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Abstract - Two strategies for fusing information from 
multiple sources when generating predictive models in 
the domain of pesticide classification are investigated:  
i) fusing different sets of features (molecular descriptors) 
before building a model and ii) fusing the classifiers built 
from the individual descriptor sets. An empirical investi-
gation demonstrates that the choice of strategy can have 
a significant impact on the predictive performance. 
Furthermore, the experiment shows that the best strategy 
is dependent on the type of predictive model considered. 
When generating a decision tree for pesticide classi-
fication, a statistically significant difference in accuracy 
is observed in favor of combining predictions from the 
individual models compared to generating a single model 
from the fused set of molecular descriptors. On the other 
hand, when the model consists of an ensemble of 
decision trees, a statistically significant difference in 
accuracy is observed in favor of building the model from 
the fused set of descriptors compared to fusing ensemble 
models built from the individual sources. 
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1 Introduction 
Data mining techniques have become standard tools to 
develop predictive and descriptive models in situations 
where one wants to exploit data collected from earlier 
observations in order optimize future decision making [1]. 
In the case of predictive modeling, one typically tries to 
estimate the expected value of a particular variable (called 
the dependent variable), given the values of a set of other 
(independent) variables. In the case of a nominal 
dependent variable (i.e., the possible values are not given 
any particular order), the prediction task is usually 
referred to as classification, while the corresponding task 
when having a numerical dependent variable is referred to 
as regression. One usually wants the model to be as 
correct as possible when evaluated on independent test 
data, and several suggestions for how to measure this have 
been proposed. For classification, such measures include 
accuracy, i.e., the percentage of correctly classified test 
examples, and the area under the ROC curve (AUC), i.e., 
the probability that a test example belonging to a class is 

ranked as being more likely belonging to the class than a 
test example not belonging to the class [2]. Besides the 
ability to make correct predictions, one is also often 
interested in obtaining a comprehensible model, so that 
the reasons behind a particular classification can be 
understood, and also that one may gain insights into what 
factors are important for the classification in general. 
Examples of such comprehensible models are decision 
trees and rules, e.g. [3], while examples of models not 
belonging to this group, often called black-box, or opaque, 
models, include artificial neural networks and support 
vector machines (see e.g. [4]). 
 
A central issue when developing predictive models from 
multiple sources is how to best integrate – or fuse – the 
information from these sources. Should one fuse all 
available data and then generate a predictive model, or 
should one generate models from the different sources and 
then fuse the models? 
 
In this work we address this general question by studying 
a particular problem within the domain of 
chemoinformatics – pesticide classification. This problem 
concerns classifying molecules into being a pesticide or 
not, based on different molecular descriptors. What is 
interesting from an information fusion perspective with 
this and many similar problems in chemoinformatics is 
that there is no (known) single source of molecular 
descriptors that always is optimal, but there is a large 
number of different sources developed for different 
purposes. Hence, the question for a particular application 
in this area is how to best combine the information from 
these sources when generating a predictive model. In this 
study, we consider two basic strategies for fusing this 
information: i) fusing the sources before generating the 
model, and ii) generating models from each source and 
then fusing the models into a global predictive model. The 
research question of this study is whether or not the choice 
of strategy has any impact on the resulting model w.r.t. 
predictive performance in the domain of pesticide 
classification.  
  
In the next section, we describe the problem of pesticide 
classification in a little more detail, and point out the 
sources of information used in the study. In section three, 



we briefly describe the employed predictive data mining 
techniques as well as the methods for fusing features and 
classifiers. In section four, we present the experimental 
setup and the results from the experiment. Finally, in 
section five we give concluding remarks and point out 
directions for future work.  
 

2 Data Sources 
The particular class of molecules that we consider in this 
study are so-called pesticides, i.e., molecules that may be 
used for preventing or destroying pests, such as microbes, 
insects and other organisms that are considered to be 
harmful. 
 
The set of pesticides used in this study was selected from 
the e-Pesticide Manual [5]. The structures were converted 
into SMILES strings [6] and standardized in order to 
allow further processing such as removing duplicates and 
descriptor calculations. After removing duplicate 
structures, we retained 1613 unique compounds with 
molecular weight (MW) between 100-700 Dalton. A 
similar sized counter set (i.e., molecules that have not 
been classified as pesticides) was selected from a set of 
compounds obtained from external vendors and compiled 
at AstraZeneca. The selection was done by matching the 
MW distribution between the two sets using a genetic 
algorithm, see Figure 1. The algorithm minimizes the F-
test statistics between two datasets in order to obtain a 
non-significant difference between the normal distri-
butions of a desired property. This was done in order to 
avoid trivial classifications based on molecular size. 

 
Figure 1. Molecular weight distributions for the pesticides 
and counter sets. CSET-rand is randomly selected while 
CSET-GA is selected using a genetic algorithm. 
 
The following 2D molecular descriptors have been 
calculated for both sets with DRAGON [7]:  
• B01: 48 constitutional descriptors (the so-called 0D  

descriptors independent of molecular connectivity 

such as MW, number of atoms, sum of atomic 
properties, etc.) 

• B17: 152 chemical functional group counts 
• B18: 120 atom centered fragments. Although this set 

was initially proposed for predicting molecular 
hydrophobicity (lipophilicity) [8], it has proved to be 
very useful for several other binary classification tasks 
[9,10] 

• B20: 28 molecular properties calculated from models 
and empirical descriptors. 

For a detailed description of the selected molecular 
descriptors, see [7] and the references therein.  
 

3 Methods 

3.1 Decision trees and ensembles 
Techniques for generating decision trees are perhaps 
among the most well-known methods for predictive data 
mining. Early systems for generating decision trees 
include CART [11] and ID3 [12], the latter being followed 
by the later versions C4.5 [3] and C5.0 [13]. The basic 
strategy that is employed when generating decision trees 
is called recursive partitioning, or divide-and-conquer. It 
works by partitioning the examples by choosing a set of 
conditions on an independent variable (e.g., the variable 
has a value less than a particular threshold, or a value 
greater or equal to this threshold), and the choice is 
usually made such that the error on the dependent variable 
is minimized within each group. The process continues 
recursively with each subgroup until certain conditions are 
met, such as that the error cannot be further reduced (e.g., 
all examples in a group belong to the same class). The 
resulting decision tree is a graph that contains one node 
for each subgroup considered, where the node 
corresponding to the initial set of examples is called the 
root, and for all nodes there is an edge to each subgroup 
generated from it, labeled with the chosen condition for 
that subgroup. A decision tree is normally depicted with 
the root at the top having the ancestor nodes below it – see 
Fig. 2 for a decision tree generated within the domain of 
pesticide classification. An example is classified by the 
tree by following a path from the root to a leaf node, such 
that all conditions along the path are fulfilled by the 
example, where the conditions are formed from the 
variable names directly below each node and from the 
edge labels (e.g., the condition B01-nCIC ≤ 1.5 
follows from the root and the leftmost edge from the root). 
The estimated class probabilities at the reached leaf node 
are used to assign the most probable class to the example. 
The relative sizes of the sectors of each pie chart in Fig. 2 
correspond to estimated class probabilities, where a dark 
sector corresponds to the probability of belonging to the 
class of pesticides, and a light sector corresponds to the
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Figure 2. Example of a decision tree for classifying molecules as pesticides (dark color) or non-pesticides (light color) 
based on chemical descriptors.  
 
probability of belonging to the class of non-pesticides1.  
 
Decision trees have many attractive features, such as 
allowing for human interpretation and hence making it 
possible for a decision maker to gain insights into what 
factors are important for particular classifications. 
However, recent research has shown that significant 
improvements in predictive performance can be 
achieved by generating large sets of models, or 
ensembles, which are used to form a collective vote on 
the value for the dependent variable [14]. It can be 
shown that as long as each single model performs better 
than random, and the models make independent errors, 
the resulting error can in theory be made arbitrarily 
small by increasing the size of the ensemble. However, 
in practice it is not possible to completely fulfill these 
conditions, but several methods have been proposed that 
try to approximate independence, and still maintain 
sufficient accuracy of each model, by introducing 
randomness in the process of selecting examples and 
conditions when building each individual model. One 
popular method of introducing randomness in the 
selection of training examples is bootstrap aggregating, 

                                                
1The plus and minus signs below each node indicate whether 
(+) or not (-) the tree could be further expanded in the 
particular tool that has been used to create the tree [19]. 

or bagging, as introduced by Breiman [15]. It works by 
randomly selecting n examples with replacement from 
the initial set of n examples, leading to that some 
examples are duplicated while others are excluded. 
Typically a large number (at least 25-50) of such sets are 
sampled from which each individual model is generated. 
Yet another popular method of introducing randomness 
when generating decision trees is to consider only a 
small subset of all available independent variables at 
each node when forming the tree. When combined with 
bagging, the resulting models are referred to as random 
forests [16], and these are widely considered to be 
among the most competitive and robust of current 
methods for predictive data mining. The drawback of 
ensemble models are however that they can no longer be 
easily interpreted and hence provide less guidance into 
how classifications are made. 
 

3.2 Feature and classifier fusion 
Feature fusion concerns how to generate and select a 
single set of features for a set of objects to which several 
sets of features are associated. The purpose of feature 
fusion is typically to obtain a representation that allows 
for more effective analysis (cf. fusing pixel information 
into segments to improve image classification). 



Normally the fused vector results in loss of information. 
In case all objects have the same sets of features 
associated to them, one could however perform feature 
fusion with no loss of information by simply 
concatenating the feature vectors. Although such a 
concatenation may clearly not be the most effective 
method for high-dimensional feature vectors, it may in 
fact be the most effective alternative for low-
dimensional data. Since we in this study only are 
concerned with moderately-sized feature vectors2, this 
method was chosen as a base-line for feature fusion. 
 
The combination of multiple classifiers generated from 
different sources or in different ways into a global model 
is often referred to as classifier fusion [17]. The purpose 
of classifier fusion is to improve predictive performance, 
typically by combining the output of each of the fused 
classifiers, where the output either is a single class label 
or a probability distribution over all class labels3. One 
may consider classifier fusion to be a special case of 
decision fusion [18], since the latter normally is not 
restricted to combining multiple decisions only, but also 
measures of confidence, probabilities etc.  
 
A large number of approaches have been proposed for 
decision fusion in general, and for classifier fusion in 
particular. The latter include both ways of combining the 
output from multiple classifiers and ways of choosing 
classifiers to include in the combination, see [17] for an 
extensive characterization of different techniques for 
classifier fusion. 
 
In this work, we have chosen to use Bayes average as a 
base-line method for obtaining a class probability distri-
bution from the fused classifiers: 
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where x is an example to be classified, C is one of the 
classes it may belong to, and Pk, k=1, …, K, are the 
probability distributions for the K classifiers. 
 
 
 
 
 
  

                                                
2The feature vector obtained by concatenating all four 
molecular descriptor sets contains 348 features. 
3The methods for generating ensemble models described in the 
previous section are hence examples of methods for classifier 
fusion. 

4 Empirical Evaluation 
We first state the experimental hypothesis, then describe 
the experimental setting, and finally present the results 
together with conclusions. 

4.1 Experimental hypothesis 
The null hypothesis of this experiment is that the choice 
of fusion strategy (fusing descriptors before building a 
model vs. fusing models built from each set of 
descriptors) has no impact on the predictive 
performance.  

4.2 Experimental setting 
We took the entire data set of 32214 compounds, of 
which 50% were classified as pesticides and 50% as 
non-pesticides, and performed a stratified split into two 
sets – one consisting of 70% (2255 compounds) to be 
used for training (model construction) and the other 
consisting of 30% (966 compounds) for testing. The size 
of the test set was considered to be sufficiently large by 
this division to allow detection of any significant 
differences between the strategies – if the original set of 
compounds would have been significantly smaller, 
cross-validation could have been considered as an 
alternative. 
 
Two techniques for generating predictive models were 
considered – decision trees and ensembles (random 
forests) as implemented in the Rule Discovery System, 
v. 2.5.1 [19]. The former is an example of a technique 
resulting in a comprehensible model, while the latter 
results in what can be considered to be a non-
comprehensible model (each ensemble in the experiment 
consists of 50 non-pruned trees). 
 
We considered generating models from each of the four 
sets of descriptors (B01, B17, B18 and B20) as well as 
generating a fused model by averaging the class 
probabilities from each individual model. The resulting 
models were compared to the model obtained by first 
fusing all descriptors into a global set, and then 
generating a predictive model. 

                                                
4Of the original set of 3226 compounds, 5 were removed due to 
failure to calculate molecular descriptors. 



Tree model B01 B17 B18 B20 Fused 
Model 

Fused 
Descriptors 

No. errors 
 

245 266 250 298 194 236 

Accuracy 
 

74.64 72.47 74.12 69.15 79.92 75.57 

AUC 
 

0.8244 0.8066 0.8231 0.7564 0.8866 0.8292 

No. rules 
 

74 80 76 85 315 48 

 
Table 1. Results for the decision tree method. 

 
 

Ensemble 
model 

B01 B17 B18 B20 Fused 
Model 

Fused 
Descriptors 

No. errors 200 184 149 275 164 109 

Accuracy 79.30 80.95 84.58 71.53 83.02 85.09 

AUC 0.8768 0.9041 0.9219 0.8170 0.9167 0.9227 

No. rules 16253 14440 17368 18393 66454 15256 

 
Table 2. Results for the ensemble method. 

 

4.3 Experimental results 
The predictive performance on the 966 test examples for 
the decision tree method is presented in Table 1, where 
the number of errors, accuracy, AUC and number of rules 
(leaf nodes) is presented for each set of descriptors (B01, 
B17, B18 and B20) as well as for the fused model, and the 
model generated from the fused descriptor set. 
 
The fused model clearly outperforms each individual 
model generated from a single set of descriptors when 
comparing the predictive performance (when measured 
both as accuracy and AUC). The fused model furthermore 
significantly outperforms the model generated from the 
fused descriptor set – hence demonstrating that the choice 
of strategy indeed may have an impact on the resulting 
predictive performance. According to McNemar’s test, the 
double-sided tail probability for the observed difference in 
accuracy is 0.006, hence allowing the null hypothesis to 
be safely rejected. 
 
The improved performance is however associated with a 
cost regarding the comprehensibility, since the size of the 
fused model is equal to the sum of the sizes of the 
included models. Interestingly, the tree generated from the 
fused set of descriptors is the smallest (and still slightly 
more accurate than the models built from separate 
descriptor sets). This might be due to that more compact 
models can be found when combinations of descriptors 
from different sources are allowed. However, another 

possible explanation is that the increased dimensionality 
may lead to more extensive pruning, since the risk of 
being mislead by spurious correlations when growing the 
tree increases with the number of dimensions. 
 
The predictive performance on the 966 test examples for 
the ensemble method is presented in Table 2, where again 
the number of errors, accuracy, AUC and number of rules 
(leaf nodes) is presented for each set of descriptors (B01, 
B17, B18 and B20) as well as for the fused model, and the 
model generated from the fused descriptor set. 
 
In contrast to the results for the decision tree method, 
building an ensemble model from a fused set of 
descriptors is more effective than fusing ensemble models 
built from the individual descriptor sets. According to 
McNemar’s test, the double-sided tail probability for the 
observed difference in accuracy is 0.012. This means that 
the null hypothesis can again be safely rejected – the 
choice of strategy is indeed important – but this time the 
best strategy is to fuse the descriptor sets. It should also be 
noted that in contrast to the experiment with decision 
trees, the model built from one of the individual descriptor 
sets (B18) actually outperforms one of the fusion 
strategies. 



5 Concluding remarks 
We have investigated two strategies for fusing 
information from multiple sources when generating 
predictive models in the domain of pesticide classification 
– by fusing features from all sources before building a 
model and by fusing models built from the individual 
sources. The experiment demonstrated that the choice of 
strategy does indeed have an impact on the predictive 
performance. In case the models consist of decision trees, 
it is clearly more beneficial to combine the predictions 
from the individual models instead of generating a single 
model from the fused set of descriptors. However, when 
the models consist of ensembles of decision trees, it is 
significantly more effective to build the model from a 
fused set of descriptors than fusing ensemble models built 
from the individual sources. Whether this finding holds 
also for other domains remains to be investigated, but this 
study has nevertheless demonstrated that significant gains 
in predictive performance can be obtained by considering 
different fusion strategies for different types of model. 
This finding also calls for investigating more elaborate 
fusion methods than the two basic strategies considered in 
this study, both regarding fusion of features and fusion of 
classifiers (cf. [17]). Another line of future research 
concerns investigating what effect the choice of fusion 
strategy has on comprehensibility (not only counting the 
number of rules) and how this affects the possibilities of 
gaining new insights in the domain of application.  
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