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Abstraction & Modularity
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Modularity

• Modular Decomposability 
– helps in decomposing software problems into a small number of less 

complex subproblems that are
•connected by a simple structure
•independent enough to let work proceed separately on each item

• Modular Composability 
– favours the production of software elements which may be freely 

combined with each other to produce new systems, possibly in a new 
environment 
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Modularity, cont’d.

• Modular Understandability
– if it helps produce software in which a human reader can understand 

each module without having to know the others, or (at worst) by 
examining only a few others

• Modular Continuity
– a small change in the problem specification will trigger a change of 

just one module, or a small number of modules
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Modularity, cont’d.

• Modular Protection
– the effect of an error at run-time in a module will remain confined 

to that module, or at worst will only propagate to a few neighbouring 
modules
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Classes aren’t Enough

• Classes provide a good modular decomposition technique. 
– They possess many of the qualities expected of reusable software 

components: 
•they are homogenous, coherent modules
•their interface may be clearly separated from their 

implementation according to information hiding
•they may be precisely specified

• But more is needed to fully achieve the goals of reusability and 
extendibility
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Polymorphism

• Lets us wait with binding until runtime to achieve flexibility
– Binding is not type checking

• Parametric polymorphism
– Generics

• Subtype polymorphism
– E.g. inheritance
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Static Binding

• Function call in C:
– Bound at compile-time
– Allocate stack space 
– Push return address 
– Jump to function
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Dynamic Binding

• Method invocatoin in Ruby:
– Does the method exist?
– Is it public?
– Are the number of arguments OK? 
– Push it into local method cache 
– Now, start calling
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Static vs. Dynamic Binding

• Static binding:

– Efficiency—we know exactly what method to dispatch to at compile-
time and can hard-code that into the object code (or whatever we 
compile to)

– Changing binding requires recompilation, arguably against the “spirit 
of OO”

– Very simple to implement (and easy to reason about)
• Dynamic binding:

– Flexibility—supports program evolution through polymorphism
– Harder to implement, especially in the presence of multiple 

inheritance and wrt. efficiency
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Late Binding

• A form of dynamic binding found in e.g., C++, Java and C#
• Requires that types are known at compile-time and inclusion 

polymorphism (overriding)
• Example:

– During type checking, we can determine that the type of p is some 
subclass of Person

– We require that setName( String ) is present in Person and 
can thus avoid errors of the type “MessageNotUnderstood”

– Safer, and still much more flexible than static binding
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Polymorphism

• Lets us wait with binding until runtime to achieve flexibility
– Binding is not type checking

• Parametric polymorphism
– Generics

• Subtype polymorphism
– E.g. inheritance
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Inheritance
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Substitution Revisited

• B <: A -- B is a subtype of A
• Any expression of type A may also be given type B

– in any situation
– with no observable effect

• Nominal subtyping or structural subtyping?
•     Almost always:

– reflexive (meaning A<:A for any type A) 
– transitive (meaning that if A<:B and B<:C then A<:C)
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Substitution in a STL 

•  The method below will only operate on arrays  of instances of the 
BaseballPlayer class, (or instances of subclasses of BaseballPlayer)
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public int sumOfWages( BaseballPlayer[] bs ) { 
   int sum = 0; 
   for ( int i=0; i < bs.length; ++i ) { 
      sum += bs[ i ].wage( ); 
   } 
   return sum; 
} 
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Substitution in a DTL

• In a dynamically typed language, you can send any message to any 
object, and the language only cares that the object can accept the 
message — it doesn't require that the object be a particular type
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def sumOfWages( aList ): 
! sum = 0 
! for item in aList: 
! ! sum += item.wage( ) 
! return sum 
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Substitution in DPLs and STLs

• The importance of the principle of substitution differs between 
dynamically typed and statically typed languages 
– in statically typed languages objects are (typically) characterised by 

their class
– in dynamically typed languages objects are (typically) characterised by 

their behaviour
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Inheritance in DPLs and STLs

• The importance of inheritance differs between dynamically typed and 
statically typed languages 
– in statically typed languages subclasses inherit specifications 

(interfaces) and sometimes also behaviour (implementation)
– in dynamically typed languages subclasses inherit behaviour 

(implementation)
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What is Inheritance?

• Inheritance gives us the possibility to create something that is partly or 
totally the same as something else

– Child classes as extension of an already existing class definition

– Child class as a specialisation of an already existing class definition

– Enables subtypes to produced using an already existing supertype
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Javascript
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Forms of Inheritance

• Inheritance for

– specialisation (subtyping) -- the new class is a specialised form if the 
parent class

– specification -- to guarantee that classes maintain a certain interface

– extension -- adding totally new abilities to the child class

– limitation -- the behaviour of the child class is more limited than the 
behaviour of the parent class (violates the principle of substitution)

– variance -- when two or more classes have similar implementations, 
but no relationships between the abstract concepts exist

– combination -- multiple inheritance
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Single and Multiple Inheritance

• Multiple inheritance allows a class to inherit from one or more classes

• Sometimes convenient, natural and valuable

• Increases language and implementation complexity (partly because of 
name collisions)

• Potentially inefficient - dynamic binding costs (even) more with multiple 
inheritance (but not that much)
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Multiple inheritance

• Multiple interface inheritance ( Java, C#)
– Can inherit from more than one protocol specification, but cannot 

inherit implementation details from more than one source

• Multiple implementation inheritance (C++, Python)
– What is generally meant by “multiple inheritance”
– Protocol and implementation is inherited

• Problems
– Ambiguous lookup 
– Memory layout 
– Clashes 23
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AccountHolder

name:String

setName(String)

Mammal

name:String

setName(String)

Human

nationality:String

...

Person

...

...

Ambiguous lookup
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Solutions

• Multiple dispatch (still need to consider order)
• Require renaming or use of qualified names or reject programs with 

conflicts
• Employ a specific strategy

– Graph inheritance 
– Tree inheritance 
– Linearisation

• Use of different strategies in different PLs (or impls. of the same PL) 
affects a program's portability

• Opportunity for subtle bugs due to lookup complexity
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Diamond problem
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Graph Inheritance

• Possible multiple dispatch of same method 
• Shared fields may break encapsulation 
• Fragile inheritance situation
• Cannot deal with conflicting invariants on fields
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Tree Inheritance

• Separate copies of superclasses' implementation
• Does not work well when only one field f is sensible
• Does not work well if both A::m and C::m should be invoked as D::m —

renaming
28
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Linearisation

• Transform hierarchy into a single inheritance hierarchy 
without duplicates

• Transformation may or may not be under programmer 
control

• Order of linearisation effects the program!s semantics
• A::m is overridden by C::m in our example
• D is given B as a superclass, unknown to D’s programmer 

— possibly changing the meaning of super in D
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Languages with Multiple Inheritance

• C++ — graph or tree inheritance under programmer control (very 
subtle though)

• CLOS — linearisation
• Eiffel — tree inheritance or linearisation under programmer control
• Python

– “New style” classes use linearisation
– “Old style” classes go depth-first and then left to right
– As objects are dynamically typed hash tables, field clashes are less of a 

problem
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Avoiding Multiple Inheritance

• When the question of whether to use multiple inheritance comes up, ask 
at least two questions:
– Do you need to show the public interfaces of both these classes 

through you new type?
– Do you need to upcast to both of the base classes?
– If your answer is “no” for either question, you can avoid using 

multiple inheritance and should probably do so
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Mixin Inheritance

• Creating an inheritance hieararchy by mixing modules or classes
• A mixin is an abstract subclass that may be used to specialise the 

behaviour of various superclasses
• A mixin is a freestanding record of extra fields, intended to be combined 

with any other object 
• If C is a class and M is a mixin, we can create class D by saying let D = 
M extends C

• Reduces to a single inheritance structure with an explicit linearisation, 
controlled by mixin order

• Can be used to model both single and multiple inheritance
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Mixins in Ruby

33

class Point2D
  attr_accessor :x, :y
end

class Point3D < Point2D
  attr_accessor :z
end

module Coloured
  attr_accessor :color
end

class ColouredPoint3D < Point3D
  include Coloured
end
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ColouredPoint3D

Anonumous class

colour
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z
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x, y

Coloured

colour

ColouredPoint3D

x, y

z

colour

Thursday, November 17, 11

Different Takes on Overriding Methods

• In Java and Smalltalk descendent methods control whether ancestor 
methods are called

• C# does support method overriding, but only if explicitly requested 
with the keywords override and virtual

• In Simula, ancestor methods control whether descendent methods are 
called - and the ancestor methods will be called first anyway

• In Eiffel, descendents can cancel or rename ancestor features. 
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Problems With Inheritance
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Inheritance Breaks Encapsulation

• Inheritance exposes a subclass to details of its parent's implementation
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Fragile Base Class

• Seemingly safe modifications to a base class may cause derived classes to 
break

• You can't tell whether a base class change is safe simply by examining the 
base class's methods in isolation, you must look at (and test) all derived 
classes as well. 
– you must check all code that uses both base-class and derived-class 

objects too, since this code might also be broken by the new 
behavior. 

– a simple change to a key base class can render an entire program 
inoperable 

38
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Fragile Base Class -- Example

39
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Fragile Base Class -- Example
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Examples of Errors

• Unanticipated Mutual Recursion
• Unjustified Assumptions in Revision Class
• Unjustified Assumptions in Modifier
• Direct Access to Base Class State
• Unjustified Assumptions of Binding Invariant in Modifier
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How can we prevent them?

• “No cycles” requirement
• “No revision self-calling assumptions” requirement
• “No base class down-calling assumptions” requirement
• “No direct access to the base class state” requirement

42

Is that enough?

Thursday, November 17, 11

Do We Really Need Inheritance?

• What do we really need to use inheritance to achieve?
• What do we really gain?
• Is it worth all the problems?

– Inheritance breaks encapsulation
• Can we use other solutions instead?

– Many proposals suggest that inheritance should be decomposed into 
the more basic mechanisms of object composition and message 
forwarding

– Delegation?

43
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Delegation
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Delegation Breaks Encapsulation Even More?
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Reintroducing Order: Traits

• Traits allows us to factor out common behaviour from several objects 
and collecting it in one place
– A trait provides a set of methods that implement behaviour
– A trait requires a set of methods that serve as parameters for the 

provided behaviour
– Traits do not specify any state variables, and the methods provided by 

traits never access state variables directly
– Classes and traits can be composed from other traits, but the 

composition order is irrelevant. Conflicting methods must be 
explicitly resolved by trait composer
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Comparable Trait
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var ComparableTrait = Trait({
  '<': Trait.required, 
      // this['<'](other) -> boolean
 '==': Trait.required, 
      // this['=='](other) -> boolean

 '<=': function(other) {
    return this['<'](other) || this['=='](other);
  },
  '>': function(other) {
    return other['<'](this);
  },
 '>=': function(other) {
    return other['<'](this) || this['=='](other);
  },
 '!=': function(other) {
    return !(this['=='](other));  
  }
});
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function makeInterval(min, max) {  
  return Trait.create(Object.prototype,
    Trait.compose(
      EnumerableTrait,
      ComparableTrait,
      Trait({
        start: min,
        end: max,
        size: max - min - 1,
        toString: function() { return ''+min+'..!'+max; },
        '<': function(ival) { return max <= ival.start; },
        '==': function(ival) { return min == ival.start && max == ival.end; },
        contains: function(e) { return (min <= e) && (e < max); },
        forEach: function(consumer) {
          for (var i = min; i < max; i++) {
            consumer(i,i-min);
          }
        }
      })));
}

var i1 = makeInterval(0,5);
var i2 = makeInterval(7,12);
i1['=='](i2) // false
i1['<'](i2) // true
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Method vs. Message vs. Function
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Method Invocation

• Calling a subroutine

52

Message Passing

• Objects send and receive messages
• The response to a message is executing a method
• Which method to use is determined by the receiver at run-time.
• Messages can be passed synchronously or asynchronously 
• Messages can be sent to an “unknown” object (you may not know its 

exact identity, type or location)
• Message not understood
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The End
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