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Abstract

In this thesis work, a stemming system for the Greek language is presented. This
system takes as input a word and removes its inflexional suffix according to a rule
based algorithm. The algorithm follows the known Porter algorithm for the
English language and it is developed according to the grammatical rules of the
Greek language, as they are described in Triantafyllidis grammar (1941) for the
Modern Greek language. An extended documentation of the removal process as
well as a short evaluation of the system is showing the algorithm accuracy that
works with better performance than other past stemming algorithms for the Greek
language giving 92.1 percent correct results. Finally, possible extensions of the
proposed system and further evaluation methods are briefly reviewed.
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1. Introduction

Nowadays many tools are provided for information retrieval. There are some
interesting categories of the available information retrieval software. We can find
a variety of Internet search engines with advanced search parameters, specialized
search engines for retrieving documents in a document collection, data mining and
clustering tools as well as other classification tools. During their development we
can notice an ongoing specialization on the searching features. These engines are
becoming more and more sophisticated trying to cover user’s demands to access
specific information.

One of the attempts to make the search engines more effective in information
retrieval was the usage of word stemming. Lovins (1968) defines a stemming
algorithm as “a procedure to reduce all words with the same stem to a common
form, usually by stripping each word of its derivational and inflectional suffixes”.
The main objective of the stemming process is to remove all possible affixes and
thus reduce the word to its stem (Dawson 1974). Using Stemming, many
contemporary search engines associate words with prefixes and suffixes to their
word stem, to make the search broader in the meaning that it can ensure that the
greatest number of relevant matches is included in search results. Stemming has
also applications in machine translation, document summarisation (Orasan, Pekar
& Hasler 2004, Dalianis 2000), and text classification (Gaustad & Bouma 2002).

1.1 Background

Many theories and experiments have been developed to evaluate the efficiency
and the stability of the stemming process in information retrieval. Lennon (1981)
did an evaluation research about stemming techniques and how these affect the
search precision, demonstrating that stemming raises the effectiveness of
information retrieval. This was enough to motivate more and more researchers on
stemming improvement.

There are several techniques used for word stemming, developed through time.
From the first basic Dictionary-Based approach, up to the latest advance Corpus-
Based Technique, researchers have been using alternative rules and formations for
every language to develop a reliable stemmer with higher precision.

1.1.1 Dictionary-Based Technique

“Historically, stemmers have often been thought of as either dictionary-based or
algorithmic™ (Porter 2001). Dictionary-based stemmers match every word with a



word on a proper digitalized dictionary, correspond each word to its stem
(Carlberger et al. 2001). In Krovetz’s dictionary experiments (Krovetz 1995), this
direct method, seems effective but inadequate to deal with the “unlimited” words
and their formation, especially in inflected languages with elevated morphological
structure. This was the main reason that led him to evaluate algorithmic stemmers
and conclude that “despite the errors they can be seen to make, they still give
good practical results”. Moreover “dictionary-based stemmers require dictionary
maintenance, to keep up with an ever-changing language, and this is actually quite
a problem. It is not only that a dictionary created to assist stemming nowadays
will probably require major updating in a few years time, but also that a dictionary
in use for this purpose today may already be several years out of date”.

1.1.2 Rule-Based Technique

This is the widest applied stemming technique, with most representative the
algorithm introduced by Porter (1980). With specific rules for the English language,
this algorithm removes iteratively suffixes from a given word, reducing it on its stem.
Even if the algorithm has its limitations, it is the most commonly accepted for its high
precision and recall. Lovin’s stemmer (1968) follows the same rule-based technique
but it does not apply its rules iteratively and it is more conservative than Porter’s
algorithm. On this path Paice & Husk (1990) have also worked introducing one
more English stemmer with different rules. For Scandinavian languages we have
also rule-based stemmers presented on 2001 (Dalianis & Jongejan 2006). Finally,
applying the same philosophy, there are implemented rule-based stemmers for:

Romance languages:

e English

e French

e Spanish

e Portuguese
e [talian

Germanic Languages:
e German
e Dutch

Scandinavian Languages:

e Swedish

e Norwegian

e Danish
Other Languages:

e Russian

e Finish



The above stemmers and their algorithms can be found in the web-space of
“Tartarus” (http://snowball.tartaurus.org) and they are following the SNOBOL
(StriNg Oriented symBOlic Language), a small string processing language
designed for creating stemming algorithms for use in Information Retrieval. The
stemmers created with SNOBOL named “Snowball”.

1.1.3 Light-Stemming Technique

Today there are plenty of rule-based algorithms and stemmers, developed for
various languages. Most of the times, for each of them, a different algorithm is
used to reach higher precision in the results. So lately we have light-stemmers,
referred to the process of stripping off a small set of prefixes and/or suffixes
without trying to deal with infixes or recognize patterns and find roots (Sughaiyer
& Kharashi 2004).

1.1.4 Corpus-Based Technique

According to Porter (2001) the algorithmic and dictionary-based stemmers are not
clearly distinct. An algorithmic stemmer uses lists of words either for suffix
removal or exclusion. The more advanced is the algorithm the longer are these
lists. On the other hand, a dictionary-based stemmer needs to remove some basic
suffixes before starts the look-up process in the extended dictionary. Trying to
improve the effectiveness of these stemmers we are driven to the rule-based
technique.

This hybrid perspective was applied in many stemming algorithms earlier, with
most representatives the corpus-based stemming algorithm of Xu and Croft (1998).
The hypothesis of that work is that the word forms that should be conflated will
co-occur in documents from the corpus. It starts with a set of rough preliminary
stem classes created by another stemmer, perhaps Porter or other that conflates all
words starting with the same three letters. It then uses co-occurrence analysis of
the words in the preliminary class to find those that do not appear to belong
together. Corpus-based stemming was found to provide moderate improvement
over existing rule-based stemmers. As they mention in their research “The basic
idea behind this work is that we can use co-occurrence analysis of word variants
within a particular corpus to ascertain which variants belong together and which
do not, when stemmer like Porter’s creates the initial word variant (stem) classes”.



1.1.5 Stemming in non-English languages

For languages other than English, there are stemmers with different rules applied
for each language. A famous stemmer with high percentage of precision and recall
is the stemmer for Slovene (Popovic & Wilett 1992) while Savoy (1993)
introduced another stemmer for the French language. For Scandinavian languages
there is a comparison between CST’s (Center for Language Technology) and
Euroling’s stemmers, showing the evolution of stemming algorithms and the
rising demand in the Information Retrieval field (Dalianis & Jongejan 2006).

Building a rule-based stemmer for a new, arbitrary language is time consuming
and requires experts with linguistic knowledge in that particular language (Rogati
et al. 2003). For a new stemmer in Arabic language there is use of a parallel
corpus technique to apply the known English algorithms. A parallel corpus is a
collection of sentence pairs with the same meaning but in different languages
(Rogati 2003). Usually, entire documents are translated by humans, and the
sentence pairs are subsequently aligned by automatic means. A small parallel
corpus can be available when native speakers and translators are not, which makes
building a stemmer out of such corpus a preferable direction. An overview of the
parallel corpus method, used for an Arab stemmer (Rogati et al. 2003), presented
in Figure 1.

UNSTEMMED
ARABIC

PARALLEL
CORPUS . '

TRAINING ARABIC
STEMMER

ENGLISH
STEMMER

STEMMED
ARABIC

Figure 1: Parallel Corpus Stemmer



A parallel corpus stemmer is language independent and it has successfully been
used by other researchers (Yarowsky 2000, Diab & Resnik 2002).

1.1.6 Greek Stemmers

On 2001, Tambouratzis and Carayannis (Tambouratzis & Carayannis 2001)
presented a system that performs an automated morphological categorization of
Greek words extracted from a corpus, for the Institute for Language and Speech
Processing (ILSP) in Greece. The aim of the Automated Morphological Processor
(AMP), whose structure is outlined in Figure 2, is to perform the segmentation of
a given set of words into stems and endings in an automated manner. The
algorithm is using rule-based iterative matching-and-masking approach, which
relies on matching parts of different patterns. Here the stemming process is based
on an initial set of valid stems and endings. There is also an assumption that each
word consists of a stem part and an ending part excluding the compound words.

_,-o-'-"'"_._-__-_"""'--..
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PREPROCESSING
Lo : STEPS

e e
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L 3
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STATISTICAL e
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MATCHING : il

GRAMMATICAL
& MASKING : el
VALIDATION & MORPHOLOGICAL
SYNTHESIS PROCESSING
RESULTS

Figure 2: Automated Morphological Processor (AMP) overview



Even if this system is not a pure rule-based stemmer, it performs a successful
stemming for Greek words, with the stemming accuracy being approximately 95
per cent. It can distinguish the ending and the stem for a given word and its
performance depends on how rich in terms is the linguistic corpus for the stems
and for the endings. Even though, the few grammatical rules that follow the
matching-and-masking process are not enough to consider as complete stemming
algorithm for the Greek language.

The AMP does not stop on the matching-and-masking process. During operation
it continues with the synthesis of the stemming results and after 4 steps returns a
number of possible solutions. To select the one that represents the correct
segmentation, a ranking criterion is employed, using the existing ILSP lexicon for
comparison purposes. More information about that system and its evaluation are
presented on the relevant research paper (Tambouratzis & Carayannis 2001).

1.1.7 A suffix stripping algorithm

Another, more straightforward work about Greek stemming, took place from
Kalamboukis and Nikolaidis in the Research Center of the Athens University of
Economics and Business.

On 1995 (Kalamboukis & Nikolaidis 1995) published the first suffix stripping
algorithm for the Greek language. That algorithm is designed for information
retrieval from Greek texts and deals with inflections and derivations of the Greek
language. They use a suffix lists and they have implemented an iterative suffix
algorithm with two levels. The first corresponds to the inflectional analysis, and in
the second level the derivational suffixes are removed according to their
grammatical category. They have formed three different tables of suffixes
corresponding to the three main grammatical categories: noun, adjective and verb.
The suffixes are checked in accordance with their grammatical category and they
are removed according to the specific suffix table in two steps. An overview of
that system is given in Figure 3.
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Figure 3: “TZK algorithm” overview

The “TZK algorithm”, as it is mentioned on the relevant paper, removes totally 65
suffixes in both levels and as they admitted that “they have include only a small
set of suffixes because they have reach a stage where the addition of more rules to
increase the performance in one area causes a degradation of the performance
elsewhere”. This main constraint makes the algorithm limited, as in the Greek
language there are at least 166 different inflectional suffixes (Triantafyllidis 1941).
Furthermore, the algorithm works only with Greek capital letters in order to deal
with the diacritical sign (tone-mark) that is placed over a lower case vowel
affecting the meaning and the orthography of the word.

Another critical part of the algorithm is that the derivational suffix removal works
according to the grammatical category of the word. And as there is no
morphological analysis tool for the given word, the suffixes table on the 1*
removal level is not enough to distinguish if a word is noun, adjective or verb.

Even though, the algorithm seems to perform an acceptable stemming for Greek
texts. According to the first evaluation, in 1995, the algorithm was tested on two
document collections on medical and computer science, with 7959 distinct words
totally. The errors of the stemmed words were around 10 per cent with
satisfactory precision and recall.

In 1999 the same researchers (Kalamboukis & Nikolaidis 1999) did an evaluation
of stemming algorithms with Modern Greek using a different approach. Using
SMART (Storage Management and Retrieval) system developed at Cornell
University. They have added some new and modified existing procedures of
SMART in order to make them handle Greek texts, including a “stopword” list of
the most frequent Greek words and they tested 3 algorithms in total; the “TZK
algorithm” (Kalamboukis & Nikolaidis 1995), the “infl_only” algorithm, which
removes only 19 inflectional suffixes and a new modified version of the TZK
algorithm. The evaluation of these algorithms showed that “stemming is a
clustering process depended on the corpus and therefore to avoid conflation not



appropriate we should incorporate corpus-based statistics in order to capture the
concept of the terms”. That extended evaluation as well as more specific statistical
tests was presented on their paper published on 1999.

1.2 Problem

Each natural language has its own characteristics and features. So, it seems quite
difficult to follow the same stemming pattern and apply the same stemming rules
for all the languages, creating a generic rule-based algorithm. Different prefixes
and suffixes, as well as individual exceptions, need special handling and a careful
formation of a frame with specific norms, applied on the studied language.

As it mentioned above, there are some stemming methods for Greek texts,
presented from the middle of 90’s. These methods are parts of more extended
work about morphological analysis and information retrieval from various texts
and can’t be consider as rule-based stemmers; even if the “TZK algorithm” is a set
of rules.

According to the research about the Greek stemming, both (Kalamboukis &
Nikolaidis 1995) and (Tambouratzis 2001), agree that specific grammatical rules
can improve the effectiveness on information retrieval from Greek texts. The
development of a Greek stemmer with extended grammatical rules will come to
solve the existing problem of the previous limited algorithm.

1.3 Objective

The result of the thesis is an extended stemming algorithm for the Greek language;
all these grammatical rules that can effectively remove specific suffixes of a given
word. The algorithm is implemented, using JavaScript language, as a web based
application and works through a simple web-site.

1.4 Purpose

We introduce this algorithm in order to cover the gap of the existing algorithm
and create a more effective Greek stemmer. Based on the previous research, we
will create a system that removes effectively the suffixes of the Greek words. An
accurate Greek stemmer can be used for various purposes in Information Retrieval
and Morphological Analysis.



This system will help the users to obtain more and better hits during searching and
retrieving information. The advanced feature of stemming has upgraded the
search standards for all of the languages that it has been developed. Furthermore,
according to researches and measurements about the Greek stemming, a Greek
stemmer on the Web will provide the users with more specific search results as
Kalamboukis (1995) mentions in his research about stemming algorithms with
Modern Greek.

1.5 Method

For the development of the Greek stemmer we are following the Porter algorithm
(Porter 1980) as it seems to be the most reliable. Of course that algorithm is
developed for the English language and we can not apply the same rules on a
Greek stemmer. But the Greek stemmer tries to follow the simplicity and the
directness of Porters’.

The research is based on the previous work about Greek stemming and its
effectiveness. The development tool is JavaScript, an open-source script language,
freely available on the Web. Finally for the evaluation of the stemmer we used the
Greek keyword dictionary, kindly provided by the National Centre of Scientific
Research “DEMOCRITOS” (Petasis et. al) and a random word corpus.

1.6 Limitations

To produce better stems one may add a number of constraints to the stemming
algorithm. Some assumptions are necessary too, to specify the research.
Otherwise we have to deal with a long time consuming process, trying to deal
with extended rules like those of the Greek language.

First of all we will use only capital letters as (Kalamboukis & Nikolaidis 1995),
trying to solve the problem of the “moving” tone-mark on the stems of the Greek
words. Using only capital letters some words may be pronounced in different
ways with different meanings each time. Such words however, are only a very
small number with no serious affect in stemming effectiveness.

Prefixes in Greek may change the meaning of the word radically and sometimes
the semantics. For this reason we have not considered prefix removal in this
research. Besides the general prefixes, there are some cases of allomorphy in the
Greek language. The verbs starting with consonant, take the letter “¢” as prefix on
the past tenses (Triantafyllidis 1941). In these tenses the stem changes formation



as well and that’s why there are two stems for every verb. So we uphold this
distinction and we accept that a verb has a different stem on the past tenses and on
the other tenses.

Present/Future Tenses | Past Tenses | Present stem | Past stem
AENQ EAEZA AEN AEX

(I tide) (I tided)

DOEYTQ EOYTA OEYT EOYT

(I leave) (I left)

I[MAIZQ EITAIZA ITAIZ EITAI=Z

(I play) (I played)

Table 1: Present and Past stem for the same word

An accurate Greek stemmer should deal with both the inflectional and
derivational endings (Kalamboukis 1995). But the Greek language is rich in
derivative words. This means that we can have many words coming from the
same stem. And if we think that there could be more than 10 derivational endings
with around 50 inflectional endings each we have a list of around 500 words
belongs in the same family and having the same stem. As we want to apply the
Greek stemmer on a search engine, this will not be useful, because we will have
too generic results. So we will deal only with inflectional endings.

Extended constrains about the Greek stemming algorithm are following in the
second part of the thesis.
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2. The Greek Language

2.1 History of Modern Greek

The language that Greeks speak today was not always the same. It is based on the
Ancient Greek Language that was established in Athens on the 5" century B.C.
As Athens was dominating with its political and spiritual acme, more and more
tribes living in Greece adopted the same language. Up to Alexander’s the Great
era, Ancient Greek Language was spoken by the people living in Greece, Persia,
Middle East and Egypt. During this Hellenistic Period, a lot of mixtures took
place, adding new elements in the Greek language, especially the oral one. During
Byzantine Empire, the Greek language changes again in syntax and grammatical
formation trying to make the written formation simple as the oral one.

After the Ottoman occupation (1453), the Greek language is almost only oral and
it keeps being oral for almost 400 years. People use a kind of dialect totally
different from the classical Greek and obviously effected from the Ottomans.

After liberation (1821) the Greek nation needs a new formal language, before
starts to follow the evolution of the rest Europe. In the early 19" century, there are
two dispositions in Greece; the classical who wanted to establish a Greek
language similar to the Ancient Greek and other scholars who wanted a simplified
version of the Greek language more close to the spoken language of that period.
After long time arguments Greece establish as formal language the
“Katharevousa”, introduced by Adamantios Korais. Katharevousa is something
between Ancient and Modern Greek and it was used as formal Greek language up
to 1976, even if most of the people were using Modern Greek in most of the cases.

For reasons of simplicity, the Greek parliament accepted on 1976 the Modern

Greek language, called “Demotiki”, as the official language of Greece, which is
the present Greek language.

2.2 The Greek alphabet

The alphabet of the Modern Greek language is the same with the Ancient one and
it originates from the Egyptian and Phoenician alphabet. It is presented in the
Figure 4.

11



alpha beta gamma delta epslion zeta eta theta

- S Y R S A - B
& B T’ A& E £ H ®

icta kappa lambda mwo ooy x omicron ol
b I A o vk o m
I E A M N E Q0 II

rho  sigma taw upsion phi chi psi omega
s a T u b X P i
F ) T by b X V¥ b

Figure 4: The Greek alphabet

The Greek alphabet contains 24 letters, 7 vowels (A, E, H, [, O, Y and Q) and 17
consonants (B,I', A, Z, ©, K, A, M, N, E, I, P, X, T, ®, X and V).

[Pl

The character “¢” called “teliko sigma” and it replaces the “c” only when it is
written at the end of a word and for the lower case letters.

Every word with more than 2 syllables, takes a tone-mark called “tonos”, over one
vowel and under specific rules. In some cases we can have tone-mark over one-
syllable words or even words with two tone-marks. This tone-mark is used only
for the lower case letters too.

2.3 Definitions

Before a brief explanation of the most important grammatical rules for the Greek
language it is useful to define some important terms, common used in this thesis.

Syllable is the piece of word consisted of at least one single vowel or one vowel
followed by one or more consonants.

Stem or Theme is the static (unchangeable) part on the start of a word.
Derivative is a word created by another word if an affix added on its themes.

Derivational suffix is a suffix of a derivative word

12



Root word is a word that can not created by another word. It is crated if a suffix
added on a root or an initial theme.

Compound is a word created two other words, adding their themes.

Inflectional suffix is the variable (changeable) part on the end of a word; usually
we call it just suffix.

In the Table 2 some words in different formations are presented. In
correspondence with English Language, the word “XAPAKTHPAZYX” (character)
is the root word. It consists of the stem “XAPAKTHP” and the suffix “AX”. The
same happens on the plural form of the same word where the suffix is “EX”.

For the word “XAPAKTHPIXTIKO” (characteristic), that has the same stem

“XAPAKTHP”, the suffix “IXTIKO” considered as derivational and the same
appears on the plural form. The last vowel of this word (O) is the inflectional

suffix.

Consequently, one root word can take many derivational suffixes and change
formation or meaning. For each derivational word there are many inflectional
suffixes, according to the gender, number, person and tense.

Word Stem Derivational Suffix | Suffix
XAPAKTHPAX XAPAKTHP | - AX
(Character)

XAPAKTHPEZ XAPAKTHP | - EX
(Characters)

XAPAKTHPIZTIKO | XAPAKTHP | IXTIKO 0]
(Characteristic)

XAPAKTHPIETIKA | XAPAKTHP | IZETIKA A
(Characteristics)

XAPAKTHPIZQ XAPAKTHP | 1ZQ Q
(I characterize)

XAPAKTHPIZEIX XAPAKTHP | IZEIX EIX
(You characterize)

XAPAKTHPIZEMOYX | XAPAKTHP | IEMOX oz
(Characterization)

XAPAKTHPIEMOI XAPAKTHP | IEMOI (0]
(Characterizations)

Table 2: Inflectional and derivational suffixes

13



2.4 Grammar

The Greek language has ten different types of words: article, noun, adjective,
pronoun, verb, participle, adverb, preposition, conjunction and interjection. The
article, the noun, the adjective, the pronoun, the verb and the participle are
inflectional and they have various types in the language. The noun is declined
according to the number (singular, plural). The adjective is declined according to
the gender (masculine, feminine, neuter) and the number as above. For each
gender and number there are four different types for the nouns and the adjectives
(nominative, genitive, accusative, vocative). The verb has number as above, but
also tense and voice (passive, active).

Considering the nouns, there are totally 39 different suffixes in all their forms.
Adding the adjectives in all their inflections, there are 17 more different suffixes.
Counting also all the possible verb inflections, there are 110 more different
suffixes. So for the general forms of the main inflectional types of the Greek
language there are 166 different suffixes, presented in Figure 5.

AAET HEAME EXTE OTME EZAL IOYMATTE HEOYN OYH
AAQN ANE HEA HIOYME EZ IOYNTAI HEQ OYNTAI
EAER HEANE HEEZ HOOTME ETAI IOYNTAN O OYHNTAN
EAGN HOHEANE HEE ATA I H oI oYz
OTAEL ATATE HeHEL ATOD IEMAT HAET ORIAT OYTAN
QT AQN OYEZANE  HEHEEZL ATQN EMAZTE HAQN OMATTAN  OYZATE
EQT HIANE HEHEKE A IETAI HEEI OMOTH Y

EQN IONTANE OYZA ATATE  IEZAI HEED OMOTYMA TE

14 IOTANE OYZEE  ATAN [EZASTE HEEITE ONTAI 0

107 IOYNTANE OYZE AEI IOMATTAN HEHEATE ONTAN ON
ION ONTANE  ATA AMAT IOMOYH HEHEAN ONTOYZAN OTEP
EO CTANE ATET AN IOMOYNA  HEOYN o) QTEP
EOY OYNTANE ATE AT IONTAN HEG QOEATTAN OTAT
EA ETE HZA ATAT IONTOYZAN HEATE OZATTE QTAT
KON HIETE HIE ATAI IOZATTAN  HEAN OROTN TTEF
AME ONTAZ HZOY AQ IOZATTE HZ OZOTIA TTAT
HEAME ONTAT HTTE E IOZOYN HTAN OTAN EXTEP
HEHEAME OMATTE  OYHE EI IOZOYHA HZATE oY EEXTAT
ATAME IOMATTE HZIOYNE EIX IOTAN HIEI OYMAT IAT
OYZAME  EZTE HO&OYNE EITE IOYMAL HIEZ OYMATTE  IET

101 I0YZ ATE TE HYIED ATTE

Figure 5: 166 inflectional suffixes for nouns, adjectives and verbs
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2.5 Stem in Greek words

As we mentioned above stem is the static part of a word. Some words in Greek
language have two different stems. For the nouns and the adjectives, in their
different inflections, the stem increased at one syllable. And this is not an
exception in the Greek language. Some examples below show the two different
stems for the same root word:

Single Number | Plural Number Stems Suffixes
KYMA KYMATA KYM, KYMAT A

(wave) (waves)

I'TATTA I'TATTAAEX I'TIATT, TTATTAA A, EX
(grandmother) (grandmothers)
AAEIIOY AAEIIOYAEX AAEIL, AAETIOYA | OY, EX
(fox) (foxes)

Table 3: Different stems of nouns

According to the Greek grammar, these two stems correspond, if the extra syllable
considered as a part of the suffix. In this case we have the same stem but more
suffixes, as it is presented in the Table 4.

Single Number | Plural Number | Stems Suffixes
KYMA KYMATA KYM A, ATA
(wave) (waves)

I'TATTA I'TATTAAEX I'TATT | A, AAEX
(grandmother) (grandmothers)

AAEIIOY AAEIIOYAEX AAEIT | OY, OYAEX
(fox) (foxes)

Table 4: Corresponding stems
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But it is not the same for the verbs. Every verb has two stems for each voice
(passive and active); the “present stem” and the “past stem”. The tenses are
formed according to these stems. Moreover, the verbs starting with a consonant
take the letter “¢” in some of the past tenses. The various formations of the verb
“AENQ” (tide) presented on the Table 5.

Tenses Verb Stems | Suffixes
AENQ AEN Q
(I tide)
®A AENQ AEN Q
Present Tenses | (I will be tiding)
AENE AEN E
(tide)
AENONTAX AEN ONTAX
(tiding)
EAEZA AEX A
(I tided)
NA AEZQ AEX Q
(to tide)
Past Tenses NA AEXQ AEX Q
(to tide)
AEXE AEX E
(tide)
AEXEI AEX El
(I have tide)

Table 5: Different stems of verbs

2.6 Agreements for the Greek Stemmer

Before we continue with the presentation of the stemming algorithm it is

important to note the agreements that took place during this stemmer development.
As the Greek language is highly inflectional, the suffix removal process could be
very time-consuming and the algorithm could be very complicated using long
corpus and many exceptions. On the other hand, if we have too general rules we
may reduce two semantically different words to the same root (overstemming).

The algorithm works for the Greek words in capital letters as we mentioned in the
paragraph 1.6 on the limitations of the system. Using characters in upper case we
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do not have to deal with the diacritical sign (tone-mark) that appears on the lower
case characters and it often changes position in a word on its different inflections.

The algorithm removes only inflectional suffixes of a word. According the strict
definition of the word “stemming”, both derivational and inflectional suffixes

have to be removed. “TZK algorithm™ has a rational approach on this point and it
tries to deal with both inflectional and derivational suffixes. But as we mentioned
above, on the system limitations, there are too many words coming from one stem.
For this reason it is more rational to consider as stem a word without remove its
derivational suffix. Inflectional suffixes affect much more information retrieval in
Greek texts compared with English, as the Greek language is mush more
inflectional.

Stemming is taking place for the words that change their suffixes. That is why we
tried to develop a stemming algorithm only for inflectional types. And as the main
inflectional types in the Greek types are the noun, the adjective and the verb we
will deal only with them.

The algorithm distinguishes between the “past” and the “present” stem for the
verbs. As the stems in the different tenses are different we can not reduce a verb
from a present and a past tense in the same stem. This agreement is not also
rational according to the strict definition of the “stemming”. But here we have to
deal with a specific grammatical phenomenon for the Greek language. Removing
only inflectional suffices we reduce a verb on its stem, either past or present.
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3. The Greek Stemmer

3.1 The algorithm

The stemming algorithm focuses on the inflectional suffixes removal for any
given inflectional Greek word. Taking under consideration the Greek grammar,
we conclude on a list with 166 different suffixes for the 3 main inflectional word
types: noun, adjective and verb. As the Greek stemmer can not be a “lemmatizer”
and can not distinguish between the types of the words, our approach is
straightforward removal of the suffixes.

The main idea is to filter the word through a suffixes list which contains all the
possible endings. This list can easily be created after a careful studying on the
Greek grammar and includes those 166 suffixes as we mention above. The
overview of a system like this presented on the Figure 6.

Suffixes List STEM

Figure 6: Generic overview

The problem on this system appears if we consider that some of the suffixes in
this list can affect words in a wrong way, removing a wrong part of the word as
suffix. For example we want to remove the suffixes “A” and “AAEX” for the
words “MAM-A” (mother) and “MAM-AAEX” (mothers); so we will have the
same stem “MAM” in both cases of plural and singular number. Applying the
same general rule on another set of words “OMAA-A” (team) and “OMAA-EX”
(teams), we reduce these words in different stems, while the algorithm will reduce
the plural number word to the stem “OM” and not “OMAA”.

To deal with this suffixes conflict, that often occurs in the Greek language, we can
create a different list for the suffix “AAEX” and capture all or most of the words
that are wrong affected from this rule. In the same list we can include the suffix
“AAQN”, which is the ending of the same group of words on the genitive form.
An algorithm that deals with “exceptions” individual for each suffix or group of
suffixes is much more accurate and flexible than an algorithm with centralized
rules.
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Of course there are suffixes which do not conflict and can easily be removed. For
example if we set a rule that removes the suffix “AX” for any given word, there is
no conflict with other words. This general rule covers a big amount on words in
the Greek language.

Finally, the rules, generic or specific, are applied each time for the longest
possible suffix in the list. So when we have the suffixes “A” and “ATA” in the
suffixes list, the word “KYMATA” (waves) will be reduced on the stem “KYM”
and not “KYMAT”.

3.2 The rules

Trying to deal with each suffix individually, we have created a decentralized
algorithm. The different rules are presented below in pseudo-code:

Rule-set 1

if (word ends on AAES|AAQN) {
remove the suffix;
if (remaining part does not end on OK|MAM|MAN..) {
add “AA";
}
}

The rule removes the suffixes A4EX and AAQN for a group of words.

Example:

TTAI'TA TTATT
TTAT'TAAQN TTATT

The rule doesn’t affect the group of words that by chance have similar suffixes.

Example:
OMAAA OMAA
OMAAEX OMAA

Rule-set 2

if (word ends on EAES|EAQN) {
remove the suffix;
if (remaining part ends on OII|III|EMI..) {
add “EA”;
}
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The rule removes the suffixes EAEX and EAQN for a group of words.

Example:

KADEX KA®D
KADEAQN KAD

The rule doesn’t affect the group of words that by chance have similar suffixes.

Example:

I'HIIEAO I'HIIEA
T'HIIEAQN T'HIIEA

Rule-set 3

if (word ends on OYAEZ |OYAQN) {
remove the suffix;
if (remaining part ends on APK|KANIAK|NIX..) {
add “0OYA”;
}
}

The rule removes the suffixes OYAEY and OYAQN for a group of words.

Example:

[IAIITIOYY 1A
TTAIITIOYAQN | [TAIII]

The rule doesn’t affect the group of words that by chance have similar suffixes.

Example:

APKOY4A4 APKOYA
APKOYAEX APKOYA

Rule-set 4

if (word ends on EQY|EQN) {
remove the suffix;
if (remaining part is ©|A|EA|TAN.) {
add “E”;
}
}

The rule removes the suffixes £QX and EQN for a group of words.
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Example:

YIIOOEXH YIIOOEY
YIIOOEXEQY | YIIOOEY

The rule doesn’t affect the group of words that by chance have similar suffixes.

Example:
OLEOX OF
OEQN OF

Rule-set 5

if (word ends on IA|IOY|IQN) {
remove the suffix;
if (remaining part ends on vowel) {
add “1”;
}
}

The rule removes the suffixes /4, I0Y and IQN for a group of words.

Example:
IHAIAT 11414
[14I11A4 [1414

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
TEAEIOXY TEAET
TEAEIOY TEAEI

Rule-set 6

if (word ends on IKA|IKO|IKOY|IKQN) {
remove the suffix;
if (remaining part is AN|AA|ENA|AMAN ..) || (remaining
part ends on vowel) {
add “IK”;

21



The rule removes the suffixes IKA, IKO, IKOY and IKQN for a group of words.

Example:
ZHAIAPHX ZHAIAP
ZHAIAPIKO ZHAIAP

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

AI'POIKOX AI'POIK
AI'POIKOY AI'POIK

Rule-set 7

if (word is ATAME) {make the stem “ATAM”;}
if (word ends on ATAME |HYAME |OYSAME | HKAME | HOHKAME) {
remove the suffix;
}
if (word ends on AME) {
remove the suffix;
if (remaining part is ANAII|AIQO® |AIOK..) {
add “AM”;
}
}

The rule removes the suffixes AT AME, HXYAME, OY2AME, HKAME and
HOHKAME for all the words, and the suffix AME for a group of words.

Example:

AI'ATIQ AI'AIT
AT'AITATAME | AT'AIT

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

ANAITAMOX ANAITIAM
ANAITAME ANAITIAM

22



Rule-set 8

if (word ends on ATANE|HZANE|OYZANE |IONTANE | IOTANE |
IOYNTANE | ONTANE | OTANE | OYNTANE | HKANE | HOHKANE) {
remove the suffix;
if (remaining part is TP|TZ) {
add “ATAN”;
}
}
if (word ends on ANE) {
remove the suffix;
if (remaining part is BETEP|BOYAK..) || (remaining part
ends on vowel) {
add “AN";
}
}

The rule removes the suffixes HXANE, OYXANE, IONTANE, IOTANE,
IOYNTANE, ONTANE, OTANE, OYNTANE, HKANE and HOHKANE for any
word, and the suffixes AI'ANE and ANE for a group of words.

Example:

AI'ATIQ AI'AIT
AI'AITHXANE AI'AIT

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

TPAI'ANOX TPANAN
TPAI'ANE TPANAN

Rule-set 9

if (word ends on HIETE) {
remove the suffix;

}
if (word ends on ETE){
remove the suffix;

if (remaining part is ABAP|BEN|ENAP..) || (remaining
part ends on OA|AIP|®OP..) || (remaining part ends on
vowel) {

add “ET”;

}
}

The rule removes the suffix HXETE for all the words, and the suffix ETE for a
group of words.
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Example:

AI'ATIQ AI'AIT
AI'AITHXETE | AT'AIl

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
BENETOX BENET
BENETE BENET

Rule-set 10

if (word ends on ONTAY|QNTAZY) {
remove the suffix;
if (remaining part is APX) {
add “ONT”;
}
If (remaining part ends on KPE) {
add “QNT”;
}
}

The rule removes the suffix ONTAZ and QNTAZX for a group of words.

Example:

AI'ATIQ AI'AIT
ATATNIQNTAY | AT'AIT

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

APXONTAX APXONT

KPEQNTAX KPEQNT

Rule-set 11

if (word ends on OMALTE|IOMAXTE) {
remove the suffix;
if (remaining part is ON) {
add “OMAXRT”;
}
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The rule removes the suffix OMAXTE and IOMAXTE for a group of words.

Example:

AI'ATIQ AI'AIT
AT'AINIOMAZTE | AT'AIT

The rule doesn’t affect one word that by chance has similar suffix.

Example:

ONOMAZTOX ONOMAZT
ONOMALTE ONOMAZT

Rule-set 12

if (word ends on IEXTE) {
remove the suffix;
if (remaining part is II|AIl|XZYMIL.) {
add “IEST”;
}
}
if (word ends on EITE) {
remove the suffix;
if (remaining part is AN|AP|EKTEA..) {
add “EIT”;
}
}

The rule removes the suffix /EXTE and EXTE for a group of words.

Example:

AI'ATIQ AI'AIl
AI'AIIIEXTE AI'AIl

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
[IEXTOXY IEXT
IIEXTE IIEXT
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Rule-set 13

if (word ends on HOHKA|HOHKEZX |HOHKE) {
remove the suffix;

}
if (word ends on HKA|HKEZ|HKE) {
remove the suffix;
If (remaining part is AIA©|©]|ZYNE..) ||
(remaining part ends on 3®|00|II6..) {
add “HK”;

}

}

The rule removes the suffix HOHKA, HOHKE> and HOHKE for all the words,
and the suffixes HKA, HKEX and HKE for a group of words.

Example:

XTIZL XTIZ*
XTIXTHKE XTIXT*

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

AIAOHKH AIAOHK
AIAOHKEX AIAOHK

*Notice the difference on the present and the past stem

Rule-set 14

if (word ends on OYZIA|OYZEZ|OYIE) {
remove the suffix;

if (remaining part is ®APMAK|XAA|MEA..) || (remaining
part ends on IIOAAP|BAEI.) || (remaining part ends on
vowel) {

add “0oYs”;

}

The rule removes the suffix OY24, OYXEX and OYXE for a group of words.

Example:

XTYIIQ XTYIT
XTYIIOYXEY | XTYII
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The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

MEAOYXA MEAOYY
MEAOYXEY BENET

Rule-set 15

if (word ends on ATA|ATEZ|ATE) {
remove the suffix;
if ((remaining part is ABAXT|IOAYD|AAHD.)) ||
(remaining part ends on O®|IIEA|XOPT..)) && ! ((remaining
part is YOO |NAYAOX)
|l (remaining part ends on KOAN)) {
add “AT”;

}

}

The rule removes the suffix 41’4, AI'’EX and AI'E for a group of words.

Example:

KOAA1A4L KOA4
KOAAATEX KOA4

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

ABAXTAI'O ABAXT
ABAXTAT'A ABAXT

Rule-set 16

if (word ends on HXZE|HXOY|HZA) {
remove the suffix;
if (remaining part is N|XEPXZON|AQAEKAN..) {
add “HZ”;
}
}

The rule removes the suffix HXE, HXOY and HXA for a group of words.

Example:

AI'ATIQ AI'AIl
AI'AITHXE AI'AIT
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The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
NHXO0X NHX
NH2O0Y NHXY

Rule-set 17

if (word ends on HITE) {
remove the suffix;
if (remaining part is AYB|IB]|AXP..){
add “HST”;
}
}

The rule removes the suffix HXTE for a group of words.

Example:

AI'ATIQ AI'AIT
AI'AITHXTE AI'AIl

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:

2BHXTOX 2BHXT
2BH2TE 2BH2T

Rule-set 18

if (word ends on OYNE |HXOYNE |HOOYNE) {
remove the suffix;
if (remaining part is N|P|ZII..){
add “OYN”;
}
}

The rule removes the suffixes OYNE, HXOYNE and HOOYNE for a group of
words.

Example:

AI'ATIQ AI'AIT
AI'AIIOYNE AI'AIT
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The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
NOYNOX 2BHXT
NOYNE 2BHXT

Rule-set 19

if (word ends on OYME |HXOYME | HOOYME) {
remove the suffix;
if (remaining part is IAPAYOYZ|®[X..) {
add “OYM”;

}
}

The rule removes the suffixes OYME, HXOYME and HOOYME for a group of
words.

Example:

AI'ATIQ AI'AIT
AI'ATIIOYME AI'AIl

The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
POYMOX POYM
POYME DPOYM

Rule-set 20

if (word ends on MATA|MATQN|MATOZ) {
remove the suffix;
add “MA”;

}

The rule removes the suffixes ATA, ATQN and ATOX for a group of words.

Example:
KYMA KYM
KYMATA KYM
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The rule doesn’t affect one group of words that by chance have similar suffixes.

Example:
XQPATO XQPAT
XQPATA XQPAT

Rule-set 21

if (word ends on A|ATATE|ATAN..) {
remove the suffix;

}

The rule removes the suffixes A, ATATE, AI'AN, AEI, AMAI AN, A%, AXAl, ATAI,
AQ, E, EI, EIX, EITE, EXAI EX, ETAI I, IEMAI, IEMAXTE, IETAI IEXAI
IEXAXTE, IOMAXTAN, IOMOYN, IOMOYNA, IONTAN, IONTOYXAN,
I0XAXTAN, IOXAXTE, IOXOYN, IOXOYNA, IOTAN, IOYMA, IOYMAXTE,
IOYNTAI IOYNTAN, H, HAEX, HAQN, HOEI, HOEIX, HOEITE, HOHKATE,
HOHKAN, HOOYN, HOS2, HKATE, HKAN, H>, H¥AN, HXATE, HXEI, HYE?,
HXOYN, HXQ, O, OI, OMAI, OMAXTAN, OMOYN, OMOYNA, ONTAI, ONTAN,
ONTOYZ2AN, OX, OXAXTAN, OXAXTE, OXOYN, OX0OYNA, OTAN, OY, OYMAI,
OYMAXTE, OYN, OYNTAIL OYNTAN, OYX, OYXAN, OYXATE, Y, Y2, Q and QN
for all the words.

Rule-set 22
if (word ends on ESTEP|ESTAT|OTEP|OTAT|YTEP|YTAT|QTEP|QTAT) {

remove the suffix;

}

The rule removes the sub-suffixes EXTEP, EXTAT, OTEP, OTAT, YTEP, YTAT,
QTEP and QTAT for a group of words.

Example:

HAHXIEXTAT(0OX)* | IIAHXT

METAAYTEP(H)* | METAA
KONTOTEP(O)* KONT

*The suffixes O, H or O have been removed on a previous step

From the 166 inflectional endings we have effectively manage to remove 158 of
them, using 22 Rule-sets, as it is presented on the Figure 7.
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158 removals

AAER HEAME IEZTE OYME EZAT
AAON ANE HEA HIOYME EZ

EAED HEANE HEEZ HOOYME ETAI
EAQN HGHEANE HKE ATA IL

OYAEE ATANE HEHEA ATOZ IEMAT

QT AQN OYZANE HGHEER ATOQN IEMAZTE
EQZ HZANE HOHEE A IETAI
EQN IONTANE OYZA ATATE  IEZAI

L4 IOTANE OYIEZL  ATAN IEXATTE
07 IDYNTANE OYZE AEI IOMATTAN
IGN ONTANE  ATA AMAT IOMOYIT
EO OTANE ATEZ AN IOMOTIA
EOY OYMNTANE ATE AZ IONTAN
TEA ETE HZA ATAT IONTOYZAN
TEQN HZETE HXE ATAI IOZATTAN
AME ONTAZ HEOY A IOZATTE
HEAME QNTAZ HXTE E IOZOYN
HEHEAME COMAZTE OYNE EI IOZOYHNA
ATAME IOMAXTE HEOYME EIZ IOTAN
OYZAME EXTE H®OYNE EITE IOYIMAT

IOYMAETE
IOYNTAT
IOYNTAN
H

HAEZ
HAQN
H®EI
H®EIZ
H®EITE
HOHEATE
HOHEAN
Heotw
HeQ
HEATE
HEAN

HE

HIAN
HIATE
HZEI
HZIEZ

HEOTH
HER

0]

Ol

OMAT
OMATTAN
OMOTH
OMOYHNA
CNTAT
CNTAMN
ONTOYZAN
[N
OZATTAN
OZAZTE
OZOYN
OZOYNA
OTAN

oY

OVMAI
OYMAZTE

8 missing suffixes

LIAT
-IEx
-I01

-10TZ
-ATE

-HEEIZ

--AXTE

Figure 7: Captured and non-captured suffixes

The reason we can not capture eight of the suffixes is that the wrong affected
words from a removal Rule-set are more than the right affected ones. So if we set
a removal rule for these endings we need a very long list to exclude the group of
words wrongly affected. Considering the time-consumption and the precision of
the algorithm we choose to keep these suffixes without removal rules.

The final overview of the system is presented on the Figure 8 below.
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Figure 8: Overview of the system
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The key point is in the longest word-list. All the suffixes there are removed
without any other specific rule. All the suffixes in the previous word-lists contain
rules that exclude some words from the suffix removal.

The system takes as input any given Greek word in upper case letters. Before this
word reaches the long word-list, it is tested on all the other Rule-sets. If the suffix
matches, it is removed and the word skips the long word list. Then it is tested once
more in the last word-list (comparisons removal). If the word was an adjective
comparison then the comparison suffix is removed and the stem comes as output.
In the case that none of the short word-list Rule-sets capture the suffix, the word is
tested on the long word-list and then on the last word list. The part that comes as
output is the stem of the given word.

Notice that the Figure 6 is an abstractive model of the Figure 8.

3.3 Implementation of Greek Stemmer

The Greek Stemmer is implemented as a sequential program with a basic web-
interface. We chose to have the Greek Stemmer available on the web, so the
algorithm is free for testing by everyone.

One of the simplest ways to implement the Greek stemming algorithm is with
JavaScript. An open source script language that works fast without complex
calculations, and it does not need any further configuration. It supports also the
Greek char-set and works proper in any browser. The web interface is also simple
according to the snowball prototype (http://snowball.tartarus.org/demo.php). The
stemword() function in JavaScript is available in the web-rage of the Greek
Stemmer (http://dis.dsv.su.se/~x04-gen/stemmer/stemmer.asp).
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4. Evaluation

4.1 The Method

In order to evaluate the Greek Stemmer we used two different word-sets. The first
one (WS1) is an extract from the Greek keyword dictionary of DEMOCRITOS
and contains 703 words in various formations. The second (WS2) is a collection
of 177 random pseudo-Greek words not contained in the Greek keyword
dictionary.

We consider correct stemmed word any word without inflectional suffix. The
stemmed words were evaluated by the supervisor of the thesis Dr. Hercules

Dalianis and a sample of the tables with the word-sets and their stems is presented
in Appendix A.

4.2 The Results

On the Tables 6 and 7 below, there are summarised the results of the evaluation.

Wordset | Words | Correct Stems | Percentage
WS1 703 652 92,7%
WS2 177 162 91,5%

Table 6: Correct Stems

Table 7 illustrates the distribution of errors for the wrong stemmed words in each
word-set. With the term “overstemming” we define the wrong stems that occur
because of the exceeding suffix removal. We notice “understemming” in the case
that the algorithm stops before reach the correct stem.

Wordset | Errors | Overstemming(%) | Understemming(%)
WS1 51 88,3% 11,7%
WS2 15 93,4% 6,6%

Table 7: Distribution or errors
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We can say that the algorithm is working with a quite good precision as the error
percentages (7,3% and 8,5%) are considered as acceptable. Based on the Table 7
we can conclude that even if we follow an inflection removal technique, without
removing the derivational part of the words, we still have overstemming errors.
These errors occur because of the large exception words in the Greek language as
well as the high inflectional character of the language.

In similar experiments on error distribution in Kalamboukis & Nikolaidis (1995)
research, they had an average of 17,8% overstemming and 69,7% understemming
(the rest 12,5% referred as other errors). We mention that the average of the
precision in that algorithm was 89,6%.
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5. Conclusions and Future Work

5.1 Conclusions

From these first evaluation experiments we can accept that we have reached an
appropriate level of suffix removal, according to our initial assumptions. Our goal
was to develop and document a new rule based stemmer for the Greek language,
which follows the structure of Porter algorithm (and others rule based algorithms);
the most effective algorithm regarding precision and recall measurements.
Following this technique, we took under consideration the existing research on the
Greek information retrieval methodologies and approaches as well as the past
research in Greek stemmers, and we initiated a new rule-set for the Greek
stemmer.

The deep study of the Greek grammar as well as the analysis of the inflectional
types of the Greek language was necessary for this kind of thesis work. We decide
to design a new path for the word classification according to their suffixes and not
to work with a word classification tool. This approach follows the Swedish
stemmer approach (Carlberger et al. 2001) and it was necessary as the past
research in stemming for the Greek language is limited.

Analyzing the Greek grammatical rules we decide to follow inflectional suffix
removal. This assumption was reasonable if we consider the time limitation of the
thesis work and the architecture of our stemmer. Of course every researcher is
aiming for the best result in his/her work. And when a new algorithm for word
stemming is created, the system specifications should be well defined and
documented. All the researchers agree that the stem definition requires in depth
suffix removal, both inflectional and derivational. But as we are trying to develop
a useful tool for effective information retrieval for the Greek language, we can not
skip the specific language rules. Following the strict linguistic definition maybe
we can create a complex and unique tool, pointing out the root of any given word.
But such a kind of tool is not the object of regard in this work. Our purpose was to
develop a “smart” stemmer, working effectively, with high precision and recall, in
various texts in search engines. The main assumption to reach this goal was to
accept as suffixes only the inflectional endings of the Greek words and work
trying to remove them with the most effective way. And with 92,1% precision in
our results we can count that we have create a good stemmer, compared to 89,6%
of Kalamboukis & Nikolaidis stemmer.

The Greek stemmer was developed in JavaScript programming language giving
high flexibility in recall of the system. We tried to follow a simple structure in the
algorithm, creating small rule-sets for similar suffixes, which are working as
Rule-sets on the input words. As this is a pilot work, one word per time is
stemmed and there is no function for extended text stemming. The web-stemmer
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exists in the web address http.//www.dsv.su.se/~hercules/greek_stemmer.gr.html
and its web interface is illustrated in Appendix B.

5.2 Future Work

The research in this thesis work has lead to a prototype stemmer for the Greek
language that seems to work with high precision, according to the first evaluation
tests. Like any other pilot software it has its drawbacks and further improvement
required regarding the improvement of the algorithm and the efficiency of the
stemming process.

The 7,9% of errors is a number that can be reduced introducing more stemming
rules and exceptions Rule-sets. But a big step in the future improvement of the
Greek stemmer can be a study on how the derivational suffixes affect the Greek
words and their stems, and how one can include new derivative rules that do not
affect the effectiveness of the stemming process. All the rules described in this
work can be a base for this further research and it can support extended stemming
rules covering most of the terms in the Greek language.

Moreover, the stemmer has to be tested with large amount of texts to prove its real
performance. To succeed this we need to apply the Greek stemmer in a web
search engine, which retrieves information from Greek texts. Then we can have a
complete view of the stemming system and the returned results after every search
request. In this case we can do extended evaluation tests, we can measure the
precision and recall in various texts and we can estimate the errors distribution in
the stemming results.

Finally we believe that this thesis work contribute in the stemming research and

offer a pilot tool for the Greek language that can be used free on the web by
everyone.
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APPENDIX A: Evaluation Results

Word-set 1 Word-set 2
AYTOKINH>ZH AYTOKINHX YAPO®EPAIIEIA YAPO®EPATIEI
AYTOKINHXHX AYTOKINHX YAPO®EPAIIEIAX YAPO®EPATIEI
AYTOKINHTA AYTOKINHT YAPOG®EPAIIEIEX YAPOGEPAIIEI
AYTOKINHTE AYTOKINHT YAPOG®EPAIIEIQON YAPOGEPATIIEI
AYTOKINHTEX AYTOKINHT ITAIAOIIOAHAATA ITAIAOIIOAHAAT
AYTOKINHTH AYTOKINHT ITAIAOIIOAHAATO ITAIAOIIOAHAAT
AYTOKINHTH AYTOKINHT IMATIAOITIOAHAATOY | ITAIAOIIOAHAAT
AYTOKINHTO AYTOKINHT IMATAOITIOAHAATON | ITAIAOIIOAHAAT
AYTOKINHTOI AYTOKINHT IMTATAOITIOAHAATOY | ITAIAOIIOAHAAT
AYTOKINHTOXZ AYTOKINHT ITAIAOIIOAHAATON | ITAIAOIIOAHAAT
AYTOKINHTOY AYTOKINHT BPOXOXOPEYA BPOXOXOPEY
AYTOKINHTOYX | AYTOKINHT BPOXOXOPEYAN BPOXOXOPEY
AYTOKINHTOQN AYTOKINHT BPOXOXOPEYE BPOXOXOPEY
XOPAIZAME XOPAIZ BPOXOXOPEYEX BPOXOXOPEY
XOPAIZANE XOPAIZ BPOXOXOPEYA BPOXOXOPEY
XOPAIZATE XOPAIZ BPOXOXOPEYAN BPOXOXOPEY
XOPAIZEI XOPAIZ BPOXOXOPEYE BPOXOXOPEY
XOPAIZEIX XOPAIZ BPOXOXOPEYEX BPOXOXOPEY
XOPAIZETE XOPAIZ EITIITPOIIO EITIITPOII
XOPAIZOME XOPAIZOM EITITPOIIOI EIIITPOII
XOPAIZONTAX XOPAIZ EIIITPOIIOX EIITPOIT
XOPAIZOYME XOPAIZ EIIITPOIIOY EIITPOIT
XOPAIZOYN XOPAIZ EINITPOIIOYX EITITPOII
XOPAIZOYNE XOPAIZ EITITPOIIQN EITIITPOII
XOPAIZQ XOPAIZ BOPEIOAXIATIKA BOPEIOAXIAT
XOPAIZEI XOPAI=Z BOPEIOAXIATIKE BOPEIOAXIATIK
XOPAIZAME XOPAIX BOPEIOAXIATIKEX BOPEIOAXIATIK
XOPAIZAN XOPAIX BOPEIOAXIATIKH BOPEIOAXIATIK
MEAAON MEAAON BOPEIOAXIATIKHX BOPEIOAXIATIK
MEAAONTA MEAAONT BOPEIOAXIATIKOI BOPEIOAXIATIK
MEAAONT MEAAONT BOPEIOAXIATIKOY BOPEIOAXIATIK
MEAAONTAX MEAA BOPEIOAXIATIKOYYX | BOPEIOAXIATIK
MEAAONTEZ MEAAONT BOPEIOAXIATIKO BOPEIOAXIATIK
MEAAONTOXZ MEAAONT BOPEIOAXIATIKOX BOPEIOAXIATIK
APEIE APEI BOPEIOAXIATIKOQN BOPEIOAXIAT
APEIO APEI YIIOMEAH YIIOMEA
APEIOI APEI YIIOMEAOX YIIOMEA
APEIOX APEI YIIOMEAOYZX YIIOMEA
APEIOY APEI YIIOMEAQN YIIOMEA
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APPENDIX B: User Interface

Greek Stemmer

This Greel Stemmer 15 developed during the master thesiz with title "Development of a Greek
Stemmet” ih the Depattment of Computer and Systems Sciences at Stockholm's Thhiversity /
Eoval Institute of Technology. The systern takes as wmput a word and remeoves its inflexional suffiz
according to a rule based algorthm. The algonthm follows the known Porter algortthm for the
English lahguage and it is deweloped according to the grammatical rules of the Modern Greek

language.

Adote i Astn v sneleprocie (Kepedoaie EA ke vpop o)

Give a word for sternmmg (The given word should be wntten with Greek capital charachters)

Torore =dd v v S51Ts To CTELLE T ASEC

Press here for the stem

Stem:

Related sowrces

Stemmers i other lansuages

Dr. Heruclez Daliarus Homepage

The Greek stemmer is available in the web-address
http://www.dsv.su.se/~hercules/greek_stemmer.gr.html
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