
QUANTITATIVE EVALUATION OF SOFTWARE QUALITY

B. W. Boehm
J. R. Brown
M. Lipow

TRW Systems and Energy Group

Keywords

software engineering
qual i ty assurance
software qual i ty
software measurement and evaluation
qual i ty metrics
qual i ty characterist ics
management by objectives
software standards
software r e l i a b i l i t y
testing

Abstract

The study reported in this paper establishes a
conceptual framework and some key i n i t i a l results in
the analysis of the characterist ics of software qual-
i t y . I ts main results and conclusions are:

Exp l ic i t attention to characterist ics of sof t -
ware qual i ty can lead to s ign i f icant savings
in software l i f e -cyc le costs.

The current software s tate-of - the-ar t imposes
specif ic l imi ta t ions on our a b i l i t y to auto-
mat ical ly and quant i ta t ive ly evaluate the
qual i ty of software.

A de f in i t i ve hierarchy of well-defined, wel l -
d i f ferent iated characterist ics of software
qual i ty is developed. I ts higher-level struc-
ture ref lects the actual uses to which soft-
ware qual i ty evaluation would be put; i t s
lower-level characterist ics are closely corre-
lated with actual software metric evaluations
which can be performed.

A large number of software qual i ty-evaluat ion
metrics have been defined, c lass i f ied , and
evaluated with respect to the i r potential bene-
f i t s , q u a n t i f i a b i l i t y , and ease of automation.

Part icular software l i f e -cyc le ac t i v i t i es have
been ident i f ied which have s ign i f icant lever-
age on software qual i ty .

Most importantly, we believe that the study re-
ported in this paper provides for t h e f i r s t time a
clear, well-defined framework for assessing the often
sl ippery issues associated with software qual i ty , via
the consistent and mutually supportive sets of def in i -
t ions, d is t inc t ions, guidelines, and experiences
cited. This framework is certa in ly not complete, but
i t has been brought to a point su f f i c ien t to serve as
a viable basis for future refinements and extensions.

I . Introduction

Why Evaluate Software Quality?. Suppose you receive
a software product which is delivered on time, within
budget, and which correct ly and e f f i c i e n t l y performs a l l
i t s specified functions. Does i t fol low that you w i l l
be happy with i t? For several reasons, the answer may
be "no." Here are some of the common problems you may
f ind:

I . The software product may be hard to understand
and d i f f i c u l t to modify. This leads to exces-
sive costs in software maintenance, and these
costs are not t r i v i a l . For example, a recent
paper by Elshoff(1) indicates that 75 percent
of General Motors' software e f fo r t is spent in
software maintenance, and that GM is f a i r l y
typical of large industry software a c t i v i t i e s .

2. The software product may be d i f f i c u l t tQ use,
or easy to misuse. A recent GAO repor t (2) - -
ident i f ied over $I0,000,000 in unnecessary
Government costs due to ADP problems; many of
them were because the software was so easy to
misuse.

3. The software product may be unnecessarily
machine-dependent, or hard to integrate with
other programs. This problem is d i f f i c u l t
enough now, but as machine types continue to
p ro l i fe ra te , i t w i l l get worse and worse.

Major Software Quality Decision Points. There are
a number of fami l ia r si tuat ions in which i t is possible
to exert a strong influence on software qua l i ty , and
for which i t is important to have a good understanding
of the various characterist ics of software qual i ty .
Here are a few:

I . Preparing the qual i ty specif ications for a
software product. Formulating what functions
you need and how much performance (speed, ac-
curacy) you need are f a i r l y straightforward.
Indicating that you also need mainta inabi l i ty
or understandabil ity is important, but much
more d i f f i c u l t to formulate in some testable
fashion.

2. Checking for compliance with qual i ty specif ica-
t ions. This is essential i f the qual i ty speci-
f icat ions are to be meaningful. I t can c lear ly
be done with a large investment of good people,
but this soft of checking is both expensive
and hard on people's morale.

59"~

3. Makinv proper design tradeoffs between devel-
Qpmenz costs and operational costs, This is
especially important because tight development
budgets or schedules cause projects to skimp
on maintainability, portabil i ty, and
usability.

4. Software package selection. Here again, many
users need a relative assessment of how easily
each package can be adapted to their installa-
tion's changing needs and hardware base.

The primary payoff of an increased capability to
deal with software quality considerations would be an
improvement in software maintenance cost-effectiveness.
Too l i t t l e of a quality (e.g., maintainability) trans-
lates directly into too much cost (i .e. , the cost of
l ife-cycle maintenance such as correction of errors
and response to new user requirements). In view of
this simple truth, i t is rather surprising that more
serious and definitive work has not been done to date
in the area of evaluating software quality.

Previous Studies. Development of methods for
evaluating software quality appears to have f i r s t been.
attempted in an organized way by Rubey and Hartwick.(3)
The method of Ref. 3 was to define code "attributes"
and their "metrics," the former being a prose expres-
sion of the particular quality desired of the software,
and the latter a mathematical function of parameters
thought to relate to or define the attribute. At t r i -
butes such as: "A I - mathematical calculations are
correctly performed;" or "A 5 - The program is in te l l i -
gible;" or: "A 6 - The program is easy to modify," were
each further analyzed to define less abstract, i .e . ,
more concrete, attributes capable of being directly
measured as to whether the attribute is present in
software to some degree Con a scale of 0 to 100). Al-
though a detailed breakdown of each major attribute
was given in the reference, only a few metrics were de-
fined and no particular application was mentioned.

A later study C4) performed by the authors included
the formulation of metrics and their application in a
controlled experiment to two computer programs (ap-
proximately 400 Fortran statements each) independently
prepared to the same specification. In this study,
only a limited number of attributes were considered,
primarily those corresponding to attributes A 5 and A 6
of Ref. 3, mentioned previously.

In addition, there was a deliberate difference in
quality emphasis in the two programming efforts: one
was done by a "hotshot" programmer who was encouraged
to maximize code efficiency, and one by a careful pro-
grammer who was encouraged to emphasize simplicity.
The main results of the study were:

Ten times as many errors were detected in the
"eff icient" program Cover an identical series
of 1000 test runs);

The measures of program quality were signi f i -
cantly higher on the "simple" program; thus,
they were good indicators of relative opera-
tional re l iab i l i ty , at least in this context.

Concurrently, other authors were recognizing the
significance of characterizing and dealinQ expl ic i t ly
with software quality attributes. Wulf(5) identified
and provided concise definitions of seven important and
reasonably non-overlapping attributes: maintain-
abil i ty/modif iabil i ty, robustness, clari ty, perfor-
mance, cost, portabil i ty, and human factors.
Abernathy, et al~OJ defined a number of characteris-
tics of operating systems and analyzed some of the

593

tradeoffs between them. Weinberg(7) performed experi-
ments in which several groups of programmers were
given the same assignment but different success crite-
ria (development speed, number of statements, amount of
core used, output clar i ty, and program clari ty). For
each characteristic, the highest performance was
achieved by the group given that characteristic as its
success criterion.

An increasing number of people were recognizing
the importance of software quality, and dealing im-
p l i c i t l y with software quality attributes by addressing
the establishment of "good programming practices." The
book on programming style by Kernighan and Plauger(8)
is the best example of this work. Also, a series of
reports by CIRADI9,10) on software maintainability pro-
vide some source material and some items such as the
following checklist of practices and features enhancing
software maintainability: conceptual grouping, top-
down programming, modularity, meaningfulness, unifor-
mity, compactness, naturalness, transferabil ity, com-
ments, parentheses, and names. A report by Warren on
Software Portability{11) provides an excellent summary
of alternative approaches to portabil i ty--e.g., simula-
tion, emulation, interpretation, bootstrapping, higher-
order language features--with primary emphasis on the
portability of language processors.

Recently, a number of init iat ives have recognized
the importance of expl ic i t ly considering quality fac-
tors in software engineering. For example, four pre-
sentations in the recent AIAA/ACM/IEEE/DOD Software
Management Cg~rence address the subject: DeRoze's
presentation ~z~j identifies "software quality specifi-
cations and tradegff~" as a high-priority DOD in i t i -
ative; Kossiakoff£ z~) identifies seven attributes of
I I good" software specifications; Whitaker(14) identi-
fies twelve expl ici t quality goals for new DOD program-
ming languages; and Light's presentation(15) on soft-
ware quality assurance identifies five important mea-
sures of software quality.

Key Issues in Software Quality Evaluation. Some
of the major issues in software quality evaluation are
the following:

I. Is i t possible to establish definitions of the
characteristics of software quality which are
measurable and sufficiently non-overlapping to
permit software quality evaluation? This wil l
be discussed in Section II on "Characteristics
of Quality Code."

2. How well can one measure overall software
quality or its individual characteristics?
This wil l be discussed in Section I l l on
"Measuring the Quality of Code."

3. How can information on software quality char-
acteristics be used to improve the software
l ife-cycle process? This wil l be discussed in
Section IV.

I f . Characteristics of Quality Code

Code is the realization of the software require-
ments and the detailed software design. I t is the pro-
duction art icle that directly controls the operations
of the user's system. This section of the paper addres-
ses the problem of characterizing the quality of the
code i tse l f . This section, and the following section
on measuring the quality of code, are based primarily
on a study performed on the1:w~ject by TRW for the Na-
tional Bureau of Standards,~ ~o) and on subsequent work
in the area at TRW, including a Software Reliabil i ty
Study performed for Rome Air Development Center. t u)

In i t ia l Study Objectives and Conclusions. The in-
i t i a l objectivg~.Qf the "Characteristics of Software
Quality" study~bJwere to identify a set of character-
ist ics of software quality and, for each characteris-
t i c to define one or more metrics such that:

1. Given an arbitrary program, the metric pro-
vides a quantitative measure of the degree
to which the program has the associated char-
acteristic, and

2. Overall software quality can be defined as
some function of the values of the metrics.

Although "software" can have many components such
as functional specifications, test plans, and opera-
tional manuals, this study concentrated on metrics
which could be applied to Fortran source programs,

The in i t i a l conclusions of the study are summar-
ized below. First, in software product development and
evaluation, one is generally far more interested in
where and how :rather than how often the product is de- ...
f ic ient. Thus, the most valuable automated tools for
software quality analysis would generally be those
which flagged deficiencies or anomalies in the program
rather than just producing numbers. This has, of
course, been true in the past for such items as com-
pi ler diagnostics; one would be just i f iab ly i r r i tated
with a mere statement that "1.17 percent of your state-
ments have unbalanced parentheses."

Second, we found that for v i r tual ly al l the simple
quantitative formulas, i t was easy to find counterex-
amples which challenged their credibi l i ty as indicators
of software quality. Some examples are given below.

1. A metric was developed to calculate the
average size of program modules as a measure
of structuredness. However, suppose one has
a software product with n lO0-statement con-
trol routines and a l ibrary of m 5-statement
computational routines, which would be con-
sidered well structured for any reasonable
values of m and n. Then, i f n = 2 and m = 98,
the average module size is 6.9 statements,
while i f m = 10 and n = 10, the average module
size is 52.2 statements.

2. A "robustness" metric was developed for the
fraction of statements with potential singu-
lar i t ies (divide, square root, logarithm,
etc.) which were preceded by statements which
tested and compensated for singularities.
However, often the operation is in a context
which makes the singularity impossible; a
simple example is that of calculating the
hypotenuse of a right triangle:

Z = SQRT(X**2 + Y**2)

3. Some "self-descriptiveness" metrics were de-
veloped for the number of comment cards, the
average length of comments, etc. However, i t
was fa i r l y easy to recall programs with fewer
and shorter comments which were much easier
to understand than some with many extensive
but poorly written comments.

Third, we concluded that the software f ie ld is
s t i l l evolving too rapidly to establish metrics in
some areas. In fact, doing so would tend to rein-
force current practice, which may,~R~ be good. For
example, the use of data clusters ~z°) and automatic
type-checking would invalidate some re l i ab i l i t y
metrics based on checking for mixed-mode expres-
sions, parameter range violations, etc.

Finally, we concluded that calculating and under-
standing the value of a single, overall metric for
software quality may be more trouble than i t is worth.
The major problem is that many of the individual char-
acteristics of quality are in conflict: added e f f i c i -
ency is often purchased at the price of portabi l i ty,
accuracy, understandability, and maintainability; added
accuracy often conflicts with portabi l i ty via depen ~
dence on word size; conciseness can conflict with legi-
b i l i t y . Users generally find i t d i f f i cu l t to quantify
their preferences in such conflict situgtions. An-
other problem is that the metrics are generally incom-
plete measures of their associated characteristics. To
summarize these considerations:

1. The desirable qualities of a software product
vary with the needs and prior i t ies of the pro-
spective user.

2. There is, therefore, no single metric which
can give a universally useful rating of soft-
ware quality.

3. At best, a prospective user could receive a
useful rating by furnishing the quality rating
system with a thorough set of checklists and
pr ior i t ies.

4. Even so, since the metrics are not exhaustive,
the resulting overall rating would be more sug-
gestive than conclusive or prescriptive.

5. Therefore, the best use for metrics at this
point is as individual anomaly indicators, to
be used as guides to software development,
test planning, acquisition, and maintenance.

Identification and Classification of Quality Char-
acteristics. Having reached the above conclusion, i t
was decided to develop a hierarchical set of character-
ist ics and a set of anomaly-detecting metrics. Our
plan and approach were as follows.

1. Define a set of characteristics which are im-
portant for software, and reasonably exhaust-
ive and non-overlapping.

2. Develop candidate metrics for assessing the
degree to which the software has the defined
characteristic.

3. Investigate the characteristics and associated
metrics to determine their correlation with
software quality, magnitude of potential bene-
f i t s of using, quant i f iabi l i ty, and ease of
automation.

4. Evaluate each candidate metric with respect to
the above cr i ter ia, and with respect to i ts
interactions with other metrics: overlaps,
dependencies, shortcomings, etc.

5. Based on these evaluations, refine the set of
software characteristics into a set which is
more mutually exclusive and exhaustive and sup-
portive of software quality evaluation.

6. Refine the candidate metrics and realign them
in the context of the revised set of character-
ist ics.

The following in i t i a l set of software characteris-
tics were developed and defined as a f i r s t step: (1)
(1) Understandability, (2) Completeness, (3) Concise~
ness, (4) Portabil ity, (5) Consistency, (6) Maintain-
ab i l i t y , (7) Testability, (8) Usability, (9) Reliabil-
i t y , (10) Structuredness, (11) Efficiency. Definitions

594

of these characteristics are given in the Appendix.

As a second step, we then defined candidate mea-
surements of Fortran code (i .e., metrics, which would
serve as useful indicators of the code's Understand-
abil i ty, Maintainability, etc. In doing so, we found
that any measure of Understandability was also a mea-
sure of Maintainability--since any code maintenance
requires that the maintainer understand the code. On
the other hand, there were measures of Maintainability
that had nothing to do with Understandability. For ex-
ample, Testability features such as support of inter-
mediate output and echo-checking of inputs are impor-
tant to the retest function of software maintenance,
but are unrelated to Understandability.

Thus, we began to find that the characteristics
were related in a type of tree structure, e.g.,

We also began to find that there was another level
of more primitive concepts below the level of Under-
standability and Testability. For example, i f a pro-
gram is Understandable, i t is also necessarily Struc-
tured, Consistent, and Concise (three of the original
characteristics) and additionally Legible and Self-Des-
criptive (two additional characteristics not implied by
the three above). We were thus generating some addi-
tional characteristics and finding that the entire set
of characteristics could be represented in a tree struc-
ture, in which each of the more primitive characteris-
tics was a necessary condition for some of the more gen-
eral characteristics. (This result anticipated step 5
of the plan outlined above.)

i ' MAINTAINABILITY ~ - - ~ UNDERSTANDABILITY)

TESTABILITY)

in which the direction of the arrow represents a log-
ical implication: if a program is Maintainable it
must necessarily be Understandable and Testable;
e.g., a high degree of Maintainability implies a
high degree of Understandability and Testability.

Fig. I - Software Quality Characteristics Tree

The resulting Software Quality Characteristics
Tree is shown in Fig. I. Its higher-level structure
reflects the actual uses to which evaluation of soft-
ware quality would be put. In general, when one is ac-
quiring a software package, one is mainly concerned
with three questions:

• How well (easily, reliably, efficiently) can
I use i t as-is?

e How easy is i t to maintain (understand, modify,
and retest)?

e Can I s t i l l use i t i f I change my environment?

~DEVICE-INDEPENDENCE 1

SELF-CONTAINEDNES'S" I

RELIABILITY

[HU~IAN ENGINEERING

., J

,,,.

3[,'-MODIFIABILITY
595

:~COMPLETENESS' I

~ROBUSTNESS/INTEGRITYI

'CONSISTENCY

ACCOUNTABILITY

EFFICIENCY I

:FACCESSlBILITyf

,[COMMUNICATIVENESS F

'~SELF-DESCRIPTIVENES ~

{ISTRUCTUREDESS I

CONCISENESS I

LEGIBILITY

-~.AUG.MENTABIL ITY l

Thus, As-is U t i l i t y , Maintainability, and Portability
are necessary (but not sufficient ~) conditions for
General U t i l i t y . As-is U t i l i t y requires a program to
be Reliable and adequately Efficient and Human-Engin-
eered, but does not require the user to test the pro-
gram, understand i ts internal workings, modify i t , or
try to use i t elsewhere. Maintainability requires that
the user be able to understand, modify, and test the
program, and is aided by good Human-engineering, but
does not depend on the program's current Rel iabi l i ty,
Efficiency, or Portability (except to the extent the
user's computer system is undergoing evolution).

The lower level structure of the characteristics
tree provides a set of primitive characteristics which
are also strongly differentiated with respect to each
other, and which combine into sets of necessary condi-
tions for the intermediate-level characteristics. For
example:

A program which does not in i t i a l i ze i ts own
storage is not completely Self-Contained and
therefore is not completely Portable even
though i t may be completely Device-Independent.

A program using formats such as 12A6 is not
completely Device-Independent, and is there-
fore not completely Portable, even though i t
may be completely Self-Contained.

A program which Device-lndependent and Self-
Contained but is not Accurate, Complete, Ro-
bust, Consistent, Accountable, Device-Efficient,
Accessible, Communicative, Self-Descriptive,
Structured, Concise, Legible, and Augmentable
s t i l l satisfies the definition for Portability.

The primitive characteristics thus defined provide
a much better foundation for defining quantitative met-
rics which can then be used to measure the relative
possession of both the primitive and the higher level
characteristics. This can be done in terms which aid
both in evaluating the u t i l i t y of software products
(at the high level) and in prescribing directions of
needed improvements (at the primitive level). The def-
init ion and evaluation of such metrics is the subject
of the next Section.

I I I . Measuring the Quality of Code

Metrics. The term "metric" is defined as a mea-
sure of ~ e x t e n t or degree to which a product (here
we are concentrating on code) possesses and exhibits
a certain (quality) characteristic. As described in
the previous section, we found that in fact, the de-
velopment and refinement of both metrics and character-
ist ics proceeded concurrently. Many metrics applicable
to Fortran code were formulated and analyzed, leading
in several iterations both to a refined set of metrics
and to the generalized formulation of the hierarchical
set of characteristics presented previously. We then
had a basis for evaluating the usefulness of these en-
t i t i es , using the following cr i ter ia:

I. Correlation with Software quality. For each
metric purportedly measuring a given "primitive"
characteristic, did i t in fact correlate with our
notion of software quality? Here we mean roughly

,
There are subsets of applications in which addi-

tional characteristics are necessary: applications
which require computer security, for example. A more
detailed discussion of characteristics of secure sys-
tems can be found in Ref. 19.

by positive correlation that most computer programs
with high scores for a given metric would also possess
the associated primitive characteristic. Clearly, a
more precise stat ist ical definition could be stated,
but the evaluation was quite subjective at this point,
and the more precise measures of correlation would need
to await extensive data collection and judgments on
many diverse computer programs. The following scale
was used to rate each metric:

A - Very high positive correlation; nearly al l
programs with a high metric score wi l l possess
the associated characteristic.

AA- High positive correlation; a good majority
(say 75-90%) of al l programs with a high metric
score wi l l possess the associated characteris-
t i c

U - Usually (say 50-75%) of al l programs with a
high metric score wi l l possess the associated
characteristic

S - Some programs with high metric scores wi l l pos-
sess the associated characteristic.

2. Potential Benefit of Metrics. Some metrics
provide very important insights and decision
inputs for both the developer and potential
users of a software product; others provide
information which is interesting, perhaps in-
dicative of potential problems, but of no great
loss i f the metric does not have a high score
even though highly correlated with i ts associ-
ated quality characteristic. The Judgment as
to i ts potential benefit is, of course, depen-
dent on the uses for which the evaluator is
assessing the product. The following scale of
potential benefits was defined:

5 - Extremely important for metric to have a
high score; major potential troubles other-
wise

4 - Important for metric to have a high score

3 - Fairly important for metric to have a high
score

2 - Some incremental value for metric to have
high score

I - Slight incremental value for metric to
have high score; no real loss otherwise.

3. Metric Quan t i f i ab i l i t ~ and Feas ib i l i t y of Auto-
mate~ Evaluation. While a metric may rate at
the top for both correlat ion with qual i ty and
potential benef i t , i t may be time-consuming or
expensive to determine i t s numerical value.
In fact , i f to evaluate a metric requires an
expert to read a program and make a judgment,
the numerical value w i l l generally provide
much less insight than the understanding that
the expert w i l l pick up in the evaluation pro-
cess. Furthermore, metrics requiring expert
inspectors are extravagantly expensive to use.
Therefore, one would prefer for large programs
an automated algorithm which examines the pro-
gram and produces a metric value (and prefer-
ably also a l i s t of local exceptions to posses-
sion of the relevant character is t ics) . An in-
termediate capabi l i ty which is often more fea-
sible is an automated compliance checker, for
which the user must provide a checkl ist of de-
sired qual i ty character ist ics.

596

In the evaluation, a judgment was made as to
which combination of methods of quantifica-
tion would provide the most cost-effective
rating for the metric, using the following
set of options:

AL - can be done cost-effectively via an auto-
mated algorithm

CC - can be done cost-effectively via an auto-
mated compliance checker i f given a check-
l i s t (Code Auditor is such a tool, described
in Section IV)

UI - requires an untrained inspector

TI - requires a t ra ined inspector

EVALUATION

El - requires an expert inspector

EX - requires program to be executed

Automating some evaluations, such as counting
average module length or checking for the
presence of certain kinds of self-descriptive
material, can be done in a f a i r l y easy and
straightforward fashion. Automating other
evaluations, such as scanning the program
globally for repeated subexpressions and guar-
anteeing that the components in the subexpres-
sions are not modified between repetit ions,
are possible but more d i f f i c u l t . Others, such
as judging the descriptiveness of the self-
descriptive material as well as i ts ~resence ,
are v i r tua l l y impossible to automate. Thus,

Table I

OF QUALITY METRICS

Primitive
Characteristids

DeviCe-
Independence

DI-1

Definition of Metrics

Are computations independent of com-
puter word size for achievement of

Correlation
with

.Quality.
Potential
Benefit

Ease of
~Developing

Quant i f i - Automated
a b i l i t y Evaluation

i
i

AL + EX I E
i + TI {I

"Complete-
ness of

Automated
Evaluation

DI-2

Sel f -
Containedness

SC-1

SC-2

Accuracy
AR-I

AR-2

Completeness'
CP-I

CP-2

Robustness
R-I

R-2

Consistency
CS-I

reguired precis ion or storage scheme?
Have machine-dependent statements
been flagged and commented (e .g . ,
those computations which depend upon
computer hardware capab i l i t y for ad-
dressing ha l f words, bytes, selected
b i t pat terns, or those which employ
extended source language features)?

Does the program contain a f a c i l i t y
for i n i t i a l i z i ng core storage prior
to use?
Does the program contain'a f a c i l i t y
for proper positioning of input/
output devices prior to use?

Are the numerical methods used by
the program consistent with appli-
cation requirements?
Are the accuracies of program con-
stants and tabular values consis-
tent with application reguj.rements?

Are a l l program inputs used within
the program or their presence
explained by a comment?
Are there no "dummy" subprograms
referenced?

Does the program have the capabil-
i t y to assign default values to
non-specifiedparameters?
Is input data checked for rang'e
errors?

Are a l l specifications of sets of

A

A

A

A

AA

AA

1
5 i AL I

AL ~ E

! CC E'"

L

I

TI
r

AL + TI E

AL E

I. KL~ -I E
AL + TI

.i
AL + TI E

: AL

~S-2 " -

global variables (i . e . , those ap-
pearing in two or more subpro-
grams) identical (e.g., labeled
COMMON?
Is the type (e .g . , real, integer,
etc.) of a variable consistent
for a l l uses?

A 5 AL P

597

some automated tools could provide useful but
only partial support to quality evaluation,
leaving the remainder to be supplied by a hu-
man reader. The following scales were used
to rate each metric with respect to ease and
completeness of automated evaluation:

Ease of Developin 9 Automated Evaluation

E - Easy to develop automated algorithm or
compliance checker

M - Moderately d i f f i cu l t to develop automated
algorithm or compliance checker

D - Di f f icul t to develop automated algorithm
or compliance checker

Completeness of Automated Evaluation

C - Algorithm or checker provides total evalu-
ation of metric

P - Algorithm or checker provides partial
evaluation of metric

I - Algorithm or checker provides inconclusive
results

Evaluation of Metrics. The above cri ter ia were
applied to the candidate metrics developed in the
study. Some examples are given in Table 1 (displayed
on the previous page)~1~gnly a small fraction of the
151 candidate metrics~°)could be included here, but
the ideas are amply i l lustrated. In Table 1 are shown,
for each of six primitive characteristics, the evalua-
tion of two of i ts associated metrics. An explanation
of the ratings established for the f i r s t metric in the
table is given below for clari ty.

The metric (DI-1) was found to be highly corre-
lated with Device-lndependence (rating "A"), and to be
extremely important with respect to Device-lndependence
(rating "5"). I t was found that a combination of auto-
mated algorithm, execution, and a trained inspector
would generally be most cost-effective for determining
to what degree a software product possessed the charac-
ter is t ic (rating "AL + EX + TI"). An automated algo-
rithm could check format statements for device-depen-
dence, e.g., 12A6, or F15.11 (more precision than most
machines possess), and similarly flag extra-precise
constants (e.g., PI = 3.14159265359). These checks
would be easy to automate (rating "E"), but would only
provide partial results (rating "P").

Evaluation of Metrics Versus Project Error Experi-
ence. The best opportunity to evaluate the metrics and
ratings exemplified above in Table 1 presented i tse l f
in the availabil i ty of an extensive data base of soft-
ware error types and experience in detecting and cor-
recting them, compiled by TRW for the Air Force CCIP-85
study. The in i t ia l segment of this data base is pre-
sented in Table 2 (displayed on the following page).
I t includes the classification of 224 software er-
rors typed into 13 major categories:

1. Errors in preparation or processing of
card input data

2. Tape handling errors
3. Disk handling errors
4. Output processing errors
5. Error message processing errors
6. Software interface errors
7. Hardware interface errors
8. Data base interface errors
9. User interface errors

10. Computation errors

11. Indexing and subscripting errors
12, Iterative procedures errors
13. Bit manipulation errors

In the earlier study, all the errors of each type
were analyzed to determine during which phase of the
software development process they were typically (but
not always) committed and where they were typically
(but not always) found and corrected. The phases used
in this analysis were:

1. Requirements Definition
2. Design
3. Code and Debug
4. Development Test
5. Validation
6. Acceptance
7. Integration
8. Delivery

In Table 2, for each error type, an "0" is placed
in the column corresponding to the phase in which that
type of error typically originated, and an "F" is
placed in the column corresponding to the phase in
which that type of error was typically found and cor-
rected. To evaluate the applicability of each metric
to error detection and correction, an additional item
was estimated for each error type: the phase in which
that type of error would most l ikely be detected and
corrected using that metric.

Exam_~. Line 1 in the table indicates that the
typical error of the type in which the "program expects
a parameter in a different format than was given in the
Program Requirement Specification," originated in the
Design phase (at least for the software projects anal-
yzed in the CCIP-85 study). That type of error was typ-
ically corrected during the acceptance testing phase.
However, i f metric CS-13 (an extension of metric-SD-1
covering header commentary) had been computed, this type
of error would typically have been caught and corrected
in the design phase.

As is evident from this example, one result of the
analysis was to identify several extensions of the pre-
vious metrics which would be effective in error detec-
tion and correction. For example, the CS-13 capability
cited in the table implies the need for an automated
tool which would scan standard software module header
blocks. I t would check the consistency of their infor-
mation with respect to assertions in the header blocks
about the nature of inputs and outputs, including:

• data type and format

• number of inputs

• order of inputs

• units

• acceptable ranges

• associated storage locations

• source (device or logical f i l e or record)

• access (read-only, restricted access)

The CS-13 entries in the table indicate that i f coding
of the module had been preceded by such a module de-
scription with the assertions about i ts inputs and out-
puts, then an automated consistency checker could gen-
erally have caught the error before coding began.

598

Table 2. Evaluation of Error-Detecting Capabilities (Metrics) vs. Error Type
(f i r s t 12 of 224 error types)

I 2 3 4 5 6 1 8
~ " - ~ ~ 0

" - - ' - - - - - ~ ~ ~ 0 (J .r- Software Phase E r. .- ~ ~
i . (" 0 (0 4-J ~.- ~l

• ~J i-~ 4-J . ,- ~.; (l~ .,--

E r r o r T y p e - ~ _ . , o ~ ¢, ~ u ~-

I
Error ~ in Preparation or Processin 9 of Card Input Data

1. Program expects parameter in different format than
is given in Program Requirement Specification.

2. Program does not expect or accept a required parameter.

3. Program expects parameters in a different order than
that which is specified.

4. Program does not accept data through the entire range
which is specified.

5. Program expects parameter in units different from that
which is specified.

6. Nominal or default value ut i l ized by program in the
absence of specific input data is different from that
which is specified.

7. Program accepts data outside of allowable range l imits.

8. Program wi l l not accept al l data within allowable
range l imits.

9. Program overflows core tables with data that is wi'thin
the allowed range.

10. Program overflows allotted space in mass storage with
data that is within the allowed range.

11. Program executes f i r s t test case properly but succeeding
test cases fa i l .

12. Program expects parameter in a different location than
specified.

0 = Error origin
F = Error found

0
CS-13 F

0
CS-13

0
CS-13

0
CS-13 F

0
CS-13 F

0

0

0

0

0

0

0

CP-9

CP-9

F

F

CS-13 F

CS-N : Consistency-checking aid N applied at this phase would generally have de-
tected error.

CP-rl = Completeness-checking aid N applied at this phase would generally have de-
tected error.

Of the 12 types of card processing errors shown in
Table 2, the CS-13 consistency checker would have
caught 6. Overall, out of the 224 types of errors,
this capability would generally have caught 18. The
next most effective capability would perform checks on
the consistency of the actual code with the module de-
scription produced during the design phase for capabil-
ity CS-13 above. (For example, for each output asser-
tion, i t would check i f the variable appeared on the left
of an equals sign in the code, and perform a units check
on the computation.) This capability would have caught
lO types of error, but not until the init ial code-
scanning phase.

In general, as is seen in Table 3, the Consistency
metrics were the most effective aids to detecting soft-
ware errors. Overall, they would have caught 34 of the
224 error types; their total phase gain (the sum of the
number of phases that error detection was advanced by
the metrics) amounted to 89, or an average gain of 2.5
phases per error type. The next most effective metrics
were those for Robustness, followed by Self-Contained-
ness and Communicativeness.

599

Table 3

ERROR CORRECTION EFFECTIVENESS OF METRICS

Metric/Primitive I
Characteristic I
Consistency
R o b u s t n e s s I

Error Types

Self-Containedness
Communicativeness
Structuredness I
Self-Descriptiveness
Conciseness I
Accuracy
Accessibilitx

Corrected
(No.)
34
29
15
9
2
1
I
1
I

Phase Gain
(Total)

89
47
28
18
2
4
4
2
2

The main message of Table 3 is that the early ap-
plication of automated and semiautomated Consistency,
Robustness, and Self-Containedness checkers leads to
significant improvements in software error detection
and correction. This is an important conclusion, but
i t should not be too surprising, since Consistency,
Robustness, and Self-Containedness are three of the
primitive characteristics associated with Reliabil ity.

Another useful consistency check was to compare a
metric's error-correction potential with the estimate
of a metric's potential benefit in Table 1. Satisfac-
tor i ly , virtual ly all of the significant error-detec-
ting and correcting metrics had maximum potential bene-
f i t ratings of 5, and none which contributed to error
correction had ratings less than 3.

Of course, this was just a partial evaluation, but
since testing occupies such a great proportion of a
total software effort , the above evaluation has been a
most useful one for helping us to decide which metrics
should have high priorit ies for development and use.
We have subsequently developed some of these metric-
checkers and used them with some success, and, in par-
t icular, the CS-13 metric was used as a basis for the
recently developed Design Assertion Consistency Checker
described in Ref. 20.

IV. Using Quality Characteristics to Improv e the
Software Life'Cycle. Process

The software l ife-cycle process begins with a sys-
tem and software requirements determination phase, fol-
lowed by successive phases for system design, detailed
design, coding and testing, and culminating in an op-
erations and maintenance phase. There are four major
means we have found for using the quality characteris-
tics discussed above to improve the l i fe-cycle process.
These are:

o Setting expl ic i t software quality objectives
and priori t ies;

o Using software quality checklists;

o Establishing an expl ici t quality assurance
activity;

o Using quality-enhancing tools and techniques.

Explicit Software Quality Objectives and Prior-
ties. The experiments reported in Refs. 4 and 7
showed that the degree of quality a person puts into a
program correlates strongly with the software quality
objectives and priorit ies he has been given. Thus,
i f a user wants portabil i ty and maintainability more
than code efficiency, i t is important to te l l the de-
veloper this, preferably in a way which allows the
user to determine to what extent these qualities are
present in the final product.

Probably the best way to accomplish this to date
is through the practice of software quality bench-
marking. Benchmarking is generally just used to de-
termine Device-Efficiency on a typical operational pro-
f i l e of user jobs, but i t can be used similarly as an
acceptance test or software package selection criterion
for other qualities also. Thus, for maintainability,
one constructs a representative operational profile of
l ikely modifications to the software, and measures how
eff ic ient ly and effectively these modifications are
made by the actual software maintenance personnel.

phases of the software development cycle. I t has been
used primarily to date in specifying hardware-software
re l iab i l i ty and availabil i ty objectives (with particu-
lar success in the Bell Labs' Electronic Switching Sys-
tem, for example), but has also been used successfully
for other quality objectives.

Software quality benchmarking can and should be
used also to evaluate alternative software products for
procurement. In doing so, the level of effort expended
in quality benchmarking should be proportional to the
amount of use the product is expected to have, rather
than to its price. More than we once, we have lost
over $10,000 in software development and operational
costs because of incomplete quality benchmarking in
procurement of $1,000-$2,000 software products.

Software Quality Checklists. The quality metrics
summarized above, and presented in detail in Ref. 16,
can be used as the basis for a set of software quality
checklists. These can be used to support reviews,
walkthroughs, inspections, and other constructive in-
dependent assessments of a software development prod-
uct. Again, to date, these have been used primarily
to support software re l iab i l i ty objectives, but can be
used effectively for other software quality objectives.
For example, Table 4 gives a portion of a checklist for
judging the Self-Descriptiveness of a computer program,
an important characteristic in evaluating the long-term
costs of understanding, testing, and maintaining the
program.

Table 4

PARTIAL CHECKLIST FOR JUDGING THE SELF-
DESCRIPTIVENESS OF A SOFTWARE PRODUCT

Used as an acceptance test, software quality
benchmarking provides an expl ici t set of quality objec-
tives for all participants throughout the various

600

A software product possesses self-descriptiveness
to the extent that i t contains enough information for a
reader to determine or verify its objectives, assump-
tions, constraints, inputs, outputs, components, and
revision status. Checklist:

a. Does each program module contain a header block of
commentary which describes (1) program name, (2) ef-
fective date, (3) accuracy requirement, (4) purpose,
(5) limitations and restrictions, (6) modification
history, (7) inputs and outputs, (8) method, (9) as-
sumptions, (10) error recovery procedures for all
foreseeable error exits that exist?

b~ Are decision points and subsequent branching altern-
atives adequately described?

c. Are the functions of the modules as well as inputs/
outputs adequately defined to allow module testing?

d. Are comments provided to support selection of spe-
c i f ic input values to permit performance of spe-
cialized program testing?

e. Is information provided to support assessment of
the impact of a change in other portions of the
program?

f. Is information provided to support identification
of program code which must be modified to effect a
required change?

g. Where there is module dependence, is i t clearly
specified by commentary, program documentation, or
inherent program structure?

h. Are variable names descriptive of the physical or
functional property represented?

i . Do uniquely recognizable functions contain adequate
descriptive information (e.g., comments) so that
the purpose of each is clear?

j . Are adequate descriptions provided to allow corre-
lation of variable names with the physical property
or entity which they represent?

quality Assurance Activity. We are finding i t in-
creasingly advantageous, from both product quality and
cost-effectiveness standpoints, to have an ex ' ' i c i t
quality assurance activity on our software projects.
The manager of this activity generally reports to the
project manager and is purposely held from producing
any of the deliverable product in order to provide an
independent view of the project. Tasks included in
this quality activity are tailored to the project and
depend upon the size and scope of the project. This
approach has proven effective in ensuring that the
project is responsive to the quality requirements
of the customer and the particular system application.
The responsibilities of the quality assurance activity
generally include:

Planning - Preparation of a software quality
assurance plan which interprets quality pro-
gram requirements and assigns tasks, schedules
and organizational responsibilities.

Policy, Practice and Procedure Development -
Preparation of standards manuals for all phases
of software production, including requirements,
design, coding, and test, tailored to specific
project requirements. A key point here is at-
tention to quality provisions early in the
software l i fe cycle.

Software Quality Assurance Aids Development -
Adaptation and development of manual and auto-
mated procedures for verifying compliance to
software functional and performance require-
ments and project quality standards.

Audits - Review of project procedures and docu-
mentation for compliance with software develop-
ment plan standards, with follow-up and docu-
mentation of corrective actions.

Test Surveillance - Reporting of software prob-
lems, analysis of error causes and assurance of
corrective action.

Records Retention - Retention of design and
software problem reports, test cases, test
data, logs verifying quality assurance reviews
and other actions.

Physical Media Control - Inspection of disks,
tapes, cards, and other program-retaining media
for verification at all times of physical
transmittal or retention, and assurance that
contents are not destroyed or altered by en-
vironment or mishandling.

To date, most of these responsibilities involve
considerations of re l iab i l i ty and software product com-
pliance to standards and the software requirements
specification. However, the quality assurance activity
can also be a useful focal point for assuring that the
product possesses the other characteristics of soft-
ware quality, such as Maintainability and Portability.

Quality-Enhancin 9 Tools and Techniques. Practi-
cally every software tool and technique--cross-refer-
ence generators, flow charters, configuration manage-
ment procedures, software monitors--supports some kind
of quality-enhancement with respect to at least one
quality characteristic. Here we concentrate on several
tools and techniques having particularly high leverage
for software quality enhancement, f i r s t those which
apply to software requirements and design specifica-
tions and then those which apply to code.

Quality-Enhancing Tools and Techniques: Require-
ments and Desiqn. During requirements and design
phases, some assurance that desired quality character-
istics are present can be obtained by using guidelines
and detailed checklists. Here, of course, the primary
objective is not to obtain a numerical measure of the
extent to which a quality characteristic is present,
but to identify problems of varying levels of cr i t ica l -
i ty with which we need to deal. A great deal of soft-
ware quality leverage is gained by using machine-analy-
zable software specifications and automated aids to
analyze the~ for Cons~eBg~y, Completeness, etc., such
as ISDOS~(21) and SREP~ ~J, provide for software re-
quirements. These systems provide a significantly in-
creased assurance of specification quality over manual
methods, giving considerable leverage for limiting the
cost of software errors during both testing and main-
tenance. This is because a majority of errors arise
owing to fau~x,expression of requirements and incom-
plete design~U/, and are much less expensive to cor-
rect during the early phases of production than during
subsequent phases.

One of the biggest sources of software problems
stems from ambiguity in the software requirements spe-
cifications. A number of different groups--designers,
testers, trainers, users--must interpret and operate
with the requirements independently. I f their inter-
pretations of the requirements are different, many de-
velopment and operational problems will result.

One of the best counters to this problem is a re-
view to make sure that the requirements are Testable.
For example, consider the pairs of specifications below.

Non-Testable Testable

1. Accuracy shall be I.
sufficient to support
mission planning

2. System shall provide 2.
real-time response to
status queries

3. Terminate the simula- 3.
tion at an appropriate
shift break

Position error shall be:
50' in the horizontal
20' in the vertical

System shall respond to:
Type A queries in S 2
sec

Type B queries in ~ 10
sec

Type C queries in <__2
min

Terminate the simulation
after 8 hours of simulated
time

I t is clear that the specifications on the right are not
only more Testable but also less ambiguous and better
suited as a baseline for designing, costing, documen-
ting, operating, and maintaining the system.

There is one technique for expl ic i t ly analyzing
such quality considerations during the requirements
phase which has been reasonably successful on small-to-
medium projects. This is the Requirements-Properties
Matrix: a matrix whose column consist of the individual
functional requirements and whose rows consist of the
major qualities (or properties) desired in the software
product (or vice versa). The elements of the matrix
consist of additional specifications which arise when
one considers the quality implications of each require-
ment. For example, consider the third pair of require-
ments above when treated in a Requirements-Properties
Matrix as in Fig. 2. I t is clear that the resulting
specifications wil l lead to a higher quality software
product. Some additional effort would be necessary to
achieve the enhanced product, but i f the program is to
have a good deal of use and maintenance, the effort
wil l pay off in reduced life-cycle costs.

601

Fig. 2 - Portion of a Requirements-Properties Matrix

"-•....R•irement
Property

Testability

Modifiability

Robustness

Terminate the simulation
at an appropriate shift break " '"

Terminate the simulation
after 8 hours of simulated
time

Allow user to specify
termination time as an in-
put parameter, with a de-
fault value of 8 hours

Provide an alternate
termination condition in
case the time criterion
cannot be reached,

Quality-Enhancing Tools and Techniques: Code.
As shown in the detailed characteristics tree of Fig.
1, code Structuredness is one of the necessary primi-
tive characteristics for Testability, Understandabil-
i ty, or Modifiability; all of the latter are necessary
for Maintainability. A set of allowable Fortran con-
structs for the basic control structur@~.~EQUENCE,
IFTHENELSE, CASE, DOWHILE, and DOUNTIL~:~; were devel-
oped as a standard for Structuredness on a large real-
time software project. An automated Fortran source
code scanning program called STRUCT was developed and
is regularly used to determine for each routine whether
i t is a properly nested combination of the allowable
constructs; and when violations are recognized the code
causing the violation is identified and a diagnostic
issued.

The discipline invoked by this quality require-
ment on the particular project met with a certain
amount of resistance and disgruntlement by program-
mers. Functional team leaders were somewhat dismayed
at f i r s t since routines previously coded before the
standard had been required needed to be redone to a
great extent, which consequently strained labor cost
budgets and made the original schedules d i f f i cu l t to
meet. Subsequently, however, in a survey of program-
mers and their supervisors, most were of the opinion
that maintenance costs would be reduced, in addition
to expressing positive opinions on "quality of code"
including consistency and understandability. The
opinion was also expressed that had the standard been
invoked in the f i r s t place, most of the development
problems would have been avoided.

Subsequent evaluations of software errors ob-
served in testing on the referred-to project have
shown an extremely low rate, believed to be partly at-
tributable to the application of the Structuredness
standard, although the requirement to exercise all
branches of a routine prior to turnover for integration
testing was found to be much more influential in reduc-
ing the number of errors.

The structuring standard is simply one of over 30
other coding standards formulated for this software
project, and automatically checked by a Fortran source
code analysis tool called CODE AUDITOR. This tool de-
termines whether these standards are violated, and
shows the source code location of the violation in a
diagnostic printout. Many of the primitive character-
istics of Fig. 1 are measurable by CODE-AUDITOR. For
example, Self-Descriptiveness is measured in part by

602

checking for the presence of standard module header
commentary cards, and for commentary cards to explain
transfers of control. Consistency is measured in part
by checks for mixed-mode expressions, and compliance
with standards for parameter passing.

In the future, some of these wil l be done more ef-
f ic ient ly through standard language features for struc-
tured programming, data typing, etc. Yet there wil l
remain a need for automatic post-scanning of code to
assure compliance to local standards (e.g., naming con-
ventions) and to check for partial indicators of poten-
t ial quality problems.

Of course, as is evident from the ratings in Table
I, there are some evaluations of code (and design)
quality which require trained humans to perform. Ref-
erence 25 reports some experiences on large software
projects with emphasis on the relative merit of a var-
iety of techniques involving both human inspectors and
automated tools for controlling and measuring software
quality. One particularly valuable technique i ~ i s
regard is that of the design or code inspection ~ ° j
and its "cousin~.technique, the structured walkthrough.
In our analysis ~11) of software errors found in the
validation phase of one large project, we determined
that 58 percent of them could have been eliminated
early by appropT~e design inspection techniques.
Fagan's results~bJon one fa i r ly well-controlled
project indicate that the extra effort involved in
performing inspections paid off in a 23 percent re-
duction in operational errors.

V. Conclusions

Explicit attention to characteristics of software
quality can lead to significant savings in software
l ife-cycle costs (Section I).

The current software state-of-the-art imposes spe-
c i f ic limitations on our abi l i ty to automatically and

l uantitatively evaluate the quality of software
Section I I) .

A definit ive hierarchy of well-defined, wel l-di f-
ferentiated characteristics of software quality has
been developed. Its higher-level structure reflects
the actual uses to which software quality evaluation
would be put; i ts lower-level characteristics are
closely correlated with actual software metric evalua-
tions which can be performed (Section I f) .

A large number of software quality-evaluation
metrics have been defined, classified, and evaluated
with respect to their potential benefits, quantifiabil-
i ty , and ease of automation (Section I l l) .

Particular software l ife-cycle activit ies have
been identified which have significant leverage on
software quality (Section IV). These include:

• Setting expl ic i t software quality objectives
and prior i t ies;

• Performing software quality benchmarking;

• Using software quality checklists;

• Establishing an expl ic i t quality assurance
activi ty;

• Using machine-analyzable software specifica-
tions;

• Ensuring testable software requirements;

• Using a Requirements-Properties Matrix;

• Establishing standards, particularly for struc-
tured code;

• Using an automated Code Auditor for standards
compliance checking;

• Performing design and code inspections.

14.

15.

16.

Most importantly, we believe that the study re-
ported in this paper provides for the f i rs t time a 17.
clear, well-defined framework for assessing the often
slippery issues associated with software quality, via
the consistent and mutually supportive sets of defini-
tions, distinctions, guidelines, and experiences cited. 18.
This framework is certainly not complete, but i t has
been brought to a point sufficient to support the eval-
uation of the relative cost-effectiveness of prospec-
tive code-analysis tools presented in this paper, and 19.
to serve as a viable basis for future refinements and
extensions.

References

Elshoff, J. L., "An Analysis of Some Commercial
PL/I Programs," IEEE Trans. Software Engineering,
June 1976, pp. 113-120.

I.

Improvements Needed in Managing Automated Decision-
making by Computers Throughout the Federal Govern-
ment, U.S. General Accounting Office, April 23,
1976.

2.

Rubey, R. J., and R. D. Hartwick, "Quantitative
Measurement of Program Quality," Proceedings,
ACM National Conference, 1968, pp. 671-677.

3.

4. Brown, J. R., and M. Lipow, The quantitative Mea-
surement of Software Safety and Reliability, re-
vised from TRW Report No. SDP-1776, August 1973,
TRW Software Series (in press August 1976).

Wulf, W. A., "Programming Methodology," Proceed-
ings of a Symposium on the High Cost of Soft-
ware, J. Goldberg (ed.), Stanford Research In-
stitute, September 1973.

5.

Abernathy, D. H., et al, "Survey of Design Goals
for Operating Systems,"Georgia Institute of Tech-
nology Report GTIS-72-04.

6.

7. Weinberg, G. M., "The Psychology of Improved Pro-
grammer Performance," Datamation, November 1972,
pp. 82-85.

Kernighan, B. W., and P. J. Plauger, The Elements
of Programming Style, McGraw-Hill, 1974.

8.

A Study of Fundamental Factors Underlying Software
Maintenance Problems, CIRAD, Inc., December 1971.

9.

10. Research Toward Ways of Improving Software Main-
tenance, CIRAD, Inc., January 1973.

Warren, J., Software Portability, Stanford Univer-
sity Digital Systems Laboratory, Technical Note
No. 48, September 1974.

11.

DeRoze, B. C., "DOD Defense System Software Manage-
ment Program," Abridged Proceedings from the Soft-
ware Management Conference, 1976 (obtainable
through Los Angeles Section AIAA).

12.

13. Kossiakoff, A., and T. P. Sleight, "Software Re-
quirements Analysis and Validation," ibid.

\

Whitaker, W. A., "DOD Common High Order Language
(HOL) Program," ibid.

Light, W., "Software Reliability/Quality Assurance
Practices," ibid.

Boehm, B. W., J. R. Brown, H. Kaspar, M. Lipow,
G. J. MacLeod, M. J. Merritt, Characteristics of
Software Quality, TRW Software Series TRW-SS-
73-09, December 1973.

Thayer, T. A., et al, Software Reliability Study
(Final Technical Report), TRW Report No. 76-
2260.1.9-5, March 1976.

Liskov, B. H., and S. N. Zilles, "Programming with
Abstract Data Types," ACM SIGPLAN Notices, April
1974, pp. 50-59.

Stepczyk, F. M., Requirements for Secure Operating

~ ms, TRW Software Series, TRW-SS-74-05, June

20. Boehm, B. W., R. K. McClean, and D. B. Urfrig,
"Some Experiences with Automated Aids to the De-
sign of Large-Scale Software," IEEETrans, Soft~
ware Engineering, March 1975, pp. 1Z5,133.

21. Teichroew, D. and H. Sayari, "Automation of System
Building," Datamation, August 1971, pp. 25,30.

22. Alford, M. W., Jr., "A Requirements Engineering
Methodology for Real-Time Processing Requirements,"
Proceedings, IEEE-ACM Second International Confer-
ence on Software Engineering, October 1976.

23. Bell, T. E., andD. C. Bixler, "An Extendable Ap-
proach to Computer-Aided Software Requirements
Engineering," ibid.

24. Mills, H. D., Mathematical Foundations of Struc-
tured Programming, IBM-FSD Report-72-6012, 1972.

25. Brown, J. R., Proceedings of the AIIE Conference
on Software, Washington, D.C., July 19-21, 1976.

26. Fagan, M. E., Design and Code Inspections and
Process Control in the Development of Proqrams,
IBM- TR-21-572, December 1974.

Appendix

Definitions of Quality Characteristics

ACCESSIBILITY: Code possesses the characteristic
accessibility to the extent that i t facilitates selec-
tive use of its parts. (Examples: variable dimensioned
arrays, or not using absolute constants.) Accessibility
is necessary for efficiency, testability, and human
engineering.

ACCOUNTABILITY: Code possesses the characteristic
accountability to the extent that its usage can be
measured.

This means that crit ical segments of code can be
instrumented with probes to measure timing, whether
specified branches are exercised, etc. Code used for
probes is preferably invoked by conditional assembly
techniques to eliminate the additional instruction words
or added execution times when the measurements are not
needed.

ACCURACY: Code possesses the characteristic ac-
curacy to the extent that its outputs are sufficiently
precise to satisfy their intended use. Necessary for

603

reliability.

AUGMENTABILITY: Code possesses the characteris-
t ic augmentability to the extent that i t can easily
accommodate expansion in component computational fun-
tions or data storage requirements. This is a neces-
sary characteristic for modifiability.

COMMUNICATIVENESS: Code possesses the character-
is t ic con~nunicativeness to the extent that i t f ac i l i -
tates the specification of inputs and provides outputs
whose form and content are easy to assimilate and use-
ful. Co,~sunicativeness is necessary for testability
and human engineering.

COMPLETENESS: Code possesses the characteristic
completeness to the extent that al l i ts parts are
present and each part is fu l ly developed.

This implies that external references are avail-
able and required functions are coded and present as
designed, etc.

CONCISENESS: Code possesses the characteristic
conciseness to the extent that excessive information
is not present.

This implies that programs are not excessively
fragmented into modules, overlays, functions and sub-
routines, nor that the same sequence of code is re-
peated in numerous places, rather than defining a
subroutine or macro; etc.

CONSISTENCY: Code possesses the characteristic
internal consistency to the extent that i t contains
uniform notation, terminology and symbology within i t -
self, and external consistency to the extent that the
content is traceable to the requirements.

Internal consistency implies that coding stan-
dards are homogeneously adhered to; e.g., comments
should not be unnecessarily extensive or wordy at one
place, and insuff iciently informative at another, that
number of arguments in subroutine calls match with
subroutine header, etc. External consistency implies
that variable names and definitions, including physi-
cal units, are consistent with a Glossary; or, there
is a one-one relationship between functional flow
chart entities and coded routines or modules, etc.

DEVICE-INDEPENDENCE: Code possesses the charac-
ter is t ic device-independence to the extent i t can be
executed on computer hardware configurations other
than i ts current one. Clearly this characteristic
is a necessary condition for portability.

EFFICIENCY: Code possesses the characteristic
efficiency to the extent that i t f u l f i l l s i ts purpose
without waste of resources.

This implies that choices of source code con~
structions are made in order to produce the minimum
number of words of object code, or that where alter-
nate algorithms are available, those taking the least
time are chosen; or that information-packing density
in core is high, etc. Of course, many of the ways of
coding ef f ic ient ly are not necessarily eff icient in
the sense of being cost-effective, since portabi l i ty,
maintainability, etc., may be degraded as a result.

HUMAN ENGINEERING: Code possesses the character-
is t ic human engineering to the extent that i t f u l f i l l s
i ts purpose without wasting the users' time and energy,
or degrading their morale. This characteristic im-
plies accessibility, robustness, and communicative-
~ess.

LEGIBILITY: Code possesses the characteristic
legibility to the extent that i ts function is easily
discerned by reading the code. (Example: complex ex-
pressions have mnemonic variable names and parentheses
even i f unnecessary.) Legibi l i ty is necessary for un-
derstandability.

MAINTAINABILITY: Code possesses the characteris-
t ic maintainability to the extent that i t faci l i tates
updating to satisfy new requirements or to correct
deficiencies.

This implies that the code is understandable,
testable and modifiable; e.g., comments are used to lo-
cate subroutine calls and entry points, visual search
for locations of branching statements and their targets
is faci l i tated by special formats, or the program is
designed to f i t into available resources with plenty of
margins to avoid major redesign, etc.

MODIFIABILITY; Code possesses the characteristic
modifiability to the extent that i t faci l i tates the in-
corporation of changes, once the nature of the desired
change has been determined. Note the higher level of
abstractness of this characteristic as compared with
augmentability.

PORTABILITY: Code possesses the characteristic
portability to the extent that i t can be operated
easily and well on computer configurations other than
i ts current one.

This implies that special language features, not
easily available at other fac i l i t i es , are not used; or
that standard l ibrary functions and subroutines are se-
lected for universal applicabil i ty, etc.

RELIABILITY: Code possesses the characteristic
reliability to the extent that i t can be expected to
perform i ts intended functions satisfactori ly.

This implies that the program wi l l compile, load,
and execute, producing answers of the requisite accur-
acy; and that the program wi l l continue to operate cor-
rectly, except for a tolerably small number of in-
stances, while in operational use. I t also implies that
i t is complete and externally consistent, etc.

ROBUSTNESS: Code possesses the characteristic
robustness to the extent that i t can continue to perform
despite some violation of the assumptions in i ts speci-
fication.

This implies, for example, that the program wi l l
properly handle inputs out of range, or in different
format or type than defined, without degrading i ts per-
formance of functions not dependent on the non-standard
inputs.

SELF-CONTAINEDNESS: Code possesses the character-
is t ic seZf-containedness to the extent that i t performs
al l i ts expl ic i t and implici t functions within i t se l f .
Examples of implici t functions are in i t ia l iza t ion, in-
put checking, diagnostics, etc.

SELF-DESCRIPTIVENESS: Code possesses the charac-
ter is t ic seZf-descriptiveness to the extent that i t con-
tains enough information for a reader to determine or
verify i ts objectives, assumptions, constraints, inputs,
outputs, components, and revision status. Commentary
and traceabil ity of previous changes by transforming
previous versions of code into non-executable but pres-
ent (or available by macro calls) code are some of the
ways of providing this characteristic. Self-descrip-
tiveness is necessary for both testability and under-
8tandabiZity.

604

STRUCTUREDNESS: Code possesses the characteris-
t i c strueturednes8 to the extent that i t possesses a
definite pattern of organization of i ts interdepen-
dent parts.

This implies that evolution of the program de-
sign has proceeded in an orderly and systematic manner,
and that standard control structures have been followed
in coding the program, etc.

TESTABILITY: Code possesses the character ist ic
testability to the extent that i t f ac i l i t a t es the es-
tablishment of ver i f i ca t ion c r i t e r i a and supports eval-
uation of i ts performance.

This implies that requirements are matched to spe-
c i f i c modules, or diagnostic capabi l i t ies are provided,
etc.

UNDERSTANDABILITY: Code possesses the character-
i s t i c understanc~bility to the extent that i t s purpose
is clear to the inspector.

This implies that variable names or symbols are
used consistently, modules of code are sel f-descr ip-
t i ve , and the control structure is simple or in ac-
cordance with a prescribed standard, etc.

USABILITY (AS-lS UTILITY): Code possesses the
characterist ic usability to the extent that i t is re-
l i ab le , e f f i c i en t and human-engineered.

This implies that the function performed by the
program is useful elsewhere, is robust against human
errors (e.g., accepts ei ther integer or real represen-
tations for type real var iables), or does not require
excessive core memory, etc.

605

