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ABSTRACT 

Nowadays many production companies collect and store production and process data in 
large databases. Unfortunately the data is rarely used in the most value generating way, 
i.e., finding patterns of inconsistencies and relationships between process settings and 
quality outcome. This paper addresses the benefits of using data mining techniques in 
manufacturing applications. Two different applications are being laid out but the used 
technique and software is the same in both cases. The first case deals with how data 
mining can be used to discover the affect of process timing and settings on the quality 
outcome in the casting industry. The result of a multi objective optimization of a camshaft 
process is being used as the second case. This study focuses on finding the most 
appropriate dispatching rule settings in the buffers on the line.  

The use of data mining techniques in these two cases generated previously unknown 
knowledge. For example, in order to maximize throughput in the camshaft production, let 
the dispatching rule for the most severe bottleneck be of type Shortest Processing Time 
(SPT) and for the second bottleneck use any but Most Work Remaining (MWKR). 
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1. INTRODUCTION 

Knowledge is the key aspect to become a successful 
and well organized business of today. Knowledge can 
be on different levels such as knowing the number of 
operators working on a certain day or a complex 
chemical formula describing the relationship between 
different materials in a liquefied compound. It can also 
be generated from the result of optimizing a discrete 
simulation model, i.e., simulation based optimization. 
Although extensive amounts of knowledge are known 
and widely used within a business, there is most likely a 
lot of unknown knowledge stored in in-house databases 
which can be further exploited. 

In this paper, knowledge extraction by data mining in 
two different applications is considered. In the first 
experiment, important process variables for quality 
improvement are found from a process data base 
combined with data from quality control in the casting 
industry. The second experiment is performed with data 
generated by a simulation-based optimization model, 
where different dispatching rules in a production line are 
used to predict both throughput and total tardiness. 

2. INTRODUCTION TO DATA MINING 

Computer aided techniques are widely used within 
companies in many fields and data regarding many 
different aspects of a business is regularly collected and 
stored, such as process data, break down data and 
quality outcome of the finished product. Often these 
types of data have been stored in different databases 
for one or the other reason, in some cases even for no 

specific reason, over many years. One of the key 
aspects of data mining is that it can be used for 
analyzing data that has been collected during the 
normal operations of the manufacturing process, i.e., 
data does not have to be specifically collected for this 
purpose [1]. However, a drawback of having collected 
data without analysis in mind is that the data may not 
be optimal for the intended purpose.  

One predicament is the huge amount of data stored in 
addition to the lack of knowledge. The future goal would 
be to work continuously with information technology in a 
pro-active manner to achieve process knowledge and 
control. To accomplish this goal, the in-house business 
systems must be investigated in a systematic way 
finding the additional data required or inconsistencies 
and to extract important knowledge. The next step is to 
apply data mining techniques on the essential and 
interesting data. 

Knowledge Discovery in Databases (KDD) is defined by 
Fayyad et al [2] as "the non-trivial process of identifying 
valid, novel, potential useful and ultimately 
understandable patterns in data". According to Fayyad 
et al, data mining is only one step in the KDD process 
(Fig. 1), whereas others often use data mining as a 
synonym for KDD, as done in this paper. 

2.1 The data mining process 

Data mining is an automated or semi-automated 
technique used to discover and interpret hidden 
relationships, patterns or trends in large data sources.  

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Knowledge Discovery in Databases according to Fayyad et al [2] 

 

Figure 1 shows the data mining process as an iterative 
procedure, going from data to knowledge. A blend of 
concepts and algorithms from machine learning, 
statistics, artificial intelligence, and data management 
are borrowed to the field of data mining. 

The process can be divided into three parts: 
selection/preprocessing, mining and presentation. The 
first step involves gathering, organizing and cleaning 
data before it can be used. The mining process 
concerns choosing appropriate method(s) to be used 
for searching patterns in data. The final step concerns 
how to present the results of the prior processes in a 
suitable way. After evaluation of the presented results, 
the entire process, or parts of it, may be re-iterated.  

Data mining is a rapidly expanding field with growing 
interests and importance.  Manufacturing is indeed an 
application area where the use of this technology can 
provide a significant competitive advantage [1].  

3. LITERATURE REVIEW 

Data mining is a technique which has been used in both 
private and public sectors and clearly with different 
objectives. Companies within banking, insurance and 
retailing use data mining to reduce cost, detect frauds 
and to advertise in more effective ways. Homeland 
security is yet another application area of growing 
interest, in which data mining also has been used.  

The first use of artificial intelligence in manufacturing 
applications appeared in the 1980’s according to [1]. In 
the beginning of the 1990’s, the use of data mining 
techniques was introduced for production, something 
which has been growing since then. A comprehensive 
review of papers considering data mining applications 
within manufacturing is presented by Kusiak in [1]. 
Manufacturing operations, fault detection, design 
engineering and decision support systems have been in 
focus as research topics, but there is still an enormous 

potential for further research in other application areas, 
such as maintenance, layout design, resource planning 
and shop floor control. Below is a brief listing of the 
main current application areas of data mining within 
manufacturing. 

3.1 Preventive maintenance 

Preventive maintenance normally integrates with quality 
control, and preventive maintenance plans can often be 
designed by accessing quality control databases. 
Different data mining techniques, including decision 
trees, regression, neural networks, have been used to 
predict component failure based on the data collected 
from manufacturing process allowing maintenance 
actions to be undertaken whenever such failures can be 
expected [3]. The preventive maintenance area was 
one of the first areas within manufacturing to take 
advantage of data mining. 

3.2 Decision support system 

The main reason for using data mining in decision 
support systems is to discover relevant system 
knowledge before the decision making process. The 
knowledge extracted from databases can be integrated 
with existing expert systems in order to modify or 
finding patterns in job shop scheduling sequences [4]. 

3.3 Fault detection 

One procedure for fault detection is to examine 
historical data for better understanding of the process, 
and to use this knowledge to predict and improve the 
process performance. Data mining techniques can not 
only be used for classifying, e.g., the products not 
fulfilling the quality requirements, but also for 
determining the most influencing risk factors for failures.  

Data 

Target data 

Preprocessed 

 data 

Transformed  

data 

Patterns 

Knowledge 
Data mining 

Evaluation 

Transformation 

Preprocessing 

Selection 



Shi et al. [5] developed an artificial neural network 
model for a chemical manufacturing process using 
historical data for validation. The model was used to 
predict the outputs for well-designed process settings. 
The predicted result was then used to perform statistical 
tests and identify the significant factors and interactions 
that affect the quality-related output variables. The data 
mining approach showed potential to achieve a better 
understanding of process behavior and to improve the 
process quality efficiently. 

In the paper by Karlsson et al. [6], the fusion of different 
sources for fault detection is investigated. To determine 
whether an industrial motor is worn out or not, a 
technique combining data from different vision systems 
for pattern recognition and signal processing is used for 
classification of the motor status. In that study, nine 
different fusion methods were used for classification of 
data extracted from these vision images. 

3.4 Operational control 

Data mining for analyzing the effect of local dynamic 
behavior for operational control can be used for 
extracting knowledge to generate control policies, e.g., 
for intelligent scheduling systems. These operational 
systems are often inherently adaptive, and since data is 
accumulated in real-time, baseline policies generated 
by the data mining algorithms can be updated on the fly 
[7]. 

4. PREDICTIVE AND DESCRIPTIVE DATA MINING 

Data mining techniques have become standard tools to 
develop predictive and descriptive models in situations 
where one wants to exploit data collected from earlier 
observations in order optimize future decision making 
[8]. In the case of predictive modeling, one typically tries 
to estimate the expected value of a particular variable 
(called the dependent variable), given the values of a 
set of other (independent) variables. In the case of a 
nominal dependent variable (i.e., the possible values 
are not given any particular order), the prediction task is 
usually referred to as classification, while the 
corresponding task when having a numerical dependent 
variable is referred to as regression. One usually wants 
the model to be as correct as possible when evaluated 
on independent test data, and several suggestions for 
how to measure this have been proposed. For 
classification, such measures include accuracy, i.e., the 
percentage of correctly classified test examples, and 
the area under the ROC curve (AUC), i.e., the 
probability that a test example belonging to a class is 
ranked as being more likely belonging to the class than 
a test example not belonging to the class [9]. Besides 
the ability to make correct predictions, one is also often 
interested in obtaining a comprehensible (descriptive) 
model, so that the reasons behind a particular 
classification can be understood, and also that one may 
gain insights into what factors are important for the 
classification in general. Examples of such compre-
hensible models are decision trees and rules, e.g. [10], 
while examples of models not belonging to this group, 
often called black-box, or opaque, models, include 

artificial neural networks and support vector machines 
(see e.g. [11]). 

4.2 Decision trees and ensembles 

Techniques for generating decision trees are perhaps 
among the most well-known methods for predictive data 
mining. Early systems for generating decision trees 
include CART [12] and ID3 [13], the latter being 
followed by the later versions C4.5 [10] and C5.0 [14]. 
The basic strategy that is employed when generating 
decision trees is called recursive partitioning, or divide-
and-conquer. It works by partitioning the examples by 
choosing a set of conditions on an independent variable 
(e.g., the variable has a value less than a particular 
threshold, or a value greater or equal to this threshold), 
and the choice is usually made such that the error on 
the dependent variable is minimized within each group. 
The process continues recursively with each subgroup 
until certain conditions are met, such as that the error 
cannot be further reduced (e.g., all examples in a group 
belong to the same class). The resulting decision tree is 
a graph that contains one node for each subgroup 
considered, where the node corresponding to the initial 
set of examples is called the root, and for all nodes 
there is an edge to each subgroup generated from it, 
labeled with the chosen condition for that subgroup. 

Decision trees have many attractive features, such as 
allowing for human interpretation and hence making it 
possible for a decision maker to gain insights into what 
factors are important for particular classifications. 
However, recent research has shown that significant 
improvements in predictive performance can be 
achieved by generating large sets of models, or 
ensembles, which are used to form a collective vote on 
the value for the dependent variable [15]. It can be 
shown that as long as each single model performs 
better than random, and the models make independent 
errors, the resulting error can in theory be made 
arbitrarily small by increasing the size of the ensemble. 
However, in practice it is not possible to completely 
fulfill these conditions, but several methods have been 
proposed that try to approximate independence, and 
still maintain sufficient accuracy of each model, by 
introducing randomness in the process of selecting 
examples and conditions when building each individual 
model. One popular method of introducing randomness 
in the selection of training examples is bootstrap 
aggregating, or bagging, as introduced by Breiman [16]. 
It works by randomly selecting n examples with 
replacement from the initial set of n examples, leading 
to that some examples are duplicated while others are 
excluded. Typically a large number (at least 25-50) of 
such sets are sampled from which each individual 
model is generated. Yet another popular method of 
introducing randomness when generating decision trees 
is to consider only a small subset of all available 
independent variables at each node when forming the 
tree. When combined with bagging, the resulting 
models are referred to as random forests [17], and 
these are widely considered to be among the most 
competitive and robust of current methods for predictive 



data mining. The drawback of ensemble models are 
however that they can no longer be easily interpreted 
and hence provide less guidance into how 
classifications are made. 

The Rule Discovery System (RDS) [18] addresses this 
problem by providing some insight into what factors are 
of importance in an ensemble of decision trees by 
presenting the variable importance of each independent 
variable, i.e., how much the variable, relative to all other 
variables, contributes to reducing the squared error of 
the dependent variable. 

5. TWO DATA MINING APPLICATIONS 

The use of data mining in manufacturing applications 
can have different aims and purposes. In this paper two 
applications are presented: data mining for identifying 
variables affecting quality and for identifying dispatching 
rules setting in a production line. 

5.1 Process data in casting industry 

This study is done in cooperation with Volvo Powertrain 
in Skövde, Sweden. Volvo Powertrain supplies power 
train parts, cylinder blocks, gear boxes and drive shafts, 
to the business areas within the Volvo Group. 

Complexity in the casting process: The casting process 
is complex with multivariate interactions of known but 
also unidentified factors which makes it impossible for 
humans to overview. Humans are normally not able to 
simultaneously analyze situations involving more than 
three variables very effectively and this becomes even 
more difficult when the data are corrupted by noise and 
uncertainty [19]. The current way of analyzing the 
casting process is done in a one-variable-at-a-time 
manner. Due to the complex relationships, there is a 
requirement for a more sophisticated and accurate way 
of analyzing data from such processes and it is believed 
that data mining can achieve this in a useful way.  

Data used in the experiment: Process data and quality 
data has been collected from the pre-processing line 
before casting of products. It is believed that some of 
these variables or process settings have a more crucial 
impact on the resulting product, i.e., the cylinder head. 
In order to determine these variables, we create a 
model consisting of a number of input variables and 
using the product quality, i.e., if the cylinder head is 
rejected or not, as the response variable. This is done 
to get an understanding of how the processes interact 
and will be helpful to keep these variables under a more 
severe control. 

Rejection codes: The quality data contains a number of 
different rejection codes. These codes are used to 
identify what kind of defect in quality the cast but 
rejected cylinder head has.  

Since the coding of rejection is done manually it is 
believed that similar codes can be used in various ways 
by different operators. In order to be able to use the 
quality data in a more appropriate way, the rejection 
codes have been divided into fewer subgroups.  

One expectation is that the division into subgroups will 
generate more accurate result, since the rejections are 
affected by different process variables, see Fig. 3. A 
global model, where the rejection code is binary, is also 
used for comparison.  

 

Figure 3: The set up of different models to generate 
more accurate results. 

 

Input and output variables: In the data mining tool, the 
process data is used as input variables and the quality 
data is used as the output variable which is being 
classified. 

5.2 Results in the casting experiment 

RDS [18] was used as data mining tool for this study. 
One run is done for each rejection subgroup and one 
for the global data. The modeling methods used are a 
single tree structure and an ensemble of 50 trees. 10-
fold cross-validation is used as validation method for 
both modeling methods. 

The rejection codes present in this data set can be 
divided into the following six subgroups:  

 Group 1: Sand influence 

 Group 2: Core defects 

 Group 3: Manual process 

 Group 4: Blisters 

 Group 5: Damage after casting 

 Group 6: Not completely cast 

These groupings are believed to be affected by different 
variables. For instance, it is probably difficult or even 
impossible to use process data for prediction of 
rejections of Group 3, which is a manual process step. 

Performance measurement: The models generated 
obtain high AUC for all sub groups except number 2 
and 3, as shown in table 1. Due to results close to 
random for group number 3, these are not further 
explored in this section. 

 

Quality  
and  

Process  
data 

Important  
variables 

Model   
Group 1 

Model 
 Group i 

Model  
Group n 

Model  
Group  
Global 

Important  
variables 

Important  
variables 

Important  
variables 



Table 1: The AUC value for the models built for 
each subgroup of rejection codes. 

Ensemble Model AUC 

Global 0.72 

Group 1 0.80 

Group 2 0.67 

Group 3 0.47 

Group 4 0.73 

Group 5 0.73 

Group 6 0.78 

 

Affecting process variables: The subgroups with 

specific variables are listed in Table 2.  

 

Table 2: Specific variables for some subgroups.  

Ensemble Model Specific variable 

Global No specific 

Group 1 Weight after casting 

Group 2 Time_3 

Group 4 No specific 

Group 5 Time_2 

Group 6 Time_6 

 

In Table 2, the following times are declared: 

 Time_2 – time between start of production and the 
assembly process 

 Time_3 – time between when the upper and lower 
forms are put together and when it enters the chill  

 Time_6 – time between a control process and when 
the upper and lower forms are put together. 

It must also be noted that a few variables appear more 
frequently in all models, and these are:  

 Time_1 – time between the drying process and a 
control station 

 Time_8 – time between the coating process and a 
control station 

 Time_9 – time between start of production and the 
coating process 

 Chill and cast bin – 12 chills and 2 cast bins for 
each chill. 

A checkup is done to see how the process data is set 
according to these significant variables, see Table 3. 
This implies that the coating process is important as 
well as the timing before and after for all types of 
rejection. 

 

 

 

Table 3: Comparison of rejected and accepted 
products for important variables. 

  Time_1 Time_8 Time_9 

Aver. time for 
rejection 

9971 11102 7610 

Aver. time for  
non-rejection 

5179 7728 8564 

 

Choice of cast bin and chill: Two variables which have 

great impact on all subgroups is the choice of casting 
bin and chill, which can be seen in Fig. 4 and 5. Casting 
in the second bin results in greater number of rejections 
which also is the case for choice of chill number 6. 

 

Figure 4: The number of rejections differs with 
choice of cast bin. 

 

Figure 5: The choice of casting chill affects the 
quality of the cast product. 

 

5.3 Dispatching rules in a production line 

The aim of this experiment is to understand how 
dispatching rules affect the outcome of a production line.  
The result of a multi-objective optimization study is used 
to discover patterns in dispatching rule settings in order 
to maximize throughput or minimize total tardiness. 

Simulation model at Volvo cars: In the experiment at 

Volvo Cars a Discrete Event Simulation (DES) model is 
used for bottleneck detection in a production line. The 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2

P
ro

p
o

rt
io

n
 o

f 
re

je
c
ti
o

n
s

Cast bin

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12

P
ro

p
o

rt
io

n
 o

f 
re

je
c
ti
o

n
s

Chill



saying; A chain is as strong as it weakest link, is 
applicable in the theory of bottleneck detection. The 
goal of the study is to discover the bottlenecks in the 
production line. One should be aware of that when one 
bottleneck has been eliminated, another station or 
buffer will then be the current bottleneck.  

Input to the data mining experiment is output from a 
DES model, which represents the H-factory at Volvo 
Cars in Skövde. The H-factory is committed to camshaft 
processing and 15 variants are handled on the 
production line. The H-factory consists of thirteen 
different groups of operations with one to seven 
machines in each group. All machines within a group of 
operations have the same capability and in front of 
every group of machines is a buffer. 

H-factory based on dispatching rules: When a product 

enters to a buffer it is checked if a machine is free, if so 
the product is directly moved there. But, if there is no 
machine available then the product is placed on a free 
spot in the buffer. The buffer is checked every time a 
machine has finished a product. If there is only one 
product there; it is moved to the machine. The 
dispatching rules are considered each time there is 
more than one product in the buffer. The product to pick 
is dependent on the current dispatching rule assigned 
to that specific buffer.  

There are eight different dispatching rules: shortest 
processing time (SPT), longest processing time (LPT), 
earliest due date (EDD), total work remaining (TWR), 
least work remaining (LWKR), most work remaining 
(MWKR), minimum slack time (MST) and operation due 
date (OPNDD).  

Simulation Based Optimization (SBO): There are 13 

groups of operations and 8 dispatching rules. Due to 
the great number of different dispatching rule settings, 
simulation based optimization is used to generate an 
optimal configuration of the production line. The 
optimization goal parameters are throughput, total 
tardiness and number of late products. The output of 
the simulation based optimization is the dispatching 
rules used for each operation with its resulting 
throughput and total tardiness. The number of different 
settings is 8

13
, approximately 5.5·10

11
, and about 400 of 

these are given by the SBO model and used for further 
exploration.  

5.4 Results in the bottleneck detection experiment 

The data set with 13 input variables (used dispatching 
rule for each buffer) and throughput and total tardiness 
was used in RDS to generate decision trees. Decision 
trees were used due to that they allow for interpretation 
in contrast to ensembles of trees. 

It can easily be seen in Fig. 6 that the bottlenecks, i.e., 
the most important variables, are op20 and op90. In 
order to generate a small and more interpretable model 
all other input variables were excluded and a new 
model was built. 

 

Figure 6: Important variables in the H-factory. 

 
A decision tree is normally depicted with the root at the 
top having the ancestor nodes below it, see Fig. 7. An 
example is classified by the tree by following a path 
from the root to a leaf node, such that all conditions 
along the path are fulfilled by the example, where the 
conditions are formed from the variable names directly 
below each node and from the edge labels (e.g., the 
condition op20 = SPT follows from the root and the 
leftmost edge from the root).  

 

Figure 7: The tree structure for dispatching rules 
maximizing throughout. 

The estimated regression value at a reached leaf node 
is used to assign the value of the prediction variable, 
i.e., throughput or total tardiness. The relative sizes of 
the area of each square chart in Fig. 7 correspond to 
number of observations used to estimate the regression 
value, where a dark sector corresponds to low average 
throughput, and a light sector corresponds to high 
average throughput. 

Throughput as output variable: New information that 

may be extracted from the decision tree in Fig. 7 is that 
for a higher average throughput use dispatching rule 
SPT in op20 and use any of the dispatching rules but 
MWKR for the other buffers.  
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Total tardiness as output variable: The experiment for 
the total tardiness is performed in a similar manner. As 
an initial study, all input variables are used to identify 
the variables with most importance. As in the 
throughput experiment, op20 and op90 are the 
bottlenecks. The corresponding decision tree is shown 
in Fig. 8. 

 

Figure 8: The tree structure for dispatching rules 
minimizing total tardiness. 

This structure is not as easy to interpret as in the 
previous case, but still there is some valuable 
information that may be extracted. In contrast to the 
throughput experiment, the total tardiness case focuses 
on finding the settings to obtain low prediction values. 
One finding is that letting the most severe bottleneck 
have a dispatching rule that is not LPT and the second 
one having any but MWKR will result in a low total 
tardiness. 

6. SUMMARY AND FUTURE WORK 

This paper has focused on the use of data mining 
techniques in the manufacturing area. This is still a 
rather unexplored but exciting area for making the 
Swedish production industry more efficient. As a first 
step, the two cases described here have only applied a 
subset of available data mining techniques for 
knowledge extraction. A second step would be to work 
in a pro-active manner using data mining further as a 
prediction model. 

One interesting result in this paper is the contradiction 
in the dispatching rule experiment where two different 
dispatching rule settings were discovered for op20. If 
throughput is to be maximized then SPT should be 
used as dispatching rule and LPT if total tardiness 
should be minimized. In RDS, only one dependent 
variable can be set for each model, and using a 
different technique would be an interesting future step. 
For instance, an artificial neural network can be used 

for this purpose, but is not as easy to interpret as a 
decision tree. 
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