
ICT/KTH
05-sep-2010/FK

 id1006 Java Programming

 Assignment 2 - Lix metric and file reading

It is recommended that you submit this work no later than Tuesday, 12
October 2010. Solution examples will be presented on 13 October.

This assignment is part of the individual student examination on the
course id1006 Java Programming. The assignment is to be done by an
individual student. When the assignment has been approved, it
corresponds to 1/5th credit of the 7.5 credits (hp) given for the
completed course.

HOW TO SUBMIT THE COMPLETED ASSIGNMENT

The completed work is delivered electronically in the form of an
email addressed to

 java.assignments@fc.dsv.su.se

In an emergency, send the email to fki@kth.se.

Send one email per assignment. Since there are three programming tasks
and one essay in this course, a student is expected to submit a total
of four emails.

The subject of the email must contain the text 'id1006 Assignment xxx'
or 'id1006 Essay' etc.

The body of the email must contain the submitting student's name and
optional civic registration number (Sv. 'personnummer'). The sender id
on the email is NOT sufficient identification.

The body of the email must also contain all additional information
needed to identify the submitted work and the context in which it is
being submitted. For example, a re-submission.

Submitted files (e.g. program sources) should be adjoined to the email
as one or more attachments.

SOURCE CODE is to be submitted as PLAIN TEXT, ie files that can be
compiled by the Java standard development kit (javac). All files
necessary to build the program or programs must be submitted
together. If you send an archive, let it be ZIP.

Typeset documents (e.g. Ms Word, Open Office, LaTex etc) MUST be
submitted in PDF, the Portable Document Format by Adobe. This is
currently the optimal way to guarantee cross-platform readability of
electronic documents.

Submitted work is expected to be carefully prepared, annotated,
commented and above all original. Where it is not, quotes, citations,
and references are to be CLEARLY indicated. Images, graphics and other
multimedia products can only be incorporated into the submitted work
with the permission of the copyright holder, and the permission must
be expressed in the submitted work.

Submitted work will be tested for originality.

The three programming assignments for the fall 2010 instance of the
course are all related. Together, they create a simple and extensible
application for estimating the readability of english text.

A readability index (of which there are several) is language
dependent, statistical and computable. They are usually constructed by
computing a ratio between the average number of words per sentence,
and the proportion of complicated words to simple words. As a result,
they usually return a single figure, like 30, or 14.2.

There is for example the LIX (Sv. "läsbarhetsindex", Eng. "readability
index") which is computed thus:

 O L * 100
 lix = - + -------
 P O

where

 O = the number of words
 L = the number of long words (longer than six characters)
 P = the number of sentences

in the text.

LIX is primarily for swedish texts, but can of course be computed on
english too. As can be seen, it is the sum of two values: the average
number of words per sentence, and the percentage of long words in the
text. This means that long sentences and long words will give a higher
value, indicating a text that is harder to read.

One interpretation of the Lix value for the Swedish language is:

 - 29 children's books
30 - 36 fiction, a novel
37 - 43 news article
44 - 52 average factual text
53 - 60 advanced factual text
61 - academic thesis

[Source: http://www.teknolingva.fi/webbinarium/S-Asemi2000/sld025.htm]

Here is another interpretation:

 - 25 children's books
25 - 30 simple texts
30 - 40 ordinary texts / fiction
40 - 50 factual text
50 - 60 advanced factual
61 - very adv. factual, research, thesis

[Source: http://sv.wikipedia.org/wiki/LIX]

Assignment 2 - LixMeter.java and LixTest.java

The LIX TextMeter - LixMeter.java

In order to complete this assignment, you must have completed
assignment 1, because you will need its compiled classes in order to
run your program. See below for how to organize the assignment files
in separate folders and set up the CLASSPATH environment variable.

The second assignment consists of creating two new source files, a
TextMeter implementation called LixMeter.java and a new main program
called LixTest.java.

The LixMeter class should compute the Lix readability index as
expressed above. The property map should contain these properties:

words the number of words
long words the number of long words
sentences the number of sentences
lix the LIX index

The easiest way to go about this, is to copy the file SimpleMeter.java
from assignment 1, rename it to LixMeter.java, and then make all the
necessary changes. Remember to change in comments too.

The class LixMeter should of course implement interface TextMeter.

The main program - LixTest.java

The main program in the second assignment should allow the user to
specify a filename on the command line. The program opens the file,
reads it, sends each line to the parser, and finally prints the
property map of the LixMeter to the standard output stream (System.out).

Start with the source file for the main program from assignment 1,
ParserTest.java, copy it to the assignment 2 folder and rename it to
LixTest.java. Then make the necessary changes to it.

In order to read the lines of a text file, the following outline is
useful:

import java.io.BufferedReader;
import java.io.FileReader;
 ...
 String fileName

 BufferedReader in = new BufferedReader (new FileReader (fileName));
 for (String t = in.readLine (); t != null; t = in.readLine ()) {
 ... // do something with the current line
 }

Final important points

Do not use packages! We do not need them.

Your folder for assignment 2 should only contain two Java source files,
LixMeter.java and LixTest.java. After compilation you should also have
LixMeter.class and LixTest.class, and editing may of course leave
backup files.

Set the CLASSPATH environment variable so that the javac and java
commands can find you assignment folders. For example, if your
assignment folders are named a1, a2 and a3, then in a Windows
environment:

SET CLASSPATH=.;..\a1;..\a2;..\a3

The first dot includes the current directory, which probably is one of
the three folders. The .. syntax means the parent directory to the
current directory, and then down again into a1, a2 or a3.

If you do this you will be able to compile and run assignemnts 2 and 3
without having to copy the TextMeter, Parser, and token classes into
each folder.

Example output:

>java LixTest MaryWollstonecraft.txt
 words : 223
 sentences : 20
 long words : 37
 lix : 27.741928251121074

>java LixTest HCAndersen.txt
 words : 1881
 sentences : 124
 long words : 337
 lix : 33.08535696523812

>java LixTest OskarI.txt
 words : 443
 sentences : 11
 long words : 113
 lix : 65.78062794992817

>

Grades for this assignment:

For the E, D and C grades the general grading criteria apply.

For the C grade it is important that you use the proper javadoc
syntax in the source code you write. You must document the class,
using the @author tag.

You must document every method, explaining what it is for. If the
method takes arguments, use the @param tag. If the method returns
values, use the @return tag. If you have programmed the method to
throw exceptions, use the @throws tag. Remember that a javadoc comment
starts with /** and ends with */, and it goes immediately before that
which is commented.

For the B and A grades, your solution fulfills the requirement for a
C, and also accepts more than one filename on the commandline. Each
file is processed independent of the other files, and its name and
LixMeter properties are printed. Furthermore, if there is a problem
when accessing the file, it is reported in the output and the program
continues with the next file. For example:

>java LixTest MaryWollstonecraft.txt HCAndersen.txt Missing.file OskarI.txt
File: MaryWollstonecraft.txt
 words : 223
 sentences : 20
 long words : 37
 lix : 27.741928251121074
File: HCAndersen.txt
 words : 1881
 sentences : 124
 long words : 337
 lix : 33.08535696523812
File: Missing.file
java.io.FileNotFoundException: Missing.file (The system cannot find the file spe
cified)
File: OskarI.txt
 words : 443
 sentences : 11
 long words : 113
 lix : 65.78062794992817

>

B - an unambiguous algorithmic outline
A - you code it, document it, and it works.

-fk

