
Parallel systems development in education:
a guided method

E. Luque, J. Sorribes, R. Suppi, E. Cesar, J. L. Falguera and M. Serrano
Department d’lnformatica

University Autonoma of Barcelona
08193 Bellaterra (Barcelona)

Spain

iinfd(jcc.uab.es

Abstract
Our objective is to show a parallel system development method
within the educational area based on the Parallel System

Development Environment (PSEE). To do so, first we define the
development cycle proposed by PSEE, and the theoretical model

underlying it. Secondly, we use an example (matrix

multiplication algorithm) to illustrate all the method steps, which
are: Algorithm Choice-Criteria, Problem Presentation (how to
present the problem to the student), Modelling the algorithm

(using the theoretical model), Programming (using an appropriate
parallel language), Functional Simulation of the program,
Behavioral Simulation (algorithm and architecture), and Trace

Visualization and Evaluation. This paper gives a description of
the parallel systems development method, based on our own

experience with PSEE (Parallel System Evaluation Environment)
[1].

1 Introduction
The main goal is to show the facilities provided by the PSEE in

parallel algorithms development, within the educational area.

PSEE is an user interactive graphical environment, developed to

provide a tool for studying the behavior of distributed memory
parallel systems. This environment allows parallel program
development and also simulation and evaluation of parallel

algorithms on parallel architectures. PSEE is able to manage the
main system parameters so as to achieve the highest fitting grade

between the architecture and the algorithm. This involves a
cyclical development process among programming, simulation,
visualization, taking measures and modifying parameters.

To accomplish each stage of this cycle, several tools have been
implemented.

The Programming stage is performed using the WinPie Tool [4];

this tool accepts applications written in a high level parallel
language, and translate them to sequential code. This code is a

composition of the original application code and a set of functions

used to perfom the functional simulation of the application.

Permission to make digitalMard mpy of parl or all of UNS worl( for p8fSOnal
or classroom use is granted without fee pfovided that copies are not made
of distributed for profit or cammefcial advanta e, the copyright notice, the

%title of the publication and its date appear, an notios is given that
copying is by permission of ACM, Inc. To Mpy otherwise, to republish, to
post on servers, or to redistribute to lists, fequifes prior specific permission
andlor a fee.

Integrating Tech. into C.S.E. 6/96 Barcelona, Spain
CI 1996 ACM 0-89791 -844-419610009 ...$3.50

Moreover the tool is also able to obtain a graphical representation

of the algorithm, that could be used in the behavioral simulation.

The Simulation stage is accomplished by creating or modifying

the synthetical graphs of algorithms and architectures (Graph
Editor), by allocating algorithm tasks to processors (Mapping
Tool), and finally by doing the behavioral simulation
(Simulation Tool) [2].

The Visualization stage is achieved by generating a set of
measures on each simulation trace in order to measure the
intrinsic parallelism, the dynamic parallelism as well as the

scheduling, routing and clustering policies quality (Graph Tool)
[5].

From this analysis, the user may decide to change any of the

established policies, or may try to simulate onto another different
hardware architecture, or may even discover that any portion of

the parallel algorithm generates problems, or take into
consideration any other aspects from the analysis. Then the user
may introduce any change and follow the development cycle
again

The model underlying these tools is called the Weighted
Behavioral Graph[ 1] (WBG for short), and is defined as a
directed graph, where nodes represent sequential code segments,

and edges represent dependency relations (data or control)
between those nodes. This model allows both the simulation of
the algorithm behavior and its allocation to different processing

elements. It also allows the estimation of its performance using
different execution, scheduling and routing policies.

Let’s give an example that illustrates the development method
described above.

2 An example of the development method
The method goes from the algorithm choice up to the results
analysis. through problem presentation and modelling, and
through the stages described in previous section.

2.1 Algorithm choice criteria
Like sorting and searching, matrix multiplication is a fundamental
component of many numerical and non-numerical algorithms. On
the other hand, Matrix multiplication provides all sorts of
opportunities for parallelization on multiprocessors.

The user should learn how different architectures work with a
single algorithm in order to decide the best one. The character of

the algorithm depends heavily on the architecture on which it is to

156



be implemented. Therefore, we have selected a Cube-Connected
model (the best suited).

For example to analyze communication costs, simple Cube-

connection allows routing policies and mapping algorithms to be
easily implemented.

2,2 Problem presentation: matrix by matrix

multiplication
The presented problem is based on the matrix multiplication

algorithm for the hypercube hardware topology given in [3],
restricted to 2 x 2 matrix and three dimensional hypercube, which
is represented by a 2x2x2 matrix of processors (to fit the

algorithm requirements).

This algorithm has the following functionality (figure 1):

1. The elements of the matrices involved in the

operation ( call it A and B ) are distributed over the n3 processors.

2. The products C( i, j, k ) = A( i, j, k ) * B( i, j, k ) are

computed.

3. The sums Xi C( i, j, k ) are computed.

Note: Indexes i, j and k are referred to the processors

matrix

2.4 Program
Once the student has been able to build a graph based on the

WBG model, then he knows which task is performed by each
process (graph node). The next step is straight-forward, and

consists of codifying these tasks using the Pascal language and a

set of parallel primitives on WBG model basis.

These primitives define a programming model based on WBG
model, and they are:

● Subroutine (Input Policy, Output Policy, parameters...,).

which allows the process definition.

● Token (Channel, Data). which allows information transfer.

● Init_Token(Channel, Data). to fire the program execution.

● Active. variable that keeps for each node, how many times it
has been activated.

● Varhold, which allows the definition of some variables that

do not lose their values between node activations.

As an example of code that implements one of the graph nodes

Figure 1 I Subroutine no17 (and;and; n17al 1, n17bl I:integer);

I var CO : integer;

see (figure 3):

This description is presented in a simple way in order to ease the
algorithm comprehension and to fit it to the WBG model.

2.3 Modelling
Once the specific algorithm has been understood by the student, it

should be posed, based on the WBG model, to adapt the

algorithm to the set of tools that will be used to its study (see

figure 2).

m.,, mm, moo w,,, FRO,, w,,, m.,, mm,

j:;+’ $3’ $ $
M re,un
de”,. ”,,

Figure 2

The algorithm under study is highly oriented to a particular

architecture, and this architecture is well modelled by our

hardware model (message passing architectures), so, a good way

to plan the WBG based solution is to give a main role to this

architecture.

The idea is to draw a graph that follows the WBG model rules,

defining first the processes needed to send the data from any
processor to its neighbors, then the processes needed to receive
this data, and finally the processes that do the calculations.

begin

CO :=n17all * n17bll;

token ( n25C0, CO, ‘n’);

end:

Figure 3

2.5 Functional simulation
The program written by the student is functionally tested using
the WinPie Tool. WinPie offers a programming environment that
generates an execution file. This result should be used to perfcmm
a sequential execution of the parallel algorithm into a single-
processor machine, simulating its parallel functional behavior.

The functional simulation allows the student:

● to check the correct functionality of the parallel algorithm.

● to get the values of the main parameters from a parallel

algorithm: Node execution time and communication volume. As

an example, for the subroutine showed above (in figure 3) we

obtain the information shown in figure 4.

2.6 Behavioral simulation
Once the algorithm and hardware have been characterized, and a
mapping between them has been defined, the behavioral
simulation, which is event driven, can be done.

The first step may consist in performing the algorithm simulation
without the architecture; this is equivalent to assuming that we
have an architecture with the same structure of the algorithm,

where the communications are no time consuming, and where
only the nodes computation volumes are traced because no

157



Process M ; NO17

Class : Normal,

Processing Speed: 1

IPriority: O

4 Falguera, JOS4 Luis. Entorno Interactive para la Simulaci6n

Funcional de Programas Paralelos. MsC Project UAB.

1995.

5 Serrano, Maria. Herramienta de Visualizaci6n y Evaluaci6n

de la Traza de Simulaci6n. MsC Proiect UAB. 1995.
Input Policy: AND

Execution Policy : AND

Inputs: Arc from Node :2, Arc from Node: 8

Outputs: Arc to Node :25, Communication Cost :1,

Probability :0

Figure 4

hardware influence exist. In this case we assume the ideal

architecture for the algorithm.

Performing this simulation the student may see all the real

parallelism expressed in his/her algorithm, because this algorithm

is not affected by the hardware.

The second step may consist of simulating several times with
different hardware characterizations, and using different
scheduling, mapping and routing policies, in order to compare
them.

In each simulation, a trace file with the measured events may be

generated, in order to analyze the simulation results.

2.7 Visualization tools
The Data Filters and Visualization Tool allows the evaluation of

the simulator output traces, by generating a set of measures on

each trace by means of a predefine set of filters.

The visualization and evaluation tool design is based on a simple
and practical data dealing concept, in order to provide an easy
management of a great information volume (generated on the
Trace File by the Behavioral Simulator), and a sensitive
graphical data visualization.

The ultimate target of this presentation of the information is to

help the user to study the correctness of the parallel algorithm, the

performance of the given architecture and the efficiency of the
scheduling, clustering and routing policies on them.

3 Conclusions
With the description made in this work, we have described how

the user, using PSEE, may follow the whole development cycle of

designing and programming a parallel algorithm. Simulating it 00

different architectures, setting severaf scheduling, clustering or

routing policies. Analyzing the correctness and performance of

parallel systems, going back to any point of the cycle to modify

any parameter. So the user may learn with a practical experience

in an interactive way.

References

1 PSEE for Windows User’s Guide. Computer Science Dep.

University Autonoma of Barcelona (UAB). 1989-1995.

2 Cesar, Eduardo. Entorno de Simulaci6n de Sistemas
Paralelos sobre una Interface Gr6fica Estandar (GUI). MsC

Project UAB. 1995.

3 G. Akl, Selim. The Design and Analysis of Parallel

Algorithms. Prentice-Hall International Editions, 1989.

158


