
The Utility of Exploiting Idle Workstations for Parallel Computation*

Anurag Acharya, Guy Edjlali, Joel Saltz

Department of Computer Science

University of Maryland, College Park 20742

{acha,edjlali,saltz}Qcs.umd.edu

Abstract

In this paper, we examine the utility of exploiting idle work-

stations for parallel computation. We attempt to answer

the following questions. First, given a workstation pool, for

what fraction of time can we expect to find a cluster of k

workstations available? This provides an estimate of the

opportunity for parallel computation. Second, how stable is

a cluster of free machines and how does the stability vary

with the size of the cluster? This indicates how frequently
a parallel computation might have to stop for adapting to

changes in processor availability. Third, what is the distri-

bution of workstation idle-times? This information is useful
for selecting workstations to place computation on. Fourth,

how much benefit can a user expect? To state this in con-

crete terms, if I have a pool of size S, how big a parallel

machine should I expect to get for free by harvesting idle

machines. Finally, how much benefit can be achieved on a

real machine and how hard does a parallel programmer have

to work to make this happen? To answer the workstation-

availability questions, we have analyzed 14day traces from

three workstation pools. To determine the equivalent par-

allel machine, we have simulated the execution of a group

of well-known parallel programs on these workstation pools.

To gain an understanding of the practical problems, we have

developed the system support required for adaptive paral-

lel programs and have used it to build an adaptive parallel

computational fluid dynamics application.

1 Introduction

Exploiting idle workstations has been a popular research

area. This popularity has been fueled partly by studies

which have indicated that a large fraction of workstations

are unused for a large fraction of time [9, 17, 19, 251 and

partly by the rapid growth in the power of workstations.

Batch-processing systems that utilize idle workstations for

running sequential jobs have been in production use for

many years. A well-known example is Condor [15], which

‘This research was supported by ARPA under contract #F19628-

94-C-0057, Syracuse subcontract #353-1427

Permiaaion to make digital/hard copy of part or all thia work for
personal or classroom we is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its data
appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to poet on aarvera, or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGMETRICS ‘97 Seattle, WA, USA

0 1997 ACM 0-89791-909-2/97/0006...$3.50

has been has been in operation at the University of Wiscon-

sin for about 8 years and which currently manages about

300 workstations [6].

The utility of harvesting idle workstations for parallel

computation is less clear. First, the workstation-availability

results [9, 17, 19, 251 that have held out the promise of free

cycles assume, at least implicitly, that progress of execu-

tion on one workstation, or the lack thereof, has no effect,

on the progress of execution on other workstations. This

assumption does not hold for most parallel computation.

This is particularly so for data-parallel programs written in

an SPMD style (most data-parallel programs are written
in an SPMD style). When a workstation running a par-

allel job is reclaimed by its primary user, the remaining

processes of the same job have to stop to allow the com-

putation to be reconfigured. Reconfiguration may need one

or more of data repartitioning, data/process migration and

updating data location information. To make progress, a

parallel job requires that a group of processors be contin-

uously available for a sufficiently long period of time. If

the state of a large number of processors rapidly oscillates

between available and busy, a parallel computation will be

able to make little progress even if each processor is avail-

able for a large fraction of time. Second, parallel programs

are often not perfectly parallel. That is, they are able t,o

run only on certain configurations - for example, configura-

tions with powers-of-two processors. Addition or deletion

of a single workstation may have no effect, a small effect or

a very significant effect on the performance depending on

the application requirements and the number of available

machines.

In this paper, we examine the utility of exploiting idle

workstations for parallel computation. We attempt to an-

swer the following questions. First, given a workstation

pool, for what fraction of time can we expect to find a clus-

ter of k workstations available? This provides an estimate

of the opportunity for parallel computation. Second, how

stable is a cluster of free machines and how does the sta-

bility vary with the size of the cluster? This indicates how

frequently a parallel computation might have to stop for

adapting to changes in processor availability. Third, what is

the distribution of workstation idle-times? That is, what is

the probability that a workstation that is currently idle will

be idle for longer than time 1? This information is useful

for selecting workstations to place computation on. Fourth,
how much benefit can a user expect? To state this in con-

crete terms, if I have a pool of size S, how big a parallel

machine should I expect to get for free by harvesting idle

225

machines. Finally. how much benefit can be achieved on a

real machine and how hard does a parallel programmer have
to work to make this happen?

We have addressed these questions in three different ways.
To answer the workst,ation-availability questions, we have

analyzed l&day traces from three workstation pools of dif-

ferent sizes (40, 60 and 300 workstations) and at different
locations (College Park, 13erkeley and Madison). To deter-

mine the equivalent parallel machine, we have simulated the
execution of a group of well-known parallel programs on

these workstation pools. To gain an understanding of the

practical problems that arise when trying to run parallel
programs in an adaptive fashion, we have developed sys-
tem support that allows programs to detect changes in their

environment and to adapt to these changes. We have also
developed an adaptive version of a computational fluid dy-

namics program and have measured its actual performance

using an IBM SP-2 as a cluster of workstations and one of

the workstation availability traces mentioned above as the
sequential workload.

Previous research into using idle workstations for parallel

computation has taken one of three approaches. Leuteneg-

ger and Sun [14] use an analytic-model-based approach to
study the feasibility of running parallel applications on non-

dedicated workstation pool. Their study is based on simple
synthetic models of both workstation availability and par-

allel program behavior. It is difficult to draw conclusions

about behavior of real parallel programs on real workstation

pools from their work. Carreiro et al [4] and Pruyne et al [al]

propose schemes based on a master-slave approach. If the

workstation on which a task is being executed is reclaimed,

the task is killed and is reassigned by the master to a differ-

ent workstat,ion. There are two problems with this approach.

First, most parallel programs are not written in a master-
slave style. Second. rewriting existing parallel programs as

master-slave programs would greatly increase the total com-
munication volume and would require very large amounts of

memory on the master processor. Arpaci et al [2] study the

suitability of dedicated and non-dedicated workstation pools

for executing parallel programs. They take a trace-based-
analysis approach and base their study on a workstation
availability trace, a job arrival trace for a 32-node CM-5

partition and a suite of five data-parallel programs. Their

results show that a 60-workstation pool is able to process

t,he workload submitted to a 32-node CM-5 partition. Our
approach is closest to that of Arpaci et al but there are

several basic differences. Arpaci et al focus on the interac-

tive performance of parallel jobs and assume a time-sliced
scheduling policy. They deduce the need for interactive re-

sponse from the presence of a large number of short-lived

parallel jobs in the CM-5 job trace. Most large parallel ma-
chines are, however, run in a batch mode. Usually, a small

number of processors are provided for interactive runs. To

bet.ter understand the need for interactive performance for
parallel jobs. we analyzed long-term (six months to a year)

job execution traces from three supercomputer centers (Cor-

nell. Maui and San Diego). We found that, over 90% of

short,-lived jobs used 16 processors or less (for details, see

section 3.2). We take the position that t.he need for interac-

tive response can be met by a small dedicated cluster and

that throughput should be the primary goal of schemes that
utilize non-dedicated workst,ations. In doing so. we follow

t.he lead of Miron Livny and the Condor group at the I:niver-

sity of \Visconsin who have had excellent success in utilizing
idle workstations for sequential jobs.

We first examine the workstation-availability questions.

We describe the traces and the metrics computed to estimate
the opportunity for parallel computation. Next, we describe

our simulation experiments and their results. We then de-

scribe our experience with the implementation and execu-
tion of an adaptive parallel program. Finally, we present a

summary of our conclusions.

2 Workstation availability

To determine the availability of free workstation clusters

for parallel computation, we have analyzed three two-week

traces from three workstation pools. For each of these traces,

we have computed two metrics. First, for what fraction
of time can we expect to find a cluster of L free worksta-
tions. We refer to this as the availability metric. Second,

for how long, on the average, is a cluster of I; workstations
stable? That is, how long can a parallel computation run-
ning on k processors expect to run undisturbed? We refer

to this as the stability metric. In addition, we have com-
puted two other measures for each trace. First, for what

fraction of time is a workstation available on the average

and second, how does the number of available workstations
vary with time? These measures are for comparison with

previous studies. Finally, we have computed the probabil-

ity distribution for idle-times for all the workstations in this
study. We first describe the three traces. We then present,

the parallel-availability metrics and the other measures for

all three traces.

2.1 Traces

The first trace is from the workstation cluster of the CAD
group at the UC Berkeley and contains data for about. 60

workstations. This trace covers a 46-day period between

02/15/94 and 03/31/94. The trace we received had t.he
busy and availability periods marked in for each worksta-

tion. This trace was used by Arpaci et al in [2]. We ex-

tracted the 14-day segment which had the largest number
of traced workstations. We refer to this trace as the ucb

trace.

The second trace is from the Condor workstation pool
at the University of Wisconsin and contains data for about
300 workstations. This trace covers a 14-day period be-

tween 09/24/96 and 10/07/96. For the purpose of this trace,
a workstation was considered to be available whenever the

Condor status monitor marked it available. Condor uses
several criteria, including user preferences, to decide if a

workstation is available for batch jobs. We collected this

trace by sampling the Condor status information once ev-
ery three minutes using the web interface provided by the

Condor project [5]. We refer to this as the uisc trace.

The third trace is from the public workstation clust,er of
t,he Department of Computer Science, University of Mary-

land. This trace contains data for about 40 workstations

and covers a 14-day period from 09/24/96 to 10/07/96. For

226

the purpose of this trace. a workstation was considered to
be available if the load average was below 0.3 for more than
five minutes. We refer to this as the umd trace.

The number of workstations participating in the pools
was not constant throughout, the tracing periods. The aver-

age number of participating workstations was 52 for the ucb

trace, 277 for the aisc trace and 39 for the umd trace. We use
these figures as a measure of the size of the corresponding

pools.
In addition to the variations in size, time period and

location, these pools also vary in the way they are (were)

used. The College Park pool consists of publicly available

machines which are primarily used by junior computer sci-
ence graduate students for course assignments as well as for

personal purposes (mail etc). The Berkeley pool consists of
workstations belonging to a single research group and is used

for both personal purposes and compute-intensive research.

The Madison pool includes both compute servers and per-
sonal workstations. It spans several departments. We ex-
pect that together these pools are representative of most
workstation clusters available in university environments.

2.2 Parallel-availability metrics

Figure 1 presents the availability metric for all three pools.
Each graph shows how the metric varies with cluster size.

For each pool, the fraction of time for which a cluster of

I; workstations is available drops more or less linearly with
k. Note, however, that for each pool, a substantial fraction

(20-70%) of the pool is always available. Except for the umd

trace, the drop is relatively slow - clusters larger than half

the t,otal size of t.he pool are available for over half the time.
Figure 2 presents the stability metric for all three pools.

Each graph shows how the metric varies with cluster size.

These graphs show that clusters up to half the size of the

pool are stable for four to fifteen minutes and clusters up

to a third of the pool are stable for five to thirty minutes.

This holds out promise for parallel applications. Even if

the cost of reacting to a reclamation event is as high as

one minute, it is possible to make significant progress. An

important point to note is that even though Figure 1 shows

that large workstation clusters are available at any given

time, these clusters are not stable. For example, a cluster of
88 workstations can always be found in the nisc pool as per

Figure 1 but a cluster of 88 workstations is stable only for

five and a half minutes (see Figure 2). The upturns at the

right, end of the graphs for the ucb and mad traces correspond

t,o a small number of idle periods on weekend nights.
Figure 3 shows how the fraction of workstations that

are idle varies with time for the three pools. Weekdays are
indicated by the dips; nights by the humps and weekends by

the shorter-than-usual dips. In each graph, the horizontal

line labeled avg shows the average fraction of the pool that. is

available. These results indicate that, on the average, 60%
t.o 80% of the workstations in a pool are available. This
agrees with previous results [2, 9, 171.

2.3 Distribution of workstation idle-time

In this section, we try to answer the question - what is the

probability that an idle workstation will be idle for longer

than time tl This question has hern previously looked at h>

several researchers [2. 91. The common experience has been
that machines t.hat have been idle for a short time are more

likely to be reclaimed than machines that have been idle
for a relative long period. Douglis&Ousterhout [9] mention

that for their cluster, machines that were idle for 30 sec-

onds were likely to be idle for an average of 26 minut,es;
Arpaci et al [Z] mention that, in their study, a recruitment

threshold of 3 minutes provided the best throughput. Given

the relative plenty in terms of workstation availability. we
did not focus on the issue of recruitment. Instead, we looked

at distribution of relatively long idle periods (tens of min-

utes to several hours). Our goal was to help select between
multiple available workstations for the placement of compu-

tation.
For each workstation occurring in the availability traces,

we computed the probability P(z > t) that an idle period

would last longer than time t. We considered only those

idle periods that were at least five minutes long. We found
that the probability distribution varied widely. To summa-
rize the information, we characterized each workstation by

the time T such that P(z > T) = 0.5. We refer to t,his
measure as the idleness-cutofl. Idle periods shorter than T

had a probability greater than half; idle periods longer than

T had a probability less than half. The minimum value of
the idleness-cutoff was 18 minutes and the maximum value

was 9 hours. Figure 4 shows the cumulative distribution of

the idleness-cutofi The average value of the idleness-cutofl
was 40 minutes for the ucb trace, 70 minutes for the umd

trace and 90 minutes for the aisc trace. Given the large

value of the idleness-cutoff, simple strategies (such as LIFO.
FIFO, random etc) for selecting between available worksta-

tions should suffice. We note that all of these values are sig-

nificantly higher than the 26 minutes reported by Douglis [8]
in 1990 for the Sprite workstations.

3 How much benefit can a user expect?

To estimate the benefit that parallel programs might achieve

in shared workstation environments, we simulated the execn-

tion of a group of well-known parallel programs on all three
pools. We selected a suite of eight programs which includes

the NAS parallel benchmarks [22] and three programs that,
have been studied by one or more research groups work-

ing on parallel processing. We simulated two scenarios: (1)
repeated execution of individual applications without gaps;

(2) repeated execution of the entire set of applications, also

without gaps. Since these scenarios keep the pool busy at,

all times, they provide an approximate upper bound on the

throughput. The equivalent parallel machine is used as the

metric.
We first describe the programs we used as benchmarks.

We then describe our simulations and the information used

to drive them. Finally, we present the results.

3.1 Benchmarks

All programs in t,his suite are programmed in the SPMD
model. Figure 5 shows the speedups for the benchmarks

running on dedicated parallel machines. These numbers

have been obtained from publications [l, 3, 22, 23, 261. The

227

I,

/
und -

06 %
2 /

i\\
/

1 0.6
E

1

=
6
f

04i

2 ~

!i
0.2 ;

I \

0 5 10 15 20 25 30 35 40
Ckler SW

Figure 1: Availability for the three pools. These graphs show for what fraction of time can we expect to find a cluster of k
free workstations and how this fraction varies with the cluster size Ic. For comparison, the average number of participating

workstations was 52 for ucb, 277 for uisc and 39 for mad.

0’ 8 ’ ’
0 5 IO 15 20 25 30 35 40 0 10 20 30 40 50 60 0 M 1w 19 200 250 300

alBier she Cluster sue clwter me

Figure 2: Stability for the three pools. These graphs plot the average period a cluster is stable for against the cluster size.

\’ ’ ’ lend -

1

% 0.8
2

E
". 0.6
c
Jz

E
0.4 und - 5

i wg

B
I; 0.2

;ri
I; 0.2

0 25ccco !iccccQ 75mm le+ce 1.25&e 0 25x03 5xm 75m le+c6 0 2xcol 7xm
Tme (secondr) Tme@mds) TlEd

Figure 3: Fraction of workstations available for the three pools.

228

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 t

OL

081 I i K 0.8
x
a 0.7
s t

5 0.6 i

e

8 0.5 I

8 0.4 ’

e
B

0.3
t

s 0.2

5
e 0.1 !

u.

Oi
0 5cca lcm1wJl2cm25oM)mm

L~ofdkpemd(seconds)

Figure 4: Cumulative distribution of the idleness-cutoff for the three pools.

programs themselves are described below. We used class B

datasets for all the NAS benchmarks.

l nas-bt: this program uses an approach based on block-
tridiagonal matrices to solve the Navier-Stokes equa-

tions [ZZ]. The running time on one processor of the

IBM SP-2 is 10942 seconds and the total memory re-
quirement is 1.3 GB. This program runs on configura-
tions with square number of processors.

0 nas-sp: this program uses a pentadiagonal matrix-

based algorithm for the Navier-Stokes equations [22].

The running time on one processor of the IBM SP-2
is 7955 seconds and the total memory requirement is

325.8 MB. This program runs on configurations with

square number of processors.

l nas-lu: this program uses a block-lower-triangular

block-upper-triangular approximate factorization to solve

the Navier-Stokes equations. The running time on one
processor of the IBM SP-2 is 8312 seconds and the to-

tal memory requirement is 174.8 MB. This program

runs on configurations with powers-of-two processors.

l nas-mg: this implements a multigrid algorithm to solve

the scalar discrete Poisson equation [22]. The running
time on one processor of the IBM SP-2 is 228 sec-

onds and the total memory requirement is 461 MB.
This program runs on configurations with powers-of-
two processors.

s nas-f f tpde: this program solves a Poisson partial dif-

ferential equation using the 3-D FFT algorithm [I].
The running time on sixteen processors of the IBM

SP-1 is 286 seconds and the total memory requirement

is 1.75 GB. This program runs on configurations with
powers-of-t.wo processors.

l dsmc3d: is a Monte-Carlo simulation used to study

the flow of gas molecules in three dimensions [23]. The
running time on one processor of the iPSC/SSO is 4876

seconds and the total memory requirement is 30 MB.

l unstructured: this is a flow solver capable of solving

the Navier-Stokes equations about complex geometries

through the use of unstructured grids [3]. Its running

120 - nas-bt -
nas-w .-.---~ nas-lu :

100 - unstructured :’
dsmc ---- ,..‘.

hydro3d
80 - nas-w ideal ._

60 -

0 20 40 60 60 100 120
Number of Processors

Figure 5: Speedups of the benchmark programs on dedicated

parallel machines.

time on one processor of the Intel Paragon is 68814

seconds and the total memory required is 134 MB. We

have data for this program running on 1,2,3,4,5,10,25
and 50 processors.

l hydro3d: this is a parallel implementation of 3 + l-

dimensional relativistic hydrodynamics [26]. Its run-
ning time on one processor of the Intel Delta is 406000

seconds and the total memory required is 89.2 MB. We

have data for this program running on 1,8,16,32 and
64 processors.

3.2 Simulations

To compute the equivalent parallel machine for the scenar-

ios mentioned above, we performed a high-level simulation of

the execution of SPMD parallel programs on non-dedicated
workstation pools. The simulator takes as input worksta-

tion availability traces and a description of the parallel pro-

grams to be simulated and computes the total execution
time. The equivalent-parallel-machine measure is computed

by determining the size of the parallel machine that would

be required to complete the execution in the same time. All
the programs used in this study can run only on a fixed

229

wt of configurations (e.g. powers-of-t,wo). If the rsecut.iou
time falls in between t.wo c,onfiguration. linear interpolat.ion
is used to comput,e the equivalent, parallel machine.

All the programs used in this study are iterative. For the
purpose of this study. we characterize the speed of execution

by the time taken t,o execute each iteration. We obtained

the time per iterat,ion from the publications cited above.

We characterize the size of each process by the size of its

partit.ion of t,he program data. We obtained the size of the

program data by code inspection for all benchmarks except
t,he last t.wo. For the last two programs, we obtained the

size information from publications.
Many of these benchmarks have very large data sets

which cannot reasonably fit in the memory of a single work-

station. We assumed workstations with no more than 128 MB
and did not, perform experiments that required more than

this amount on any of the machines.

There are many ways in which an SPMD program can
adapt to a change in the number of available processors. For
example, it, could checkpoint the evicted process to disk and

restart it. elsewhere (as in Condor [24]) or it could stop the

process and copy it over from memory to memory (as in Lo-
cus [20]), or it could copy the stack and a small number of

pages over and fault the rest in lazily (as in Accent [28] and
Sprit.e [8]). All of these schemes involve moving an executing
process. Since SPMD applications run multiple copies of the

same program which are usually in (loose) synchrony, there

is another, possibly cheaper, alternative. Just the program
data for t,he process can be moved; scratch data and text

need not, be moved. If sufficient workstations are not avail-

able, data is moved to processes that, are already running;
otherwise, t,he program has to pay the cost of starting up a

new process at the new location (this cost is not specific to

this scheme - expanding the number of processors requires
new processes). There are two points to note. First, adapta-

tion can happen only when the data is in a “clean” state and

in a part of the code that every processor will reach. That

usually means outside parallel loops. Second, the process

startup cost also includes the cost of recomputing commu-

nication schedules. In our study, we have assumed that this
adaptation technique is used.

The simulator assumes a point-to-point, 15 MB/s-per-

link interconnect. It models the eviction cost in two parts:

a fixed eviction cost that consists of the process startup cost

and a variable part that includes the memory copy cost at
both ends. the time on the wire and end-point congestion for

the data motion required for eviction. The process startup

cost. is paid at least once to account for the initialization
t.ime. Thereafter it, is paid every time an application adapts

to a change in processor availability. We used 64 ms/MB as

the memory copy cost which we obt,ained empirically from a
DEC Alpha Server 4/2100 running Digital Unix 3.2D. The

simulator also models a settling period between the comple-
tion of one program and the start of another. We used a
set.tling period of two seconds.

Since idle workstations are relatively plentiful, our goal

was t,o use as simple a scheduling strategy as possible. In

t,heir study, Arpaci et al [2] f ecus on the interactive perfor-

mance of parallel jobs and assume a time-sliced scheduling

policy. They deduce the need for interactive response from

the prrsence of a large number of short-lived parallel jobs
in the CM-.5 job arrival trace. hlost parallel machines. how

ever. run in a batch mode. To better understand the need

for interactive response from parallel jobs, we analyzed long-
term (six months to a year) job execution traces from threr

supercomputer centers (Cornell, Maui and San Diego). Fig-

ure 6 shows the processor usage distribution of short-lived
jobs (jobs that run for two minutes or less) for the t,hrre

traces. In all three cases, over 90% of the short jobs run
on sixteen processors or less. Based on this and on our own
experience with parallel machines, we speculate that interac-

tive performance is usually desired for debugging and t,est.ing
purposes; most production runs are batch jobs. We take the
position that the need for interact,ive response can be met, by

a small dedicated cluster and that throughput should be the

primary goal of schemes that, utilize non-dedicated worksta-
tions. In doing so, we follow the lead of Miron Livny and the

Condor group at, the IJniversit,y of Wisconsin who have had
excellent, success in utilizing idle workstations for sequent.ial
jobs. In our study we assume a simple first-come-first-served

batch scheduling policy.

We ran our experiments for one week of simulated t,irne.
This allowed us to study long-term throughput and to U-
derstand the effect of time-of-day/day-of-week variations in

workstation usage.

3.3 Results

Table 1 presents the equivalent parallel machine implied b>
the performance of the different applications for week-long

runs. We have computed two aggregate measures: the av-

erage equivalent machine and the median equivalent ma-
chine. The median measure was computed to avoid possi-

ble bias due to outliers. From t,hese results. we conclude

that harvesting idle workstations from these pools can pro-

vide the equivalent of 29 (College Park), 25 (Berkeley) and
92/109 (Madison) dedicated processors. The measures for

the Berkeley pool match the l:% rule of thumb suggest,ed

by Arpaci et al [2] for the parallel machine equivalent, t,o a

non-dedicat,ed workstation pool. However, the rule does not

match the results for the other two clusters. We rule out
the difference in the scheduling strategies as the primar)

cause of the difference as using a large quantum would elim-

inate most of the effects of time-slicing. Instead, we believe
that the difference is due to (1) the limited configurntdon ef-

fect and (2) difference in the sequential load. The limztecl

configuration effect refers to the fact that parallel programs

can run only on certain configurations. Addition or delet.ion
of a single workstation may have no effect, a small effect.

or a very significant effect on the performance depending
on the application requirements and the number of avail-

able machines. This effect is particularly important. when

the number of available workst,ations hovers around “magic
numbers” like powers-of-two and squares.

Figure 7 shows the temporal variation in the performance
over the period of the experiment. Since the benchmark pro-

grams run for widely varying periods, it is not possible t.o
compute an aggregate number. We have selected nas-bt

as t,he exemplar program. Beside the obvious diurnal vari-

ations, the graphs show the impact of the limited configo-

ration effect.. There are sharp changes in performance as

230

Figure 6: Processor usage distribution for short-lived jobs. The Cornell results are based on jobs executed between Jun 18

and Dee 2 1995; the Maui results are based on jobs executed bet,ween Jan 1 and Aug 31, 1996; and the San Diego results are

based on jobs executed between Jan 1 and Dee 31. 1995. The total number of short-lived jobs are 53015 (San Diego). 13651
(Maui) and 14822 (Cornell). Th e average number of short-lived jobs per day is 145, 56 and 88 respectively.

College Park Berkeley Madison

Average proc on 39 52 277

Average proc avail 34 32 169

Average par mc 1 29 (0.74) 1 25 (0.48) 1 92 (0.33)

Median par mc 1 29 (0.74) 1 25 (0.48) 1 109 (0.39)

Table 1: Average per-application equivalent parallel ma-

chine over one week. The process startup time is assumed
to be two seconds. The fraction in the parentheses is the

ratio of the equivalent parallel machine and the size of the

pool.

the workstation availability crosses certain thresholds. Note
that of all our benchmarks, nas-bt is the one that can run

on the maximum number of configurations (it runs on square

number of processors). Another point to note is the differ-
ence in the nature of the graphs for umd and ucb on one hand

and the graph for aisc on the other hand. The graphs for

umd and ucb are jagged whereas the graph for uisc consists

mostly of a thick band. The jaggedness indicates that work-
station availability often hovered around “magic numbers”

and forced switches between different configurations. The
thick band indicates that workstations were plentiful and

that the program did not have to change configurations. In-

st.ead, when a workstation was taken away, a replacement

was available. The deep dip in the middle of the graph for
ucb corresponds to a period of intensive use (see the corre-
sponding availability graph in Figure 3).

3.4 Impact of change in eviction cost

In the experiments described above, we assumed that the

process startup time was two seconds. Recall that process

startup time is fixed portion of the eviction cost. It includes

the cost of initiating the adaptation, the cost of starting up

a new process (if need be), and the cost of recomputing the
communication schedules. This cost depends on the part,ic-

ular adaptation mechanism used. To determine the impact

of eviction cost on the performance, we repeated out exper-
iments for a wide range of process startup costs. Figure 8

shows how the equivalent parallel machine varies with pro-
cess startup cost. In each graph, we plot the performance

achieved for four applications - dsmc3d, nas-bt. nas-lu and

nas-mg. The performance for the other four applications lies
approximately between the curves for dsmc3d, nas-bt and

nas-lu. We make two observations: (1) the performance

for nas-mg drops sharply for all three pools; (2) the relat,ive

drop in the performance for the other applications is largest,

for uisc. followed by ucb and nmd; the drops for umd being

quite small.

The primary cause for the sharp drop in the performance

of nas-mg is that it runs for a very short time. The tot.al ex-

ecution time is 228 seconds on a single processor and about
19 seconds on 16 processors. As a result, the performance for

nas-mg is swamped by startup costs. The gradat,ion in the

performance difference across the pools can be attributed t,o
differences in t.he frequency of reclamation events.

3.5 Impact of configuration flexibility

To examine the effect of configuration flexibility, we com-

pared the performance of a single pool for three programs,
nas-bt, nas-lu and nas-fftpde with different levels of CIX-

figurability. We selected the Berkeley pool for this compar-

ison as configuration flexibility is likely to have the maxi-

mum impact for situations with a relatively small number
of processors and relatively frequent reclamations. The first

of these programs, nas-bt, runs on square number of pro-
cessors and the other two run on powers-of-two processors.

However, the dataset of nas-fftpde is so large that it is

cannot be run on configurations smaller than 16 processors.
While the effect of configuration flexibility can be seen in
several parts of the graph, it is most apparent in the CCIL-

tral dip. The first two programs are able to salvage some
computation during this time period, nas-bt being more

successful t,owards the end since it can run on 25 processors.

On the other hand, nas-fftpde makes virtually no progress

in this period. We would like t,o point out that the period

231

35 35

E i 30 t i 30

E 25 ! 25
f f

2 e x 20 d 20

E 15 E 15

1

J

2

lu" 10 a 10
w

:
z
Y
E

%
a

a

E
3
3
ii

0’
0 2ciml Qmm 6cmnl 0 2m 4oml Emxu 0 2mxJ 4m mm

Tme(smxkl Time (semrck) Tme(semdr)

Figure 7: Variation of equivalent parallel machine over a week. nas-bt was used as the exemplar.

10 \\

' . . -.
s- ---%____

0
0 IO GxlLio~:w,~) 50 60

(a) College Park

e i
E
a = c
x

i
$ io- ‘\.\

‘c
d

5 ‘1. s
UI ----. _- s

5-
---.__

01 ’ ’ 1 2 ’
0 10 20 30 40 50 w

c&c4 pfocas slalllp (d)

(b) Berkeley

120
"..,,
"...
"..

2:

100
"‘.Y...\,

n&u
m-ng

c

@J t “'--.,;_. _ .- -. _ -.

@I

/

JI II>,-...;... .~~..~~; .__. 1
0 10 cc6ldpc-slarnp,~~ 20 30 50 60

(c) Madison

Figure 8: Variation of the equivalent parallel machine with process startup cost.

40 I 40

I
1 40,

I nar-u- Me-1
35 35 35 1
30 t 30 e

:
i 30

25 2 25 ! 25
2 f

20 2
a

20 e 8 20

15 E 15 E

2

t 15

10 a 10 4 10
w

s

5 5 5

0
I

0
0 m 4cmu 6oim 0 2mm 4Lxm mm 0 2mm 400000 6olcinl

Tme(mmis) Tme(seco&) Tme(sem&)

Figure 9: Impact of configuration flexibility.

232

in question is of the order of two days

4 Evaluation on a real machine

To gain an understanding of the practical problems that

arise when trying to run parallel programs in an adaptive

fashion, we have developed s,ystem support that allows pro-
grams to detect changes in their environment and adapt to

these changes. We have also developed an adaptive version
of a parallel computational fluid dynamics program and have
measured its performance using an IBM SP-2 as a cluster of

workstations and one of the workstation availability traces

mentioned above as the sequential workload.
Our system (called Finch) uses a central coordinator

which keeps track of the workstation availability and a man-
ager process for each application which keeps track of its

progress and coordinates the application’s response to changes

in workstation availability. The central coordinator resem-
bles the Condor central manager [24] and runs on a central
machine. The application-manager is created when the job

is submitted and lives for the duration of the job. It runs

cm the submitting machine. Global resource allocation de-
cisions are made by the central coordinator; coordination of

application processes for the purpose of adaptation is done

by the application-manager. Currently, we assume a co-
operative user environment and provide a pair of programs

that the primary user of the workstation can use to make the

workstation available and to reclaim it for personal use. User

requests (reclamation or otherwise) are sent to the central

coordinator which selects the application that must respond

to the event. It then informs the corresponding application-
manager which coordinates the response. Finch is portable

across Unix environments. Currently, it runs on Suns, Al-
phas and RS/6000s.

For this study, we used a template extracted from a

multiblock computational fluid dynamics application that
solves the thin-layer Navier-Stokes equations over a 3D sur-

face (multiblock TLNS3D [27]). This is an iterative SPMD

program, each iteration corresponds to a different timestep.
We chose the top of the time-step loop as the safe point

for eviction. If a reclamation request is received when the

program is at any other point, eviction is delayed till all pro-

cesses reach this point. As described later in this section,

the additional delay introduced, at least for this program,

is quite small. We used the Adaptive Multiblock PART1 li-

brary [IO] for parallelizing the application. This library per-
forms the data partitioning for normal execution as well as

the repartitioning for adaptation. It also manages the nor-
mal data communication as well as the data motion needed

for eviction. To achieve efficient communication, this library

pre-computes communication schedules. Changing the num-
ber or the identity of its processors requires recomputation

of the schedule. Adaptive Multiblock PART1 is not unique

in providing these services. The DRMS system [16] from
IBM Research provides similar functionality. The point we

would like to make is that this support does not have to be

implemented by a parallel programmer.
We needed to make four changes to the program to allow

it to run in an adaptive fashion. First, we added a call

to initialization code which includes contacting the central

Num processors 1 2 4 8 16

dat,aset 1 0.1% 0.1% 0.1%8 0.1% 0.5%

dat,aset 2 0.1% 0.1% 0.1% 0.1% 0.4%

Table 3: Slowdown relative to the non-adaptive version. The

workstation pool was assumed to be unused for the period

of this experiment.

coordinator for resources. Second, we added code to the top
of the time-step loop to check for adaptation events and a

call to an adaptation routine if the check succeeds. Third.

we wrote the adaptation routine which repartitions the data
arrays and moves it to destination nodes. Finally, we added

a call to a finalization routine which, among other things,

informs the central coordinator about the completion of this
program.

We evaluated the performance of Finch and this appli-

cation using a 16-processor IBM SP-2 as the workstation
pool and 16 workstation availability traces from the College

Park pool as the sequential workload. We ran this program
in powers-of-two configurations from one to sixt,een proces-
sors. We used two input datasets for our experiments with

different meshes. Table 2 shows the time per iteration for

the different configurations.

We designed our experiments to allow us to compute

three measures. First, the cost of the running the adaptive

version when no adaptation is required. Second, the time

for eviction. That is, the time a user has to wait for her

workstation once she has made a reclamation request. We
have divided this time into two parts. The first part consists

of the time spent by the application (the time to repartition,

move the data as well as compute the new communication

schedules) and the second part consists of time spent by the
central coordinator and the application-manager. Finally,

we computed the equivalent parallel machine.

Table 3 shows the slowdown of adaptive version of the

code compared to the original non-adaptive version. For the

period of this experiment, the workstation pool was assumed

to be quiescent and no adaptation was required. We note
that the overhead of using the adaptive version is negligible.

This is understandable since the check for an adaptation

event is no more than checking if there is a pending message
on a socket. The rest of the adaptation code is not used if

there are no adaptations.

Table 4 presents the application-level cost of adapting
between different configurations. The cost is roughly pro-

portional to the magnitude of the change in the number of

processors and the size of the data partition owned by each
processor.

Figure 10 shows the equivalent parallel machine for one,

two and four copies of the program running together. In
these experiments, the first copy is allowed to start first.

and others follow in sequence. The first copy is assigned as
many nodes as it wants at start time and the other copies

compete for the remaining nodes and for the nodes that,

become available during the computation. As a result. the
first copy achieves better performance than the others. The

largest equivalent parallel machine is 11 processors for the

233

Num procrssors 1 2 4 8 16

dataset. I 319 ms 196 ms 134 ms 106 ms 87 ms

dataset 2 510 ms 380 ms 209 ms 150 ms 130 ms

Table 2: Time per iteration for the two datasets.

Num of src proc 1 1 1 1 2 2 2 4 4 8

Num of dest proc 2 4 8 16 4 8 16 8 16 16

Remap time 125 ms 188 ms 214 ms 250 ms 62 ms 93 ms 115 ms 28 ms 48 ms 19 ms

Table 4: Application-level cost of adaptation (dataset 1).

first dataset and 13 processors for the second data set. That
corresponds to 69% and 81% of the size of the pool. For

comparison, the equivalent parallel machine for the entire

set of umd traces was computed to be 74% (see section 3.3).
The average time the user had to wait for a guest pro-

cess to leave depended on the number of processors and the
size of data for the job the guest process was a part of. For

a single program running by itself on the pool, the average

wait time for eviction was 1.19 seconds. For multiple pro-
grams running together, the average wait time for eviction

was 1.67 seconds. The number of adaptation events over the
period of this experiment was 487.

5 Other Related work

In this paper, we considered the use of idle workstations as
compute servers. With the current growth in the number
and the size of data-intensive tasks, exploiting idle work-

stations for their memory could be an attractive option.

Dahlin et al [‘i] study the feasibility of using idle memory

to increase the effective file cache size. Feely et al [ll] de-
scribe a low-level global memory management system that

uses idle memory to back up not just file pages but all of

virtual memory as well. They show that this scheme is

able to use idle memory to improve the performance of a

suite of sequential data-intensive tasks by a factor between

1.5 and 3.5. Franklin et al [12] describe a unified memory
management scheme for the servers and all the clients in a

client-server database system. Their goal was to avoid repli-

cation of pages between the buffer pools of all the clients as

well as the buffer pools of the servers. Explicit memory

servers have been proposed by Narten&Yavagkar [18] and

Iftode et al [13]. Narten&Yavagkar describe a memory server

similar in spirit to the Condor central manager. It keeps

track of the idle memory available and ships memory ob-

jects to the corresponding machines as needed. Iftode et al
propose extending the memory hierarchy of multicomputers

by introducing a remote memory server layer.
Harvesting idle workstations for their memory imposes

fewer requirements on the system support than harvesting

them for their computation. If done properly, memory can
be often be shared for long periods without significant im-

pact on the interactive performance, particularly for today’s

machines which have large primary memories. Eviction of

guest memory pages does not have the same urgency as the

eviction of guest processes.

6 Summary of conclusions

There are two primary conclusions of our study. First,

that there is significant utility in harvesting idle worksta-

tions for parallel computation. There is, however, consid-
erable variance in the performance achieved. For the three

non-dedicated pools we studied, we found that they could

achieve performance equal to that of a dedicated parallel
machine between one-third to three-fourths the size of the

pool. Supporting evidence for this conclusion is provided by

our experience with Finch and an adaptive Navier-Stokes
template. Second, the parallel throughput achieved by a

non-dedicated pool depends not only on the characteristics

of sequential load but also on the flexibility of the parallel
jobs being run on it. Jobs that can run only on a small num-

ber of configurations are less able to take advantage of t,he
dynamic changes in availability; jobs that can run on a large

set of configurations achieve better throughput. This effect

is particularly important when the number of workstations
available hovers around “magic numbers” like powers-of-t,wo

and squares.

The other conclusions of our study are:

On the average, 60% to 80% of the workstations of
a pool are available. The fraction of time for which a

cluster of I; workstations is available drops more or less
linearly with k. Clusters larger than half the total size
of the pool are available for over half the time. More-

over, a substantial fraction (20%-70%) of the worksta-

tions is always available.

Even though large clusters are available at any given

time, these clusters are not stable. Clusters up to half

the size of the pool are stable for four to fifteen minutes
and clusters up to a third of the pool are stable for five

to thirty minutes.

There is a wide variance in the distribution of the
length of idle periods across different workstations.

The expected length of an idle period varied from a
minimum of 18 minutes to a maximum of 9 hours. On

the average, workstation that has been idle for five

minutes can be expected to be idle for another 40-90

minutes.

234

Figure 10: Equivalent parallel machine for one, two and four programs. The graph on the left is for the first dataset and the

graph on the-right. is for the second dataset.

l It, is not t,oo difficult to convert SPMD programs to
run in an adaptive environment. This conversion is

benign. That is, the modifications do not have an

adverse impact on the performance of the programs.
Also, useful gains are possible on real machines.

l The eviction delay seen by a user is not unacceptably

large. However, we would like to caution the reader

that this conclusion is based on a scheme that does no
checkpointing and as such is unable to recover from

failures.

Acknowledgments

We would like to thank Remzi Arpaci for the UC Berkeley

workstation availability traces. We would like to thank the

Condor group at the University of Wisconsin for providing
the web interface to the Condor status monitor. We would

like to thank St,even Hotovy of the Cornell Theory Center
for the trace of the jobs submitted to their IBM SP-2, Regan

Moore and George Kremenek of the San Diego Supercom-

puting Center for the trace of the jobs submitted to their
Intel Paragon, and Peter Young of the Maui High Perfor-

mance Computing center for the trace of the jobs submitted
to their IBM SP-2.

References

[l] R.C. Agarwal, F.G. Gustavson, and M. Zubair. An Ef-

ficient Algorithm for the 3-D FFT NAS Parallel Bench-
mark. In Proceedings of SHPCC’94 (Scalable High-

Performance Computing Conference), pages 129-33,

May 1994.

[23 R.H. Arpaci, A.D. Dusseau, A.M. Vahdat, L.T. Liu,
T.E. Anderson, and D.A. Patterson. The Interaction

of Parallel and Sequential Workloads on a Network of

Workstations. In Proceedings of the 1995 ACM SIG-

METRICS Joint International Conference on Measure-

ment and Modeling of Computer Systems, pages %67-

78, May 1995.

[3] D. Bannerjee, T. Tysinger, and W. Smith. A Scalable
High-performance Environment for Fluid-flow Analysis

on Unstructured Grids. In Proceedings of Supercomput-

ing’94, pages 8-17, November 1994.

[4] N. Carriero. D. Gelernter, M. Jourdenais, and

D. Kaminsky. Piranha Scheduling: Strategies and Their
Implementation. International Journal of Parallel Pro-

gramming, 23(1):5-33, Feb 1995.

[S] The Condor status monitor. http://mmu~.cs.u~isc.erlu/-

cgi-bin/condorstatus/-sewer, 1996.

[6] The Condor status monitor. http://m~w.cs.~isc.edu/-

cgi-bin/condor-status/-server+fo& 1996.

[7] M. Dahlin, R. Wang, T. Anderson, and D. Patterson.

Cooperative Caching: Using Remote Memory to Im-

prove File System Performance. In Proceedings of the

First Symposium on Operating System Design and Im-

plementation, pages 267-80, Nov 1994.

[8] F. Douglis. Transparent Process Migration in the Sprite

Operating System. PhD thesis, Computer Science Di-

vision, Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, Sep

1990.

[9] Fred Douglis and John Ousterhout. Transparent Pro-

cess Migration: Design Alternatives and the Sprite
Implementation. Software Practice and Experienct,

21(8):757-85, August 1991.

[lo] G. Edjlali, G. Agrawal, A. Sussman, and J. Saltz. Data

Parallel Programming in an Adaptive Environment. In

235

Proceedings of the Ncnth International Parallel Process-

ing Symposium, pages 827-32. April 1995.

[ll] M. Feely. W. Morgan, F. Pighin. A. Karlin. H. Levy,

and C. Thekkath. Implementing Global Memory Man-
agement in a Workstation Cluster. In Proceedings of the

fifteenth ACM Symposium on Operating System Prin-

ciples, pages 201-12, Dee 1995.

[12] M. Franklin, M. Carey, and M. Livny. Global Memory

Management in Client-Server DBMS Architectures. In
Proceedings of the eighteenth International Conference
on Very Large Data Bases, pages 596-609, Aug 1992.

[13] L. Iftode, K. Li, and K. Petersen. Memory Servers for

Multicomputers. In COMPCOIV Spring’93 Digest of

Papers, pages 538-47, Feb 1993.

[14] S. Leutenegger and X.-H. Sun. Distributed Comput-
ing Feasibility in a Non-dedicated Homogeneous Dis-

tributed System. In Proceedings of Supercomputing’93,

pages 143-52, November 1993.

[15] M. Litzkow and M. Livny. Experiences with the Condor

Distributed Batch System. In Proceedings of the IEEE

Workshop on Experimental Distributed Systems, pages

97-101, act 1990.

[16] 3. Moreira, V. Naik, and R. Konuru. A Program-

ming Environment for Dynamic Resource Allocation

and Data Distribution. Technical Report RC 20239,

IBM Research, May 1996.

[17] Matt Mutka and Miron Livny. The Available Capacity

of a Privately Owned Workstation Environment. Per-

formance Evaluation, 12(4):269-84, July 1991.

[18] T. Narten and R. Yavagkar. Remote Memory as a

Resource in Distributed Systems. In Proceedings of

the third Workshop on Workstation Operating Systems,

pages 132-6, April 1992.

[19] David Nichols. Using Idle Workstations in a Shared

Computing Environment. In Proceedings of the

Eleventh ACM Symposium on Operating Systems,

pages 5-12, November 1987.

[20] G. Popek and B. Walker. The LOCUS Distributed Sys-

tem Architecture. The MIT Press, 1985.

[21] J. Pruyne and M. Livny. Parallel Processing on Dy-

namic Resources with CARMI. In Proceedings of the

Workshop on Job Scheduling Strategies for Parallel Pro-

cessing, pages 259-78, April 1995.

[22] W. Saphir, A. Woo, and M. Yarrow. The NAS Parallel

Benchmarks 2.1 Results. Technical Report NAS-96-010,
NASA Ames Research Center, August 1996.

[23] S. Sharma, R. Ponnuswami, B. Moon, Y-S Hwang,
R. Das, and J. Saltz. Runtime and Compile-time Sup-

port for Adaptive Irregular Problems. In Proceedings

of Supercomputing’94, pages 97-108, November 1994.

[24] T. Tannenbaum and M. Litzkow. The Condor Dis-
tributed Processing System. Dr. Dobbs * Journal.

20(2):42-4, Feb 1995.

[25] Marvin Theimer and Keith Lantz. Finding Idle
Machines in a Workstation-based Distributed Sys-

tem. IEEE Transactions on Software Engineering,

15(11):1444-57, November 1989.

[26] A.S. Umar, D. J. Dean, C. Bottcher, and M.R. Strayer.

Spline methods for Hydrodynamic Equations: Parallel
Implementation. In Proceedings of the Sixth SIAM con-

ference on parallel processing for scientific computing,

pages 26-30, March 1993.

[27] V.N. Vatsa, M.D. Sanetrik, and E.B. Parlette. Develop-

ment of a Flexible and Efficient Multigrid-Based Multi-

block Flow Solver; AIAA-93-0677. In Proceedings of the

313t Aerospace Sciences Meeting and Exhibit, January
1993.

[28] E. Zayas. The Use of Copy-on-Reference in a Process

Migration System. PhD thesis, Department of Com-
puter Science, Carnegie Mellon University, Pittsburgh
PA, April 1987.

236

