Concurrent Software Development

JOSEPH BLACKBURN, GARY SCUDDER, AND

LUk N. VAN WASSENHOVE

By necessity, software development has become a critical skill for many industrial
firms. Software that captures the intellectual assets of the firm in its products and ser-
vices increasingly defines the critical path in development and thus governs the firm’s
speed-to-market. When embedded in hardware, such as with a television or an office
copier, software can be a particularly strong determinant of development cycle time.

What happens when software development exceeds its time targets and is late to
market? One example, widely reported in the press, illustrates that dilatory software
development can devastate the bottom line and affect the boardroom. In 1994, Novell
purchased WordPerfect for over $855 million in an effort to create an integrated soft-
ware product to compete with Microsoft’s Office suite; Novell later sold WordPerfect
(and Quattro) to Corel for $186 million. What caused the calamitous 80% drop in
market value? Simply Novell’s inability to keep apace with Microsoft in the race to bring
new software features to market. Speed is obviously a key to retaining a competitive
edge in these markets.

Software productivity is another key development performance metric with direct
financial consequences. Firms such as Microsoft recognize that software development is
a fixed cost business with virtually no variable production costs; higher productivity
thus results in lower input costs, and higher profit margins [6].

The twin objectives of speed and productivity raise vexing issues for a software devel-
opment manager. Cycle time and productivity are not perfectly correlated because a
developer can achieve a shorter cycle time even with low productivity, by adding devel-
opers to the project. Brooks [4] and others have noted that the practice of adding bod-
ies to a project to lower cycle time may have the opposite result, since coordination
complexities make larger teams more difficult to manage. With low productivity, speed
is achieved at high cost.

Fortunately, the pursuit of speed and productivity is not a zero-sum game. The

GARY D. SCUDDER (gary.scudder@owen.vanderbilt.edu) is a professor of Management at the Owen Graduate
School of Management, Vanderbilt University, TN.

JosepH D. BLACKBURN (blackburn@owen.vanderbilt.edu) is Acting Dean and a professor of Management at
the Owen Graduate School of Management, Vanderbilt University, TN.

Luk N. VAN WASSENHOVE (Wassenhove@insead.fr) is Full Professor and Area Coordinator of the Technology
Management Department at INSEAD, Fontainebleau, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/1100 $5.00

COMMUNICATIONS OF THEACM 200

empirical research described in this article outlines a clear path for development man-
agers that leads to both higher productivity and shorter cycle times, eliminating the
need for a trade-off. These results form a software development management frame-
work, called Concurrent Software Engineering, that integrates people into a coherent,
structured management process and makes software development a positive-sum game.
Our framework reinforces and extends many of the principles captured in the Software
Engineering Institute’s Capability Maturity Model [9, 11].

Empirical Research

Our framework of people and process is derived from a four-year, empirical study in
Japan, the U.S. and Western Europe, of speed and productivity in software develop-
ment. In 1992, we began interviewing hardware and software developers in Europe
to gain insight into the issues affecting lead-time and the differences between hard-
ware and software processes. Intrigued by the growing importance of software and the
complexities of hardware/software development, we decided to focus our study on
software development and designed a survey instrument to highlight the manage-
ment practices that best support shorter software development cycles and greater pro-
ductivity. The first surveys were conducted in 1992-93 in the U.S. and Japan [3].
From these surveys we developed a sample of 49 responses from large, well-known
firms that we believed represented best practice. A 1994 European survey resulted in
96 responses from managers of software projects; firms were similar in size to those
sampled in the U.S. and Japan [2]. Except where noted, the results discussed in this
article are based on the global sample of 145 responses.

We asked survey respondents to describe a recently completed software project,
including the project type, language used, management procedures, and performance
measures. Respondents also supplied quantitative information about the project in four
areas: project size and productivity over time; allocation of time and effort among pro-
ject phases; the effectiveness of different management tools and techniques for com-
pression of the development process; and stages of the process in which time reductions
were achieved. In the European sample we also collected input on the team size in var-
ious project phases and the newness of project (from minor revision to completely new).

To estimate increases in development speed, we asked respondents: “If you had devel-
oped the same software product line five years ago, how long would the project have
taken?” To estimate productivity, we computed lines of code per person-month of cod-
ing and per total project person-months. Although lines-of-code (LOC) has major
shortcomings as a productivity metric, it is the only measure in wide enough use to be
understood with any consistency by respondents in a survey.

To learn about the importance of certain project management factors, we also asked
respondents to identify factors that helped reduce overall software development time.
Eleven factors were chosen that have been identified in the literature and our interviews
(and were ranked on a 1-5 Likert scale):

1. The use of prototyping to demonstrate how the proposed software will work;
2. Better customer specif%cations initially;

3. The use of CASE tools and technology;

4. Concurrent development of stages or modules;

5. Less rework or recoding;

6. Improved project team management;

7. Better testing strategies;

COMMUNICATIONS OF THEACM 201

8. Reuse of code or modules,

9. Changes in module size and/or linkages (smaller modules and standard inter-
faces speed coding and testing with parallel development);

10. Improvements in communication between team members; and

11. Better programmers or software engineers.

Our initial probes of the data were focused on cross-cultural differences in product
development; these results are discussed in [3]. Somewhat to our surprise, we found an
overall lack of global differences in software practices. Globally, firms allocate time and
effort similarly, as well as weight the 11 project management factors similarly. The glob-
al sample weights are displayed in Figure 1.

But important differences emerged when we divided the data along lines of perfor-
mance and best practice, rather than culture. When we ranked the respondents accord-
ing to speed and productivity and correlated these measures with the project manage-
ment descriptors, we found that fast firms and high-productivity firms, whatever their
nationality, tend to have more in common than firms within a country.

Correlating speed and productivity with the 11 project management factors, team
size, and allocation of time and effort in the different development stages, yielded coun-
terintuitive results about time compression and software productivity that we call the
Time and Productivity Paradoxes. To solve these conundra we employ Concurrent
Software Engineering—our framework for managerial action.

The Time Paradox

The fastest firms in software development understand that to have the shortest cycle
times, not every element of the cycle must be faster than the competition; some parts
of the process need to be slow. This unconventional wisdom also extends to produc-
tivity. The key insight uncovered by our empirical research is that more time and
effort (in person-hours) invested in the early stages of a software project yields faster
cycle times and higher productivity.

Figure 2 displays the combined data from our global sample (U.S., Japan, and
Europe) on the relationship between development speed and the allocation of time
across project stages. We divided our sample into fast firms (those that reported more
than a 25% decrease in development cycle time over the past five years) and slower firms
(less than 25%). Figure 2 shows that the faster firms spend more time in the customer
requirements stage and less in subsequent stages. (with the exception of the coding
stage).

The data on coding productivity from the global sample shows a similar pattern.
When the global sample is partitioned based on reported LOC productivity, it is clear
that the high productivity firms devote more cycle time and person-hours effort to the
customer requirements stage. Figure 3 displays the percentages for cycle time and effort
in a combined chart with the percentage allocations for time and effort among the low
productivity firms as a stacked column; an area chart is used to show the stacked per-
centages for the high productivity firms. This figure demonstrates that the high-pro-
ductivity firms spend more time and effort in the initial, customer requirements stage
and less in coding/implementation and testing/integration.

Statistics from the more recent European sample confirm these observations (details
of the statistical analysis may be found in [2]). Development speed and productivity are
significantly correlated with the amount of effort in the customer requirements stage,
but for all other stages, the correlations are negative or insignificant. Taken together, the

COMMUNICATIONS OF THEACM 202

Relative Importance

People

Communic

Cust Spec

Teammgt

Testing

Concurrt

Reuse

$103084 jJuawabeuely 109fold

Less Rework

Prototyp

CASEtools

Chgesize

Figure |.Importance rating: Project management factors (global sample).

COMMUNICATIONS OF THEACM 203

%age

1bay sawo3sn)

saadg
pue Bujuue|d

ubisaq pe1aQ

‘wa)dwi/buipo)

u|/Bunsa g

A2Q Isei8
AsQ mojs O

Figure 2. Percentage allocation of time by project stage (fast vs. slow developers: global sample).

COMMUNICATIONS OF THEACM 204

sibay
sn) Biag

"soadg
pue Buiuueld

a (rexeg

ubisa

wadw/butpo)

6aju)/Bunsa)

‘poid ybiHm
'pod MO

Figure 3. Percentage allocation of effort by project stage (high vs. low productivity developers: global
sample).

COMMUNICATIONS OF THEACM 205

data in Figures 2 and 3 and the supporting statistical analyses strongly indicate that
additional time and effort in the early stages of a project result in reduced time-to-mar-
ket and greater coding productivity.

Why is more time needed up front? Follow-up interviews with software managers
provide one answer: “It’s the changes that kill us” is a common complaint. The leading
source of time delays software development is rework: the redesign/recoding/retesting
cycles made necessary by changes in requirements, in interfaces, and so forth. In the
early stages of a development project, the old maxim “haste makes waste” holds true.

The message to managers is clear: invest more time up front to shrink total cycle time
and increase productivity later on. To gain speed and productivity, managers must
spend more time learning precisely what customers need in a software product and con-
verting those needs into unambiguous specifications.

The Productivity Paradox

Team size in software development lies at the heart of a productivity paradox:
responding to deadline pressure, managers add human resources to the project and
find to their dismay that not only does productivity degrade but the time delays
expand (aggregate production may actually diminish). Brooks [4] has made similar
observations, and observers of high-performance work teams have also noted this
“more is less” effect.

Our data confirms this effect in software. Figure 4 displays the average team sizes by
stage and maximum team size for the fast and slow development groups in our
European sample (firms are grouped based on their rate of change in development speed
as noted in the preceding section). The figure shows that faster firms tend to have small-
er teams at all development stages except for the customer requirements stage. In terms
of coding productivity, the same trend is evident: the largest positive correlation
between productivity and team size occurs in the customer requirements stage [2]. The
subject of the time paradox described in the previous section, the customer require-
ments stage is the exception to the productivity paradox. Perhaps the critical importance
of gathering as much information as possible about customers needs makes larger teams
beneficial in this stage. Larger teams may diminish productivity in other stages because
of the communication inefficiencies of larger groups. Brooks [4] has argued that com-
munication demands increase in proportion to the square of the size of the team.

To summarize, small teams appear to benefit both cycle time and productivity. The
significant exception is in the initial stage where a larger team may be better for deter-
mining customer requirements (which, if done right, may make coding more produc-
tive and less testing and correction necessary).

Resolving the Paradoxes

To gain more insight into the management practices that support faster development,
we performed an analysis of variance on the European sample [2] to learn what man-
agement factors and project characteristics explain differences in development speed.
We observed that more of the variability is explained by people and management
process than by project characteristics. Specifically, people, prototyping, and less
rework explain 35% of the difference in development speed, while project character-
istics such as size, language, duration, tools and technology, and project newness col-
lectively explain no more than 18% of this difference. Of the 11 project management

COMMUNICATIONS OF THEACM 206

20.00

18.00

16.00

14.00

12.00

M Group "S"
B8 Group "F"

10.00

8.00 -

6.00 —

4.00 -

2.00 -

0.00 -

Determining Customer
Requirements

Planning and Specifications

Detail Design

Coding/Implementation

Testing/Integration

Max Team Size

Figure 4. Average team size by project stage in European sample (fast “F” vs. slow “S” developers).

factors, only three—better people and programmers, prototyping, and less rework—
had significant positive correlations with increased development speed. Figure 5,
which displays a radar plot of the relative importance of these three factors for fast
and slow developers, clearly shows that faster firms place relatively more emphasis on
these three factors in their management of the software development process.

Many software engineering gurus continue to advocate technology solutions to the
time and productivity paradoxes: CASE tools and new programming technologies. But
CASE tools received low importance values in terms of reducing development time in

COMMUNICATIONS OF THEACM 207

Prototyping
4 7

35 1

—&— Slow
——Fast

People Rework

Figure 5. Importance of significant project management factors (global data set).

our interviews and the surveys. Figure 1 shows the relatively low importance given to
CASE tools and technology by the respondents in our global sample. Statistical analy-
ses of the European sample [2] found no significant correlation between the use of
CASE tools and either development speed or productivity. Yeh [12] noted that “heavy
investment in CASE technology has delivered disappointing results, primarily due to
the fact that CASE tools tend to support the old way of developing software, i.c.,
sequential engineering.” Research carried out by the Software Engineering Institute on
software process maturity [2] suggests that the heavy use of CASE tools may be risky
for immature development processes. Although data was not collected on process matu-
rity, it is likely that most of the firms in our surveys are only at level 1 or 2 of the
Capability Maturity Model. These observations suggest that process management prin-
ciples may be more important than (CASE) tools and should precede the introduction
of tools.

Our results on software are consistent with theoretical and empirical research on new
product development in general. The literature suggests that what matters for hardware
design is talented people, small teams, frequent communication, and good, up-front
specification of customer requirements. Hardware and software developers have strug-
gled with similar issues: budget and time overruns, time-consuming rework cycles, and
the futility of throwing additional resources at projects managed in a sequential, over-
the-wall fashion. Fixing the problem in hardware required a fundamental new process
design: an overlapping, concurrent process instead of a sequential one. The concurrent
process incorporates small teams working in parallel, and good communication across
the functions.

The dominant process model for managing software development, the Waterfall
model, is sequential. Despite a growing amount of research showing the value of con-
current engineering (CE) principles in hardware design, our interviews suggest these
principles have not been embraced in software. In software, the Waterfall model is still
“the best known and most widely used overview framework for the software develop-
ment process.”[9] Simultaneous design activity in software tends to occur within iso-

COMMUNICATIONS OF THEACM 208

lated project stages, particularly coding and testing.

Our research and experiences in hardware development suggest that with software, it
is the process that needs fixing. If a sequential, functional process is the root of the prob-
lem, then this may explain why tools and technology are proving so ineffective in speed-
ing up software development. Attempts to automate an obsolete process have failed in
other industries, and the evidence suggests that the same thing is occurring in software.

The model we propose for fixing the problem, Concurrent Software Engineering
(CSE), is outlined in the remainder of the article. In this model the traditional Waterfall
model is supplanted by a concurrent design model that has been found to be effective
in hardware development. The CSE model we describe incorporates the management
practices that have been adopted by the faster, more productive software developers.

Concurrent Software Engineering

We must first explain what we mean by concurrent engineering since no standard def-
inition exists in the literature. CSE is often described as an unstructured set of con-
cepts and tools. Some writers portray CSE as a simultaneous design activity and oth-
ers stress the integrated team approach to design in which concerns of different func-
tions in the organization are addressed. Neither approach alone captures the interplay
between information and activities that is central to the process.

We define CSE as a management technique to reduce the time-to-market and
improve productivity in product development through simultaneous performance of
activities and processing of information. Activity concurrency refers to the tasks that are
performed simultaneously by different groups; information concurrency refers to the
flow of shared information that supports a team approach to development. In a com-
panion article we outline an elaborate structure for Concurrent Software Engineering
[1]; here we abstract the details.

Making management’s task more daunting is the existence of a hierarchy of activity
concurrency—within stage, across project stages, across the hardware/software interface,
and across projects and platforms. Ratcheting up the hierarchy of concurrent activity,
the key management responsibility is the coordination of information flows to support
simultaneity.

To support concurrent activities in development, there are a number of important
information flows." In our framework, these flows take three forms: (1) Front Loading,
(2) Flying Start, and (3) Two-Way High Bandwidth Information Exchange. Front
Loading is defined as the early involvement in upstream software design activities of
downstream functions—detailed design, coding, testing, and even customer service
concerns. Flying Start is preliminary information transfer flowing from upstream design
activities to team members primarily concerned with downstream activities. Two-Way
High Bandwidth Information Exchange is intensive and rich communication among
teams while performing concurrent activities. The information flow includes commu-
nication about potential design solutions and about design changes to avoid infeasibil-
ities and interface problems.

How does CSE help resolve the time paradox? Our findings indicate that the solici-
tation of customer requirements and conversion to product specifications is a critical
step that should not be rushed. Many voices need to be heard at this stage: users, coders

10ur model of information concurrency builds upon and extends Clark and Fujimoto’s information processing framework for supporting
overlapping problem solving activities in design [5].

COMMUNICATIONS OF THEACM 209

and testers, hardware designers, and marketers. A key management responsibility is to
ensure that all of this information (some of which comes from downstream players)
is front-loaded into the requirements process. This activity should be managed con-
currently, not sequentially, and project management must maintain a free flow of
information, or two-way high bandwidth flow, among the participants.

What specific actions are the leading firms taking? Some leading firms we inter-
viewed have begun a formal process of inspecting specifications, as they do for code.
That is, they are spending more time and effort making sure that product specifications,
architecture and interfaces are unambiguous, and that downstream concerns are front-
loaded into the specification process. (They are following the inspection procedures rec-
ommended by Fagan.) Many of these same firms are using tools such as Quality
Function Deployment (QFD) to improve the quality of and to quantify customer
input.

The faster firms are also using prototyping to gain a flying start. As Figure 5 indi-
cates, two of the most important project management factors are prototyping and less
rework. From a CSE standpoint, we view prototyping as a way to promote information
flow from users to designers, which increases the likelihood that product design will
match customer needs. Eliminating rework is one of the secrets to faster, more produc-
tive software development.

How does CSE resolve the productivity paradox? The faster firms realize that small-
er teams tend to be more productive (except in the early stages where input from many
different sources is needed). As you break problems into smaller pieces, interface com-
plexities grow exponentially and overall productivity suffers because of integration prob-
lems, testing difficulties and rework. The objective of CSE is to provide a way out of
this productivity trap by maintaining small team sizes and, at the same time, minimiz-
ing the interface problems. To accomplish this, project managers must establish two-
way high bandwidth flows of information among the teams working on separate pieces
of the problem and must ensure that the interfaces are simple and elegant.

These actions to resolve time and productivity problems tend to be confined to the
lowest level of concurrent activity: within-stage. Most software firms do this to a degree,
especially in the coding stage. But within-stage concurrency only achieves a fraction of
the potential gain from CSE. The real potential for gain comes as a firm moves up the
CE hierarchy and manages concurrent activity across stages—across the hardware/soft-
ware interface and across platforms. Our surveys and interviews suggest that the faster
firms are beginning to do this.

Across-Stage Concurrency
Concurrent activity across stages is rarely practiced because of developers’ risk aver-
sion. In our interviews, managers stated that it is counterproductive to overlap the
early stages of software development. Beginning high-level design activities before
requirements definition has stabilized, they argue, increases the risk that changing
specifications will require redesign, and the cost of reworking a stage can be exorbi-
tant. A manager at a large German electronics firm stated emphatically that stage
overlap was incompatible with software development due to the instability of early
stages.

Examples from hardware development reported by Clark and Fujimoto [5] show a
strong correlation between the degree of stage overlap and shorter development cycles.
Some software developers take the risk, reasoning that the time gained from letting

COMMUNICATIONS OF THEACM 210

modules progress to the next stage is worth it. One defense contractor, obligated to fol-
low a sequential model, admitted they circumvent the constraint by justifying early cod-
ing as mere “prototyping,” which is allowed. This may explain the strong correlation in
our European surveys between use of prototyping and development speed.

Microsoft is an example of a software firm that employs across-stage overlap.
Cusumano and Selby [6] report that, to reduce the time-to-market for large software
applications, Microsoft actively manages overlap across stages. Having abandoned the
sequential Waterfall model, they have adopted as management practice a procedure to
“synchronize and stabilize.” Specifications, development and testing are all carried out
in parallel but are synchronized with daily builds.

Hardware/Software Overlap

Our research with software managers [2, 3] suggests that the major obstacle to con-
current development of firmware is changing requirements. Because of the complex
software/hardware interfaces, changes in one usually translate into changes in the
other. Long, repeated rework cycles are the chief cause of cost and time overruns.
Although these problems certainly occur in software or hardware designed alone, the
interdependencies in firmware increase the frequency and severity of problems. As
with stage overlap, two-way high bandwidth information transfer can provide early
detection of interface problems. This may not, in itself, decrease the frequency of
quality problems, but it can reduce their severity by locating them closer to the source
and preventing the “spread of infection” throughout design.

Hardware/software interfaces create another version of the time paradox. Since insta-
bility of requirements specifications is a major problem, CSE can address this with
simultaneous development of hardware and software requirements. This means that
management must make a premeditated decision to spend more time and effort in the
initial project stages to gain speed and productivity later.

Across Project Overlap

Software rarely exists in isolation. Like hardware, software is updated and redesigned,
and its elements are reused in new products. Firms also carry out parallel development
projects for features that will be introduced in different years. Projects thus have
genealogical links to predecessors.

How can you achieve concurrent design activity across projects when development
cycles do not overlap? The answer is by design reuse. When a component is reused in a
subsequent product, the original design work is a form of virtual concurrency; that is,
the initial effort is also being carried out for all future products in which that compo-
nent is used. Concurrency across projects is the most difficult to visualize and accom-
plish, but also has the greatest downstream rewards.

Development managers recognize that reuse can increase productivity and reduce
cycle time, but they are not sure how to encourage it. As one European manager of
telecommunications software described the problem: “Our engineers are trained from
the time they are at the university to design new things. Reusing old designs goes against
their natural inclination to change, to improve.” When asked how he encouraged reuse
in such a culture, he said: “I don’t give them enough time to develop new solutions and
new code. They have to reuse whenever possible.”

Unfortunately, most software reuse strategies that have been described to us are reac-

COMMUNICATIONS OF THEACM 21 |

tive—reuse occurs more by accident and imposed time constraints than as a planned
process. For example, when our Japanese survey responses are partitioned into two
groups, new software projects and revisions of earlier projects, the time reduction attrib-
uted to reuse is 21.5% for revisions and only 9.5% for new projects. This suggests that
firms lack a proactive, design-for-reuse strategy; they are not successfully designing new
programs around reusable objects.

Object-oriented programming is expected to change all this, and many firms are
studying it (particularly in Japan and the U.S.). In our sample, half the U.S. firms were
using languages that support OO development. However, better tools may provide only
a partial solution. Front-loading provides the information flow that contributes to sta-
ble, well-defined objects with precise interfaces, which are needed for planned, proac-
tive reuse. Front-loaded information benefits designers by providing good forecasts of
the requirements for future modules. This information flow helps them develop more
robust and reusable programs.

Managers report frustration with their inability to design stable modules. Either the
interfaces are unstable due to product changes, or different functionality is required.
The problem, they admit, lies not in the tools, but in the management of those tools
and a failure to provide the incentives and vision that support architectural modularity.

People and Process Matter, Not Tools

“To build a world-class software development group, you've got to have talented peo-
ple. My first priority is to hire the best developers.” This is how one software manag-
er answered our question about the steps he took to improve performance in his orga-
nization. There is no escaping the fact that people are the most important ingredient.
Figure 1 provides further supporting evidence on the importance of human capital.
Better people and programmers received the highest relative importance ranking from
our sample. Statistical analyses confirm that this factor has the highest positive corre-
lation with increasing development speed. This is not a revolutionary finding. Studies
of innovation in R&D have shown that people factors explain much of the variance
in research productivity. One of the so-called “Microsoft Secrets” reported in [6] is to
“find smart people who know the technology and the business.”

More surprising is the relatively low importance (in our global samples) given to
CASE tools and technology and to changing module size and/or linkages. Although the
literature and popular press extol the importance of new tools and technology for
enhancing software development, users perceive that these tools have a relatively minor
effect on cycle time. In interviews, managers explained that problem complexity and the
need to deal with people issues overwhelmed their ability to use the tools effectively.
“CASE tools have improved, and we have adopted them. But the improvements in pro-
ductivity with CASE tools can't keep pace with the increasing complexity of our soft-
ware projects,” said a software manager for a large telecommunications firm.

Respondents may report a low impact from CASE tools simply because they realize
that their software development processes are not controlled. Levels of software process
maturity are proposed in [9], and further refined into a Capability Maturity Model in
[11]. The Capability Maturity Model research has caused companies to take a hard look
at their software development processes in order to attain higher maturity levels. Our
respondents are likely to be Level 1, 2, or at best, 3 on the CMM and therefore, should
not be focusing on the use of CASE tools until their processes are better defined.
Johnson and Broadman [10] point out that “less mature organizations do not even

COMMUNICATIONS OF THEACM 212

focus on the basic areas of cost, quality and productivity.” In an ongoing research pro-
ject by the authors on time and quality in software development, process maturity is a
key requirement for organizations to be willing (and able) to collect defect data that will
allow process improvement activities to be undertaken. For less mature organizations,
people are critical to successful software development. Because their software develop-
ment processes are not controlled, the only way to survive is through talented people.

The importance of process and people in improving software development has been
noted in other studies. At Raytheon [8], a process improvement initiative was under-
taken after its software organization was assessed at CMM Level 1. Raytheon’s initiatives
were focused in two areas: people, in the form of software working groups, and metrics,
to drive process improvement activities. Over an eight-year period, productivity
increased 190% and defect density was reduced 65%. A recent survey of European soft-
ware developers by Dutta and Van Wassenhove [7] found that firms scoring higher in
end-user satisfaction and business results also tended to score highly on management
practices focused on people and critical process metrics.

Conclusion

Our research indicates that people and process make the difference—you cannot
automate your way out of a software crisis. The time and productivity paradoxes indi-
cate that how time and effort are managed in software development can powerfully
impact speed, productivity and cost. The CSE framework shows how the information
flows should be managed to increase the level of concurrent activity from within
stage, which everyone does, to across projects and platforms, which separates best in
class from the rest of the pack. Within that framework, it is the people who make the
difference because they must execute the plan and, in a creative activity such as
design, there is no substitute for talent.

Although software firms have adopted many of the practices we associate with CSE,
the impact of these practices is diminished by the piecemeal, reactive way in which they
have been invoked, as is the case with reuse. By only attempting concurrent activity in
the detailed design stage of a project, firms are robbed of the full benefits that concur-
rency can bring.

In our assessment, management is the missing piece in the puzzle. To achieve its
potential in software development, CSE should be practiced as a coordinated manage-
ment effort across all stages of the project (and across projects) instead of as a selective
application of tools. To do this, management needs a framework, such as the one pro-
posed here, to coordinate the application of concurrency principles throughout the soft-
ware development process.

References
1. Blackburn, J.D., Hoedemaker, G. and Van Wassenhove, L.N. Concurrent software engineering:
Prospects and pitfalls. JEEE Trans. on Eng. Manage. 43, 2 (May 1996), 179-188.

2. Blackburn, J.D., Scudder, G.D. and Van Wassenhove, L.N. Im roving %Eeed and productivit
in software development: A global survey of software developers. In IEEE Trans. on Soft. Eng. 22,
12, (Dec. 1996) 8‘;5—885.

3. Blackburn J.D., Scudder, G.D. Van Wassenhove, L.N. and Hill, C. 7ime-Based Software
Development. Integrated Manufacturing Systems 7, 2 (1996), 60-66.

4. Brooks, EP, Jr. The Mythical Man-Month, Essays on Software Engineering. Addison-Wesley,

COMMUNICATIONS OF THEACM 213

Reading, MA, 1975.

5. Clark, K.B. and Fujimoto, T. Overlapping problem solving in product development. In K.
Ferdows Ed., Managing International Manufacturing, North-Holland, Amsterdam, 1989.

6. Cusumano, M.A. and Selby, R.\W. Microsoft Secrets. Free Press, New York, 1995.

7. Dutta, S. and Van Wassenhove, L.N. Report on the 1995/1996 software excellence survey.
INSEAD Working Paper 96/52/TM, 1996.

8. Haley, TJ. Software process improvement at Raytheon. /EEE Soffware, Nov. 1996.
9. Humphrey, W.S. Managing the Software Process. Addison-Wesley, Reading, MA, 1990.

10. Johnson, D.L. and Broadman,].G. Realities and rewards of software process improvement.

IEEE Software, Nov. 1996.

11. Paulk, M.C., Weber, C.V., Curtis, B. and Chrissis, M. B. The Capability Maturity Model:
Guidelines for Improving the Software Process. Addison-Wesley, Reading, MA, 1995.

12. Yeh, R.T. Notes on concurrent engineering. /EEE Transactions on Knowledge and Data
Engineering 4, 5 (Oct. 1992), 407-414.

COMMUNICATIONS OF THEACM 214

