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Subprograms
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Fundamentals of Subprograms

• General characteristics of subprograms: 

– A subprogram has a single entry point

– The caller is suspended during execution of the called subprogram

– Control always returns to the caller when the called subprogram’s 
execution terminates
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Subprograms - Definitions

• A subprogram definition describes both the interface to the 
subprogram abstraction and its actions

• A subprogram call is an explicit request that the subprogram be 
executed

• A subprogram header is the first part (line) of the definition, including 
the name, the kind of subprogram, and the formal parameters

• The parameter profile of a subprogram is the number, order, (and 
types) of its parameters

• The protocol of a subprogram is its parameter profile plus, if it is a 
function, its return type
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• A subprogram declaration provides the protocol, but not the body, of 
the subprogram (e.g. in C and C++ header files)

• A formal parameter is a variable listed in the subprogram header and 
bound to storage only during execution of the subprogram

• An actual parameter represents a value or address used in the 
subprogram call statement
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Subprograms - Definitions (cont’d)

>> def add(first, second)
>>    puts("Result is #{first + second}")
>> end

>> add(2, 3)
Result is 5

>> f, s = 2, 3
>> add(f,s)
Result is 5
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Actual/Formal Parameter Correspondence

• Positional

• Keyword
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>> def order(first, second)
>>    puts("First is #{first} and second is #{second}")
>> end
>> add(3, 4)
First is 3 and second is 4

>>> def order(first, second):
...    print("1st: " + str(first) + " 2nd: " + str(second))
... 
>>> order(second = 3, first = 7)
1st: 7 2nd: 3
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Actual/Formal Parameter Correspondence (cont’d)
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• Default Values:

• Number of actual vs. formal parameters usually required to be the same 
(unless default values are provided), exceptions are e.g. C, Perl, Javascript

>>> def default(first, second = 2):
...    print("1st: " + str(first) + " 2nd: " + str(second))
... 
>>> default(3)
1st: 3 2nd: 2
>>> default(second=3, first=7)
1st: 7 2nd: 3

js> function only_care_about_first(first) {
  > print(first);
  > }
js> only_care_about_first("one", "two", "three")
one
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Actual/Formal Parameter Correspondence (cont’d)

• Variable length parameter list
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js> function care_about_all() { 
  >   for (var i = 0; i < arguments.length; i++)
  >      print(arguments[i]);   
  > }
js> care_about_all("one", "two", "three")
one
two
three
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Blocks of Code as Parameters

• Not only a construct for iterators in Ruby...
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>> def map (list)
>>   for elem in list
>>      yield elem
>>   end
>> end
=> nil
>> sum = 0
=> 0
>> map([1,3,5]) {|number| sum += number}
=> [1, 3, 5]
>> puts sum
9
=> nil
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Blocks of Code as Subprograms
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c := [:arg | Transcript show: arg; cr.].

c value: ‘The argument’. 

In Transcript:
The argument
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Local Variables - Stack-dynamic

• Bound to storage when subprograms starts executing
• Advantages:

– Support for recursion
– Storage for locals is shared among some subprograms

• Disadvantages:
– Allocation/deallocation time
– Indirect addressing
– Subprograms cannot be history sensitive
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Local Variables - Static

• Static locals are bound to storage throughout the program execution 
(preserved between subprogram calls) 
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#include<stdio.h>

int adder(int list[], int listlen){
  static int sum = 0; int count;
  for (count = 0; count < listlen; count++)
    sum += list[count];
  return sum;
}
int main () {
  int result; int list[] = {1,2,3,4,5};

  result = adder(list, 5);
  printf("%d\n", result);

  result = adder(list, 5);
  printf("%d\n", result);
}

beatrice@triton:~$ gcc testc.c -o test
beatrice@triton:~$ ./test 
15
30
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Nested Subprograms

• Possibility to create hierarchy of both logic and scopes
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>> def foo
>>   def bar
>>     puts "bar"
>>   end
>>   bar
>>   puts "foo"
>> end
=> nil
>> foo
bar
foo
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Python
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Parameter Passing Methods

• Semantic Models
– in mode 
– out mode
– in-out mode 

• Conceptual Models of Transfer:
– Physically move a value 
– Move an access path
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a

In mode

x

b

Out mode

y

c

In-out mode

z

sub(a, b, c) void sub(int x, int y, int z)
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Pass-by-value (in mode)

• Either by physical move or access path

• Disadvantages of access path method:
– Must write-protect in the called subprogram 
– Accesses cost more (indirect addressing)

• Disadvantages of physical move:
– Requires more storage (duplicated space)
– Cost of the moves (if the parameter is large)
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a x

sub(a, b, c) void sub(int x, int y, int z)
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Pass-by-result (out mode)

• Local’s value is passed back to the caller
• Physical move is usually used 
• Disadvantages:

– If value is passed, time and space
• In both cases, order dependence may be a problem e.g. procedure 

sub1(y: int, z: int); ... sub1(x, x);
• Value of x in the caller depends on order of assignments at the return
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b

Out mode

y

sub(a, b, c) void sub(int x, int y, int z)
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Pass-by-value-result (in-out mode)

• Physical move, both ways
• Also called pass-by-copy
• Disadvantages:

– Those of pass-by-result 
– Those of pass-by-value
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c

In-out mode

z

sub(a, b, c) void sub(int x, int y, int z)
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Pass-by-reference (in-out mode)

• Pass an access path
• Advantage: 

– Passing process is efficient (no copying and no duplicated storage)
• Disadvantages:

– Slower accesses
– Allows aliasing:

•Actual parameter collisions, e.g. procedure 

•Array element collisions:

•Collision between formals and globals
• Root cause of all of these is: The called subprogram is provided wider 

access to nonlocals than is necessary
20

sub1(a: int, b: int); ... sub1(x, x);

sub1(a[i], a[j]); /* if i = j */

sub2(a, a[i]);
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Pass-by-name (multiple mode)

• By textual substitution
• Formals are bound to an access method at the time of the call
• Actual binding to a value or address takes place at the time of a reference 

or assignment (evaluated when and only when the parameter is actually 
used)

• Advantage: flexibility of late binding  
• Disadvantage: hard to read and understand

• scalar variable, pass-by-reference
• constant expression, pass-by-value
• an array element (or expression referencing a variable), like nothing else
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procedure sub1(x: int; y: int); 
begin

   x := 1; y := 2; x := 2; y := 3; 
end;

sub1(i, a[i]);
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Implementing Parameter Passing

• ALGOL 60 and most of its descendants use the run-time stack

• Pass-by-value - copy value to the stack locations used as storage for 
formal parameters

• Pass-by-result - stack locations used as storage for formal parameters 
and on return copied into actual parameter storage 

• Pass-by-reference - regardless of form, put the address in the stack
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Design Considerations for Parameter Passing

• Efficiency
• One-way or two-way

• Good programming = limited access to variables, which means one-way 
whenever possible

• Efficiency = pass by reference is fastest way to pass structures of 
significant size

• Also, functions should not allow reference parameters -> side- effect
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These two are in conflict 
with one another!
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Parameters that are Subprogram Names

• Are parameter types checked?
– Early Pascal and FORTRAN 77 do not 
– Later versions of Pascal and FORTRAN 90 do
– Ada does not allow subprogram parameters
– Java does not allow method names to be passed as parameters
– C and C++ - pass pointers to functions; parameters can be type 

checked

24

Thursday, November 10, 11



Parameters that are Subprogram Names (contd)

• What is the correct referencing environment for a subprogram that was 
sent as a parameter?

• Shallow binding: the environment where it is called
• Deep binding: the environment where it was declared
• Ad hoc binding: the environment where it was passed as an actual 

parameter

• For static-scoped languages, deep binding is most natural
• For dynamic-scoped languages, shallow binding is most natural
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• What is the referencing environment of 
sub2 when it is called in sub4?
– Deep binding => sub2, sub1
– Shallow binding => sub2, sub4, sub3, 

sub1 
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js> function sub1(){
  >   var x;
  >   function sub2(){
  >      print(x);           
  >   };

  >   function sub3(){
  >      var x;
  >      x = 3;
  >      sub4(sub2);
  >   };

  >   function sub4(subx){
  >      var x;
  >      x = 4;
  >      subx();
  >   };

  >   x = 1;
  >   sub3();
  > };
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Generic Subprograms

• A polymorphic subprogram is one that takes parameters of different 
types on different activations

• Overloaded subprograms provide ad hoc polymorphism
• Parametric polymorphism is provided by subprograms that 

– takes a generic parameter 
– use that generic parameter in type expressions that describes the type 

of the parameters of the subprogram 
– This means that different instantiations of the subprogram can take 

(and check) parameters of different types

27
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Coroutines

• A coroutine is a subprogram that has multiple entries and controls them 
itself

• Also called symmetric control
• A coroutine call is named a resume
• The first resume of a coroutine is to its beginning, but subsequent calls 

enter at the point just after the last executed statement in the coroutine

28
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Abstraction
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Abstraction –  fundamental in Computer Science

• Abstraction in Computer Science often implies simplification: 
– replacing a complex and detailed real-world situation by an 

understandable model
– we only want to consider parts of reality important for the things we 

want our system to handle 
– we want to avoid everything else since it would only make the more 

important things harder to see
• Abstract doesn't mean imprecise 

30
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“The essence of abstraction is to extract essential properties while 
omitting inessential details.”
[Ross et al, 1975]
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Roy Lichtenstein (American, 1923-1997), 
the six prints in the "Bull Profile Series,"

 Bull I  Bull II

 Bull III  Bull IV

 Bull V  Bull VI
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Encapsulation - Original Meaning & Motivation

• Large programs have two special needs:

– Some means of organization, other than simply division into 
subprograms

– Some means of partial compilation (compilation units that are 
smaller than the whole program)

• Obvious solution: a grouping of subprograms that are logically related 
into a unit that can be separately compiled

• Examples of encapsulation mechanisms:
– Nested subprograms in some (e.g., Pascal, JavaScript, etc.)
– Separate compilation of files containind one or more subprograms 

(e.g. FORTRAN 77 and C)

32
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Encapsulation vs. Information Hiding

•  As so many other things the meaning of encapsulation is a subject of 
discussion.

•  In OO often considered to be interchangeable with information hiding. 
Authors seldom distinguish between the two and often directly claim 
they are the same.

33
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Fortran
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Encapsulation

• The idea of encapsulation comes from the need to cleanly distinguish 
between the specification and the implementation of an operation and 
the need for modularity

• Encapsulation means separating the interface of an abstraction from its 
implementation

• The use of encapsulation makes it easier to create abstractions. 
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Information Hiding

• A design principle
– Hide data, structure and any differences between exposed data and 

internal representation

• What abstractions we use controls what information should be hidden

36
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Data Abstraction

• An abstract data type is a user-defined data type that satisfies the 
following:

– The representation of and operations on objects of the type are 
defined in a single syntactic unit 

•other units can create objects of the type.

– The representation of objects of the type is kept separate from the 
program units that use these objects, so the only operations possible 
are those provided in the type's definition.
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Possible with 
abstraction, not 
necessary...
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Data Abstraction (Continued)

• Advantage of Restriction 1:
– Same as those for encapsulation: program organization, modifiability 

(everything associated with a data structure is together), and separate 
compilation

• Advantage of Restriction 2:
–  Reliability - by hiding the data representations, user code cannot 

directly access objects of the type. User code cannot depend on the 
representation, allowing the representation to be changed without 
affecting user code.
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Well, let’s remember this 
and see how it works...
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Language Example C++

• Based on C struct type and Simula 67 classes where the class is the 
encapsulation device

• All of the class instances of a class share a single copy of the member 
functions

• Each instance of a class has its own copy of the class data members
• Instances can be static, stack dynamic, or heap dynamic

39
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Language Examples C++ (cont’d)

• Information Hiding:
– Private clause for hidden entities 
– Public clause for interface entities 
– Protected clause - for inheritance

• Constructors:
– Functions to initialize the data members of instances (they DO NOT 

create the objects)
– May also allocate storage if part of the object is heap-dynamic
– Can include parameters to provide parameterization of the objects
– Implicitly called when an instance is created 
– Can be explicitly called
– Name is the same as the class name

40
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Language Example C++ (cont’d)

• Destructors
– Functions to cleanup after an instance is destroyed; usually just to 

reclaim heap storage
–  Implicitly called when the object’s lifetime ends 
– Can be explicitly called
– Name is the class name, preceded by a tilde (~)

41
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Language Example Java

• “Similar” to C++, except:
– All user-defined types are classes
– All objects are allocated from the heap and accessed through 

reference variables
– Individual entities in classes have access control modifiers (private or 

public), rather than clauses

42
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Python

• Only name mangling
– Not really reliable
– Problem with renaming methods
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>>> class Example:
      def __method(self):
        print "Deeo"

>>> ex = Example()
>>> dir(ex)
['_Example__method', '__doc__',
                            '__module__']
>>> ex._Example__method()
Deeo
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Ruby

• Name-based information hiding
• Involves expensive dynamic checking
• Information hiding can be circumvented

– Removed by subclass
– Ignored by reflection
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> class Example
>   private 
>   def method; print "Deeo"; end
> end

> ex = Example.new
> ex.method
NoMethodError: private method `method' \
           called for #<Example:0x2223d0>
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Not-so-very-private Ruby

> ex.send("method")
Deeo

> def ex.back_door; method; end
> ex.back_door
Deeo

> class Sub < Example 
>   def method; super; end
> end

45
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Smalltalk

• All methods are public
• All member variables are private
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Io

• Private could be simulated by explicitly checking sender in every private 
method

• Expensive
• Not visible from the outside

47

Thursday, November 10, 11

Conclusion?

• Encapsulation with information hiding is perhaps
– not compatible with being highly dynamic
– too expensive in a dynamic setting
– not (so) important in the domains where dynamic languages are 

used?
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The End
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