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Abstract 
 

When using machine learning for in silico modeling, 
the goal is normally to obtain highly accurate predictive 
models. Often, however, models should also bring 
insights into interesting relationships in the domain. It is 
then desirable that machine learning techniques have the 
ability to obtain small and transparent models, where the 
user can control the tradeoff between accuracy, 
comprehensibility and coverage. In this study, three 
different decision list algorithms are evaluated on a data 
set concerning the interaction of molecules with a human 
gene that regulates heart functioning (hERG). The results 
show that decision list algorithms can obtain predictive 
performance not far from the state-of-the-art method 
random forests, but also that algorithms focusing on 
accuracy alone may produce complex decision lists that 
are very hard to interpret. The experiments also show 
that by sacrificing accuracy only to a limited degree, 
comprehensibility (measured as both model size and 
classification complexity) can be improved remarkably. 

 
 
1. Introduction 
 
One of the most intensive areas of research within the 
pharmaceutical industry is to collect and analyse data on 
absorption, distribution, metabolism, excretion and 
toxicity (ADMET) [1]. This is done in order to learn how 
various compounds interact with the human body, where 
the main purpose is to guide drug development projects in 
the search for promising compounds as well as to detect, 
as early as possible, compounds that should not be put 
forward as drug candidates (e.g., due to toxicity). A 
commonly adopted approach is to maintain large series of 
libraries of chemicals and use high-throughput screening 
(HTS) to test for biological activity. Promising 

compounds found in this way become the focus for 
continued research, typically leading to continued 
synthesis and HTS. Synthesis and HTS processes are, 
however, often time consuming and costly, making it 
desirable to estimate the biological activity as well as 
ADMET properties even before synthesis. When 
computers are used for this initial modeling, the 
procedure is referred to as in silico modeling. If 
successful, in silico modeling saves much time and 
investments by excluding unsuitable compounds, 
allowing earlier focus on promising candidates. 

One particular consideration, which is the focus of this 
paper, concerns avoiding interactions with hERG (human 
Ether-a-go-go-Related Gene) as well as potential 
cytochrome P450 interactions related to avoidance of 
Phase 1 metabolism, e.g. the nonsynthetic production of 
more polar compounds (metabolites) of the original 
chemicals through oxidation, reduction, and hydrolysis. 
Some drug-induced sudden deaths are a consequence of 
the development of a side effect of action called Torsades 
de Pointes (TdP). This condition is today a major safety 
concern for the pharmaceutical industry and health 
regulatory authorities around the world, see e.g. [2][3][4]. 
The development of acquired long QT syndrome, which 
is characterized by the prolongation of the QT interval as 
a consequence of abnormal behaviour of the cardiac 
muscle repolarization, is mediated in part by the blockage 
of the voltage-dependent potassium ion channel encoded 
by hERG [5]. A number of mathematical models aimed at 
explaining the relationship between activity for the hERG 
ion channel and molecular structure have been devised, 
developed and published in the literature during the last 
five years. These models are based on statistical 
techniques such as support vector machines [6][7], neural 
networks [8], multiple linear regression [9][10][11], as 
well as recursive partitioning [12][13], and partial least 
squares analysis [14]. 



As can be seen from the above examples, most 
machine learning approaches used on this problem are 
predictive techniques producing opaque models. In these 
cases, models must have high predictive accuracy to 
ensure that they can be used efficiently in the drug 
discovery process. Opaque models, however, have the 
drawback of not being comprehensible to humans, i.e., 
they can only be used as black-box prediction machines. 

If, on the other hand, models are comprehensible, 
domain experts can interact with the data mining results 
in several ways. Computational chemists can not only 
gain a better understanding of the domain, but also base 
further analysis and search on the descriptions found. One 
example is that a comprehensible model might point to 
interesting sub-domains, where a more targeted search for 
promising compounds can be conducted using powerful 
predictive techniques like artificial neural networks, 
support vector machines or some ensemble technique. 

When viewed from a machine learning perspective, the 
problem thus has characteristics from both predictive and 
descriptive tasks, as described in [15]. The task resembles 
predictive modeling, since the objective is to predict the 
value of a target variable based on a number of attributes. 
Since computational chemists also seek explanations of 
underlying relationships in data, the problem is at the 
same time descriptive in nature. Models must then 
combine the key properties of relatively high accuracy 
and comprehensibility. High accuracy is needed in order 
to ensure that models capture relationships that are 
general and not only true for the particular observations 
from which the model was built, and comprehensibility is 
essential if domain experts are to gain insights about the 
underlying domain from the model. Since comprehensible 
models are not primarily intended to be used for 
prediction, they really do not need to describe the entire 
data set. In fact, the key demand is that the relationships 
that the user is interested in are as accurate as possible. 
Thus, when evaluating models for these kinds of 
problems, both model accuracy and accuracy for partial 
descriptions (e.g. single rules) are relevant. 

With the above problem, and other similar ones in 
mind, there is clearly a need for machine learning 
techniques that are capable of producing transparent, 
small and yet accurate models. The overall purpose of this 
paper is to argue for the need for such techniques, and to 
discuss some key properties. In addition, we compare two 
standard techniques for generating decision lists, RIPPER 
and PART, to a technique specifically tailored to meet 
these needs, using a data set from the drug discovery 
domain.  

 
2. Background 
 
It should be noted that supervised machine learning 
techniques, whether producing opaque or transparent 

models, normally focus solely on maximizing accuracy. 
Consequently, even transparent models are quite seldom 
easily interpretable. A striking example of this is a 
decision tree containing hundreds of nodes, where each 
classification is typically made after more than 10 tests, 
many branches are quite similar and a relatively small 
number of instances reach each leaf. 

So, the fact that most high-accuracy models are 
outright opaque, while most transparent models are only 
of limited comprehensibility due to their complexity, the 
need for techniques tailored to produce compact, yet 
accurate models, is apparent. A domain expert that aims 
to understand the reasons for a particular prediction, or 
seeking to gain novel insights, is often not interested in 
the entire model, but rather parts of it, i.e. specific rules. 
Hence, it is often not the size of the entire model (e.g. as 
measured by the number of rules or tests) that is the most 
important factor for comprehensibility, but rather the 
complexity of parts of the model (e.g. rules) that are 
employed when making a specific prediction. The 
measure classification complexity (CC), introduced in 
[16], is one alternative complexity measure that is 
motivated by this fact. Having chosen a suitable measure 
for comprehensibility (complexity), a desirable feature of 
any learning algorithm that aims for achieving both high 
accuracy and high comprehensibility is to allow balancing 
these factors, e.g. by means of a parameter, depending on 
the requirements of the application.   

In this work, we focus on methods for learning ordered 
rule sets (or decision lists) as a way of obtaining compact, 
and yet accurate, models. Obviously, many techniques for 
producing decision lists exist; early examples of decision 
list algorithms include AQ [17] and CN2 [18]. More 
recent is RIPPER [19], based on IREP [20]. These are all 
based on the sequential covering algorithm, where the 
central idea is that rules are learnt one at a time. For each 
rule, all instances covered by this rule are removed from 
the data set and the next rule is learnt from the remaining 
instances. Of these techniques, RIPPER is regarded as 
being the state of the art [21], and it includes a powerful 
optimization procedure. However, RIPPER cannot be 
considered entirely suitable for the above purpose, since it 
does not contain any obvious way of balancing accuracy 
against comprehensibility. The standard RIPPER version 
also has the disadvantage of only formulating rules for the 
minority class, which means that it will not provide users 
with clear descriptions of all relationships in the data set. 
Another property that sometimes make RIPPER rule sets 
hard to interpret is the use of conjunctive rules; a typical 
RIPPER rule consists of several (in general between 3 
and 7) conjuncts. Another technique for generating 
decision lists is PART, which is implemented in Weka 
[21], where rules are obtained from partial decision trees 
built using the same heuristic as C4.5 trees [22]. 



In previous studies [23][24], different ways of 
handling problems similar to the present one have been 
investigated from a data mining perspective, where such 
problems were identified as being instances of the data 
mining task concept description as defined in CRISP-DM 
[25]. CRISP-DM states that the aim of concept 
description “is not to develop complete models with high 
prediction accuracy, but to gain insights”. In [16], the 
Chipper algorithm, which is specifically designed for 
concept description was introduced and evaluated.  

Chipper is a deterministic algorithm for generating 
decision lists consisting of simple rules. In its current 
implementation, it handles only binary classification 
tasks. The basic idea is to, in every step, search for the 
rule that covers the maximum number of instances, with 
sufficient accuracy, using a split on one attribute. For 
continuous attributes, this means a single comparison 
using a relational operator, (‘<=’, ‘>=’), and for nominal 
attributes a set of instances having identical values for 
that attribute (‘=’). 

Two main parameters, called ignore and stop, are used 
to control the rule generation process. The ignore 
parameter specifies the misclassification rate that is 
acceptable for each rule and can have different values for 
each output class. The ignore parameter is given as a 
percentage of remaining instances or as an absolute 
number of instances. The motivation for the ignore 
parameter is that it can be used to view the data set at 
different levels of detail, with higher values prioritizing 
the really broad discriminating features of data items and 
low values trying to capture more specific rules. The stop 
parameter specifies the proportion of instances in the data 
set that should be covered by rules before terminating. 
The motivation for this parameter is that it can be used to 
find only the most general relationships in the data, 
instead of trying to find rules to cover particular 
instances. In effect, these two parameters control the level 
of “granularity” for the decision list. 

Experimentation on UCI [26] data sets in [16] has 
shown that Chipper obtains similar accuracies to both the 
standard decision tree algorithm C4.5, implemented as 
J48 in Weka and RIPPER, implemented in Weka as JRip.  

3. Method 

The aim of the experiments is to investigate whether the 
evaluated decision list algorithms (Chipper, JRip and 
PART) can produce comprehensible models of 
relationships in the hERG data set that are of use to 
computational chemists. For comparison regarding 
accuracy level and comprehensibility, the data set was 
first analyzed using random forests as implemented in the 
system RDS [27]. Comprehensibility was measured using 
rule set size; both number of rules and number of tests, 
since some techniques use conjunctive rules, and 

classification complexity (CC). Classification complexity 
measures the average number of rules or tests that are 
needed to classify an instance. When calculating CC test 
for a conjunctive rule, the rule is taken to classify all 
instances at the last conjunct, since all conditions are 
needed to obtain a classification.  

Finally, the effects of the mechanisms for controlling 
accuracy, comprehensibility and coverage in Chipper 
were evaluated. 

3.1. Data set 

The data set consisted of 6020 drug-like molecules from 
the AstraZeneca corporate database. These compounds 
have been screened for hERG blockade using the 
IonWorks™ HT (high throughput) electrophysiology 
assay [28][29]. The response from the assay was 
subsequently divided into two classes (high and low). The 
molecules were transformed into their respective neutral 
states, e.g. no overall charge was assigned to the 
compounds. Molecular properties (descriptors) were 
generated using the in-house program SELMA [30]. 
SELMA generates parameters related to size, flexibility, 
hydrogen bonds, electronics (charge related properties), 
as well as lipohilicity. In total, SELMA computed 196 
parameters describing the molecules in the data set. 

3.2. Techniques 

Decision trees have many attractive features, such as 
allowing for human interpretation and hence making it 
possible for a decision maker to gain insights into what 
factors are important for particular classifications. Recent 
research has shown that significant improvements in 
predictive performance can be achieved by generating 
large sets of models, or ensembles, which are used to 
form a collective vote on the value for the dependent 
variable [31]. For ensemble models to work as intended 
there must be some diversity among the base classifiers. 
One popular method of introducing diversity is bootstrap 
aggregating, or bagging, as introduced by Breiman [32]. 
Another popular method of introducing diversity when 
generating decision trees is to consider only a small 
subset of all available independent variables at each node 
when forming the tree. When combined with bagging, the 
resulting models are referred to as random forests [33], 
and these are widely considered to be among the most 
competitive and robust of current methods for predictive 
data mining. The drawback of ensemble models is, 
however, that they can no longer be easily interpreted and 
hence provide less guidance into how classifications are 
made. 

The Rule Discovery System (RDS) [27] addresses this 
problem by providing some insight into what factors are 
of importance in an ensemble of decision trees by 



presenting the variable importance of each independent 
variable, i.e. how much the variable, relative to all other 
variables, contributes to reducing the squared error of the 
dependent variable. 

3.3. Experiments 

A two-fold cross-validation procedure was employed 
throughout the work. In Experiment 1, the data set was 
initially analyzed by ensemble modeling (50 trees) and 
recursive partitioning using RDS™. Variable selection 
was then performed based on the results from the 
ensemble modeling, where the 90 most important 
parameters were subsequently used for further analysis in 
Experiment 2 using Chipper, JRip and PART. 

Experiment 3 was designed to investigate the tradeoff 
between accuracy, model size and coverage, by varying 
the ignore and stop settings in Chipper. In all, 14 Chipper 
runs were performed, consisting of all possible 
combinations of the following parameter settings:  

• Stop: 70, 90 
• Ignore: 0.25%, 0.5%, 1%, 2%, 4%, 8%, 16% 

4. Results 

In the first experiment, the data set was analyzed using 
RDS, followed by variable selection. Reduction of the 
number of parameters from 196 to 90 (54% reduction) did 
not influence the accuracy of the derived model, nor the 
number of rules generated to any significant extent. Table 
1 below shows accuracy and size results for RDS, using 
both the full and the reduced data set. 
 

Table 1. RDS Accuracy and size 
Full Reduced  

Acc. #rules Acc. #rules 
RDS tree 69.3 102 70.3 103 
RDS ensemble 80.8 12160 79.9 11256 

 
As can be seen, there is a substantial difference between 
single tree and ensemble accuracy, which is in accordance 
with established ensemble theory. The ensemble is, 
however, inherently opaque and thus not comprehensible. 
The single tree model, although transparent, contains over 
100 rules and thus holds limited explanatory value. 

In light of the discussion above regarding accuracy 
and comprehensibility in decision lists, it is of interest to 
take a more detailed look at the decision lists produced. 
Table 2 below shows these results for the reduced data 
set. The column r_acc (rule accuracy) shows the accuracy 
of the rules; i.e. without the default rule, m_acc (model 
accuracy) on the other hand includes instances classified 
by the default rule. For this experiment, Chipper was set 
at 4.5% ignore and the stop parameter was set at two 
different values (70% and 90%).  

 
Table 2. Accuracy, coverage and size 

 m_ acc r_acc # 
rules 

# 
tests 

CC 
rule 

CC 
test 

PART 76.4 91.3 169 996 98.5 411.1 
JRip 74.2 82.2 20 93 16.1 74.7 
Chip90 67.2 75.1 14 14 5.2 5.2 
Chip70 67.4 76.4 7 7 4.0 4.0 

 
The main result from Experiment 2 is the strong 
relationship between accuracy and rule size that holds for 
all three decision list algorithms. This indicates that 
relationships in the data set are complex and that it takes 
many conditions to build a model with high accuracy.  

Regarding classification complexity, PART performs 
very badly, requiring on average 100 rules, containing 
altogether several hundred conditions, to classify an 
instance. JRip performs better, but still needs on average 
75 conditions to classify an instance, mainly due to only 
describing the minority class. Chipper, finally, manages 
to use its small rule sets rather efficiently and obtains very 
low classification complexities.   

The results from Experiment 3, regarding Chipper and 
the effect of different parameter settings on accuracy and 
comprehensibility, are shown in Table 3 below. The 
r_acc train and r_acc test columns show the average 
training and test accuracy over the two folds, respectively. 
#rules is the average number of rules over the two folds. 
Note that only rule accuracy is shown in the table; model 
accuracy is however, stable around 68%. 

 
Table 3. Chipper size and accuracy 

70 90 Stop 
 
Ign 

r_acc 
train 

r_acc 
test 

# 
rule

s 

r_acc 
train 

r_acc 
test 

# 
rules 

0.25% 0.872 0.715 83 0.879 0.691 158.5 
0.5% 0.846 0.715 46.5 0.846 0.693 89.5 
1% 0.820 0.736 25 0.812 0.697 52 
2% 0.814 0.756 13 0.799 0.731 27.5 
4% 0.783 0.747 7 0.770 0.713 14.5 
8% 0.744 0.700 4 0.738 0.690 7.5 
16% 0.720 0.712 2 0.719 0.703 3 
 

As can be seen in the table, rule set size, as expected, 
correlates very well with the ignore value; increasing 
ignore invariably leads to a smaller rule set. Regarding 
rule test accuracy, the pattern is less clear, but results 
seem to indicate that an ignore value in the middle range 
gives higher rule set accuracy. Unsurprisingly, low ignore 
values lead to over-fitting, with training accuracies 
approaching 90%, but much worse rule accuracy. Using a 
too high ignore value, on the other hand, lowers training 
rule accuracy considerably. This pattern holds for both 
settings of the stop parameter. The ignore parameter thus 
works as intended, allowing the user to select the level of 



detail with which to describe relationships. For this 
particular, quite difficult data set, the effect on training 
accuracy is immediate, but this does not carry over to test 
accuracy.    

Comparison between the two stop values shows that 
lowering the stop value, i.e. reducing the coverage, will 
decrease model size in a predictable way. Using a high 
stop value also has the disadvantage of increasing the risk 
of over-fitting, as seen by the worse test accuracies for all 
ignore values. 

In Figure 1 below, a sample Chipper rule set, for 3% 
ignore and 70% stop, is shown: 

 
R1:  HYBOT_sum_donor >= -1.279 -> high 1079/180 
R2:  GClogP          <= 1.911  -> low  661/148 
R3:  PSA             <= 51.891 -> high 487/126 
R4:  HYBOT_max_donor >= -1.660 -> high 441/92 
R5:  GC-type-058     <= -0.003 -> high 360/65 
R6:  Neg._ioniz.     >= 1.001  -> low  319/72 
R7:  GC-type-026     >= 4.994  -> high 283/79 
R8:  Motoc_index     >= 9.135  -> high 235/71 
R9:  Mol._volume_2D  >= 846.72 -> high 186/63 
R10: Motoc_index     >= 8.602  -> high 185/59 

Figure 1. Sample Chipper rule set 
 

The above rule set, as derived by Chipper with parameters 
at 70% stop and 3% ignore, consisted of 10 rules. 778 
compounds (~13 %) were not covered by the derived 
rules, which is far below the limit of 30%. Average rule 
accuracy over the two folds was 74.6% and average 
model accuracy was 67.8 %. 

The properties covered by the rules are consistent with 
other publications indicating similar properties to be 
important for high and low hERG activity, respectively. 

Thus, lipophilic, unpolar and large compounds are the 
type of compounds that would interact strongly with 
hERG, as exemplified by rules R1-R4, R6 and R9. In rule 
R1 and R4, the lack of hydrogen bonds, i.e. a polar 
characteristic, results in hERG active compounds (note 
that the HYBOT donor variables are negatively defined, 
i.e., the more hydrogen bonds, the larger negative value 
and, consequently, the more positive value the less 
hydrogen bonding properties, and the more unpolar 
character of the molecule). In rule R2, it is indicated that 
a lipohilic (fat) compound, i.e. a high value for the 
GClogP variable, also gives hERG active compounds. In 
rule R6, it is indicated that negatively ionisable 
compounds, e.g. carboxylic acids, are not hERG active 
which is also in agreement with present knowledge. 

This short set of interpretable rules enables researchers 
to focus their attention on compounds with suitable 
molecular properties that are likely to be devoid of hERG 
activity. 

5. Conclusions 

In this study, the task of predicting hERG activity from a 
large number of attributes has been studied from a 

machine learning perspective. For this problem, it is 
desirable to obtain comprehensible modes, in order to 
gain insights into interesting relationships in the 
underlying domain. Various demands on such models and 
techniques used to obtain them have been discussed. Most 
importantly, techniques should always be able to produce 
comprehensible models, and be able to obtain reasonable 
accuracy, given this restriction. 

The results from the experiments show that algorithms 
for learning decision lists can obtain predictive 
performance that is not far from the state-of-the-art 
method random forests. However, decision list algorithms 
focusing on accuracy alone may give rise to very complex 
decision lists that can be very hard to interpret, which is 
in direct contrast to the purpose of generating 
interpretable models in the first place. The experiments 
show that by sacrificing accuracy only to a limited 
degree, the comprehensibility (measured both by size of 
the rule sets and by classification complexity) can be 
improved remarkably. This, in turn, gives interpretable 
information to researchers and enables them to focus their 
attention on more suitable sub-domains to avoid 
interactions with hERG. 
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