
Programming Languages &
Paradigms
PROP HT 2011

Lecture 5

What is OO? Class vs. Prototype

Beatrice Åkerblom
 beatrice@dsv.su.se

Friday, November 11, 11

OO = Java

2

Friday, November 11, 11

OO = C++

3

Friday, November 11, 11

OO = Smalltalk

4

Friday, November 11, 11

OO = your favourite PL

5

Friday, November 11, 11

What is OO?

6

• A structuring principle for programs
• A way of viewing the world

• Does not require programming language support, but certainly benefits
from it

Friday, November 11, 11

• The world is populated by objects that communicate by sending
messages to each other

• An object decides how/if to react to a message
• Objects may be grouped, this grouping can be conceptual or language-

supported

7

What is OO?

Friday, November 11, 11

Common Concepts

• Class
• Fields and methods
• Inheritance
• Encapsulation
• Subtype polymorphism
• Dynamic dispatch
• Recursive types
• This

• Abstraction

• State and Behaviour

• Grouping and sharing

• Autonomicity

• Flexibility

• Substitution

• Expressiveness

• Identity

8

Friday, November 11, 11

OOPLs are Commonly

• Imperative
• Garbage-Collected
• Statically typed
• Impure
• Class-based
• Compiled
• Multiply inherited

• O'Caml

• C++

• Smalltalk

• Ruby

• JavaScript

• Python

• Smalltalk

9

Exceptions

Friday, November 11, 11

Is OO important?

10

Friday, November 11, 11

It’s just a mindset

11

Friday, November 11, 11

Class-based

12

Class

Object

Static
definition

Object

Object

Dynamic
constructs

Friday, November 11, 11

What is a class?

13

Friday, November 11, 11

Common Answers

• A blueprint for creating objects [Sun’s Java Tuturial, Eilëns00]
• A description of the shared behaviour or a special class of objects (or

values)
• A description of the structure of a set of objects [Abadi & Cardelli96]
• A unifying abstraction of a set of values in the domain
• A factory for objects
• From [Craig02]:

– a set of objects,
– a program structure or module,
– a factory-like entity which creates objects,
– a data type,
– a concept

• An extensible template for creating objects, providing initial values for
instance variables and methods

14

Friday, November 11, 11

What is the difference between
a class and an object?

15

Friday, November 11, 11

What is the difference between
the singleton class’ object and

a class?

16

Friday, November 11, 11

Are there any real differences
between records/ structs and

objects and classes?

17

Friday, November 11, 11

What are the benefits of
bundling state and behaviour

together?

18

Friday, November 11, 11

Encapsulation

• Encapsulation means separating the interface of an abstraction from its
implementation

• Key difference between objects & structs
• Facilitates stronger class invariants
• Common encapsulation mechanisms

– functions and procedures
– modules, classes and packages

19

Friday, November 11, 11

Information Hiding

• A design principle
• Hide data, structure and any differences between exposed data and

internal representation
• What abstractions we use controls what information should be hidden
• Coupling and cohesion

20

Friday, November 11, 11

Encapsulation = Information Hiding

• But encapsulation is a prerequisite for information hiding

21

Friday, November 11, 11

22

Class-based

Class

Static
definition

Dynamic
constructs

Object

x

y

33

44

Object

x

y

Object

x

y

33

11

33

33

22

55move()

Friday, November 11, 11

Classes as first-class entities

• As a datatype, a class is usually considered as a compile-time construct
• In many languages (like Smalltalk, Ruby, Python etc.) a class is also an

object -- each class is an instance of the unique metaclass, which is built
in the language

• Methods can be invoked on classes just like on regular objects
• Creating objects can then be done by sending a message to the class

23

Being new initialize: “XEROX”

Being.new(“Matz”)

Friday, November 11, 11

Meta Classes

• 1 Level System
– All objects can be viewed as classes and all classes can be viewed as

objects (as in Self). "Single-hierarchy".
• 2 Level System

– All Objects are instances of a Class but Classes are not accessible to
programs. 2 kinds of distinct objects: objects and classes.

• 3 Level System
– All objects are instances of a class and all classes are instances of

Meta-Class. The Meta-Class is a class and is therefore an instance of
itself. 2 kinds of distinct objects (objects and classes), with a
distinguished class, the metaclass.

• 4 Level System
– Like a 3 Level System, but there is an extra level of specialized Meta-

Classes for classes.

24

Friday, November 11, 11

Metalevels in Programming Languages

25

Level 2 - Language concepts
(Metaclasses in the
metamodel)

 Class Method Attribute

Level 1 - Software Classes
(meta-objects) (Model)

 Car void drive(){} int[] colour

Level 0 - Software
Objects

 car1 car1.drive() car1.color

Level 3 - Meta-Concepts in
the metameta model, the
metalanguage (language
description)

Programming Language Concept

Real world
entities

Friday, November 11, 11

Infinite Regression

• If the class of a class object is C, and C is an object, then what is the class
of C, and what the class of its class’ class object?
– Predicative or impredicative class definitions

26

Friday, November 11, 11

Stop Whenever

27

Friday, November 11, 11

Class Creation in Smalltalk

28

Object subclass: #Car
 instanceVariableNames: 'colour'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'CarPrograms'

Friday, November 11, 11

Class Creation in Smalltalk

Object class inspect

29

Friday, November 11, 11

30

my_car

Car Object

super

class

Object classCar class

class
class

Metaclass

class class

Metaclass class

class

class

Friday, November 11, 11

Prototype-based PLs

• Invented after class-based languages in the 70‘ies
• Replaces class instantiation with copying existing objects
• Replaces inheritance with more flexible delegation
• Cloned objects can can change invariantly of each other
• Also called:

– Instance-based, Prototype-Oriented, Class-less
• Examples of languages:

– Self, Cecil, JavaScript, Io

31

Friday, November 11, 11

Prototype-based

32

Object
Similarity

Object
Object

Object

Friday, November 11, 11

JavaScript

• JavaScript is THE scripting language of the Web
• JavaScript is used in millions of Web pages to add functionality, validate

forms, detect browsers, and much more

• But:
– JavaScript has no direct relationship to Java
– JavaScript can be used for other things than scripting browsers

33

Friday, November 11, 11

JavaScript Syntax

Comments:
// single line comment
/* multi line
 comment */

Identifiers: First character must be a letter, _, or $;
subsequent characters can be digits: i, v17, $str, __proto__

Basic literals: ‘a string’, “another string”, “that’s also a string”
17, 2.27, 6.02e-32
true, false, null, undefined

Object literals: var point = { x:1, y:2 }
empty: {}
nested: var rect = {
 upperLeft: { x:1, y:2 },
 lowerRight: { x:4, y:5 } }

Function literals:! var square =
 function(x) { return x*x; }

Array literals: [1,2,3]
[]

Operators: assignement: =
equal: ==
strict equal: ===

34

Friday, November 11, 11

Object Properties

Reading
properties

var book = { title:’JavaScript’ };
book.title; //=>’JavaScript’

Adding new
properties
(at runtime)

book.author = ‘J. Doe’;
‘author’ in book; //=>true

Inspecting objects
var result = ‘’;
for (var name in book) {
 result += name + ‘=’;
 result += book[name] + ‘ ’;
};

//=>title=JavaScript author=J. Doe

Deleting
properties

delete book.title;
‘title’ in book; //=>false

35

Friday, November 11, 11

Slots in PBLs

• Slots are simply storage locations located in objects
• Slots can be divided into two types:

– Data slots, holding data items
– Method slots, holding methods
– Declared and assigned on object creation, or later

• Methods are stored in exactly the same way as data items

36

var o = {
! count: 0,
! name: 'Jane Doe',
! greeting: function() {
 return "Hi";
 }
};

var o = {};

o.count = 0;
o.name = 'Jane Doe';
o.greeting = function() {
 return "Hi";
 };

Friday, November 11, 11

Methods

• At runtime the keyword this is bound to the object of the method

• Accessing (vs. executing) methods

37

var obj = { counter:1 };
obj.increment = function(amount) {
 this.counter += amount;
};
obj.increment(16);
obj.counter; //=> 17

var f = obj.increment; typeof f; //=> ‘function’

Friday, November 11, 11

Delegation

• When an object receives a message it looks for a matching slot, if not
found, the look-up continues its search in other known objects

• Typically, the search is done in the object’s “parent”, in its “parent’s”
“parent” and so on

• In JavaScript, an object delegates to its prototype object (the Mozilla
interpreter allows one to access the prototype through the property
__proto__)

38

Friday, November 11, 11

Delegation, cont’d

39

var oldRect = { width:10, height:3 };
var newRect = {};
newRect.__proto__ = oldRect;

“width” in newRect; //=>true newRect.hasOwnProperty(“width”); //
=>false

newRect.width; //=>10
newRect.foo; //=>undefined

Friday, November 11, 11

Prototype-based

40

Similarity

Object

Object

oldRect

w

h

newRect

3

10

Delegation

Friday, November 11, 11

Delegation

• As opposed to inheritance, delegation can be manipulated dynamically
• The method of the delegate will be executed in the scope of the original

receiver
• Depending on the language, the number of possible delegates may differ

41

Friday, November 11, 11

Delegation, cont’d

42

newRect.width = 100;

oldRect.area = function() {
 return this.width * this.height;
};

newRect.area(); //=>300

Friday, November 11, 11

Prototype-based

43

Similarity

Object

Object

oldRect

w

h

newRect

w

3

10

100

area()

Delegation

Friday, November 11, 11

Use of delegation

• Delegation — executing a method of some other object but in the
context of self

• A lot more powerful than mere forwarding
• Delegation can be used to implement inheritance but not vice versa
• Very powerful — delegates are not known statically as in inheritance and

can change whenever

44

Friday, November 11, 11

Constructor Functions

• Constructors are functions that are used with the new operator to
create objects

• The operator new creates an object and binds it to this in the
constructor. By default the return value is the new object.

45

function Rectangle(w, h) {
 this.width = w;
 this.height = h;
 this.area = function() {
 return this.width * this.height;
 };
};

rect = new Rectangle(3,4);
rect.area(); //=>12

Friday, November 11, 11

Constructor.prototype

• Each constructor has a prototype property (which is automatically
initialised when defining the function)

• All objects created with a constructor share the same prototype

46

function Rectangle(w, h) {
 this.width = w;
 this.height = h;
};

Rectangle.prototype.area = function() {
 return this.width * this.height;
};

Friday, November 11, 11

Constructor.prototype

...

function ColoredRectangle(w, h, c) {
 this.width = w;
 this.height = h;
 this.color = c;
};

ColoredRectangle.prototype = new Rectangle(0,0);

coloredRect = new ColoredRectangle(3,4,'red');

coloredRect.area();

47

Friday, November 11, 11

Predefined Objects

• Global functions: eval, parseInt, ...
• Predefined objects: Array, Boolean, Date, Function, Math, Number,

RegExp, and String.

48

Friday, November 11, 11

Extending Predefined Objects

• Extending all objects:

• The last object in the prototype chain of every object is
Object.prototype

49

Object.prototype.inspect = function() {
 alert(this);
};

'a string'.inspect();
true.inspect();
(new Date()).inspect();

Friday, November 11, 11

The arguments object

function concat(separator) {
 var result = “”;
 for (var i = 1; i < arguments.length; i++)
 result += arguments[i] + separator;
 return result;
};

concat(";", "red", "orange", "blue");
// =>"red;orange;blue;”

50

Friday, November 11, 11

Other Prototype-based Languages

• Basic mechanisms
– Object creation:ex nihilo, cloning, extension
– Object representation(slots in JavaScript, Self, Io vs. attributes and

methods in Agora, Kevo)
• Delegation

– Double delegation in Io/NewtonScript
– Multiple prototypes(aka.parents) in Self
– Can prototype link be changed at runtime?

• Organization of programs (prototypical instance, traits, ...)

51

Friday, November 11, 11

Benefits of prototypes

• Simple model, simpler than the class-based
• No use for special “inheritance” relations in the language
• Very flexible and expressive
• Changing prototypes to reflect state is a powerful concept
• Delegation is very powerful
• Handles special cases very well

52

Friday, November 11, 11

Performance

• Sharing data and copy-on-write Method caches
• Inheritance (at least in static cases) costs memory in many slots
• Locality of reference if the methods are actually in the object

53

Friday, November 11, 11

Prototypes vs. Classes

• Classes are static—requirements are not
• Unless you can predict all future requirements up front, class hierarchies

will evolve
• Evolution of base classes is tricky and might break subclasses
• Eventually, refactoring or redesign is needed
• It is not uncommon to design a class that is only to be instantiated once.

[Liebermann86]

54

Friday, November 11, 11

Why do you think most OOPLs
are class-based?

55

Friday, November 11, 11

The End

Friday, November 11, 11

References

57

• Sebesta, R. - “Concepts of Programming Languages”
• Black, A., Ducasse, S., Nierstrasz, O., et. al. - “Pharo by Example”, version

of 2010-02-01
• Budd, T. - “An Introduction to Object- Oriented Programming”, 2nd

edition. Addison-Wesley, 2000.
• Craig, I. - “The Interpretation of Object- Oriented Programming

Languages”, 2nd edition,SpringerVerlag, 2002.
• Joyner, I. - “Objects Unencapsulated”, Prentice-Hall, 1999.
• Lieberman, H. - “Using Prototypical Objects to Implement Shared

Behavior in Object Oriented Systems”, 1986.

Friday, November 11, 11

