
Programming Languages &
Paradigms
PROP HT 2011

Lecture 6

Inheritance vs. delegation, method vs. message

Beatrice Åkerblom
 beatrice@dsv.su.se

Thursday, November 17, 11

Abstraction & Modularity

2

Thursday, November 17, 11

Modularity

• Modular Decomposability
– helps in decomposing software problems into a small number of less

complex subproblems that are
•connected by a simple structure
•independent enough to let work proceed separately on each item

• Modular Composability
– favours the production of software elements which may be freely

combined with each other to produce new systems, possibly in a new
environment

3

Thursday, November 17, 11

Modularity, cont’d.

• Modular Understandability
– if it helps produce software in which a human reader can understand

each module without having to know the others, or (at worst) by
examining only a few others

• Modular Continuity
– a small change in the problem specification will trigger a change of

just one module, or a small number of modules

4

Thursday, November 17, 11

Modularity, cont’d.

• Modular Protection
– the effect of an error at run-time in a module will remain confined

to that module, or at worst will only propagate to a few neighbouring
modules

5

Thursday, November 17, 11

Classes aren’t Enough

• Classes provide a good modular decomposition technique.
– They possess many of the qualities expected of reusable software

components:
•they are homogenous, coherent modules
•their interface may be clearly separated from their

implementation according to information hiding
•they may be precisely specified

• But more is needed to fully achieve the goals of reusability and
extendibility

6

Thursday, November 17, 11

Polymorphism

• Lets us wait with binding until runtime to achieve flexibility
– Binding is not type checking

• Parametric polymorphism
– Generics

• Subtype polymorphism
– E.g. inheritance

7

Thursday, November 17, 11

Static Binding

• Function call in C:
– Bound at compile-time
– Allocate stack space
– Push return address
– Jump to function

8

Thursday, November 17, 11

Dynamic Binding

• Method invocatoin in Ruby:
– Does the method exist?
– Is it public?
– Are the number of arguments OK?
– Push it into local method cache
– Now, start calling

9

Thursday, November 17, 11

Static vs. Dynamic Binding

• Static binding:

– Efficiency—we know exactly what method to dispatch to at compile-
time and can hard-code that into the object code (or whatever we
compile to)

– Changing binding requires recompilation, arguably against the “spirit
of OO”

– Very simple to implement (and easy to reason about)
• Dynamic binding:

– Flexibility—supports program evolution through polymorphism
– Harder to implement, especially in the presence of multiple

inheritance and wrt. efficiency

10

Thursday, November 17, 11

Late Binding

• A form of dynamic binding found in e.g., C++, Java and C#
• Requires that types are known at compile-time and inclusion

polymorphism (overriding)
• Example:

– During type checking, we can determine that the type of p is some
subclass of Person

– We require that setName(String) is present in Person and
can thus avoid errors of the type “MessageNotUnderstood”

– Safer, and still much more flexible than static binding

11

Thursday, November 17, 11

Polymorphism

• Lets us wait with binding until runtime to achieve flexibility
– Binding is not type checking

• Parametric polymorphism
– Generics

• Subtype polymorphism
– E.g. inheritance

12

Thursday, November 17, 11

Inheritance

13

Thursday, November 17, 11

Substitution Revisited

• B <: A -- B is a subtype of A
• Any expression of type A may also be given type B

– in any situation
– with no observable effect

• Nominal subtyping or structural subtyping?
• Almost always:

– reflexive (meaning A<:A for any type A)
– transitive (meaning that if A<:B and B<:C then A<:C)

14

Thursday, November 17, 11

Substitution in a STL

• The method below will only operate on arrays of instances of the
BaseballPlayer class, (or instances of subclasses of BaseballPlayer)

15

public int sumOfWages(BaseballPlayer[] bs) {
 int sum = 0;
 for (int i=0; i < bs.length; ++i) {
 sum += bs[i].wage();
 }
 return sum;
}

Thursday, November 17, 11

Substitution in a DTL

• In a dynamically typed language, you can send any message to any
object, and the language only cares that the object can accept the
message — it doesn't require that the object be a particular type

16

def sumOfWages(aList):
! sum = 0
! for item in aList:
! ! sum += item.wage()
! return sum

Thursday, November 17, 11

Substitution in DPLs and STLs

• The importance of the principle of substitution differs between
dynamically typed and statically typed languages
– in statically typed languages objects are (typically) characterised by

their class
– in dynamically typed languages objects are (typically) characterised by

their behaviour

17

Thursday, November 17, 11

Inheritance in DPLs and STLs

• The importance of inheritance differs between dynamically typed and
statically typed languages
– in statically typed languages subclasses inherit specifications

(interfaces) and sometimes also behaviour (implementation)
– in dynamically typed languages subclasses inherit behaviour

(implementation)

18

Thursday, November 17, 11

What is Inheritance?

• Inheritance gives us the possibility to create something that is partly or
totally the same as something else

– Child classes as extension of an already existing class definition

– Child class as a specialisation of an already existing class definition

– Enables subtypes to produced using an already existing supertype

19

Thursday, November 17, 11

Javascript

20

Thursday, November 17, 11

Forms of Inheritance

• Inheritance for

– specialisation (subtyping) -- the new class is a specialised form if the
parent class

– specification -- to guarantee that classes maintain a certain interface

– extension -- adding totally new abilities to the child class

– limitation -- the behaviour of the child class is more limited than the
behaviour of the parent class (violates the principle of substitution)

– variance -- when two or more classes have similar implementations,
but no relationships between the abstract concepts exist

– combination -- multiple inheritance

21

Thursday, November 17, 11

Single and Multiple Inheritance

• Multiple inheritance allows a class to inherit from one or more classes

• Sometimes convenient, natural and valuable

• Increases language and implementation complexity (partly because of
name collisions)

• Potentially inefficient - dynamic binding costs (even) more with multiple
inheritance (but not that much)

22

Thursday, November 17, 11

Multiple inheritance

• Multiple interface inheritance (Java, C#)
– Can inherit from more than one protocol specification, but cannot

inherit implementation details from more than one source

• Multiple implementation inheritance (C++, Python)
– What is generally meant by “multiple inheritance”
– Protocol and implementation is inherited

• Problems
– Ambiguous lookup
– Memory layout
– Clashes 23

Thursday, November 17, 11

AccountHolder

name:String

setName(String)

Mammal

name:String

setName(String)

Human

nationality:String

...

Person

...

...

Ambiguous lookup

Thursday, November 17, 11

Solutions

• Multiple dispatch (still need to consider order)
• Require renaming or use of qualified names or reject programs with

conflicts
• Employ a specific strategy

– Graph inheritance
– Tree inheritance
– Linearisation

• Use of different strategies in different PLs (or impls. of the same PL)
affects a program's portability

• Opportunity for subtle bugs due to lookup complexity

25

Thursday, November 17, 11

Diamond problem

26

C

...

...

D

...

...

B

...

setName(String)

A

name:String

setName(String)

Thursday, November 17, 11

Graph Inheritance

• Possible multiple dispatch of same method
• Shared fields may break encapsulation
• Fragile inheritance situation
• Cannot deal with conflicting invariants on fields

27

C

...

...

D

...

...

B

...

setName(String)

A

name:String

setName(String)

Thursday, November 17, 11

Tree Inheritance

• Separate copies of superclasses' implementation
• Does not work well when only one field f is sensible
• Does not work well if both A::m and C::m should be invoked as D::m —

renaming
28

C

...

...

D

...

...

B

...

setName(String)

A

name:String

setName(String)

A

name:String

setName(String)

Thursday, November 17, 11

Linearisation

• Transform hierarchy into a single inheritance hierarchy
without duplicates

• Transformation may or may not be under programmer
control

• Order of linearisation effects the program!s semantics
• A::m is overridden by C::m in our example
• D is given B as a superclass, unknown to D’s programmer

— possibly changing the meaning of super in D

29

C

...

...

D

...

...

B

...

setName(String)

A

name:String

setName(String)

Thursday, November 17, 11

Languages with Multiple Inheritance

• C++ — graph or tree inheritance under programmer control (very
subtle though)

• CLOS — linearisation
• Eiffel — tree inheritance or linearisation under programmer control
• Python

– “New style” classes use linearisation
– “Old style” classes go depth-first and then left to right
– As objects are dynamically typed hash tables, field clashes are less of a

problem

30

Thursday, November 17, 11

Avoiding Multiple Inheritance

• When the question of whether to use multiple inheritance comes up, ask
at least two questions:
– Do you need to show the public interfaces of both these classes

through you new type?
– Do you need to upcast to both of the base classes?
– If your answer is “no” for either question, you can avoid using

multiple inheritance and should probably do so

31

Thursday, November 17, 11

Mixin Inheritance

• Creating an inheritance hieararchy by mixing modules or classes
• A mixin is an abstract subclass that may be used to specialise the

behaviour of various superclasses
• A mixin is a freestanding record of extra fields, intended to be combined

with any other object
• If C is a class and M is a mixin, we can create class D by saying let D =
M extends C

• Reduces to a single inheritance structure with an explicit linearisation,
controlled by mixin order

• Can be used to model both single and multiple inheritance

32

Thursday, November 17, 11

Mixins in Ruby

33

class Point2D
 attr_accessor :x, :y
end

class Point3D < Point2D
 attr_accessor :z
end

module Coloured
 attr_accessor :color
end

class ColouredPoint3D < Point3D
 include Coloured
end

Thursday, November 17, 11

34

ColouredPoint3D

Anonumous class

colour

Point3D

z

Point2D

x, y

Coloured

colour

ColouredPoint3D

x, y

z

colour

Thursday, November 17, 11

Different Takes on Overriding Methods

• In Java and Smalltalk descendent methods control whether ancestor
methods are called

• C# does support method overriding, but only if explicitly requested
with the keywords override and virtual

• In Simula, ancestor methods control whether descendent methods are
called - and the ancestor methods will be called first anyway

• In Eiffel, descendents can cancel or rename ancestor features.

35

Thursday, November 17, 11

Problems With Inheritance

36

Thursday, November 17, 11

Inheritance Breaks Encapsulation

• Inheritance exposes a subclass to details of its parent's implementation

37

ColouredPoint3D

x, y

z

colour

Thursday, November 17, 11

Fragile Base Class

• Seemingly safe modifications to a base class may cause derived classes to
break

• You can't tell whether a base class change is safe simply by examining the
base class's methods in isolation, you must look at (and test) all derived
classes as well.
– you must check all code that uses both base-class and derived-class

objects too, since this code might also be broken by the new
behavior.

– a simple change to a key base class can render an entire program
inoperable

38

Thursday, November 17, 11

Fragile Base Class -- Example

39

Thursday, November 17, 11

Fragile Base Class -- Example

40

Thursday, November 17, 11

Examples of Errors

• Unanticipated Mutual Recursion
• Unjustified Assumptions in Revision Class
• Unjustified Assumptions in Modifier
• Direct Access to Base Class State
• Unjustified Assumptions of Binding Invariant in Modifier

41

Thursday, November 17, 11

How can we prevent them?

• “No cycles” requirement
• “No revision self-calling assumptions” requirement
• “No base class down-calling assumptions” requirement
• “No direct access to the base class state” requirement

42

Is that enough?

Thursday, November 17, 11

Do We Really Need Inheritance?

• What do we really need to use inheritance to achieve?
• What do we really gain?
• Is it worth all the problems?

– Inheritance breaks encapsulation
• Can we use other solutions instead?

– Many proposals suggest that inheritance should be decomposed into
the more basic mechanisms of object composition and message
forwarding

– Delegation?

43

Thursday, November 17, 11

Delegation

44

Thursday, November 17, 11

Class
Static
definition

Dynamic
constructs

Object

x

y

33

44

Object

x

y

Object

x

y

33

11

22

55move()Similarity

Object

Object

w

h

w

3

10

100

area()

Delegation

Object

Object

Thursday, November 17, 11

Delegation Breaks Encapsulation Even More?

46

Thursday, November 17, 11

Reintroducing Order: Traits

• Traits allows us to factor out common behaviour from several objects
and collecting it in one place
– A trait provides a set of methods that implement behaviour
– A trait requires a set of methods that serve as parameters for the

provided behaviour
– Traits do not specify any state variables, and the methods provided by

traits never access state variables directly
– Classes and traits can be composed from other traits, but the

composition order is irrelevant. Conflicting methods must be
explicitly resolved by trait composer

47

Thursday, November 17, 11

Comparable Trait

48

var ComparableTrait = Trait({
 '<': Trait.required,
 // this['<'](other) -> boolean
 '==': Trait.required,
 // this['=='](other) -> boolean

 '<=': function(other) {
 return this['<'](other) || this['=='](other);
 },
 '>': function(other) {
 return other['<'](this);
 },
 '>=': function(other) {
 return other['<'](this) || this['=='](other);
 },
 '!=': function(other) {
 return !(this['=='](other));
 }
});

Thursday, November 17, 11

49

function makeInterval(min, max) {
 return Trait.create(Object.prototype,
 Trait.compose(
 EnumerableTrait,
 ComparableTrait,
 Trait({
 start: min,
 end: max,
 size: max - min - 1,
 toString: function() { return ''+min+'..!'+max; },
 '<': function(ival) { return max <= ival.start; },
 '==': function(ival) { return min == ival.start && max == ival.end; },
 contains: function(e) { return (min <= e) && (e < max); },
 forEach: function(consumer) {
 for (var i = min; i < max; i++) {
 consumer(i,i-min);
 }
 }
 })));
}

var i1 = makeInterval(0,5);
var i2 = makeInterval(7,12);
i1['=='](i2) // false
i1['<'](i2) // true

Thursday, November 17, 11

50

Similaritystart

37

10

100

Delegation Object

Object

end

start

end 116
!=()

>=()

...

Thursday, November 17, 11

Method vs. Message vs. Function

51

Thursday, November 17, 11

Method Invocation

• Calling a subroutine

52

Message Passing

• Objects send and receive messages
• The response to a message is executing a method
• Which method to use is determined by the receiver at run-time.
• Messages can be passed synchronously or asynchronously
• Messages can be sent to an “unknown” object (you may not know its

exact identity, type or location)
• Message not understood

Thursday, November 17, 11

The End

Thursday, November 17, 11

References

54

• Sebesta, R. - “Concepts of Programming Languages”
• Budd, T. - “An Introduction to Object- Oriented Programming”, 2nd

edition. Addison-Wesley, 2000.
• Craig, I. - “The Interpretation of Object- Oriented Programming

Languages”, 2nd edition,SpringerVerlag, 2002.
• Joyner, I. - “Objects Unencapsulated”, Prentice-Hall, 1999.
• Lieberman, H. - “Using Prototypical Objects to Implement Shared

Behavior in Object Oriented Systems”, 1986.
• Anton Eilëns, Principles of Object-Oriented Software Development, 2nd

edition. Addison-Wesley, 2000.
• Bertrand Meyer, Object-oriented Software Construction, 2nd edition,

Prentice-Hall 1997.
• Barbara H Liskov and Jeannette M Wing, A Behavioural Notion of

Subtyping, 1994.

Thursday, November 17, 11

55

References, cont’d

• Lynn Andrea Stein, Delegation is Inheritance.
• Mikhajlov & Sekerinski, A Study of the Fragile Base Class Problem
• Luca Cardelli, Semantics of multiple inheritance, 1984
• Weck & Szyperski, Do We Need Inheritance? (1996)
• Traits for Javascript, http://traitsjs.org/

Thursday, November 17, 11

