
Programming Languages &
Paradigms
PROP HT 2011

Lecture 4

Subprograms, abstractions, encapsulation, ADT
Beatrice Åkerblom
 beatrice@dsv.su.se

Thursday, November 10, 11

2

Course Council
Meeting on friday!

Talk to them and tell them what
you think is good and bad

Simon Ottervald
Daniel Malmqvist
 ????

Thursday, November 10, 11

3

Subprograms

Thursday, November 10, 11

Fundamentals of Subprograms

• General characteristics of subprograms:

– A subprogram has a single entry point

– The caller is suspended during execution of the called subprogram

– Control always returns to the caller when the called subprogram’s
execution terminates

4

Thursday, November 10, 11

Subprograms - Definitions

• A subprogram definition describes both the interface to the
subprogram abstraction and its actions

• A subprogram call is an explicit request that the subprogram be
executed

• A subprogram header is the first part (line) of the definition, including
the name, the kind of subprogram, and the formal parameters

• The parameter profile of a subprogram is the number, order, (and
types) of its parameters

• The protocol of a subprogram is its parameter profile plus, if it is a
function, its return type

5

Thursday, November 10, 11

• A subprogram declaration provides the protocol, but not the body, of
the subprogram (e.g. in C and C++ header files)

• A formal parameter is a variable listed in the subprogram header and
bound to storage only during execution of the subprogram

• An actual parameter represents a value or address used in the
subprogram call statement

6

Subprograms - Definitions (cont’d)

>> def add(first, second)
>> puts("Result is #{first + second}")
>> end

>> add(2, 3)
Result is 5

>> f, s = 2, 3
>> add(f,s)
Result is 5

Thursday, November 10, 11

Actual/Formal Parameter Correspondence

• Positional

• Keyword

7

>> def order(first, second)
>> puts("First is #{first} and second is #{second}")
>> end
>> add(3, 4)
First is 3 and second is 4

>>> def order(first, second):
... print("1st: " + str(first) + " 2nd: " + str(second))
...
>>> order(second = 3, first = 7)
1st: 7 2nd: 3

Thursday, November 10, 11

Actual/Formal Parameter Correspondence (cont’d)

8

• Default Values:

• Number of actual vs. formal parameters usually required to be the same
(unless default values are provided), exceptions are e.g. C, Perl, Javascript

>>> def default(first, second = 2):
... print("1st: " + str(first) + " 2nd: " + str(second))
...
>>> default(3)
1st: 3 2nd: 2
>>> default(second=3, first=7)
1st: 7 2nd: 3

js> function only_care_about_first(first) {
 > print(first);
 > }
js> only_care_about_first("one", "two", "three")
one

Thursday, November 10, 11

Actual/Formal Parameter Correspondence (cont’d)

• Variable length parameter list

9

js> function care_about_all() {
 > for (var i = 0; i < arguments.length; i++)
 > print(arguments[i]);
 > }
js> care_about_all("one", "two", "three")
one
two
three

Thursday, November 10, 11

Blocks of Code as Parameters

• Not only a construct for iterators in Ruby...

10

>> def map (list)
>> for elem in list
>> yield elem
>> end
>> end
=> nil
>> sum = 0
=> 0
>> map([1,3,5]) {|number| sum += number}
=> [1, 3, 5]
>> puts sum
9
=> nil

Thursday, November 10, 11

Blocks of Code as Subprograms

11

c := [:arg | Transcript show: arg; cr.].

c value: ‘The argument’.

In Transcript:
The argument

Thursday, November 10, 11

Local Variables - Stack-dynamic

• Bound to storage when subprograms starts executing
• Advantages:

– Support for recursion
– Storage for locals is shared among some subprograms

• Disadvantages:
– Allocation/deallocation time
– Indirect addressing
– Subprograms cannot be history sensitive

12

Thursday, November 10, 11

Local Variables - Static

• Static locals are bound to storage throughout the program execution
(preserved between subprogram calls)

13

#include<stdio.h>

int adder(int list[], int listlen){
 static int sum = 0; int count;
 for (count = 0; count < listlen; count++)
 sum += list[count];
 return sum;
}
int main () {
 int result; int list[] = {1,2,3,4,5};

 result = adder(list, 5);
 printf("%d\n", result);

 result = adder(list, 5);
 printf("%d\n", result);
}

beatrice@triton:~$ gcc testc.c -o test
beatrice@triton:~$./test
15
30

Thursday, November 10, 11

Nested Subprograms

• Possibility to create hierarchy of both logic and scopes

14

>> def foo
>> def bar
>> puts "bar"
>> end
>> bar
>> puts "foo"
>> end
=> nil
>> foo
bar
foo

Thursday, November 10, 11

Python

15

Thursday, November 10, 11

Parameter Passing Methods

• Semantic Models
– in mode
– out mode
– in-out mode

• Conceptual Models of Transfer:
– Physically move a value
– Move an access path

16

a

In mode

x

b

Out mode

y

c

In-out mode

z

sub(a, b, c) void sub(int x, int y, int z)

Thursday, November 10, 11

Pass-by-value (in mode)

• Either by physical move or access path

• Disadvantages of access path method:
– Must write-protect in the called subprogram
– Accesses cost more (indirect addressing)

• Disadvantages of physical move:
– Requires more storage (duplicated space)
– Cost of the moves (if the parameter is large)

17

a x

sub(a, b, c) void sub(int x, int y, int z)

Thursday, November 10, 11

Pass-by-result (out mode)

• Local’s value is passed back to the caller
• Physical move is usually used
• Disadvantages:

– If value is passed, time and space
• In both cases, order dependence may be a problem e.g. procedure

sub1(y: int, z: int); ... sub1(x, x);
• Value of x in the caller depends on order of assignments at the return

18

b

Out mode

y

sub(a, b, c) void sub(int x, int y, int z)

Thursday, November 10, 11

Pass-by-value-result (in-out mode)

• Physical move, both ways
• Also called pass-by-copy
• Disadvantages:

– Those of pass-by-result
– Those of pass-by-value

19

c

In-out mode

z

sub(a, b, c) void sub(int x, int y, int z)

Thursday, November 10, 11

Pass-by-reference (in-out mode)

• Pass an access path
• Advantage:

– Passing process is efficient (no copying and no duplicated storage)
• Disadvantages:

– Slower accesses
– Allows aliasing:

•Actual parameter collisions, e.g. procedure

•Array element collisions:

•Collision between formals and globals
• Root cause of all of these is: The called subprogram is provided wider

access to nonlocals than is necessary
20

sub1(a: int, b: int); ... sub1(x, x);

sub1(a[i], a[j]); /* if i = j */

sub2(a, a[i]);

Thursday, November 10, 11

Pass-by-name (multiple mode)

• By textual substitution
• Formals are bound to an access method at the time of the call
• Actual binding to a value or address takes place at the time of a reference

or assignment (evaluated when and only when the parameter is actually
used)

• Advantage: flexibility of late binding
• Disadvantage: hard to read and understand

• scalar variable, pass-by-reference
• constant expression, pass-by-value
• an array element (or expression referencing a variable), like nothing else

21

procedure sub1(x: int; y: int);
begin

 x := 1; y := 2; x := 2; y := 3;
end;

sub1(i, a[i]);

Thursday, November 10, 11

Implementing Parameter Passing

• ALGOL 60 and most of its descendants use the run-time stack

• Pass-by-value - copy value to the stack locations used as storage for
formal parameters

• Pass-by-result - stack locations used as storage for formal parameters
and on return copied into actual parameter storage

• Pass-by-reference - regardless of form, put the address in the stack

22

Thursday, November 10, 11

Design Considerations for Parameter Passing

• Efficiency
• One-way or two-way

• Good programming = limited access to variables, which means one-way
whenever possible

• Efficiency = pass by reference is fastest way to pass structures of
significant size

• Also, functions should not allow reference parameters -> side- effect

23

These two are in conflict
with one another!

Thursday, November 10, 11

Parameters that are Subprogram Names

• Are parameter types checked?
– Early Pascal and FORTRAN 77 do not
– Later versions of Pascal and FORTRAN 90 do
– Ada does not allow subprogram parameters
– Java does not allow method names to be passed as parameters
– C and C++ - pass pointers to functions; parameters can be type

checked

24

Thursday, November 10, 11

Parameters that are Subprogram Names (contd)

• What is the correct referencing environment for a subprogram that was
sent as a parameter?

• Shallow binding: the environment where it is called
• Deep binding: the environment where it was declared
• Ad hoc binding: the environment where it was passed as an actual

parameter

• For static-scoped languages, deep binding is most natural
• For dynamic-scoped languages, shallow binding is most natural

25

Thursday, November 10, 11

• What is the referencing environment of
sub2 when it is called in sub4?
– Deep binding => sub2, sub1
– Shallow binding => sub2, sub4, sub3,

sub1

26

js> function sub1(){
 > var x;
 > function sub2(){
 > print(x);
 > };

 > function sub3(){
 > var x;
 > x = 3;
 > sub4(sub2);
 > };

 > function sub4(subx){
 > var x;
 > x = 4;
 > subx();
 > };

 > x = 1;
 > sub3();
 > };

Thursday, November 10, 11

Generic Subprograms

• A polymorphic subprogram is one that takes parameters of different
types on different activations

• Overloaded subprograms provide ad hoc polymorphism
• Parametric polymorphism is provided by subprograms that

– takes a generic parameter
– use that generic parameter in type expressions that describes the type

of the parameters of the subprogram
– This means that different instantiations of the subprogram can take

(and check) parameters of different types

27

Thursday, November 10, 11

Coroutines

• A coroutine is a subprogram that has multiple entries and controls them
itself

• Also called symmetric control
• A coroutine call is named a resume
• The first resume of a coroutine is to its beginning, but subsequent calls

enter at the point just after the last executed statement in the coroutine

28

Thursday, November 10, 11

29

Abstraction

Thursday, November 10, 11

Abstraction – fundamental in Computer Science

• Abstraction in Computer Science often implies simplification:
– replacing a complex and detailed real-world situation by an

understandable model
– we only want to consider parts of reality important for the things we

want our system to handle
– we want to avoid everything else since it would only make the more

important things harder to see
• Abstract doesn't mean imprecise

30

Thursday, November 10, 11

“The essence of abstraction is to extract essential properties while
omitting inessential details.”
[Ross et al, 1975]

31

Roy Lichtenstein (American, 1923-1997),
the six prints in the "Bull Profile Series,"

 Bull I Bull II

 Bull III Bull IV

 Bull V Bull VI

Thursday, November 10, 11

Encapsulation - Original Meaning & Motivation

• Large programs have two special needs:

– Some means of organization, other than simply division into
subprograms

– Some means of partial compilation (compilation units that are
smaller than the whole program)

• Obvious solution: a grouping of subprograms that are logically related
into a unit that can be separately compiled

• Examples of encapsulation mechanisms:
– Nested subprograms in some (e.g., Pascal, JavaScript, etc.)
– Separate compilation of files containind one or more subprograms

(e.g. FORTRAN 77 and C)

32

Thursday, November 10, 11

Encapsulation vs. Information Hiding

• As so many other things the meaning of encapsulation is a subject of
discussion.

• In OO often considered to be interchangeable with information hiding.
Authors seldom distinguish between the two and often directly claim
they are the same.

33

Thursday, November 10, 11

Fortran

34

Thursday, November 10, 11

Encapsulation

• The idea of encapsulation comes from the need to cleanly distinguish
between the specification and the implementation of an operation and
the need for modularity

• Encapsulation means separating the interface of an abstraction from its
implementation

• The use of encapsulation makes it easier to create abstractions.

35

Thursday, November 10, 11

Information Hiding

• A design principle
– Hide data, structure and any differences between exposed data and

internal representation

• What abstractions we use controls what information should be hidden

36

Thursday, November 10, 11

Data Abstraction

• An abstract data type is a user-defined data type that satisfies the
following:

– The representation of and operations on objects of the type are
defined in a single syntactic unit

•other units can create objects of the type.

– The representation of objects of the type is kept separate from the
program units that use these objects, so the only operations possible
are those provided in the type's definition.

37

Possible with
abstraction, not
necessary...

Thursday, November 10, 11

Data Abstraction (Continued)

• Advantage of Restriction 1:
– Same as those for encapsulation: program organization, modifiability

(everything associated with a data structure is together), and separate
compilation

• Advantage of Restriction 2:
– Reliability - by hiding the data representations, user code cannot

directly access objects of the type. User code cannot depend on the
representation, allowing the representation to be changed without
affecting user code.

38

Well, let’s remember this
and see how it works...

Thursday, November 10, 11

Language Example C++

• Based on C struct type and Simula 67 classes where the class is the
encapsulation device

• All of the class instances of a class share a single copy of the member
functions

• Each instance of a class has its own copy of the class data members
• Instances can be static, stack dynamic, or heap dynamic

39

Thursday, November 10, 11

Language Examples C++ (cont’d)

• Information Hiding:
– Private clause for hidden entities
– Public clause for interface entities
– Protected clause - for inheritance

• Constructors:
– Functions to initialize the data members of instances (they DO NOT

create the objects)
– May also allocate storage if part of the object is heap-dynamic
– Can include parameters to provide parameterization of the objects
– Implicitly called when an instance is created
– Can be explicitly called
– Name is the same as the class name

40

Thursday, November 10, 11

Language Example C++ (cont’d)

• Destructors
– Functions to cleanup after an instance is destroyed; usually just to

reclaim heap storage
– Implicitly called when the object’s lifetime ends
– Can be explicitly called
– Name is the class name, preceded by a tilde (~)

41

Thursday, November 10, 11

Language Example Java

• “Similar” to C++, except:
– All user-defined types are classes
– All objects are allocated from the heap and accessed through

reference variables
– Individual entities in classes have access control modifiers (private or

public), rather than clauses

42

Thursday, November 10, 11

Python

• Only name mangling
– Not really reliable
– Problem with renaming methods

43

>>> class Example:
 def __method(self):
 print "Deeo"

>>> ex = Example()
>>> dir(ex)
['_Example__method', '__doc__',
 '__module__']
>>> ex._Example__method()
Deeo

Thursday, November 10, 11

Ruby

• Name-based information hiding
• Involves expensive dynamic checking
• Information hiding can be circumvented

– Removed by subclass
– Ignored by reflection

44

> class Example
> private
> def method; print "Deeo"; end
> end

> ex = Example.new
> ex.method
NoMethodError: private method `method' \
 called for #<Example:0x2223d0>

Thursday, November 10, 11

Not-so-very-private Ruby

> ex.send("method")
Deeo

> def ex.back_door; method; end
> ex.back_door
Deeo

> class Sub < Example
> def method; super; end
> end

45

Thursday, November 10, 11

Smalltalk

• All methods are public
• All member variables are private

46

Thursday, November 10, 11

Io

• Private could be simulated by explicitly checking sender in every private
method

• Expensive
• Not visible from the outside

47

Thursday, November 10, 11

Conclusion?

• Encapsulation with information hiding is perhaps
– not compatible with being highly dynamic
– too expensive in a dynamic setting
– not (so) important in the domains where dynamic languages are

used?

48

Thursday, November 10, 11

The End

Thursday, November 10, 11

References

50

• Sebesta, R - “Concepts of Programming Languages”
• Louden, K - “Programming Languages: Principle and Practice”
• Scott, M - “Programming Language Pragmatics”
• Parnas D.L. - "On the Criteria To Be Used in Decomposing Systems into

Modules"

Thursday, November 10, 11

