
KAPMiner: Mining ordered association rules
with constraints?

Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

Dept. of Computer and Systems Sciences, Stockholm University, Sweden
{isak-kar,panagiotis,asker}@dsv.su.se

Abstract. We study the problem of mining ordered association rules
from event sequences. Ordered association rules differ from regular as-
sociation rules in that the events occurring in the antecedent (left hand
side) of the rule are temporally constrained to occur strictly before the
events in the consequent (right hand side). We argue that such con-
straints can provide more meaningful rules in particular application do-
mains, such as health care. The importance and interestingness of the
extracted rules are quantified by adapting existing rule mining metrics.
Our experimental evaluation on real data sets demonstrates the descrip-
tive power of ordered association rules against ordinary association rules.

1 Introduction

Extracting rules from a set of transactions is a problem that has been studied
extensively over the past two decades [2, 1, 28, 16]. Transactional databases typ-
ically comprise sets of items or events grouped together in transactions. Each
transaction can either be treated as a ”bag” of items or as an ordered set of
time-stamped events, hence, introducing a sequential order within each trans-
action. For example, in the former case, we can have transactions of customer
activity in the form of basket data containing sets of items bought together from
a store [1], while in the latter case, transactions appear in the form of sequential,
time-stamped data, such as financial transactions or electronic health records [2].

Hence, sequential pattern and rule mining [2, 18] extends traditional associ-
ation rule mining to exploit the temporal information present in event datasets
collected over time, by adding a time-stamp to each event. Such formulation
might, however, fail to find interesting patterns, due to the fact that it is too
restrictive by requiring a specific order of all items occurring in a sequential
pattern or rule. For many real world applications, such as fault detection, or
treatment recommendations in healthcare, it is not uncommon with procedures
describing best practices or recommended actions that should be taken after
certain preconditions are satisfied. Therefore, ordered association rules can be
formed, where each rule is defined by a set of preconditions (i.e., antecedent) and
a set of recommended actions (i.e., consequent). Such rules suggest that the set
of recommended actions should be followed, irrespective of order, after the set
of preconditions is satisfied, irrespective of order. Depending on the application

? This is an Accepted Manuscript of an article published by Springer In Proceedings
of the International Symposium on Intelligent Data Analysis, 2017.

2 Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

domain at hand, it would also be desirable to optionally include time constraints
imposed on the temporal separation between each pair of items in the antecedent
and consequent, respectively.

In this paper, we study the problem of mining ordered association rules with
temporal constraints, and propose an efficient algorithm, called KAPMiner, to
solve it. This problem has been studied in recent works in the form of temporal
rule mining [5–7]. Nonetheless, KAPMiner can achieve competitive computa-
tional efficiency against state-of-the-art, while additionally supporting temporal
constraints on the extracted rules. Next, we emphasize the importance of the
problem at hand by providing an example from the healthcare domain.

Example. Consider a dataset containing administrative health records of pa-
tients having suffered from Heart Failure. Each patient record can be seen as a
transaction, where time-stamped healthcare-related events can occur over time.
Such events can be medical diagnoses, drug prescriptions, or treatment proce-
dures. An example of an ordered rule of substantial interestingness and impor-
tance is the following:

{Heart Failure} ⇒ {ACE inhibitors, β-blockers}

This rule suggests that when a patient is diagnosed with Heart Failure (rule
precondition or antecedent), a recommended action (rule consequence) is to fol-
low a treatment including two drugs, ACE1 inhibitors and β-blockers, which
is in compliance with the guidelines issued by the Swedish National Board of
Health and Welfare[17]. Since it is common that the two drugs included in the
consequent part of the rule are not necessarily prescribed concurrently or in a
particular order, a typical sequential rule would not be able to partially ignore
their temporal order in the patient record. At the same time, a typical associa-
tion rule would not be able to capture the particular temporal order between the
antecedent precondition and the consequent treatment. Hence, ordered temporal
association rules can be highly useful and meaningful in this domain.

Related work. Sequential pattern mining and association rule mining are very
challenging tasks, since the search space is typically large [2]. Standard apriori-
based algorithms employ a bottom-up search, enumerating every single frequent
pattern, and then construct association rules based on the extracted patterns.
The main characteristic of these approaches is that they apply the Apriori prin-
ciple [1]. A more efficient approach, GSP [18], introduces time and window con-
straints into the pattern extraction process. At the same time, the notion of
frequent episode mining [12, 10] has been extensively studied in the literature.
Frequent episode discovery has several applications in, among others, discover-
ing local patterns in complex processes, conformance checking based on partial
orders, medical process mining. Frequent episodes refer to event patterns occur-
ring in a single sequence, that are partially ordered based on a predefined set
of temporal relations. They are orthogonal to our formulation, since we are in-
terested in patterns occurring frequently within a set of sequential transactions
and not within a single one, while we have no predefined set of relations in our
mining process.

1 angiotensin-converting-enzyme

Ordered association rules 3

An alternative candidate generation approach for frequent itemsets and se-
quential patterns employs tree-like data structures, such as an FP-tree [8] for
frequent itemsets, or a set-enumeration tree [4] for sequences. The key idea is
to traverse the candidate space in a depth-first search manner for enumerat-
ing all the candidate patterns. Examples of such algorithms include SPAM [3],
SPADE [26], and GO-SPADE [11]. Finally, another class of sequential pattern
mining algorithms includes prefix-based candidate generation approaches [15, 21,
25], Similar approaches, both tree-based and prefix-based, have been proposed
for mining closed itemsets and closed sequential patterns [27, 14, 21, 25].

In parallel, several studies have been focusing on alternative interestingness
measures for association rules [19], except for support and confidence, aiming at
removing redundancy and limiting the number of extracted rules to the most ”in-
teresting” ones. Alternative association rule measures and techniques have been
proposed [13, 9, 20] for evaluating the importance of association rules in trans-
actional databases, while generic and interactive techniques have been proposed
[22, 24] for effectively controlling the mining process and restricting the num-
ber of insignificant rules. Finally, there has been some work on constraint-based
mining of frequent itemsets, where the goal is to mine the top K patterns that
maximize an interestingness measure (other than the typical support threshold)
and satisfy a set of constraints [23]. More recently, a novel framework for mining
the top-K sequential patterns under leverage has been proposed [16], where a
novel definition of the expected support of a sequential pattern is presented along
with an efficient branch-and-bound approach for mining sequential patterns un-
der the new interestingness measure. Moreover, a statistical testing approach
for association rules extracted from uncertain data combines an analytic with
simulative processes for correcting the statistical test for distortions caused by
data uncertainty [28].

In summary, the literature on mining rules of itemsets and sequential patterns
is quite extensive, and a thorough review is far from the main objectives of
this paper. Nonetheless, all existing approaches focus on more general types of
rules, and are hence orthogonal to the formulation of this paper. The concept of
ordered rules defined in this paper, suggests that the antecedent and consequent
of a rule are seen as two bags of events separated by a temporal constraint
regulating that the bag of antecedent events should be separated by at least d
time units from the bag of consequent events. To the best of our knowledge, we
are the first to introduce this formulation. A similar formulation, with a looser
temporal constraint (i.e., when d = 0, defined as Problem 1 in our paper), has
been introduced along with three algorithmic solutions, i.e., RuleGrowth [7] and
ERMiner [6], and CMDeo [5]. Still, the algorithm proposed in this paper is shown
to be more efficient in terms of computational time than the competitors, while
it can also solve the constrained version of the problem.

Contributions. Our main contributions in this paper include: (1) the formu-
lation of the novel problem of mining ordered association rules with temporal
constraints from transactions of time-stamped event sequences, (2) a novel and
efficient algorithm to solve the problem by employing a tree-based rule enumera-
tion process and by applying effective pruning techniques both on the antecedent
and consequent sets of the rules, (3) an extensive experimental evaluation on sev-
eral real datasets against state-of-the-art methods, where we demonstrate that

4 Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

our approach can achieve speedups of up to two orders of magnitude, when the
dataset contains very dense or large sequences, and finally (4) a case-study in the
area of healthcare, where our formulation can identify meaningful rules, when
the temporal contraints are applied.

2 Problem Setting

Let Σ be an alphabet of event labels. A time-stamped event is defined as a tuple
E = 〈l, t〉, where l ∈ Σ and t is the time occurrence of the event. For notation
purposes, the label and time stamp of an event E are denoted as E.l and E.t,
respectively.

Identifier Transaction
T1 {〈1, 0〉, 〈2, 1〉, 〈3, 1〉, 〈1, 1〉, 〈1, 4〉}
T2 {〈2, 0〉, 〈1, 1〉, 〈3, 3〉, 〈4, 3〉, 〈3, 4〉}
T3 {〈1, 0〉, 〈2, 1〉, 〈3, 2〉}
T4 {〈1, 0〉, 〈1, 0〉, 〈3, 4〉}
T5 {〈3, 0〉, 〈1, 1〉, 〈1, 2〉}

Identifier Rule Support
r1 {1} ⇒ {3} 0.4
r2 {2} ⇒ {1} 0.2
r3 {2} ⇒ {3} 0.2
r4 {2, 3} ⇒ {1} 0.2
r5 {1, 2} ⇒ {3} 0.2

Table 1: Example of ordered rules extracted from the transaction database for
µ = 0.2, ν = 0.3, and δ = 3.

A temporal transaction T is a set of events ordered by their respective time
stamps, and the size of a transaction is the number of time-stamped events it
contains. For example, temporal transaction T = {E1, . . . , EN} is of size N . A
set of temporal transactions D constitutes a temporal-transaction database.

Example 1. An example of a temporal-transaction database (of 5 transactions)
is shown in Table 1 (left). Each tuple represents an event consisting of a label
(in the example, Σ = {1, 2, 3, 4}) and a time point. For instance, transaction T1
shows that event label 1 occurred one time step before 2, 3, and 1 and four time
steps before 1.

Definition 1 (ordered rule). Given two subsets of event labels, i.e., X ⊆ Σ
and Y ⊆ Σ, with X ∩ Y = ∅, we define an ordered rule as follows:

r : X ⇒ Y ,

such that ∀Ei ∈ X , @Ej ∈ Y with Ei.t− Ej .t ≥ δ, with δ ∈ R and δ ≥ 0.

One of the key tasks in our paper is to determine whether a rule occurs in a
temporal transaction.

Definition 2 (temporal occurrence of a rule). We say that an ordered rule
r : X ⇒ Y occurs in a temporal transaction T , if all events in X ∪Y occur in T
at least once, and each and every event in X has at least one occurrence before
each and every event in Y. More formally, r ∈ T , if

– ∃E ∈ T ,∀E ∈ X ∪ Y
– ∀(E,E′) with E ∈ X , E′ ∈ Y, @(E,E′), E.l, E′.l ∈ T , s.t. E.t− E′.t ≥ δ.

Example 2. For δ = 3, the rule {2, 3} ⇒ {1} is contained in transaction T1,
whereas {1} ⇒ {3} is not, because {3} does not occur within at least 3 time-
steps from {1}.

Ordered association rules 5

There are several ways of assessing the quality of an ordered rule. In this
paper, our main objective is to emphasize the importance of ordered rules in
terms of (1) the frequency of the rule in a given database, (2) the frequency of
the particular temporal order for a given set of event labels compared to any
other temporal order, (3) the conditional probability of the consequent set of
labels given the precedent set, and (4) the degree of dependence between the
occurrence probabilities of the precedent and consequent sets.

Next, we present four quality metrics for an ordered rule. Given an ordered
rule r : X ⇒ Y and a temporal transaction database D, we have:

– the support of r in D is the fraction of transactions of D containing at least
one temporal occurrence of r, i.e.,

sup(r,D) =
|r ∈ D|
|D|

– the support ratio of r in D is the fraction of transactions containing r
divided by the fraction of transactions containing itemset X ∪ Y, i.e.,

r − sup(r,D) =
sup(r,D)

sup(X ∪ Y,D)
=

|r ∈ D|
|X ∪ Y ∈ D|

– the confidence of r in D is the fraction of transactions containing r divided
by the fraction of transactions containing all items in the consequent set of
the rule, i.e.,

conf(r,D) =
sup(r,D)

sup(Y,D)
=
|r ∈ D|
|Y ∈ D|

– the lift of r in D is the frequency of r in D divided by the product of the
frequencies of the precedent and consequent sets, i.e.,

lift(r,D) =
sup(r,D)

sup(X ,D) · sup(Y,D)
=

|r ∈ D| · |D|
|X ∈ D| · |Y ∈ D|

Problem 1 (mining ordered association rules). Given a temporal transaction
database D, a minimum support threshold µ, and a minimum support ratio
threshold ν, we want to find the set of ordered rules R, such that for each
r ∈ R, it holds that sup(r,D) ≥ µ and r − sup(r,D) ≥ ν.

Problem 2 (mining constrained association rules). Given a temporal transaction
database D, a minimum support threshold µ, a minimum support ratio threshold
ν, and a temporal constraint δ, find the set of ordered rules Rδ, such that for
each r ∈ Rδ, it holds that sup(r,D) ≥ µ, r − sup(r,D) ≥ ν and ∀Ei ∈ X ,
@Ej ∈ Y with Ei.t−Ej .t ≥ δ. Note this problem reduces to Problem 1 for δ = 0.

3 Mining Ordered Association Rules

We introduce KAPMiner, an algorithm for identifying ordered association rules
with optional temporal constraints. The main operator of the algorithm (see
Algorithm 1) is based on the concepts of antecedent and consequent matching
and merging of rules, which are identified in the hierarchy of frequent itemsets.

6 Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

19/05/2017 ordered_rule_apriori

file:///Users/isak/Downloads/ordered_rule_apriori%20(1).html 1/1

Fig. 1: Search space and pruning of the KAPMiner algorithm. For instance, the
rule {2, 3} ⇒ {1} is formed by merging the consequent matching rules {2} ⇒ {1}
and {3} ⇒ {1}, whereas rule {1, 2} ⇒ {3} is formed by antecedent matching
rules {1} ⇒ {3} and {2} ⇒ {3}.

Definition 3 (Antecedent and consequent matching). A pair of rules r :
{X} ⇒ {Y } and r′ : {X ′} ⇒ {Y ′} is said to be antecedent matching, if {X} \
{X ′} = ∅, and said to be consequent matching, if {Y } \ {Y ′} = ∅.

The above definition can be extended to more than two rules, hence result-
ing in a set of antecedent or consequent matching rules, denoted as ra and rc,
respectively. The common antecedent in ra is denoted as ra.antecedent, while
the set of consequents is denoted as ra.consequents.The notation is equivalent
for rc. To explore the search-space of possible frequent constrained ordered rules
our algorithm merges frequent antecedent or consequent matching rules.

Definition 4 (Antecedent and consequent merging). Given a set of an-
tecedent or consequent matching rules ra or rc, respectively, the intersection of
transactions where rules with matching consequent or antecedent occur, is the
support of the rule with antecedents or consequents merged, respectively.

For instance, if {3} ⇒ {1} ∈ Rc occurs in transaction {T1} and {2} ⇒ {1} ∈ Rc
occurs in {T1}, then {2} ∪ {3} ⇒ {1} occurs in the intersecting transactions:
{T1} ∩ {T1} = {T1}.

For a rule-merge to be valid for a rule consisting of elements from an itemset
I on level k, the number of frequent rules in the antecedent or consequent match-
ing rule set, identified from all subsets of itemsets on level k − 1, must satisfy
the condition |ra.antecedents| + |X| = |I| or |rc.consequents| + |Y | = |I|, for
antecedent and consequent merges respectively. For an antecedent or consequent
merge, the antimonotonicity property holds since the resulting rule contains ex-
actly one item more in either the antecedent or the consequent, the rule can only
appear in the same number of transactions or less. From the antimonicity prop-
erty it follows that if a rule is infrequent, it should not be used in any antecedent
or consequent merges.

Ordered association rules 7

Algorithm 1 The KAPMiner algorithm

procedure KAPMiner(D, minSup, minConf, δ)
Let C = [I1, . . . , Im] be a vector of frequent event labels
Let Ii.tid be a set that identifies which transactions an itemset occurs in
R← ∅, k ← 1
do
N ← ∅
for i← 0 until |C| do

for j ← 0 until |C| such that PrefixMatch(Ii, Ij , k − 1) do
I′ ← MergeItemset(Ii, Ij)
I′.tid← Ii.tid ∩ Ij .tid
if sup(I′) ≥ minSup then
N ← N ∪ {I′}
if k > 1 then

Let S be the rules associated with each subset of I′ in C
I′.rules← MergeRules(S, k,minSup)

else
I′.rules← ItemRules(Ii, Ij , δ,minSup)

end if
R ← R∪ {r | r ∈ I′.rules ∧ conf(r) ≥ minConf}

end if
end for

end for
C ← N
k ← k + 1

while N 6= ∅
return R

end procedure

The algorithm, which expects a temporal transaction database, a minimum
support threshold, a minimum confidence threshold and temporal constraint (δ),
starts by scanning the temporal transaction database D once, to associate with
each frequent item a set of transactions where the item occurs2. The algorithm
then proceeds by identifies the frequent k-level itemsets using the (k − 1)-level
itemsets and prunes the infrequent ones. At level k = 1 rules are formed by
the ItemRules-procedure which forms frequent ordered rules from two single
item itemsets, by comparing the first and last position of each item in each
transaction.

To construct rules for itemsets of size larger than two, the MergeRules-
procedure is employed. This procedure expects a set of rules which are found
among the k − 1 level itemsets that are subsets of the newly formed itemset at
level k. The procedure then iterates over the sets of antecedent matching rules
and forms new rules by merging the consequents and taking the intersection
of transaction identifiers as the support of the rule. The procedure proceeds
similarly with the consequent matching rules and forms new rules by merging the

2 While not presented in the algorithm, the scan also records the first and last position
of each item in each transaction, which is used to efficiently form rules with a single
item as antecedent and consequent

8 Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

Algorithm 2 Constructing rules from 1-item itemsets

procedure ItemRules(Ii, Ij , δ,minSup)
r1 ← {Ii} ⇒ {Ij} and r2 ← {Ij} ⇒ {Ii}
Let r1.tid be the set of transactions where Last(Ij , T) - First(Ii, T) ≥ δ and

let r2.tid be the set of transactions where Last(Ii, T) - First(Ij , T) ≥ δ
return {r | r ∈ {r1, r2} ∧ sup(r) ≥ minSup}

end procedure

antecedents and taking the intersection of transactions where the rules appears
as the support. Finally, infrequent rules are pruned, and the size of search-space
is reduced by pruning both infrequent itemsets (which are used to associate
possible rule merges) and rules.

Algorithm 3 Merging the rules of n-item itemsets

procedure MergeRules(S, k,minSup)
Let Sa be a list of sets consisting of rules with matching antecedent and let Sc

be a list of sets consisting of rules with matching consequent
R← ∅
for each set of rules with matching antecedent ra ∈ Sa do

if |rc.consequents| = k + 1− |ra.antecedent| then
r′ ← {ra.antecedent} ⇒ {MergeItemset(ra.consequents)}
r′.tid←

⋂
r∈ra

r.tid

if sup(r′) ≥ minSup then
R ← R∪ {r′}

end if
end if

end for
for each set of rules with matching antecedent rc ∈ Sc do

if |rc.antecedents| = k + 1− |rc.consequent| then
r′ ← {MergeItemset(rc.antecedents)} ⇒ {rc.consequent}
r′.tid←

⋂
r∈ra

r.tid

if sup(r′) ≥ minSup then
R← R∪ {r′} . Set without duplicate rules.

end if
end if

end for
return R

end procedure

4 Evaluation

To evaluate the performance of the proposed ordered rule mining algorithm,
we compare it against the current state-of-the-art, ERMiner [6], in terms of ex-

Ordered association rules 9

ecution time for different values of minimum support threshold3, using seven
datasets with varying properties. The datasets used for comparing the algorithms
are: BIBLE (text sequence, 36k sequences/13905 distinct items/average sequence
length of 17.84), BMS1 (web logs, 59k/497/2.42), BMS2 (web logs, 77k/3340/4.62),
FIFA (web logs, 20k/2990/34.74), Kosarak25k (web logs, 25k/14804/8.04), MSNBC
(web logs, 33k/17/13.3) and SIGN (sign language, 800/290/52).

To evaluate the importance of mining constraint ordered rules, we evalu-
ate the proposed algorithm practically for identifying rules from administrative
claims. In the experiment we use a real temporal transaction database extracted
from the VAL database, and consists of 79028 patients diagnosed with heart fail-
ure. Each sequence represent the medical history of a patient and contains items
from an alphabet of 13000 distinct items (diagnoses, drugs and actions), with an
average sequence length of 300 items. We identify rules with δ = {1, 7, 14} days
between the antecedent and consequent.

SIGN

FIFA Kosarak25k MSNBC

BIBLE BMS1 BMS2

0.15 0.20 0.25 0.30

0.24 0.26 0.28 0.30 0.00 0.01 0.02 0.03 0.04 0.05 0.025 0.050 0.075 0.100

0.00 0.01 0.02 0.03 0.04 0.05 0.0010 0.0015 0.0020 0.0025 0.0005 0.0010 0.0015 0.0020 0.0025

0

10

20

0

50

100

0

10

20

30

40

0

10

20

30

40

0

200

400

600

5

10

15

20

0

20

40

minSup

T
im

e
(s

)

KAPMiner

ERMiner

Fig. 2: Results for mining ordered rules from seven temporal transactions. Note
that some points are missing, since the algorithms fail to complete within the
memory constraint (e.g., BIBLE for ERMiner and FIFA for KAPMiner).

As seen in Figure 2, the results indicate that the proposed algorithm is often
significantly faster than ERMiner, but not consistently so. For instance, it can be
observed that the performance gap generally expands when the minimum sup-
port threshold is lowered, which can be explained by the fact that the proposed
algorithm is able to prune more rules than the competitor. More specifically, the
algorithm proposed here will prune any rule for which union of the antecedent
and consequent is infrequent in an hierarchical manner, which results in excel-
lent performance on datasets with many but infrequent items such as then BIBLE

3 The experiments was performed using a 2.5GHz Intel i7 processor and 16GB of
RAM. Both algorithms are implemented in Java.

10 Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

dataset. But results in low performance on the FIFA dataset, as the algorithm
fails to prune infrequent itemsets early.

Diagnoses and activities Drugs, diagnoses and activitites

1
 D

a
y

7
 D

a
y
s

1
4

 D
a

y
s

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

2

4

6

2

4

6

2

4

6

Support

L
ift

0.3

0.4

0.5

0.6

0.7

0.8

Confidence

Fig. 3: Rule extraction for different values for δ with µ ≥ 0.05 and ν ≥ 0.8.

Figure 3, shows the support, lift and confidence for rules found during the
case study, with a minimum support of 0.05 and a minimum support ratio of
0.8. The figure indicates that there are few high-lift rules, which has relatively
low support, whereas there are a rather many high confidence rules. An example
of an interesting rule that was found for δ = 7, is:

{hypothyroidism} ⇒ {levothyroxine, furosemide}

with lift=6.6, confidence=0.69 and support ratio=0.88, which indicates that a
common treatment pattern for hypothyroidism is a manufactured form of thyroid
hormone and a medication to treat fluid build up.

5 Conclusions

We proposed a novel algorithm for identifying ordered rules where the consequent
and antecedent are temporally separated. The proposed algorithm uses an apri-
ori style algorithm for identifying frequent itemsets and uses temporal orderings
within those itemsets to construct ordered rules using a computationally efficient
transaction intersection algorithm. The experimental evaluation shows that the
algorithm is up an order of magnitude faster than current state of the art when
the dataset contains dense or very long sequences, but slow in cases where the
dataset contains many frequent itemsets. Furthermore, in a case study for iden-

Ordered association rules 11

tifying interesting rules in the treatment of heart failure patients, the temporal
constraint is shown to help in identifying patient trajectories.

Source code. The source code for replicating the experiments is available at
the supporting website (https://people.dsv.su.se/~isak-kar/orule/).

Acknowledgments

This work was partly supported by grants provided by the Stockholm County
Council (SU-SLL). The work of Panagiotis Papapetrou was also partly supported
by the VR-2016-03372 Swedish Research Council Starting Grant.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
VLDB. pp. 487–499 (1994)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of IEEE ICDE. pp.
3–14 (1995)

3. Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a
bitmap representation. In: Proc. of ACM SIGKDD. pp. 429–435 (2002)

4. Bayardo, R.J.: Efficiently mining long patterns from databases. In: Proc. of ACM
SIGMOD. pp. 85–93 (1998)

5. Fournier-Viger, P., Faghihi, U., Nkambou, R., Nguifo, E.M.: Cmrules: Mining se-
quential rules common to several sequences. Know.-Based Syst. 25(1), 63–76 (Feb
2012), http://dx.doi.org/10.1016/j.knosys.2011.07.005

6. Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V.S.: ERMiner: Sequential Rule
Mining Using Equivalence Classes, pp. 108–119. Springer International Publishing,
Cham (2014), http://dx.doi.org/10.1007/978-3-319-12571-8_10

7. Fournier-Viger, P., Nkambou, R., Tseng, V.S.M.: Rulegrowth: Mining sequential
rules common to several sequences by pattern-growth. In: Proceedings of the 2011
ACM Symposium on Applied Computing. pp. 956–961. SAC ’11, ACM, New York,
NY, USA (2011), http://doi.acm.org/10.1145/1982185.1982394

8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

9. Kamber, M., Shinghal, R.: Evaluating the interestingness of characteristic rules.
In: Proc. of ACM SIGKDD. pp. 263–266 (1996)

10. Laxman, S., Sastry, P.S., Unnikrishnan, K.P.: A fast algorithm for finding fre-
quent episodes in event streams. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD
2007), San Jose, USA. p. 410–419. Association for Computing Machinery,
Inc. (August 2007), https://www.microsoft.com/en-us/research/publication/
a-fast-algorithm-for-finding-frequent-episodes-in-event-streams/

11. Leleu, M., Rigotti, C., Boulicaut, J., Euvrard, G.: Go-spade: Mining sequential
patterns over databases with consecutive repetitions. In: Proc. of MLDM. pp. 293–
306 (2003)

12. Mannila, H., Toivonen, H., Verkamo, A.: Discovering frequent episodes in se-
quences. In: Proc. of ACM SIGKDD. pp. 210–215 (1995)

13. Omiecinski, E.R.: Alternative interest measures for mining associations in
databases. IEEE Transactions On Knowledge and Data Engineering 15(1), 39–79
(2003)

12 Isak Karlsson, Panagiotis Papapetrou, and Lars Asker

14. Pei, J., Han, J., Mao, R.: Closet: An efficient algorithm for mining frequent closed
itemsets. In: Proc. of DMKD. pp. 11–20 (2000)

15. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: Proc. of IEEE ICDE. pp. 215–224 (2001)

16. Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: Mining top-k sequential
patterns under leverage. Data Min. Knowl. Discov. 30(5), 1086–1111 (2016),
http://dx.doi.org/10.1007/s10618-016-0467-9

17. Socialstyrelsen: Nationella riktlinjer för hjärtsjukv̊ard (2015), http://www.
socialstyrelsen.se

18. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: Proc. of EDBT. pp. 3–17 (1996)

19. Tan, P., Kumar, V.: Interestingness measures for association patterns: A perspec-
tive. Tech. Rep. TR00-036, Department of Computer Science, University of Min-
nesota (2000)

20. Tan, P., Kumar, V., Srivastava, J.: In: Proc. of ACM SIGKDD. pp. 183–192 (July
2002)

21. Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences. In: Proc. of
IEEE ICDE. pp. 79–90 (2004)

22. Webb, G.I.: Discovering significant rules. In: Proc. of ACM SIGKDD (2006)
23. Webb, G.I., Zhang, S.: K-optimal rule discovery. Data Min. Knowl. Discov. 10(1),

39–79 (2005)
24. Xin, D., Shen, X., Mei, Q., Han, J.: Discovering interesting patterns through user’s

interactive feedback. In: Proc. of ACM SIGKDD (2006)
25. Yan, X., Han, J., Afshar, R.: Clospan: Mining closed sequential patterns in large

databases. In: Proc. of SDM (2003)
26. Zaki, M.: Spade: An efficient algorithm for mining frequent sequences. Machine

Learning 40, 31–60 (2001)
27. Zaki, M., Hsiao, C.: Charm: An efficient algorithm for closed itemset mining. In:

Proc. of SIAM. pp. 457–473 (2002)
28. Zhang, A., Shi, W., Webb, G.I.: Mining significant association rules from uncertain

data. Data Min. Knowl. Discov. 30(4), 928–963 (2016)

