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ABSTRACT 

Development of any large system or artifact requires the coordination of many 

developers. Development activities can occur concurrently. The goal of coordination 

is to enhance, not restrict, developer productivity, while ensuring that concurrent 

development activities do not clash with one another. 

This paper presents a formal model of concurrent development, in which develop- 

ment consists of a collection of modification activities that change files, and merges 

that combine the changes. We define a notion of consistency called coordination 

consistency that ensures that changes are not inadvertently destroyed and that the 

changes of each modification activity are correctly propagated to subsequent modi- 

fication activities. We briefly present a set of protocols for concurrent development 

using a hierarchy of stores that ensure coordination consistency. 

1 INTRODUCTION 

Large-scale development, whether of software systems, documents, engineering de- 

signs or other such material, requires the coordination of many developers. A 

key aspect of such coordination is ensuring that the developing artifact remains 

consistent in the face of concurrent modifications. This increases productivity by 

permitting developers to work in parallel without fear that their modifications will 
clash. 

Recent work [Pu88] h as employed traditional database notions such as serializability 

to guarantee consistency. However, in the course of large-scale development, devel- 

opers often examine a great deal of material which provides general background 

to their work. If this material is treated as “read” from the point of view of se- 

rializability, too many conflicts arise to be acceptable. Traditional approaches to 
librarians, like that in Sun Microsystems’ Network Software Environment (NSE)rM 

[Sun88], employ weaker constraints than full serializability. The character of these 

constraints has not been precisely described. 

This paper presents a formalization of the similar constraints employed in the 

RPDE’ librarian [HarrSO]. The resulting notion of consistency, called coordina- 

tion consistency, is weaker than serializability but somewhat stronger than that 

provided by NSE. The paper also briefly presents a set of protocols that ensure 

preservation of coordination consistency during development. 

This paper results from the design and use of support for distributed software 

development in a heterogeneous computing environment within the RPDE3 project 

[Harr89]. An important aspect of RPDE’ is that program constructs are represented 

CSCW 90 Proceedings October 1990 

157 



as objects that are linked together to form a software system. The software system 

is partitioned into files; however, manipulating an individual file in isolation is 

wrong since the cross-file links may become corrupted [WestN]. For this type of 

linked representation, coordination consistency is essential to maintaining integrity. 
The approach we describe is also applicable to domains other than software and to 

different consistency requirements. 

The next two subsections present our model and protocols informally. Section 2 

then presents the formal model and Section 3 discusses the protocols. A summary 

of related work is given in Section 4 and of future directions in Section 5. 

1.1 Informal Description of the Model 

In our model, an artifact consists of a set of files kept in a store called the master 

store. A modification activity ia a set of changes, made in isolation in a separate 

store. Multiple modification activities can occur concurrently, each in its own store. 

For the changes made during a modification activity to become visible outside its 

distinguished store, that store must be merged with other stores. Ultimately, all 
changes that are to become part of the artifact must be merged into the master 

store. 

Since modification activities can proceed concurrently, they can modify the same 

file in different ways in their different stores. This gives rise to collisions when 

an attempt is made to merge the stores. A simple approach to merging, such as 

choosing the file from either store that has the latest time-stamp, could result in 

some of the changes being inadvertently destroyed. Version control is not a solution 

to this problem, though it can help by allowing merges to be delayed. Eventu- 

ally, however, concurrent modifications to a single version do have to be merged. 

Configuration management is not a solution either. It deals with specifying the 

composition of a system and with building and releasing it, but not with handling 

concurrent modifications to it. Both version control and configuration management 

are thus orthogonal to the issues discussed in this paper. 

Development in our model thus consists of modification activities and merges. Our 

objective is to ensure the following coordination-consistency properties throughout: 

1. Change-seTia&tability. Any change that results from a modification activity is 

not overwritten by a merge. This property ensures that when changes occur 

in parallel, one does not inadvertently supersede the other. A change can be 

deliberately undone or superseded by another modification activity. 

2. Atomicity. Either all or none of the changes of a modification activity are 

involved in a merge. 

3. Completeness. If the changes of modification activity A are used as the base 

of modification activity B, then all of the changes from earlier modification 

activities that were used as the base of A are also used as the base of B. This 

property ensures that the causal relation between modification activities is 

preserved. 

These properties are defined more formally in Section 2. 

Change-serializability is weaker than full serializability in that it makes no statement 

about files that are examined in the course of making a change, but are not changed 

themselves. For example, suppose modification activity A changes file f based on 
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the current details of file g, and modification activity B changes file g concurrently. 
Even though the changes that B makes to g might invalidate A, the two modification 

activities are change-serializable. Merging their results will preserve all changes; no 
work will be lost. The resulting artifact will be wrong, however, and will need to 
be fixed by another modification activity. Modification activities A and B are not 

serializable in the database sense, however; full serializability does trap the problem 

described. 

The reason we use change-serializability despite the weakness illustrated above is 

that during the course of development much material is examined that can nonethe- 

less be changed without adversely affecting the work in progress. In this situation, 

change-serializability permits much greater concurrency than full serializability, 

while still ensuring that actual work done is never lost. In practice, most con- 

current modifications whose actual changes do not clash are in fact independent. In 

the example above, the fact that g was examined might have had little or no eftect 

on the detcrils of the change made to f; only occasionally is it of critical importance. 

Even then, the change made to g by B will often be independent and of no conse- 

quence to A. Even when the kind of clash in the example does occur, the necessary 

fixes can often be made quickly and easily after the fact, perhaps involving no more 

work or delay than would have been needed to avoid the clash. Only when deeply 

intertwined modifications are in progress concurrently does change-serializability 
permit serious clashes. Such modifications require either actual serialization or 

tight interaction among developers on an ongoing basis. Recent work by Kaiser 

[KaisSO] and by Ellis and Gibbs [Elli89] ex pl ores the provision of support for such 

tight interaction. 

We preserve coordination consistency during development by means of protocols 

that ensure that 8ll merges are “safe” and that disallow extraction of isolated files 
from stores. Safe merges involve no collisions. Any collisions present when a merge 

is attempted must be reconciled before the merge is permitted. Reconciliation is an 

activity performed by a developer that it involves detailed and careful integration 

of all changes in colliding files. 

We also provide locking protocols that detect potential collisions between concurrent 

changes when the changes occur, rather than much later at merge time. Locking 

anticipates an integration between two stores and a lock is a reservation that ensures 

that a specific file can be merged from the one into the other at a future time. The 

strict locking protocol requires that, before a file is modified, it be locked successfully 

in all stores into which it might later be merged. This protocol, if universally 

observed, prevents concurrent modification of the same file by different modification 

activities, and so guarantees that d merges will be safe. A lenient locking protocol 

warns a developer who is about to change a file that is locked to someone else, but 

allows development to proceed. This does not compromise coordination consistency, 

but does introduce the risk that collisions will occur on later merges and will need to 

be reconciled. It is important to permit this when explicitly desired by a developer 
to avoid holding up the work. 

Use of a locking protocol is not necessary for the system to guarantee coordination 

consistency. It can be suspended, for example, in a situation in which workstations 

must run while disconnected from a central librarian. Locking is not discussed 

further in this paper. Details of locking within our model have been worked out 

and implemented, and are described elsewhere [HarrSO]. 
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2 FORMAL MODEL 

2.1 Modification Activities and Consistency 

A modification history is a sequence of modification identifiers that are unique and 

serve to trace all modifications to a file since its creation. A file is a triple (fn, M, c), 

consisting of a fle name, a modification history, and the file contents. The notation 

n/(f) denotes the file name of the Me f. 

A newly-created file with null contents has a null modification history. By our 

definition of a file, all files are immutable. A modification is a function from an 

input file (fn, M, c) t 0 an output file (fn, M . m, c’). Note the two restrictions: the 

file name f n remains unchanged, and the new modification history M . m is the 

prior one M with a new, unique modification identifier m appended to it.’ 

We say that file (fn, M’,c’) is derived from file (fn, M, c) if and only if M is a 

prefix of M’. Since M uniquely identifies a file, for convenience we also say that 

(fn, M’ , c) is derived from M if and only if M is a prefix of M’ . The prefix need 

not be proper: a file is always derived from itself. As a notational convenience, we 
extend this definition to sets of files, as follows: A file f’ is derived from a set of 

files F if and only if 

(Vf E F)((n/(f) = N(f’)) + f’ is derived from f) 

A set of files F’ is derived from a set of files F if and only if 

(Vf E F)((Sf’ E F’)(f’ is derived from f)) 

Thus F’ must contain files derived from all files in F; it may also contain additional 

files. 

We define a file set to be a set of files such that no two files in the set have the 

same file name. A modification achvity, A, is a function from file sets to file sets. 

We call the argument the initial set, denoted initial(A), and the result the final set, 

denoted final(A), and require that final(A) is derived fTom i&Gal(A). This models 

the intuitive notion that a modification activity involves a series of modifications to 

individual files. The set of files that has actually changed is called the change set 

of the modification activity, and is defined as follows: 

change(A) = final(A) - initial(A) 

With this notation, we can now formalize the three coordination-consistency prop- 

erties as follows: 

1. Change-serializability. Let A and B be two modification activities. Change- 

serializability is preserved if and only if 

(Vf E change(A)) 

(((39 E change(B))(Af(g) = n/(f))) + g is deked from f) V 

(Vg E change(B)) 

(((3f E change(A))(n/(f) = n/(g))) + f is deGved from g) 

’ Renaming a file is modeled with create-delete semantics. The new file contains 
the old file’s contents, and its modification history consists of a single, unique mod- 
ification identifier. Deleting a file is modeled by setting the file’s contents to null 
and appending a unique modification identifier to its modification history. 
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In other words, if the change sets of two modification activities contsin files of 

the same name, then one of the sets of commonly-named files must be derived 

from the other. If the fles in the change sets have disjoint names, change- 

serializability imposes no restrictions. This differs from full serializability in 

that only change sets are involved rather than sets of files that are merely 

examined. 

2. Atomicity. Let A and B be two modification activities. Atomicity is preserved 

if and only if 

(3f E chunge(d))((3f’ E initial(B))(f’ is derived from f)) + 

initial(B) is derived from chunge( A) 

That is: 

(3f E change(d))((Elf’ E initial(B))(f’ is detived from f)) =S 

(Vg E change(d))((Elg’ E initiaZ(B))(g’ is derived from g)) 

In other words, if the initial set of B contains a file derived from a change 

made by A, then it must also contsin files derived from all changes made by 

A. 

3. Completeness. Let A be a modification activity with f E change(A) and let B 

be a modification activity with f’ E change(B), such that f’ is derived fTom 

f. Completeness is preserved if and only if for any other modification activity 

C: 

initial(C) is dehved from change(B) + 

initial(C) is derived from change(d) 

That is: 

(Vh E chunge(B))((Elh’ E initiuI(C))(V is derived from h)) + 

(Vg E chunge(A))((3g’ E initiuZ(C))(g’ is derived fTom g)) 

In other words, if the initial set of C contains files derived from the changes 

made by B, then it must also contain files derived from all changes made by 
the prior modification activity A on which B depended. 

2.2 Merges 

We define the merge of the two file sets G and H, denoted “G @ H”, as follows: 

GriaH={f((f~G~f is derived fTom H) V (f E H A f is derived from G)} 

Intuitively, if a file is in the merged file set then the file is in at least one of the 
input file sets and is derived from the other input file set. By definition, G $ H is 

guaranteed to be a file set, with no two files having the same file name. It is a subset 

of G U H. The files that are in G U H and not in G @ H fall into two categories: 

l Files in G from which files in H have been derived, and vice versa. These 

files are intentionally omitted so that only the “latest” files are retained in 

the merge. 
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l Files (fn, AZ, , c, ) E G and (fn, ML, h c ) E H such that neither file is derived 

from the other. These fles are s8id to collide. They cannot both be included 

in G f~ H because they have the same file name and so would cause G @ H to 

cease being a file set. Since neither is preferred over the other, they are both 

omitted. 

G @ H is said to be safe if and only if there are no collisions, i.e. if and only if 

G @ H is derived from G U H: 

(Vf E G U H)((3f’ E G @ H)(f’ is dekved from f)) 

The significance of safe merges is that they are guaranteed to preserve coordination 

consistency: 

If concurrent development proceeds according to some proto- 

col that produces file sets only by modification activities and 
safe merges, then coordination consistency will be preserved 

through those activities and merges that contribute to the pro- 

duction of each file set. 

Proofs that the properties of change-serializability, completeness, and atomicity are 

preserved in any serialization of these activities run along the following lines. All 

symbols are 8s defined in the formalization of the coordination-consistency proper- 

ties given in Section 2.1: 

1. Change-serializability. Ch an e serializability is symmetric in A and B, so g - 

we will assume that the merge of A (with the accumulated result of prior 

modification activities) occurs before the merge of B in the serialization. Then 

if g is not derived fkom f, the merge of B would not be safe. Hence g is derived 

from f. 

2. Atomicity. If B comes before A in any serialization of the activities then 

f’ will not be derived from f because of the unique coinage of modification 
identifiers. If A comes before I3 in the serialization, then 8ll subsequent file 

sets in the (safe) merges leading to B will contain g or files derived from it. 

3. Completeness. Any serialization of the activities in which A and B contribute 

to the resulting file set must merge B after A, otherwise the fact that f’ is 

derived from f but f’ # f would prevent the merge of B. In this case, the 

merge of A would have introduced g into the resulting file set as well. Hence 

any activity after the merge of A must see some g’ that is derived from g. 

3 CONCURRENT DEVELOPMENT IN HIERARCHI- 
CAL STORES 

The discussion in the previous section led to the conclusion that development in 

which file sets can be modified only by modification activities and by safe merges 
with other file sets results in the preservation of coordination consistency. A great 

variety of approaches to development can satisfy this requirement. However, ensur- 

ing that merges are safe requires checking of file derivations, and, in general, this 

involves maintensnce of arbitrarily long modification histories. If file sets are stored 

in a hierarchy of stores, however, and all merges are between parent and child, the 

modification histories can be encoded simply as two bounded integers. 
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This section briefly describes our protocols for development using a hierarchy of 

stores, and the two-integer encoding. Additional detail is given elsewhere [HarrSO]. 

These protocols are supported by the RPDEJ librarian, and are in constant use by 

members of the research group performing concurrent, modifications to the approx- 

imately 1400 source files making up the RPDE3 system. 

3.1 Protocols 

Each modification activity is preceded by an iniiiation activity and followed by a 

termination activity, which might involve a reconciliation activity. The initiation, 

modification and termination activities simulate the copy-merge semantics of devel- 
opment typical of version control systems such as RCS [Tich85] or SCCS [Roth75]. 

The reconciliation activity resolves any collisions between changes that occurred 

concurrently in the parent and the chid stores. 

Initiation. Before a modification activity begins, a new, empty store S is created in 

which it is to be performed. S is placed in the hierarchy as a child of an existing, 

store, P. P is typically the master store, which is the root of the hierarchy. The 

file set S $ P is stored in S.’ The merge is guaranteed to be safe, since S’s file set 

is originally empty. It, and all merges described below, are performed atomically. 

Modification. The developer modifies files, using whatever tools he desires. While 

the modification activity is in progress, the files in S are not available to other 

modification activities. 

Termination. When the developer is satisfied, by whatever criteria are appropriate, 
that the modification activity is complete and its result. can be made available, 

termination takes place. Provided that the merge is safe, the termination activity 

replaces the contents of P with P @ S. 

If P @ S would not be safe, a reconciliation activity is needed. Its purpose is to 

resolve the collisions that rendered the merge unsafe. Reconciliation of stores S 
and P introduces a new intermediate store I between them in the hierarchy. I 

is initialized to contain copies of the files in P. The developer must process the 

relevant files in I to incorporate the conflicting changes in S, ensuring that all 

changes are integrated and none are lost. Files in both S and I are accessible 

during this activity, but only files in I can be modified. For the purposes of this 

paper, the manner in which conflicting changes to individual files are reconciled and 
integrated is irrelevant.’ 

Once reconciliation is complete, the store S is discarded. The termination activity 

can then resume, this time merging I into P. If new collisions occur, due to addi- 

tional changes made to P while the reconciliation activity was in progress, another 

reconciliation activity is needed. The termination activity completes only after the 

merge P @ S is safe. Once that has occurred, all changes made by the modification 

activity, and by any associated reconciliation activities, have been integrated into 

store P. 

‘In practice one will usually use an existing store whose modification activity 
has terminated, so as to limit the amount of copying required. All that is said of 
the newly created store is true of an existing store whose modification activity has 
terminated. 

‘Various tools provide assistance with collision integration. For example, by 
computing differences of text files [Tich85] or by using data flow analysis [Reps88]. 
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3.2 Encoding of Modification Histories 

In a context where all file transfer is in the form of safe merges between parent and 

child stores in a hierarchy, the modification histories needed to determine derivation 
relationships between files can be encoded as a pair of bounded integers, (pn,cn). 

The numbers are called the “parent number” and the “child number” respectively. 

If f is a file, we use pn(f) and en(f) to d enote the parent and child numbers of its 

modification history. Let S be a store, let P be S’s parent in the store hierarchy, 

and suppose f. E S, f, E P, and n/(f,) = n/(fp). The following invariants are 
maintained by our implementations of merges and modifications: 

f. is detived from f, -S pn(f, ) = cn(f, ) 

f, is derived from f, e pn(f, ) = cn(f, ) 

Details are given elsewhere [HarrSO]. A n additional property of this encoding is 

that a file f has been changed by the current modification activity if and only if 

cm # P(f)- 

4 RELATED WORK 

Several models of software development have been proposed that are sufficiently 
different from ours that the issue of coordination consistency do not apply. The 

Xerox PARC System Modeller [Schm82], f or example, was designed to deal with 

multiple developers working on different components of a system, but specifically 

did not deal with multiple developers working on the same component. 

The work by Reps, Horwitz, and Prins [Reps88,Horw88] uses data and control flow 
analysis to determine interference of parallel versions of a file from a base version. 

Their focus is on providing assistance with the reconciliation of conflicting files; they 

do not address the problem of enforcing coordination consistency. Their model of 

software development assumes a global check-in-check-out librarian. 

Another model, initially presented by Kaiser, Kaplan and Micallef [Kais88] and 

further developed to incorporate version control and configuration management by 

Micallef and Kaiser [Mica88], statically partitions the software system, placing each 

partition into a separate store. Static semantic analysis is used to check consistency 

of the system, The static partitioning ensures that all merges are automatically 

safe, but makes it difficult for developers to make changes that span partitions. 

Our protocols facilitate “spanning changes” and check coordination consistency at 

merge time. The relationship between coordination consistency and static semantic 

consistency is a topic for future research, to be discussed in Section 5. 

The Gordion system [Ege87] p rovides transactions and hard and soft locks as con- 

currency control primitives. Soft locks can be broken, with immediate or delayed 

notification of the lock holder. Hornick and Zdonik have proposed a wider vari- 

ety of locks and notification mechanisms [Horn87]. Primitives such as these are 

mechanisms upon which concurrency control protocols can be built; the focus of 

this paper has been formalization of the properties that such protocols should have. 

Protocols that realize these properties can be built upon the primitives described 

above, though reliance on locking implies that development cannot continue if the 

central lock handler is inaccessible. 
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Recent work by Kaiser [KaisSO] explores a transaction model that allows more flexi- 
bility than does full serializability. Ellis and Gibbs [Elli89] describe an algorithm for 

ensuring precedence and convergence properties in groupware systems. No transac- 

tions or locking are involved. Instead, operations are transformed when necessary; 
the algorithm must know some semantics of the operations. Both of these models 

are based on a much finer-grained sharing of low-level elements and a much tighter 

interaction between developers than is envisioned here. 

Some systems provide check-in check-out facilities and version control, but make no 

attempt to ensure consistency across files. Tichy’s RCS [Tich85] and Rochkind’s 

SCCS [Roth75], f or example, provide support for maintaining text files that evolve 

from each other and for selecting versions of text files. The unit of granularity is 

the individual text file. These systems do not provide support for encapsulating 

a set of files into an entity that can be manipulated as a unit. Interleaving of 

checking in and checking out of files between modification activities is possible, 

as is checking in or out of arbitrary subsets of files. Of the three coordination 
consistency properties, such systems guarantee change-serializability, but neither 

completeness nor atomicity. 

Some more advanced systems do provide facilities for treating groups of files as units. 

Sun Microsystems’ Network Software Environmentz” (NSE) [Sun881 and Apollo’s 

DOMAIN Software Engineering Environment [Leb185] are examples. They both 

provide tools for configuration management. These tools are built on top of a version 

control system and provide a means to specify the components of a software system, 

the interelationships between the components, and the version of each component 

that is to be used. The semantics of how a set of changes are incorporated into a 

store does not ensure coordination consistency, however. 

Of the two, NSE is the most closely related to our work. NSE provides support 

for concurrent program development that is based on working sets that are analo- 

gous to our notion of a store. Although in their software development model any 

working set can reference any other working set, their working sets are typically 

organized into hierarchies of release, integration, and development working sets.’ 

NSE provides a detection protocol that is analogous to ours (we do not, however, 
require that the sequence numbers encoding modification histories be time stamps, 

nor do we require clock synchronization in a distributed computing environment). 

However, components partition the software system and are the units of transferral 

between working sets. When discussing RCS and SCCS we observed that partial 

or interleaved check-in and check-out operations on files can violate coordination 

consistency. Similarly, partial or interleaved operations on separate components in 

NSE can violate coordination consistency when modification activities occur that 

span multiple components. 

5 FUTURE RESEARCH 

The notion of coordination consistency defined in this paper attempts to capture 

consistency requirements for effective concurrent development without reference to 

the details of the artifact being developed. Coordination consistency is not a prop- 

erty of a set of files; it is a property of the development process giving rise to those 

files. It is also important to consider internal consistency of the files in the set. We 

call this self consistency. Different definitions of self consistency are appropriate 

for different systems and languages. Some examples are: consistent by definition 

‘Software releases are related by a connection between their corresponding re- 
lease working sets in the hierarchy. 
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(trivially-consistent), consistent by developer’s assertion (asserted-consistent), con- 

sistent with respect to cross-file links as in RPDES (link-consisient), or consistent 

with respect to uses and definitions of resources (use-def-consistent). 

Self consistency is a property of a set of files, and is independent of the devel- 
opment process giving rise to those tiles. In general, neither self consistency nor 

coordination consistency implies the other. However, corresponding to any cho- 

sen notion of self consistency, E, there is a derived notion of consistency called 

coordinated-z-consistency. Coordinated-z-consistency is a property of a file set re- 

sulting from an activity lattice of modification activities and merges. The relation- 
ship of coordinated-z-consistency to incremental checking of z-consistency, and the 

additional information required to track and verify the preservation of c-consistency 

through safe merges, are topics of great interest to us. 

6 SUMMARY 

In this paper we have: 

1. Developed a formal model for defining the activities of importance in coordi- 
nating concurrent development. 

2. Defined the notion of coordination consistency to consist of three properties: 
change-serializability, completeness and atomicity. 

3. Demonstrated that concurrent development consisting only of isolated modi- 

fication activities and safe merges preserves coordination consistency. 

4. Briefly described the RPDES protocols for performing concurrent development 

using a hierarchy of stores. E ac h modification activity occurs in its own store, 

and all file transfers are in the form of safe merges between parent and child 

stores. 

5. Described an encoding of modification histories as a pair of bounded integers 
that is appropriate in the restricted world of the RPDES protocols. 
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