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Abstract—Ensemble classifiers are known to generally perform
better than their constituent classifiers. Whereas a lot of work has
been focusing on the generation of classifiers for ensembles, much
less attention has been given to the fusion of individual classifier
outputs. One approach to fuse the outputs is to apply Shafer’s
theory of evidence, which provides a flexible framework for
expressing and fusing beliefs. However, representing and fusing
beliefs is non-trivial since it can be performed in a multitude
of ways within the evidential framework. In a previous article,
we compared different evidential combination rules for ensemble
fusion. The study involved a single belief representation which
involved discounting (i.e., weighting) the classifier outputs with
classifier reliability. The classifier reliability was interpreted as
the classifier’s estimated accuracy, i.e., the percentage of cor-
rectly classified examples. However, classifiers may have different
performance for different classes and in this work we assign
the reliability of a classifier output depending on the class-
specific reliability of the classifier. Using 27 UCI datasets, we
compare the two different ways of expressing beliefs and some
evidential combination rules. The result of the study indicates
that there is indeed an advantage of utilizing class-specific
reliability compared to accuracy in an evidential framework for
combining classifiers in the ensemble design considered.
Keywords: ensemble classifiers, random forests, evidence
theory, Dempster-Shafer theory, combination rules

I. INTRODUCTION

Information fusion researchers have pointed out the poten-
tial benefits of learning predictive models to improve fusion-
based state estimation [1]. Conversely, machine learning (or
data mining) researchers have acknowledged the contribution
of information fusion to the construction of predictive models
[2]. A predictive model (or classifier) is constructed from ex-
amples with known class labels to suggest the most likely class
for novel, i.e., previously unseen, examples. Many different
ways of constructing predictive models have been proposed,
and it is widely acknowledged that there is no single method
that is optimal for all possible problems [3]. Instead, the fact
that individual classifiers generated in different ways or from
different sources are diverse, i.e., make different classification
errors, can be exploited by combining (or fusing) their outputs
to improve the classification performance [4], [5]. There has
been a substantial amount of work in the field of machine
learning on developing different methods to exploit the idea
of learning such ensembles of classifiers, including varying
the set of training examples given to the learning algorithm

or randomizing the process for generating each classifier, see
e.g. [6].

The main focus of previous research on ensembles of clas-
sifiers has been on the generation of the constituent classifiers,
rather than on the way in which they are combined. Similarly
to the learning methods, no single combination rule can be
expected to be optimal for all situations, but instead each
rule has its individual strengths and weaknesses. Still, it may
be the case that some of the rules are better suited than
others to combine the output of certain types of ensemble
classifier. Most commonly, straightforward fusion approaches,
such as voting, are employed (explained in e.g., [4], [7]–[10]).
However, some authors have proposed using Shafer’s evidence
theory to combine the ensemble classifiers by expressing their
outputs in terms of mass functions [10]–[14], representing
the belief of each classifier. Originally, Dempster’s rule was
proposed as the means to combine mass functions [15]. Since
then, many alternative combination rules have been proposed
to counter seemingly deficient properties of Dempster’s rule,
such as Yager, Dubois-Prade, and the modified Dempster’s rule
[16].

In a previous article [17], we compared different evidential
combination rules for a specific ensemble design. The results
indicated that some of the combination rules seem to be more
appropriate than others for ensemble classifiers. The combi-
nation rules we selected were Dempster’s and the modified
Dempster’s rule.

In the previous work, we employed a simple class belief
representation that discounted each mass function with the
reliability of the classifier. The reliability was expressed as
the estimated accuracy of each classifier. However, it should
be noted that this reliability measure is independent of the
predicted class. Hence, it does not allow for expressing that
certain classifiers are more reliable when predicting certain
classes. In this work, we add an alternative way to represent
belief which is based on the classifier’s classification accuracy
for each class.

In the next section, we give a brief description of ensemble
classifiers (random forests in particular) and discuss how the
output of members of ensembles commonly are combined.
In Section III, we give a brief introduction to evidential
theory and present the combination rules that are compared



in this study. In Section IV, we discuss previous approaches
to evidence-based ensemble combination. In Section V, we
describe the experimental setup of the study and present
results from using the evidential combination rules and belief
representations for random forests. Finally, in Section VI, we
present the main conclusions from this study and point out
some directions for future research.

II. ENSEMBLES OF CLASSIFIERS

A. Basic Terminology

A classifier e is a function that maps a vector of attribute
values x (also called example) to classes c ∈ C = {c1, . . . , cl}.
An ensemble classifier consists of a set of classifiers, E =
{e1, . . . , em}, whose output is dependent on the outputs of
the constituent classifiers.

B. Random Forests

Classification trees have many attractive features, such as
allowing for human interpretation and hence making it pos-
sible for a decision maker to gain insights into what factors
are important for particular classifications. However, recent
research has shown that significant improvements in predictive
performance can be achieved by generating large sets of
models, i.e., ensembles, which are used to form a collective
decision on the value for the dependent variable [6]. It can be
shown that as long as each single model performs better than
random, and the models make independent errors, the resulting
error can in theory be made arbitrarily small by increasing the
size of the ensemble. However, in practice it is not possible
to completely fulfill these conditions, but several methods
have been proposed that try to approximate independence, and
still maintain sufficient accuracy of each model, including the
introduction of randomness in the process of selecting exam-
ples and attributes when building each individual model. One
popular method of introducing randomness in the selection
of training examples is bootstrap aggregation, or bagging, as
introduced by Breiman [18]. It works by randomly selecting n
examples with replacement from the initial set of n examples,
leading to that some examples are duplicated while others are
excluded. Typically a large number (at least 10) of such sets
are sampled from which each individual model is generated.
Yet another popular method of introducing randomness when
generating classification trees is to consider only a small
subset of all available attributes at each node when forming
the tree. When combined with bagging, the resulting models
are referred to as random forests [19], and these are widely
considered to be among the most competitive and robust of
current methods for predictive data mining [20].

C. Classifier Output Combination

Xu et al. [10] suggest that the output of individual classifiers
can be divided into three different levels of information content
which we refer to as propositional, relational and confidence

in this discussion.1 A propositional output merely states the
classifier’s preferred class and relational output involves an
ordering or ranking of all classes from the most likely to
the least likely. The propositional and relational outputs are
qualitative values in contrast to the quantitative confidence
output which assigns a numeric value to each class specifying
the relative degree to which the classifier believes the class to
represent the true class for the novel example. The confidence
output is the most general since it can be transformed into a
relational, which, in turn, can be transformed in a propositional
output (i.e., the highest ranked class). On the confidence level,
the output is often treated as a probability measure.

In the literature, different combination methods have been
presented that apply to different output levels. For instance,
the weighted majority voting method applies to propositional
output and borda count to relational [4]. The preferred class
c∗ using the weighted majority voting method is

c∗ = arg max
c∈C

∑
e∈E

re δe,c (1)

where re is a reliability weight for classifier e and

δe,c =
{

1, if e outputs c
0, otherwise (2)

Hence, the ”combined vote” for a class c is the sum of the
weights of the classifiers that have c as their output. The
reliability is often measured as a classifier’s rate of correctly
classified training examples (i.e., its classification accuracy).

Since all outputs of the confidence level can be reduced to
the levels of lower information content, combination methods
applicable to the propositional and relational level are also
applicable to the confidence level. Consequently, such methods
can be applied to heterogeneous sets of classifiers by trans-
forming the outputs of different levels to a common level.

III. EVIDENTIAL THEORY

The idea in evidential theory [15] is to build beliefs about
the true state of a process from smaller and distinct pieces
of evidence. The set of possible states is called the frame of
discernment and is denoted by Θ. The frame of discernment
is both mutually exclusive and exhaustive, i.e., only one state
in Θ can be the true state and the true state is assumed to
be in the set. Evidences are formulated as mass functions,
m : 2Θ 7→ [0, 1], satisfying the following axioms:

m(A) ≥ 0 (3)
m(∅) = 0 (4)∑

A⊆Θ

m(A) = 1, (5)

where A ⊆ Θ. All subsets A ⊆ Θ for which m(A) > 0 are
called focal elements. Once a mass function over the frame

1Although these levels are well known, the names we have chosen are
unconventional. In the literature, various names are given to these levels.
Propositional output is sometimes called abstract or decision, and the confi-
dence output is sometimes called soft, continuous, measurement or degree of
support.



of discernment has been obtained, the belief for a set A ⊆ Θ
can be calculated in the following way:

Bel(A) =
∑
B⊆A

m(B) (6)

Another function frequently used is plausibility [15]:

Pl(A) = 1−Bel(Ā) =
∑

B∩A6=∅

m(B) (7)

If mass functions are produced by sources that have different
degrees of reliability, e.g., sensors of different quality, it is
possible to account for this by utilizing reliability factors and
discount the sources in the following way:

mα
i (A) = αmi(A),∀A 6= Θ

mα
i (Θ) = αmi(Θ) + (1− α), (8)

where 0 ≤ α ≤ 1 is the reliability factor of source i.
When a number of different distinct pieces of evidence are

available, these can be combined into a single mass function
by applying a combination rule.

A. Evidential Combination Rules

Combination rules specify how two mass functions, say
m1 and m2, are fused into one combined belief measure
m12 = m1 ⊗m2 (we here let the binary operator ⊗ denote
any rule for mass function combination). Many combination
rules have been suggested (several are presented in [16]), and
we below briefly discuss the ones we use in our study.

To combine multiple mass functions, the combination rule
is applied repeatedly. Most combination rules are associative,
i.e., (m1 ⊗m2)⊗m3 = m1 ⊗ (m2 ⊗m3), meaning that the
order in which mass functions are combined does not affect the
final outcome. For non-associative rules, however, that do not
satisfy this algebraic property, the order matters. Hence, unless
a specific order of the classifier outputs can be justified, the
result of using this type of rules is ambiguous. For this reason,
and due to indications of poor performance for ensemble
classification (indicated in a previous article [17]), we focus
on some associative rules in this study.

Dempster’s rule was the rule originally proposed:

m12(X) =
1

1−K
∑

A,B⊆Θ
A∩B=X

m1(A)m2(B), (9)

∀X ⊆ Θ, X 6= ∅, where K is the degree of conflict between
the two mass functions:

K =
∑

A,B⊆Θ
A∩B=∅

m1(A)m2(B) (10)

The Modified Dempster’s rule (MDS) by Fixsen and Mahler
[16], [21] is derived from random set theory. It is similar to
Dempster’s rule, but has an additional factor β:

m12(X) = k
∑

A,B⊆Θ
A∩B=X

β m1(A)m2(B), (11)

∀X ⊆ Θ, X 6= ∅, where k is a normalization constant and

β =
q(X)

q(A) q(B)
(12)

q(·) is a (ordinary) Bayesian prior common to both classifiers.

B. Decision Making

Deciding on a most likely state, given a mass function,
is non-trivial as the evidence of each state θi ∈ Θ may be
interpreted as a belief interval [Bel(θi), P l(θi)] (rather than
an exact number) which might be overlapping the interval for
another state θj (j 6= i) and, hence, be incomparable. A mass
function can, however, be ”transformed” into a probability
measure which can be used for comparison. One way to
construct a probability measure from a mass function is the
pignistic transform [22]:

BetP (θ) =
∑
B⊆Θ

m(B)
|B|

d(θ,B), (13)

where d(θ,B) = 1 if θ ∈ B (zero otherwise), and BetP (·)
is the resulting probability measure. From (13), the θ which
maximizes BetP can be selected as the most likely state.

IV. EVIDENCE-BASED ENSEMBLE CLASSIFIERS

The construction of ensemble classifiers can generally be di-
vided into two parts: generation of classifiers and combination
method design [11, Sec. 2]. Much of the work on ensembles
has focused on the first part, i.e., constructing the ensembles:
considering what classifiers to select (decision trees, artificial
neural networks, etc.), how many and how to train them. As
mentioned, diversity among ensembles is a key issue, but how
diversity is most appropriately measured and achieved is an
ongoing research problem.

The second part is what we focus on in this article. For
mass function combination, there are three issues to consider:
1) how to construct mass functions from the classifiers, 2)
how to combine the mass functions, and 3) decide on an
ensemble output. Let, for the following discussion, the frame
of discernment be the set ΘC = {θc|c ∈ C}, where C is a
set of classes and θc represents the hypothesis that a novel
example belongs to class c.

In the literature, there are basically two different proposals
on how to construct mass functions. One is to construct
mass functions from classifier output, as done in, e.g., [13,
Sec. 4.3.2]. Another approach is to construct mass functions
directly in the classifier [23].

For the combination of ensemble classifier beliefs, the most
common combination rule is the original Dempster’s rule, e.g.,
[10], [23]. Some approaches do have an extended combination
scheme which inspects the mass functions before combination
and to avoid combining conflicting masses [10].

The final issue to consider is that of ensemble output. One
approach is to select the class c∗ which maximizes Bel(θc) [9].
Another considers both ends of the belief interval [10, p. 428].
Yet another approach is to transform the mass function to a
probability measure using the pignistic transform in (13) (that



and other decision approaches for mass functions are presented
in [10], [24]).

V. EMPIRICAL EVALUATION

A. Experimental Setting

1) Ensemble Design: In Section IV, we describe different
parts of the ensemble construction procedure. Below, we
present the specific design details of the ensembles that we
use in our experiments.

The ensemble classifiers are constructed using the random
forest technique presented in Section II-B. For each ensem-
ble, 25 trees are constructed. Each tree is generated from a
bootstrap replicate of the training set [18], and at each node
in the tree generation, only a random subset of the available
attributes are considered for partitioning the examples, where
the size of this subset is equal to the square root of the number
of available attributes (as suggested in [19]). The entire set of
training examples is used for determining which class is the
most probable in each leaf. All compared ensembles are iden-
tical except for the combination rule and belief representation
that is used when classifying novel instances.

In this study, we consider random forests for which each
tree has propositional output (i.e., each tree provides only its
best class for a novel example). From this output, a mass
function me for each constituent classifier e with output class
proposition θe is constructed in the following way:

me({θe}) = 1
me(A) = 0, ∀A ⊆ Θ, A 6= {θe}

(14)

To take into consideration that the different classifiers have
different reliability in their outputs, we also discount the mass
functions, using (8), with the reliability value r, i.e., creating
the updated mass function mr

e. We consider two different types
of reliability measures for a classifier: 1) average and 2) class-
specific classification accuracy (also called precision). The
reliabilities are estimated by measuring the accuracy of each
tree on training examples that are out-of-the-bag, i.e., which
have not been used to generate the tree. For the former type
r = m/n, where n is the number of out-of-the-bag examples
and m is the number of examples correctly classified by
classifier e. Since the accuracy of classifier may differ between
classes, it would seem to be an improvement to specify the
class-specific accuracy for each classifier and class. This is
the latter type, which could assign reliability rc = mc/nc to
classifier e if nc is the number of examples that e classifies as
belonging to class c and mc is the number correctly classified.
There is, however, a problem. For some datasets that we use,
the number of examples for each class may be low, resulting in
poor estimates of the class-specific accuracy. To become less
sensitive to the number of examples we apply the Laplace
correction resulting in

rc =
mc + 1
nc + 2

(15)

The Laplace correction has the appealing property that it
assumes a uniform probability when there are no test examples

Table I
THE FUSION CONFIGURATIONS ARE BASED ON BOTH COMBINATION RULE

AND RELIABILITY MEASURE

Rel./Comb.rule WV DS MDSu MDS
Average WV-a DS-a MDSu-a MDS-a
Class-specific WV-p DS-p MDSu-p MDS-p

for a specific class.
The evidential combination rules (see Section III-A) that

are to be compared for random forests are: Dempster (DS),
and modified Dempster’s rule. As shown in (11), the modified
rule requires a specified common prior. Although all classifiers
are based on the same training set, it is non-obvious how this
fact can be translated into a common prior. For our study, we
try two different priors: uniform (MDSu) and based on the
relative frequencies of classes in the training set (MDS). As
a comparison to the evidential-based combination rules, we
use weighted voting (1) of the output of all trees in the forest
where each tree’s vote is weighted by the classifier’s estimated
reliability (WV).

Since all four combination rules can be used with both types
of reliability, we end up comparing the eight configurations
shown in Table I.

Finally, we use the pignistic transform (13) to generate the
ensemble output.

2) Methodology and data sets: Accuracy (i.e., the per-
centage of correctly classified examples) is by far the most
common criterion for evaluating classifiers, and this is the
criterion chosen also for this study. It should, however, be
noted that there are several other possible criteria for evalu-
ating the predictive performance. There has recently been a
growing interest in the ranking performance, which can be
evaluated by measuring the area under the ROC curve [25]
(AUC). The AUC can be interpreted as the probability of
ranking a true positive example ahead of a false positive when
ordering examples according to decreasing likelihood of being
positive [26]. A third important property when evaluating
classifiers that output class probabilities is the correctness of
the probability estimates. This is of particular importance in
situations where a decision is to be made that is based not on
which class is the most likely for an example, or the relative
likelihood of class membership compared to other examples,
but on the likelihood of a particular class being the true class
for the example. However, in this study, we will only consider
the accuracy criterion.

The methods are compared w.r.t. accuracy using stratified
ten-fold cross-validation on 27 data sets from the UCI Repos-
itory [27], where the average scores obtained for the ten folds
are calculated. The names of the data sets together with the
number of classes are listed in the first column of Table II.

3) Test hypotheses: The null hypotheses can be formulated
as that there for each pair of fusion configurations (summa-
rized in Table I) is no difference in predictive performance
(i.e., as measured by accuracy when used in conjunction with
the selected ensemble design). A null hypothesis for a pair



of configurations is rejected if the probability of obtaining the
observed number of wins and losses, given the null hypothesis,
is less than 0.05. We refer to such observed differences in
performance as being statistically significant.

B. Experimental Results

The accuracies obtained for all methods on the 27 data sets
are shown in Table II. The number of wins and losses for
each pair of method with respect to accuracy is shown in
Table III, where results for which the p-value (double-sided
binomial tail probability) is less than 0.05 are marked with
bold-face. As can be seen, the results only show MDS-p to
outperform DS-a. However, it should be noted that for all
combination rules (except DS) the classification performance
improves when exchanging the average accuracy reliability to
the class-specific one.

C. Discussion

First of all, improving the ensemble classification accuracy,
over the easily implemented and computed weighted voting
(WV), by applying an evidential approach appears to be
challenging. Among the evidential rules, however, the MDS
(with class-specific belief, i.e., MDS-p) appears advantageous,
not losing any of the pairwise competitions.

One of the motivations for this study is, furthermore, the
class-specific belief representation (explained in Section V)
which allows classifiers to have different reliability values
depending on the class which they output. The accuracy
performance of all classifiers improved slightly for the class-
specific belief representation, except for the MDS which
experienced a drastic improvement, and DS which declined.

It should be stressed that the above findings concern the
general tendency on all datasets, and for a particular dataset
other combination rules may be advantageous. Note, e.g., the
image-segmentation dataset in Table II for which DS-a, having
relatively poor performance in general in the study, excels.

VI. CONCLUDING REMARKS

Our study shows that by using a class-specific reliability
measure, instead of one based on overall accuracy, the predic-
tive performance of applying combination rules in an eviden-
tial framework may be substantially improved. In contrast to
the results reported in [17], our results reported here indicate
that evidential combination rules may in fact perform better
than the straightforward weighted voting approach, given that
suitable reliability measures are provided. Advantages with the
evidential framework for other ensemble designs and datasets
have been reported [8], [10].

One direction for future research is to consider random
forests with confidence output (e.g., a probability measure over
classes) as discussed in [28]. One specific issue that needs to
be considered in such a study is whether or not accuracy is
a suitable criterion to use for discounting in that case, since
the accuracy does not reflect the correctness of the probability
estimates, in contrast to, e.g., the Brier score [29].

The design of the mass function is of course also important.
In this study, we construct mass functions from propositional
output and meta-information (i.e., reliability values). A natural
approach to exploit the potential of the mass function is
to construct mass functions directly in the classifiers as in,
e.g., [23]. Another fascinating approach (described in [13,
Sec. 4.5]) is to build meta-combiners which combine the
outputs from several different combination rules.

An additional direction for future research is to empirically
compare the combination rules for other types of classifiers.
In principle, a similar experiment as the one presented in this
study could instead have considered ensembles in which each
classifier is built from data from a specific sensor that captures
the specific sensor properties and environmental context. Note
that classifier diversity, which is necessary for effective ensem-
bles, is inherent when each classifier stems from a different
sensor.
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Table II
ACCURACY FOR THE EIGHT COMBINATION RULES

Data set WV-a WV-p DS-a DS-p MDSu-a MDSu-p MDS-a MDS-p
balance-scale (3 cl.) 85.45 87.52 85.45 87.52 85.06 87.38 82.92 87.22
breast-cancer (2 cl.) 72.73 73.08 72.81 73.79 72.39 73.08 72.41 72.73
breast-cancer-wisconsin (2 cl.) 95.85 95.85 95.85 95.39 95.39 95.35 95.71 95.85
car (4 cl.) 96.18 96.41 96.18 95.72 96.18 96.12 96.40 96.82
cleveland-heart-disease (5 cl.) 55.42 55.76 55.42 55.11 55.42 55.76 55.11 56.73
crx (2 cl.) 86.37 86.37 86.22 87.09 86.78 86.94 85.79 86.22
cylinder-bands (2 cl.) 79.26 78.70 79.63 79.26 80.45 79.26 80.00 80.25
dermatology (6 cl.) 97.80 97.80 97.86 96.47 97.56 97.59 98.36 98.08
ecoli (8 cl.) 87.18 85.99 87.78 85.39 87.18 86.29 86.00 87.18
glass (6 cl.) 77.86 77.86 77.86 75.06 77.86 77.84 76.95 75.50
hepatitis (2 cl.) 86.42 85.75 85.79 82.54 85.79 82.54 84.46 85.79
house-votes (2 cl.) 96.31 96.31 96.31 96.41 96.31 96.31 96.32 96.31
image-segmentation (7 cl.) 92.86 92.38 94.18 91.90 92.86 91.90 92.06 91.90
ionosphere (2 cl.) 93.75 93.45 93.75 94.02 93.75 94.02 93.75 93.75
iris (3 cl.) 94.67 94.67 95.33 94.67 95.33 94.67 95.33 94.67
kr-vs-kp (2 cl.) 98.62 98.62 98.62 98.65 98.68 98.65 98.61 98.65
lung-cancer (3 cl.) 46.67 50.00 50.00 50.00 50.00 50.00 50.00 50.00
lymphography (4 cl.) 85.14 85.14 85.14 84.34 85.14 85.14 85.81 85.14
new-thyroid (3 cl.) 95.37 94.91 94.91 94.44 94.91 94.91 94.91 95.37
pima-indians-diabetes (2 cl.) 76.68 75.90 76.55 74.47 76.68 74.73 75.78 76.68
post-operative-patients (3 cl.) 68.89 70.00 68.89 71.11 68.89 71.11 68.89 68.89
promoters (2 cl.) 80.18 81.09 80.27 83.00 80.18 82.09 80.18 82.09
spectf (2 cl.) 90.27 91.40 90.27 90.83 90.27 91.39 89.69 90.83
tae (3 cl.) 54.25 55.58 54.25 54.92 53.33 54.07 54.25 55.58
tic-tac-toe (2 cl.) 97.18 96.76 97.08 96.45 96.99 96.45 96.18 97.34
wine (3 cl.) 97.71 98.30 97.16 98.30 97.71 98.30 98.61 97.46
yeast (10 cl.) 60.98 61.26 60.78 61.59 60.98 61.19 60.99 61.39

Table III
PAIRWISE ACCURACY COMPARISON (ROW WINS/COLUMN WINS)

wv-a wv-p DS-a DS-p MDSu-a MDSu-p MDS-a MDS-p
wv-a - 8/11 7/8 12/13 8/5 11/12 14/10 5/12
wv-p 11/8 - 11/9 14/9 12/10 13/7 18/8 9/13
DS-a 8/7 9/11 - 14/12 9/6 12/11 15/8 5/15
DS-p 13/12 9/14 12/14 - 11/14 8/9 12/14 10/13
MDSu-a 5/8 10/12 6/9 14/11 - 11/12 13/10 7/12
MDSu-p 12/11 7/13 11/12 9/8 12/11 - 14/12 9/12
MDS-a 10/14 8/18 8/15 14/12 10/13 12/14 - 8/17
MDS-p 12/5 13/9 15/5 13/10 12/7 12/9 17/8 -

[13] L. A. Cuong, “A study of classifier combination and semi-supervised
learning for word sense disambiguation,” Ph.D. dissertation, Japan
Advanced Institute of Science and Technology, March 2007.

[14] G. Rogova, “Combining the results of several neural network classifiers,”
Neural Networks, vol. 7, no. 5, pp. 777–781, 1994.

[15] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA:
Princeton University Press, 1976.

[16] P. Smets, “Analyzing the combination of conflicting belief functions,”
Information Fusion, vol. 8, pp. 387–412, 2007.

[17] H. Boström, R. Johansson, and A. Karlsson, “On evidential combination
rules for ensemble classifiers,” in Proceedings of the 11th International
Conference on Information Fusion, 2008.

[18] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996. [Online]. Available: http://citeseer.ist.psu.edu/
breiman96bagging.html

[19] ——, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001. [Online]. Available: http://citeseer.ist.psu.edu/breiman01random.
html

[20] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proc. of the 23rd International
Conference on Machine Learning, 2006, pp. 161–168.

[21] D. Fixsen and R. P. S. Mahler, “The modified Dempster-Shafer approach
to classification,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 27, no. 1, pp. 96–104, January 1997.

[22] P. Smets and R. Kennes, “The transferable belief model,” Artificial
Intelligence, vol. 66, no. 2, pp. 191–234, April 1994.

[23] G. Rogova, P. Scott, and C. Lolett, “Distributed reinforcement learning
for sequential decision making,” in Proceedings of the 5th International

Conference on Information Fusion. International Society of Information
Fusion, 2002, pp. 1263–1268.
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