
Programming Languages &
Paradigms
PROP HT 2011

Lecture 1

Introduction to the course and the subject,
Syntax & Semantics

Beatrice Åkerblom
 beatrice@dsv.su.se

Monday, October 31, 11

Why Paradigms?

2

Monday, October 31, 11

Languages are tools used for communication,
where different languages are more or less

efficient for communicating different kinds of
situations and solving different kinds of

problems.

3

Monday, October 31, 11

“A language that doesn’t affect the way you think about
programming is not worth knowing”

— Alan Perlis

4

Monday, October 31, 11

The Sapir-Whorf Hypothesis

• Edward Sapir and Benjamin Lee Whorf, two American linguists (early
20th century)

• “Language influences how we see the world and behave in it”
• Has not been completely disputed or proven
• Is sometimes used to claim that programmers good at a particular

language may not have a deep understanding of some concepts of other
languages. Think programming paradigms

• What do you think?

5

Monday, October 31, 11

What is a Programming Language?

• A formal language for describing computation?
• A “user interface” to a computer?
• Syntax + semantics?
• Compiler, or interpreter, or translator?
• A tool to support a programming paradigm?

6

“A programming language is a notational system for
describing computation in a machine-readable and
human-readable form.”

 — Louden

Monday, October 31, 11

Paradigms of Programming?

• There are several ways to think about computation:
– a set of instructions to be executed
– a set of expressions to be evaluated
– a set of rules to be applied
– a set of objects to be arranged
– a set of messages to be sent and received

Monday, October 31, 11

Course PM

8

Monday, October 31, 11

How to Study

• Research shows that these are the worst studying techniques:
– Postponing reading literature to just before exam
– Postponing doing assignment work to just before exam

• What we mean by worst
– No real understanding (harder in real-life and subsequent courses

that build on this knowledge)
– Easy to forget (harder at the re-exam)
– You wont pass the course

9

Monday, October 31, 11

Our Pedagogic Approach

• Dividing the work up into several, small and manageable bits
• Working together with other people, discussing and reasoning

• What this means for you in practice
– Several small assignments
– Reading exercises to keep lectures and reading at same pace
– Working both in small and very small groups

10

Monday, October 31, 11

Outline

11

Intro

Object
Orientation

Logic

Functional

Summary
and Outlook

Lecture free

v. 44

v. 45

v. 46

v. 47

v. 48

v. 49

v. 50

v. 51

v. 52

v. 1

v. 2

Monday, October 31, 11

How to pass

• Individual tasks:
– Take-Home exam, 3 hp

• Group tasks:
– Reading assignment, in total 1,5 hp
– Programming assignments, in total 3 hp

12

Monday, October 31, 11

Take-Home Exam

• Goal: test your understanding of the theoretical aspects—no
programming

• Your answers should be in essay form
• Exam is handed out 2011-12-19, at the end of the seminar and is due

back before 2012-01-09, 13:00
• Use the literature, follow the guidelines on the web and answer

everything yourselves—no co-operation is allowed
• Sample questions can be found on the course web
• Must pass all questions to pass exam
• Let the formal requirements guide your answers

13

Monday, October 31, 11

Assignment 1: Study Group Assignment (1,5hp)

• Goal: keeping your literature studies in synch with the lectures
• You will:

– divide yourselves into reading groups of four people
– read and discuss the book
– submit written answers to questions or solutions for small

programming problems related to the literature
– peer review another groups’ answers

• Handed in at the end of each block

14

Monday, October 31, 11

Assignment 2: Programming Assignment (3hp)

• Goal: improve understanding of the theoretical concepts by practical use
& have fun

• Done in groups of two
• Divided into four parts, handed in before 2012-01-10, 13:00

15

Monday, October 31, 11

Workload is untested

• Immediate feedback from you – if workload is too high or too low
• Make use of the course council

16

Monday, October 31, 11

Outline

17

Intro

Object
Orientation

Logic

Functional

Summary
and Outlook

Lecture free

L1 L2 L3

S1 L4 L5

L6 L7

L8 L9

L10 L11

L12 L13

L14 L15

L16 L17

S3

S5

S7
Tenta ut

S
Tenta in

S

S2(T)

S4(T)

S6(T)

L = Lecture
S = Seminar
T = Tutoring

v. 44

v. 45

v. 46

v. 47

v. 48

v. 49

v. 50

v. 51

v. 52

v. 1

v. 2

Monday, October 31, 11

Lectures

• During lectures, important content from the literature will be presented
and discussed

• Sometimes content taken from other sources will be part of lectures, but
there will always be references to the original in the lecture notes

• Lectures and lecture notes can not be used instead of the literature
• Lectures will not be recorded
• Lectures may contain discussions or other activities

18

Monday, October 31, 11

Seminars

• Seminars contain:
– presentations of more practical examples
– introduction to assignments
– tutoring

• Seminars are both “mini-lectures” and a place to start working on your
assignments

19

Monday, October 31, 11

Course Book

• Concepts of Programming Languages by Robert W. Sebesta
• Available from Kårbokhandeln
• ISBN 9780132465588

20

Monday, October 31, 11

The Importance of Reading

1 Preliminaries 1

2 Evolution... 1

3 Describing... 3

4 Lexical... 3

5 Names... 3

6 Data types (6.1-6.8) 1

6 Data types (6.9-6.13) 3

7 Expressions... 2

8 Statement... 2

3 = Detailed understanding

2 = Understand

1 = Overview

9 Subprograms 2

10 Implementing 3

11 Abstract... 3

12 Support... 3

13 Concurrency 2

14 Exception ... 2

15 Functional 3

16 Logic 3

Monday, October 31, 11

Articles

• Part of course literature for students taking the course at the
advanced level (e.g. master students)

• List of articles can be found on the course web page

22

Monday, October 31, 11

Code of Honour and Regulations

• All group members are responsible for group assignments
• Recount correctly any help received and sources used
• Do not copy the solutions of others
• Be prepared to present your solution
• Use attendance lists correctly

• Teachers are obligated to report well founded suspicions of
deception to the president and the disciplinary board.

• Read more here:
 http://dsv.su.se/en/education/regulations

23

Monday, October 31, 11

Course Council

• Four persons
• Council meetings Wednesdays after the lecture
• Meetings cancelled if not needed
• The course can be changed while it runs

24

Monday, October 31, 11

Programming
Languages &

Paradigms

25

Monday, October 31, 11

Programming Paradigms (Wikipedia)

• Agent-oriented
• Component-based
• Concatenative
• Concurrent computing
• Declarative (contrast: Imperative)
• Event-driven
• Feature-oriented
• Function-level (contrast: Value-level)
• Imperative (contrast: Declarative)
• Iterative (contrast: Recursive)
• Metaprogramming
• Modular
• Nondeterministic
• Parallel computing

26

Top level only...

Monday, October 31, 11

Classifying Languages

• Languages in different categories are fundamentally more alike than they
are different
– We tend to associate things that occur together in some early example

of a language category. We tend to believe that these things must
always come together

– Categories are fuzzy. Difficult to decide which languages are or are
not in any category

– Languages frequently belong to more than one category. Sorting
them into disjoint classes disguises real similarities among languages
with different surface syntax

27

Monday, October 31, 11

Imperative programming style:
program = algorithms + data
good for decomposition

Functional programming style:
program = functions o functions
good for reasoning

Logic programming style:
program = facts + rules
good for searching

Object-oriented programming
style:

program = objects + messages
good for encapsulation

“Fundamental” Paradigms

Monday, October 31, 11

Issues for all Languages

• Can it be understood by people and processed by machines?
– although translation may be required

• Sufficient expressive power?
– can we say what needs to be said, at an appropriate level of

abstraction?

Monday, October 31, 11

Translation

• Compilation
– Translate into instructions suitable for some other (lower level)

machine
– During execution, that machine maintains program state information

• Interpretation
– May involve some translation
– Interpreter maintains program state

Monday, October 31, 11

Trade-offs

• Compilation
– lower level machine may be faster, so programs run faster
– compilation can be expensive
– examples: C (and Java?)

• Interpretation
– more ability to perform diagnostics (or changes) at run-time
– examples: Basic, UNIX shells, Lisp

31

Monday, October 31, 11

Chronological Classification of PLs

• 1940s Pre-lingual phase: First computer users wrote machine code by
hand.

• 1950s Exploiting machine power: Early tools; macro assemblers and
interpreters First generation optimising compilers. Assembler code,
first version of Fortran, Lisp and COBOL.

32

Monday, October 31, 11

• 1960s Second generation tools -- optimising
compilers, inspections. First really big projects.
Commercial mainframes, software for big business.
Increasing expressive power: Cobol, Lisp, Algol60,
Basic, PL/1 ---but most “proper” programming still
done in assembly language.

• 1970s Fighting the “software crisis” C, Prolog, Pascal,
Algol68: Reducing machine dependency, Increasing
program correctness - Structured Programming,
modular programming and information hiding.
Collaborative software tools; Unix, code repositories,
make, etc. Minicomputers and small business software

33

Monday, October 31, 11

• 1980s: Personal computers and workstations.
Emphasis on processes. The rise of consumer
software. Reducing complexity Smalltalk,
C++, Ada, Eiffel

• 1990s: Object-oriented programming and agile
processes. Internet programming and software
everywhere, parallel and distributed hardware,
dynamic PLs Perl, Java

34

Monday, October 31, 11

Groups, Assignments, Submissions, etc.

35

Monday, October 31, 11

Isak and Tobias

36

Monday, October 31, 11

Syntax & Semantics

37

Monday, October 31, 11

Syntax vs. Semantics

38

def print_message():
 print("This is a message")

print_message()

def print_message
 p "This is a message"
end

print_message

Monday, October 31, 11

Syntax vs. Semantics

39

def print_message():
 print("This is a message")

print_message()

class Print
{
 public static void main(String[] args)
 {
 printMessage();
 }
 static void printMessage()
 {
 System.out.println("This is my message");
 }
}

def print_message
 p "This is a message"
end

print_message

Monday, October 31, 11

Syntax from two angles

• Specify structural rules for programing languages
– for programmers, to make it possible for them to write valid

programs
– regular expressions, context-free grammars

• Figure out if a given program follows some given syntax rules
– for compilers
– scanners and parsers

40

Monday, October 31, 11

Describing syntax

• Regular language
– Concatenation
– Alternation
– “Kleene closures”

• Context-free language
– All of the above
– Recursion

41

/hello/ /hello|goodbye/ /[hello]*/

<Program> ::= begin <stmt_list> end
<stmt_list ::= <stmt> |
 <stmt> ; <stmt_list>
<stmt> ::= <var> = <expr>
<var> ::= A | B | C
<expr> ::= <var> + <var> |
 <var> - <var> |
 <var>

Monday, October 31, 11

Checking syntax

• For a given a string from some language, we can build a parse tree to
represent its syntactic structure. This is typically done in two steps:

– A scanner chops the string up in tokens:

– A parser builds a the parse tree

42

sum = 4 + 3;

sum

id

=

assignment

4

number

+

addition

lexeme

token type

3

number

=

assignment

sum

id addition

+

number number

4 3This is often enough, but...

Monday, October 31, 11

Semantics

• The semantics of a string is directly connected to the parse tree, or we
have the wrong grammar

43

Monday, October 31, 11

Static and Dynamic Semantics

• Static semantics is used to describe properties that syntactically valid
programs also must have to be semantically valid, e.g. that they are type
correct
– really more related to legal forms of programs rather than meaning
– some cannot be described by BNF, some just very verbose
– attribute grammars

• Dynamic semantics is used to describe how the meaning of valid
programs should be interpreted

44

Monday, October 31, 11

Static Semantics

• To each rule in the grammar we add a semantic clause
– relating the semantics of the members of the right-hand side of the

rule to the semantics of the entire rule
– relating the semantics of the members of the entire rule to the

semantics of the right-hand side of the rule

• Semantic information flowing down is called inherited: each rule
inherits it from its parent in the tree

• Semantic information flowing up is called derived: each rule derives it
from its children

45

Monday, October 31, 11

Attribute Grammars

Grammar:

SumS -> Digit

Sum -> Sum+Digit

Digit -> 0|1|...|9

Attribute grammar:

1. SumS -> Digit {A0 :=A1}

2. Sum -> Sum + Digit {A0 :=A1 +A3}

3a. Digit -> 0 {A 0 :=0}

3j. Digit -> 9 {A 0 :=9}

String:

3+5+1 (semantics 9)

+

+ 1

53

A0 = 9

A0 = 8

A0 = 3 A0 = 5

A0 = 1

Attribute tree:

Monday, October 31, 11

Dynamic Semantics

• Operational semantics
– The meaning of a statement defined by describing the effect of

running it on a machine

47

a ::= n | X | a0 + a1 | a0 - a1 | a0 * a1

where n is the sum of n0 and n1

Monday, October 31, 11

Dynamic Semantics, cont’d

• Denotational semantics
– Mathematical denotation of the meaning of the program (typically, a

function)
– Facilitates reasoning about the program, but not always easy to find

suitable semantic domains

48

Monday, October 31, 11

Dynamic Semantics, cont’d

• Axiomatic semantics
– Program as a set of properties
– good for proving theorems about programs, but somewhat distant

from implementation

49

Monday, October 31, 11

The End

Monday, October 31, 11

References

51

• Sebesta, R - Concepts of Programming Languages
• Louden, K - Programming Languages: Principle and Practice
• Scott, M - Programming Language Pragmatics
• Grune, D and Jacobs, C - Parsing Techniques, a Practical Guide
• Winskel, G - The Formal Semantics of Programming Languages

Monday, October 31, 11

