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Why Paradigms?
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Languages are tools used for communication, 
where different languages are more or less 

efficient for communicating different kinds of 
situations and solving different kinds of 

problems.
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“A language that doesn’t affect the way you think about 
programming is not worth knowing”

— Alan Perlis
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The Sapir-Whorf Hypothesis

• Edward Sapir and Benjamin Lee Whorf, two American linguists (early 
20th century)

• “Language influences how we see the world and behave in it”
• Has not been completely disputed or proven
• Is sometimes used to claim that programmers good at a particular 

language may not have a deep understanding of some concepts of other 
languages. Think programming paradigms

• What do you think?
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What is a Programming Language?

• A formal language for describing computation?
• A “user interface” to a computer?
• Syntax + semantics?
• Compiler, or interpreter, or translator?
• A tool to support a programming paradigm?
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“A programming language is a notational system for 
describing computation in a machine-readable and 
human-readable form.”

 — Louden
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Paradigms of Programming?

• There are several ways to think about computation:
– a set of instructions to be executed
– a set of expressions to be evaluated
– a set of rules to be applied
– a set of objects to be arranged
– a set of messages to be sent and received
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Course PM
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How to Study

• Research shows that these are the worst studying techniques:
– Postponing reading literature to just before exam
– Postponing doing assignment work to just before exam

• What we mean by worst
– No real understanding (harder in real-life and subsequent courses 

that build on this knowledge)
– Easy to forget (harder at the re-exam) 
– You wont pass the course
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Our Pedagogic Approach

• Dividing the work up into several, small and manageable bits
• Working together with other people, discussing and reasoning

• What this means for you in practice
– Several small assignments
– Reading exercises to keep lectures and reading at same pace
– Working both in small and very small groups
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Outline
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How to pass

• Individual tasks:
– Take-Home exam, 3 hp

• Group tasks:
– Reading assignment, in total 1,5 hp
– Programming assignments, in total 3 hp
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Take-Home Exam

• Goal: test your understanding of the theoretical aspects—no 
programming

• Your answers should be in essay form
• Exam is handed out 2011-12-19, at the end of the seminar and is due 

back before 2012-01-09, 13:00
• Use the literature, follow the guidelines on the web and answer 

everything yourselves—no co-operation is allowed
• Sample questions can be found on the course web
• Must pass all questions to pass exam
• Let the formal requirements guide your answers
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Assignment 1: Study Group Assignment (1,5hp)

• Goal: keeping your literature studies in synch with the lectures
• You will:

– divide yourselves into reading groups of four people
– read and discuss the book
– submit written answers to questions or solutions for small 

programming problems related to the literature
– peer review another groups’ answers

• Handed in at the end of each block
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Assignment 2: Programming Assignment (3hp)

• Goal: improve understanding of the theoretical concepts by practical use 
& have fun

• Done in groups of two
• Divided into four parts, handed in before 2012-01-10, 13:00
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Workload is untested

• Immediate feedback from you – if workload is too high or too low
• Make use of the course council
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Outline
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Lectures

• During lectures, important content from the literature will be presented 
and discussed

• Sometimes content taken from other sources will be part of lectures, but 
there will always be references to the original in the lecture notes

• Lectures and lecture notes can not be used instead of the literature
• Lectures will not be recorded
• Lectures may contain discussions or other activities
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Seminars

• Seminars contain:
– presentations of more practical examples 
– introduction to assignments
– tutoring

•  Seminars are both “mini-lectures” and a place to start working on your 
assignments
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Course Book

• Concepts of Programming Languages by Robert W. Sebesta
• Available from Kårbokhandeln
• ISBN 9780132465588
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The Importance of Reading 

1 Preliminaries 1

2 Evolution... 1

3 Describing... 3

4 Lexical... 3

5 Names... 3

6 Data types (6.1-6.8) 1

6 Data types (6.9-6.13) 3

7 Expressions... 2

8 Statement... 2

3 = Detailed understanding

2 = Understand

1 = Overview

9 Subprograms 2

10 Implementing 3

11 Abstract... 3

12 Support... 3

13 Concurrency 2

14 Exception ... 2

15 Functional 3

16 Logic 3
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Articles

• Part of course literature for students taking the course at the      
advanced level (e.g. master students)

• List of articles can be found on the course web page
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Code of Honour and Regulations

• All group members are responsible for group assignments
• Recount correctly any help received and sources used
• Do not copy the solutions of others
• Be prepared to present your solution
• Use attendance lists correctly

• Teachers are obligated to report well founded suspicions of 
deception to the president and the disciplinary board.

• Read more here:
  http://dsv.su.se/en/education/regulations
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Course Council

• Four persons
• Council meetings Wednesdays after the lecture
• Meetings cancelled if not needed
• The course can be changed while it runs
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Programming 
Languages & 

Paradigms
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Programming Paradigms (Wikipedia)

• Agent-oriented
• Component-based
• Concatenative
• Concurrent computing
• Declarative (contrast: Imperative)
• Event-driven
• Feature-oriented
• Function-level (contrast: Value-level)
• Imperative (contrast: Declarative) 
• Iterative (contrast: Recursive)
• Metaprogramming
• Modular
• Nondeterministic
• Parallel computing
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Top level only...
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Classifying Languages

• Languages in different categories are fundamentally more alike than they 
are different
– We tend to associate things that occur together in some early example 

of a language category. We tend to believe that these things must 
always come together

– Categories are fuzzy. Difficult to decide which languages are or are 
not in any category

– Languages frequently belong to more than one category. Sorting 
them into disjoint classes disguises real similarities among languages 
with different surface syntax
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Imperative programming style:
program = algorithms + data
good for decomposition

Functional programming style:
program = functions o functions
good for reasoning

Logic programming style:
program = facts + rules
good for searching

Object-oriented programming 
style:

program = objects + messages
good for encapsulation

“Fundamental” Paradigms
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Issues for all Languages

• Can it be understood by people and processed by machines?
– although translation may be required

• Sufficient expressive power?
– can we say what needs to be said, at an appropriate level of 

abstraction?
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Translation

• Compilation
– Translate into instructions suitable for some other (lower level) 

machine
– During execution, that machine maintains program state information

• Interpretation
– May involve some translation
– Interpreter maintains program state
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Trade-offs

• Compilation
– lower level machine may be faster, so programs run faster
– compilation can be expensive
– examples:  C  (and Java?)

• Interpretation
– more ability to perform diagnostics (or changes) at run-time
– examples: Basic, UNIX shells, Lisp
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Chronological Classification of PLs

• 1940s Pre-lingual phase: First computer users wrote machine code by 
hand.

• 1950s Exploiting machine power: Early tools; macro assemblers and 
interpreters  First generation optimising compilers. Assembler code,  
first version of Fortran, Lisp and COBOL.
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• 1960s Second generation tools -- optimising 
compilers, inspections. First really big projects. 
Commercial mainframes, software for big business. 
Increasing expressive power: Cobol, Lisp, Algol60, 
Basic, PL/1 ---but most “proper” programming still 
done in assembly language. 

• 1970s Fighting the “software crisis” C, Prolog, Pascal, 
Algol68: Reducing machine dependency, Increasing 
program correctness - Structured Programming, 
modular programming and information hiding. 
Collaborative software tools; Unix, code repositories, 
make, etc. Minicomputers and small business software
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• 1980s: Personal computers and workstations. 
Emphasis on processes. The rise of consumer 
software. Reducing complexity Smalltalk,          
C++, Ada, Eiffel

• 1990s: Object-oriented programming and agile 
processes. Internet programming and software 
everywhere, parallel and distributed hardware, 
dynamic PLs Perl, Java
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Groups, Assignments, Submissions, etc. 

35

Monday, October 31, 11

Isak and Tobias
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Syntax & Semantics
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Syntax vs. Semantics
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def print_message():
   print("This is a message")

print_message()

def print_message
  p "This is a message"
end

print_message
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Syntax vs. Semantics
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def print_message():
   print("This is a message")

print_message()

class Print
{
    public static void main(String[] args)
    {
        printMessage();
    }
    static void printMessage()
    {
        System.out.println("This is my message");
    }
}

def print_message
  p "This is a message"
end

print_message

Monday, October 31, 11

Syntax from two angles

• Specify structural rules for programing languages 
– for programmers, to make it possible for them to write valid 

programs
– regular expressions, context-free grammars

• Figure out if a given program follows some given syntax rules
– for compilers
– scanners and parsers
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Describing syntax

• Regular language
– Concatenation
– Alternation
– “Kleene closures”

• Context-free language
– All of the above
– Recursion

41

/hello/  /hello|goodbye/  /[hello]*/

<Program>  ::= begin <stmt_list> end
<stmt_list ::= <stmt> | 
               <stmt> ; <stmt_list>
<stmt>     ::= <var> = <expr>
<var>      ::= A | B | C
<expr>     ::= <var> + <var> |
               <var> - <var> |
               <var>
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Checking syntax

• For a given a string from some language, we can build a parse tree to 
represent its syntactic structure. This is typically done in two steps:

– A scanner chops the string up in tokens:

– A parser builds a the parse tree
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sum = 4 + 3; 

sum

id

=

assignment

4

number

+

addition

lexeme

token type

3

number

=

assignment

sum

id addition

+

number number

4 3This is often enough, but...
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Semantics

• The semantics of  a string is directly connected to the parse tree, or we 
have the wrong grammar
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Static  and Dynamic Semantics

• Static semantics is used to describe properties that syntactically valid 
programs also must have to be semantically valid, e.g. that they are type 
correct
– really more related to legal forms of programs rather than meaning
– some cannot be described by BNF, some just very verbose
– attribute grammars

• Dynamic semantics is used to describe how the meaning of valid 
programs should be interpreted
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Static Semantics

• To each rule in the grammar we add a semantic clause
– relating the semantics of the members of the right-hand side of the 

rule to the semantics of the entire rule
– relating the semantics of the members of the entire rule to the 

semantics of the right-hand side of the rule

• Semantic information flowing down is called inherited: each rule 
inherits it from its parent in the tree

• Semantic information flowing up is called derived: each rule derives it 
from its children
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Attribute Grammars

Grammar:

SumS -> Digit

Sum -> Sum+Digit

Digit -> 0|1|...|9

Attribute grammar:

1.   SumS -> Digit      {A0 :=A1}

2.   Sum -> Sum + Digit {A0 :=A1 +A3}

3a. Digit -> 0         {A 0 :=0}

     ...                ... 

3j. Digit -> 9                            {A 0 :=9}

String:

3+5+1 (semantics 9)

+

+ 1
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A0 = 9

A0 = 8

A0 = 3 A0 = 5

A0 = 1

Attribute tree:
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Dynamic Semantics

• Operational semantics
– The meaning of a statement defined by describing the effect of 

running it on a machine
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a ::= n | X | a0 + a1 | a0 - a1 | a0 * a1

where n is the sum of n0 and n1
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Dynamic Semantics, cont’d

• Denotational semantics
– Mathematical denotation of the meaning of the program (typically, a 

function) 
– Facilitates reasoning about the program, but not always easy to find 

suitable semantic domains 
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Dynamic Semantics, cont’d

• Axiomatic semantics
– Program as a set of properties 
– good for proving theorems about programs, but somewhat distant 

from implementation 
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The End
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