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the problem

How good is your prediction?

You want to predict the toxicity of a new drug candidate: compound X.

∙ Your classifier says the compound is non-toxic.
∙ Your probability estimator says it’s 80% likely that the compound is non-toxic.
∙ Your regression model says the compound’s toxicity level is 0.2.
How close is that to the true value?
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the problem

The simple answer:

We expect past performance to indicate future performance.

∙ The model is 80% accurate on the test data,
so we assume it’s accurate for 80% of production data.

∙ The model has an AUC of 0.9 on the test data,
so we assume it has an AUC of 0.9 on production data.

∙ The model has an RMSE of 2.0 on the test data,
so we assume it has an RMSE of 2.0 on production data.

But...

What about compound X?

What performance should we expect from the model for this particular instance?
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tentative solutions

We can use PAC (probably approximately correct) theory.

Gives us valid error bounds for the model.

But...

∙ Bounds are on model-level — don’t consider whether instance is “easy” or “hard”.
∙ Bounds tend to be large.

We can use Bayesian learning.

Gives us calibrated error bounds on a per-instance basis.

But...

∙ Only if we know the prior probabilities.
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a third approach

We can use Conformal Prediction.

∙ Individual probabilities/error bounds per instance.
∙ Probabilities are well-calibrated: 80% means 80%.
∙ We don’t need to know the priors.
∙ We make a single assumption — exchangeability (∼ i.i.d.)
∙ We can apply it to any machine learning algorithm.
∙ It’s rigorously proven and simple to implement!
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guaranteeing predictive quality

Conformal Prediction1

Transforms classifiers and regressors into confidence predictors.

Predictions are multivalued .

∙ Classification — label sets, e.g. {red, blue, green}
∙ Regression — intervals, e.g. [0.12, 0.19]

Predictions are associated with a measure of confidence.

A γ-confidence prediction region contains the true output with probability γ.

1Vovk, Gammerman & Shafer (2005) Algorithmic Learning in a Random World
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conformal regression



inductive conformal prediction — example

Assume we have:

∙ A regression model h, trained on Zt.
∙ A calibration set of (labeled) examples, Zc so that Zt ∩ Zc = ∅.

Let’s do the following:

∙ Use h to make predictions for Zc and measure the absolute error for each prediction.
∙ Sort these error scores in descending order, and call them α1, ..., αq.
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inductive conformal regression — example

Given that we have

q calibration set scores α1, ..., αq and

prediction ŷk = h(xk) for a new test example,

and that

the examples in Zc ∪ Zt are exchangeable,

we can easily calculate error bounds for ŷk.
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Given that we have

q calibration set scores α1, ..., αq and

prediction ŷk = h(xk) for a new test example,

and that

the examples in Zc ∪ Zt are exchangeable,

we can easily calculate error bounds for ŷk.

20% 20 % 20% 20% 20%
0.78 0.65 0.33 0.24

P(yk ∈ 0.29± 0.78) = 0.8.

P(yk ∈ 0.29± 0.65) = 0.6.
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conformal prediction — a slightly more general look

The values α1, ..., αq are called nonconformity scores.

They measure the “strangeness” of an example, using a nonconformity function.

We can use any function as a nonconformity function.

(For regression problems, the absolute error function is simply convenient.)
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conformal classification



conformal prediction

Predicting the toxicity of compound X

1. Train an RF classifier on part (e.g. 80%) of the training data.
2. Make predictions for the remainder of the training data.

∙ This is the held-out calibration set.
∙ Calculate their nonconformity as, e.g., αi = 1− P̂h(yi | xi).

Calibration nonconformity scores A = α1, ..., αq.

A = [0.28,−0.12, ..., 0.99,−0.3]
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conformal prediction

Predicting the toxicity of compound X

For every possible class, {no-toxicity, low-toxicity, high-toxicity},

make a tentative classification:

∙ (X, no-toxicity)
∙ (X, low-toxicity)
∙ (X, high-toxicity)

Measure the nonconformity of the three tentative classifications using αi = 1− P̂h(yi | xi).

αno = 0.02

αlow = 0.28

αhigh = 0.92
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conformal prediction

So we measured nonconformity — now what?

Remember — is (xk, ỹ) particularly nonconforming compared to the calibration examples?
Then ỹ is probably an incorrect classification. Otherwise, include it in the prediction
region.

To get statistically valid prediction regions, we simply use hypothesis testing to compare
nonconformity scores!

13



conformal prediction

Comparing nonconformity scores.

We have the nonconformity scores of the calibration examples, A = α1, ..., αq, and the
nonconformity of our tentatively classified example, αỹ

k. So, we calculate a p-value

p(xk, ỹ) =
# {αi ∈ A | αi ≥ αk}

#A ,

and compare p(xk, ỹ) to a predefined significance level ϵ.

∙ If p < ϵ then ỹ is probably incorrect, and we reject it.
∙ Otherwise, we include it in the prediction region Γϵk.

With probability 1− ϵ, Γϵk contains yk.

14



conformal prediction

Predicting the toxicity of compound X

Choose a significance level. We’ll choose ϵ = 0.05.

Calculate the p-values:
p(X, no-toxicity) = 0.35

p(X, low-toxicity) = 0.07

p(X, high-toxicity) = 0.02

At ϵ = 0.05, we can reject high-toxicity, i.e.:

With 95% probability, compound X has either none or low toxicity!
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some important modifications



efficiency

Evaluation

Since all conformal predictors are valid, the main criterion when comparing different
conformal predictors is their efficiency, i.e., the sizes of output prediction regions.

∙ Clearly a smaller prediction region is more informative, so efficiency is typically
measured as:

∙ Classification: The (average) number of labels present in the prediction sets
∙ Regression: The (average) size of the prediction intervals
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normalized nonconformity functions

With standard nonconformity functions, the conformal regressor will produce prediction
intervals of the same size for every xj; i.e., it does not consider the difficulty of xj
With normalized nonconformity functions, the absolute error is scaled using the
expected accuracy of the underlying model;

The motivation for this, from a conformal prediction standpoint, is that if two instances
have identical absolute errors, an “easier” instance is actually stranger than a “harder”.

Using a normalized nonconformity function, the resulting prediction intervals will be
smaller for instances that are deemed “easy” and larger for “harder” instances.
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normalized nonconformity functions

There are many possible ways to estimate the difficulty of a specific instance:

∙ A model (e.g., an ANN) could be trained to predict the (log) error of a test instance.
∙ We could use the average training error of the k nearest neighbors.
∙ For specific models, internal measures could be used. As an example - an instance is
deemed easier for a kNN model if its k neighbors are close and if they agree in their
predictions.

Naturally, when using normalized nonconformity measures, we expect the average
prediction interval to be smaller, i.e., the efficiency is increased.
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mondrian conformal prediction

Purpose

Mondrian conformal predictors divide the problem space into several disjoint
subcategories κ1, ..., κm and provide a confidence 1− ϵ for each κj separately.

Examples:

∙ For a classification problem, each κj can be mapped to a possible class label, thus
providing guarantees for each class, i.e., the errors will be evenly distributed over the
classes.

∙ The problem space can be divided w.r.t. to the feature space:
∙ In a decision list (rule set) - each rule will be independently valid
∙ In a tree - each leaf (path) will be independently valid

To construct a Mondrian conformal predictor, αp is selected not from the full list of
calibration scores α1, ..., αq, but from a subset αi ∈ α1, ..., αq : κ(xi) = κ(xk+1). The rest of
the procedure remains unchanged.
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a final example



conformal regression trees

Models

∙ We start with a (tiny) regression tree producing point predictions
∙ A standard ICP - all intervals have the same size
∙ Normalized ICP - intervals have different sizes.

∙ Here, the normalization is per leaf (not per instance) since we want to keep the
interpretability.

∙ The difficulty of a leaf is estimated as the standard deviation of the training predictions

∙ A Mondrian ICP - intervals have different sizes and all leaves are independently valid.
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conformal regression trees

x6<10.58
| x6<7.25
| | x5<4.54
| | | y=0.078
| | x5>=4.54
| | | y=0.185
| x6>=7.25
| | x5<7.195
| | | y=0.293
| | x5>=7.195
| | | y=0.394
x6>=10.58
| y=0.689

(a) Regression tree for mortage data set

x6<10.58
| x6<7.25
| | x5<4.54
| | | y=[0, 0.227]
| | x5>=4.54
| | | y=[0.035, 0.335]
| x6>=7.25
| | x5<7.195
| | | y=[0.143, 0.443]
| | x5>=7.195
| | | y=[0.244, 0.544]
x6>=10.58
| y=[0.539, 0.839]

(b) ICP for mortage. ϵ = 0.1
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conformal regression trees
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(a) NICPs for mortage. ϵ = 0.1

x6<10.58
| x6<7.25
| | x5<4.54
| | | y=[0.011, 0.144]
| | x5>=4.54
| | | y=[0.144, 0.226]
| x6>=7.25
| | x5<7.195
| | | y=[0.231, 0.355]
| | x5>=7.195
| | | y=[0.332, 0.456]
x6>=10.58
| y=[0.468, 0.910]

(b) MICP for mortage. ϵ = 0.1
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conformal regression trees

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Streaming test instances

E
rr

or
 r

at
es

(a) ICP leaf errors, ϵ = 0.1.
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(b) MICP leaf errors, ϵ = 0.1.
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the conformal prediction frame work

Key people

∙ Vladimir Vovk and Alexander Gammerman, Royal Holloway, UK
∙ Harris Papadopoulos, Frederick University, Cyprus

What can we use it for?

∙ Classification and regression with guaranteed maximum error rates
[Vovk et al., 2005, Papadopoulos, 2008, Johansson et al., 2013a].

∙ Anomaly detection with guaranteed maximum false positive rates
[Laxhammar and Falkman, 2010].

∙ Concept drift detection / i.i.d. checking with maximum false positive rates
[Fedorova et al., 2012].

∙ Semi-supervised learning [Zhu et al., 2013]
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the conformal prediction frame work

Research opportunities

Although the foundation is very solid there are a number of interesting topics.

Specifically, most of the presentations are very mathematical, and often not adapted for
specific machine learning algorithms.

Sample tasks

∙ Novel nonconformity functions, typically adapted for the underlying algorithm
∙ Some fundamental questions regarding parameter choices (e.g., calibration set size)
are not solved

∙ Novel uses of the frame work - we are using it for rule extraction with guaranteed
fidelity

∙ Applications
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selected papers 2013-2014

Conformal prediction using decision trees
ICDM [Johansson et al., 2013a]

Effective utilization of data in inductive conformal prediction using ensembles of neural networks
IJCNN [Löfström et al., 2013]

Evolved decision trees as conformal predictors
CEC [Johansson et al., 2013b]

Regression conformal prediction with random forests
Machine Learning [Johansson et al., 2014c]

Regression trees for streaming data with local performance guarantees
IEEE BigData [Johansson et al., 2014a]

Rule extraction with guaranteed fidelity
CoPA [Johansson et al., 2014b]

Efficiency comparison of unstable transductive and inductive conformal classifiers
CoPA [Linusson et al., 2014b]

Signed-error conformal regression
PAKDD [Linusson et al., 2014a]
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Thank you!
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