
Programming Languages &
Paradigms
PROP HT 2011

Lecture 2

Parsing, Names, Binding, Scope
Beatrice Åkerblom
 beatrice@dsv.su.se

Thursday, November 3, 11

2

Why is it important to know how compilers work?

• To enhance understanding of programming languages
• To write better (more efficient) code in a high-level languages
• To learn techniques that can be useful also in other situations

Thursday, November 3, 11

Different Approaches

• Compiled
• Interpreted
• Hybrid
• JIT-compiled
• Line-By-Line
• ...

All of the above still need lexical analysis and syntactical analysis

3

Thursday, November 3, 11

Semantics

4

Thursday, November 3, 11

Static Semantics (?)

• Static semantics is used to describe properties that syntactically valid
programs also must have to be semantically valid, e.g. that they are type
correct
– really more related to legal forms of programs rather than meaning
– some cannot be described by BNF, some just very verbose
– attribute grammars -- add to CFG by carrying some semantic

information along inside parse tree nodes

5

+

+ 1

53

A0 = 9

A0 = 8

A0 = 3 A0 = 5

A0 = 1

Attribute tree:

Thursday, November 3, 11

Dynamic Semantics

• Dynamic semantics is used to describe how the meaning of valid
programs should be interpreted

• No single widely acceptable notation or formalism
• Three common (but not the only) approaches:

– Operational
– Denotational
– Axiomatic

6

Thursday, November 3, 11

Dynamic Semantics - Operational

• Operational semantics
– The meaning of a statement defined by describing the effect of

running it on a machine
– Change in the state of the machine defines the meaning of the

statement
– if the expression e is evaluated or executed starting in

the state σ, the resulting computation terminates and yields the
result v

7

a ::= n | X | a0 + a1 | a0 - a1 | a0 * a1

where n is the sum of n0 and n1

Thursday, November 3, 11

Dynamic Semantics - Operational

• Advantages:
– May be simple, intuitive for small examples
– Good if used informally
– Useful for implementation

• Disadvantages
– Very complex for large programs
– Lacks mathematical rigour

• Uses:
– Compiler work

8

Thursday, November 3, 11

Dynamic Semantics - Denotational

• Denotational semantics
– Mathematical denotation of the meaning of the program (typically, a

function)
– The most abstract semantics description method
– Define a function that maps a program (a syntactic object) to its meaning

(a semantic object)
– Facilitates reasoning about the program, but not always easy to find

suitable semantic domains

9

Thursday, November 3, 11

Ada

10

Thursday, November 3, 11

Denotational vs. Operational

• Denotational semantics is similar to high-level operational semantics,
except:
– Machine is gone
– Language is mathematics (lambda calculus)

• The difference between denotational and operational semantics:
– In operational semantics, the state changes are defined by coded

algorithms for a virtual machine
– In denotational semantics, they are defined by rigorous mathematical

functions

11

Thursday, November 3, 11

Dynamic Semantics - Denotational

• Advantages:
– Compact & precise, with solid mathematical foundation
– Can be used to prove the correctness of programs
– Can be an aid to language design

• Disadvantages
– Requires mathematical sophistication
– Hard for programmer to use

• Uses
– Compiler generation and optimization

12

Thursday, November 3, 11

Dynamic Semantics - Axiomatic

• Axiomatic semantics
– Based on formal logic
– Originally used for formal program verification
– Define axioms or inference rules for each statement type in the

language
– The inference rules allows transformation of expressions to other

expressions
– The expressions (assertions) state the relationships and constraints

among variables that are true at a specific point in execution

13

Thursday, November 3, 11

Dynamic Semantics

• Each form of semantic description has its place:

• Operational
– Informal descriptions
– Compiler work

• Denotational
– Formal definitions
– Provably correct implementations

• Axiomatic
– Reasoning about particular properties
– Proofs of correctness

14

Thursday, November 3, 11

Dynamic Semantics - Axiomatic

• Advantages
– May be useful in proofs of correctness
– Solid theoretical foundations

• Disadvantages
– Predicate transformers are hard to define
– Hard to give complete meaning
– Does not suggest implementation

• Uses of Axiomatic Semantics
– Reasoning about correctness

15

Thursday, November 3, 11

Back to “Reality”

16

Thursday, November 3, 11

Parser
(syntax analysis)

Semantic
analysis and
intermediate

code generation

character
stream

Scanner
(Lexical analysis)

Machine-
independent

code improve-
ment (optional)

Target code
generation

Machine-specific
code improve-
ment (optional)

token stream

parse tree

abstract
syntax tree

modified
intermediate

form

assembly
or machine
language

modified
target

language

or other inter-
mediate form

or other target
language

symbol table

front end

back end

Thursday, November 3, 11

Parsing
(Syntactical Analysis)

18

Thursday, November 3, 11

Parsing

• What is parsing?
– Check if the input program is correct
– Produce parse tree or error messages

• Two major approaches
– Top-down parsing
– Bottom-up parsing

• Won’t work on all context-free grammars
– Properties of grammar determine parse-ability
– We may be able to transform a grammar

19

Thursday, November 3, 11

Top-Down Parsing

Thursday, November 3, 11

Top-Down Parsers -- LL(1), recursive descent

• Start with the root of the parse tree grow toward leaves
– Root of the tree: node labeled with the start symbol

• Algorithm:
– Repeat until the fringe of the parse tree matches input string
– At a node A, select a production for A

• Add a child node for each symbol on rhs
– If a terminal symbol is added that doesn’t match, backtrack
– Find the next node to be expanded (a non-terminal)

• Done when:
– Leaves of parse tree match input string (success)
– All productions exhausted in backtracking (failure)

21

Thursday, November 3, 11

Algol family

22

Thursday, November 3, 11

23

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

Thursday, November 3, 11

24

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a QS

Thursday, November 3, 11

25

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a

QS

a

QS

a ...

Thursday, November 3, 11

26

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a

QS

a

QS

a ...

Thursday, November 3, 11

27

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a QS

Thursday, November 3, 11

28

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a Q

aa Qc

S

b

Thursday, November 3, 11

29

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a Q

Qc

S

aa cQb

Thursday, November 3, 11

30

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a Q

Qc

S

cQb

aa cb cb

Thursday, November 3, 11

31

Bottom-Up Parsing

Thursday, November 3, 11

32

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

cQb

aa cb cb

aa

Thursday, November 3, 11

33

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

a Qcb

cQb

aa cb cb

a

Thursday, November 3, 11

Assembler

34

Thursday, November 3, 11

35

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

a

Qcb

cQb

aa cb cb

a

S Q

Thursday, November 3, 11

36

Grammar:

S ::= abc | aSQ

bQc ::= bbcc

cQ ::= Qc

Input string:

aabbcc

S

a Q

Qc

S

cQb

aa cb cb

Thursday, November 3, 11

Recursive-Descent Parsing

Thursday, November 3, 11

Recursive-Descent Parsing

• There is a subprogram for each nonterminal in the grammar, which can
parse sentences that can be generated by that nonterminal

• EBNF is ideally suited for being the basis for a recursive-descent parser,
because EBNF minimizes the number of nonterminals

• Assume we have a lexical analyzer named lex, which puts the next token
code in nextToken

• The coding process when there is only one RHS:
– For each terminal symbol in the RHS, compare it with the next input

token; if they match, continue, else there is an error
– For each nonterminal symbol in the RHS, call its associated parsing

subprogram

38

Thursday, November 3, 11

Recursive-Descent Parsing, cont’d

• A nonterminal that has more than one RHS requires an initial process to
determine which RHS it is to parse
– The correct RHS is chosen on the basis of the next token of input (the

lookahead)
– The next token is compared with the first token that can be generated

by each RHS until a match is found
– If no match is found, it is a syntax error

• Left Recursion Problem
• Pairwise Disjointness

39

Thursday, November 3, 11

Lex, Yacc, Antlr

40

Thursday, November 3, 11

41

Names and Binding,
Scope

Thursday, November 3, 11

Name, Binding and Scope

• A name is a term used for identification
• Most names are identifiers
• Symbols (like '+') can also be names

• A binding is an association between two things, such as a name and the
thing it names
– the association of values with identifiers

• The scope of a binding is the part of the program (textually) in which
the binding is active

42

Thursday, November 3, 11

Binding Time

• When the “binding” is created or, more generally, the point at which any
implementation decision is made
– language design time, e.g. operator symbols to operations
– language implementation time, e.g. data type to the range of possible

values
– program writing time, e.g. choose algorithms, data structures and

names
– compile time, e.g. bind a variable to a data type
– link time, e.g. bind a library call to the subprogram code
– load time, e.g. bind a static variable to a memory cell
– run time, e.g. bind a non-static local variable to a memory cell

43

Thursday, November 3, 11

Static vs Dynamic

• A binding is static if it occurs before run time and remains unchanged
throughout program execution

• A binding is dynamic if it occurs during run time and/or can change
during execution of the program

44

Thursday, November 3, 11

Static Type Binding

• Explicit, implicit, inferred
• Advantages
• Disadvantages

45

Thursday, November 3, 11

Dynamic Type Binding

• Dynamic languages have no types bound to identifiers

• Advantages -- there are advantages!
• Disadvantages

– error detection
– documentation
– cost

46

Thursday, November 3, 11

C and C++

47

Thursday, November 3, 11

Storage Binding and Lifetime

• Allocation - getting a cell from some pool of available cells
• Deallocation - putting a cell back into the pool

• The lifetime of a variable is the time during which it is bound to a
particular memory cell

• Static - bound to memory cells before execution begins and remains
bound to the same memory cell throughout execution

• Stack-dynamic - Storage bindings are created for variables when their
declaration statements are elaborated

• Explicit heap-dynamic - Allocated and deallocated by explicit
directives, specified by the programmer, which take effect during
execution. Referenced only through pointers or references

• Implicit heap-dynamic - Allocation and deallocation caused by
assignment statements

48

Thursday, November 3, 11

Scope

• The scope of a variable is the range of statements over which it is visible.
• The nonlocal variables of a program unit are those that are visible but

not declared there.
• The scope rules of a language determine how references to names are

associated with variables

49

Thursday, November 3, 11

Scope

• Static scope - with or without nested subprograms
• Blocks - block-structured language
• Declaration order - declarations first (before any code) or anywhere,

declarations before use or not
• Global, hiding

• Dynamic Scoping - following execution path

• Advantages Static and Dynamic
• Disadvantages Static and Dynamic

• Scope and Lifetime

50

Thursday, November 3, 11

Scoping Example
MAIN

 - declaration of x
 SUB1
 - declaration of x
 ...
 call SUB2
 ...

 SUB 2
 ...
 - reference to x
 ...
 ...
 call SUB1
 ...

MAIN calls SUB1

SUB1 calls SUB2

SUB2 uses x

Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's 51

Thursday, November 3, 11

The End

Thursday, November 3, 11

References

53

• Sebesta, R - Concepts of Programming Languages
• Aho, A., Lam, M., Sethi, R., Ullman, J. - Compilers: Principles,

Techniques, and Tools
• Scott, M. - Programming Language Pragmatics
• Winskel, G - The Formal Semantics of Programming Languages
• Grune, D & Jacobs, C - Parsing Techniques, a Practical Guide

Thursday, November 3, 11

