
Programming Languages &
Paradigms
PROP HT 2011

Lecture 3

Expressions, assignments and statements
Beatrice Åkerblom
 beatrice@dsv.su.se

Monday, November 7, 11

Questions from you

• BNF with ::= or ?

• Identifier names in grammars

2

Monday, November 7, 11

Arithmetic
Expressions

3

Monday, November 7, 11

Arithmetic Expressions

• Arithmetic evaluation was one of the motivations for the development of
the first programming languages

• Arithmetic expressions consist of operators, operands, parentheses,
and function calls

– operator precedence rules
– operator associativity rules
– order of operand evaluation
– operand evaluation side effects
– operator overloading
– mode mixing expressions

4

15 * (a + b) / log(x)

Monday, November 7, 11

Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

• The operator precedence rules for expression evaluation define the
order in which “adjacent” operators of different precedence levels are
evaluated

5

-7

7 + 2

avg = (count == 0)? 0 : sum / count;

Monday, November 7, 11

Precedence levels

• Typical precedence levels
– parentheses
– unary operators
– ** (exponent - if the language supports it)
– *, /
– +, -

6

Monday, November 7, 11

Precedence levels, cont’d

• More unusual (?) precedence levels
– Smalltalk - What’s an operator?

unary > binary > keyword > assignment

– Forth, using postfix notation

‣ 1 2 + 3 * 6 + 2 3 + /

‣ (((1 + 2) * 3) + 6) / (2 + 3)
– Of course precedence and associativity rules can be overridden with

parentheses

7

Monday, November 7, 11

Associativity

• The operator associativity rules for expression evaluation define the
order in which adjacent operators with the same precedence level are
evaluated

• Typical associativity rules:
- Left to right, except **, which is right to left
- Sometimes unary operators associate right to left (e.g., FORTRAN)

8

Monday, November 7, 11

What Happens on Evaluation?

• Variables: just fetch the value
• Constants: sometimes a fetch from memory; sometimes the constant is

in the machine language instruction
• Parenthesized expressions: evaluate all operands and operators first
• Function calls: order of evaluation may be crucial

• Functional side effects (when a function changes a two-way parameter
or a nonlocal variable)

9

a = 10;
b = a + foo(&a);

Monday, November 7, 11

Possible Solution 1(2)

• Write the language definition to disallow functional side effects
• No two-way parameters in functions
• No nonlocal references in functions

• Advantage: it “works”
• Disadvantage: Programmers want the flexibility of two-way parameters

and nonlocal references. In other words this solution makes the
language too restrictive and less “writable”.

• Copy all data structures always?
• Note also that the usage of global values is important method for

execution speed improvement. The common tradeoff- safety, elegance,
readability, etc. for performance

10

Monday, November 7, 11

Possible Solution 2(2)

• Write the language definition to demand that operand evaluation order
be fixed

• Disadvantages:
– limits some compiler optimizations using operand reordering
– does not really solve the problem

11

Monday, November 7, 11

Overloaded Operators

• Some overloading is common (e.g., + for int and float, then we can go
beyond arithmetic and see it use for strings)

• Potential trouble (e.g., * in C and C++, both pointers and arithmetic
use)

• Loss of compiler error detection (omission of an operand should be a
detectable error)

• Some loss of readability
• Can be avoided by introduction of new symbols (e.g., Pascal’s div)

• C++ and Ada allow user-defined overloaded operators
• Potential problems:

– Users can define nonsense operations
– Readability may suffer, even when the operators make sense

12

Monday, November 7, 11

Type Conversions

• Narrowing conversion:
– converts an object to a type that cannot include all of the values of

the original type e.g., float to int usually somewhat troubling
(downcast)

• Widening conversion:
– converts an object to a type that can include at least approximations

to all of the values of the original type e.g., int to float usually not so
troubling (upcast)

13

Converts???

Monday, November 7, 11

Eiffel

14

Monday, November 7, 11

Type Conversions, cont’d

• A coercion is an implicit type conversion

• Coercions reduce the benefits of type checking; they may cause
reliability problems

• On the other hand, coercions provide flexibilities
• In Ada, there are virtually no coercions in expressions

15

Monday, November 7, 11

Explicit Type Conversions

• Explicit Type Conversions are often called casts

– Ada: FLOAT(INDEX) -- INDEX is INTEGER type
– Java: (int) speed /* speed is float type */

16

Monday, November 7, 11

Substitution

• Subtype has same attributes and behaviour as supertype
• An object can be used wherever an object from a supertype is expected.
• The Liskov substitution principle:

– Let q(x) be a property provable about objects x of type T. Then q(y) should be
true for objects y of type S where S is a subtype of T.

• A <: B -- A is a subtype of B
• Any expression of type A may also be given type B if A <: B

– in any situation
– with no observable effect

17

Monday, November 7, 11

Substitution in DPLs and STLs

• The importance of the principle of substitution differs between
dynamically typed and statically typed languages
– in statically typed languages objects are (typically) characterised by

their class
– in dynamically typed languages objects are (typically) characterised by

their behaviour

18

Monday, November 7, 11

Relational & Boolean
Expressions

19

Monday, November 7, 11

Relational Expressions

• Use relational operators and operands of various types
• Evaluate to some Boolean representation
• Operator symbols used vary somewhat among languages (!=, /=, .NE.,

<>, #)

• Operands are Boolean and the result is Boolean

20

Monday, November 7, 11

But not in C...

• C has no Boolean type--it uses int type
– 0 for false
– nonzero for true

• One odd characteristic of C’s expressions:
a < b < c
is a legal expression, but the result is not what you might expect:
– Left operator is evaluated, producing 0 or 1
– The evaluation result is then compared with the third operand (i.e.,

c)

21

Monday, November 7, 11

Short Circuit Evaluation
• The result is determined without evaluating all of the operands and/or

operators

• Examples:

– If a is zero, there is no need to evaluate (b/13-1)

– If a <= 3,there is no need to evaluate b < 5 * d

– How about

22

(13*a) * (b/13–1)

(a > 3 && b < 5 * d)

(c <= 7 || a != 3 * b)

Monday, November 7, 11

Assignment

23

Monday, November 7, 11

Assignment Statements

24

• General syntax
<target_var> <assign_operator> <expression>

• Assignment is dominant statement in an imperative language, all about
putting something in memory

• The assignment operator symbol itself can be the biggest issue in
expressions

• = Can be bad if it is overloaded for the relational operator for equality
(PL/I)

• Still difficult to see difference = and ==, e.g. known from C...

= FORTRAN, BASIC, PL/I, C, C++, Java
:= ALGOLs, Pascal, Ada, Smalltalk

Monday, November 7, 11

Ruby

25

Monday, November 7, 11

More complicated assignments

• Multiple targets (PL/I)
A,B=10 /*does A get 10 or is it undefined*/

• Conditional targets (C, C++, and Java)
(first == true) ? total : subtotal = 0

• Compound assignment operators (C, C++, JavaScript and Java)
Shorthand form to address commonly needed assignments;
sum += nextval; vs. sum = sum + nextval;

• Unary assignment operators (C, C++, and Java)
a++; a--; --a; ++a;

• C, C++, and Java treat = as an arithmetic binary operator e.g.
a = b * (c = d * 2 + 1) + 1
– This is inherited from ALGOL but seems to cause some readability

concerns

26

Monday, November 7, 11

Assignment Statements, cont’d

• In C, C++, and Java, the assignment statement produces a result so,
they can be used as operands in expressions e.g.
while((ch=getchar()!=EOF){...}

• Smalltalk: What is an assignment operator?
myVariable := 3.
assignment operator

27

Monday, November 7, 11

Mixed-Mode Assignment

• Assignment statements can also be mixed-mode, for example
int a = 2, b = 3;
float c;
c = a / b;

• C allows mixed-mode assignments; The coercion takes place only after
the right- side expression has been evaluated

• Java and C# allow only widening assignment coercions
• In Ada, there is no assignment coercion

28

Monday, November 7, 11

Control Flow

29

Monday, November 7, 11

Levels of Control Flow

• Within expressions
• Among program statements
• Among program units

30

Monday, November 7, 11

Control Structure

• A control structure is a control statement and the statements whose
execution it controls

• What control statements should a language have, beyond selection and
pretest logical loops?

• The number of control statements in the language effects readability and
writability. Too many makes the language is hard to learn, too few it can
be confusing or difficult to write in.

31

Monday, November 7, 11

Selection Statements

• A selection statement provides the means of choosing between two or
more execution paths in a program

• Two general categories:
– Two-way selectors
– Multiple-way selectors

32

Monday, November 7, 11

Two-Way Selection Statements

• General (?) form:

• Smalltalk: What is a selection statement?
33

if control_expression
 then clause
 else clause

Monday, November 7, 11

Multiple-Way Selection Statements

• Allow the selection of one of any number of statements or statement
groups

• Design Issues:
– What is the form and type of the control expression?
– How are the selectable segments specified?
– Is execution flow through the structure restricted to include just a

single selectable segment?
– How are the case values specified?
– What is done about unrepresented expression values?

34

Monday, November 7, 11

C’s switch statement

• Control expression only integer type
• Selectable segments can be statement sequences, blocks, or compound

statements
• Construct is encapsulated
• Any number of segments can be executed in one execution of the

construct (there is no implicit branch at the end of selectable segments)
(a trade-off between reliability and flexibility--convenience)
- To avoid it, the programmer must supply a break statement for each
segment.

• default clause is for unrepresented values (if there is no default, the
whole statement does nothing) 35

switch (expression) {
 case constant_expression_1 : statement_1;
 ...
 case constant_expression_n : statement_n;
 [default: statement_n+1]
}

Monday, November 7, 11

Perl

36

Monday, November 7, 11

Break Statements

• Suggested this approach in multi-way is a cause of programming
problems.

• Break statements are actually a restricted form of a GOTO
– Considered less harmful* because they tend to jump to areas near-by

inspected code
– Some language support labeled breaks

• We see break and continue also used of course in loop control

37* See reference section

Monday, November 7, 11

Multiple-Way Selection Using If

• Multiple Selectors can appear as direct extensions to two-way selectors,
using else-if clauses, for example in Ada:

• Far more readable than deeply nested if's
• Allows a Boolean gate on every selectable group

38

if ...
 then ...
elsif ...
 then ...
elsif ...
 then ...
 else ...
end if

Monday, November 7, 11

Iteration

39

Monday, November 7, 11

Iterative Statements

• The repeated execution of a statement or compound statement is
accomplished either by iteration or recursion

• General design issues for iteration control statements:
– How is iteration controlled?
– Where is the control mechanism in the loop?

40

Monday, November 7, 11

Counter-Controlled Loops

• A counting iterative statement has a loop variable, and a means of
specifying the initial and terminal, and stepsize values

• The initial and terminal, and stepsize specifications of a loop are called
the loop parameters

• Design issues:
– Type and scope of the loop variable?
– Value of the loop variable at loop termination?
– Legal or not for loop variable / loop parameters to be changed in the

loop body (and if so, does the change affect loop control)?
– Loop parameters evaluated only once, or once every iteration?

41

Monday, November 7, 11

Counter-Controlled Loops - C

• The expressions can be whole statements, or even statement sequences,
with the statements separated by commas

• The value of a multiple-statement expression is the value of the last
statement in the expression e.g., for(i=0,j=10;j==i; i++)

• If the second expression is absent, it is an infinite loop

42

for (count1 = 0, count2 = 1.0;
count1 <= 10 && count2 <= 100.0;
sum = ++ count1 + count2, count2 *= 2.5);

for ([expr_1] ; [expr_2] ; [expr_3]) statement

Monday, November 7, 11

Counter-Controlled Loops - C++

• C++ differs from C in two ways:

• The control expression can also be Boolean
• The initial expression can include variable definitions (scope is from the

definition to the end of the loop body)

• Java and C#
• Differs from C++ in that the control expression must be Boolean

43

for (int count = 0; count < len; count++) {...}

Monday, November 7, 11

Logically-Controlled Loops

• Design Issues:
– Pre-test or post-test?
– Should this be a special case of the counting loop statement (or a

separate statement)?

44

while (ctrl_expr)
 loop body

do
 loop body
while (ctrl_expr)

Monday, November 7, 11

Examples

• Pascal has separate pretest and posttest logical loop statements
(while-do and repeat-until)

• C and C++ have both pre-test and post- test logical loop statements ,
but the control expression for the post-test version is treated just like in
the pre-test case (while-do and do-while)

• Java is like C, except the control expression must be Boolean (and the
body can only be entered at the beginning -- Java has no goto)

• Ada has a pretest version, but no posttest

• FORTRAN 77 and 90 have neither, just a counter loop

• Perl has two pretest logical loops, while and until, but no posttest
logical loop

45

Monday, November 7, 11

User-Located Loop Control Mechanisms

• Design issues:
– Should the conditional be part of the exit?
– Should the mechanism be allowed in an already controlled loop?
– Should control be transferable out of more than one loop? (nesting)

• C , C++, Ruby, and C# have unconditional unlabeled exits (break) for
any loop or switch; one level only

• Java and Perl have unconditional labeled break statement: control
transfers to the label

• An alternative: continue statement; it skips the remainder of this
iteration, but does not exit the loop

46

Monday, November 7, 11

Examples in Java

47

for (row = 0; row < numRows; row++)
 for (col = 0; col < numCols; col++) {
 sum += mat[row][col];
 if (sum > 1000.0) {
 break;
}

for (x = 1; x <= 10; x++) {
 if (x == 5) { continue; }
 printf("%d ", x);
}

OuterLoop:
for (row = 0; row < numRows; row++)
 for (col = 0; col < numCols; col++) {
 sum += mat[row][col];
 if (sum > 1000.0) break OuterLoop;
 }

Monday, November 7, 11

Iteration Based on Data Structures

• Use order and number of elements of some data structure to control
iteration

• Control mechanism is a call to a function that returns the next element
in some chosen order, if there is one; else exit loop

• C's for loop can be used to build a user-defined iterator e.g.
for (p=hdr; p; p=next(p)) { ... }

48

Monday, November 7, 11

Unconditional Branching

• Transfers execution control to a specified place in the program
• Represented one of the most heated debates in 1960’s and 1970‘s
• Well-known mechanism: goto statement

• Major concern: Readability
• Some languages do not support goto statement (e.g., Module-2 and

Java)
• C# offers goto statement (can be used in switch statements)
• Loop exit statements are restricted and somewhat camouflaged goto’s

49

Monday, November 7, 11

The End

Monday, November 7, 11

References

51

• Sebesta, R - Concepts of Programming Languages
• For * see Dijkstra, E - “Letters to the editor: go to statement considered

harmful”, 1968 (http://dl.acm.org/citation.cfm?doid=362929.362947)
• Try Smalltalk http://www.pharo-project.org/home

Monday, November 7, 11

