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ABSTRACT  

Existing methods for learning from structured data are 
limited with respect to handling large or isolated 
substructures and also impose constraints on search depth 
and induced structure length. An approach to learning 
from structured data using a graph based 
propositionalization method, called finger printing, is 
introduced that addresses the limitations of current 
methods. The method is implemented in a system called 
DIFFER, which is demonstrated to compare favorable to 
existing state-of-art methods on some benchmark data 
sets. It is shown that further improvements can be 
obtained by combining the features generated by finger 
printing with features generated by previous methods. 
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1.  Introduction 
 
In many domains, in which a model is to be generated by 
machine learning, examples are more naturally 
represented by structured terms than fixed-length feature 
vectors. For example, in chemo-informatics, molecules 
are naturally represented as two or three dimensional 
structures of atoms. Another example is when having data 
on XML format, which could be directly mapped on tree 
structures.   

Several approaches to learning to classify structured 
data have been introduced in the field of machine 
learning. The structure classification problem has been 
addressed as a rule learning problem [1,2,3,4,5], as a 
graph mining problem [6,7,8,9,10,11,12,13,14,15] and as 
a propositionalization problem [16,17,18].  These 
methods address two main varieties of problems. The first 
category concerns discovery of features that best 
discriminate between different classes. Krogel et al [16], 

for example, introduce an approach to selecting the “most 
interesting” features of structured data that discriminate 
between the classes. A key requirement of the feature 
discovery methods is that the discovered features should 
be comprehensible. 
In contrast to the discovery methods, classification 
methods generate global models for classifying all 
examples, but the models need not necessarily be 
comprehensible. Most classification methods assume that 
all examples can be represented by fixed-length feature 
vectors, and finding features that suitably contain the 
relevant information in this format can be considered a 
major knowledge engineering bottleneck for these 
methods. This is true in particular when the examples are 
most naturally represented as structured terms (e.g., trees, 
lists, etc.). Existing methods for structure classification 
are limited with respect to finding large or isolated 
substructures or by requiring constraints on search depth 
and size of substructures considered, as further described 
in section 2, and hence more robust methods for learning 
from structured data are needed. The method presented in 
this paper, which extracts features from structures by a 
method called finger printing, is motivated exactly by this 
need. 

The rest of the paper is organized as follows. In section 
2, the state-of-art structure classification methods are 
discussed together with their limitations. The novel finger 
printing method, that addresses these limitations, is 
introduced in section 3. In section 4, an empirical 
evaluation is presented, comparing the novel method to 
state-of-the-art methods on some benchmark datasets. 
Finally, in section 5, we give concluding remarks and 
outline possible further extensions to this study. 



2. Current Approaches to Learning from 

Structured Data 

Current state-of-art methods for feature discovery and 
classification use several forms of structure 
transformation. Inductive logic programming [5] has 
drawn immense popularity since its inception, mainly due 
to that background knowledge and data as well as the 
result of the methods are represented in the same format: 
logic programs. Propositionalization methods is one class 
of ILP methods that transform the relational rule learning 
problem into a standard attribute-value learning problem 
by identifying suitable features [16]. However, these, as 
well as the standard ILP methods, are often faced with a 
huge search space, either for which constraints have to be 
imposed, or for which the domain has to be restricted in 
terms of the number of examples considered [19]. The 
limits on search depth and clause length typically result in 
that the substructures discovered by ILP methods are 
quite small and usually are limited to 5-6 structural 
relations [20].  

Graph mining methods, including kernel methods, are 
efficient enough to discover considerably larger 
substructures compared to the ILP methods [9,20]. 
Although the current algorithms already perform quite 
well, they still have some limitations. The graph mining 
approaches suffer from the decidability problem of 
isomorphism between sub-graphs, which is NP-complete 
[20]. Graph kernels [12,14] have been demonstrated to 
result in accurate classifiers, but defining an appropriate 
kernel function for a particular problem remains a 
challenge. “ It is known that computing complete graph 
kernels is at least as hard as deciding whether two graphs 
are isomorphic” [13]. Kernal methods consider parts of 
graphs such as walks, cyclic paths etc. in defining kernel 
functions and therefore it is a challenge for kernel 
methods to consider “the entire structure of the graph into 
account. While those kernels can be defined, computing 
them is hard” [13].  Also the discovered graphs by kernels 
or frequent graph mining methods are required to be 
connected by necessity. This prevents inclusion of 
isolated or far away frequent nodes or sub graphs. Thus 
two fragments within a graph that are not connected are 
not being considered in conjunction by the current 
methods, even if the contribution of these fragments when 
taken together would be a highly potential feature. 
Another limitation of current graph mining methods is 
that they only consider exact matches of the sub-graphs 
and hence do not allow mining similar sub-graphs [21], 
i.e., sub-graphs that are not exactly equal to each other 
(also referred to as inexact sub-graphs), but differ only by 
a few nodes. For example, in a chemo-informatics 
application, different molecules may have carbon chains 
of different lengths, but to which the same topology of 
atoms may be connected, i.e., the corresponding 
substructures differ only by its length of the carbon chain. 
These substructures are not exactly equal to each other 
since they differ by the length of the carbon chain, but 

rather similar since the topology other than the length of 
the carbon chain of the substructures is the same. Current 
methods consider these substructures as completely 
different, since the substructures do not exactly match 
with each other. A further discussion about similar sub-
graphs can be found in [21]. Furthermore, memory and 
runtime are challenges for most of the graph mining 
algorithms [21].  

In summary, ILP methods can be useful for learning 
from structured data if discovery of small substructures is 
sufficient, but they do require that non-trivial constraints 
on the search space are provided. If the domain of interest 
requires the discovery of large substructures, graph 
mining methods are often more suited. However, sub 
graph discovery requires calculation of graph 
isomorphism, which is a NP complete problem. 
Furthermore, these methods cannot be used to discover 
several isolated substructures and require exact matching 
of substructures. Hence, in these cases, more robust 
methods for learning from structured data are required. 

3. Finger Printing 

Our approach to structure classification employs a graph 
transformation method which could address some of the 
limitations discussed in the previous section. The method 
does not require a graph isomorphism test and has the 
ability to combine isolated substructures and has the 
potential to discover similar substructures. It also does not 
require any constraint to be imposed on the search space. 
Our method follows a data to model (bottom – up) search 
strategy and digs down any potential substructures 
irrespective of its length. Since the graphs are transformed 
into a canonical form called finger print, the 
computational cost in manipulation of the graphs is very 
low. Our method could be applied to any form of 
structured data, from trees to undirected graphs, from 
sequences to tuples etc., and hence all these types of 
structured data are referred to as graphs during the rest of 
this paper.   

3.1 The finger printing method  

Several methods have been suggested to represent 
structured data for learning algorithms, and canonical 
forms of graphs are among the most popular due to their 
computational simplicity [20]. Our method of 
transforming structured data into a canonical form of a 
graph is called finger printing.  

Structured data is assumed to be represented by nodes 
(e.g., an atom in a molecule) and edges (e.g. a bond 
connecting two atoms). Furthermore, it is assumed that all 
nodes have been given labels, allowing similar nodes in 
different graphs to be handled in a similar way (e.g., an 
atom could be given the label ‘carbon’). Each example is 
represented by the set of all triples (Li,Lj, Ek), such that 
there is an edge labeled Ek in the graph of the example 



between nodes Ni and Nj that are labeled Li and Lj 
respectively. We refer to such a set as a finger print.  

The finger prints are used for substructure search in the 
following way. For all pairs of examples, the intersection 
of their finger prints, which is referred to as the maximal 
common substructure, is formed, and ranked according to 
their frequency in the entire set of examples (i.e., the 
number of finger prints for which the maximal common 
substructure is a subset). An upper and lower threshold is 
applied to select the most contributive substructures for 
classification. This whole process is solely an item set 
matching and it successfully avoids the subgraph 
isomorphism problem. It should be noted that no 
constraints are applied on the length of the substructures 
considered during this process. Therefore the discovered 
substructures are not subjected to pruning the search 
space beforehand in any manner. 

3.2 Implementation 

We have developed a feature construction and classifier 
system called DIFFER (DIscovery of Features using 
FingER prints), using the methodology described in 
section 3.1. The input to DIFFER consists of examples of 
structures that are transformed into graphs. From this, 
DIFFER produces a set of features together with an 
encoding of the examples using these features, in a form 
of a text file that can be used by most standard 
classification methods  (the output file is of the .arff 
format, which is the recognizable format for WEKA data 
mining toolkit).  

3.3 Illustrative example  

As an illustration of how our fingerprinting algorithm 
works, a toy dataset of 6 molecules is considered. The 2D 
structures of the molecules are depicted in the 2nd column 
of Fig. 1 below.  

The atom name is considered as the node label for this 
dataset. The bond types among atoms are the edge 
(relation) label. Hence the set of distinct node labels for 
the given dataset is {[N],[C],[O],[S],[Cl]}, and the set of 
relation labels are {1,2,7}, where 1, 2 and 7 represent  
single, double and aromatic bonds respectively.  
Molecules are then transformed into graphs as shown in 
the 3rd column of the Fig. 1. The transformed graphs 
could be represented as matrices, where each element of a 
matrix represents a bond of a certain type between two 
atoms, as illustrated in the 4th column of Fig. 1.  
 

The fingerprints of the set of examples considered are1: 
f(1) = {(C,N,1), (O,C,2)} 
f(2) = {(C,N, 1), (C,C,7),(O,N,2)} 

                                                 
1 Since graphs are undirected, only the lower part of the matrix 

representation of the graphs (column 4 of Fig. 1.) are 
considered. 

f(3) = {(C,N,1), (O,C,1), (S,C,1)} 
f(4) = {(C,N,1), (C,C,7), (Cl,C,1)} 
f(5) = {(C,N,1), (C,C,2), (O,C,1), (Cl,C,1)} 
f(6) = {(C,N,1), (O,N,1), (S,N,2)} 

 

 
Fig. 1.  Example structures and their graph and matrix 
representations 
 
The maximal common substructure search algorithm is 
applied to all the fingerprints and the resultant set of 
substructures selected by the algorithm are: {(C,N,1)}, 
{(C,N,1), (O,C,1)}, {(C,N,1), (C,C,7)}, {(C,N,1), 
(Cl,C,1)}. We also apply an upper threshold for removing 
substructures that appear in more than 95% of the 
fingerprints. Therefore the selected substructures which 
could be used as features for an attribute value learner are 
{(C,C,7)}, {(O,C,1)} and {(Cl,C,1)}, which corresponds 
to: 
 
 
 

Fig. 2. Selected features from the toy example 

This method also allows substructures that are marginally 
equal, i.e., differ only by few atoms present in the 
structure, for example carbon chains with different length, 
would be included in a same feature, enhancing the ability 
of mining inexact substructures.   

C 7 C O 1 C Cl 1 C



4. Experimental Evaluation  

We have used two benchmark datasets from chemo-
informatics and one dataset from east-west challenge to 
compare the performance of DIFFER with other available 
methods for learning from structures.  

4.1 Datasets  

First of the three datasets used for experimentation 
purposes is the mutagenesis dataset [22]. The problem 
related to the mutagenesis dataset is to predict the 
mutagenicity Salmonella typhimurium, using a set of 230 
aromatic and heteroaromatic nitro compounds. Debnath et 
al [22] has recognized two subsets of this dataset: 188 
compounds that could be fitted using linear regression, 
and 42 compounds that could not. We have used the 
regression friendly dataset for our evaluation purposes.  

The second benchmark data set, carcinogenesis, was 
originally developed within the US national toxicology 
program [23]. It consists of 298 compounds that have 
been shown to be carcinogenic or not in rodents. 
Although the original dataset contains 3 classes of 
carcinogenesis, these were treated as one class as done in 
most previous studies.   

The third data set concerns the very popular east-west 
train problem [24], which contains 20 trains where 10 
each are headed to east and west respectively. The task is 
to identify the characteristics of the trains that make them 
headed east or west.  

4.2 Experimental setup and results 

Both Mutagenesis and Carcinogenesis datasets contain 
atom-bond descriptions of each molecule, as well as the 
element name and the type of each atom. It also provides 
the explicit knowledge about complex structures, such as 
benzene rings, nitro groups etc. Therefore we have 
considered two levels of background knowledge during 
the construction of node definitions for the 
experimentation, such as: 
� D 1: atom and bond description of each node is 

available. Therefore the node definition for D1 is 
represented as node(node_name, node_type). For 
example a carbon atom of type 22 is defined as 
node(c, 22). 

� D 2: Background knowledge includes, in addition to 
information of D1, the atom’s contribution for 
complex structures such as a part of a benzene ring, 
or a nitro group, and therefore the respective node 
definition would be node(node_name, node_type, 
[list of structure contributions]). For example 
node(c,22,[N,B,I]), where N, B and I stands for part 
of a nitro group, benzene group and a 5-aromatic 
ring.  

 

The east-west challenge has a set of trains, which each 
train contains a set of carriages, and a set of loads inside 
the carriages. These carriages have different properties, 
such as the number of wheels, roof type etc. and loads has 
properties such as shape and number. We have considered 
each train as a structure, and the nodes are the objects it 
consists of, i.e., carriages and loads. Node definition in 
this instant would be object(object_name,<set of 

properties>). For example a carriage with a long 
rectangular shape, a flat roof, sides that are not double and 
3 wheels, is represented by 
object(c,rectangle,long,not_double,flat,3). Relations in 
this domain are connected_to and on, which has edge 
labels 1 and 2 respectively.  

We have performed experiments with the 3 datasets 
and feature generation was carried out according to the 
approach discussed in section 3. We have used all the data 
as training examples during feature generation. This does 
not impose any bias on feature construction since we are 
not considering class distribution of features during the 
feature construction.   

Features generated by DIFFER is used as input to 
some standard machine learning methods. We have tested 
for several methods, namely, PART decision list, logistic 
regression, C4.5 and SVM1 as implemented in WEKA 
data mining toolkit [26]. DIFFER achieved its best results 
for the method random forest [25] with 50 trees where 10 
random features are evaluated at each node. 10 fold cross 
validation is used as the evaluation method. The results 
we obtained with DIFFER were compared with existing 
state-of-the-art methods, including an ILP based 
propositionalization method, RSD [16] and graph based 
propositionalization method for molecules MolFea [15].  

We have used all the data in each of the 3 benchmark 
datasets as training examples for RSD as well, using the 
same learning methods. RSD also produced its best results 
for random forest when valuated using 10 fold cross 
validation. MolFea, which is a specialized tool for mining 
molecular fragments, has been used for the 1st two 
datasets and its best results are also included in the Table 
1, along with its best classifier within the parenthesis.  

We conclude that DIFFER’s results are at a par with 
the existing methods, but the computational simplicity of 
the method in DIFFER, and ability to address the 
limitations of the existing methods counts more. 

  DIFFER’s improved accuracy in D2 can be justified 
as the gain by including molecular topological knowledge 
into node definition. It also is worth to note that as per to 
the literature the graph based concept learner SUBDUE-
CL [9] have reported a 61.54% accuracy for the 
carcinogenesis data and the tree mining approach Tree2χ2 
[11] have reported 80.26% accuracy for the mutagenesis 
data, which has considerably low performance compared 
to DIFFER.   
 



 

Table 1. Comparison of DIFFER with some state-of-the-art 
methods 

We also have studied what happens when merging 
features of DIFFER with those of other methods. When 
merging the feature set of RSD with the feature set of 
DIFFER, an increase in accuracy was observed (final 
column of Table 1). We analyzed the feature set generated 
by RSD for the mutagenesis dataset and rather 
surprisingly, we found that it did not contain any atom-
bond features. Nonetheless it contained global molecular 
structure properties such as whether or not two connected 
nitro groups are present. In contrast to this, the features 
generated by DIFFER contains inner structural 
information of atom-bond connections. The experiment 
demonstrates that by merging these two complementary 
sets of features the accuracy of the resulting model can be 
increased. 

5. Concluding Remarks 

Learning from structured data is an important challenge 
for machine learning methods, with many important 
applications, for example within analyzing data from the 
web, in chemo- and bioinformatics, in management and 
business transaction domains, etc. These domains are 
often complex not only in terms of the presence of 
structures, but also often in terms of the size of the data 
sets to be analyzed. Existing techniques for learning from 
structured data are demonstrated to have a number of 
limitations w.r.t. to effectively analyzing the data due to 
inability to discover isolated sub-graphs or capture 
topology of similar sub-graphs and by requiring that non-

                                                 
2 We did not achieve the same accuracy for RSD as reported in 

[16] for the mutagenesis dataset although the same code and 
files were used in reconstruction of features. 

3 MolFea uses only the atom bond descriptions in constructing 
its features.  

4 Feature construction algorithm of RSD did not terminate for 
this data. 

5 MolFea is a molecule fragment miner and cannot be used in 
any other domain. 

trivial constraints on the search space is provided, 
something which may prevent the discovery of large 
interesting substructures. Standard approaches to graph 
mining also suffer from the NP-complete subgraph 
isomorphism problem. In order to overcome these 
limitations, a novel method, that transforms structured 
data into a canonical representation, called finger prints, 
has been presented.  

The new method, which has been implemented in a 
system, called DIFFER, has been shown to be competitive 
with the existing state-of-the-art methods on some 
standard benchmark data sets, without imposing 
constraints on the search space. The reason for its 
effectiveness can be explained by its ability to mine large 
as well as isolated discriminative sub-graphs. A very 
interesting observation is that the classification 
performance can be improved by merging the features 
generated by DIFFER with features generated by other 
methods and thereby integrating the different qualities of 
several methods. Thus rather than searching for new 
feature extraction methods that on its own compete with 
existing methods, it appears to be a promising approach to 
search for new methods that generate complementary 
features.    

There are several possible directions for future work. 
At present DIFFER’s substructure search is a pair-wise 
approach, for which the computational cost grows 
quadratically with the number of examples. A more 
efficient procedure could be obtained by using some 
incremental way of searching for the substructures. 
Sampling of which pairs to consider is also a 
straightforward way of controlling the computational cost 
[3]. Alternatives to the use of the covering statistic in 
conjunction with maximum and minimum thresholds 
could also be explored. Candidates for this include model 
driven approaches such as voting by the ROC convex hull 
or a coverage measure.  

The promising result of combining the features 
generated by DIFFER and RSD also leads to considering 
merging the features of DIFFER and other methods, 
perhaps further improving the predictive performance.  
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