
Coordinating Concurrent Development

William H. Harrison, Harold Ossher and Peter F. Sweeney

IBM Thomas J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT

Development of any large system or artifact requires the coordination of many

developers. Development activities can occur concurrently. The goal of coordination

is to enhance, not restrict, developer productivity, while ensuring that concurrent

development activities do not clash with one another.

This paper presents a formal model of concurrent development, in which develop-

ment consists of a collection of modification activities that change files, and merges

that combine the changes. We define a notion of consistency called coordination

consistency that ensures that changes are not inadvertently destroyed and that the

changes of each modification activity are correctly propagated to subsequent modi-

fication activities. We briefly present a set of protocols for concurrent development

using a hierarchy of stores that ensure coordination consistency.

1 INTRODUCTION

Large-scale development, whether of software systems, documents, engineering de-

signs or other such material, requires the coordination of many developers. A

key aspect of such coordination is ensuring that the developing artifact remains

consistent in the face of concurrent modifications. This increases productivity by

permitting developers to work in parallel without fear that their modifications will
clash.

Recent work [Pu88] h as employed traditional database notions such as serializability

to guarantee consistency. However, in the course of large-scale development, devel-

opers often examine a great deal of material which provides general background

to their work. If this material is treated as “read” from the point of view of se-

rializability, too many conflicts arise to be acceptable. Traditional approaches to
librarians, like that in Sun Microsystems’ Network Software Environment (NSE)rM

[Sun88], employ weaker constraints than full serializability. The character of these

constraints has not been precisely described.

This paper presents a formalization of the similar constraints employed in the

RPDE’ librarian [HarrSO]. The resulting notion of consistency, called coordina-

tion consistency, is weaker than serializability but somewhat stronger than that

provided by NSE. The paper also briefly presents a set of protocols that ensure

preservation of coordination consistency during development.

This paper results from the design and use of support for distributed software

development in a heterogeneous computing environment within the RPDE3 project

[Harr89]. An important aspect of RPDE’ is that program constructs are represented

CSCW 90 Proceedings October 1990

157

as objects that are linked together to form a software system. The software system

is partitioned into files; however, manipulating an individual file in isolation is

wrong since the cross-file links may become corrupted [WestN]. For this type of

linked representation, coordination consistency is essential to maintaining integrity.
The approach we describe is also applicable to domains other than software and to

different consistency requirements.

The next two subsections present our model and protocols informally. Section 2

then presents the formal model and Section 3 discusses the protocols. A summary

of related work is given in Section 4 and of future directions in Section 5.

1.1 Informal Description of the Model

In our model, an artifact consists of a set of files kept in a store called the master

store. A modification activity ia a set of changes, made in isolation in a separate

store. Multiple modification activities can occur concurrently, each in its own store.

For the changes made during a modification activity to become visible outside its

distinguished store, that store must be merged with other stores. Ultimately, all
changes that are to become part of the artifact must be merged into the master

store.

Since modification activities can proceed concurrently, they can modify the same

file in different ways in their different stores. This gives rise to collisions when

an attempt is made to merge the stores. A simple approach to merging, such as

choosing the file from either store that has the latest time-stamp, could result in

some of the changes being inadvertently destroyed. Version control is not a solution

to this problem, though it can help by allowing merges to be delayed. Eventu-

ally, however, concurrent modifications to a single version do have to be merged.

Configuration management is not a solution either. It deals with specifying the

composition of a system and with building and releasing it, but not with handling

concurrent modifications to it. Both version control and configuration management

are thus orthogonal to the issues discussed in this paper.

Development in our model thus consists of modification activities and merges. Our

objective is to ensure the following coordination-consistency properties throughout:

1. Change-seTia&tability. Any change that results from a modification activity is

not overwritten by a merge. This property ensures that when changes occur

in parallel, one does not inadvertently supersede the other. A change can be

deliberately undone or superseded by another modification activity.

2. Atomicity. Either all or none of the changes of a modification activity are

involved in a merge.

3. Completeness. If the changes of modification activity A are used as the base

of modification activity B, then all of the changes from earlier modification

activities that were used as the base of A are also used as the base of B. This

property ensures that the causal relation between modification activities is

preserved.

These properties are defined more formally in Section 2.

Change-serializability is weaker than full serializability in that it makes no statement

about files that are examined in the course of making a change, but are not changed

themselves. For example, suppose modification activity A changes file f based on

CSCW 90 Proceedings
.--

October 1990

158 ,

the current details of file g, and modification activity B changes file g concurrently.
Even though the changes that B makes to g might invalidate A, the two modification

activities are change-serializable. Merging their results will preserve all changes; no
work will be lost. The resulting artifact will be wrong, however, and will need to
be fixed by another modification activity. Modification activities A and B are not

serializable in the database sense, however; full serializability does trap the problem

described.

The reason we use change-serializability despite the weakness illustrated above is

that during the course of development much material is examined that can nonethe-

less be changed without adversely affecting the work in progress. In this situation,

change-serializability permits much greater concurrency than full serializability,

while still ensuring that actual work done is never lost. In practice, most con-

current modifications whose actual changes do not clash are in fact independent. In

the example above, the fact that g was examined might have had little or no eftect

on the detcrils of the change made to f; only occasionally is it of critical importance.

Even then, the change made to g by B will often be independent and of no conse-

quence to A. Even when the kind of clash in the example does occur, the necessary

fixes can often be made quickly and easily after the fact, perhaps involving no more

work or delay than would have been needed to avoid the clash. Only when deeply

intertwined modifications are in progress concurrently does change-serializability
permit serious clashes. Such modifications require either actual serialization or

tight interaction among developers on an ongoing basis. Recent work by Kaiser

[KaisSO] and by Ellis and Gibbs [Elli89] ex pl ores the provision of support for such

tight interaction.

We preserve coordination consistency during development by means of protocols

that ensure that 8ll merges are “safe” and that disallow extraction of isolated files
from stores. Safe merges involve no collisions. Any collisions present when a merge

is attempted must be reconciled before the merge is permitted. Reconciliation is an

activity performed by a developer that it involves detailed and careful integration

of all changes in colliding files.

We also provide locking protocols that detect potential collisions between concurrent

changes when the changes occur, rather than much later at merge time. Locking

anticipates an integration between two stores and a lock is a reservation that ensures

that a specific file can be merged from the one into the other at a future time. The

strict locking protocol requires that, before a file is modified, it be locked successfully

in all stores into which it might later be merged. This protocol, if universally

observed, prevents concurrent modification of the same file by different modification

activities, and so guarantees that d merges will be safe. A lenient locking protocol

warns a developer who is about to change a file that is locked to someone else, but

allows development to proceed. This does not compromise coordination consistency,

but does introduce the risk that collisions will occur on later merges and will need to

be reconciled. It is important to permit this when explicitly desired by a developer
to avoid holding up the work.

Use of a locking protocol is not necessary for the system to guarantee coordination

consistency. It can be suspended, for example, in a situation in which workstations

must run while disconnected from a central librarian. Locking is not discussed

further in this paper. Details of locking within our model have been worked out

and implemented, and are described elsewhere [HarrSO].

CSCW 96 Proceedings October 1990

159

2 FORMAL MODEL

2.1 Modification Activities and Consistency

A modification history is a sequence of modification identifiers that are unique and

serve to trace all modifications to a file since its creation. A file is a triple (fn, M, c),

consisting of a fle name, a modification history, and the file contents. The notation

n/(f) denotes the file name of the Me f.

A newly-created file with null contents has a null modification history. By our

definition of a file, all files are immutable. A modification is a function from an

input file (fn, M, c) t 0 an output file (fn, M . m, c’). Note the two restrictions: the

file name f n remains unchanged, and the new modification history M . m is the

prior one M with a new, unique modification identifier m appended to it.’

We say that file (fn, M’,c’) is derived from file (fn, M, c) if and only if M is a

prefix of M’. Since M uniquely identifies a file, for convenience we also say that

(fn, M’ , c) is derived from M if and only if M is a prefix of M’ . The prefix need

not be proper: a file is always derived from itself. As a notational convenience, we
extend this definition to sets of files, as follows: A file f’ is derived from a set of

files F if and only if

(Vf E F)((n/(f) = N(f’)) + f’ is derived from f)

A set of files F’ is derived from a set of files F if and only if

(Vf E F)((Sf’ E F’)(f’ is derived from f))

Thus F’ must contain files derived from all files in F; it may also contain additional

files.

We define a file set to be a set of files such that no two files in the set have the

same file name. A modification achvity, A, is a function from file sets to file sets.

We call the argument the initial set, denoted initial(A), and the result the final set,

denoted final(A), and require that final(A) is derived fTom i&Gal(A). This models

the intuitive notion that a modification activity involves a series of modifications to

individual files. The set of files that has actually changed is called the change set

of the modification activity, and is defined as follows:

change(A) = final(A) - initial(A)

With this notation, we can now formalize the three coordination-consistency prop-

erties as follows:

1. Change-serializability. Let A and B be two modification activities. Change-

serializability is preserved if and only if

(Vf E change(A))

(((39 E change(B))(Af(g) = n/(f))) + g is deked from f) V

(Vg E change(B))

(((3f E change(A))(n/(f) = n/(g))) + f is deGved from g)

’ Renaming a file is modeled with create-delete semantics. The new file contains
the old file’s contents, and its modification history consists of a single, unique mod-
ification identifier. Deleting a file is modeled by setting the file’s contents to null
and appending a unique modification identifier to its modification history.

CSCW 90 Proceedings October 1990

160

In other words, if the change sets of two modification activities contsin files of

the same name, then one of the sets of commonly-named files must be derived

from the other. If the fles in the change sets have disjoint names, change-

serializability imposes no restrictions. This differs from full serializability in

that only change sets are involved rather than sets of files that are merely

examined.

2. Atomicity. Let A and B be two modification activities. Atomicity is preserved

if and only if

(3f E chunge(d))((3f’ E initial(B))(f’ is derived from f)) +

initial(B) is derived from chunge(A)

That is:

(3f E change(d))((Elf’ E initial(B))(f’ is detived from f)) =S

(Vg E change(d))((Elg’ E initiaZ(B))(g’ is derived from g))

In other words, if the initial set of B contains a file derived from a change

made by A, then it must also contsin files derived from all changes made by

A.

3. Completeness. Let A be a modification activity with f E change(A) and let B

be a modification activity with f’ E change(B), such that f’ is derived fTom

f. Completeness is preserved if and only if for any other modification activity

C:

initial(C) is dehved from change(B) +

initial(C) is derived from change(d)

That is:

(Vh E chunge(B))((Elh’ E initiuI(C))(V is derived from h)) +

(Vg E chunge(A))((3g’ E initiuZ(C))(g’ is derived fTom g))

In other words, if the initial set of C contains files derived from the changes

made by B, then it must also contain files derived from all changes made by
the prior modification activity A on which B depended.

2.2 Merges

We define the merge of the two file sets G and H, denoted “G @ H”, as follows:

GriaH={f((f~G~f is derived fTom H) V (f E H A f is derived from G)}

Intuitively, if a file is in the merged file set then the file is in at least one of the
input file sets and is derived from the other input file set. By definition, G $ H is

guaranteed to be a file set, with no two files having the same file name. It is a subset

of G U H. The files that are in G U H and not in G @ H fall into two categories:

l Files in G from which files in H have been derived, and vice versa. These

files are intentionally omitted so that only the “latest” files are retained in

the merge.

CSCW 9C FrocoQdings October 1990

161

l Files (fn, AZ, , c,) E G and (fn, ML, h c) E H such that neither file is derived

from the other. These fles are s8id to collide. They cannot both be included

in G f~ H because they have the same file name and so would cause G @ H to

cease being a file set. Since neither is preferred over the other, they are both

omitted.

G @ H is said to be safe if and only if there are no collisions, i.e. if and only if

G @ H is derived from G U H:

(Vf E G U H)((3f’ E G @ H)(f’ is dekved from f))

The significance of safe merges is that they are guaranteed to preserve coordination

consistency:

If concurrent development proceeds according to some proto-

col that produces file sets only by modification activities and
safe merges, then coordination consistency will be preserved

through those activities and merges that contribute to the pro-

duction of each file set.

Proofs that the properties of change-serializability, completeness, and atomicity are

preserved in any serialization of these activities run along the following lines. All

symbols are 8s defined in the formalization of the coordination-consistency proper-

ties given in Section 2.1:

1. Change-serializability. Ch an e serializability is symmetric in A and B, so g -

we will assume that the merge of A (with the accumulated result of prior

modification activities) occurs before the merge of B in the serialization. Then

if g is not derived fkom f, the merge of B would not be safe. Hence g is derived

from f.

2. Atomicity. If B comes before A in any serialization of the activities then

f’ will not be derived from f because of the unique coinage of modification
identifiers. If A comes before I3 in the serialization, then 8ll subsequent file

sets in the (safe) merges leading to B will contain g or files derived from it.

3. Completeness. Any serialization of the activities in which A and B contribute

to the resulting file set must merge B after A, otherwise the fact that f’ is

derived from f but f’ # f would prevent the merge of B. In this case, the

merge of A would have introduced g into the resulting file set as well. Hence

any activity after the merge of A must see some g’ that is derived from g.

3 CONCURRENT DEVELOPMENT IN HIERARCHI-
CAL STORES

The discussion in the previous section led to the conclusion that development in

which file sets can be modified only by modification activities and by safe merges
with other file sets results in the preservation of coordination consistency. A great

variety of approaches to development can satisfy this requirement. However, ensur-

ing that merges are safe requires checking of file derivations, and, in general, this

involves maintensnce of arbitrarily long modification histories. If file sets are stored

in a hierarchy of stores, however, and all merges are between parent and child, the

modification histories can be encoded simply as two bounded integers.

CSCW 90 Proceedings
----- --.

October 1990

162

This section briefly describes our protocols for development using a hierarchy of

stores, and the two-integer encoding. Additional detail is given elsewhere [HarrSO].

These protocols are supported by the RPDEJ librarian, and are in constant use by

members of the research group performing concurrent, modifications to the approx-

imately 1400 source files making up the RPDE3 system.

3.1 Protocols

Each modification activity is preceded by an iniiiation activity and followed by a

termination activity, which might involve a reconciliation activity. The initiation,

modification and termination activities simulate the copy-merge semantics of devel-
opment typical of version control systems such as RCS [Tich85] or SCCS [Roth75].

The reconciliation activity resolves any collisions between changes that occurred

concurrently in the parent and the chid stores.

Initiation. Before a modification activity begins, a new, empty store S is created in

which it is to be performed. S is placed in the hierarchy as a child of an existing,

store, P. P is typically the master store, which is the root of the hierarchy. The

file set S $ P is stored in S.’ The merge is guaranteed to be safe, since S’s file set

is originally empty. It, and all merges described below, are performed atomically.

Modification. The developer modifies files, using whatever tools he desires. While

the modification activity is in progress, the files in S are not available to other

modification activities.

Termination. When the developer is satisfied, by whatever criteria are appropriate,
that the modification activity is complete and its result. can be made available,

termination takes place. Provided that the merge is safe, the termination activity

replaces the contents of P with P @ S.

If P @ S would not be safe, a reconciliation activity is needed. Its purpose is to

resolve the collisions that rendered the merge unsafe. Reconciliation of stores S
and P introduces a new intermediate store I between them in the hierarchy. I

is initialized to contain copies of the files in P. The developer must process the

relevant files in I to incorporate the conflicting changes in S, ensuring that all

changes are integrated and none are lost. Files in both S and I are accessible

during this activity, but only files in I can be modified. For the purposes of this

paper, the manner in which conflicting changes to individual files are reconciled and
integrated is irrelevant.’

Once reconciliation is complete, the store S is discarded. The termination activity

can then resume, this time merging I into P. If new collisions occur, due to addi-

tional changes made to P while the reconciliation activity was in progress, another

reconciliation activity is needed. The termination activity completes only after the

merge P @ S is safe. Once that has occurred, all changes made by the modification

activity, and by any associated reconciliation activities, have been integrated into

store P.

‘In practice one will usually use an existing store whose modification activity
has terminated, so as to limit the amount of copying required. All that is said of
the newly created store is true of an existing store whose modification activity has
terminated.

‘Various tools provide assistance with collision integration. For example, by
computing differences of text files [Tich85] or by using data flow analysis [Reps88].

CSCW 90 Proceedings October 1990

163

3.2 Encoding of Modification Histories

In a context where all file transfer is in the form of safe merges between parent and

child stores in a hierarchy, the modification histories needed to determine derivation
relationships between files can be encoded as a pair of bounded integers, (pn,cn).

The numbers are called the “parent number” and the “child number” respectively.

If f is a file, we use pn(f) and en(f) to d enote the parent and child numbers of its

modification history. Let S be a store, let P be S’s parent in the store hierarchy,

and suppose f. E S, f, E P, and n/(f,) = n/(fp). The following invariants are
maintained by our implementations of merges and modifications:

f. is detived from f, -S pn(f,) = cn(f,)

f, is derived from f, e pn(f,) = cn(f,)

Details are given elsewhere [HarrSO]. A n additional property of this encoding is

that a file f has been changed by the current modification activity if and only if

cm # P(f)-

4 RELATED WORK

Several models of software development have been proposed that are sufficiently
different from ours that the issue of coordination consistency do not apply. The

Xerox PARC System Modeller [Schm82], f or example, was designed to deal with

multiple developers working on different components of a system, but specifically

did not deal with multiple developers working on the same component.

The work by Reps, Horwitz, and Prins [Reps88,Horw88] uses data and control flow
analysis to determine interference of parallel versions of a file from a base version.

Their focus is on providing assistance with the reconciliation of conflicting files; they

do not address the problem of enforcing coordination consistency. Their model of

software development assumes a global check-in-check-out librarian.

Another model, initially presented by Kaiser, Kaplan and Micallef [Kais88] and

further developed to incorporate version control and configuration management by

Micallef and Kaiser [Mica88], statically partitions the software system, placing each

partition into a separate store. Static semantic analysis is used to check consistency

of the system, The static partitioning ensures that all merges are automatically

safe, but makes it difficult for developers to make changes that span partitions.

Our protocols facilitate “spanning changes” and check coordination consistency at

merge time. The relationship between coordination consistency and static semantic

consistency is a topic for future research, to be discussed in Section 5.

The Gordion system [Ege87] p rovides transactions and hard and soft locks as con-

currency control primitives. Soft locks can be broken, with immediate or delayed

notification of the lock holder. Hornick and Zdonik have proposed a wider vari-

ety of locks and notification mechanisms [Horn87]. Primitives such as these are

mechanisms upon which concurrency control protocols can be built; the focus of

this paper has been formalization of the properties that such protocols should have.

Protocols that realize these properties can be built upon the primitives described

above, though reliance on locking implies that development cannot continue if the

central lock handler is inaccessible.

CSCW 90 Proceedings
-

October 1990

164

Recent work by Kaiser [KaisSO] explores a transaction model that allows more flexi-
bility than does full serializability. Ellis and Gibbs [Elli89] describe an algorithm for

ensuring precedence and convergence properties in groupware systems. No transac-

tions or locking are involved. Instead, operations are transformed when necessary;
the algorithm must know some semantics of the operations. Both of these models

are based on a much finer-grained sharing of low-level elements and a much tighter

interaction between developers than is envisioned here.

Some systems provide check-in check-out facilities and version control, but make no

attempt to ensure consistency across files. Tichy’s RCS [Tich85] and Rochkind’s

SCCS [Roth75], f or example, provide support for maintaining text files that evolve

from each other and for selecting versions of text files. The unit of granularity is

the individual text file. These systems do not provide support for encapsulating

a set of files into an entity that can be manipulated as a unit. Interleaving of

checking in and checking out of files between modification activities is possible,

as is checking in or out of arbitrary subsets of files. Of the three coordination
consistency properties, such systems guarantee change-serializability, but neither

completeness nor atomicity.

Some more advanced systems do provide facilities for treating groups of files as units.

Sun Microsystems’ Network Software Environmentz” (NSE) [Sun881 and Apollo’s

DOMAIN Software Engineering Environment [Leb185] are examples. They both

provide tools for configuration management. These tools are built on top of a version

control system and provide a means to specify the components of a software system,

the interelationships between the components, and the version of each component

that is to be used. The semantics of how a set of changes are incorporated into a

store does not ensure coordination consistency, however.

Of the two, NSE is the most closely related to our work. NSE provides support

for concurrent program development that is based on working sets that are analo-

gous to our notion of a store. Although in their software development model any

working set can reference any other working set, their working sets are typically

organized into hierarchies of release, integration, and development working sets.’

NSE provides a detection protocol that is analogous to ours (we do not, however,
require that the sequence numbers encoding modification histories be time stamps,

nor do we require clock synchronization in a distributed computing environment).

However, components partition the software system and are the units of transferral

between working sets. When discussing RCS and SCCS we observed that partial

or interleaved check-in and check-out operations on files can violate coordination

consistency. Similarly, partial or interleaved operations on separate components in

NSE can violate coordination consistency when modification activities occur that

span multiple components.

5 FUTURE RESEARCH

The notion of coordination consistency defined in this paper attempts to capture

consistency requirements for effective concurrent development without reference to

the details of the artifact being developed. Coordination consistency is not a prop-

erty of a set of files; it is a property of the development process giving rise to those

files. It is also important to consider internal consistency of the files in the set. We

call this self consistency. Different definitions of self consistency are appropriate

for different systems and languages. Some examples are: consistent by definition

‘Software releases are related by a connection between their corresponding re-
lease working sets in the hierarchy.

CSCW 90 Proceedings October 1990

165

(trivially-consistent), consistent by developer’s assertion (asserted-consistent), con-

sistent with respect to cross-file links as in RPDES (link-consisient), or consistent

with respect to uses and definitions of resources (use-def-consistent).

Self consistency is a property of a set of files, and is independent of the devel-
opment process giving rise to those tiles. In general, neither self consistency nor

coordination consistency implies the other. However, corresponding to any cho-

sen notion of self consistency, E, there is a derived notion of consistency called

coordinated-z-consistency. Coordinated-z-consistency is a property of a file set re-

sulting from an activity lattice of modification activities and merges. The relation-
ship of coordinated-z-consistency to incremental checking of z-consistency, and the

additional information required to track and verify the preservation of c-consistency

through safe merges, are topics of great interest to us.

6 SUMMARY

In this paper we have:

1. Developed a formal model for defining the activities of importance in coordi-
nating concurrent development.

2. Defined the notion of coordination consistency to consist of three properties:
change-serializability, completeness and atomicity.

3. Demonstrated that concurrent development consisting only of isolated modi-

fication activities and safe merges preserves coordination consistency.

4. Briefly described the RPDES protocols for performing concurrent development

using a hierarchy of stores. E ac h modification activity occurs in its own store,

and all file transfers are in the form of safe merges between parent and child

stores.

5. Described an encoding of modification histories as a pair of bounded integers
that is appropriate in the restricted world of the RPDES protocols.

REFERENCES

PkW Aral Ege and Clarence A. Ellis. “Design and Implementation of GOR-
DION, an Object Base Management System.” In Proceedings of the Third

International Conference on Data Engineering, IEEE Computer Society,

pp. 226-234, February 1987.

[Elli8 93 C. A. Ellis and S. J. Gibbs. “Concurrency Control in Groupware Sys-

tems.” In Proceedings of the International Conference on the Manage-

ment of Data, ACM SIGMOD, pp. 399-407, June 1989.

[HarrSO] William H. Harrison, Harold Ossher, and Peter F. Sweeney. “Coor-

dinating Concurrent Development of Software.” IBM Research Report

RC15514, February 1990.

[Harr89] William H. Harrison, John J. Shiing, and Peter F. Sweeney. “Good

News, Bad News: Experience Building a Software Development Environ-
ment Using the Object-Oriented Paradigm” In OOPSLA’89 Conference
Proceedings, ACM, pp. 353-361, October 1989.

CSCW 90 Proceedings October 1990

166

[Horn871 Mark F. H ornick and Stanley B. Zdonik. UA Shared, Segmented Memory

System for an Object-Oriented Database.” ACM Transactions on O&e

Information Systems 5(l), pp. 70-95, January 1987.

[Horw88] S. Horwitz, J. Prins, and T. Reps. “Integrating Non-Interfering Versions

of Programs,” ACM T runsactions on Programming Languages and Sys-

tems 11(3), pp. 345-387, July 1989.

[Kais88] Gail E. Kaiser, Simon M. Kaplan, and Josephine Micallef. “Multiple-User

Distributed Language-Based Environments.” IEEE Software, pp. 58-67,

November 1987.

[KaisSO] Gail E. Kaiser. “A Flexible Transaction Model for Software Engineering.”

In Proceedings of the Sixth International Conference on Data Engineer-

ing, pp. 560-567, February 1990.

[Leb185] David B. Leblang and Gordon D. McLean, Jr. “Configuration Manage-

ment for Large-Scale Software Development Efforts.” In Proceedings of

the Workshop on Software Engineering Environments foT Programming-

in-the-Large, pp. 112-127, June 1985.

[Mica881 Josephine Micallef and Gail E. Kaiser. “Version and Configuration Con-

trol in Distributed Language-Based Environments.” In Proceedings of the

International Workshop on Software Version and Configuration Control,

Teubner Verlag, Stuttgart, FRG, pp. 119-143, January 1988.

[Pu88] Calton Pu, Gail E. Kaiser and Norman Hutchinson. “Split-Transactions
for Open-Ended Activities.” In Proceedings of the Fourteenth Interna-

tional Conference on Very Large Data Bases, pp. 26-37, August 1988.

[Reps881 Thomas Reps, Susan Horwitz, and Jan Prins, “Support for Integrating

Program Variants in an Environment for Programming in the Large.”

In Proceedings of the International Workshop on Software Version and

Configuration Control, Teubner Verlag, Stuttgart, FRG, pp. 197-216,
January 1988.

[Roth751 Marc J. Rochkind. “The source code control system.” IEEE Transactions

on Software Engineering SE-l(4), pp. 364-3’70, December 1975.

[Schm82] Eric E. Schmidt. “Controlling Large Software Development in a Dis-

tributed Environment.” Xerox PARC Technical Report CSL-82-7, De-

cember 1982.

[Schw88] Robert W. Schwanke and Gail E. Kaiser. “Living with Inconsistency

in Large Systems.” In Proceedings of the International Workshop on

Software Ve’ersion and Configuration Control, Teubner Verlag, Stuttgart,

FRG, PP. 98-118, January 1988.

CSCW 90 Proceedings October 1990

167

[Sun88] Sun Microsystems. “Introduction to the Network Software Environ-

ment?” .” Part No: 806-2362-10, Revision A of 12 August 1988.

[Tich85] Walter F. Tichy. “RCS - A System for Version Control.” Software-

Pradice and Experience 15(I), pp. 637-654, July 1985.

[West871 Brian A. Weston. “Segmenting an Object-Oriented Database.” IBM Re-

search Report RC12662, April 198’7.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying

is by permisssion of the Association for Computing Machinery. To COPY otbewk, or to republish, requires a fee and/or specific permission,

@ 1990 ACM 089791-402-3/90/0010/0168 $1.50

CSCW 90 Proceedings October 1990

168

