
ICT/KTH
05-sep-2010/FK

 id1006 Java Programming

 Assignment 1 - Parser and SimpleMetric

It is recommended that you submit this work no later than Tuesday, 12
October 2010. Solution examples will be presented on 13 October.

This assignment is part of the individual student examination on the
course id1006 Java Programming. The assignment is to be done by an
individual student. When the assignment has been approved, it
corresponds to 1/5th credit of the 7.5 credits (hp) given for the
completed course.

HOW TO SUBMIT THE COMPLETED ASSIGNMENT

The completed work is delivered electronically in the form of an
email addressed to

 java.assignments@fc.dsv.su.se

In an emergency, send the email to fki@kth.se.

Send one email per assignment. Since there are three programming tasks
and one essay in this course, a student is expected to submit a total
of four emails.

The subject of the email must contain the text 'id1006 Assignment xxx'
or 'id1006 Essay' etc.

The body of the email must contain the submitting student's name and
optional civic registration number (Sv. 'personnummer'). The sender id
on the email is NOT sufficient identification.

The body of the email must also contain all additional information
needed to identify the submitted work and the context in which it is
being submitted. For example, a re-submission.

Submitted files (e.g. program sources) should be adjoined to the email
as one or more attachments.

SOURCE CODE is to be submitted as PLAIN TEXT, ie files that can be
compiled by the Java standard development kit (javac). All files
necessary to build the program or programs must be submitted
together. If you send an archive, let it be ZIP.

Typeset documents (e.g. Ms Word, Open Office, LaTex etc) MUST be
submitted in PDF, the Portable Document Format by Adobe. This is
currently the optimal way to guarantee cross-platform readability of
electronic documents.

Submitted work is expected to be carefully prepared, annotated,

commented and above all original. Where it is not, quotes, citations,
and references are to be CLEARLY indicated. Images, graphics and other
multimedia products can only be incorporated into the submitted work
with the permission of the copyright holder, and the permission must
be expressed in the submitted work.

Submitted work will be tested for originality.

The three programming assignments for the fall 2010 instance of the
course are all related. Together, they create a simple and extensible
application for estimating the readability of english text.

A readability index (of which there are several) is language
dependent, statistical and computable. They are usually constructed by
computing a ratio between the average number of words per sentence,
and the proportion of complicated words to simple words. As a result,
they usually return a single figure, like 30, or 14.2.

There is for example the LIX (Sv. "läsbarhetsindex", Eng. "readability
index") which is computed thus:

 O L * 100
 lix = - + -------
 P O

where

 O = the number of words
 L = the number of long words (longer than six characters)
 P = the number of sentences

in the text.

LIX is primarily for swedish texts, but can of course be computed on
english too. As can be seen, it is the sum of two values: the average
number of words per sentence, and the percentage of long words in the
text. This means that long sentences and long words will give a higher
value, indicating a text that is harder to read.

Another famous readability metric for english is the Flesch index:

 O Y
 Flesch = 206.876 - (1.015 * -) - (84.6 * -)
 P O

where O and P are as for Lix, while

 Y = the number of syllables

in the text.

This is a weighted sum of (again) the average number of words per
sentence, and the average number of syllables per word. Since more
syllables requires more letters in a word, it is quite similar to the

Lix metric. The major difference, however, is that Flesch is
continuous over word length, while Lix uses a threshold for long words
at six characters.

In order to complete the three assignments, you are given certain Java
classes in source code form. You will also create other Java classes
to specification, like a parser, readability meters, a syllable
counter and main programs.

Whenever possible, you should strive to reuse your classes and
code. For example, the parser written for assignment 1 is to be reused
without copying or modification in assignments 2 and 3. For the
readability meters and the main programs, it is better to copy the
source code to a new class name and modify it.

With the first assignment you receive five source files. These are to
be used in all assignments (except for ParserTest which is the main
program for the first assignment):

Token.java Superclass for WorkToken and PunctToken.
WordToken.java Subclass of Token, represents a word.
PunctToken.java Subclass of Token, represents punctuation.

TextMeter.java The interface definition implemented by metric modules.

ParserTest.java A example main program.

Assignment 1 - Parser.java and SimpleMeter.java

The first assignment is to write a parser for english text (like the
one you are reading now). The parser only needs to recognise two kinds
of structure: words and punctuation.

The readability of the text is measured by a plug-in given to the
parser when it is created. This plug-in is a class that implements the
interface TextMeter (given as source-code). The parser informs the
TextMeter what tokens it has parsed from the text, and the TextMeter
measures and remembers the statistics it needs.

The communication between the parser and the TextMeter works like
this: for each word and punctuation found, an instance of class
WordToken or PunctToken is created, and passed on to the
TextMeter. The TextMeter inspects each token and extracts the
information it needs from it.

For the parser, you should name the source file Parser.java and the
skeleton for the class is:

public class Parser {

 public Parser (TextMeter tm) { // constructor with argument
 ...
 }

 public TextMeter getMeter () {
 ...
 }

 public void parse (String s) {
 ...
 }
}

The constructor takes an argument, which is a reference to a TextMeter
implementation. All the parser needs to know about it, is that it
implements the TextMeter interface. The parser should use a local
variable to remember the reference, so that it can call it later when
method parse(String) is called.

The method

 TextMeter getMeter()

should return the reference that was given in the constructor. This is
because the main program that calls the parser should be able to get
the reference back without having to remember it itself.

The method

 void parse (String)

is called with a string to be parsed. The parser should scan the
string, generate instances of WordToken or PunctToken, and send these
to the TextMeter, using TextMeter.add (tkn). For example, if the local
reference to the TextMeter is a variable called 'meter':

 WordToken wtk;
 PunctToken ptk;

 ...
 meter.add (wtk);
 ...
 meter.add (ptk);

Simple parsers can be defined and described by a Deterministic Finite
State Automaton (DFSA). This is a simple state machine and for the
parser needed here only four states are required: start, space, word,
and punct. The following table describes the whole automata, including
the next character and the action to take:

State Next character Actions Next state
===
0:start space - start

0:start punctuation - start

0:start letter start a WordToken word

1:word letter add char to token word

1:word punctuation send token to meter punct
 start a PunctToken

1:word space send token to meter space

2:space space - space

2:space letter start a WordToken word

2:space punctuation start a PunctToken punct

3:punct punctuation add char to token punct

3:punct letter send token to meter word
 start a WordToken

3:punct space send token to meter space

A traditional and efficient way to iterate over all characters in a
string is this:

 String s = ...;

 for (int i = 0; i < s.length (); i++) {
 char c = s.charAt(i);

 ...
 }

However, while it is NOT possible to do:

 for (char c : s) { ... }

it IS possible to write:

 for (char c : s.toCharArray ()) { ... }

BUT! this will require the creation of an array object each time the
loop is executed. If this is done rarely, that is no problem. But if
it is done for every word in a large text, then the memory
requirements per word will more than double, since there will be both
the string for the word and the array object holding a copy of each
character in the string.

A word in the parser is defined as a string of letters, as indicated
by

 public static boolean Character.isLetter(c)

which is a method in the java.lang package. The java.lang package is
always available and does not need to be imported.

Space between words and punctuation is defined by

 public static boolean Character.isSpaceChar(c)

However, for punctuation there is no predicate defined, you must write
one yourself. Punctuation is defined any of the characters from the
set ".!?:;" (period, exclamation mark, question mark, colon, and
semicolon). Such a predicate can be written like:

 protected boolean isPunctuation (char c) {
 if (c == '.') {
 return true;
 }
 else if (c == '!') {
 return true;
 }
 ...
 else {
 return false;
 }
 }

However, that requires several lines of code. A shorter version would
be to use a boolean expression directly in the return statement:

 protected boolean isPunctuation (char c) {
 return (c == '.') || (c == '!') || ... || (c == ';');
 }

In fact, there is an even shorter way of doing it, by clever use of
one of the methods in java.lang.String. Finding it out is left as an
excercise.

Finally, any character which is not a letter, a space, or punctuation,
is regarded as invisible and skipped over.

Important note: when you reach the end of the string being parsed,
make sure that any token you have been building also is sent to the
TextMeter. Otherwise you will not get correct results.

The SimpleMeter

In order to test the parser, you will need to write an implementation
of a TextMeter, called SimpleMeter. The SimpleMeter counts two things,
the number of words, and the number of sentences (the number of
punctuations).

The file should be named SimpleMeter.java and the skeleton looks like:

public class SimpleMeter implements TextMeter {

 ...

} // SimpleMeter

Since the SimpleMeter class implements the TextMeter interface, all
methods in that interface must be given implementations. For example:

 int nofWords = 0;

 ...

 public void add (WordToken wt) {
 // Increment the count of words.
 }

 ...

The two methods TextMeter.add(WordToken) and TextMeter.add(PunctToken)
are used to put information into the meter. The other two methods,
TextMeter.properties() and TextMeter.get(String) requires some
explanation.

Since readability metrics can differ a lot, and we want to be as
general as possible, we let the TextMeter implementation return
several values, expressed as a map from keys to values. That is why
the return value of properties has that type:

import java.util.Map;

...

 public Map<String,String> properties() {
 ...
 }

The Map type is an interface defined in the standard library package
java.util. Using the interface as a return type, allows the
implementation to choose any class which implements that interface to
hold the map. A Map, then, is a lookup table where values are stored
under keys. The general definition of a Map is

 Map<K,V>

meaning that the key (K) is the first type and the value (V) is the
second type. When we declare that something is a Map, we can choose
what the types should be for the key and the value. The most general
type of Map would be:

 Map<Object,Object>

Because all Java objects automatically extends class Object, this
declaration says that any type can be a key, and any type can be a

value. However, that is rarely useful. It is much more common that we
want to restrict the allowed types to something specific, so that we
can be sure of what types are expected. This is especially important
when retrieving values from the map. So, when we declare a type to be

 Map<String,String>

we are telling the Java compiler that instances of this type may only
have strings as keys, and strings as values. The compiler will then
check our code to make sure we do not try to use something else
(although null is usually allowed as a special kind of value).

Having the Map type, we also need an implementation for it, something
for the SimpleMeter to use to actually store the data. In java.util
there is such an implementation:

 HashTable<K,V>

As can be seen, it also can be restricted in terms of which types it
accepts (again, it is the Java compiler which enforces this), so a
suitable declaration in class SimpleMeter would be:

import java.util.Map;
import java.util.HashTable;
 ...
 protected Map<String,String> stats = new HashTable<String,String>();

The import clauses at the beginning of the source file are needed so
that the compiler understands which Map and HashTable we want. Then we
declare a variable called stats (statistics), saying it is protected
(it can only be accessed from within class SimpleMeter), and that is
has the type Map<String,String>. In the same line, we also initialize
it, by creating an instance of a HashTable, restricted in type to
match the type of the variable. Since the HashTable class implements
the Map interface, it IS a Map, and this is exactly what we want.

It is now quite easy to implement the TextMeter.properties() method,
and it simply returns the value of the stats variable:

 public Map<String,String> properties () {
 // Load the stats table with its properties
 ...
 return stats;
 }

However, before we return the property map (stats), we need to put
some properties into it. The Map interface contains a suitable method:

 Map.put(K key, V value)

so in our case all we need to do is to decide on names for the
properties and put them in. For example:

 ...
 stats.put ("words", /* the count of words */);
 // More properties...
 ...

The Map.put() method will overwrite any previous value put in using
the same key, so there is no need to remove any old values. The
expected property names for the SimpleMeter are "words" and
"sentences".

As for the values, you must make sure the expression you put in
evaluates to a String type, or the compiler will complain if it cannot
resolve the conversion automatically. For all the primitive data
types, like int, float, double, char etc, their wrapper classes in
package java.lang (Integer, Float, Double, etc) have static toString()
methods that will do this. For example, the statement:

 String s = Integer.toString (4711);

would give s the value "4711", which is a string.

 (Note: the wrapper classes exist in order to be able to treat the
 primitive data types as objects. While you can put a String in a
 Map, you cannot put an int in there. It is a primitive data type,
 and not an object, and collections like maps, sets and lists can
 only contain objects. For that reason instances of e.g. Integer can
 be created to 'wrap' around the primitive data type value. In
 addition to that, the wrapper classes also contain useful functions
 for converting the values to and from strings of text.)

There are some more things to consider here. Since we do not know when
someone will call the properties() method, we must make sure that the
stats map is updated before we return it. Likewise, we also have the

 String TextMeter.get(String key)

method to implement, and it should of course return exactly the same
up-to-date value as can be found in the properties. There are several
ways of doing so: one way is to have a separate method which stuffs
the current properties into the stats Map, and both properties() and
get(String key) calls it. Another is to load the map only in the
implementation of the properties() method, and then implement
get(String key) by calling properties() first.

The main program - ParserTest.

The source code for this provided. It is really nothing complicated; a
new parser is created and given a new SimpleMeter instance. The
strings taken from the commandline (the argument to main, an array of
String) are each sent to the parser. Then, finally, the meter and the
property map are retrieved from the parser and all the properties
printed. That last operation is rather involved, so it will be
explained in detail. This is what the code looks like at the end of
the main() method:

 for (Map.Entry<String,String> M
 : parser.getMeter ().properties ().entrySet ()) {
 System.out.printf ("%10s : %8s%n", M.getKey (), M.getValue ());
 }

First of all there is a for-loop, using the rather recent (Java 5)
foreach construct:

 for (type variable : collection-or-array) { ... }

which iterates over all elements in the collection or array
(collections are found int the java.util package; Map and HashTable
are examples of collections). So the type in the statement above is

 Map.Entry<String,String>

the variable is

 M

and the collection-or-array is a series of method calls that in the
end returns a collection. Broken down the method calls look like this:

 parser is the reference to the parser instance.

 .getMeter () returns the reference to the SimpleMeter given
 to the parser when it was constructed.

 .properties () returns the Map from the SimpleMeter

 .entrySet () is a method in the Map interface, and it
 returns a set of Entry objects. Since a Set is
 a collection (interface java.util.Set) this
 works well with the foreach loop.

The general declaration of the value returned by Map.entrySet() is

 Map.Entry<K,V>

but since we know that the property map contains keys and values that
are all strings, we can specialize this type in the declaration of the
iteration variable M, which is why it is declared

 Map.Entry<String,String>

Inside the for-loop, is a call to

 System.out.printf(String, expression ...)

There are other ways of printing to the standard output, like

 System.out.print()
 System.out.println()

but the printf method offers formatted printing. The first argument to
printf is a formatting string, similar in spirit to the printf
function in the C language. The printf method is documented in the
java.io.PrintStream class and the complete syntax for the formatting
string can be found in java.util.Formatter.

The formatting string used here looks like this:

 "%10s : %8s%n"

Each percent sign starts a formatting field. After the field comes the
width of the field and a conversion indicator, in this case 's', for
string. The %n conversion generates a newline at the end of the
formatted string.

After the formatting string follows two arguments, since we have
specified two string conversions in the formatting string. These
reference the iteration variable M (which will be referring to the
current Map.EntrySet instance in the foreach loop), and from that the
key and the value or that pair is retrieved and can be formatted and
printed.

Final important points

Do not use packages! We do not need them.

Put all your files for assignment 1 in the same folder.

When you do assignment 2 and 3, put them in their own folders and only
with the new files you get or create. Set the CLASSPATH environment
variable so that the javac and java commands can find your classes.
For example, if your assignment folders are named a1, a2 and
a3, then in a Windows environment:

SET CLASSPATH=.;..\a1;..\a2;..\a3

The first dot includes the current directory, which probably is one of
the three folders. The .. syntax means the parent directory to the
current directory, and then down again into a1, a2 or a3.

If you do this you will be able to compile and run assignemnts 2 and 3
without having to copy the TextMeter, Parser, and token classes into
each folder.

Example output:

>java ParserTest "A white fox smiled. Why? Because the hens were out..."
 words : 10
 sentences : 3

>

>java ParserTest "1.2.3.4.5."
 words : 0
 sentences : 0

>

Grades for this assignment:

For the E, D and C grades the general grading criteria apply.

For the C grade it is important that you use the proper javadoc
syntax in the source code you write. You must document the class,
using the @author tag.

You must document every method, explaining what it is for. If the
method takes arguments, use the @param tag. If the method returns
values, use the @return tag. If you have programmed the method to
throw exceptions, use the @throws tag. Remember that a javadoc comment
starts with /** and ends with */, and it goes immediately before that
which is commented.

For the B and A grades, your solution fulfills the requirement for a
C, and you modify the property listing in ParserTest.java so that the
properties are printed sorted alphabetically by the key string.

B - an unambiguous algorithmic outline
A - you code it, document it, and it works.

-fk

