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Abstract. The random forest algorithm belongs to the class of ensemble learning
methods that are embarassingly parallel, i.e., the learning task can be straightfor-
wardly divided into subtasks that can be solved independently by concurrent pro-
cesses. A parallel version of the random forest algorithm has been implemented
in Erlang, a concurrent programming language originally developed for telecom-
munication applications. The implementation can be used for generating very large
forests, or handling very large datasets, in a reasonable time frame. This allows for
investigating potential gains in predictive performance from generating large-scale
forests. An empirical investigation on 34 datasets from the UCI repository shows
that forests of 1000 trees significantly outperform forests of 100 trees with respect
to accuracy, area under ROC curve (AUC) and Brier score. However, increasing
the forest sizes to 10 000 or 100 000 trees does not give any further significant
performance gains.
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1. Introduction

The random forest algorithm [6] has become one of the most popular machine learning
methods. Apart from its wide distribution through well-known platforms, such as WEKA
[17] and R [25,19], the popularity can be explained by its relatively low computational
cost and ability to often reach state-of-the-art predictive performance [9].

The random forest algorithm belongs to the class of ensemble learning methods that
are embarassingly parallel, i.e., the learning task can be straightforwardly divided into
subtasks that can be solved independently by concurrent processes, since each tree in
the forest depends only on the given dataset and not on the other trees in the forest.
This contrasts to other ensemble learning methods, such as boosting [15], where each
member of the ensemble is dependent on previously generated members. The random
forest algorithm hence lends itself to straightforward parallellization.

As multi-core computers are becoming mainstream and there is a clear trend in in-
creasing the number of cores on each platform, machine learning implementations, as
most other software, would clearly benefit from being made concurrent. Besides being
able to solve the same tasks as earlier, but much faster, this also opens up for running



experiments that with a standard sequential implementation would require prohibitively
long time. For the random forest algorithm, parallellization means that much larger
forests or datasets can be considered than what would otherwise be possible.

Experiments with random forests rarely consider forests that are larger than a few
hundred trees, some exceptions being [12,27]. The main research question of this work
is to what extent there are any gains from generating large-scale forests compared to
generating more moderately sized forests.

To this aim, we have implemented a parallell version of the random forest algorithm,
using Erlang1, which is a concurrent language that was originally developed for telecom-
munication applications. The language has during recent years reached something of a
hype and has been used for implementing everything from database applications at Ama-
zon2 to the chat system in Facebook.

In the next section, we present the random forest algorithm and discuss some im-
plementation options, regarding both its parallellization and the underlying tree learning
algorithm. In Sect. 3, we outline the experimental setup and present results from compar-
ing forests of different sizes. Finally, conclusions and pointers to future work are given
in Sect. 4.

2. Methods

We first provide a formulation of the random forest algorithm and discuss some options
for the underlying tree learning algorithm. We then discuss the parallellization of the
former.

2.1. Random forests

The random forest algorithm [6] generates a set of classification trees [7], while incor-
porating randomness both in the selection of training examples and in the selection of
features to consider when generating each individual tree. The former is done by em-
ploying bootstrap aggregating, or bagging [5], which works by randomly selecting n ex-
amples with replacement from the initial set of n training examples. Furthermore, when
generating each tree in the forest, only a small randomly selected subset of all available
input features are considered at each node in the tree. This method is summarized in
Algorithm 1, which in turn employs Algorithm 2 for learning each individual tree.

Algorithm 1 RandomForest(examples ⟨e1, . . . , en⟩, features F , no. of trees t)
1: for i = 1 . . . t do
2: for j = 1 . . . n do
3: e′j ← erand(1,n)

4: Ti ← RandomTree(⟨e′1, . . . , e′n⟩, F )

5: return T1, . . . , Tt

1http://www.erlang.org
2http://aws.amazon.com/simpledb



Algorithm 2 RandomTree(examples ⟨e1, . . . , en⟩, features F )
1: if TerminalNode(⟨e1, . . . , en⟩) then
2: T ←MakeLeaf(⟨e1, . . . , en⟩)
3: else
4: F ′ ← RandomSubset(F )
5: {c1, . . . , cp} ← BestSplit(F ′, ⟨e1, . . . , en⟩)
6: {E1, . . . , Ep} ← Distribute(⟨e1, . . . , en⟩, {c1, . . . , cp})
7: if there is some Ei ∈ {E1, . . . , Ep} such that Ei = ⟨e1, . . . , en⟩ then
8: T ←MakeLeaf(⟨e1, . . . , en⟩)
9: else

10: for i = 1 . . . p do
11: Ti ← RandomTree(Ei, F )

12: T ← {(c1, T1), . . . , (cp, Tp)}
13: return T

Both algorithms assume as input a set of features F = {f1, . . . , fm}, where each
feature fi is the name of an independent (or input) variable. Furthermore, they require an
ordered (possibly empty) set of (training) examples ⟨e1, . . . , en⟩, where each example ei
is a pair ⟨x̄i, yi⟩ such that x̄i = ⟨xi1, . . . , xim⟩, where each xij is a value for feature fj ,
and where yi ∈ {l1, . . . , lk}, where l1, . . . , lk are the possible class labels.

In Algorithm 1, the function rand(a, b) is employed, which returns a random integer
in the interval [a, b].

In Algorithm 2, the boolean function TerminalNode(⟨e1, . . . , en⟩) returns TRUE
if certain conditions are met. These may vary between implementations, but a common
condition, which is also adopted here, is that all examples share the same class label.
Note that this also covers the special case of having an empty example set. The function
MakeLeaf(⟨e1, . . . , en⟩) returns a representation of a leaf in the generated tree. For a
classification tree, this is simply the class label that occurs most frequently among the
examples ⟨e1, . . . , en⟩. For a probability estimation tree (PET) [22], this is instead a
class probability distribution P , such that 0 ≤ P (li) ≤ 1 for all li ∈ {l1, . . . , lk}, and∑

i=1,...,k P (li) = 1. Different ways of forming such distributions may be considered.
In [3], it was shown that for random forests, relative frequencies are to be preferred over
using Laplace correction and the m-estimate [10]. In this work, we consider forests of
PETs where the probabilities are obtained from relative class frequencies.

The function RandomSubset(F ) returns a randomly selected subset of the given
features. A few alternatives for this have been proposed [6], including functions returning
a fixed number of features and a function returning a subset of size ⌊log2∣F ∣ + 1⌋, the
latter being adopted here.

The function BestSplit(F ′, ⟨e1, . . . , en⟩) partitions the examples ⟨e1, . . . , en⟩ by
using each feature in F ′ and returns the conditions {c1, . . . , cp} that result in the best
partition according to some criterion. The conditions {c1, . . . , cp} that are used for form-
ing a partition refer to a single feature f only, and they are required to be mutually ex-
clusive and exhaustive, i.e., for each possible example e with a non-missing value on f ,
there is exactly one condition ci that holds for e. In this study, we limit ourselves to nu-
meric and nominal features and furthermore only consider conditions resulting in binary
partitions, i.e., they are on the form {fnum ≤ v, fnum > v} for a numeric feature fnum



and some v ∈ ℝ, and {fnom = v, fnom ∕= v} for a nominal feature fnom and some v in
the domain of fnom. Several methods for finding threshold values, i.e., v above, for the
numeric conditions have been proposed, including the standard method proposed in [14].
However, in order to avoid the cost of sorting the numerical values, as required by the
method in [14], and also to increase diversity of the trees, we here instead consider only
a single threshold value that is obtained from the average of two examples that are ran-
domly selected from two different classes. In a similar way, only one randomly selected
value for each considered nominal feature is evaluated at each node in the tree.

There has been a plentitude of criteria suggested for evaluating the resulting parti-
tions. Two well-known candidates for this are Gini impurity [7] and information gain
[23]. The latter criterion is adopted in this study. It should be noted that since we are only
considering binary partitions, its bias in favor of choosing partitions with many members
can be ignored here.

The function Distribute(⟨e1, . . . , en⟩, {c1, . . . , cp}) results in a partition
{E1, . . . , Ep} of ⟨e1, . . . , en⟩ such that condition ci holds for all examples in Ei. Partic-
ular care has to be taken to examples having missing values on the feature that the con-
ditions are referring to. The standard way to handle this is by first partitioning all exam-
ples with known values on the feature, and then distributing fractions of the remaining
examples according to the relative size of each group in the partition [24]. In order to in-
crease diversity of the trees in the forest, we here instead randomly assign each example
with a missing value to any of the subgroups, where the probability of a subgroup being
selected is the same as its relative size.

It should be noted that the tree growing algorithm returns a leaf node whenever it
fails to partition the examples over multiple subsets. If the partition contains more than
one non-empty subset, each subset is used to recursively generate a subtree.

When making a prediction with a forest of PETs, a class probability distribution is
formed by averaging the class probability distributions that are output by each individual
tree in the forest.

2.2. Parallellizing the random forest algorithm

As the number of trees in a forest normally can be expected to be larger than the num-
ber of available cores, one straightforward approach of parallellizing the random forest
algorithm is to assign to each sub-process the task of generating a subset of the forest.
In Erlang, a sub-process is started by the spawn-function, leaving the decision of how
to distribute the work of multiple processes over the available cores to the built-in task
scheduler. The sub-processes communicate through message passing, where each pro-
cess has a separate queue of messages to be handled. In principle, a separate process can
be started for generating each individual tree, but for very large forests, this may result in
that the message queue for the main process that keeps track of all sub-processes, grows
out of bounds. Instead, we here adopt the approach of spawning as many sub-processes
as there are available cores, requesting each sub-process to generate an approximately
equal number of trees. In order to utilize all available cores also during classification,
each sub-process retains the generated sub-forest in its local memory for making predic-
tions, where the latter are collected and formed into collective votes by the main pro-
cess. This has demonstrated to be significantly faster than having the main process first
collecting all sub-forests and then applying the trees sequentially.



3. Empirical investigation

In this section, we first present the three evaluation criteria that are considered in the
empirical investigation. We then present the experimental setup and formulate the test
hypotheses. Finally, we present and analyze the outcome of the experiment.

3.1. Evaluation criteria

The most common way of evaluating predictive performance of classifiers is by mea-
suring the accuracy (i.e., the percentage of correctly classified examples). During recent
years, there has however been a growing interest in also the ranking performance, which
can be evaluated by measuring the area under the ROC curve (AUC) [13]. The AUC
can be interpreted as the probability of ranking a true positive example ahead of a false
positive when ordering examples according to decreasing likelihood of being positive
[4]. When using the output of classifiers to calculate the expected utility of different al-
ternatives in decision situations, the correctness of predicted class probabilities may be
of crucial importance, something which also has attracted increased attention during re-
cent years [20,18]. One commonly employed measure of correctness of predicted class
probabilities, which also is adopted in this study, is the squared error or Brier score [8].

It should be noted that the three evaluation criteria are not completely correlated,
and a model that is less accurate than another, may very well result in a higher AUC or
Brier score (and vice versa).

3.2. Experimental setup

We consider random forests, as described in Sect. 2, of four different sizes: 100 trees,
1000 trees, 10 000 trees, and 100 000 trees. The proposed forest sizes are expected to be
sufficient for giving an indication on whether or not one can expect gains from generating
very large forests.

The forests are compared w.r.t. accuracy, AUC and Brier score using stratified ten-
fold cross-validation on 34 data sets from the UCI Repository [2]. The names of the data
sets are listed in Table 1. The average scores obtained for the ten folds are reported. For
data sets with more than two classes, the weighted AUC is reported, i.e., the AUC for
each class is weighted in proportion to the relative frequency of the class [13].

There are actually a number of hypotheses to be tested. The null hypotheses can
be formulated as there is no difference in predictive performance, i.e., as measured by
accuracy, AUC and Brier score, between forests with 100, 1000, 10 000 and 100 000
trees, respectively.

The algorithms were implemented in Erlang OTP R14B and executed on a Dell
PowerEdge R815 with 48 cores (2.2 GHz AMD Opteron) and 64 GB primary memory,
running Debian Linux. Time measurements for selected datasets are given at the end of
the next section.

3.3. Experimental results

For each of the four considered forest sizes, i.e., 100, 1000, 10 000 and 100 000 trees,
the accuracy, AUC and Brier score are listed for all 34 datasets in Tables 1, 2, and 3.



According to a Friedman test [11], the observed differences in average ranks deviate
significantly (p < 0.05) from what can be expected under the null hypothesis for each
of the three criteria. Hence, one can safely conclude that all three criteria are affected by
the forest sizes.

Table 1. Accuracy

Dataset 100 trees 1000 trees 10 000 trees 100 000 trees

audiology 77.00 (4) 78.50 (1) 77.50 (2.5) 77.50 (2.5)
balance-scale 86.89 (4) 87.68 (2.5) 88.00 (1) 87.68 (2.5)
breast-cancer 72.43 (1) 72.40 (3) 72.40 (3) 72.40 (3)
breast-canc-wisc 96.86 (2.5) 96.86 (2.5) 96.86 (2.5) 96.86 (2.5)
car 94.91 (3.5) 95.02 (1) 94.97 (2) 94.91 (3.5)
clev-heart-disease 55.75 (2) 55.74 (3.5) 56.06 (1) 55.74 (3.5)
crx 87.08 (4) 87.51 (1.5) 87.51 (1.5) 87.37 (3)
cylinder-bands 77.41 (4) 79.81 (3) 80.00 (2) 80.19 (1)
dermatology 98.09 (1) 98.08 (2.5) 98.08 (2.5) 97.81 (4)
ecoli 87.20 (4) 87.50 (2) 87.50 (2) 87.50 (2)
glass 81.28 (3) 81.69 (2) 81.23 (4) 81.71 (1)
hepatitis 86.38 (1.5) 85.79 (3) 85.71 (4) 86.38 (1.5)
house-votes 95.88 (3) 96.11 (1) 95.88 (3) 95.88 (3)
image-segmentation 92.86 (4) 94.29 (1) 93.33 (3) 93.81 (2)
ionosphere 94.59 (1) 94.02 (2) 93.75 (3.5) 93.75 (3.5)
iris 95.33 (2.5) 95.33 (2.5) 95.33 (2.5) 95.33 (2.5)
kr-vs-kp 98.37 (4) 98.62 (2) 98.62 (2) 98.62 (2)
lung-cancer 42.50 (4) 55.83 (2) 55.83 (2) 55.83 (2)
lymphography 81.62 (4) 85.05 (2) 85.05 (2) 85.05 (2)
mushroom 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5)
new-thyroid 98.12 (1) 97.21 (2.5) 96.73 (4) 97.21 (2.5)
pima-indians-diab 76.04 (3) 75.65 (4) 76.43 (1) 76.17 (2)
post-op-patients 65.56 (2.5) 65.56 (2.5) 65.56 (2.5) 65.56 (2.5)
primary-tumor 42.50 (4) 43.39 (1) 42.80 (3) 43.09 (2)
promoters 92.45 (4) 93.36 (2.5) 94.36 (1) 93.36 (2.5)
sick-euthyroid 96.84 (2) 96.90 (1) 96.78 (3.5) 96.78 (3.5)
soybean-large 89.54 (4) 90.52 (1) 89.86 (3) 90.18 (2)
spambase 95.50 (4) 95.65 (2) 95.61 (3) 95.67 (1)
spectf 92.84 (4) 93.99 (1) 93.13 (2.5) 93.13 (2.5)
splice 96.24 (4) 96.80 (1.5) 96.80 (1.5) 96.74 (3)
tae 58.29 (4) 58.92 (3) 58.96 (2) 59.63 (1)
tic-tac-toe 98.96 (4) 99.06 (2.5) 99.06 (2.5) 99.17 (1)
wine 97.75 (4) 98.33 (2) 98.33 (2) 98.33 (2)
yeast 61.67 (2) 61.80 (1) 61.60 (3) 61.53 (4)

Average rank: 3.12 2.06 2.44 2.38

A post-hoc Nemenyi test [11] is employed to investigate if the difference in average
ranks for two methods deviate significantly from what can be expected under the null
hypothesis. The critical difference, i.e., the minimum difference in average ranks between
two methods for which the difference can be considered significant, when comparing 4
methods on 34 datasets, is 0.804 at the p = 0.05 level.

The Nemenyi test shows that when comparing the average ranks in Table 1, one
can conclude that forests of 1000 trees significantly outperform forests of 100 trees with
respect to accuracy. Forests of 10 000 and 100 000 trees suprisingly appear to perform
slightly worse than forests of 1000 trees, but the Nemenyi test does not allow to rule out
these differences as due to chance.



Table 2. Area under ROC curve

Dataset 100 trees 1000 trees 10 000 trees 100 000 trees

audiology 96.94 (1) 96.92 (2) 96.86 (3.5) 96.86 (3.5)
balance-scale 94.60 (4) 94.73 (3) 94.78 (2) 94.79 (1)
breast-cancer 67.43 (4) 67.70 (3) 67.89 (2) 68.01 (1)
breast-canc-wisc 99.29 (4) 99.34 (2.5) 99.34 (2.5) 99.36 (1)
car 99.58 (4) 99.67 (3) 99.68 (1.5) 99.68 (1.5)
clev-heart-disease 81.66 (4) 82.36 (3) 82.50 (2) 82.75 (1)
crx 92.85 (4) 93.29 (1) 93.26 (2) 93.25 (3)
cylinder-bands 88.16 (4) 89.32 (3) 89.65 (1) 89.61 (2)
dermatology 99.95 (1.5) 99.94 (3.5) 99.95 (1.5) 99.94 (3.5)
ecoli 97.01 (4) 97.37 (3) 97.56 (1) 97.53 (2)
glass 94.95 (4) 95.51 (2) 95.61 (1) 95.39 (3)
hepatitis 86.84 (4) 88.09 (2) 87.35 (3) 88.11 (1)
house-votes 99.04 (4) 99.21 (3) 99.25 (1) 99.23 (2)
image-segmentation 99.03 (4) 99.23 (1) 99.21 (2) 99.18 (3)
ionosphere 98.57 (2.5) 98.61 (1) 98.54 (4) 98.57 (2.5)
iris 100.00 (1.5) 100.00 (1.5) 99.87 (3.5) 99.87 (3.5)
kr-vs-kp 99.90 (4) 99.92 (2) 99.92 (2) 99.92 (2)
lung-cancer 70.00 (4) 76.25 (2) 77.50 (1) 74.58 (3)
lymphography 92.52 (4) 92.92 (3) 93.18 (2) 93.35 (1)
mushroom 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5)
new-thyroid 100.00 (1) 99.91 (3) 99.91 (3) 99.91 (3)
pima-indians-diab 82.62 (4) 82.69 (3) 82.75 (1) 82.74 (2)
post-op-patients 36.10 (4) 41.08 (1) 38.92 (2) 37.65 (3)
primary-tumor 82.49 (4) 83.24 (1) 83.09 (3) 83.13 (2)
promoters 98.27 (3) 98.67 (1) 98.27 (3) 98.27 (3)
sick-euthyroid 98.15 (4) 98.22 (1) 98.19 (3) 98.20 (2)
soybean-large 99.23 (4) 99.32 (2.5) 99.32 (2.5) 99.34 (1)
spambase 98.88 (4) 98.93 (2.5) 98.93 (2.5) 98.94 (1)
spectf 97.62 (4) 97.64 (3) 97.80 (1) 97.72 (2)
splice 99.48 (4) 99.50 (2) 99.50 (2) 99.50 (2)
tae 76.05 (4) 76.35 (1) 76.09 (3) 76.23 (2)
tic-tac-toe 99.97 (4) 99.99 (2) 99.99 (2) 99.99 (2)
wine 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5)
yeast 84.99 (4) 85.33 (3) 85.37 (2) 85.40 (1)

Average rank: 3.51 2.22 2.16 2.10

Comparing the average ranks of the forests with respect to AUC, as shown in Table 2,
one can by the Nemeniy test conclude that all the three largest forest sizes result in higher
AUC than forests of 100 trees, since all three differences in average ranks are above the
critical difference (0.804). The differences in AUC between the three largest sizes of
forests are however not significant.



Table 3. Brier score

Dataset 100 trees 1000 trees 10 000 trees 100 000 trees

audiology 0.4254 (4) 0.4196 (3) 0.4194 (1.5) 0.4194 (1.5)
balance-scale 0.2258 (4) 0.2257 (3) 0.2245 (1.5) 0.2245 (1.5)
breast-cancer 0.3845 (4) 0.3814 (1) 0.3817 (2.5) 0.3817 (2.5)
breast-canc-wisc 0.0499 (2.5) 0.0497 (1) 0.05 (4) 0.0499 (2.5)
car 0.1221 (4) 0.12 (3) 0.1194 (1.5) 0.1194 (1.5)
clev-heart-disease 0.5129 (4) 0.5062 (3) 0.5048 (2) 0.5046 (1)
crx 0.1986 (4) 0.194 (3) 0.1937 (2) 0.1936 (1)
cylinder-bands 0.3008 (4) 0.2976 (3) 0.2965 (1) 0.2968 (2)
dermatology 0.0523 (4) 0.0507 (2.5) 0.0506 (1) 0.0507 (2.5)
ecoli 0.2277 (4) 0.225 (1) 0.2251 (2) 0.2254 (3)
glass 0.3168 (4) 0.3148 (3) 0.3135 (1) 0.3141 (2)
hepatitis 0.2105 (1) 0.214 (4) 0.2137 (3) 0.2135 (2)
house-votes 0.0615 (4) 0.0612 (1.5) 0.0613 (3) 0.0612 (1.5)
image-segmentation 0.1397 (4) 0.1361 (3) 0.136 (2) 0.1359 (1)
ionosphere 0.1117 (4) 0.1109 (1) 0.1116 (3) 0.1112 (2)
iris 0.0603 (1) 0.0621 (2) 0.0627 (3) 0.0628 (4)
kr-vs-kp 0.0415 (4) 0.0404 (1.5) 0.0404 (1.5) 0.0405 (3)
lung-cancer 0.6077 (4) 0.5746 (1.5) 0.5746 (1.5) 0.575 (3)
lymphography 0.2236 (1) 0.2262 (4) 0.2245 (3) 0.2242 (2)
mushroom 0.0005 (3) 0.0004 (1) 0.0005 (3) 0.0005 (3)
new-thyroid 0.0446 (1.5) 0.0446 (1.5) 0.0452 (4) 0.045 (3)
pima-indians-diab 0.3211 (4) 0.3201 (3) 0.3197 (1.5) 0.3197 (1.5)
post-op-patients 0.5159 (4) 0.5092 (1) 0.5098 (2) 0.5104 (3)
primary-tumor 0.7047 (4) 0.7005 (1) 0.7024 (3) 0.7022 (2)
promoters 0.2577 (1.5) 0.2577 (1.5) 0.2603 (3) 0.2606 (4)
sick-euthyroid 0.0561 (4) 0.0552 (1) 0.0553 (2) 0.0554 (3)
soybean-large 0.1916 (4) 0.1855 (3) 0.1839 (2) 0.1838 (1)
spambase 0.076 (4) 0.0745 (2.5) 0.0745 (2.5) 0.0744 (1)
spectf 0.1274 (1) 0.1289 (2) 0.1294 (3.5) 0.1294 (3.5)
splice 0.1443 (4) 0.1415 (2.5) 0.1414 (1) 0.1415 (2.5)
tae 0.5514 (3) 0.5516 (4) 0.5512 (2) 0.5506 (1)
tic-tac-toe 0.0958 (4) 0.0915 (2.5) 0.0914 (1) 0.0915 (2.5)
wine 0.0592 (4) 0.0559 (1) 0.0563 (3) 0.056 (2)
yeast 0.5178 (4) 0.5152 (1) 0.5156 (3) 0.5154 (2)

Average rank: 3.40 2.16 2.25 2.19

Finally, the Nemeniy test shows that forests of 1000, 10 000 and 100 000 trees,
all significantly outperform forests of 100 trees with respect to Brier score, as given
by the average ranks shown in Table 3. Again, there are no significant differences in
performance when comparing the top three methods.

In Table 4, some selected time measurements are shown to give an indication of the
computational cost that is required for generating and applying the large-scale forests.3

It should be noted that if a sequential implementation would have been employed, rather
than the parallell version running on a 48-core computer, the experiment would have
taken several days to complete.

3The times reported are the averages from 10 folds, including both training and testing time. In order to get
an estimate for the total time for each experiment, the presented numbers hence have to be multiplied by 10.



Table 4. Timings for some selected datasets (average CPU seconds for each fold)

Dataset No. ex. No. feat. 100 trees 1000 trees 10 000 trees 100 000 trees

car 1728 6 0.18 0.97 9.10 77.86
crx 689 15 0.09 0.43 4.76 42.45
ecoli 336 7 0.06 0.29 3.88 29.97
glass 214 9 0.04 0.22 2.76 23.28
house-votes 435 16 0.05 0.20 1.76 17.77
kr-vs-kp 3196 36 0.41 2.43 22.95 225.11
mushroom 8124 22 0.74 3.38 26.79 229.40
post-op-patients 90 8 0.02 0.07 0.64 7.84
soybean-large 307 34 0.11 0.66 7.46 60.74
spambase 4601 57 0.77 5.00 48.64 488.01
splice 3190 60 0.54 4.05 34.03 343.12

4. Concluding remarks

A parallell version of the random forest algorithm has been implemented, allowing in-
vestigating whether or not performance gains can be obtained from generating very large
forests, compared to more moderately sized forests. An empirical investigation on 34
datasets from the UCI repository showed that forests of 1000 trees significantly outper-
form forests of 100 trees with respect to accuracy, area under ROC curve and Brier score.
However, further increasing the sizes up to 10 000 and 100 000 trees did not result in any
significant improvements.

Parallell implementations open up possibilities for other experiments with large-
scale random forests. One direction for future research is to explore alternative ap-
proaches to increasing diversity of the trees, in particular such approaches that may be
detrimental for small or moderately sized forests, but which may be beneficial for very
large forests only. Such approaches include evaluating fewer features at each node and
considering smaller subsets of the training examples.

The current Erlang implementation needs to be further improved in order to scale
well when large number of cores are available. The current implementation utilizes a
single global data structure (ets table) for all examples, resulting in locks when multiple
processes try to access the same data. Distributing data over multiple tables, or using
process local data structures, is expected to give closer to linear scaling with large number
of cores.

Another direction for future research is to investigate alternative approaches to par-
allellize the random forest algorithm, including alternative strategies for distributing the
tasks of generating subsets of the trees over multiple cores. In case the number of avail-
able cores is larger than the trees to be generated, one may even consider parallellizing
the tree generation algorithm, something which has been studied earlier in e.g. [1,21].
The latter type of more fine-grained parallellism may also be required for other ensem-
ble approaches for which subsequently generated models are dependent on the ones pre-
viously generated, e.g., boosting. Future work also includes comparing the Erlang im-
plementation to parallel implementations on other platforms, including implementations
within the MapReduce framework [21], in Fortran 90 [28], in C++ [26] and one that is
under development for GPUs [16].
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