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Why is it important to know how compilers work?

• To enhance understanding of programming languages
• To write better (more efficient) code in a high-level languages
• To learn techniques that can be useful also in other situations
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Different Approaches

• Compiled
• Interpreted
• Hybrid
• JIT-compiled
• Line-By-Line
• ...

All of the above still need lexical analysis and syntactical analysis
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Semantics
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Static Semantics (?)

• Static semantics is used to describe properties that syntactically valid 
programs also must have to be semantically valid, e.g. that they are type 
correct
– really more related to legal forms of programs rather than meaning
– some cannot be described by BNF, some just very verbose
– attribute grammars -- add to CFG by carrying some semantic 

information along inside parse tree nodes
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Attribute tree:
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Dynamic Semantics

• Dynamic semantics is used to describe how the meaning of valid 
programs should be interpreted

• No single widely acceptable notation or formalism
• Three common (but not the only) approaches:

– Operational
– Denotational
– Axiomatic
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Dynamic Semantics - Operational

• Operational semantics
– The meaning of a statement defined by describing the effect of 

running it on a machine
– Change in the state of the machine defines the meaning of the 

statement
–                       if the expression e is evaluated or executed starting in 

the state σ, the resulting computation terminates and yields the 
result v
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a ::= n | X | a0 + a1 | a0 - a1 | a0 * a1

where n is the sum of n0 and n1
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Dynamic Semantics - Operational

• Advantages:
– May be simple, intuitive for small examples
– Good if used informally
– Useful for implementation

• Disadvantages
– Very complex for large programs
– Lacks mathematical rigour

• Uses:
– Compiler work
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Dynamic Semantics - Denotational

• Denotational semantics
– Mathematical denotation of the meaning of the program (typically, a 

function) 
– The most abstract semantics description method
– Define a function that maps a program (a syntactic object) to its meaning 

(a semantic object)
– Facilitates reasoning about the program, but not always easy to find 

suitable semantic domains 
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Ada
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Denotational vs. Operational

• Denotational semantics is similar to high-level operational semantics, 
except:
– Machine is gone
– Language is mathematics (lambda calculus)

• The difference between denotational and operational semantics:
– In operational semantics, the state changes are defined by coded 

algorithms for a virtual machine
– In denotational semantics, they are defined by rigorous mathematical 

functions
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Dynamic Semantics - Denotational

• Advantages:
– Compact & precise, with solid mathematical foundation
– Can be used to prove the correctness of programs
– Can be an aid to language design

• Disadvantages
– Requires mathematical sophistication
– Hard for programmer to use

• Uses
– Compiler generation and optimization
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Dynamic Semantics - Axiomatic

• Axiomatic semantics
– Based on formal logic 
– Originally used for formal program verification
– Define axioms or inference rules for each statement type in the 

language
– The inference rules allows transformation of expressions to other 

expressions
– The expressions (assertions) state the relationships and constraints 

among variables that are true at a specific point in execution
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Dynamic Semantics

• Each form of semantic description has its place:

• Operational
– Informal descriptions
– Compiler work

• Denotational
– Formal definitions
– Provably correct implementations

• Axiomatic
– Reasoning about particular properties
– Proofs of correctness
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Dynamic Semantics - Axiomatic

• Advantages
– May be useful in proofs of correctness
– Solid theoretical foundations

• Disadvantages
– Predicate transformers are hard to define
– Hard to give complete meaning
– Does not suggest implementation

• Uses of Axiomatic Semantics
– Reasoning about correctness
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Back to “Reality”
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Parsing 
(Syntactical Analysis)
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Parsing

• What is parsing?
– Check if the input program is correct
– Produce parse tree or error messages

• Two major approaches
– Top-down parsing
– Bottom-up parsing

• Won’t work on all context-free grammars
– Properties of grammar determine parse-ability
– We may be able to transform a grammar
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Top-Down Parsing
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Top-Down Parsers -- LL(1), recursive descent

• Start with the root of the parse tree grow toward leaves
– Root of the tree: node labeled with the start symbol

• Algorithm:
– Repeat until the fringe of the parse tree matches input string
– At a node A, select a production for A

•     Add a child node for each symbol on rhs
– If a terminal symbol is added that doesn’t match, backtrack
– Find the next node to be expanded                             (a non-terminal)

• Done when:
– Leaves of parse tree match input string                                   (success)
– All productions exhausted in backtracking                               (failure)
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Algol family
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a QS
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a

QS

a

QS

a ...
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a

QS

a

QS

a ...
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a QS
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a Q

aa Qc

S

b
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a Q

Qc

S

aa cQb
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a Q

Qc

S

cQb

aa cb cb
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Bottom-Up Parsing
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

cQb

aa cb cb

aa
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

a Qcb

cQb

aa cb cb

a
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Assembler
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

a

Qcb

cQb

aa cb cb

a

S Q
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Grammar: 

S   ::= abc | aSQ

bQc ::= bbcc

cQ  ::= Qc

Input string: 

aabbcc

S

a Q

Qc

S

cQb

aa cb cb
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Recursive-Descent Parsing
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Recursive-Descent Parsing 

• There is a subprogram for each nonterminal in the grammar, which can 
parse sentences that can be generated by that nonterminal 

• EBNF is ideally suited for being the basis for a recursive-descent parser, 
because EBNF minimizes the number of nonterminals 

• Assume we have a lexical analyzer named lex, which puts the next token 
code in nextToken

• The coding process when there is only one RHS:
– For each terminal symbol in the RHS, compare it with the next input 

token; if they match, continue, else there is an error
– For each nonterminal symbol in the RHS, call its associated parsing 

subprogram
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Recursive-Descent Parsing, cont’d

• A nonterminal that has more than one RHS requires an initial process to 
determine which RHS it is to parse
– The correct RHS is chosen on the basis of the next token of input (the 

lookahead)
– The next token is compared with the first token that can be generated 

by each RHS until a match is found 
– If no match is found, it is a syntax error 

• Left Recursion Problem
• Pairwise Disjointness
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Lex, Yacc, Antlr
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Names and Binding, 
Scope
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Name, Binding and Scope

• A name is a term used for identification
• Most names are identifiers
• Symbols (like '+') can also be names 

• A binding is an association between two things, such as a name and the 
thing it names 
– the association of values with identifiers 

• The scope of a binding is the part of the program (textually) in which 
the binding is active 
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Binding Time

• When the “binding” is created or, more generally, the point at which any 
implementation decision is made
– language design time, e.g. operator symbols to operations
– language implementation time, e.g. data type to the range of possible 

values
– program writing time, e.g. choose algorithms, data structures and 

names
– compile time, e.g. bind a variable to a data type
– link time, e.g. bind a library call to the subprogram code
– load time, e.g. bind a static variable to a memory cell
– run time, e.g. bind a non-static local variable to a memory cell
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Static vs Dynamic

• A binding is static if it occurs before run time and remains unchanged 
throughout program execution

• A binding is dynamic if it occurs during run time and/or can change 
during execution of the program
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Static Type Binding

• Explicit, implicit, inferred
• Advantages
• Disadvantages
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Dynamic Type Binding

• Dynamic languages have no types bound to identifiers

• Advantages -- there are advantages!
• Disadvantages

– error detection
– documentation
– cost
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C and C++
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Storage Binding and Lifetime

• Allocation - getting a cell from some pool of available cells
• Deallocation - putting a cell back into the pool

• The lifetime of a variable is the time during which it is bound to a 
particular memory cell

• Static - bound to memory cells before execution begins and remains 
bound to the same memory cell throughout execution

• Stack-dynamic - Storage bindings are created for variables when their 
declaration statements are elaborated

• Explicit heap-dynamic - Allocated and deallocated by explicit 
directives, specified by the programmer, which take effect during 
execution. Referenced only through pointers or references

• Implicit heap-dynamic - Allocation and deallocation caused by 
assignment statements

48

Thursday, November 3, 11



Scope

• The scope of a variable is the range of statements over which it is visible. 
• The nonlocal variables of a program unit are those that are visible but 

not declared there. 
• The scope rules of a language determine how references to names are 

associated with variables
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Scope

• Static scope - with or without nested subprograms
• Blocks - block-structured language
• Declaration order - declarations first (before any code) or anywhere, 

declarations before use or not
• Global, hiding

• Dynamic Scoping - following execution path

• Advantages Static and Dynamic
• Disadvantages Static and Dynamic

• Scope and Lifetime
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Scoping Example
MAIN

  - declaration of x 
    SUB1
      - declaration of x
      ...
      call SUB2 
      ...

    SUB 2 
      ...
      - reference to x
      ...
  ...
  call SUB1 
  ...

MAIN calls SUB1

SUB1 calls SUB2

SUB2 uses x

Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's 51
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The End
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