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A b s t r a c t  

We propose a total framework tbr the software devel- 
opment stages of specification (definition), design and 
coding. This framework is based on three cornerstones: 
(a) the concept of software development graphs which 
specify all the stages and steps of development; (b) the 
use of formal methods, in our case VDM, the Vienna 
Software Development Method, in all stages and steps 
of development; and (c) the clearly separate rSles of 
theoretical computer scientists, progroamners, software 
engineers, and development managers in all aspects of 
software development. Thus not only progralmnJng is 
formalised (ie. programs considered formal objects), 
but also development, its engineering and management 
(ie. the entire programming itself is also considered a 
formal object about which to reason). 

P e r s o n a l  P r e l u d e  

I have been asked to relate 14 years of experience in "us- 
ing formalisms in software engineering". I have chosen 
to tackle this by proposing, as announced in the ab- 
stract,  a total framework for the development of soft- 
ware. We identify as many of the equally important  
factors which enter into development and map each of 
these aspects onto our model for software development. 
We do not use formalisms for the sake of being just for- 
nml. We use formalisms (1) because they appear to help 
structure more finely the development, (2) because they 
are the pr imary means we know of to help guarantee 
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correctness of software, (3)because developments that  
have used formalisms have been far more productive, by 
a 3-5 fold order of magnitude, than developments not 
using formalisms, and (4) because it is fun, including 
intellectually satisfying, to use formalism. An intrinsic 
part  of the formalism (VDM) we have developed and 
used is abstraction. Abstraction in defining (specify- 
ing) software, but also abstraction in its design. Tha t  
is: (1) first (specification) we abstract  from any imple- 
mentation and concentrate only on the [properties of 
the] functions we wish to exhibit to the user; (2) then 
(abstract design) we abstract  from _how the software 
achieves these functions by focusing our at tent ion on 
what the conceptual software components compute; (3) 
then (concrete design) we abstractly describe how the 
software computes, before (4) we finally code the soft- 
ware. Abstraction, and at these various levels, helps 
(1) "divide and conquer" the [seeming intrinsic] com- 
plexity of software, helps constructing (2) conceptually 
more transparent system implementations. Perhaps a 
few people can develop as beautiful systems without us- 
ing formalisms (although I doubt it), but we are here to 
develop methods for other than the unique geniusses--  
and, when all is said and done, only formal development 
can possibly give any trust in correctness of the software 
system. 

The paper is not technical. (1) The short time given 
(Dec.-Jan. 86) for writing the paper,  (2) four weeks 
of lecturing eolmnitments in this period (India, China, 
Japan and the USA), (3) the fact that  three other pa- 
pers also had to be written, (4) Christmas and New 
Year, and (5) spring course lecture prepara t ion- -a l l  
that may be a bad excuse. But I shall anyway beg 
the readers understanding. I do, of course, believe that  
I have touched, in this paper, upon crucial aspects of 
"the use of formalisms in software engineering". I have 
chosen to identify the very many facets, aspects and 
concepts that go into software development and I t ry 
to single out those that  can already be formalized, pre- 
senting the whole in such a way as to invite further for- 
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realization. I am not postulating unproven ideas. All 
of what is described below has been tried and shown 
desirable--only we still lack formal tools for their sup- 
port.  

S u l n l n a r y  

(Parts  i-iv below are found in sections 1-6.) 
There are six parts to this paper. The first five (i-v) 

parts  constitute more-or-less independent units which 
by their being strung together paves the way for the 
last part:  (vi) some reflections on what it takes to get 
the ideas generally p ropaga ted- -and  what hindrances 
there nfight be to this! First (i) we define the concepts 
of ' theoretical computer science', 'computing science' 
(or: 'progranmling methodology') ,  'software engineer- 
ing' and 'software development management '  and dis- 
cuss briefly the rSles of the following categories of soft- 
ware development personeh 'resident scientists', 'pro- 
granmlers ' ,  'software engineers', and 'managers ' .  Then 
(ii) we define the concept o f ' fo rmal  methods '  and coin- 
nlent on the state-of-the-art of the use of formal meth- 
ods in professional progranuning. We also define the 
kind of software projects and products to which for- 
nlal methods are applicable. Now (iii) follows a central 
part  of the paper in which we introduce the concept 
of software development graphs: these are acyclic, di- 
rected graphs whose nodes in general denote specifica- 
tion, design or coding activities leading to documents 
and whose edges in general denote activities motivat- 
ing and justifying designs wrt. specifications, code wrt. 
design, etc. Nodes with no input edges or "early" in 
the graph denote specification; nodes with no output 
edges, or "late" in the graph denote coding; interior 
nodes denote design. This concept of software develop- 
ment graphs is then (iv) discussed from several points 
of view: first from the quadruple facets of theoretical 
computer science, progranmling, software engineering 
and management;  then (v) from the point of view of 
its implications wrt. a total, not just syntax and prag- 
matics oriented, but also a semantics oriented software 
development support environment. The conclusion (vi) 
reviews the reality, "philosophy" and sociology of get- 
ting people to use formal methods. 

I n t r o d u c t i o n  

The abstract  and sununary has outlined our goal. In 
this introduction let us motivate and justify our ap- 
proach. 

Although the terms 'software crisis' and 'software en- 
gineering' seem to have been widely adapted as from 
1969 [Randell 69] we see little change, in industry (soft- 
ware houses, computer nlanufacturers progranuning 

centers), in the way of improvement.  Most develop- 
ments of tbr example Ada @ compilers went way above 
initial estimates, did not use any, or only "randomly" ,  
some of the very many formal techniques now avail- 
able, and, as a consequence, it seems, lead to unreliable 
products which are difficult and costly to maintain.  

In the years since 1969 a great number of formal tech- 
niques (by some even called methods) have been pro- 
posed, almost exclusively in academia- -wi th  very few 
of them actually being used in industry. We are here 
referring first to such techniques as (1) proving coded 
programs correct wrt. program annotations in the form 
of assertions using some fornl of Hoare Logic (Proof  Sys- 
tem), (2) formally defining software functions using ei- 
ther algebraic or denotational semantics, and (3) trans- 
forming programs from their specifications, via their 
design, into code. Within each of the above three areas 
(1-2-3) there is today an abundance of theory and also 
proposals for its practical exploitation. But,  coufing to 
the second part  of the first sentence of this paragraph~ 
very little of this is actually being used by industry. 

The reasons for this lack of adoption of formal tech- 
niques by industry seems not just to be a sociological 
one, but as well the lack of a firm total  method that  
offers some unifying framework for at least some of the 
techniques. The sociological reason for lack o f  accep- 
tance seems rooted in a number of factors: p rogram de- 
velopment managers belong to a generation who were 
either not taught computer science and progralmlfing, 
or were taught it in ways very different from what 
these more recent, formal techniques assume--which 
may again be different from the way the progrmmners,  
whom the managers are supposed to lead, were taught.  
The result is basically.that a lowest conunon denomi- 
nator concerning software (levelopment subconsciously 
emerges. In this there is no room for formal techniques. 
The gap between formM techniques offered by research 
and the "techniques" of industrial software development 
is widening! 

In contrast to this we see the existence of more 
and larger computer science departments producing not 
only interesting computer science results, and many 
candidates fornmlly trained in these, but Mso, I claim, 
an undersupply of results in progranmfing methodology, 
especially as concerns the 'method '  aspects of put t ing 
'techniques' together. 

It is a telling, at times a disturbing, sign that  most 
of the so-called 'methods '  being propagated were ba- 
sically created in smaller software houses, a n d  by in- 
dividuals with little or no inclination towards consid- 
ering a formal basis for their work. Thus most  of 

~ A d a  is a registered trademark of the US Government (Ada 
JoinL Progranmle Office) 
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these methods (with the refreshing, notable exception 
of JSP / JSD [Jackson 75,Jackson 83]) were not arrived 
at in the open, peer reviews environment offered by 
acadenfia, but in an industrial one driven by colmnercial 
motives. The revolutionary long range, far horizon pos- 
sibilities of formal, well-founded--openly critisized-- 
university research has been replaced by the evolution- 
ary, short range, here-and-now offerings of ad hoc- -a t  
times even zealously religious-proposals. 

It  is, on the background of the fanfare-like claims of 
above, therefore maybe a bit presumptious to now state 
that  the goal of this paper is to narrow the gap between 
the oftentimes exotically beautiful semantic results of 
acadelnia and the always pedantic syntactic and prag- 
matic  concerns of industry: in short to propose a freane- 
work, a method for " total"  development, where ' to tal '  
is taken to mean: the full span from functional specifi- 
cation to coding, the full spectrum from managers, via 
software engineers and programmers,  to project 'resi- 
dent'  scientists, and the full force of all applicable theo- 
retical results applied to the entire span and spectrum. 

1 The  C o m p u t a t i o n  Sciences and 
The  RSles of Developers  

In this section we take a look at the professions and 
the professionals of our field (of software development). 
The aim is to provide a more refined understanding of 
the internal setting in which software development takes 
place. [The external setting, having to do with cus- 
tomer relations, will not be dealt with here.] We believe 
that  a more finely grained decomposition of sciences and 
engineering, and the rSles of people outlined below, is 
beneficial to development. We cannot, obviously, prove 
this, but we can refer to developments [Oest 86] which, 
embodying the spirit of this decomposition, have been 
not only successful in leading to trustworthy software 
developed in time and within resources--all at a level 
far bet ter  than compeditive developments, but which 
were also "fun" projects: intellectually satisfying, and 
projects in which all the staff had confidence. We at- 
tr ibute part  of these successes to an understanding of 
the aspects treated in this section. We attr ibute re- 
maining parts to having used a formal 'method '  (in this 
case VDM), and to having formed an odyss6e of four 
years of development around a clearly accepted software 
development graph. But first things first. 

1.1 T h e  C o m p u t a t i o n  S c i e n c e s  

The computation sciences and engineering consists here 
of" computer sciences, computing science, software- and 
hardware [computer] engineering. 

[Theoretical] Computer Science  

Theoretical computer science is the study of programs: 

- - o f  what is computable (meta-mathematics ,  com- 
putability theory, . . . ) ,  of how complex it is to com- 
pute things (algorithm analysis, complexity theory), of 
the mathematlcal  foundation for various abstractions 
of computing (automata  theory, formal language the- 
ory, net theory, fix point domain theory, denotational 
senmntics, algebraic semantics), and of the foundation 
of the reasoning that  goes on in programming (proof 
systems, Hoare Logics, . . .  ), etc. 

C o m p u t i n g  Sc ience  - -  or Programming Sc ience  
a n d  Methodology 

Computing science is the study of programnffng: 

- -o f  the methodologies, languages, techniques and tools 
that go into the development of software: requirements 
analysis and definition; functional and non-functional 
specification; program traalsformation; of the special 
development techniques required in order to secure re- 
liable, robust, fault-tolerant, and secure software; and 
coding. 

S o f t w a r e  E n g i n e e r i n g  

Software engineering is the practice 
of programs and progranmffng: 

---thus it includes the syntactic and pragmatic  hmnan 
as well as mechanical (tool-building and tool use) con- 
cerns of how to produce, validate, control and monitor  
documents needed in th~ software development process, 
not just from the point of view of supporting these pro- 
cesses mechanically, but also of securing interaction (the 
social processes) between people: customers/users and 
developers, and between developers. 

We thus define the concept of Software Engineering 
more narrowly than is done usually. The IEEE defini- 
tion, for example, encompasses our Computing Science. 

1.2 D e v e l o p e r  R61es  

P r o g r a m m e r  

When a person is concerned with the s e m a n t i c  as- 
pects of the progranmfing process, for example: which 
functional properties to capture in abstract  specifica- 
tion and which to focus on in concrete design and cod- 
ing, which formulation to give development documents, 
what they mean, how to verify what documents de- 
scribe, and how to transform abstract  descriptions into 
more concrete ones, then that  person is a progranuner,  
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and is programming. A progralmner proposes theories 
(with the theoretical computer scientist guaranteering 
these to exist). 

S o f twa r e  E n g i n e e r  

When a person is concerned with the syn t ac t i c  and 
p r a g m a t i c  aspects of the software development pro- 
cess, for example: with the non-functional, current 
technology constraints, the tracking of external design 
[constraint] requirements, the journalling of develop- 
ment documents, the creation and maintenance of ver- 
sions of specification, design and code documents, their 
configuration into products, and with the validation of 
non-functional requirements, then that person is a soft- 
ware engineer. The software engineer is a tool builder 
(with the tools always reflecting a new instance of a 
methodology, but bound by current technology con- 
straints and theoretical know-how). 

P r o g r a m m e r  vs.  So f tware  E n g i n e e r  

The software engineer "harnesses" the laws of nature, 
the progranuner the laws of mathematics, computer and 
computing science. The software engineer interfaces 
with the ever current limitations of hardware technol- 
ogy, the programmer with the always fixed laws of com- 
putability. The same person is at times a progranuner, 
at times a software engineer, and a good progrmmner 
knows exactly when transitions are made between the 
two activities, and when the assistance of a computer 
scientist is called for- - to  help secure the foundations of 
what is being described. 

2 O n  S o f t w a r e  D e v e l o p m e n t  a n d  
o n  S o f t w a r e  S y s t e m s  

This section has two parts. In sections (2.1-2-3) we 
speak of formal methods, and in sections (2.4-5-6) we 
speak of the properties and qualities of software prod- 
ucts and development projects, the object and carrier 
of the formal methods. 

The aim of this section is first to define (sect. 2.1) 
the concepts of 'method'  and of 'formal method'  as they 
relate to software development, to motivate and justify 
(sect. 2.2) why it is necessary to use formal methods 
(techniques and tools) whereever possible in all facets 
of software development, and (sect. 2.3) to briefly nom- 
inate one 'formal method'  candidate that has stood the 
test of being applied widely, in Europe, in industrial 
environments. Maybe not in full formality, but then 
systematically. The first section (2.1) will therefore de- 
fine the additional modifiers: 'systematic' and 'rigor- 
ous', and section (2.3) will briefly outline what, in the 

form of the DDC/STC/NBB European Common Mar- 
ket ESPRIT 315 RAISE project [Meiling 86], is being 
done to offer a method that will satisfy more of the 
industrial software development needs as they are out- 
lined in the second part of this section. 

In section (2.4) we list the properties of software (sys- 
tems} that the formal methods must cater for, and in 
section (2.5) {:he qualities of respectively the project 
and its resulting software product. Finally, in section 
2.6, we itemize some, but not all those informal compo- 
nents that seem necessary, in addition to using formal 
methods, to help secure the properties and qualities. 

2.1 O n  S y s t e m a t i c ,  R i g o r o u s  a n d  F o r m a l  
M e t h o d s  

By a 'method'  we shall understand a set of proce- 
dures (guidelines) for selecting and sequencing the use 
of 'techniques' and 'tools' in order to construct an cer- 
tain artifact. By a 'formal method'  we shall understand 
a method (i) in which all of its constituent techniques 
and tools are formal, ie. is given a precise mathemat-  
ical meaning, and (ii) in which the use of the meth- 
ods and the techniques can be justified formally. We 
elM~orate on pt. (ii). To be formal it must be possi- 
ble to reason mathematically (logically) about the pro- 
grams produced (be they abstract, in the form of def- 
initions or specifications, or less abstract,  say in the 
form of designs, or be they executable, in the form 
of code)--hence the requirement for formal techniques 
which are thought of as applying to individual, or ad- 
jacent pairs of steps of development. But that is not 
enough. To be formal it must also be possible to reason 
about the development itself--as we shall see in section 
4--hence the requirement for formal methods, where 
the method part: the orderly selection and sequenc- 
ing, speaks about progranuning. Thus we consider not 
only programs as formM objects, but also programming, 
the process, is seen as a formal object, likewise subject 
to reasoning. Tools are such things as the notational 
systems (specification and design languages) used, and 
the mechanical aids needed to support clerically (syn- 
tactically), semantically and pragmatically the use of 
the method and its techniques. By techniques we un- 
derstand amongst other such things as by what princi- 
ples do we (1) specify abstract definitions, (2) transform 
these into designs, and designs into code, (3) prove such 
transformations correct, and (4) discharge other proof 
obligations in general. 

The l.ools to support the techniques and the method 
must hence be formally explicable. That  is the over- 
all architecture of the full tool support system must 
transpire from formally expressible properties of the 
method, and likewise for sub-tools vs. techniques. 
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We say that a development is formal if all steps of 
development: definition, design and coding are carried 
out formally, and if all proof obligations arising from 
this development are discharged. 

We say that a development is rigorous if it lacks be- 
ing formal by the absence of actual, ibrmal proofs. That  
is: we are rigorous when we follow the method stcps: 
specify, design and code, and when we formally relate 
development stages in the form, for exmnple of injec- 
tion relations, abstraction functions, adequacy or im- 
plementability predicates, and theorems of correctness, 
but onfit the detailed proofs. 

We say that a development is systematic if it lacks 
being rigorous by the onfission of formal relations be- 
tween stages of development. 

(Our distinction between 'rigorous' and 'systematic' 
is not consistent with the usage of the same words in 
[Jones 80,Jones 86].) 

Thus, to us, the spectrum formal- rigorous- 
systematic, is one within which we wish our develop- 
ment to take place--supported, whenever possible by 
the availability of formal tools. 

2 .2  J u s t i f y i n g  F o r m a l  M e t h o d s  

Before costly software development, like for example 
that of compilers, operating systems, database manage- 
ment systems, local and wide area nets and distributed 
systems, incl., components of ISO/OSI, before devel- 
opment of such software takes place we assume (as a 
dogma) the creation of a specification. Just like the 
architects conceptions and drawings of a building, a 
specification serves (1) as a "legal" contract between 
customer and developer, (2) as a basis for development, 
and (3) as a basis for the writing of customer/user man- 
uals. Of a specification we expect that it be (4) con- 
sistent and complete, (5) short and concise, (6) accessi- 
ble and referenceahle, and (7) so expressed that formal 
properties of resulting software can be proved wrt. the 
specification--an example is: correctness. As a con- 
sequence of especially requirements (1,2,4,5,7) we con- 
clude that the specification must be formalized--albeit 
in such a way that requirements (3) and (6) will be met. 

[Bjorner 85a] elaborates on the points made above in 
the light of the DDC/CRAI/CNR and Genoa Univer- 
sity development of a full, formal mathematical defini- 
tion of Ada. 

2 . 3  O n e  " F o r m a l "  M e t h o d  

The VDM (Vienna Development Method) first emerged 
in the 
IBM Vienna Laboratory around 1973-74 (through the 
work on constructing a compiler for PL/I [Bekid 74]). 

VDM was subsequently further developed as wit- 
nessed, tbr example by the text books and monographs: 
[Bjorner & Jones 78,Jones 8O,Bj0rner ~: Jones 82,Jone 
A set of 5-6 volumes on" all aspects of VDM is presently 
being readied for publication by 1988 [Bj0rner 88]. 

VDM has been used in many development projects, 
mostly only systematically. The most notable such de- 
velopment must undoubtedly be the Dansk Datamatik 
Center development of the DDC Ada Compiler Sys- 
tem [Bj0rner & Oest 80,Oest 86]. A growing number 
of european companies are using one or another as- 
pects of VDM. As a consequence of this (and, it may 
be said, the success of the DDC Ada Compiler), the 
EEC (European Economic Conununity) has established 
a VDM-Europe Forum whose industrial and academic 
menfl)ers meets 3-4 times annually to discuss issues of 
(1) experience in the use of VDM and its applications, 
(2) training and education requirements, (3) tools, (4) 
formal foundations and (5) facets of VDM potentially 
subject to industry standardisation. The VDM-Europe 
Forum held its first open symposium March 23-26, 1987 
[Bj0rner et al. 87]. 

VDM is basically a Denotational Semantics (ie. 
model-theoretic, constructive/based method. Facets of 
VDM is (1) its wide-spectrmn specification and design 
language: Meta-IV [Bjorner & Jones 78], (2) a great 
number of operation decomposition and data reifica- 
tion techniques [Jones 80,Jones 86]. Meta-IV, in its 
full extent, is not a formal language, but large sub- 
sets of Meta-IV can, or have, been given a formal se- 
mantics, and parts have been given a formal proof sys- 
tem (see papers in [Sjorner et al. 87]). VDM is appli- 
cable to the specification, design and coding of deter- 
nfinistic systems. Some applications have been made to 
non-deternfinistic system% £nd operational extensions 
of Meta-IV, to include CSP features [Foll(jmr 80] have 
been used to develop concurrent and distributed sys- 
tems. 

But VDM, in its present stage, is not good 
enough! One wants full formality~ or at least to 
strive for far more formality in the use of VDM. The 
DDC/STC/NBB RAISE project sponsored in part by 
the EEC ESPRIT programme attempts to remedy 
the wider range shortconfings of VDM. The RAISE 
Specification and Design Language features (1) alge- 
braic specification and design structuring facilities (ab- 
stract data types and data type operations: enrich, de- 
rive, combine, abstract and apply), (2) concurrency in 
the [orm of trace assertions and CSP, (3) a full, for- 
mal semantics, and (4) a proof system. The RAISE 
Method offers a comprehensive set of development re- 
finement principles--centered around a fully developed 
data model for all stages and facets of development 
be they of concerns to programmers~ software engi- 
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neers or project management. Reference [Meiling 86] 
offers a comprehensive introduction to RAISE while 
[Bj0rner 85b] offers a r61e and scope (requirements ori- 
ented) view of RAISE. 

2 .4  S o f t w a r e  P r o p e r t i e s  

We wish to develop software for (a) deternfinistic as well 
as (b) non-deternfinistic, (c) sequential as well as (d) 
concurrent systems, and for systems that function in (e) 
real-time and are (f) distributed. We wish the software 
for these systems to be (1) fit for their purpose, (2) cor- 
rect wrt. specifications, (3) reliable, (4) fault-tolerant, 
(5) secure, (6) maintainable, and (7) robust. Reliable 
software clearly rejects in-data not specified as input. 
Fault Tolerant software repairs or "corrects" erroneous 
in-data (to "nearest" specifiable input) and also detects 
and corrects or by-passes spurious, internfittent changes 
in stored data (or program). Secure software systems 
prevent un-authorized users from finding out (i) what 
the systems are doing, and (ii) how they are doing it. In 
addition a secure system prevents un-authorized users 
from (iii) preventing the system to do what it is doing, 
and (iv) leaves them not knowing whether they know (i- 
ll-ill-iv)! Assuming that some measure of a reasonable 
change in functionality, or other, of a system, its soft- 
ware is said to be maintable if resources required for 
insertion of these changes can be precisely estimated 
and in some (here unspecified) way are connnensurate 
with the changes. Software is robust if any changes to 
it does not alter any of its properties (1-7)! 

The usefulness of formalisms in tackling all aspects 
(1-7) remains to be proven. Certainly aspects (2-3-4) 
seems separately obtainable [Ravn 86], and aspects (6- 
7) seems to result from using conceptually clean defini- 
tions and homomorphie transformations of these. But 
there is still a long way to go before we can fully guar- 
antee all aspects fully satisfactorily! 

2 .5  Q u a l i t y  A s s u r a n c e  

We distinguish between qualities of a project and of its 
resulting product. 

For a project to be a quality we require that it be (1) 
resourceable and predictable, ie. that,  based for exam- 
ple on a complete and consistant software development 
graph, one can correctly estimate all required resources. 
people, machines, and finances--month-by-month; (2) 
controllable: there must be an objective principle by 
which one can monitor, and if need be, alter consump- 
tion of resourcesl (3) economical: there must be some 
measure of affinity between budgeting, financing, ac- 
counting and (expected) results; (4) secure: the project 
must lead to expected results~ and (5) fun: the project 

staff nmst trust that management has full authority and 
that they are intellectually, educationally and traning- 
wise enriched by the project. 

For a product to have quality it must satisfy points 
(1-7) of section 2.4 above. 

Quality assurance is the the twofold act of securing 
both full project and product quality. 

We may be able to formally support achieving prod- 
uct quality. The informal points raised in section 2.5 
and the formal one of sections 3-4 are believed to indi- 
rectly help achieve project quality. 

2.6 P r o j e c t  C o m p o n e n t s  

A number of project components, in addition to the 
proper, actual specification, design and coding devel- 
opment steps, have been found necessary to help guar- 
antee a high project and product quality. Since they 
are not normally thought of in the context of software 
developlnent we list and briefly explain them here. 

The first activity is that of defining the project it- 
sell This activity is, in our case, centered around (1) 
the stepwise development of the software development 
graph of the project--see sections 3-4. Two activities 
are then started, activities which run the entire dura- 
tion of the project: establishing and maintaining, (2) a 
Ternfinology, and (3) a library. 

2.6.1 T e r m i n o l o g y  

Today most software [development projects] introduce 
a number of new concepts, and build as well on previ- 
ously established concepts not quite fully established. 
It therefore seems important to create (electronically), 
maintain and throughout the project to adhere to a 
Ternfinology: a set of precise definitions of concepts 
used and introduced. The importance of establisehing, 
maintaining (incl. adjusting) and adhering to a Termi- 
nology was emphasized, to me, by Peter Naur - -whom 
I hereby gratefully acknowledges. Misunderstandings 
concerning meanings of names of concepts, vagueness as 
to their meaning, etc. is most damaging to the pursuit 
of a project. The discipline of establishing, maintain- 
ing and adherence to a Ternfinology is an intellectually 
most rewarding (educating and liberating) activity. 

In a sense a Terminology is a formal object in that it 
focuses on precision and economy, ie. conciseness. 

2.6.2 L i b r a r y  

In pursuing each step of a project scientific, technical 
and other papers (reports and publications) are stud- 
ied: discarded or used. A Library of all such is built, 
for subsequent reference and for full project documen- 
tation. By a Library we understand a three part:thing: 
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(1) a schema which taxononfically structures the bib- 
liography; (2) an annotated bibliography, ie. a list of 
entries, each not only containing a proper literature ref- 
erence, 5ut also, as the project goes on, an acctunulative 
set of annotations concerning the disposition of the ref- 
erence (its value to the project, etc.); and (3) the paper 
collection itself. 

Similarly (to the Terminology) a Library becomes a 
formal object. 

2 . 6 . 3  S t u d y - E x p e r i m e n t - A c t l o n  

Each component of the development proper, to us 
consists of three phased activities: study-experiment- 
action. Their resource consumption and time duration 
typically are 1-2-8. In the first, the study phase, M1 
project component members study what they believe 
is the literature relevant to the project component at 
hand. Colloquiae presentations, by all members, iden- 
tify those ideas and techniques that might be of inter- 
est to the project. These are further investigated in the 
next phase where experiments (in either specification, 
design, or coding) involving these ideas and techniques 
are pursued. That  is: applied to small, but difficult as- 
pects of the problem. Finally, enough confidence as to 
the technical choices to take should transpire from the 
study-experiment phases, and a full scale application 
to the "real" problem takes place--in this, the action 
phase. 

The study-experiment-action scheme is explicitly 
aimed at furthering the use of formal techniques. 

/k C o n c r e t e  Software Deve lop-  
m e n t  Graph  

A Software Development Graph 
[Bjorner 86a], [Bjorner 865] is, syntactically speaking, 
a finite, cycle-free directed graph. Nodes denote soft- 
ware development activities which are parts of speci- 
fication, design and coding. These activities lead to 
specification, design or coding documents. Edges like- 
wise denote activities which (first) nmtivates and (sub- 
Sequently) justifies the step of development designated 
by the node-edge-node triple identified by the edge. The 
activities are performed by a combination of program- 
mers, scientists, software engineers and managers. The 
documents are usually formal. 

Software development graphs can be abstract, but 
meaningless, as in Fig. 3.1, or software subject related, 
as in Fig. 3.2. 

We briefly, for the sake of fanfiliarizing you with con- 
cepts of software development graphs, review the latter 
graph based on a VDM usage. 

½ 

I_: 

Programming Language Definition: Abstract 
Syntax, Static and Dynamic Semantics 

Run-time Data-structure and Mechanical 
Operation Representation Design 

Implementation Language Coding 
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We assume a BNF grannnar for syntactic Ada given. 
From it (etc.) we develop an Ahstract Syntax, a set 
of domain equations, in Meta-IV, which ahstracts away 
from such considerations as keywords, linear sequence 
of objects (like declarations whose linear ordering is ac- 
cidental and which have no meaning). From the Ab- 
stract Syntax we develop, as abstractly as possible, both 
a Static Semantics, and a Dynamic Semantics, both in- 
cluding treatment of concurrency, etc. Together these 
four nodes (and their intervening edges) represent the 
specification part  of development. Now follows, in gen- 
eral, a number of design stages. First we focus our de- 
velopment at tention on what to do in the (increasingly) 
more concrete, then on how to perform the so-designed 
functions. That  is: we first develop more concrete, se- 
quentialized version of the Static Semantics (called Se- 
mantic  Analysis), and more operational, or mechanical, 
versions of sequential aspects of the DynalniC Semantics 
(called Mechanical or Macro-Substitution Semantics). 
The lat ter  exhibits fundamentals of the run-time struc- 
ture of [Ada] programs. From the Mechanical Dynamic 
Semantics we first may derive the definition of a Vir- 
tual Target Machine, a machine "optimally" suited tbr 
executing programs in the source language (viz.: Ada); 
or such a Target Machine (viz.: DEC VAX) is already 
given. From the Target Machine definition and the Me- 
chanical or Operational Dynmnic semantic Semantics 
is derived a so-called Compiling Algorithm. This latter 
defines the exact sequence of target machine instruc- 
tion to be generated for each (schematic) source lan- 
guage construct. Froln the concrete what of the front- 
end (Semantic Analysis) and the back-end (Compiling 
Algorithm) we develop the, possibly Multi-Pass Struc- 
ture of the compiler, all the intermediate languages, and 
the Multi-Pass Adllfinistrator. Froln the Dynanfic Se- 
mantics is also derived a concrete description of what 
to handle in tasking; and from this and the Target Ma- 
chine definition is developed a design for the Run-Time 
(Target) System. This concludes the design. From re- 
spective design nodes is finally developed the actual 
coding of the compiler and run-time system. 

Each of the nodes can, using VDM in general, be 
refined into a subgraph of eight nodes, see Fig. 3.3. 

To each of the nodes and edges correspond a well- 
defined set of formal techniques. 

We explain these, in general, for each of the four ar- 
eas: progranuning, engineering, management and the- 
oretical computer science; but first we take a general 
look at graphs. 

3. Auxiliary Function 6, Auxiliary Function 
Definitions 7. Semantic Definitions 

Function Types 

8. Semantic 
Function Definitions 

The Oenotational Semantics Case 

Fig.3.3 

4 On Software D e v e l o p m e n t  
Graphs in General  

4.1 G r a p h  D e v e l o p m e n t  

M e t a - G r a p h s  

To each ("equivalence") class of software there corre- 
sponds a meta  software development graph. A meta  
software development graph thus describes how to de- 
velop a whole class of "similar" software. The graph 
above is a meta-graph for the development of compilers 
of the ALGOL/Pascal  class but with tasking (processes, 
concurrency). Thus it is valid for the development of 
compilers for such languages as Concurrent Pascal, Pas- 
cal Plus, CHILL, occam @, Modual-2, and Ada. Other 
classes exists: one graph~ 5asically is needed for the de- 
velopment oi, say, UNIX operating systems, or LANs 
(local area nets), or Relational Database  Management  
Systems, etc. Meta-graphs are thus generic and their 
structure and meaning is the result of research and 
should be arrived at by university or industry scientists. 

P r o j e c t  G r a p h s  

The software industry when faced with the s tar t  of 
development of software selects an appropriate  nleta- 
graph i~om which it develops a project graph. The 
project graph is a possibly enriched or derived version 
of the meta-graph together with its four classes of anno- 
tations. These lbur classes are those giving at t r ibutes  
of nodes and edges a-priori defining the tasks ahead for 
programmers, software engineers, managers and "resi- 
dent" scientists, as well as a-posteriori remarks describ- 
ing major  properties of the software development, also 

~)occam is a registered tradelnark of inmos Ltd. (UK) 
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for each of the four classes, as they transpired from car- 
rying out the project itself. 

We thus emphasize the importance of carrying out 
thoroughly the careful planning manifested by the act 
of assigning attributes. 

P r o d u c t  G r a p h s  

Software engineering spans from requirements tracking, 
testing to product engineering. For each configura- 
tion of versions (see section 4.2) there corresponds a 
product - -and to it a graph, a "version" of the project 
graph. Instead of certain, and in addition to other 
project (ie. process) annotations it additionally con- 
tains product (ie. result) attributes. 

4 .2  P r o g r a m m i n g  A t t r i b u t e s  

The primary attribute here is that of the method used 
in development (examples: VDM, HDM, HOS, JSD, 
RAISE, . . . ) .  This attribute pertains to an entire 
graph. On a node and edge basis we have, refer- 
ring here only to VDM related) secondary attributes. 
Nodes: specification techniques such as configuration, 
or resumption, or exit, or direct semantics--for mod- 
elling GOTOs and exceptions; flat location/value, flat 
location/structured value, or structured location/value 
storage model; imperative model; applicative model; 
primarily putative function definitions; primarily im- 
plicit (pre-/post-condition) function definitions; etc., 
etc. Edges: design tranformation techniques such as 
fold/unfold/abstract/ instantiate rule gruded transfor- 
mations; fully automatic transformation (ie. compil- 
ing); or manual transformations--the latter further an- 
notated with smmnary of theorem proving strategies 
and tactics; etc., etc. In case of non-VDM based devel- 
opment other attributes may be relevant. 

4 . 3  S o f t w a r e  E n g i n e e r i n g  A t t r i b u t e s  

There are here four primary attributes: (1) name 
and characteristics of the mechanized support system 
(tools); (2) the requirements tracking principles; (3) the 
test generation strategy; and (4) the journaling, version 
and configuration principle. Secondary attributes for 
each of the respective areas follows trivially. 

4 .4  M a n a g e m e n t  A t t r i b u t e s  

There are two a-priori, primary management attribute 
inputs: per node and per edge there is an estimate, in 
the form of a histogram, of per month (virtual time) 
manpower (machine, etc.) requirements (to do the 
node, respectively edge activity), and for the entire 

project (ie. its graph) there is a total available man- 
power (machine, etc.) histogram. A primary "out- 
put" is a mapping of required resources onto real time 
according to one of a number of allocation princi- 
ples and as constrained by the availability histogram 
[Lynenskjold 87]. 

There are other primary management attributes: 
principle for project monitoring and control including 
priority and reallocation schemes, principle for rolling 
plan (report) generation; etc. Monitoring includes fre- 
quency of sampling actually used resources; control 
stipulates principles for corrective or adjustment ac- 
tions (for over- or underuse of resources); and the rolling 
plan is a tabular presentation of these matters intended 
for use in (1) project management meetings, and (2) 
accounting. 

4.5 T h e o r e t i c a l  C o m p u t e r  S c i e n c e  A t -  
t r i b u t e s  

Nodes denote documents, and (specification, design, or 
code) documents denote theories. Edges denote map- 
pings, sometimes morphisms, between theories. The ex- 
act nature of the theories and mappings can be planned 
and the resulting documents checked wrt. these at- 
tributes. 

Usually specifications define total functions and 
hence usuMly requires reasoning in a 2-valued logic. 
Usually design docmnents define partial functions and 
hence requires reasoning in a 3-valued logic. Edges be- 
tween for example 2- and 3-valued logic "nodes" also 
denote institution morphisms. Some, usually specifica- 
tion nodes denote documents which define domains in 
a Scott theory of retracts, whereas other, usually de- 
sign nodes, denote docmnents for which a simple (set- 
theoretic) domain theory gL 1~ Blikle [Blikle 83] suffies. 
Many other computer science attributes could be listed. 

4 .6  R e m a r k s  

We have neither elaborated on project versus prod- 
uct attributes, nor on those attributes (of nodes and 
edges) which are assigned during the project proper. 
Nor have we systematically distinguished between ab 
initio developer input attributes and partially or fully 
derived (computed) attributes. There are many other 
attributes, attribute schemes and properties which we 
have not dealt with either! 

The whole point of assigning attributes and later, in 
development proper, adhering to their prescriptions, is 
to formalize as many aspects of development as is rea- 
sonM)le. This "disciplining" gives freedom during ac- 
tual development. 
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5 A r c h i t e c t u r e  o f  a T o t a l  S o f t w a r e  

Development Support System 

We have outlined, in section 4, a software development 
graph based method. We have explained, cursorily, 
some of its detailed points wrt. the enfl~edded use of 
VDM. Other formal techlfiques, different from those 
of VDM, could instantiate the software development 
graph based method. Examples of the latter are: JSD 
("Jackson System Design"), HDM ("Hierarchical De- 
velopnmnt Method"), HOS ("Higher Order Software"), 
RAISE ("Rigorous Approach to Industrial Software En- 
gineering"), etc. 

In this section we shall outline the architecture for 
a total software development support system. By such 
a system we mean a computerized (hardware/software) 
system which provides mechanized tools tbr all aspects 
of development (specification, design and coding)-- 
both of software development (meta, project, and prod- 
uct) graphs and of the software whose development they. 
prescribe; for all groups of developers (progralmners, 
software engineers, nlanagers and scientists); and which 
transparently reflects the entire software development 
graph based lnethod, as well as the particular set of 
specification, design and coding techniques (like for ex- 
ample VDM) to which it is instantiated. 

Thus the architecture should directly, at the outer- 
nmst, software development graph level, embody the 
notions of (1) software development graphs--including 
recta-, project-, and product graphs; (2) their develop- 
ment and maintenance--including attribute assignment 
and computation; (3) nodes and edges--including their 
syntactic-, semantic- and pragmatic meanings, for hoth 
programmers, software engineers, managers, and resi- 
dent scientists; (4) the execution of software develop- 
ment graphs--allowing for the concurrent execution of 
independent nodes and edges, and within each of these 
the concurrent execution (of a node or edge) by sev- 
eral developers from ,all of the four developer categories. 
Points (1-2-3) relate, in a sense, to the development of 
software development graphs. Point (4) to their execu- 
tion. By an execution of a software development graph 
we understand an interaction between developers and 
the system according to the meaning of graphs, nodes 
and edges, and as parameterized by the embedded (ie. 
instantiated) set of techniques (for example VDM). 

The below "tree" sunnnarizes the basic taxononfical 
structure and salient features of the proposed system 

Graph Development Sub-System Support  

• Graph Repository Support 
(Meta Graph Library) 

• Graph Refinement Support 

(Specification and Design) 

• Graph Instantiation Support 
(From Meta-, via Project- to Product Graph) 

• Attribute Assignment Support 

* Attribute Computation Support 

Graph Execution Sub-System Suppor t  

• Node Executor 

- Syntactic Tools 

* Structure and Syntax Directed Editors 
* Pretty Printers 
* Journaling Support 
* Cross-Reference etc. Support 

- Semantic Tools 

* Data-, Logic- and Control Flow Analysis Tools 
* Static (Type) Checking Tools 
* Dynanfic Interpretation Tools 
* Theorem Provers and Verifiers 

- Pragmatic Tools 

* Requirement and Design Decision Tracking Tools 
. Version and Configuration Control Tools 
, Test C, ase Generators, Testers and Validators 

• Edge Executor 

- Automatic Node Derivation Tools 

Transformation, Unifier and Rewrite Rule Tools 

- "Manual" Node Derivation Tools 

* Structure Editor, Substitutor, Rewrite Rule Tools 
* Proof Obligation and Discharge (Proving and Ver- 

ifications) Tools 

Management  Sub-System 

• Resource Allocation(Monitoring and Control Support 

• Graph Evaluation, Monitoring and Control Support 

• Node Evaluation, Monitoring and Control Support 

• Edge Evaluation, Monitoring and Control Support 

'Resident '  Scientist Sub-System 

Some remarks may be in order. 

(i) The above "tree" reflects the functional offer- 
ings of the systems, not its implemented struc- 
ture. The fact that there may be a "window 
manager", a "conunand shell", and "object ori- 
ented data base"--possibly distributed, a "trans- 
action processor"--permitting backouts and recov- 
ery, etc., really is of very nfinor concern to the 
user. They do not reflect neither the method nor 
its techniques, rather they reflect implementation 
(technology) constraints. 
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(ii) The function "tree" thus reflects that the whole 
of the system set of tools are deeply rooted in the 
semantics of the method-- ra ther  than merely rep- 
resenting the usual ad hoc assemblage of nmstly 
syntactic and pragmatic tools not bound together 
by any method. 

(iii) We wish the user of the system (the developer) to 
have, at all times, an exact knowledge and "feel" 
for where in the development process (ie. wl,ere 
in the graph) he is, and to have access to tools for 
all semantic, syntactic and pragmatic facets of the 
method and its techniques. In sununary we wish 
the user to feel like in a driver's seat of a com- 
fortable advanced driving car: wheel, gas pedals, 
bral(es, gear (stick or automatic) shift, and a va- 
riety of switches, one each for a great w~riety of 
fimctions. Driving can be a pleasant interaction 
between car and driver; so should the use of the 
development support system. 

(iv) In toto the conceptual rather than implementa- 
tional structure of the support system aims at in- 
ducing the use of a formal method with all its con- 
stituent tbrmal techniques and formal tools. 

6 The  Reality~ Phi losophy and So- 
ciology of  Using Formalisms in 
Software D e v e l o p m e n t  

We have proposed a total framework for the develop- 
ment of software. We have built this framework around 
many years of using VDM; and the most basic aspects 
of the framework has been used for at least 6 years. So 
we are not postulating new untested, unproven ideas. 
On the contrary. But we have basically used these ideas 
systematically, rather than formally, basically because 
we have not had the necessary computerized support 
to assist us. We have repeatedly recognized, through- 
out the years the need for computerized support but 
have (wisely, we now believe) not rushed into instru- 
menting ideas which then were not conceptually fully 
developed. Where before, using no tools, of any of 
the kinds outlined above (neither syntactic, semantic, 
nor pragmat ic) - -where  before--we could record devel- 
opment costs only 25% of those of other developments, 
we expect to do nmch better  with formalized tools! But 
we do not expect these to result in savings in actual de- 
velopment costs, nor significantly shorter development 
times. Instead we expect to eventually be able to de- 
liver trustworthy software, software sastisfying all of the 
product qualities outlined in sections 2.4-2.5. We have 
become too  ingrained with the idea that software de- 
velopment is too costly. I believe it is too cheaply done! 

Customers will not rise to demand all of these 
qualit ies--although a few (like the US DoD) will ask 
for some. Instead new software houses will be able 
to guarantee increasingly more of these qual i t ies--and 
it is this way around" that we shall see the coming 
of the use of tbrnlalisnls: through more appropriately 
fitted products, through more trustworthy software, 
through higher (relative) productivity, but also because 
the younger generation of software developers will not 
want to do it any other way. 

There is little hope that existing ("old") software 
houses and computer manufactures will catch on to the 
formal methods of developing software. The old ways 
of doing software are just too ingrained in management  
and staff. I have experienced in established industry 
huge gaps in basic knowledge about even the most basic 
concepts--wrt,  what the current graduates are learn- 
ing. Most existing management is not even themselves 
able to develop software and thus have no authori ty 
to do management and are completely at the mercy of 
the jargon and excuses of their "prograramer-software 
engineers". 

I believe that progress in use of formal methods 
will only come provided three conditions are met: 
(1) production of enough candidates from computer 
science departments oriented towards programming 
methodology-- too many have learned about theories 
about programs of no use in progranuning; (2) employ- 
ment of such people in critical mass groups; and (3) ap- 
propriate tools. Production of appropriately educated 
and trained candidates is the responsibility of univer- 
sities, and most still fail to understand and distinguish 
computing science from computer science, and to em- 
phasize computing science! Employment is the reahn of 
software houses, and very, very few of their managers 
understand to hire appropriately, and formally trained 
people, let alone assign, the few they get, to form suf- 
ficiently staffed groups. Production of tools are, again, 
in the domain of industry. University produced tools 
are usually semantically advanced, but prototypes in 
the senses (1) of being applicable only to very small 
data (ie. not realistically applicable to the kind of large 
examples usually arising in industry), and (2) of being 
poorly documented! Industry produced tools are invari- 
ably always semantically void, featuring only syntactic 
and pragmatic tools, and then in ad hoc combinations. 

The ohl ways in which software is being designed to- 
day by IBM and all of its competitors will never be 
proven wrong. They will eventually just die from lack 
of use, by new generation having grown up with the 
new methods: 

"Old theories are never proven wrong. They 
just die from lack of use by new generations 
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having grown up with new theories" - -  Erwin 
Schr6dinger, Autobiography. 

What we have proposed in this paper is a "theory". 
There are many "theories". This one, like most other 
software development "methods", is not a theory in the 
sense of being provable, ie. provably "the theory". It 
is, as most computer and computing science "theories", 
more a conjecture. No proof can be provided for its 
superiori ty--nor for others ~ "theories". Only practice 
will tell, and control such "change of eonmaand": 

"There are no theories, and there are no 
proofs. There may be conjectures, and some- 
times there are sad refutations" - -  essence of 
one aspect of Karl Poppers Theory of Science. 

In closing sunmmry: we have tried for each facet and 
aspect of software and its developnmnt to identify ways 
and means of formalizing these--el, remarks on for- 
malisms in most sections and subsections! 
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