
Analyzing and Measuring Reusability in Object-Oriented

Margaretha W. Price
MountainNet, Inc.

2816 Cranberry Square
Morgantown, WV 26505-9289 USA

+l 304 594 9075 ext. 28
mpriceQrbse.mountain.net

ABSTRACT

In this paper, we present a technique to analyze and mea-
sure the reusability of object-oriented (00) designs. The
metrics can be incorporated into a design/development en-
vironment, so that reusability measurements, analysis, and
improvements can be part of Ubusiness as usual” for an orga-
nization. Design reusability measurements also enable early
identification of poor reuse potential, when it is still possi-
ble to modify/refine the design. The essential components
of our approach are two reuse-specific characterizations of
classes and hierarchies, and a set of metrics which objec-
tively measures the dependencies among design components
based on those reuse-specific characterizations.

1 INTRODUCTION

Software components that are reused most often tend to
be small components, since they are normally less specific
(i.e., string functions, abstract data types (ADT), or utility
routines), and thus, more likely needed by other systems.
However, small code reuse produces minimal savings rep-
resenting only a small percentage of the final product [2].
Poulin argues that there are three classes of software that
make up a typical software application [20]:

s Domain-independent (20% of the whole applica-
tion): This includes ADTs, utility routines, math li-
braries and other components which are useful in a
wide range of problem areas.

l Domain-specific (65% of the whole application):
This is for software which is only useful within the spe-
cific domain. The examples given include high-speed
communications device drivers, navigational aids for
aircraft, and financial services libraries.

l Application-specific (15% of the whole application):
This includes software which implements the unique
details of an application.

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

OOPSLA ‘97 IO/97 GA, USA

0 1997 ACM 0-89791-9084/97/0010...$3.50

I

Steven A. Demurjian, Sr.
.The University of Connecticut

Designs

I ’
Compdter Science & En’grg. Dept.

191 Auditori& Rd., U-155
Sterrs, CT 0626Q13155 ,JJSA

^ tl860 486 4818
steveQeng2.uconn.edu 1 i

From the above breakdown, we can expect the most savings
if we reuse the domain-specific soft&ire. Software companies’
do not have to make their software be reusable in all systems,
but they only have to niakemtheir software reusable in antic-
ipated future systems in their organizations. Our approach
to reusability measurement facilitates domain-specific reuse,
particularly, domain-and-organization-specific reuse. This
more restrictive goal of reusability makes domain analysis
more manageable, thereby minimizing the impact of the ac-
tual domain on the potential reuse.1 I(

The design of a program is normally described in terms of
the program’s components and the interactions among them
[!6]. Our reusability metrics measure the level of interac-
tions of software design components whJch are expected to
be’ieused together to the components, that comprise the rest
of the system?. Most of the implementation details are not
specified in software designs, thus* the software designer has
a ‘significant amount of flexibility in modifying portions of
a% existing design to accommodate future systems, thereby
attviining design reuse. b

Figure 1 illustrates an 00 design/development process
&ch incorporates design reusability measurements. ,A soft-
ware engineer starts the process by designing a system, Af-
ter the major components of the system (and the interac-
tions between them) have been determined, our metrics can
be used to identify, measure, and provide feedbnck on the
reusability of the 00 design. ‘The software designers then
have the opportunity to modify their 00 design and reeval-
uate the reusability of their system: The two arrows (1)
can be repeated as many times as necessary, in an iterative
process that is intended to make the 00 design more com-
plete. After the reusable portions have been clearly iden-
tified and it has been determined that there exists no in-
teractions which inhibit reuse, we can store’ the design and
d,ocument the system architecture (2). Step (3) leads to
the implementation process (object coding, testing, and de-
bugging) and the storing of the completed implementation
(4). Future software.projects will then have the choice to
reuse a ‘previous 00 design (5) and its corresponding im-
plementation (6) or just reuse the design and write a new
implementation. In some cases, it may be necessary to re-
visit earlier stages of this .process after the implementation
has commenced. / i

22

A Store & document designs

I . . 2

1
-t (Re)design a system

i- reusability
_

evaluation

6
I
I t

Store & document _ Implement
implementations 4 the system

Figure 1. Design and Implementation Process

Design reusability measurements are important for two
reasons. First of all, measurements can be automated and
they can quickly provide feedback to the software designers.
The metrics can also be incorporated into a design and de-
velopment environment, so that reusability measurements,
analysis, and design improvements can be part of Ubusiness
as usual” for an organization. The second reason for design
reusability measurements is to enable early identification of
poor reuse potential, when it is still possible to modify/refine
the design.

The remainder, of this paper is organized into s& sec-
tions. In Section 2, we present the background concepts-for
our conceptualmodel that supports 00 design-level reuse.
In Section 3, we detail the framework of the 00 design-level
meazurements. Section 4 contains an empirical study that
demonstrates our approach via a design reusability evalua-
tions tool that we have developed. In Section 5, we review
ongoing research in metrics theory against our approach as
presented in Sections,2 and 3. Section 6 examines related
work in the areas of reusable, hierarchical, 00 models and
in reusability measurements. Finally, Section 7 contains the
conclusions and a note on our effort to incorporate these
measurements into a design/development environment.

2 ,BACKGROUND CONCEPTS I

The major components of our design reuse metrics are two
subjective (designer-defined) characterizations of classes and
hierarchies. Because of the intellectual nature of the soft-
ware design process, important components of it must be
measured subjectively, while the tangible representation of
the design product can be measured objectively for many
purposes [4]. Our two characterizations of classes and hier-
archies, which are presented in Sections 2.2 and 2.3, are the
important reusability properties of a software design, hence
they are to be defined subjectively by the software designers.
After the characterizations have been defined, we provide a
framework in Section 3 which objectively measures the de-
pendencies among design components. These dependencies
are the tangible representation of the design product, thus
they are measured objectively. This section starts by iden-
tifying the unit of abstraction that is used in our ‘reusabiity
measurements.

2.1 Unit of Abstraction

Research efforts in 00 metrics [3, $1 are mostly concerned
with ‘good-design’ criteria at the class level: For reusabiity
evaluations, we believe it is more appropriate to evaluate

the criteria at the class hierarchy level of abstraction and to
study the reusability of a class hierarchy as a whole, portions
of a class hierarchy, or a set of related class hierarchies. Thi,s
has also been argued in another context, namely that ‘the
unit of abstraction for 00 applications should not only be
at the cl&s/object type level, but also at the class hierarchy
Ievel [7J.

A class hierarchy is the result of an 00 mechanism re-
ferred to as inketitance or class deriuation. Class inheritance
allows members (functions and data) of one class (parent)
to be used as if they were members of another class (child or
subclass). During system design, class hierarchies are used
to group similar classes so that they can have one parent
class containing the common operations and/or data. The
subclasses &ll then only need to define operations/data spe-
cific to each subclass. Thus, a class is only made to be a child
of another class if it needs some members of the parent class.
Consequently, it is the nature of 00 design with inheritance
to migrate more general information and operations up the
hierarchy where they can be reused by all descendants while
simultaneously pushing domain-specific information and op-
erations down the hierarchy where their potential reuse is
limited.

Prom a reuse perspective, since a child class needs mem-
bers of its parent, if we want to reuse a child class we have to
also reuse the parent class. However, if we want to reuse the
parent class, we are not required to reuse its subclasses, since
the parent class does not use members of its subclasses. As a
result, new systems can reuse the top portion of a hierarchy
or the whole hierarchy, but they cannot reuse just a lower
part of a hierarchy. Reusing just the top portion of a hierar-
chy is desirable in‘many-cases, since the lower level classes
are more specific classes, so with respect to their parents,
they are less likely to be needed in other applications.

2.2” ’ General versus Specific Classes

From our discussion in Section 2.1, it is clear that the in-
dividual classes in any inheritance hierarchy can be charac-
terized based on their overall position. In our approach, we
require the software designer to identify individual classes
to be either General or Specific with respect to its purpose
in the overall design. A GeneraZclass is one that is expected
to be reused mother applications, A Specijic class is a class
that is only applicable in this application. Abstract classes,
which are a design technique used to define templates for
specifying subclasses, are examples of classes which would
normally be defined .as General classes. However, not’ all
General classes have to be defined as abstract classes; rather,
a class is General if it is recognized by the software designer
as being &ble to solve- problems in addition to the context
(inheritance hierarchy and underlying application) that it is
defined within. f ,-

To further explain this’characteriiation, we use a simple
software design of a Health Care Application (HCA) system
[13]. Figure 2 presents the class hierarchies of HCA. The
Person hierarchy is ‘used to represent and process informa-
tion-common to all people in a hospital application. The
Record hierarchy is used forvarious record processing, the
Item hierarchy isused to -represent general physical -items
used in’a hospital, and the Organization hierarchy is used
to represent the various’ entities in a hospital.

This Health Care Application system however, is not
only applicable in hospitals.’ Portions of this system might

,

23

Person

Record

Medical-H Financial-H

Item

Visit Test ,I

Organization

Hospital

Pharmacy Lab Nursing

Figure 2. Health Care Application (HCA) Classes

r . :. .’

be reusable in other facets of health care, both in large and
small scales (e.g., dental office, eye care center; etc.). If our
organization’s future projects are expected to target those
smaller health care establishments, we can define the follow-
ing classes as General classes: Person, Patient, Physician,
Business, Record, Medical-H., Prescription-R, and Finan-
cial-R. The other classes can be defined as Specific classes,
since it is likely that they will,not be needed in our future
systems. _

As stated previously, we cannot reuse just a lower part
of a hierarchy. Thus, az illustrated in Figure 3, the General
classes must be towards the top and the Specific classes must
be towards the bottom of the hierarchy. A General class
cannot be a descendant of a Specific class, since to reuse
a class, we also have to reuse its parents. A design tool
can be used to enforce this: when creating a root class, this
class is first defined as a General class. If at some point.
of a hierarchy, a class is defined as a Specific class by the
software designer, descendants of that Specific class, will
also have to be Specific. Thus, every class hierarchy has a
line that divides all of the General classes from zll of the
Specific classes. I’

It has been known that the generalization of classes is an
important software development activity, and should be in-

24

Figure 3. General(G)/Specific(S) Classes of a Hierarchy

eluded az an integral part of a software development process,
Generalizations arise in systems in two ways, during the ini-
tial design phase and during the maintenance phase. Work
in program restructuring [9, 10,151 discusses generalizations
in terms of structural modifications during the maintenance
of completed applications. On the other hand, our metrics
bring up the issue of generalizations during the initial de.
sign process in an effort’to maximize the reusable portions
of applications.. I-

Y&.i ’ Related Class Hierarchies

While General and Specific classes provide a characterizad
tion mode within an inheritance hierarchy, from a design-
reuse perspective, it is also important to identify the inter*
actions between the hierarchies that comprise an 00 appli-
cation. These interactions provide the important first step in
discerning the couplings between classes when viewed from
the perspective of entire hierarchies. Thus, to augment the
General/Specific classes, the software designer is asked to
define the class hierarchies that are related to one another
in an 00 application. A hierarchy is defined as related to
another hierarchy if they are related in concept and are
expected to be reused together in future systems, Relat-
ing class hierarchies encourages the designers to group their
components into reusable portions at the earliest stages in
the design pr,ocess.

00 frameworks [l?] is a similar technique in codifying
design knowledge to produce a generic design. Like 00
frameworks, related hierarchies also provide a menns to de-
scribe the interactions between objects of a program. 00
frameworks are domain specific, hence they require the soft-
ware designer to have a solid understanding about the ap-
plication domain., In determining related hierarchies, it is
also important for software designers to understand the ap-
plication domain, but more importantly, they need to have
some ideas on the kinds of systems they expect to build in
the future. Thus, the determination of related hierarchies is
not only domain specific, but also organization specific.

In the HCA, design given in Figure 2, a software de-
signer may decide that the hierarchies with root classes ‘Per-

son’ and ‘Record’ will always be needed together in future
projects. The reason can be that in any health care system,
we will always need to represent the people involved and to
process patients’ records. Moreover, current or future sub-
classes of Person will be the ones that manipulate records.
In this case, the software designer knows that there are (will
be) many couplings between these two hierarchies, but these
couplings will not affect the reusability of HCA, or portions
of RCA, in this organization’s future projects. In our met-
rics, these two hierarchies can be defined as related to each
other.

A dependency to a related hierarchy is not a hindrance
to reuse, because the related hierarchy will also be reused
together; thus, the dependency will always be satisfied. On
the other hand, a dependency to an unrelated hierarchy is a
hindrance to reuse and can arise later in design or implemen-
tation phase. This characterization of related hierarchies, if
done during the initial design phase, can prevent the occur-
rence of unrelated dependency. Requiring software designers
to define related hierarchies provides a way to differentiate
between couplings that do affect reuse and those that do
not.

3 A Design Reusability Measurement
Framework

This section discusses the objective dependency measure-
ments which are based on the subjective characterizations
of classes and hierarchies described in Section 2. Unlike
the characterizations of General/Specific classes and related
hierarchies, the measurements presented here are domsin-
independent. The first subsection details the types of cou-
plings between General and Specific classes, which are foun-
dational in identifying those portions of the design that have
the greatest reuse potential. The next subsection discusses
couplings between hierarchies and provides suggestions on
either eliminating them (if they are a hindrance to reuse) or
moving them to locations where they can.add value to the
reusable design. The final subsection presents the design-
reusability metrics which are based on subjective character-
izations of Sections 2.2 and 2.3 and the objective concepts
of Sections 3.1 and 3.2.

3.1 Coupling between General and Specific
Classes

The first aspect of our design-reusability measurements in-
volves an understanding of the different types of couplings
that can exist between General and Specific classes, and
their positive or negative impact on reuse. Figure 4 illus-
trates the four types of coupling between General (G) and
Specific (S) classes of two hierarchies: a General class can
depend on another General class (l), a General class can de-
pend on a Specific class (2), a Specific class can depend on
a General class (g), and a Specific class can depend on an-
other Specific class (4). According to [5], inter-class coupling
occurs when methods of one class use methods or instance
variables of another class. Since the unit of abstraction used
here is at the hierarchy level, we define coupling as inter-
hierarchy coupling for when methods of one hierarchy use
methods or instance variables of another hierarchy. There
are actually eight types of couplings. The four couplings
illustrated in Figure 4 can be either directed to a related

25

Figure 4. Types of Coupling Between Class Hierarchies

G-G G --’ G

S S s-s

Figure 5. Favorable Couplings between: (a) Related Hier-
archies and (b) Unrelated Hierarchies.

hierarchy or to an unrelated hierarchy. Our metrics mea-
sure these eight types of dependencies separately, as we will
justify in Section 5.

Not all dependencies are bad for reuse. Dependencies
between classes which are expected to be reused together
(i.e., related hierarchies) are not a hindrance to reuse. In
fact, they add more value to the design, because a larger
portion of the design is reused. Our metrics separate the
measurements for couplings which are good for reuse, bad
for reuse, and those which are neither but might be able to
increase the value of the reusable classes. As illustrated in
Figure 5, our goal is to have a design where:

l there exists many couplings between the related Gen-
eral classes (a), and

l the couplings among unrelated hierarchies are only be-
tween their Specific classes (b).

Using our previous assumptions of classes in Figure 2,
the hierarchy with root class ‘Person’ is related to the one
with root class ‘Record.’ Moreover, all classes of ‘Record’
are General, while only ‘Person,’ ‘Patient,’ ‘Physician,’ and
‘Business’ are General in the other hierarchy. If the Specific
class ‘Therapist’ has a method ‘Give-Therapy’ which calls
a method of ‘MedicalR.’ named ‘GetJkst-Medications’ as
shown in the code segment below:

class Therapist C
. .

P .oid *GiveJherapy(PatientID)<
char *medication;
Medical-R *record;
. . .
record = nen Medical-R(PatientID) ;
medication. = (char *)

record:>Get-Last-Medication0 ;
if (strcmp(medication, “abc”)==O)(. . . 3

,3 -*- -
. . . .>

3

then, this coupling to ‘MedicalB.% not a hindrance to
reuse, since class ‘Therapist’ is not expected to be reused
in future projects (a Specific class). However, our future
system for smaller health care establishments will also ben-
efit from this coupling. In a smaller health care system,
the ‘Business’ class will also need tokeep track of prescrig
tions. For example, if the ‘Physician’ orders a ‘Patient’ to
buy more of a certain medication, the ‘Business’ will need to
catch cases where the ‘Patient’ still has enough of that medi-
cation to avoid the opportunity,to overdose. In HCA, ‘Busi-

’ ness’ does not need to do this, since there is a ‘Pharmacist’
class which takes care of avoiding overdose. To accommo-
date reuse, we can move the coupling from ‘Therapist’ (for
Get-Last&ledication) to ‘Person,’ such as in the following:

class Person (
protected char *medication;
Medical-R *record;
. . .
void Get-Last-Medication(PatientID)<

record = new Medical-R(PatientID);
medication =

(char *) record->Get-Last-Medication() ;
3

3

class Therapist : public Person (
. . .
void+ *GiveJherapy(PatientID)<

// using Person’s method
Get-Last-Medication(PatientID) ;

// using Person’s protected variable
if (strcmp(medication, “abc”)==O){ . . . 3

3
. . .

3

The above allows the coupling to ‘MedicalR’ to be reused
in our next project and leaves only those methods and,oper-
ations specific to a ‘Therapist,’ such as ‘Give-Therapy and
all other detailed operations, in the ‘Therapist’ class.

3.2 Understanding Cotipling between Hi-
erarchies

The second aspect of our design-reusability measurements
involves an understanding of the couplings that exist be-
tween General/Specific classes when the hierarchies that
they are in are related and unrelated. The four coupling
types of Figure 4, when combined with related/unrelated
hierarchies, yields eight types of reusability couplings. Each
of these coupling types is discussed in turn with theintent to
provide suggestions on eliminating non-desirable-couplings
and/or moving couplings to add value to the design when-
ever possible. The changes in the characterization of a class
from General to Specific (or vice versa) and of hierarchies
from related to unrelated (or vice versa) are not included in
the suggested actions. These types of changes can greatly af-
fect the overall design and the resulting reusable design com-
ponents. Thus, these subjective characterizations should
only be modified after a thorough review of the design, and
not done just to eliminate an undesirable coupling.

.- 1. G->G among related hierarchies.
A dependency from a General class to nnother General
class in a related hierarchy is not a hindrance to reuse.
Metrics to count this kind of coupling may denote the
value of reuse. Increasing these couplings in a design
yields a potential for more reuse.
Action: None.

2. G-->G among unrelated hierarchies.
A dependency from a General class to another Gdn~
eral class in an unrelated hierarchy is undesirable be-

, -’ -cause the source and destination are not expected to
. be. reused together.

Action: Attempt to move the dependency to their
Specific descendant classes that are most relevant, Cre-
ate new classes if necessary.

3. G-->S among related hierarchies.
A dependency, from a General class to a Specific clnss,
even if they are among related hierarchies, is unde-
sirable. This is because the General class, which is
expected to be reused, depends on a class which is not
expected to be reused. There are two possible move-
ments: either move the source to a Specific descendant
class or move the destination to an appropriate Gen-
eral ancestor. Since this coupling is between related
hierarchies, the second option is better since it will be-
come type #l.
Action: Attempt to move the destination to an ap-
propriate General ancestor class.

4. G-->S amqng unrelated hierarchies.
A dependency from a General class to a Specific clnss is
undesirable because the source is expected to be reused
but the destination is not expected to be reused. There
are two possible ways to eliminate this coupling: move
the source to its Specific descendant class or move the
destination to its General ancestor class. Since this is
between unrelated hierarchies, the first option is better
since if the second option is chosen, it would introduce

- another kind of undesirable coupling (type #2).
Action: Attempt to move the source to an appropri-
ate Specific descendant class.

5. S->G among related hierarchies.
A dependency from a Specific class is not a hindrance
to reuse, since the source is not &pected to be reused.
However, we might be able to increase the value of
reuse. The two options in moving this coupling are /
either to move the source to a Genkral nncestor or to
move the destination to a Specific descendant. The
first option is better since the coupling will then be
between two classes which are expected to be reused
together (type #l). H ence, this type of move increases
the value of the reusable design components. .
Action: Attempt to move the source to an appropri-
ate General ancestor.

6. S->G among unrelated hierarchies.
This is not a hindrance to reuse because the source
of the coupling is not expected to be reused. In this
case, there is nothing we can do to increase the value
of the reusable design components, because the de-
pendency is between two hierarchies which are not ex-
pected to be reused together. Moving the source to

‘its General ancestor would create another undesirable

26

coupling (type #2) and moving the destination to a
Specific descendant does not add value to the reusable
design components (type #8).
Action: None.

7. S->S am&g related hierarchies.
This is also not a hindrance to reuse because the source
of coupling is not expected to be reused. However, we
might be able to increase the value of the reusable
design components if both the source and destination
are moved to their General ancestors. The dependency
would then be between two classes which are expected
to be reused together (type #l).
Action: Attempt to move both the source and desti-
nation to appropriate General ancestors.

8. S->S among unrelated hierarchies.
This is not a hindrance to reuse, rather, it represents
the desired situation for couplings between unrelated
classes: they need to be among the Specific classes.
Action: None.

Overall, our goal is to direct the software designer to strive
for maximum reuse by organizing all couplings into G->G,
if they are in related hierarchies, or S->S, if they are in
unrelated hierarchies.

Before we define the metrics in Section 3.3, it is impor-
tant that we formalize the idea of related hierarchies. One
hierarchy (Hl) is defined as related to another hierarchy
(H2) if they are expected to be reused together in one or
more future systems. Let us use the operator ‘D’ to define
this binary relation. We can now express the relation be-
tween Hl and H2 as Hl D H2. This relation is transitive but
not commutative:

l if Hl D H2 and H2 D H3, then Hl D H3

l Hl D H2 does not imply H2 D Hl

This means that if we only have the following relations Hl D

H2 and H2 D H3, we only expect to reuse one of the following
sets of hierarchies: (Hl,H2,H3}, {H2,H3} or (H3). In this
case, neither {Hl} nor (H2) nor {Hl,H2} can be reused in
isolation.

3.3 Software Design Reusability Metrics

The metrics are defined in eight summations that correspond
to the eight types of couplings given in Section 3.2. Cou-
pling is defined as an inter-hierarchy dependency that re-
sults when methods of one hierarchy use methods or instance
variables of another hierarchy. We use the term Coupling
Counts, CC, to represent these interactions between hierar-
chies. These reusability measurements for a class hierarchy
are then defined as:

where

m: # of hierarchies which are related to this one
n: # of hierarchies which are not related to this one

x: # of General classes in this hierarchy
y: # of Specific classes in this hierarchy

GiGi: # of couplings from the j-th General class to all Gen-
eral classes in the i-th hierarchy
GjSi: # of couplings from the j-th General class to all Spe-
cific classes in the i-th hierarchy
SjGi: # of couplings from the j-M Specijic class to all C?en-
era1 classes in the fth hierarchy
SjSi: # of couplings from the j-th Specific class to all Spe-
cific classes in the i-th hierarchy

To understand these counts, we provide a plausible scenario
of the way that they can be utilized in practice.

Suppose that a software designer has characterized all
of his/her classes as either General or Specific classes (see
Section 2.2 agsin), and the related classes have also been de-
fined (see Section 2.3 again). CC1 through CC& can initially
be calculated. High CC1 values indicate that there are many
couplings between classes which are expected to be reused
together. This is very good in terms of reuse since we will be
reusing many design components. Low CC1 values denote
that there are not many couplings to reuse, which may in-
dicate that the software designer needs to review couplings
for possible changes. If any of CC&, CC&, or CC4 have val-
ues greater than 0, the software designer will need to either
remove or move these dependencies. This is because these
coupling sources are expected to be reused, but the coupling
destinations are either not expected to be reused or belong
to unrelated hierarchies. To accomplish this, the actions de-
fined in Section 3.2 need to be consulted. The couplings in
CC’s can actually be used to create more couplings of type
1 in Section 3.2, which increases the value of CCL, the
desirable kind of coupling.

Any value in CC& and CC7 does not indicate a hindrance
to reuse, since they are counting dependencies where the
source is not expected to be reused. However, the designer
might want to look into these couplings more closely, since
they can be utilized to create more desirable couplings and
thereby increase CCL. Any value in CCs and CC& are also
not indicating a hindrance to reuse because the coupling
source is not expected to be reused. These values denote the
dependencies which are specific to this application. There
is no action needed for any value of CCs and CC’s; rather
they are provided for the next time the software designer
does an overall design review. At this time, the software de-
signer can only move or remove dependencies, and when the
couplings are changed, CC, to CCs can be automatically
recalculated to provide a current view of the reuse potential
of the 00 design. However, during an overall design review,
the characterizations of classes (General/Specific) and hier-
archies (related/unrelated) can bd reviewed and modified to
increase the reusability of the design.

4 EMPIRICAL STUDY

We have conducted an experiment to study the effec-
tiveness of our reusability measurement framework. This
was don& az part of a joint graduate/undergraduate project.
The graduate student, M. Price, has been conducting work
to verify the framework presented in Sections 2 and 3 as
part of her dissertation efforts, by developing a tool that
can be utilized to analyze C++ code when given informa-
tion on the General and Specific classes, and the Related hi-

27

/export/home/-vrs/final /I . ---
“.* . ‘;. .._ v.*u.^.- ..< ._
’ Gq~eralklaYsses;: a s Rekked Hierarchies (represented by their roo

_., ‘, Customer -- CustomerDB ..
:,;. ,--LVideoCtistomer- ,. ji ,! Customer -- Customerlnterface
; ‘CiktomerDB t

Cu+tiqt$erface :‘.
i/t Customer -- HistoryList

Customer - Item
:~VldeoCustomerinterface ii ,. .--e Customer -- ItemDB

,, ~f~toryii~,t- i . _,, _ Customer -- RentedTape
:Item-*‘ 7; .-,_

ii

,“Vlde?Tapej
ij Customer -- <. .,_ I Re ntedTapeDB

Customer -- Storelnterface
i. ,J+$B;, 1.. ‘1,
,; i--Vjde:oTape,DB ,.’ .,

,’ Customer -- Transaction
::
!’ CustomerDB --- Customer

‘RBntedTape”‘+ ’
:~g~~~$-dTapeDB _, -_. ,. ,

/I CustomerDB --- Customerinterface
II CustomerDB ‘-f- HistoryList

.A. _: : ,_ ,_. ,; AL--,‘.----...--.--- ^_._.__. - ,.;~.- _.‘_.“. ..; -;-;--. I”yr..- ,“~-- ------ T-II; _-.- I__--~-I.. -.- -.-- -;-- --- I-.:: _.___ _--- : : :-
,‘.I. ._,

.$“, T : >* **‘. Lf, , ,_., 5 ,; . . it . I I ..*. ; . A,. ’ , _, ,
. t,‘.*y.. % ‘- . . ,. ; *‘i(;, .i . - ‘. AL.<. =..- L-L. ---

‘ -,: : .,_ ~&i;&-i&j +oup2lngs 1
_-

j@iJ.
.

Figure 6. Design Reusability Evaluations (DRE).

erarchies. The undergraduate student, Kevin Jin, a senior,
was responsible for designing and developing two applica-
tions that have significant overlap in spite of their domain
differences. Each of these efforts contributes to the overall
goal of providing empirical results and an automated frame-
work to support the analyses of C++ code, which has been
derived from object-oriented designs according to our reuse
approach.

Specifically, we have developed the first prototype of a
tool to calculate C++ couplings using our measurement
fiamework, which we call Design Reusability Evaluations
(DRE). DRE takes a directory containing C++ classes as
input that is parsed to return the hierarchical list of classes
and the list of all combinations of root classes as shown in
Figure 6. Users can then select the classes which are to
be characterized as General classes (all classes not chosen
are assumed to be specific) and those hierarchies which are
supposed to be Related. After the choices have been made
and the “Calculate Coupling” button is clicked, the result-
ing metrics (CC1 through CC8) are &splayed in the upper
left window as shown in Figure 7. The upper right window

identifies the actions for the various dependencies as speci-
fied in Section 3.2.. The software engineer can then utilize
the measurements to identify those portions of the code that
need to be changed, or to rethink which classes should be
General/Specific and which hierarchies should be Related.
DRJZ can be used to analyze the reusability of completed
C+f code, and is intended to be incorporated into either
design or development environments. Its key purpose is to
promote an iterative process that evolves design/code to a
more reusable state.

Given this tool, it was then necessary to provide input
for at least two’applications, that while different, have the
potential to &are significant portions of both design and
code. This was the responsibility of the undergraduate stu-
dent, who was asked to design and develop a video rental
system (VRS) and an auto service center system (ASCS),
VRS maintains customer and video databases, keeps track
of each transaction (borrow/return), and logs the tapes that
have been rented. There are two interfaces to VRS: a CUS-
tomer Interface, which lets customers browse and search the
video tapes; and a Store Interface, which lets store atten-

28

G -> G among related hierarchies (Ccl),’
Good for reuse

*(

I
C -> G amqng unrelated hiqrychies CC&
Move couplrng to thew Specific descend,.

Ci -> S among related hierarchies <CC31:ii
Move destination to a General ancestor ,:

G -> S among unrelated hierarchies (CC
Move source to a Specific descendant ,i

I s --4 G among related hierarchies 0~~5)
Attempt to move the source to a Geners

Related Hierarchies kenresented bv their

!p Customer
I

-- .CustomerDB
Customer -- Customer-Interface

I Customer -- RentedTape
Customer -- RentedTapeDB
Customer -- Storeinterface

I CustomerDB -- Customerlnterface
CustomerDB --- HistoryList

.--,‘l -_ z.;-_T‘--. ._.-... -..- _.--._ -- -.... _.. _-_.... __ -..-__ __-_

Figure 7. DRE: After the Couplings are Calculated.

dants manipulate tapes, manipulate customers’ information,
and process the borrowing/returning of tapes.

The undergrad was advised that we also had to build
another application at a later time in the semester, ASCS,
which is to be used to keep track of an auto parts inventory,
customer information, and the services that are performed
on the cars. While VRS and ASCS have many similarities,
they also have some interesting differences. They both need
a database of items, which can be either tapes or auto parts.
Both types of items have names, categories, descriptions,
number of available items, and suppliers. Video tapes htive
specific information such as running time and rating. Auto
parts have specific information, such as the minimum num-
ber of items (before they need to reorder) and the price of
each item. Similarities and differences also exist in the cus-
tomer database. The auto service customer database needs
to keep information on the car owned by each customer, such
as the year and model. Both systems need to keep track of
customers’ account balances and the history of transactions.
But the transaction history is very different. In ASCS, a

customer who needs a certain part installed on their car,
buys the item without needing to return it. Thus, when a
customer buys an item, we need to increase his/her balance
and log the transaction. In VRS, the customers borrow the
tapes, so that in addition to increasing the balance and log-
ging the transaction, we also need to keep track of the tapes
being borrowed.

These applications were chosen because they are eas-
ily understood. The undergrad was able to define and in-
terpret the requirements. This allowed us to concentrate
on the concepts, since the contexts are well understood.
Moreover, there are many similarities, so we can expect
many reusable dependencies. During the design of VRS,
the object-oriented CRC based approach was utilized. The
characterizations of the General/Specific classes and the Re-
lated hierarchies were incorporated into the CRC approach,
The design process of the undergrad was closely monitored
and discussed in several walkthroughs.

During the design stage, the student first identified the
major classes and determined their General/Specific char-

29

/ Itern
Customer-Interface

\ I

ItemDB

Figure 8. General Root Classes and Related Hierarchy Relationships of the Video Rental System.

Type Metric I II III IV V VI VII

Good for Reuse CC1 a 54 79 109 166 16’7 193
Bad for Reuse cc2 0 0 0 0 0 0 0

cc3 60 0 0 4 4 0
cc4 0 0 1 1 0 0 0

Can Improve cc5 0 19 28 39 94 92 75
Reuse (if moved) CC’7 0 6 6 18 28 30 25
No Impact CC6 0 0 0 0 0 5 0
on Reuse CC8 0 0 11 11 21 22 26

II
”

1 # of lines 11 410 1 1386 I 2088 I 2695 I 3784 I 3824 I 3867 0

Table 1. Reusability Measurements of VRS.

acterizations. He first identified all of the classes as General
classes, except for those used to keep track of the rented
tapes. These General classes are shown in Figure 8. This is
reasonable, since these classes are needed by the auto service
center. However, when he started to define the attributes,
he realized that he could not include some of the attributes
in the General classes, such as the running time and rating
of video tapes. This resulted in the creation of subclasses of
Item, ItemDB, Customer, CustomerInterface, and StoreIn-
terface to support VRS initially, and ASCS subsequently.

After all of the attributes and classes were identified,
the undergrad defined not only the methods, but also, for
each method, the other methods that are required to realize
the needed functionality. By defining these dependencies,
the Related hierarchies could be identified. Even though
this process is subjective, the student was able to define
the classes which need to be reused together. We asked
him to define hierarchy A to be related to hierarchy B if he

expected the methods in A to use many methods in B and
if both A and B will be needed in ASCS. The General root
classes and the Related hierarchy relationships (the arrows)
are also shown in Figure 8.

Couplings between the methods in the design were ex-
amined carefully and changed according to nctions specified
in Section 3.2. Even though we have clearly defined the
General classes and, the Related hierarchies and their pur-
pose, many undesirable couplings occurred during both the
design and the coding stages. In this paper, it is more in-
teresting to show the results of the coding phase, because
the design is relatively small. More complicated systems
have many more dependencies which can be identified dur-
ing the design phase and they can expect the same benefit
in automating the measurements.

During our seven code walkthroughs, we utilized the
DRE tool and discussed its results. We have included the
results in Table 1 to illustrate the improvements gained by

30

0

A 0

\/ 0

Figure 9. Incomparable Program

using an automated framework. The reusable portion of the
VRS system was then used in ASCS. The VRS code con-
tains a total of 386’7 lines, among which 2485 of them are
reusable as is for ASCS. The number of lines are relatively
small, because we use web browsers as our interface. VRS
is written as Common Graphics Interface (CGI) code which
responds to requests from any web browser. Thenumber of
lines reused are only provided for completeness; we believe
that the value of reuse relies more on the number of good
dependencies that are reused, as reflected in the CC1 count.

Because of the subjectivity aspect of this approach, it
is necessary for the software engineers/designers to have a
good understanding about: .- .

l the application domain, and

l the types’of systems that they expect to build in the
future.

If software engineers continue to design in a vacuum, they
will continue to produce code with minimal or no reuse.
Our General/Specific classes and Related hierarchies are in-
tended to provide a framework for software engineers to
think about reuse at early and all stages of the design and
development process. The resulting metrics of this frame-
work can be used to provide automatic guidance during
those time periods in between wslkthroughs. Whenever a
design walkthrough is conducted, the subjective characteri-
zations of classes and hierarchies can then be reviewed and
modified if necessary. These characterizations are‘ very crit-
ical in the success of this approach, thus they should only
be changed after a careful analysis of the overall system.

5 CONSIDERING METRICS THEORY

There is not yet an agreement on the set of properties which
make some software more reusable than others. Poulin states
that in general, most sets of reusability guidelines reflect
the same properties as those promoted by good software en-
gineering principles [20]. These good software engineering
principles include low coupling. However, as we have seen
in, Sections 3.2 and 3.3, not all couplings are bad for reuse.
Software designs are composed of the system’s components
and the interactions between those components. These in-
teractions (or couplings) are valuable to the design, and

z

Complexity [ll]

many of them tie those reusable classes together to create a
meaningful design.

In the context of software complexity, Fenton showed
that the search for a general-purpose real-valued complexity
measure is doomed to failure [ll]. In dozens of proposed
complexity measures, there is a minimum assumption that
the empirical relation-system for complexity of programs
leads to at least an ordinal scale. An ordinal scale involves
a ranking, from best to worst. But there is a problem with
this, because some programs are “incomparable.” In his pa-
per, Fenton provides the example given in Figure 9 (which
is Figure 1 in [ll]), M OS would agree that x is less complex t
than y. However, when people are asked which is more com-
plex between x and z or y and z, they end up asking ques-
tions like “what is meant by complexity” before attempting
to answer. From the measurement theory perspective, it is
good enough if most programmers agree on the complexity

. order of x, y and z; but there is no such agreement in the,
order of their complexity.

Software reusability metrics have the same.problems. We
cannot try to put an empirical value on a poorly understood
attribute [20]. Software engineers working on different do-
mains will have different opinions on the reusability of a
component. Some components are more reusable in one do-
main and less reusable in others, so they are incomparable
with respect to reusability. This means that we should stop
searching for a general reusability metric, and instead look
for the specific properties or aspects of reuse. This is one
goal of our work as presented in this paper.

In his recent book, Fenton states that measurements of
internal software attributes can be useful when restricted
to locally specified, commonly accepted definitions of the
underlying terms [12]. We believe that the metrics defined
in this,paper are restricted to specific properties of object-
oriented software. They are not only specific to couplings,
but they are also separated by the kinds of couplings with
respect to the reusabiity of a set of related hierarchies. It is
not correct to combine the measurements of those couplings
which are good for reuse and those which are bad for reuse.
We also believe that they are based on a commonly accepted
understanding of reusability: a set of related components in
a system is more reusable if it has less dependencies to other
parts of the system.

31

6 RELATED WORK

There are several proposals on the ways to make 00 soft-
ware systems more reusable. One of them is by Batory and
O’Malley [1] which is a domain-independent model of hier-
archical systems, based on domain,modeling and building-
block technologies. They show that complex domains can
be expressed by an elementary metamodel of interchange-
able and plug-compatible components. Their model is aimed
specifically at mature software technologies, where standard-
ization makes sense. Standardization is possible for cer-
tain domains, such as in communication protocols, where
there is a set of operations which have to occur in a certain
order. Strayer has built a set of classes called the Meta-
Transport Library which provides a set of protocol-inspecific
base classes for transport layer protocols [22]. Specific trans-
port layer protocols can be built through derivations from
these classes.

On the other hand, our techniques can assist the de-
sign and development process of reusable systems which do
not yet have a standard set of operations. Extensive do-
main analysis tends to be expensive and not always possible.
Moreover, our measurement techniques are aimed at orga-
nizations which have some ideas on what kinds of systems
they would like to build in the future. Software companies
do not have to make their software reusable for any system
in the domain, but they only have to make their software-
designs be reusable in anticipated future systems in their
organizations.

Once there is a reusable design, we create other specific
systems by extending the base classes. ‘Our form for extend-
ing these classes is by inheritance: Another way to extend
the behavior of a class hierarchy is by combining the base
hierarchy with one or more extension hierarchies [19]. The
extension hierarchies can extend or overwrite the behavior
of the existing classes, so that then existing classes do not
have to be changed. However, overwriting the behavior of
existing classes has the same impact as changing those ex-
isting classes, since it is possible’ that the behaviors of the
combined hierarchies are incompatible. The combined hi-
erarchies will need to be thoroughly re-tested. They define
conditions that the hierarchies have to be non-conflicting,
non-interfering, and semantically compatible. The defini-
tion of semantic compatibility is still an area of research.
We are in full agreement with the authors that in large sys-
tems, extending classes by inheritance becomes unmanage-
able. However, if the original classes are designed to support
reusability, extension by subclassing has the potential to be
very manageable.

In the area of reusability measurements, there are vari-
ous empirical and qualitative methods which have been pro-
posed [20]. Prieto-Diaz and Freeman identify five reusability
metrics: size (favors small module size), structure (favors
simple structure, low coupling, and low complexity), good

. documentation (subjective rating), programming language
(favors same language), and reuse experience (in the do-
main and the programming language) [21]. We agree with
the last three. The first two are arguable. Smaller size and
less complex code are easier to understand, which makes
them easier to reuse. But they do not produce high savings.
The best way to approach this comprehensibility problem
is by making the large components more understandable by
having well-defined interfaces and good documentation.

Another technique, which is also reviewed in [20], is de-
veloped by the Reuse Based on Object-Oriented Techniques

(REBOOT) project. They define four reusnbility factors
(portability, flexibility, understandability and confidence)
and many criteria and metrics under each factor, Some of
the metrics are empirical and some are qualitative which are
measured using checklists. They define reusability by nor-
malizing all metrics to a value between 0 and 1 and taking
the average. They also multiply each metric value with its
weight to describe the relative importance of ench metric,
This method may not work as well for reusability since as
discussed earlier, certain systems are incomparable with re-
spect to their reusability. However, their comprehensive list
of criteria provides a good set of those properties which nre
also promoted by good software engineering principles. Each
of their criteria can be used to provide an idea of software
reusability with respect to that specific property, but they
probably should not be combined into a general reusability
metric.

7 CONCLUSIONS & AN ONGOING EF-
FORT

We have presented a framework for reusability measure-
ments which facilitates large-scale 00 design reuse, The
following summarizes the contributions of this measurement
framework:

1.

2.

3.

/

It provides an effective and subjective method to dis-
tinguish between what is expected to be reused nnd
what is not. This is accomplished by the differentia-
tion between General and Specific classes as presented
in Section 2.2.

It provides an effective and subjective method to group
related components into reusable portions. This is ac-
complished by the differentiation between related and
unrelated class hierarchies as presented in Section 2.3,

It presents specific metrics based on the above con-
cepts, which can work at any level of design detail,
This is achieved by the mathematical formulas for CC{
in Section 3.3, which are based on the types of cou-
plings- and refinement actions presented in Sections
3.1,and 3.2. This is demonstrated in Section 4 in our
empirical study via the design reusability evnluations
tool. :-

The first two items listed above are the important compo-
nents of a software design, and they are to be determined
subjectively by the software designer,. The last item is the
metrics that objectively measure the couplings of design
components; couplings, ,are the tangible representntion of
a design product, thus they can be measured objectively.
The last item includes a set of suggestive actions to auto-
matically advise software designers/developers on the ways

to improve their products’ reusability, and follows through
with an actual tool that evaluates reuse potential in C-f-t
code according to our framework.

Our approach relies heavily on subjective decisions and
it requires the software designers to have a good understand-
ing about the application domain and the types of systems
that they expect to. build in the future. When changes are
made to the subjective characteristics of an 00 design, the
objective measures are recalculated to provide the software
designer with an evolving and incremental perspective on

32

those portions of the 00 design that have the most poten-
tial to be reused. This was illustrated in Section 4 with our
experimental work on the reuse between video rental and
auto service center systems (see Figures 6 and 7 and Table
1 again). Our coupling measurements also conform with the
results and recommendations of research in metrics theory,
which is described in Section 5.

We are working on integrating this reusability evalua-
tion framework in the Active Design and Analysis Model-
ing (ADAM) environment [6, 8, 14, 181. ADAM supports
a language-independent design process, where software de-
signs can be entered and code can be generated in various
languages (Ada 83, Ada 95, C++, Ontos C++ and Eif-
fel). We are inserting this reusability evaluation technique
into ADAM to support the subjective aspects of our frame-
work that can then be utilized to automatically warn the
software designer whenever a non-reusable coupling is intro-
duced and provide suggestions on the way to eliminate the’
coupling and/or move it to add value to the reusable design.

References

[l] D. Batory and S. O’Malley, “The Design and Implemen-
tation of Hierarchical Software Systems with Reusable
Components,” ACM fiansactions on Software Engi-
neering and Methodology, Vol. 1, No. 4, October 1992,
pp.355-398.

[2] T. Biggerstaff and A. Perlis, editors, Software Reusabil-
ity, ACM Press, New York, NY, 1989, volume I, pp.
xv-xxv.

[3] L. Briand, S. Morssca, and V. Basili, “Defining and Val-
idating High-Level Design Metrics,” University of Mary-
land, Technical Report number CS-TR-3301.

[41

[51

PI

PI

PI

PI

D. Card and R. Glass, Measuring Software Design QuaZ-
ity, Prentice-Hall, Englewood Cliffs, NJ, 1990.

S. Chidamber and C. Kemerer, “A Metrics Suite for Ob-
ject Oriented Design,” IEEE Transactions on Software
Engineering, June 1994, pp. 476-493.

S. Demurjian, T. Daggett, T.C. Ting, and M.-Y. Hu,
“URBS Enforcement Mechanisms for Object-Oriented
Systems and Applications,” in Database Security, IX:
Status and Prospects, D. Spooner, S. Demurjian, and J.
Dobson (eds.), Chapman Hall, 1995.

S. Demurjian and T.C. Ting, “The Factors that Influence
Apropos Security Approaches for the Object-Oriented
Paradigm,” Workshops in Computing, Springer-Verlag,
1994.

H. Ellis and S. Demurjian, UObject-Oriented Design
and Analyses for Advanced Application Development -
Progress Towards a New Frontier,” Proceedings of the
21st Annual ACM Computer Science Conference, Febru-
ary 1993.

W. Griswold, “Program Restructuring as an Aid to Soft-
ware Maintenance,” Department of Computer Science
and Engineering, University of Washington, Technical
Report number 91-08-04, August 1991.

[lo] W. Griswold and D. Notkin, “Automated Assistance for
Program Restructuring,” Department of Computer Sci-
ence and Engineering, University of Washington, Tech-
nical Report number 90-08-05, August 1990.

[ll] N. Fenton, “Software Measurement: A Necessary Scien-
tific Basis,” IEEE Transaction on Software Engineering,
Vol. 20, No.3, March 1994, pp. 199-206.

[12] N. Fenton and S. Pfleeger, Software Metrics - A Rig-
orous E4 PracticaZ Approach, PWS Publishing Company,
1997.

[13] M.-Y. Hu, S. Demurjian, and T.C. Ting, “User-Role
Based Security Profiles for an Object-Oriented Design
Model,” in Database Security, VI: Status and Prospects,
C. Landwehr and B. Thuraisingham (eds.), North-
Holland, 1993.

[14] M.-Y. Hu, S. Demurjian, and T.C. Ting, “Unify-
ing Structural and Security Modeling and Analyses in
the ADAM Object-Oriented Design Environment,” in
Database Security, VIII: Status and Prospects, J. Biskup,
C. Landwehr, and M. Morgenstern (eds.), Elsevier Sci-
ence, 1994. i

[15] R. Johnson and W. Opdyke, “Refactoring and Ag-
gregation,” Object Technologies for Advanced Software,
November 1993, volume 742, pp. 264278.

[16] R. Johnson and B. Foote, ‘Designing Reusable
Classes,” Journal of Object-Oriented Programming,
June/July 1988.

[17] R. Johnson and V. Russo, “Reusing Object-Oriented
Designs,” University of Rlinois, Technical Report num-
ber UIUCDCS 91-1696, May 1991.

[18] D. Needham, S. Demurjian, K. El Guemhioui, T. Pe-
ters, P. Zemani, M. McMahon, and H. Ellis, “ADAM: A
Language-Independent, Object-Oriented, Design Envi-

, ronment for Modeling Inheritance and Relationship Vari-
ants in Ada 95, C++, and Eiffel,” Proceedings of 1996
TriAda Conference, Philadelphia, PA, December 1996.

[19] H. Ossher and W. Harrison, ‘Combination of Inheri-
tance Hierarchies,” OOPSLA 1992 Conference Proceed-
ings, pp. 25-40.

[20] J. Poulin, Measuring Software Reuse - Principles, Prac-
tices and Economic Models, Addison-Wesley, 1997.

[21] R. Prieto-Diaz and P. Freeman, “Classifying Software
for Reusability,” IEEE Software, Vol. 4, No. 1, January
1987, pp. 6-16.

[22] T. Strayer, “A Class-Chest for Deriving Transport Pro-
tocols,” Proceedings of the Zlst Local Computer Net-
works Conference, Minneapolis, MN, October 13-16,

’ 1996.

.

33

