
ABSTRACT
This tutorial is an example driven introduction to refactoring: a
disciplined approach to changing the design of an existing code
base.

1. INTRODUCTION
A common phenomenon to software systems is that of software
entropy, which suggests that over time the design integrity of
software decays under the accumulated pressure of modifications,
enhancements, and bug fixes.

Refactoring is a technique to stem and even reverse this process.
It is a disciplined approach to altering an existing code base in
order to improve its design without introducing new bugs. At the
moment it 's commonly used as a manual technique, but
increasingly tools are available to automate many of the more
common refactorings.

Refactoring
Martin Fowler
ThoughtWorks

Melrose, MA, USA
http://mar'tinfowler.com

fowler@acm.org
tests for the code that's being refactored and to run these tests
frequently during refactoring - preferably the suite should be run
after every refactoring.

Although manual refactoring is the most common form, most
refactorings are automatable. Currently there is considerable
activity, particularly in the Smalltalk and Java communities, to
provide refactoring tools that automate many common
refactorings. Commercial and open source tools are available.

3. FURTHER INFORMATION
My own book [1] is currently the only text on refactoring. It
provides a catalog of around seventy refactorings together with
tutorial information on how to do refactoring.

The refactoring home page [2] provides a barely inadequate portal
for refactoring with links to refactoring tools, other references, a
catalog of refactorings and details of a refactoring mailing list.

2. THE ESSENTIAL PROCESS
The essence of refactoring is to carry out modifications as a series
of small steps. Each of these transformations is called a
refactoring, and if done correctly will introduce no change to the
behavior of the system, hence these refactorings are often
described as semantics preserving or behavior preserving.

Examples of refactorings include:

Extract Method: taking a fragment of code inside a subroutine
and turning it into its own routine.

Rename Method." changing the name of a method and altering all
the callers of the method to use the new name.

Replace Conditional With Polymorphism: Taking conditional
logic and moving it to subclasses in an exiting inheritance
hierarchy.

If done correctly, any of these changes preserve behavior.
Although each change is trivial, indeed too trivial to be worth
doing, the cumulative effect of multiple refactorings can make a
profound change to a software design.

Currently refactorings are most often performed manually, and
since humans make mistakes, this means that behavior may
change. Thus it 's essential to have a strong suite of automated

4. ACKNOWLEDGMENTS
My efforts to describe and teach refactoring depend heavily upon
the works of other people. In particular I need to acknowledge
Ward Cunningham and Kent Beck whose Smalltalk development
style showed the importance of refactoring in the development
process. I must thank Ralph Johnson and his group at the
University of Illinois at Urbana-Champaign for their key
academic contributions: in particular the doctoral works of
William Opdyke, John Brant and Don Roberts. The latter two also
deserve thanks for their ground-breaking refactoring tool for
Smalltalk

I must also thank countless people who have contributed to
refactoring through writing down their ideas and experiences. In
particular I wish to thank those who develop refactoring tools
who, in my view, are making a huge contribution to the future of
software development.

5. REFERENCES
[1] Fowler, M. Refactoring: Improving the Design of Existing

Code, Addison-Wesley, Reading MA, 1997

[2] Refactoring home page.
http://www.refactoring.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1CSE'02, May 19-25, 2002, Orlando, Florida, USA.
Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

701

