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Eager vs. Lazy

• Many programming languages are eager in that arguments to functions 

are immediately evaluated when passed, and Clojure in most cases 

follows this pattern as well

• The expression (+ 2 2) is eagerly evaluated, in that its result 4 is passed 

on to the subtraction function during the actual call, and not at the point 

of need
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user=>  (- 13 (+ 2 2))
9
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Eager vs. Lazy

• In a lazy programming languages, e.g. Haskell, the function argument 

will be evaluated only if that argument is needed in some computation

– Laziness can be used to avoid nontermination, unnecessary 

calculations, and even combinatorially exploding computations

• Familiar example of laziness:
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if (obj != null && obj.isWhatiz()) {
    ...
}
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sequential, sequence, and seq

• A sequential collection is one that holds a series of values without 

reordering them

• A sequence is a sequential collection that represents a series of values 

that may or may not exist yet

• seq is Clojure’s API for navigating collections (take, nth, drop, 
interleave, cycle, partition, map, apply, 
reduce, ...)
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user=> ds
[:willie :barnabas :adam]

user=> (first ds)
:willie

user=> (rest ds)
(:barnabas :adam)
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Everything Is a Sequence

Every aggregate data structure in Clojure can be viewed as a sequence.   

A sequence has three core capabilities:

• You can get the first item in a sequence: 

– (first aseq)

– first returns nil if its argument is empty or nil 

• You can get everything but the first item, the rest of a sequence: 

– (rest aseq) 

– rest returns an empty seq (not nil) if there are no more items. 

• You can construct a new sequence by adding an item to the front 

of an existing sequence. This is called consing: 

– (cons elem aseq) 

The seq function will return a seq on any seq-able collection: 

– (seq coll)
5
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Lazy Sequences

• The first/rest architecture of the sequence is the basis for laziness

• Lazy sequences is a simple and efficient way to operate on data sets too 

large to be loaded into the computer’s memory at once

• The rest part doesn’t necessarily need to exist 
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item instructions to generate next item 

first rest
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Example of Laziness
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user=> (defn square [x]
! (do
! (println (str "Processing: " x))
! (* x x)))
#'user/square

user=> (map square '(1 2 3 4 5 6 7))
(Processing: 1
Processing: 2
1 Processing: 3
4 Processing: 4
9 Processing: 5
16 Processing: 6
25 Processing: 7
36 49)
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Example of Laziness, cont’d
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user=> (def result (map square '(1 2 3 4 5 6 7)))
#'user/result

user=> (nth result 2)
Processing: 1
Processing: 2
Processing: 3
9

user=> (nth result 2)
9

user=> (println result)
(1 4 Processing: 4
9 Processing: 5
16 Processing: 6
25 Processing: 7
36 49)
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Constructing Lazy Sequences

• To construct a lazy sequence manually in Clojure, the sequence is 

wrapped in the built-in lazy-seq macro, which handles the magic 
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(lazy-counter 0 2) -> (0 2 4 6 8 10 12 14 16 18 ...)
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Constructing Lazy Sequences Manually

• To construct a lazy sequence manually in Clojure, the sequence is 

wrapped in the built-in lazy-seq macro, which handles the magic 
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(lazy-counter 0 2) -> (0 2 4 6 8 10 12 14 16 18 ...)

(defn counter [base increment]
! (cons base (counter (+ base increment) increment)))
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Constructing Lazy Sequences Manually

• To construct a lazy sequence manually in Clojure, the sequence is 

wrapped in the built-in lazy-seq macro, which handles the magic 
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(lazy-counter 0 2) -> (0 2 4 6 8 10 12 14 16 18 ...)

(defn counter [base increment]
! (cons base (counter (+ base increment) increment)))

user=> (defn lazy-counter [base increment]
! (lazy-seq
! (cons base (lazy-counter (+ base increment) increment))))
#'user/lazy-counter

Friday, December 16, 11

Constructing Lazy Sequences Manually

• To construct a lazy sequence manually in Clojure, the sequence is 

wrapped in the built-in lazy-seq macro, which handles the magic 

12

user=> (defn lazy-counter [base increment]
! (lazy-seq
! (cons base (lazy-counter (+ base increment) increment))))
#'user/lazy-counter

user=> (take 10 (lazy-counter 0 2))
(0 2 4 6 8 10 12 14 16 18)

user=> (nth (lazy-counter 2 3) 1000000)
3000002

user=> (defn counter [base increment]
! (cons base (counter (+ base increment) increment)))
#'user/counter

user=> (counter 0 2)
StackOverflowError   user/counter (NO_SOURCE_FILE:24)
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Lazy Sequences Through Sequence Generator Functions

• It’s often easier to use sequence generators than the lazy-sec macro 

directly (iterate, repeat, range, cycle, ...)
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user=> (def integers (iterate inc 0))
#'user/integers

user=> (take 10 integers)
(0 1 2 3 4 5 6 7 8 9)

user=> (defn lazy-counter-iterate [base increment]
! (iterate (fn [n] (+ n increment)) base))
#'user/lazy-counter-iterate

user=> (nth (lazy-counter-iterate 2 3) 1000000)
3000002
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Lazy Sequences – Losing Your Head

• If you manage to hold onto the head of a sequence somewhere within a 

function, then that sequence will be prevented from being garbage 

collected.

• Clojure’s compiler can deduce that in the first example, the retention of 

r is no longer needed when the computation of (last r) occurs, and 

therefore aggressively clears it
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user=> (let [r (range 1e9)] [(first r) (last r)])
[0 999999999]

user=> (let [r (range 1e9)] [(last r) (first r)])
OutOfMemoryError Java heap space  java.lang.Long.valueOf 
(Long.java:557)
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Next vs. Rest

• Rest returns a seq, that might be empty or contain elements

• Next returns nil if the rest of the seq is empty. This means that we need 

to look at the rest of the list to determine if it should be a seq or nil

• Next is less lazy than rest

15

user=> (rest '(3))
() 

user=> (next '(3))
nil
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Data Structures
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Sequence Library
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user=> (drop 2 '(1 2 3 4 5))
(3 4 5)

user=> (take 10 (cycle (range 3)))
(0 1 2 0 1 2 0 1 2 0)

user=> (interleave [:a :b :c] [1 2 3 4 5])
(:a 1 :b 2 :c 3)

user=> (partition 3 '(1 2 3 4 5 6 7 8 9))
((1 2 3) (4 5 6) (7 8 9))

user=> (map vector[:a :b :c] '(1 2 3))
([:a 1] [:b 2] [:c 3])

user=> (apply str (interpose \, "qwerty"))
"q,w,e,r,t,y"

user=> (reduce + (range 100))
4950
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Sequence Library
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• Maps and sets have a stable traversal order, but that order depends on 

implementation details, and you should not rely on it

user=> (first {:fname "Alonzo" :lname "Church"})
[:lname "Church"]

user=> (rest {:lname "Church" :fname "Alonzo"})
([:fname "Alonzo"])

user=> (cons [:langname "Lambda calculus"] {:lname 
"Church" :fname "Alonzo"})
([:langname "Lambda calculus"] [:lname "Church"] [:fname 
"Alonzo"])

user=> (first #{:the :quick :brown :fox})
:brown

user=> (rest #{:the :quick :brown :fox})
(:quick :fox :the)

user=> (cons :jumped #{:the :quick :brown :fox})
(:jumped :brown :quick :fox :the)
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conj and into

Both conj and into add items at an efficient insertion spot for the 

underlying data structure

• For lists, conj and into add to the front:

• For vectors, conj and into add elements to the back:
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user=> (conj '(1 2 3) :a)
(:a 1 2 3)

user=> (into '(1 2 3) '(:a :b :c))
(:c :b :a 1 2 3)

user=> (conj [1 2 3] :a)
[1 2 3 :a]

user=> (into [1 2 3] [:a :b :c])
[1 2 3 :a :b :c]
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Macros
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If you give someone Fortran, he has Fortran. If you give 
someone Lisp, he has any language he pleases.

—Guy Steele

21
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Data is Code is Data

• A Clojure program is made entirely out of data

• Function definitions in Clojure programs are 

also represented using an aggregation of the 

various data structures we use to represent data

• Expressions representing the execution of 

functions and the use of control structures are 

also data structures

• When a program is the data that composes the 

program, then you can write programs to write 

programs

22
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Macros

• A Clojure macro is a construct which can be used to transform or replace 

code before it is compiled

• Syntactically, a macro is similar to a function, but there are some 

important differences:

– A macro shouldn’t return a value, but a form

– Arguments to macros are passed in without being evaluated. They can 

be altered, ignored or added to the macro’s output

– Macros are evaluated only at compile time

• The macro expression will be replaced with the expression returned by 

the macro

23
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Macros

• Some are supplied with Clojure

– and, or, when, defmacro, defn, lazy-seq, doc ...

• New ones can be defined by user

24
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Triple-do

• The expression

• Should be compiled to:

• There’s really no need (except for debugging) for the programmer to see 

the expansion

25

(triple-do (println “Hello”))

(do (println “Hello”) (println “Hello”) (println “Hello”))

user=> (triple-do (println “Hello”))
Hello
Hello
Hello
nil

Friday, December 16, 11

Triple-do, cont’d

• defmacro is a macro that defines a function and registers it as a macro 

with the compiler. When the compiler finds the macro, the function will 

be called and the resulting value will be used to replace the original 

expression

•

26

user=> (defmacro triple-do [form]
    (list 'do form form form))
#'user/triple-do

user=> (triple-do (println "does it work?"))
does it work?
does it work?
does it work?
nil
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Infix Operators

• The expression

• Should be compiled to:

• Knowing that:

• The macro:

27

(infix (1 + 1))

(+ 1 1)

user=> (second '(2 + 3)) => +
user=> (first '(2 + 3)) => 2
user=> (nnext '(2 + 3)) => (3)

(defmacro infix [form]
  (cons (second form) (cons (first form)) (nnext form))))

user=> (infix (2 + 3)) => 5
user=> (infix (2 - 1)) => 1
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What does the macro do?
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user=> (macroexpand '(defmacro triple-do [form]
    (list 'do form form form)))
(do (clojure.core/defn triple-do ([&form &env form] (list 
(quote do) form form form))) (. (var triple-do) (setMacro)) 
(var triple-do))

user=> (macroexpand '(triple-do (println "does it work?")))
(do (println "does it work?") (println "does it work?") 
(println "does it work?"))

user=> (macroexpand '(infix (2 + 3)))
(+ 2 3)

user=> (macroexpand '(infix (+ 2 3)))
(2 + 3)
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Code Templating

• Another way of creating macros, than manually creating forms, is code 

templating

• Makes it possible to enter the return forms as literals, splicing values in 

where they are wanted

• `– syntax-quote, which can be unquoted by ~to insert values into the 

syntax-quoted expression
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user=> (defmacro template-triple-do [form]
        `(do ~form ~form ~form))
#'user/template-triple-do

user=> (macroexpand '(template-triple-do (println "yes, it works")))
(do (println "yes, it works") (println "yes, it works") (println 
"yes, it works"))
us
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Code Templating, cont’d

• Splicing unquote 
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user=> (defmacro template-infix [form]
! `(~(second form) ~(first form) ~(nnext form)))
#'user/template-infix

user=> (macroexpand '(template-infix (1 / 2)))
(/ 1 (2))

user=> (defmacro template-infix [form]
! `(~(second form) ~(first form) ~@(nnext form)))
#'user/template-infix

user=> (macroexpand '(template-infix (1 / 2)))
(/ 1 2)
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Code Templating, cont’d

• Generated code should look like:

• Macro:
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(+ 5 (* 4 (debug-println(/ 4 3))))

(let [result (/ 4 3)]
    (println (str “Value is: “ result))
     result)

user=> (defmacro debug-println [expr]
! `(let [result# ~expr]
!      (println (str "Value is: " result#))
!      result#))
#'user/debug-println

user=> (macroexpand '(debug-println (/ 4 3)))
(let* [result__167__auto__ (/ 4 3)] (clojure.core/println 
(clojure.core/str "Value is: " result__167__auto__)) 
result__167__auto__)

user=> (+ 5 (* 4 (debug-println(/ 4 3))))
Value is: 4/3
31/3
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Code Templating, cont’d

• Generated code should look like:

• Macro:
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(rand-expr (println "A") (println "B"))

(let [n rand-int 2]
    (if (zero? n) (println “A”) (println “B”)))

user=> (defmacro rand-expr [form1 form2]
! `(let [n# (rand-int 2)]
!      (if (zero? n#) ~form1 ~form2)))
#'user/rand-expr

user=> (rand-expr (println "A") (println "B"))
B
nil
user=> (rand-expr (println "A") (println "B"))
A
nil
user=> (rand-expr (println "A") (println "B"))
B
nil
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Macro rules of thumb

• Don’t write a macro if a function will do. Reserve macros to provide 

syntactic abstractions or create binding forms

• Write an example usage

• Expand your example usage by hand

• Use macroexpand, macroexpand-1, and clojure.walk/
macroexpand-all liberally to understand how your implementation 

works

• Experiment at the REPL

• Break complicated macros into smaller functions whenever possible

33
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Six Rules of Clojure FP

• Avoid direct recursion. The JVM cannot optimize recursive calls, and 

Clojure programs that recurse will blow their stack

• Use recur when you are producing scalar values or small, fixed 

sequences. Clojure will optimize calls that use an explicit recur

• When producing large or variable-sized sequences, always be lazy. (Do 

not recur.) Then, your callers can consume just the part of the sequence 

they actually need 

• Be careful not to realize more of a lazy sequence than you need. 

• Know the sequence library. You can often write code without using 

recur or the lazy APIs at all

• Subdivide. Divide even simple-seeming problems into smaller pieces, 

and you will often find solutions in the sequence library that lead to 

more general, reusable code

34
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The End
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