facility is used to find the IP-address of the host

which is most suitable for delivering mail to the recipient.

(3) The mail is then forwarded to the hosts serving each recipient. The SMTP protocol is

used for this.

(4) The host described in (3) can be the host closest to the recipient or an intermediate host

which forwards the message, for example, a gateway to another network with a different

mail standard. If it is an intermediate host, this host will then use SMTP or some other

protocol (like X.400 P1) to forward the message to the next host in a chain leading to

the recipient. If the message is sent to a distribution list, the host handling the list will

expand the list and forward the message to the members of the list. Often, incoming

messages from the Internet to an Intranet are first routed to a firewall process, which

will check the messages for viruses, before they are re-routed internally.

(5) Finally, the recipient reads the mail. The mail system of the recipient can use the

machine-readable information in the message heading to aid the user in providing

facilities like:

(a) Finding the message to which the current message is a reply.
(b) Finding messages from a certain sender, or messages which arrived

via a certain distribution list.
(c) Finding messages written between certain dates.

Name servers for routing in the internet are called DNS servers. A DNS server takes as

input an Internet domain address, such as EIES2.NJIT.EDU. There are many DNS name

servers, all responsible for only part of the DNS tree. This means that sometimes the first

name server contacted by a resolver may not have the information requested. The information

can then be found by using either chaining or referral. The Internet DNS allows both chaining

and referral. Every DNS server must support referral. Support for chaining is optional.

1.9.5 Delivery Status Notifications

A good electronic mail system should always (unless the sender explicitly relinquishes this

requirement) inform the sender if a message cannot be delivered. But sometimes a fault, such

as a disk crash, can cause messages to disappear without any notification to the sender (such

situations are often called black holes). However, if the sender has requested a delivery

Message Handling 25

notification, the fact that it has not arrived within a reasonable time can indicate to the sender

that the message has been lost, even when no nondelivery notification appears.

It is, of course, advantageous to the sender if his mail software automatically recognizes

incoming delivery and nondelivery notifications and handles them in suitable ways. The

sender may prefer not to be informed every time such a notification arrives, but to store them

so that later the sender can ask the system to provide a report about which recipients have

received their messages. Notifications usually indicate that a message has reached the mailbox

of the recipient, but some systems also provide notifications when a message has been read by

the recipient, or, rather, when it has been shown on the screen of the recipient.

Nondelivery notifications are often difficult to understand if you are not an expert on

electronic mail protocols. Getting a nondelivery notification from some recipient to whom

you never sent any message can be especially confusing. What happens is that you send a

message to a mailing list, and there is a delivery problem in delivering the message to one of

the members of this list. For large mailing lists, such delivery reports should, of course be sent

to the manager of the list, not to the originator of the message. However, it is not uncommon

for mailers to mistakenly send the nondelivery notifications to the originator.

Distri-
bution

list
Originator

Recipient

Recipient

Recipient

Nondelivery
notification

Manager

Sending error reports to mailing list manager or to the originator

The Internet mail delivery notification functionally is called Delivery Status Notifications

(DSNs), and it is specified in four RFCs:

RFC 1891: SMTP service extension, 31 pages

RFC 1892: Multipart/report content-type, 4 pages

RFC 1893: Enhanced status codes, 15 pages

RFC 1894: Delivery Status Notification format, 31 pages

Requests for delivery status notifications is sent via SMTP, using optional parameters to

the RCPT TO and MAIL FROM commands:

SMTP
command

Optional
parameter

Description

RCPT TO NOTIFY Values:
NEVER = do not send any DSNs.
SUCCESS = send a DSN if the message was successfully delivered
to the recipient mailbox
FAILURE = send a DSN if the message could not be delivered to the
recipient mailbox
DELAY = indicate willingness to accept notifications if delivery is
delayed but may succeed later on

RCPT TO ORCPT Original sender-specified recipient address (needed to allow recpient
of notifications to correlate notifications with original recipients,
since some gateways will rewrite the recipient e-mail addresses
before delivery)

26 Message Handling

SMTP
command

Optional
parameter

Description

MAIL
FROM

RET Values:
FULL = return full text of the message with the DSN
 HDRS = return only headers of the message with the DSN

If neither FULL nor HDRS is indicated, this means that no return of
either headers or body is requested.

MAIL
FROM

ENVID Transaction ID to be returned with notification, so that the sender can
find which message sending caused the failture. (Message-ID cannot
be used for this, since sometimes the same message is sent more than
once with the same Message-ID).

While the requests for DSNs are sent via SMTP, the DSNs themselves are specially

formatted MIME messages. A DSN is sent as a MIME message with the Content-Type

Multipart/Report. A Multipart/Report consists of two mandatory and one optional part:

Part 1 (mandatory) is a human readable message explaining in natural language the cause

of the error. This part is mainly intended for recipients whose e-mail clients do not recognize

the special format of Part 2 of a DSN.

Part 2 (mandatory) contains a machine parsable account of the reported event, with a

special MIME type called Message/Delivery-status.

Part 3 (optional) contains the original message either full or only its headers.

Here is an example of a complete delivery status report:

Date: Thu, 7 Jul 1994 17:16:05 -0400

From: Mail Delivery Subsystem <MAILER-DAEMON@CS.UTK.EDU>

Message-Id: <199407072116.RAA14128@CS.UTK.EDU>

Subject: Returned mail: Cannot send message for 5 days

To: <owner-info-mime@cs.utk.edu>

MIME-Version: 1.0

Content-Type: multipart/report; report-type=delivery-status;

 boundary="RAA14128.773615765/CS.UTK.EDU"

--RAA14128.773615765/CS.UTK.EDU Part 1, in “human-readable” (?)
format:

The original message was received at Sat, 2 Jul 1994 17:10:28
-0400

from root@localhost

 ----- The following addresses had delivery problems -----

<louisl@larry.slip.umd.edu> (unrecoverable error)

 ----- Transcript of session follows -----

<louisl@larry.slip.umd.edu>... Deferred: Connection timed out

 with larry.slip.umd.edu.

Message could not be delivered for 5 days

Message will be deleted from queue

--RAA14128.773615765/CS.UTK.EDU Part 2, in machine-parsable
format:

content-type: message/delivery-status

Reporting-MTA: dns; cs.utk.edu

Original-Recipient: rfc822;louisl@larry.slip.umd.edu

Final-Recipient: rfc822;louisl@larry.slip.umd.edu

Action: failed

Status: 4.0.0

Message Handling 27

Diagnostic-Code: smtp; 426 connection timed out

Last-Attempt-Date: Thu, 7 Jul 1994 17:15:49 -0400

--RAA14128.773615765/CS.UTK.EDU

content-type: message/rfc822 Part 3, return of original
message:

[original message goes here]

--RAA14128.773615765/CS.UTK.EDU--

Here are some of the fields which can occur in a Delivery Status Report:

per-message-fields = Fields which apply to the whole
message.

[original-envelope-id-field CRLF] Envelope identifier from request.

reporting-mta-field CRLF MTA which attempted to perform
the delivery or relay.

[dsn-gateway-field CRLF] Name of gateway which
transformed foreign delivery report.

[received-from-mta-field CRLF] MTA from which the message was
received.

[arrival-date-field CRLF] Arrival date to reporting MTA.

*(extension-field CRLF)

per-recipient-fields = Fields which apply to only one
recipient at a time.

[original-recipient-field CRLF] Original recipient when sent.

final-recipient-field CRLF Final recipient to whom delivery
status is reported.

action-field CRLF failed, delyaed, delivered, relayed
(to non-DSA environment),
expanded.

status-field CRLF Status code (RFC 1893)
(DIGIT "." 1*DIGIT "." 1*3DIGIT

[remote-mta-field CRLF] Name of MTA which reported to
reporting MTA.

[diagnostic-code-field CRLF] Sometimes less preciste diagnostic
code from remote MTA.

[last-attempt-date-field CRLF] Time of last delivery attempt.

[final-log-id-field CRLF] Log entry in final MTA logs.

[will-retry-until-field CRLF] Time when delivery attempts will
stop.

*(extension-field CRLF)

1.10 Message delivery

When a user runs an e-mail client package on his personal computer, this client needs a

protocol to talk to a server, corresponding to the P3 and P7 protocols in X.400. The model

behind these protocols, like in X.400, is that mail messages are stored in a server, to be

downloaded to the e-mail client at request of the user, as is shown by this picture:

28 Message Handling

User Agent MTA MTA Mailbox User Agent

SMTP SMTP SMTP POP or IMAP

Model behind the POP and IMAP protocols.

In the Internet, the two most important such protocols are:

• Post Office Protocol (POP) [9, 12], a protocol for fast downloading of mail to client

software, where the client stores and handles the mail in the personal computer,

corresponding to P3 in X.400.

• Interactive Mail Access Protocol (IMAP) [8], a protocol for cases where the user wants to

store his messages in the server, and wants to be able to manipulate this storage from

client software on his personal computer. IMAP is a more complex protocol than POP.

Commands in POP and IMAP are textual strings, just like commands in SMTP. Here is a list

of the most important commands in POP:

USER Client identifies mailbox to be downloaded

PASS Password

STAT Get number of messages and size of mailbox

LIST N Return size of message N

LAST Get highest message number accessed

RETR N Retrieve a full message

TOP N M Retrieve only headers and the first N lines

DELE N Delete message

QUIT Release service

NOOP See if POP server is functioning

RPOP Insecure authentication

IMAP is a more sophisticated protocol than POP. In IMAP, a server can send messages to the

client without a request from the client, and several transactions between server and client can

go on in parallel. This can be used to reduce the wait time for the users. Each message in an

IMAP mailbox has a set of properties, which can be retrieved one or more than one at a time.

Examples of properties are a seen flag and a deleted flag on the message. In IMAP, to delete a

message you first set the delete flag on the message, and then perform the expunge command.

IMAP also has a capability for searching for messages in the mailbox stored in the server.

1.11 Mailing lists

1.11.1 Expansion of nested mailing lists

Nested mailing lists occur when one list is a member of another list. If, for example, list B is a

member of list A, then a message sent to list A will be distributed to all members of both list

A and B. A message sent directly to list B, however, will not reach the members of list A,

unless A also is a member of B.

Message Handling 29

There are two techniques for handling mailing lists:

• Sender UA expansion. The mailbox software (user agent software) of the sender finds

the list of the members of the list and sends it directly to them. If the lists are nested, the

sender UA will successively and recursively find the lists of members of the sublists, all the

way to the final recipient. With this method, the message will thus be converted to an ordinary

multirecipient list. The message will also have ordinary users, and not lists, as recipients,

before the message leaves the sender UA .

• Expansion at the list location. The sender’s UA sends the list to the list-expansion

agent or to the domain which is responsible for the list. The list is then expanded at this

location. Expansion means the replacement, on the envelope (not in the message heading) of

the name of the list with the names of the members of the list. With nested lists, the message

is then forwarded to the domains of the sublists, which perform the secondary expansion, and

so on if there are sublists to the sublists.

Consider a person who is a member two lists. With the second method, this person will

probably receive two copies of the same message. With the first method, such duplicates can

be eliminated during the expansion. In spite of this, expansion at the list location (the second

method) is most common. With two nested lists, one for the European and one for the

American members, the message need only be sent to one single recipient when crossing the

Atlantic. If the whole list is expanded by the sending UA, at least 100 recipient have to be

listed when crossing the Atlantic, which will make the transfer more expensive. See the figure

below.

Advantage of using nested mailing lists (bottom) vs. nonnested (top).

Other advantages with expansion at the list is that it is easier, to support distributed control of

the membership of a group—each sublist can have its own management. This can, of course,

be a disadvantage when central control of the membership is required.

1.11.2 Loop control for nested mailing lists

If two lists are directly or indirectly members of each other, there is a risk that the same

message will be looped back and forward indefinitely between the lists. There are several

different techniques for avoiding this:

30 Message Handling

(1) Full expansion by the originating UA.

(2a) A trace list of all the mailing lists passed is put on the envelope of the message. A

mailing list can then refuse to accept, incoming messages, that have the name of the

mailing list itself as part of the trace list on the envelope of the message.

(2b) Using a variant of method (2a), each mailing list will instead refuse to send a message

to another mailing list which is included in the trace list of the message.

(3) The registration system for mailing lists is designed in such a way that no list will ever

be a member, directly or indirectly, of itself.

(4a) Each mailing list stores the message-IDs of all messages passing through the list. When

the same message returns once more to the list, the list checks the message-ID of the

message and stops the loop if a message with the same ID has already passed through

the list. (Message-ID is also known under the term Message-ID.)

(4b) This is a variant of method (4a), where a checksum of the content of the message is

used instead of the message-ID.

(4c) Another variant of method (4a) is to only stop resending a message with the same

Message-ID to the same outgoing recipient.

An advantage of method (2b) is that it saves some unnecessary transmission. However,

method (2b) is not as reliable as method (2a), because the same electronic mail address can

have different forms, and therefore the comparison used in method (2b) may not work. It is

easier for a list expander to recognize a name which it itself puts on an envelope than a name

which some other list expander puts on an envelope.

A problem with method (2a) and (2b) is that it is not enough to just but the name of the

MTA in the received header, since a message can legitimately pass the same MTA more than

once. Some systems, because of this, only stop a message when the MTA name occurs 3 or 12

times in the message header. This will not stop a loop completely, but at least avoid the loop

to continue infinitely.

Comparing methods (4a) and (4b), method (4b), use of a checksum, has the advantage that

it caters for systems where the message-ID is corrupted (something which is not unusual), but

has as a disadvantage that two different messages may accidentally get the same checksum. A

further problem with the message-ID is that two messages with the same message-ID may not

always be identical. Finally, some mail systems do not generate globally unique message-IDs

on the messages they produce.

Method (4a) is often used by computer conferencing systems, sometimes combined with

the other methods. For example, Usenet News mainly uses method (4a).

Programs that send messages through gateways from Internet e-mail to Usenet News will

assign Message-IDs to messages lacking such IDs. This can cause the same message to get

different Message-IDs by different gateways.

The Listserv software has very powerful methods for avoiding loops, primarily based on

method (4b).

In practice, many existing mailing lists have no loop control mechanism except that the

people who manage the list manually try to avoid producing loops.

Usenet News uses Message-IDs as its main loop control mechanism. This is, in Usenet

Message Handling 31

News, implemented in a way which will sometimes cause multi-group messages to only

appear in some of the groups, to which it was sent. The figure below explains how this can

happen:

Usenet News
Server A

Gateway from
e-mail to

Usenet News

Gateway from
e-mail to

Usenet News

Usenet News
Server B

News-
group 2

News-
group 1

News-
group 1

News-
group 2

The original message is sent by e-mail to two e-mail mailing lists,which are both gatewayed

from e-mail to Usenet News through two gateways. One of the gateways enters one of the

mailing lists to Newsgroup 1 through Usenet News server A. The other gateway ensters the

other mailing list to Newsgroup 2 through Usenet News server B.

When the Newsgroup 1 version of this message is to be moved from news server A to

news server B, the loop control in news server B will refuce to accept the message, since it

already has the message in Newsgroup 2. This means that subscribers to Newsgroup 1, but

not Newsgroup 2, in Usenet News server B, will incorrectly never see this message. In the

same way, subscribers to only Newsgroup 2 in News server A will never see the message.

I have suggested that the Usenet News standards should be modified to remove this

problem. But the experts in IETF say that this is not possible, we will have to live with this

problem. This is not the first time when the technical experts in IETF have refused user-

friendly changes to standards.

1.11.3 Management of large mailing lists

Management of large mailing lists is not easy. The manager will every day receive

nondelivery notifications for messages from the list which cannot be delivered, and requests

for addition and removal of members from the list. It is sometimes difficult to identify the

item in the list of members which such a notification or request refers to. Sometimes, they are

actually members of a sub-mailing list. The problems of managing large mailing lists is more

fully discussed in [3].

1.11.4 How You Become a Member of a Mailing list

1.11.4.1 The LISTSERV Way

Suppose you want to become a member of a mailing list, whose e-mail address is

listname@host.bit.net. You then write an e-mail message addressed to listserv@host.bit.net

and write in this message a single text line with the text:

32 Message Handling

SUB listname Your Own Name

For information about other commands you can give, such as how to unsubscribe from a

list, download archived messages from the list, etc., write a message to the same recipient,

listserv@host.bit.net, with the single word HELP in the text of your message. For more

information about Listserv.

1.11.4.2 The -Request Way

Suppose you want to become a member of a mailing list, whose e-mail address is

listname@host.bit.net. You then write a message to listname-request@host.bit.net and write

in the text of the message something like “Please add me as a member of this mailing list.”

The e-mail address with the name of a mailing list with “-request” added to it can also be used

for other communication with the list manager.

1.11.4.3 Subscription through web pages

A third method is to subscribe to mailing lists through web pages. However, there is usually

no very secure identification of a person who accesses a web page. Because of this, a

convention has developed that if a person subscribes to a mailing list through a web page,

then the list server will first send an e-mail to the user, asking him/her to confirm the

subscription. Not until this confirmation is received, will the subscription be entered.

1.12 Usenet News

Usenet News is a distributed asynchronous forum system. Forums in Usenet News are called

newsgroups, and messages are called articles.

1.12.1 Distribution of news

The basic principle of Usenet News is that a local server handles most of the functionality.

Usenet News standardizes two variants of the NNTP protocols: One for communication

between adjacent servers, one for communication between a client and a server. Each server

can download as much as it wants of what is available on any of the adjacent servers. Loop

control is handled both by a trace list and a list of the Message-IDs of received messages

stored by each server, so that the server can reject the same message coming back again. The

procedure for distribution of news can be compared to pouring water onto a flat surface; the

water flows out in all directions as shown in the figure below.

Message Handling 33

Server Server

Server

Server

Server

“Pouring water” principle of Usenet News distribution.

The figure below shows how new articles are forwarded from server to server in Usenet

News. A server tells its adjacent servers which items it offers, the server requests those it has

not already got via another route.

Server

I have 17, 18, 19 new

Server

Send me 17, 18, 19

Server

I have 18,
19, 20 new

Send me 20

This figure shows how new articles are forwarded from server to server in Usenet News.

Information about a user, such as how much this user has seen, is stored in the client. The

server need not even know which users are using it. There are many different user-interface

softwares for Usenet News, Some of them, of course, do not provide all the available

functions.

1.12.2 Cancel and Supersedes

In addition, Usenet News provides an interesting functionality which restricts communication

to only those members of a newsgroup who work in the same organization or live in the same

area or country. This functionality, however, is not used very much, and its existence is

controversial, since it means that different users will get different views of the same

newsgroup.

Usenet news has a cancel command, which can delete messages already sent out. Only the

author of the cancelled message and the local newsserver administrator is allowed to cancel a

message. Since, however, it is very easy to fake your identity, this command poses an obvious

security risk, and the command is known to have been used to cancel messages for political

reasons. The command is also used (not quite appropriate) by cancelbots, robots (= automatic

programs) which cancel obvious spams by identifying messages with the same content sent to

many disparate newsgroups. Usenet news also often has a Supersedes header field, which

refers from a new message to an old message. This header usually cancels the old message.

34 Message Handling

There is also a supersedes header, which is used when a new message is sent to replace the

previous version of this article. Supersedes is similar to cancel in that it causes a real deletion

of the message being replaced. This is different from, for example, the obsoletes header of

X.400, which only marks a new message as a replacement, but is not meant to cause the

previous version to be physically deleted. Obsoltes thus is similar to the In-reply-To and

References headers in e-mail.

The most important restriction of Usenet News is that closed groups are not well

supported. The only kind of closed groups which are common in Usenet News are groups

which are restricted to one or a selected set of news servers. Such groups will then be open to

anyone with an account in these news servers, but closed to everyone else.

1.12.3 The Network News Transfer Protocol (NNTP)

The Usenet News protocol is called network news transfer protocol (NNTP) and is specified

in RFC 977 [46]. The standard for the format of Usenet News articles is specified in RFC

1036 [19].

The table below lists the most common NNTP commands:

article [<Message-ID>
| <Number>]

Return text of designated article. If no parameter is
given, the next article is returned. The current article
pointer is put at the fetched article.

 body [<Message-ID>|
<Number>]

As article, but only returns body

group <newsgroup> Go to the designated newsgroup

head [<Message-ID> |
<Number>]

As article, but only returns head

help Lists available commands

ihave <messageID> Informs the server of an available article. The server
can then ask for the article or refuse it.

last Sets current article pointer to last message available,
return the number and Message-ID.

list [active |
newsgroups |
distributions |
schema]

Returns a list of valid newsgroups in the format:
group last first

newgroups <yymmdd
hhmmss> ["GMT"]
[<distributions>]

List newgroups created since a certain datetime.
"distributions" can be e.g. alt to only get newsgroups in
the alt category.

newnews <newsgroups>
<yymmdd hhmmss>
["GMT"]
[<distributions>]

List Message-ID of articles posted to one or more
newsgroups after a specific time. newsgroups can be.
e.g. net.*.unix to match more than one newsgroups.
distributions checks for articles which also has this
other newsgroup as recipient.

next Current article pointer is advanced. Returns number
and Message-ID of current article.

post Submit a new article from a client.

slave Tells the server that this is not a user client, it is a slave
server. (May give priority treatment.)

stat [<Message-ID> |
<Number>]

As article, but only returns Message-ID. Used to set the
current article pointer.

Note that the same protocol, NNTP, is used for communication both between a client and a

server, and between two servers, but that sometimes different commands are used. Thus,

when a user client submits a new message, the post command is used, but when a server

Message Handling 35

sends a new message to another server, it usually uses ihave to give this information, and

the receiving server then requests the message, if it has not already received it from another

server.

Most of the message headers are the same in Usenet News and in e-mail, but there are

some differences as shown by this table:

Newsgroups: Comma-separated list of newsgroups to which this article belongs.
Example of newsgroup format: alt.sex.fetisches.feet. Should never
occur in e-mail. Use “Posted-To:” instead!

Subject: Add four characters “Re. ” for replies. Do not change subject in
replies.

Message-ID: Mandatory in Network News, and must be globally unique.

Path: Path to reach the current system, e.g. abc.foo.net!xyz!localhost. E-
mail path format also permitted. Compare to Received: and
Return-Path in e-mail.

Reply-To: In news: Where replies to the author should be sent. In e-mail:
Ambiguous.

Followup-To: Where replies to newsgroup(s) should be sent.

Expires: Suggested expiration date.

References: Message-ID-s of previous areticles in the same thread. Should
always contain first and last article in thread. Compare to e-mail:
Usually only immediately preceeding messages..

Control: Not used in e-mail. Communication with servers. Body or subject
contains command. Subject begins with "cmsg".

cancel Delete physically a previously sent article.

ihave Host telling another host of available new
articles.

sendme Host asking for articles from another host.

newgroup Name of new group, plus optional word
moderated.

rmgroup Remove a newsgroup. Requires approved.

sendsys Send the sys file, listing neighbours and
newsgroups to be sent to each neighbour.

version Version of software wanted in reply.

checkgroups List of newsgroups and descriptions, used to
check if list is correct.

Distribution: Not used in e-mail. Limits distribution to certain
geographical/organizational area. Example: Distribution: se, no.

Organization: Of sender.

Keywords: For filtering.

Summary: Brief summary.

Approved: Required for message to moderated group. Added by the moderator,
contains his e-mail address. Also required for certain control
messages.

Lines: Count of lines of the message body.

Xref: Numbers of this message in other newsgroups. Only for local usage
in one server. Example: Xref: swnet.risk:456 swnet.sunet:897

There is a problem with the newsgroups header in a message sent via both Usenet News

and e-mail. Different systems use this header in two different ways, in the mail version of

such messages:

(a) To indicate that this message has also been sent via Usenet news to the
indicated newsgroups.

36 Message Handling

(b) To indicate that this is a personal reply, sent only via e-mail, to a message
posted on the indicated newsgroups.

Because of this problem, it is better to use the Posted-To header in e-mail to indicate that a

message has also been sent to certain newsgroups, and e-mail recipients should ignore any

newsgroups heading in an e-mail message.

MIME is not used as much in Usenet News as in e-mail. Instead of BASE64, an older

method named UUENCODING is often used in Usenet News to include binary attachments.

Also, because of message size restrictions, large attachments are very often split into several

messages in Usenet News. This also occurs in e-mail, but is more frequent in Usenet News,

since some Usenet News servers try to save space by not accepting articles above a certain

size limit. Both MIME and Usenet News have methods of indicating how a client can

automatically combine parts into a complete message or attachments.

In addition to NNTP, also other protocols are sometimes used for communication between

Usenet news servers.

1.12.4 News Control in Usenet News

An important functionality in all asycnchornous (not same time) message systems is the news

control functionaltity. This functionality will help the user find which messages are new and

not yet read by this user. Most message systems handle this functionality together with the

storage of messages. This means that if messages are stored in a server, the server also knows

for each user, what that user has read andn ot read. And if messages are stored in the user's

personal computer, then news information is also stored there.

Usenet News, however, does this in a different way. Messages are usually stored in the

server, but the server does not know which messages each individual user has read and not

read. The information on what a user has read is stored in a very compact format in the user

agent software. The most common format for this file is the one shown by this example:

254-290
300-312
350-

The example above says that this user has unseen articles number 254-290, 300-312 and all

articles numbered higher than 350. This format is very compact, because there are usually

long sequences of articles which are read and unread. Storing a single bit for each message is

then not optimal.

1.13 Relative addresses

Domain addresses are absolute addresses. An absolute address is the same address for a

certain recipient, irrespective of where the message is sent from. Another type of address is

called a relative address. A relative address indicates one or more relay stations on the route

to the recipients. This would be roughly equivalent to indicating the postal mail address of a

person as: “First to London, then from London by train to Nottingham, then by truck to the

University, then by mailman from the University to the Computer Science department.”

Message Handling 37

There are three commonly used formats for relative electronic mail addresses. All the three

addresses in the figure below indicate the same relative route but in a different printed format

Per_Persson%fk.abc.se%mcvax@wui.net This format is sometimes used by gateways to
the Internet, although it is not officially part of
the Internet mail standards.

@wui.net,@mcvax:Per_Persson@FK.ABC.SE This format is sometimes used in the Internet
mail standards.

wui.net!mcvax!fk.abc.se!Per_Persson This format has been used much, and is still
sometimes used, in Usenet News.

Combinations of several of these formats in one address may occur sometimes. For example,

an address of the format:

MCVAX!FK.ABC.SE!Per_Persson@WUI

may according to some practices be interpreted
as:

mcvax!wui.net!Per_Persson@FK.ABC.SE

but may according to Usenet News practice be
interpreted as:

mcvax!wui.net!Per_Persson@FK.ABC.SE

The format using percent (%) signs is not part of the official Internet mail standards. This

format will occur sometimes often when a message passes a gateway between two nets. The

figure below shows how gateways can create relative addresses.

SUNIC.SE SEARN.SUNET.SE

Recipient
MTA

CUNYVM.BITNET

John@SUNIC.SE John%SUNIC.SE@SEARN.SUNET.SE

Gateway
MTA

Sender
MTA

A message from a sender John@sunic.se passes a gateway from Internet to Bitnet. The

address of the sender is given as John@sunic.se before the gateway, but the gateway

translates this into John%sunic.se@searn.sunet.se when transmitting the message to Bitnet.

Thus, the gateway takes the original sender address, replaces the @ with a %, and appends @

followed by the name of the gateway.

In Bitnet, when a reply is sent from the recipient to the sender, the reply is first sent to

John%sunic.se@searn.sunet.se. Bitnet views this address as a user named John%sunic.se

at a host named searn.sunet.se. Thus, from a Bitnet viewpoint, the whole Internet is in this

case seen as local names in searn.sunet.se. When the reply reaches searn.sunet.se, this MTA

will strip out @searn.sunet.se and look at the rest, John%sunic.se. It will translate this back

to John@sunic.se and forward the reply to the original sender.

This example shows that neither the Internet nor the Bitnet will actually view this address as

relative. In Bitnet, the address is an absolute address of a user named John%sunic.se in the

host searn.sunet.se. Only the gateway itself recognizes the translation between % and @.

38 Message Handling

Thus, fundamentalists can proudly claim that “our messaging standard does not use any

relative addressing” even though relative addresses are sometimes transported in their net.

There are many disadvantages of relative addresses. You cannot print your address on your

business card in the same way for all recipients. You have to indicate a different address

depending on to whom you are giving your address. There may also be problems with sending

a return message, as shown by the figure below:

Person B

Person C

Person C

Person B

Person A

Person A

Suppose that a person A in America sends a message to two recipients B and C in Europe and

that this message uses relative addressing via some American gateway. This means that when

B gets the message, the relative address to C is given via this American gateway, so that if B

sends a reply to C, this reply must be routed unnecessarily twice across the Atlantic. There are

two disadvantages of this. Firstly, it means unnecessary costs and delays, as was shown in the

example above. Secondly, the American net may refuse to transmit messages from a

European sender to another European recipient, since the American net may have to pay for

part of this unnecessary transmission.

A problem similar to that in Figure «#techniques».«#relativeinefficiency» can occur when

distribution lists are used, as in Figure «#techniques».«#relative2inefficiency».

Distribu-
tion list

Person A

Person B

Person A

Person B

In this example, a person A in Europe sends a message to a distribution list in America. The

letter reaches a recipient B in Europe via the list. If relative addressing is used, a reply from B

to A may have to be transferred via a gateway in America.

Everyone agrees that relative addressing is bad. Why then does it crop up again and again?

The reason is that electronic mail is handled by different electronic mail networks, connected

via gateways. Since each net has limited knowledge of the internal structure of another net, it

can often only address a recipient in another net via a gateway between the nets, and the

inclusion of such gateways into addresses makes them relative. The increasing dominance of

Message Handling 39

Internet as a single universal network has however led to relative addressing occuring less and

less often.

1.14 Instant Messaging

(Not yet ready)

