
QUANTIFYING SOFTWARE DESIGNS 

John Beane 
Nancy Giddings 
Jon Silverman 

Software Technology Section, Honeywell Systems and Research Center 
2600 Ridgway Parkway, Minneapolis, Minnesota 55413 

ABSTRACT 

This paper describes an effort to use metrics to 
evaluate software designs early in the design 
process. Key facets of the work include a 
machine processable design notation and the 
definition of software design metrics. We 
believe that the future success of building an 
intelligent software design assistant depends on 
the ability to quantify attributes of a software 
design, as well as to have the representation of 
the design available for automated examination. 

Component interconnection language 
(CIL)--Our notation for expressing a 
software architecture. 

Automated evaluation of a software design should 
occur early because by the time the PDL stage has 
begun, major architectural errors may already be 
in place. The time to identify and correct 
architectural errors is when they are made--early 
in design. 

INTRODUCTION 

Active automated assistance should be introduced 
into the software life cycle as early as 
possible. In order to do this, a machine 
processable version of early abstract designs 
must be available. In addition, the preferred 
attributes of a design must be formalized via 
automated metrics so that the assistant may 
recognize and enforce them. 

Our problem domain is primarily embedded computer 
systems. Such software is typically custom built 
due to unique mission requirements and/or 
processing configurations. Approaches that have 
been successful in other environments, such as 
application generators, have had little success 
in the embedded software community. There is a 
great deal of potential, however, for introducing 
increased automation into embedded software 
development. 

The following definitions are used in this paper: 

Historically, work in software metrics has been 
done mainly in the area of metrics for 
implementation (code) that are applied after the 
fact. The work described here is an attempt to 
apply metrics much earlier in the life cycle. 

The metrics are a means to an end. They support 
the formalization of preferred design attributes 
that, in turn, may be used to build automatable 
design rules. Figure 1 illustrates the 
interrelationships among these concepts. 

User interfaces could be defined at any of the 
three levels: CIL, metrics, or automated 
assistant. An interface directly to the CIL 
would provide the user with a machine processable 
design. This is useful primarily for 
documentation. A metrics interface provides the 
user with the capability for automatic quality 
evaluation of designs. Finally, the intelligent 
automated assistant provides a more comprehensive 
facility in that it "knows" about the selected 
design methodology and can guide the user. 

Early in the software life cycle--Before 
the program design language (PDL) stage. 

Software architecture--The identification 
of subsystems and smaller parts during 
design, concentrating on the inter- 
relationships among parts rather than on 
their internal, operational charac- 
teristics. 

The work described in this paper deals with the 
foundations necessary to build the three tiers of 
user support in Figure I, specifically, the CIL 
and the software quality metrics. This paper 
describes the CIL, the metrics, a feasibility 
demonstration of the CIL and metrics, and our 
future directions. 

0270-5257/84/0000/0314501.00©1984 IEEE 
314 



THE SOFTWARE ARCHITECTURE NOTATION 

Motivating Concepts 

Three motivating concepts helped to shape the 
form and the scope of the CIL and metrics: 

o Programming-in-the-largel, 2,3 

o Reusable software parts4,5,6,8,9, I0 

o Software design metrics7,11,12,13 

The CIL was created with three objectives: 

o We wanted a simple notation for expressing 
a software design at an abstract level. 

o We wanted a notation that made the 
information needed to compute the metrics 
explicit. 

o We wanted a notation independent of any 
particular design methodology. 

Existing notations were considered but were found 
to contain additional (and, for our purpose, 
superfluous) features. We wish to emphasize that 
our approach to evaluating software designs using 
structural metrics is not contingent upon using 
the CIL. The CIL may be replaced with any other 
design notation that meets the data requirements 
of the metrics. The CIL is primarily an 
experimental vehicle. Some comments on how the 
CIL compares to other design language projects 
follow. 

p 

SDS 14 is attractive because it provides the 
ability to define a design notation. For 
example, one could take a subset of the 
categories and relationships described for SDS 
and have an equivalent notation to the CIL. 
Alternatively, one could define metrics for the 
example language shown by Levene and Mullery 14 
and introduce design evaluation into that 
environment. 

PSL/PSA 15 and SREMI6,17 provide much more 
extensive language facilities, which we felt 
would introduce unnecessary complexity into our 
project. In addition, SREM has methodology 
implications that we wished to avoid. 

Overview of the CIL 

The CIL provides facilities for describing a 
software architecture as a collection of 
interconnected parts. Each succeeding level 
introduces more detail about the design of the 
previous level and is called a level of 
refinement. Together, the levels of refinement 
describe the history of a design. 

Three distinct meta-levels of description are 
explicitly supported by the CIL syntax. A Level 
I description states a system's major functional 
parts and their interconnections. A Level 2 
description refines a major functional part into 
intermediate abstractions for its subparts and 

their interconnections. A Level 3 description 
packages some portion of a Level 2 description 
into an operational unit and describes it at a 
level of detail appropriate for subsequent 
detailed design. There may be multiple instances 
of each type of level. The delineation of three 
level types is somewhat arbitrary. We wished to 
convey the concept of introducing increasing 
detail by adding language constructs. Having 
more than three levels seemed excessive. 

Each level description contains two sections, a 
parts list that names the objects and an 
interconnections list that defines the 
relationships between objects. 

Each part in the parts list has a classification 
or type. The classifications become more 
specific (less abstract) with each successive 
level. An object may be refined in either of two 
ways. It can be reclassified using a more 
specific type, or it can be decomposed into a set 
of lower-level objects. The classifications form 
a hierarchy as shown in Figure 2. The most 
abstract classification is other, which has no 
attributes associated with it (and hence no 
constraints). An object of this type can be 
reclassified into data or active. Objects of 
type data can be further constrained as simple 
data, structured data, or template. Active 
objects can be refined into subprogram or 
process. 

The interconnections list states the information 
flows among the parts in a parts list. The 
successive relationships form a hierarchy (see 
Figure 3) similar to the part classification 
scheme outlined above. As the classifications of 
two related objects become more specific, the 
corresponding operational relationship can be 
specified more precisely. Successive refinements 
constrain the direction of the information flow, 
whether the flow consists of data or control, and 
the precise type of the flow. 

This hierarchical approach to the notation 
supports: 

o Stepwise refinement 

o An ordered approach to design 

o Postponement of design decisions until 
needed 

o Functional-driven, data-driven, or mixed 
design paradigms 

o Explicit recording of successive design 
decisions 

The Backus-Nauer Form (BNF) representation for 
the CIL is given in Table I. A more complete 
description of the language may be found in 
Reference 18. 

315 



USER 

TO DESIGN PER A SELECTED 
METHOD 

TO EVALUATE A DESIGN 

TO EXPRESS A DESIGN 

INTELLIGENT 
AUTOMATED 
ASSISTANT 

DESIGN METHODOLOGY RULES 
ENFORCE/GUIDE USER'S DESIGN 
PROCESS 

ALGORITHMS OPERATE ON CIL 

MACHINE PROCESSABLE DESIGN 

Figure I. Levels of User Interface 

LEVEL1 
LEVEL2 

SYSTEM 

LEVEL3 

ACTIVE 

SUBPROGRAM PROCESS 

DATA 

SIMPLE STRUCTURED TEMPLATE 
DATA DATA 

Figure 2. A Hierarchy of Part Types 

LEVELI 

LEVEL2 - /  
CALLS 

LEVEL3 

CONNECTS WITH 

INVOKES ACCESSES 

CALL READS OEAO 
RETURNS WRITE.5 

WRITES 

Figure 3. A Hierarchy of Part Interconnections 

316 



TABLE 1. BNF REPRESENTATION OF CIL 

BNF REPRESENTATION FOR THE CIL 

The ElL is described using the following BNF rules: 

I. Strings within angle brackets "<>" are non-terminals. 
2. Strings not within angle brackets are terminals. 
3. Square brackets "[],, enclose optional items. 
4. Braces "{}- enclose items repeated zero or more times. A plus 

after a brace indicates one or more repetitions. 
5. Vertical bars "+" separate alternative items. 

The syntax rules for the grouping constructs (system, assembly, and 
component) are presented using a recommended formatting scheme. 

A CIL description is formally defined as follows: 

<oil description> ::: 
<~evell description> 
{ <leveY2 description> }+ 
{ <level3~description> }~ 

<levelldescription> ::: 
system <identifier> 
parts list 

{<part declaration_level1>}*~ 
connections 

{<part relationship_level1>]+ 

<part declaration level1> ::= 
~ l e v e l l e n t i ~ y >  < i d e n t i f i e r  l i s t >  

<levell entity> ::: 
active 

I d a t a  
I other  

< p a r t _ r e l a t i o n s h i p l e v e l l  > : :=  
<identifier> <level1_relatlonship> <identifier list>. 

<levell_relationshi~> ::= 
connects with 

m m m ~ m m . . . . .  

<level2 description> ::= 
assembly <identifier> 
parts list 

{<part declaration_level2>}& 
connections 

{<part_relationship_level2>~- 

<part declaration level2> ::= 
~level2_enti~y> <identifier list> 

<level2 entity> ::: 
active 

: d a t a  
I o t h e r  

<part_relationship level2> ::: 
<identifier> ~level2_relationship> <identifer llst> 

<level2_relationship> ::= 
connects with 
uses 
invokes 
a c c e s s e s  

<level3 description> ::: 
component <identifer> 
parts list 

provides 
{<part deelaration_level3>} 

hides 
{<part_ declaration_level3>} 

connections 
{<part_relationship_level3>} 

<part declaration level3> ::= 
~level3enti~y> <parameterized_objeet_list> 

<level3 entity> ::= 
component 

I subprogram I process 
simple_data I structured data ~ template 

<parameterized_ohjectlist> ::= 
<parameterized_object> {, <parameterized_obJect>} 

<parameterizedobject> ::= <identifier> [( <parameter_list> )] 

<parameter_list> ::= <parameters> {; <parameters>} 

<parameters> ::= <identifier list> : <mode> <level3_entity> 

<mode> ::= in ~ out I in out 

<part relationship level3> ::= 
~identifier> ~operational_relationship> <parameterized_object_list> 

<operatlonalrelationship> ::= 
<op_rel> [AND <op_rel>] 

<oprel> ::= 
call returns 
calls 
r e a d s  
writes 

L e x i c a l  Elements 

The t e x t  of a CIL desc r i p t i on  i s  a sequence o f  separate l e x i o a l  
elements. Each lexical element is an identifier that is either a name 
of an entity that represents a part of a system or a reserved word. 
Lexical elements are separated b y  spaces, commas, or end of lines. 

Sequences of lexical elements that form syntactic categories are 
recognized by the use of reserved words. Semicolons, or other special 
characters, are not used as either statement separators or 
terminators. 

A lexieal element that is not declared within the parts list of the 
current description (i.e., it is not local to the description) may be 
referenced by adding a prefix to the identifier. A prefix consists of 
a description identifier followed by a period. 

The BNF for identifers is the following: 

<identifier_list> ::= <identifier> {, <identifier>} 

<identifier> ::= <letter>{ - <letter_or digit> }{. <identifier>} 

<letter or digit> ::= 
<letter> 

I <digit> 

<letter> ::: A I B I ... I Z I a ~ b ~ ... : z 

<digit> ::: 0 I I I ... I 9 

A CIL Example 

This subsection contains sample Level I, 2, and 3 
descriptions. The purpose of the example is to 
demonstrate the form and content of the three 
descriptive levels. 

Figures 4(a) and 4(b) show a Level i CIL 
description and its corresponding graphic 
equivalent, respectively. These figures are a 
high-level representation of a signal select 
subsystem--a subsystem which receives raw data 
signals from redundant sensors and executes a 
select procedure for the operative value. This 
level of description may be derived from a 

functional specification or a software 
requirements document. 

Figures 4(c) and 4(d) are a refinement of the 
Level 1 part PROCESS SIGNALS. PROCESS SIGNALS 
was decomposed first into two pieces--one for 
analog signals and one for discrete signals. The 
Level 2 descriptions shown are a refinement of 
the analog portion of PROCESS SIGNALS. Notice 
that although more specific interconnection types 
are available at Level 2, the designer chose 
"uses." The particular method illustrated here 
is to refine parts first, then substitute more 
specific interconnections. 

317 



system ISS&M 

parts list 
active PROCESS SIGNALS 
active INTERCO~ MONITOR 
active SIGNAL ALGORITHMS 
data RAW SIGNALS 
data TRANSMIT AND RECEIVE 
data SELECTED--SIGNALS 

connections 
RAW SIGNALS uses PROCESS SIGNALS 
PROUESS SIGNALS uses TRANSMIT AND RECEIVE 
PROCESS--SIGNALS uses INTERCOM--MONTTOR 
INTERCO~ MONITOR uses SIGNAL ~LGORITHMS 
SIGNAL A~GORITHMS uses SELECTED SIGNALS 

(a) 

SIGNAL 
ALGORITHMS 

(b) 

assembly PROCESS ANALOG SIGNALS 

parts list 
active SAMPLE 
active SCALE AND STORE 
active TRANSMIT ~ND REC 
data RAW ANALOG--SIGNALS 
data TRANSMIT AND RECEIVE 
data UNSCALED--LOC~L 
data SIGNAL LTST 
data SCALED--DATA 

connections 
SAMPLE uses RAW ANALOG SIGNALS 
SAMPLE uses SIGNAL LIST 
SAMPLE uses UNSCAL[D LOCAL 
SAMPLE uses SCALE AN~ STORE 
SCALE AND STORE u-{es ~IGNAL LIST 
SCALE--AND--STORE uses UNSCALKD LOCAL 
SCALE--AND--STORE uses SCALED D[TA 
SCALE--AND--STORE uses TRANSMTT AND REC 
TRANSMIT ~ND REC uses SIGNAL FIST- 
TRANSMIT--AND--REC uses SCALED--DATA 
TRANSMIT--AND--REC uses TRANSMTT AND RECEIVE 

SIGNAL SIGNAL 
LIST S~ADL E LIST 

(c) (d) 

component COMPARE AND CONTROL 

parts list 
provides 

subprogram COMPARE AND CONTROL (SL: in SIGNAL_LIST) 
hides 

connections 
COMPARE AND CONTROL 
COMPARE--AND--CONTROL 
COMPARE AND CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 

COMPARE AND CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 

COMPARE AND CONTROL 

call re tu rns  COPY AND TRANSMIT 
call--returns COPY--AND--RECEIVE 
call--returns COMP~TE C-HECKSUM 
call--returns VALI DA T'E 
call-{ ADJUST 

reads SIGNAL LIST 
reads CHECKSUM 
reads LOCAL CKWD 
reads LOC AL--VALW D 
reads RIGH T--C KW D 
reads RIGH T--VALW D 
reads LEFT TKWD 
reads LEF T--VALW D 

writes AVAIL PROCESSORS 

(e) 
Figure 4. A CIL Example 

318 



Figure 4(e) is a Level 3 CIL description. 
COMPARE AND CONTROL is a component derived from 
TRANSMIT AND REC in Figure 4(c). Level 3 
descriptions are typically quite simple in terms 
of the number of parts and their 
interconnections. COMPARE AND CONTROL is one of 
the more complex. Basically, COMPARE AND CONTROL 
performs the exchange of data between redundant 
channels, including checksum calculation and 
validation. Note that COMPARE AND CONTROL only 
accesses data items declared external to itself. 

Some conclusions may be drawn from viewing these 
CIL descriptions: 

There is a very close relationship between 
the graphic presentation and the CIL 
description. 

The CIL descriptions are usually small, 
consisting of 5 to I0 parts and 5 to i0 
interconnections. Complexity is handled 
by parceling out functionality into these 
small manageable units. 

Designers choose their strategy for 
introducing detail into the design. The 
examples show a deferring of 
interconnection specificity in favor of 
part decomposition. 

STRUCTURAL METRICS 

Little attention has been focused to date on the 
problem of defining software metrics to 
characterize the software architecture. Metrics 
such as segment-global usage pair 19, data 
binding 11, and information flow 13 rely on a 
detailed analysis of the code (algorithms) to 
record which subprograms access which global 
variables or pass variables between subprograms. 
For functional design, a more abstract notion of 
connectivity is needed, such as Belady's 
(clustering) complexity measure 7. Our metrics 
are based on that notion. 

Structural metrics or metrics based on 
relationships can be used to: 

o Find the optimal groupings for a set of 
components and their connections. 

o Locate stress points and stress groups. 

o Identify missing "levels of abstraction." 

The metrics we have defined fall into two 
classes. One metric focuses on the local 
relationships--direct connections, such as that 
between parts 1 and 3 in Figure 5(a)--associated 
with one software part. The intent is to 
discover highly interconnected parts--ones for 
which a change would have a large impact on the 
remainder of the system. A second metric expands 
the focus to a group of parts. Here we must 
consider not only direct relationships, but 
indirect ones as well: part 1 is connected to 3, 
and 3 is connected to 7; therefore, 1 is 
indirectly connected to 7; see Figure 5(b). By 

penalizing those relationships which cross group 
boundaries, we hope to identify (for the 
designer) parts that are placed in the wrong 
groups, when to split a big group into subgroups, 
and when to combine smaller groups into bigger 
ones. 

The local or "stress point" metric is calculated 
by counting the number of direct connections 
associated with a given part and dividing by the 
average number of connections per part (averaged 
over the entire system). The direction of the 
relationship is ignored, so every connection is 
counted twice. The metric value for node 3 in 
Figure 5(a) is 6/2 or 3. When the metric value 
exceeds some threshold, the part is identified as 
a stress point. The problem of picking an 
appropriate threshold is discussed in the 
subsection on metrics. 

The second or "path" metric assumes a larger 
perspective. It may be applied to a group of 
parts, several groups, or an entire system. The 
path metric is calculated by summing the length 
of each connection path leading from the relevant 
part. The metric value for a group of parts is 
the sum of the values of all the root nodes 
(parts without a connection leading from another 
part in the same group). 

There are three cases to be considered when 
deciding what is a distinct path--wholly 
contained, common head, and common tail. The 
first case is illustrated in Figure 5(c), where 
the path from part 1 through part 3 to part 6 is 
wholly contained within the path 1-3-6-7. Wholly 
contained paths are not counted as distinct 
paths. The second case is illustrated in Figure 
5(d), where paths 1-3-5 and 1-3-7 have a common 
connection 1-3. The connections which comprise 
the common head are only counted once. The last 
case is illustrated in Figure 5(e), where paths 
1-3-4 and 2-3-4 have a common tail 3-4. The full 
length of paths sharing common tails are counted 
in the path metric to account for the spreading 
impact of a change to part 4, which causes a 
change to part 3 and so on to parts 1 and 2. 

To help the designer organize parts into 
appropriate groups, not all connections are 
counted equally. Those that cross group 
boundaries count more in the calculation of the 
path metric to encourage the designer to minimize 
such connections. Figure 5(f) shows the path 
metric values for the example where parts 1 and 2 
have been put into a different group than parts 3 
through 7. The intergroup penalty is set at I0. 

The path metric is also appropriate at a macro- 
or system-wide level. The primary use of the 
metric at this level is to track the growing 
complexity of the system at each level of 
abstraction. If the difference between two 
levels spans several orders of magnitude, the 
designer gets a warning signal that the 
conceptual jump may be too large and an 
intermediate level is appropriate. This use for 
design metrics was suggested by Kafura's studies 
of UNIX 13 . 

319 



(a) (b) 

l i  

Q,.o ° 

(c) (d) 

Q •  / ~ . ~  ~ Q P=15 

BOUNDARY ~ P=0 

P-0 v . ~ 

P=I 
(e) (f) 

INTER GROUP PENALTY = 10 

Figure 5. Path Metric Details 

320 



A FEASIBILITY DEMONSTRATION 

Context of the Demonstration 

The purpose of the demonstration was to exercise 
the CIL/metrics on a selected real-time, embedded 
software subsystem. A formal paradigm based on 
goals and questions was used in defining the 
demonstration. The goals fall into two 
categories: evaluate the effectiveness of the 
CIL/metrics and evaluate the quality of the 
resulting software designs. Further description 
of the demonstration's operational procedure is 
given in Reference 20. 

The CIL is particularly intended for use by 
designers of embedded software. The experimental 
vehicle chosen was a subsystem of the forward 
swept wing (FSW) autopilot. The experiment 
consisted of two software engineers independently 
designing the subsystem through successive 
refinements using the CIL. The resulting designs 
were evaluated via metrics and by review with the 
actual FSW software developers. 

The FSW autopilot was chosen because: 

The autopilot has many of the 
characteristics of typical embedded 
systems: synchronization (time- 
dependent activities), connections to 
sensors and actuators, and redundancy 
(fail-safe requirements). 

Development of the autopilot is a mature 
software engineering effort, that is, a 
"known problem." 

The designers were available and 
interested in participating in a design 
review. 

Observations 

The demonstration strengthened our hypothesis 
that a software architecture view coupled with 
structural metrics can be used to provide early 
evaluative feedback to a designer. 

Specific observations include: 

The CIL/metrics view is consistent with a 
number of possible design methodologies 
and did not encumber the design process. 

A graphics presentation of a software 
design coupled with evaluative metrics is 
a very strong combination for actively 
supporting the design process. 

The metrics were useful in identifying and 
fixing potential trouble spots in the 
architecture. 

These points are discussed in more detail below. 

CIL/Methodologies. The role of the CIL is to 
provide a machine processable representation of 
the design. The metrics and further automated 

assistance can be introduced easily on this 
foundation. We had questions at the outset of 
the demonstration as to whether the CIL was 
prescriptive in terms of methodology. The answer 
to this question is a definite "no". The CIL 
proved to be a very passive vehicle for 
expressing designs; the methodologies ranged from 
a data-driven approach to an information-hiding 
approach. 

This means that by using the CIL as an internal 
representation, one can construct automated 
assistants that enforce selected design methods. 
Method rules, as well as design styles, are 
embodied in assistants, not in the CIL. The 
metrics may be interpreted in the assistant in a 
variety of ways depending on the design views 
preferred. 

Metrics. Both structural metrics assume the 
resulting values will be compared against a 
threshold. The threshold represents a judgment 
as to what complexity levels are acceptable. It 
is conceivable that such threshold values should 
vary with the application or development 
environment. To set the threshold value with 
some degree of confidence requires extensive data 
collection for that environment. We may want to 
choose a conservative (that is, low) value to 
start, so that borderline cases are caught and 
examined individually. 

A similar problem exists when scaling the 
metrics. For example, the choice of using the 
average to scale the stress point metric (rather 
than the potential number of connections) was 
made to reduce the impact of variations between 
different applications or environments. As we 
collect more data on a wide range of designs, we 
might move to scaling by the potential number of 
connections--resulting in a more absolute number 
and a greater need for accurate thresholds. 

For this initial demonstration, we limited 
ourselves to relative comparisons between two 
designs and avoided the problem of setting 
reasonable thresholds. (We did do some 
preliminary analysis by varying the intergroup 
penalty and trying different scaling formulas for 
the path metric with inconclusive results.) The 
metrics provided a stunning contrast between the 
two designs. The first design had numerous 
cycles, the second had none. The first design 
had a much higher ratio of relationships to 
parts. Without rigorous analysis of functional 
equivalency, we could not make any statements as 
to which design was more complex. However, we 
were encouraged that these differences became 
apparent after applying the metrics. 

The next step beyond this demonstration is a 
validation of the metrics and our claims for 
them. If (as we claim here) using the metrics 
leads to software designs that are more 
maintainable, then it should be possible to 
devise a formal exercise t o  establish some 
correlation between the metric values resulting 
from a design and the maintenance characteristics 
of the end product. This validation step is an 
important one for the future of this work. 

321 



FUTURE WORK 

As a result of the feasibility demonstration, we 
are encouraged about the possibility of using 
metrics early in the life cycle. Referring to 
Figure I, work is underway on a graphics 
interface to the CIL and an automated design 
evaluator (a prototype of which has been 
completed). In addition, we are investigating 
the relationship of the CIL/metrics for software 
test and maintenance. 

REFERENCES 

[ I ]  F. DeRemer and H. Kron, "Programming- 
in-the-Large Versus Programming-in- 
the-Small," IEEE Transactions on Software 
EnRineerin~, SE-2, No. 2, pp. 80-86, June 
1976. 

[21 D. Parnas, "Some Hypothesis About the 
"Uses" Hierarchy for Operating Systems," 
Tech. Hochschule Darmstadt, Fachbereich 
Inform., Darmstadr, West Germany, Res. 
Rep. BSl 76/i, 1976. 

[3] J. Archibald, "Experience with an 
Automated Module Interconneetion 
Language," Technical Report RC8652, IBM 
T.J. Watson Research Center, Yorktown 
Heights, New York, January 1981. 

[4] A. Wasserman and L. Belady, "Software 
Engineering: The Turning Point," 
Computer, September 1978. 

[5] A. Wasserman and S. Gutz, "The Future of 
Progra~nning," Communications of the ACM, 
March 1982. 

[6] L. Belady, "Evolved Software for the 80s," 
Computer, February 1979. 

[7] L. Belady and C. Evangelisti, "System 
Partitioning and Its Measure," Technical 
Report RC7560, IBM T.J. Watson Research 
Center; Yorktown Heights, New York, March 
8, 1979. 

[8] L. Osterweil, "Software Environment 
Research: Directions for the Next Five 
Years," Computer, April 1981. 

[9] J. Neighbors, "Software Construction Using 
Components," Ph.D. Thesis, University of 
California, irvine, California, 1981. 

[10] A. Haberman and D. Perry, "System 
Composition and Version Control for Ada," 
Technical Report, Carnegie-Mellon 
University, Pittsburgh, Pennsylvania, May 
1980. 

[11] W. Stevens, G. Myers, and L. Constantine, 
"Structured Design," IBM Systems Journal, 
Vol. 2, 1974. 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

S. Henry and D. Kafura, "Software 
Structure Metrics Based On Information 
Flow," IEEE Transactions on Software 
Engineering, SE-7, No. 5, pp. 510-518, 
September 1981. 

D. Kafura and S. Henry, "Software Quality 
Metrics Based on Interconnectivity," Th___~e 
Journal of Systems and Software 2, 
Elsevier Science Publishing Co. Inc., pp. 
121-131, 1981. 

A. Levene and G. Mullery, "An 
Investigation of Requirement Specification 
Languages: Theory and Practice" Computer, 
May 1982. 

D. Teichroew and E. Hershey, "PSL/PSA: A 
Computer-Aided Technique for Structured 
Documentation and Analysis of Information 
Processing Systems," IEEE Transactions on 
Software Engineering, January 1977. 

M. Alford and I.F. Burns, "R-Nets: A 
Graph Model for Real-Time Processing 
Requirements," Proc. Symp. on Computer 
Software Engineering, 1976. 

M. Alford, "A Requirements Engineering 
Methodology for Real-Time Processing 
Requirements," IEEE Transactions on 
Software Engineering, January 1977. 

J. Silverman, J. Beane, and N. Giddings, 
"A Component Interconnection Language for 
Evaluating Software Design Quality," 
Technical Report, Honeywell Systems and 
Research Center, Minneapolis, Minnesota, 
March 18, 1983. 

V. Basili and A. Turner, "Iterative 
Enhancement: A Practical Technique for 
Software Development," IEEE Transactions 
on Software Engineering, Vol. I, No. 4, 
pp. 390-396, December 1975. 

J. Beane, N. Giddings, and J. Silverman, 
"A Software Engineering Experiment: Using 
a Component Interconnection Language to 
Capture the Software Structure of a Flight 
Control System," Technical Report, 
Honeywell Systems and Research Center, 
Minneapolis, Minnesota, April I, 1983. 

322 


