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ABSTRACT 

During the last decade, the area of bioinformatics has produced an 
overwhelming amount of data, with the recently published draft of 
the human genome being the most prominent example. This has 
enabled researchers to use data driven, rather than hypothesis 
driven, methods to address a wide variety of specific problems 
related to the analysis of biological sequences (e.g., protein, DNA 
and RNA sequences). Today a number of low-level properties of 
biological sequences, like the presence or absence of signal 
peptides, can be obtained from publicly available on-line 
prediction servers. Such a server typically implements a classifier 
which is trained to determine a single property of a sequence on 
the basis of various kinds of biochemical laboratory results. In this 
paper we investigate how the low-level data from these distributed 
on-line sources can be combined to construct a classifier that 
recognizes a high-level property, namely the brain specificity, of a 
protein. This is a task for which no satisfactory method has yet 
been reported. Features gathered from eight different on-line 
prediction servers are used in experiments to yield a 
representation of protein sequences obtained from the Swiss-Prot  
database. The experiments show that using these low-level 
features, classifiers can be trained to predict the brain specificity 
with a surprisingly high accuracy (around 70%).  
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1. INTRODUCTION 
Recent years’ dramatic increase in the amount of data available on 
the Internet and in public databases combined with the increasing 
memory and processing speed of workstations has created new 
opportunities for researchers to make scientific discoveries. The 
wealth of biological data that has thus become accessible to the 
biological research community has irrevocably changed biologists’ 
way of doing science. A new, data-driven paradigm, sometimes 
labeled “in silico biology”, has gained widespread acceptance. 
Many biologists are now comfortable with the idea of building 
computer models to support or altogether replace laboratory 
experiments. In this and many similar fields where experiments 
have traditionally been performed in vivo or in vitro, new 
possibilities have arisen to perform experiments in silico.  

This has led to new trends where researchers in many areas today 
use computers to run simulations in order to gain insight into the 
underlying functions and causality of complex systems.  The 
Internet has also created opportunities for more efficient ways of 
collaborating, doing discoveries, and sharing information.  
Recently, systems have been developed which allow discoveries 
to be made involving information distributed over several 
geographically distributed systems.  

During the last decade, a number of computational models have 
been built for predicting various properties of biological sequences 
(mainly protein, RNA and DNA sequences). These models often 
specialize in predicting low-level biological characteristics of 
sequences and are typically built on training data obtained as a 
result of laboratory experiments and previously published results. 
Many of the models are publicly available on the World Wide 
Web.  

One of the recent highlights in the world of science was the 
publication of the draft human genome sequence [20], [31]. The 
human genome sequence is a goldmine for those wishing to take 
full advantage of the previously developed prediction models. At 
least 10.000 genes are still unknown, and the number of unknown 
gene products (typically proteins) is even higher [31]. Tools for 
finding genes and accurately predicting their functions are in high 
demand. 

In this paper we present an approach to harnessing the combined 
power of some of the public prediction servers by using their 
predictions of low-level protein features to generate a classifier for 
recognizing a high-level feature of a protein, namely brain-
specificity. Tissue specificity prediction in general is still an 
unsolved problem. The importance of being able to predict tissue 
specificity from sequence lays in the fact that tissue specific 
proteins tend to be good candidates for drug targets. We 
demonstrate that it is possible to build a classifier that predicts the 
brain specificity of a protein based on such low level protein 
features from a selection of such distributed prediction servers. 
Preliminary experiments show that the combined classifier is able 
to predict brain specificity with an accuracy of around 70%. 

2. DATA SELECTION 
The World Wide Web contains a wealth of resources for 
manipulating biological data. Some examples of such resources are 
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sequence databases where new entries are continuously submitted 
and annotated by researchers, image databases containing 3D 
structures of molecules, databases containing known biochemical 
interactions between different compounds, and prediction servers 
for inferring characteristics about sequences. These resources are 
still fairly poorly integrated, although some attempts have been 
made to construct interfaces that co-submit queries to several of 
these servers and combine the results into reports. 

We chose to retrieve our training data from the public protein 
database Swiss-Prot. Swiss-Prot is a manually curated database of 
protein sequences that includes information on protein function, 
expression, and so on [2]. The dataset consisted of 214 protein 
sequences. 107 of the sequences were positive (brain-specific) and 
107 were negative.  

Swiss-Prot entries (sometimes) contain a data field labeled 
TISSUE SPECIFICITY. All human proteins in Swiss-Prot were 
scanned (using a Perl script) for the presence of keywords relating 
to the brain, the nervous system, etc. in this data field. The 
sequences that were found in this way were then manually 
inspected to make sure that they really were positive examples.  

Negative examples were taken from Swiss-Prot using random 
selection on human proteins followed by manual inspection of the 
TISSUE SPECIFICITY data field of each entry. Proteins for 
which the TISSUE SPECIFICITY field described specificity for 
tissues or organs other than the brain, or for which it explicitly 
stated that the protein was not found in the brain, were chosen as 
negative examples. 

A Perl script was developed for contacting all relevant servers, 
posting the protein sequences, parsing the output from the servers 
and writing the results to a file.    

The choice of input features was constrained by the availability of 
public prediction servers. The goal was to use all high-quality 
information about a sequence that can be gathered from the World 
Wide Web. The features used were:    

(1) Number of amino acids. This was the only feature that 
was known to have a possible correlation with brain specificity. 
Brain-specific mRNAs are one average twice as large as other 
mRNAs [26], which makes it plausible that the translated brain-
specific polypeptides would be longer than other polypeptides. 

(2) Aliphatic index. This value was obtained from ExPaSy’s 
ProtParam prediction server [22]. The aliphatic index is defined as 
the relative volume of a protein occupied by aliphatic side chains 
(alanine, valine, isoleucine, and leucine). The aliphatic index may 
be regarded as a positive factor for the increase of thermostability 
of globular proteins [18], but it is not known if it is  correlated 
with protein tissue specificity in any way. 

(3) GalNAc O-linked glycosylation sites. GalNAc O-linked 
glycosylation is known to play a role in the immune system, for 
instance in connection with MHC class I molecules [28]. The 
number of potential GalNAc sites was obtained from the 
NetOGlyc program [16] at the CBS prediction server page, 

created at the Center for Biological Sequence Analysis at the 
Technical College of Denmark. This number was then divided by 
sequence length (number of amino acids) in order to get a relative 
number of potential GalNAc sites.  

(4) Grand average of hydropathicity (GRAVY) . Will be 
called simply “hydropathy index” below. Values were obtained 
from ProtParam, see (2). The common hydropathy index, defined 
at one specific position in a sequence, is the mean value of the 
hydrophobicity (tendency to avoid water) of the amino acids 
within a window, usually 19 residues long, around each position. 
In transmembrane helices, which are present in many neural 
proteins, the hydropathy index is high for a number of consecutive 
positions in the sequence. The “grand average of hydropathicity” 
is the average value of the hydropathy index at each position. See 
[19] for more details.     

(5) Instability index. Certain dipeptides occur more 
frequently in unstable proteins than in stable ones. The inventors 
of this index have assigned a weight value of instability to each of 
the 400 different dipeptides [15]. The values obtained for a whole 
protein tend to fall within the range 0-100. A protein whose 
instability index is smaller than 40 is predicted as stable, a value 
above 40 predicts that the protein may be unstable. It is not 
known whether instability index correlates with protein function. 

(6) Phosphorylation sites . Phosphorylation is an ext remely 
important post-translational protein modification. It occurs in 
many biological processes, including cell signaling, which is an 
important function in the brain. The number of potential 
phosphorylation sites was obtained from the NetPhos program 
[3] at the CBS prediction site; see (3). This number was divided 
by sequence length to give a relative measure.   

(7) GlcNAc O-linked glycosylation sites . GlcNAc is another, 
newly found type of O-linked glycosylation, distinct from 
GalNAc. This type of glycosylation occurs in nucleocytoplasmic 
proteins and may play a role in signal transduction, although this 
is not entirely clear [32]. The number of GlcNAc sites was 
predicted by the YinOYang program at the CBS site; see (3). This 
number was divided by sequence length to yield a relative 
measure. For sequences that were predicted to have a signal 
peptide, the value of GlcNAc was set to zero. Such sequences are 
unlikely to be intracellular, and hence unlikely to be O-
GlcNAcylated.  

(8) Isoelectric point. The isoelectric point is the pH value 
where a protein has no net charge. This value was obtained from 
ProtParam at ExPaSy; see (2). No known correlations exist 
between isoelectric point (also written as pI) and nervous system 
function. 

(9) Alpha helix content. This value is the predicted 
percentage of alpha helix positions in a protein, i.e. the percentage 
of amino acids predicted to be located in an alpha helix. See  

(10) Beta sheet content. Same as (9), but for beta sheets 
instead of alpha helices. The predictions for alpha helices and beta 
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sheets were obtained from SSCP, a server hosted by EMBL. SSCP 
is based on a method which uses the protein’s amino acid 
composition as input. This method is described in [11]. Several 
servers are available for analyzing protein secondary structures, 
and this particular server was chosen mainly because it was easy 
to work against using Perl. According to [11], the method used by 
this server is also very accurate. It is possible, however, that using 
another server would have led to better estimates of alpha helix 
and beta sheet content. Alpha helix and beta sheet content were 
not known in advance to correlate with nervous system 
specificity. 

(11) Presence of signal peptides . Signal peptides occur in 
proteins that are secreted, i.e. released from the cell. Such proteins 
can perform messaging functions and occur widely in the nervous 
system. For instance, neuropeptide precursors contain signal 
peptides. A measure of the likelihood of each sequence being a 
signal peptide was obtained from the SignalP program [21] at 
CBS. The specific measure used was the “maximal Y score”, 
which is a predictive indicator of whether a signal peptide is 
present in a protein or not.  

(12) Number of transmembrane helices . Many neural 
proteins contain transmembrane helices: receptors, ion channels, 
pumps, etc. The TMHMM program [30] at CBS was used to 
predict the number of transmembrane helices. The resulting value 
was not divided by sequence length. The rationale was that the 
exact number of transmembrane regions may in fact be very 
meaningful for function and/or classification; for example, G-
protein-coupled receptors always have seven transmembrane 
regions, no matter their size [1]. 

(13) N-linked glycosylation sites .  N-linked glycosylation is 
thought to participate in a wide variety of processes, like protein 
folding, sorting and targeting [17]. The number of predicted N-
linked glycosylation sites was obtained from ScanPROSITE [29]. 
However, N-glycosylation occurs on the luminal side of the 
endoplasmatic reticulum, and thus any protein that does not 
encounter this environment will not get N-glycosylated [14]. 
Therefore, all predictions for N-glycosylation sites were ignored 
for proteins that were predicted not to have a signal sequence 
(which is necessary for entry into the ER). It was not known 
whether N-linked glycosylation sites were expected to be more or 
less common in neural proteins compared to other proteins. 

Note that some of the features are heavily dependent on each 
other, e.g., N-glycosylation site frequency and GlcNAc O-
glycosylation frequency depend on the SignalP score. 

3. MODEL CONSTRUCTION AND 
EVALUATION 
In this section we first describe the original experimental setting, 
briefly describe the learning methods used, and then present the 
results obtained in the first experiment. We finally present results 
from using a variable elimination scheme. 

3.1 Experimental setting 
The null hypothesis for our first experiment is that no model can 
be induced that performs significantly better than randomly 
predicting the class labels (i.e., brain-specific or non-brain-specific 
protein). Since the size of the data set is limited (107 examples of 
each class), a v-fold cross-validation scheme was preferred to 
dividing the data once in a training and test set. The number of 
folds was set to 10. 

3.2 Learning methods 
We used Virtual Predict [5], which is an inductive logic 
programming system that is a successor of Spectre 3.0 [6]. The 
system can be viewed as an upgrade of standard decision tree and 
rule induction systems in that it allows for more expressive 
hypotheses to be generated and more expressive background 
knowledge (i.e., logic programs) to be incorporated in the 
induction process. The major design goal has been to achieve this 
upgrade in a way so that it should still be possible to emulate the 
standard techniques, with lower expressiveness but also lower 
computational cost. As a side effect, this has allowed the 
incorporation of several recent methods, such as bagging, boosting 
and randomization that have been developed for standard machine 
learning techniques into the more powerful framework of Virtual 
Predict. 

Below, we briefly describe the methods and parameters that were 
used in the experiments. 

3.2.1   Decision tree induction using MDL 

A method for decision tree induction was defined by choosing the 
divide-and-conquer strategy together with the information gain 
criterion. An MDL criterion (a version of the criterion in [25] that 
has been modified to handle numerical attributes effectively) was 
chosen as a means to avoid over-fitting. This method was selected 
in favor of splitting the training data into a grow and a prune set, 
which due to the limited size of the data set would lead to highly 
variable decision trees. 

3.2.2 Bagging decision trees 
The divide-and-conquer strategy was also combined with bagging 
[4], which is a popular ensemble learning method for reducing 
variance. Following the scheme in [4], each decision tree in the 
ensemble is grown from a bootstrap replicate of the training set 
(i.e., a set created by randomly selecting, with replacement, n 
elements from the training set, where n is the size of the training 
set) and where the entire training set is used as a prune set. The 
number of trees in the ensemble was set to 50. 

3.2.3 Boosting decision trees 
Boosting is an ensemble learning method that uses a probability 
distribution over the training examples and re-adjusts the 
distribution after having generated a member of the ensemble. This 
is done in a way so that the learning algorithm focuses on those 
examples that are incorrectly classified by previous members. 
New examples are classified according to a weighted vote of the 
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classifiers in the ensemble. The method used in Virtual Predict is 
called AdaBoost [13]. The base learning method was again the 
divide-and-conquer strategy using information gain and as well as a 
randomly selected prune set corresponding to 33% of the total 
weight. Again the number of trees in the ensemble was set to 50. 
3.2.4 Randomizing decision trees 
A third method for ensemble learning is to include a stochastic 
component in the learning algorithm and then let the stochastically 
generated members of the ensemble vote on new examples (e.g., 
[10]). The divide-and-conquer strategy was combined with the 
stochastic component in Virtual Predict, which selects a split with 
a probability that is proportional to the information gain of the 
split. Like for the two previous ensemble learning methods, the 
size of the ensemble was set to 50.  
3.2.5 Decision lists 
We also included a method that employs a totally different search 
strategy compared to the previous methods, namely separate-and-
conquer. This strategy was combined with incremental reduced 
error pruning [9], where each clause immediately after its 
generation is pruned back to the best ancestor. The criterion for 
choosing the best ancestor is optional in Virtual Predict, and was 
set to the most accurate clause as estimated on training data using 
the m-estimate [8], with m set to 2. The system was instructed to 
treat the hypothesis as an ordered set (also often referred to as a 
decision list [27]). 

3.3 Experimental results 
In table 1, the results from the ten-fold cross-validation is shown.  
In addition to the overall accuracy, the mean number of rules 
generated by each model is also listed. This is because a biologist 
might prefer a model with slightly lower accuracy but only a few 
easily interpreted rules over a more accurate model with thousands 
of rules. According to McNemar’s test, the difference in accuracy 
between the first four methods is insignificant (lowest p-value is 
0.22), but all the first four methods are significantly more accurate 
than the fifth (at a 1% significance level). The two best methods, 
Boosting and Randomization, correctly classify 146 examples out 
of 214. The binomial tail probability of obtaining that many 
correct classifications by random guessing is 5.16 · 10-8. Since the 
significance level has to be divided by the number of methods 
tested (Bonferroni correction), this means that the null hypothesis 
can be rejected at the 0.000001 level. 

Method Mean accuracy Mean no.  

of rules  

Decision tree using MDL 64.49% 5.6 

Bagging 66.82% 1287.5 

Boosting 68.22% 927.8 

Randomization 68.22% 3213.2 

Decision list 53.27% 13.2 

  

Table 1. The performance of the five methods . 

3.4 An experiment with a variable elimination 
scheme 

Since the number of examples is quite small relative to the number 
of attributes, we expected that variance could be reduced by 
removing some of the attributes (i.e., increasing the bias). In order 
to investigate whether the given set of background variables could 
be reduced, we inspected the trees produced in each fold by the 
first method, and realized that only three variables were used in a 
majority of the trees (SignalP and N-glycosylation, which were 
considered by all ten trees, and Aliphatic index, which was 
considered by nine trees). The remaining variables were used from 
zero to five times, and a new data set was generated by eliminating 
these ten attributes. We employed the first method (decision tree 
induction using MDL) to this new  data set. Again we used ten-
fold cross validation, which was repeated 10 times, and the mean 
accuracy of the method is presented in Table 2.  

 

Method Mean 
accuracy 

Mean no.  

of rules 

Decision tree using MDL 70.00% 4.26 

  

Table 2. Results on reduced data set. 

4. CONCLUSIONS 
Our experiments have shown that it is possible to predict a 
protein’s brain specificity to a reasonable degree by gathering 
information about low-level protein properties from on-line 
prediction servers and using this information to train classifiers. 
There were no significant differences between the classification 
performances of the four best methods used, although the fifth 
was clearly inferior. An interesting finding that requires further 
investigation is the fact that an improved level of accuracy can be 
achieved through elimination of some of the attributes – all except 
three. Further analysis is required in order to understand whether 
there is any biological explanation for the fact that these three 
attributes were retained.    

The presented work indicates that it might be possible to 
construct a whole range of classifiers aimed at predicting various 
high level properties of proteins based on their low level 
properties. Examples of such high level properties that we plan to 
investigate in future work are: other classes of tissue specificity, 
protein localization, protein targeting etc.     
Although this paper presents preliminary results, we believe that 
it can open up for new and interesting ways of exploring the world 
of protein function by using a distributed and collaborative 
approach and taking advantage of the vast amount of information 
that is becoming available on the Internet and through other 
sources. 



BIOKDD01:  Workshop on Data Mining in Bioinformatics (with SIGKDD01, Conference) page 5 

5. REFERENCES 
[1] Alberts, B., et al., “Molecular Biology of the Cell”, Garland 

Publishing (1994) 735 

[2] Bairoch A. and Apweiler R., “The SWISS-PROT protein 
sequence database and its supplement TrEMBL in 2000”, 
Nucleic Acids Res. 28, (2000) 45-48 

[3] Blom, N. Et al.,  ”NetPhos. Sequence- and Structure-Based 
Prediction of Eukaryotic Protein Phosphorylation Sites”,  
Journal of Molecular Biology 294(5), (1999) 1351-1362 

[4] Breiman L., “Bagging predictors”, Machine Learning 24 
(1996) 123-140 

[5] Boström H., “Virtual Predict User’s Manual”, Virtual 
Genetics Laboratory 2001. 

[6] Boström H. and Asker L., “Combining Divide-and-Conquer 
and Separate-and-Conquer for Efficient and Effective Rule 
Induction”, Proc. of the Ninth International Workshop on 
Inductive Logic Programming, LNAI Series 1634, Springer 
(1999) 33-43 

[7] Boström H. and Idestam-Almquist P., “Induction of Logic 
Programs by Example-Guided Unfolding”, Journal of Logic 
Programming, Vol. 40 (2-3) (1999) 159-183 

[8] Cestnik B. and Bratko I., “On estimating probabilities in tree 
pruning'', Proc. of the Fifth European Working Session on 
Learning, Springer (1991) 151­163  

[9] Cohen W. W., “Fast Effective Rule Induction”, Machine 
Learning: Proc. of the 12th International Conference, Morgan 
Kaufmann (1995) 115—123 

[10] Dietterich, T. G., “An experimental comparison of three 
methods for constructing ensembles of decision trees: 
Bagging, boosting, and randomization”, Machine Learning 40, 
(2000) 139-158 

[11] Eisenhaber F. et al.,  “Prediction of Secondary Structural 
Content of Proteins from Their Amino Acid Composition 
Alone. I. New Analytic Vector Decomposition Methods”, 
Proteins: Struct.,Funct.,Design, 25 N2, (1996) 157-168 

[12] Fayyad U. and Irani K., “On the Handling of Continuous 
Valued Attributes in Decision Tree Generation'', Machine 
Learning 8, (1992) 87­102 

[13] Freund Y. and Schapire R. E., “Experiments with a new 
boosting algorithm”, Machine Learning: Proceedings of the 
Thirteenth International Conference (1996) 148-156 

[14] Gavel Y. and von Heijne G., “Sequence differences between 
glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor 
sites: implications for protein engineering”, Protein 
Engineering 3, (1990) 433-442 

[15] Guruprasad K. et al., “Correlation between Stability of a 
Protein and its Di-peptide Composition: A Novel Approach 
for Predicting in vivo Stability of a Protein from its Primary 
Sequence”, Protein Eng. 4 (1990) 155-161  

[16] Hansen, J.E. et al., “NetOglyc: Prediction of mucin type O-
glycosylation sites based on sequence context and surface 
accessibility”, Glycoconjugate Journal 15, (1998) 115-130 

[17] Helenius, A. and Aebi, M., “Intracellular Functions of N-
linked Glycans”, Science 5512, (2001) 2364-2369 

[18] Ikai A., “Thermostability and aliphatic index of globular 
proteins”, Journal of Biochemistry 88(6), (1980) 1895-8 

[19] Kyte, J. and Doolittle, R.F., “A simple method for 
displaying the hydropathic character of a protein”, J Mol 
Biol 157, (1982) 105-32  

[20] Lander, E.C. et al., ”Initial sequencing and analysis of the 
human genome”, Nature 6822, (2001) 860-921 

[21] Nielsen, H et al.,  ”SignalP. Identification of prokaryotic and 
eukaryotic signal peptides and prediction of their cleavage 
sites”, Protein Engineering 10, (1997) 1-6 

[22] ProtParam link: http://www.expasy.ch/tools/protparam.html 

[23] Quinlan J.R., “Induction of decision trees'', Machine 
Learning, 1 (1986) 81-106 

[24] Quinlan J.R., “Learning logical definitions from relations'', 
Machine Learning 5 (1990) 239-266 

[25] Quinlan J.R and Rivest R.L, “Inferring Decision Trees Using 
the Minimum Description Length Principle”, Information and 
Computation 80(3) (1989) 227-248 

[26] Revest, P. and Longstaff, A, “Molecular neuroscience”, Bios 
(1998) 31 

[27] Rivest R.L., “Learning Decision Lists”, Machine Learning 
2(3) (1987) 229-246 

[28] Rudd, P.M. et al., “Glycosylation and the Immune System”,  
Science 5512, (2001) 2370-2376 

[29] ScanProsite link: http://www.expasy.ch/tools/scnpsit1.html 

[30] Sonnhammer, E.L.L et al.,  “A hidden Markov model for 
predicting transmembrane helices in protein sequences”, Proc. 
of Sixth Int. Conf. on Intelligent Systems for Molecular 
Biology,  AAAI Press (1998) 175-182 

[31] Venter, J.C. et al., “The Sequence of the Human Genome”, 
Science 5507, (2001) 1304-1351 

[32] Wells, L. et al.,  “Glycosylation of Nucleocytoplasmic 
Proteins: Signal Transduction and O-GlcNAc”, Science 5512, 
(2001) 2376-2378 


