
Using Object-Level Run-Time Metrics
to Study Coupling Between Objects

Áine Mitchell
∗

Department of Computer Science
National University of Ireland, Maynooth,

Co. Kildare, Ireland

ainem@cs.may.ie

James F. Power
Department of Computer Science

National University of Ireland, Maynooth,
Co. Kildare, Ireland

jpower@cs.may.ie

ABSTRACT
In this paper we present an investigation into the run-time
behaviour of objects in Java programs, using specially adapted
coupling metrics. We identify objects from the same class
that exhibit non-uniform coupling behaviour when measured
dynamically.

We define a number of object level run-time metrics, based
on the static Chidamber and Kemerer coupling between ob-
jects (CBO) measure. These new metrics seek to quantify
coupling at different layers of granularity, that is at class-
class and object-class level. We outline our method of col-
lecting such metrics and present a study of the programs
from the JOlden benchmark suite as an example of their
use.

A number of statistical techniques, principally agglomer-
ative hierarchical clustering analysis, are used to facilitate
the identification of such objects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, product metrics ; G.3 [Probability and Statistics]

General Terms
Measurement

Keywords
Object-level Coupling Metrics, Object Behaviour, Cluster
Analysis

1. INTRODUCTION
Coupling was first introduced in the context of structured

development techniques by Stevens et al. [18]. They de-

∗Please address correspondence to Áine Mitchell at the
above address.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

fined coupling as, ”the measure of the strength of association
established by a connection from one module to another”.
They stated that the stronger the coupling between mod-
ules, i.e., the more inter-related they are, the more difficult
these modules are to understand, change, and correct and
thus the more complex the resulting software system.

A good software system should exhibit low coupling be-
tween its units. Coad and Yourdon [9] transfered the prin-
cipal of low coupling to object-oriented software. A large
assortment of coupling measurement for object-oriented sys-
tems have been defined [4].

The Chidamber and Kemerer CBO metric [8] is the most
accepted and widely used object-oriented coupling design
metric. A number of empirical studies have shown this
metric to be a good predictor of the maintainability, fault
proneness, testability, change proneness and reusability of
a software design [2, 3, 11, 19]. However, the CBO met-
ric is defined based on a static analysis of class code, and
the ability of the CBO metric to accurately predict the ac-
tual amount of coupling between objects is as yet unproven.
As a static metric, CBO cannot capture all the dimensions
of object-level coupling, as features of object-oriented pro-
gramming such as polymorphism, dynamic binding and in-
heritance render CBO imprecise in evaluating the run-time
behaviour of an application. The behaviour of a program is
going to be a function of its operational environment as well
as the complexity of the source code. Therefore static met-
rics may fall short when determining the run-time properties
of a program.

If the static CBO measure is to be believed it would be
expected that objects derived from the same class would ex-
hibit similar coupling behaviour, that is that they would be
coupled to the same classes and make the same accesses. In
this paper we evaluate whether static CBO provides a true
measure of coupling between objects, or whether it is re-
stricted to being a measure of the level of coupling between
classes. To this end, we define a number of metrics to eval-
uate run-time coupling between objects at the class-class
and object-class level. We employ a number of statistical
techniques to evaluate this data to analyze run-time object
behaviour.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work in the field of static and run-
time coupling metrics. Section 3 describes the goals and
hypothesis of the study. Section 4 outlines the experimental
design and defines the run-time metrics. Section 5 presents a
study of the metrics using the JOlden benchmark suite, and

1456

2005 ACM Symposium on Applied Computing

these results are discussed in Section 6. Section 7 concludes
the paper and describes future research.

2. RELATED WORK
Chidamber and Kemerer originally defined CBO [7] for a

class as “a count of the number of noninheritance related
couples with other classes.” An object of a class is coupled
to another if methods of one class use methods or instance
variables defined by the other. They later revised their defi-
nition to state [8], “CBO for a class is a count of the number
of other classes to which it is coupled.” A footnote stated
that this “includes coupling due to inheritance.”

Briand et al. [4] carried out an extensive survey of the
available literature on coupling in object-oriented systems
and concluded that all the metrics at that time measured
coupling statically, at the class level. No measures of run-
time object level coupling had been proposed.

Yacoub et al. [17] described a set of dynamic coupling
metrics designed to evaluate the change-proneness of a de-
sign. The metrics were applied at the early development
phase to determine design quality. They used executable
object-oriented design models to model the application to
be tested. The metrics were evaluated for a number of dif-
ferent execution scenarios, and they extended the scenarios
to have an application scope.

Arisholm et al. [1] defined and validated a number of dy-
namic coupling metrics and studied the relationship of these
with the change proneness of a system. They found that the
dynamic coupling measurement did capture additional prop-
erties to the static coupling metrics and were good predictors
of the change proneness of a class.

In previous work we conducted a number of studies [14,
15] on the quantification of a variety of run-time class-level
coupling metrics for object-oriented programs. We used a
statistical analysis to investigate the differences in the un-
derlying dimensions of coupling captured by static versus
the run-time coupling metrics. The results indicated that
the run-time metrics did capture different properties than
the static metrics alone. We concluded that it is worth-
while to continue the investigation into run-time coupling
metrics and their relationship with external quality, as ex-
tra information can be provided by the run-time metrics to
complement that obtainable from a simple static analysis.

Clustering analysis has been proposed in many areas of
research [12]. In general, whenever one needs to classify
a large amount of information into manageable meaningful
piles, cluster analysis is of use. To the best of our knowl-
edge there is no work describing the application of cluster-
ing analysis in identifying object behaviours, however it has
been used in such studies as identifying candidate objects in
procedural source code [16].

3. GOALS AND HYPOTHESES
The GQM/MEDEA framework proposed by Briand et al.

[5] was used to set up the experiments for this study. First,
the goal of the experiments is outlined. Next, we state the
perspective on the goal. Finally, the environment is de-
scribed to determine the context in which the study will be
carried out.

Goal: To determine if objects from the same class behave
differently at runtime from the point of view of cou-
pling.

Instrumenter

A.class B.class C.class

A.class B.class C.class

JVM

Probe hit
reports

(Binary file)

Metrics

Calculate

Metrics
Results

<index> <file> <method> <class>
<index> <file> <method> <class>
<index> <file> <method> <class>

Probe Table

Figure 1: Collection of run-time metrics

Perspective: We investigate the behaviour of objects at
run-time with respect to coupling using a number of
metrics which measure the level of coupling at different
layers of granularity. We use a number of statistical
techniques capable of separating objects from a class
into groups based on their similarity.

Environment: Since we are studying object behaviour a
set of Java programs which create a large number of
objects at run-time are used.

The following hypothesis is investigated in this paper:

H0: Objects from a class behave similarly at run-time from
the point of view of coupling

H1: Objects from a class behave differently at run-time from
the point of view of coupling

4. EXPERIMENTAL DESIGN

4.1 Metrics Data Collection Tool
There are a number of methods available for collecting

run-time information from Java programs. Instrumenting a
Virtual Machine, such as Kaffe, is one. However, this can
result in a huge amount of data being generated for the sim-
plest of programs due to the logging of bytecode instructions
and there can be compatibility issues when compared with
the Java class libraries released by Sun.

An alternative is to use Sun’s JVM profiler API, the Java
Platform Debug Architecture (JPDA). This is faster than

1457

instrumenting a VM and is more robust. Previously we have
used this method in class-level metrics analysis. However,
it is still very time consuming to generate a profile for a
large application and it is difficult to conduct an object-level
analysis using this approach.

Another technique is bytecode instrumentation. This in-
volves modification of the class file content in order to ac-
quire run-time information. This approach seems to add the
least overhead to the execution of the program and also pro-
vides object-level accuracy, which is essential for this type
of analysis.

Our metrics data collection tool uses the publicly available
Apache Byte Code Engineering Library (BCEL) [10], and is
based on the Gretel coverage monitoring tool [13].

The BCEL is an API which can be used to analyze, cre-
ate, and manipulate (binary) Java class files. Classes are
represented by BCEL objects which contain all the sym-
bolic information of the given class, such as methods, fields
and byte code instructions. Such objects can be read from
an existing file, be transformed by a program and dumped
to a file again.

The first stage our Instrumenter program takes a list of
class files and instruments them. During this phase the
BCEL inserts probes into these files to flag events like method
calls or instance variable accesses. During instrumentation,
the class files are changed in-place, and a file containing in-
formation on method and field accesses is created. Each
method and field are given a unique index in this file. When
the application is run, each probe records a “hit” in another
file. Our metrics program then calculates the run-time mea-
sures utilizing the information in these files. This is illus-
trated in Figure 1.

The use of the BCEL still imposes some overhead on the
execution of a program, although it is minimal compared to
using other approaches of obtaining run-time information.
Since none of the metrics dealt with in this paper are per-
formance related this was not a significant concern at this
time.

4.2 Object-level versus Class-level Coupling
Run-time object level coupling quantifies the level of de-

pendencies between objects in a system. Run-time class
level coupling quantifies the level of dependencies between
the classes that implement the methods or variables of the
caller object and the receiver object [1]. The class of the
object sending or receiving a message may be different from
the class implementing the corresponding method due to the
impact of inheritance.

4.3 Run-time Object-Level Coupling Metrics
The following measures are based on the static Chidamber

and Kemerer CBO metric as this is considered to be the
seminal coupling metric for methods in a class.

We define the Run-time Coupling Between Objects (RCBO)
metric as the number of classes that are accessed by another
class at run-time. This measure will be some function of the
static CBO measure, as this measure determines the classes
that can be theoretically accessed at run-time. This is a
coarse-grained measure which will assess class-class coupling
at the object level.

For the second measure we fix one class and determine the
distribution of unique accesses per object. We construct a
matrix of such values for each class in the program under

GreyNode QuadTreeNode WhiteNode
BlackNode1 0 2 0
BlackNode2 0 2 0
BlackNode3 0 2 0
BlackNode4 0 2 0

Table 1: Matrix of unique accesses per object, for
objects BlackNode1, . . . , BlackNode4 to classes GreyN-
ode, QuadTreeNode and WhiteNode

consideration. Table 1 gives an example of such a matrix,
where we record the run-time coupling values for individual
objects of class BlackNode, BlackNode1, . . . , BlackNode4,
against the classes GreyNode, QuadTreeNode and WhiteN-
ode.

This data is statistically analyzed using cluster analysis to
evaluate the behaviour of the objects. This technique groups
objects together based on their similarity. The number of
clusters are determined and this becomes the Number of
Object-Class Clusters (NOC).

4.4 Statistical Analysis

4.4.1 Coefficient of Variation (CV):
In order to test our hypothesis the coefficient of variance,

CV , was calculated for the RCBO results to determine how
the RCBO values varied across the objects of a class. CV

measures the relative scatter in data with respect to the
mean and is calculated by dividing the mean by the stan-
dard deviation. It has no units and can be expressed as a
simple decimal value or reported as a percentage value as
used here. When the CV is small the data scatter relative
to the mean is small. When the CV is large compared to the
mean the amount of variation is large. Equation 1 defines
the coefficient of variation as a percentage, where µ is the
mean and σ is the standard deviation.

CV = σ/µ ∗ 100 (1)

If the CV for all classes under consideration is zero then
this would lead us to accept the null hypothesis, H0, as all
objects of this classes would be accessing the same variables.
However, if there was variation in the CBO values, CV > 0,
this would lead us to reject H0 and accept H1, as the objects
would be behaving differently at run-time from the point of
view of coupling.

4.4.2 Cluster Analysis:
The NOC values for each class were determined using

cluster analysis. This a data exploratory statistical proce-
dure that helps reveal associations and structures of data
in a domain set [16]. A measure of proximity or similar-
ity/dissimilarity is needed in order to determine groups from
a complex data set. A wide variety of such measures exist
but no consensus prevails over which is superior. For the
purpose of this analysis, two widely used dissimilarity mea-
sures, Pearson dissimilarity and Euclidean distance, were
chosen. The analysis was conducted using these two differ-
ent measures in order to verify the results.

Equation 2 defines the Pearson Dissimilarity, where µx

and µy are the means of the first and second sets of data,

1458

and σx and σy are the standard deviations of the first and
second sets of data.

d(x, y) =
1
n

∑
i xiyi − µxµy

σxσy
(2)

Equation 3 defines the Euclidean Distance between two
sets of data.

d(x, y) =

√√√√
n∑
i

(xi − yi)2 (3)

The next step is to select the most suitable type of clus-
tering algorithm for the analysis. An agglomerative hierar-
chical clustering (AHC) algorithm was chosen as it provides
the output that is most related to the means of identifying
coupling clusters. Also, it does not require the number of
clusters the data should be grouped into be specified in ad-
vance. AHC algorithms start with singleton clusters, one for
each entity. The most similar pair of clusters are merged,
one pair at a time, until a single cluster remains.

Throughout the cluster analysis, there is a symmetric ma-
trix of dissimilarities maintained between the clusters. Once
two clusters have been merged, it is necessary to generate the
dissimilarity between the new cluster and every other clus-
ter. The unweighted pair group average linkage algorithm
was employed here as it is theoretically the best method
to use and the most likely to mimic correctly input group-
ings. This algorithm clusters objects based on the average
distance between all pairs.

Suppose we have three clusters A, B and C, with i being
the distance between A and B, and j being the distance
between B and C. If A and B are the most similar pair of
entities and are joined together into a new cluster D, the
method of calculating the new distance k between C and D
is given by Equation 4.

k = (i ∗ size(A) + j ∗ size(B))/(size(A) + size(B)) (4)

The analysis was also repeated using Ward’s method to
verify the results. With this method cluster membership is
assessed by calculating the total sum of squared deviations
from the mean of a cluster. The criterion for fusion is that
it should produce the smallest possible increase in the error
sum of squares.

The output of AHC is usually represented in a special
type of tree structure called a dendrogram, as illustrated
by Figure 2. Each branch of the tree represents a cluster
and is drawn vertically to height where the cluster merges
with neighbouring clusters. The cutting line is a line drawn
horizontally across the dendrogram at a given dissimilarity
level to determine the number of clusters. The cutting line
is determined by constructing a histogram of node levels to
find where the increase in dissimilarity is strongest, as then
we have reached a level where we are grouping groups that
are already homogenous. The cutting line is selected before
this level is reached.

In order to accept H0 we would expect objects from the
same class to group together and occupy the same cluster,
therefore expecting values of NOC to be 1. The formation of
a number of different clusters, where NOC > 1, would lead
us to reject H0 and accept H1.

Figure 2: Dendrogram: At the cutting line there are
two clusters

1459

5. CASE STUDY
Metric data was collected for the programs from the JOlden

benchmark suite [6]. The original Olden benchmarks are a
suite of pointer intensive C programs with have been trans-
lated into Java. They were deemed suitable for this study
due to the fact that each program exhibited a large volume
of object creation.

Table 2 illustrates the Mean and CV (RCBO) results for
the objects of the classes from the programs from the JOlden
benchmark suite. The static CBO values for each class are
also listed for the sake of comparison. If all objects from
the same class are behaving in a similar fashion we would
expect them to make accesses to the same classes at run-
time. Consequently, there should be little or no variability
in the RCBO values for objects from the same class, for
example, with class Vector in MST which had a CV of 0.
However for the programs studied the CV values varied from
0 to 46.7%. Classes like GreyNode and QuadTreeNode in
Perimeter exhibited significant variances indicating that not
all of their objects were accessing variables from the same
classes.

Table 3 illustrates the NOC results for the programs from
the JOlden benchmark suite. To ease the presentation of
data, we omit classes that were instantiated a small number
of times, which we define as classes that give rise to less than
10% of the maximum number of objects created by a class
from the programs under evaluation.

Since cluster analysis groups objects together based on
the similarity of the accesses they make to other classes,
we would expect that objects from the same class would
occupy the same cluster. This is the case for a number of
the classes analyzed, for example class Vertex from MST.
However, more than one cluster was observed for a number
of classes used in this study. Four clusters were found for
class HashTable from MST.

6. DISCUSSION
This ultimate goal of this study is to investigate the hy-

pothesis that objects of a class behave differently at run-time
from the point of view of coupling. To do this we use a num-
ber of run-time object-level metrics based on the static CBO
measure.

The first metric, RCBO, was used to investigate whether
objects of the same class type were coupled to the same
classes at run-time. We found that in some cases a number
of classes from the programs studied had objects that were
coupled to different classes, shown by the variability in the
RCBO results, (CV > 0). A class might create one group
of objects that access one set of classes and another that
accessed a different set. So we have a number of objects
from the same class that are behaving differently at run-
time at the class-class level. From this, at the class-class
level, we can reject H0 and accept H1. One cannot observe
such behaviour simply by calculating the static CBO value
for that class.

The next metric looks at the unique accesses an object
is making from the other classes it is coupled to. Cluster
analysis attempts to group the objects together based on the
similarity of such accesses. We would expect objects from
the same class to exhibit a single cluster (NOC = 1) if all
objects were making the same accesses. However, there were
a number of clusters formed for a number of classes used in

Table 2: Static CBO and descriptive statistics
for RCBO results, for classes from programs from
JOlden benchmark suite.

BH
CBO µ CV (%)

Body$2Enumerate 2 2 41.2
Body 7 2 20.9
Cell 3 3 14.9
MathV ector 1 1 3.5
Node$HG 2 2 0
Node 2 1 0

BiSort
CBO µ CV (%)

V alue 1 1 0

Em3d
CBO µ CV (%)

Node$Enumerate 1 1 35.0

Health
CBO µ CV (%)

Hospital 3 3 0
List$Enumerator 2 2 46.7
List 2 1 19
V illage 4 4 12.1

MST
CBO µ CV (%)

HashTable 3 3 7.7
V ertex 1 1 0

Perimeter
CBO µ CV (%)

BlackNode 2 1 0
GreyNode 4 4 34.2
QuadTreeNode 4 3 30
WhiteNode 1 1 0

Power
CBO µ CV (%)

Branch 2 2 0
Lateral 2 2 0
Leaf 1 1 15.2

TreeAdd
CBO µ CV (%)

TreeNode 1 1 39

TSP
CBO µ CV (%)

Tree 1 1 0

Voronoi
CBO µ CV (%)

Edge 3 1 26.4
V ertex 4 3 15.3

1460

Table 3: Results of cluster analysis for classes from
programs from JOlden benchmark suite, for the NOC

measure.

BH
NOC

Body$2Enumerate 3
Body 4
Cell 1
MathV ector 2
Node$HG 1
Node 1

BiSort
NOC

V alue 1

Em3d
NOC

Node$Enumerate 6

Health
NOC

Hospital 2
List$Enumerator 3
List 1
V illage 4

MST
NOC

HashTable 4
V ertex 1

Perimeter
NOC

BlackNode 1
GreyNode 4
QuadTreeNode 4
WhiteNode 1

Power
NOC

Branch 1
Lateral 1
Leaf 4

TreeAdd
NOC

TreeNode 2

TSP
NOC

Tree 1

Voronoi
NOC

Edge 4
V ertex 5

this study. So we have the situation where a single class
template was creating objects that were exhibiting different
behaviours on an object-class level at run-time. Therefore
at the object-class level we can reject H0 and accept H1.

There seems to be a relationship between the CV and the
number of clusters, with a high CV leading to >1 clusters.
Intuitively this would make sense as it is easy to see how
variation in the number of classes used by an object would
lead to variation in the variables they use and consequently
leading to a number of groups of objects behaving differently.

From these finding it is suggested that the static coupling
between objects metric would be better defined as coupling
between classes as it does not give a true measure of run-
time coupling between objects.

6.1 Threats to Validity
There are a number of factors which may potentially affect

the validity of these run-time coupling metrics. The JOlden
benchmark suite may not be representative of all classes
of Java programs. Previously we have conducted studies
using other benchmark suites such as the SPEC and the Java
Grande Forum Benchmark suites. We have also developed
a technique for collecting run-time trace information from
Java GUI programs. Future work will involve evaluating
a number of common “real world” Java applications using
these metrics.

A general problem with any type of run-time analysis is
that the results are based on dynamic measurement and are
thus tied to the inputs or test cases used. The use of different
test cases may produce different results. This is not an issue
when using benchmark suites as they come with predefined
sets of test cases which have been chosen to ensure a ’typical’
run of the application. However when using GUI driven
programs the test cases must be carefully chosen so as to
achieve maximum coverage of the program to be analyzed.

At the current time there exists no benchmark suite spe-
cially designed for the purpose of measuring coupling. Fu-
ture work may also involve developing a set of benchmark
programs specifically for the purpose of evaluating proper-
ties of object-oriented programming such as coupling, cohe-
sion etc.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a number of metrics de-

signed to evaluate run-time coupling between objects. A
method of collecting such measures which utilized the BCEL
was proposed. An empirical investigation of the metrics was
conducted using Java programs from the JOlden Benchmark
Suite.

A study into run-time object coupling behaviour was con-
ducted using descriptive statistics and cluster analysis. These
techniques were used to separate objects from the same class
into groups based on their coupling properties. We identi-
fied classes that created a number of groups of objects that
behaved differently at run-time from the point of view of
coupling at the class-class and object-class level. This leads
us to reject our null hypothesis and conclude that objects
from the same class can behave differently at run-time from
the point of view of coupling. Such behaviour is not identifi-
able from a simple static analysis of the source code, giving
merit to the further investigation into run-time metrics and
their applications.

1461

7.1 Future Work
Future work will involve investigating the role run-time

metrics may play in software testing. Run-time metrics may
have implications for the quantification of the effectiveness
of software testing strategies. Clearly a static analysis is
relatively independent of program behaviour, whereas any
run-time analysis will be fundamentally influenced by the
testing strategy and test input.

Run-time metrics may also have a role to play in areas
of research such as refactoring, as they give a better under-
standing of the behaviour of code in its operational environ-
ment.

We believe that this work poses some interesting chal-
lenges for future research. In particular, empirically vali-
dating run-time coupling metrics and their co-relation with
external quality aspects of a design and investigating the
possibility of using hybrid models which use a combination
of static and run-time metrics to evaluate a design.

8. ACKNOWLEDGEMENTS
This work is funded by the Embark initiative, operated

by the Irish Research Council for Science, Engineering and
Technology (IRCSET).

9. REFERENCES
[1] E. Arisholm, L.C. Briand, and A. Foyen. Dynamic

coupling measures for object-oriented software. IEEE
Transactions on Software Engineering, 30(8):491–506,
2004.

[2] V.R. Basili, L.C. Briand, and W.L. Melo. A validation
of object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering,
22(10):751–761, October 1996.

[3] L.C. Briand. Empirical investigations of quality
factors in object-oriented software. In Empirical
Studies of Software Engineering, Ottawa, Canada,
March 4–5 1999.

[4] L.C. Briand, J.W. Daly, and J.K. Wüst. A unified
framework for coupling measurement in
object-oriented systems. IEEE Transactions on
Software Engineering, 25(1):91–121, Jan/Feb 1999.

[5] L.C. Briand, S. Morasca, and V.R. Basili. An
operational process for goal-driven definition of
measures. IEEE Transactions on Software
Engineering, 28(12):1106–1125, December 2002.

[6] B. Cahoon and K.S. McKinley. Data flow analysis for
software prefetching linked data structures in Java. In
International Conference on Parallel Architectures and
Compilation Techniques, pages 280–291, Barcelona
Spain, September 8-12 2001.

[7] S.R. Chidamber and C.F. Kemerer. Towards a metrics
suite for object-oriented design. In Object Oriented
Programming Systems Languages and Applications,
pages 197–211, Phoenix, Arizona, USA, November
1991.

[8] S.R. Chidamber and C.F. Kemerer. A metrics suite
for object-oriented design. IEEE Transactions on
Software Engineering, 20(6):467–493, June 1994.

[9] P. Coad and E. Yourdon. Object-oriented analysis. 2,
1991.

[10] Markus Dahm. Byte code engineering library (BCEL),

version 5.1, April 25 2004.
http://jakarta.apache.org/bcel/.

[11] J. Eder, G. Kappel, and M. Schrefl. Coupling and
cohesion in object–oriented systems. Technical Report
2/93, Department of Information Systems, University
of Linz, Linz, Austria, 1993.

[12] J.A. Hartigan. Clustering Algorithms. John Wiley and
Son, New York, 2nd edition, 1975.

[13] C. Howells. Gretel: An open-source residual test
coverage tool, June 2002.
http://www.cs.uoregon.edu/research/perpetual/-
Software/Gretel/.

[14] Á. Mitchell and J.F. Power. Toward a definition of
run-time object-oriented metrics. In 7th ECOOP
Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, Darmstadt,
Germany, July 22 2003.

[15] Á. Mitchell and J.F. Power. An empirical investigation
into the dimensions of run-time coupling in java
programs. In 3rd Conference on the Principles and
Practice of Programming in Java, Las Vegas, Nevada,
June 16-18 2004.

[16] S. Phattarsukol and P. Muenchaisri. Identifying
candidate objects using hierarchical clustering
analysis. In 8th Asia-Pacific Software Engineering
Conference, pages 381–389, December 4-7 2001.

[17] H.H. Ammar S.M. Yacoub and T. Robinson. Dynamic
metrics for object-oriented designs. In 5th
International Software Metrics Symposium, pages
50–61, Boca Raton, Florida, USA, Nov 4-6 1999.

[18] W. Stevens, G. Myers, and L. Constantine. Ibm
systems j. IEEE Transactions on Software
Engineering, 13(2):115–139, 1974.

[19] F.G. Wilkie and B.A. Kitchenham. Coupling measures
and change ripples in C++ application software. The
Journal of Systems and Software, 52(2–3):157–164,
June 2000.

1462

