
Programming Languages &
Paradigms
PROP HT 2011

Lecture 14

Functional Programming II – Laziness, Seqs & Macros
Beatrice Åkerblom
 beatrice@dsv.su.se

Friday, December 16, 11

Eager vs. Lazy

• Many programming languages are eager in that arguments to functions

are immediately evaluated when passed, and Clojure in most cases

follows this pattern as well

• The expression (+ 2 2) is eagerly evaluated, in that its result 4 is passed

on to the subtraction function during the actual call, and not at the point

of need

2

user=> (- 13 (+ 2 2))
9

Friday, December 16, 11

Eager vs. Lazy

• In a lazy programming languages, e.g. Haskell, the function argument

will be evaluated only if that argument is needed in some computation

– Laziness can be used to avoid nontermination, unnecessary

calculations, and even combinatorially exploding computations

• Familiar example of laziness:

3

if (obj != null && obj.isWhatiz()) {
 ...
}

Friday, December 16, 11

sequential, sequence, and seq

• A sequential collection is one that holds a series of values without

reordering them

• A sequence is a sequential collection that represents a series of values

that may or may not exist yet

• seq is Clojure’s API for navigating collections (take, nth, drop,
interleave, cycle, partition, map, apply,
reduce, ...)

4

user=> ds
[:willie :barnabas :adam]

user=> (first ds)
:willie

user=> (rest ds)
(:barnabas :adam)

Friday, December 16, 11

Everything Is a Sequence

Every aggregate data structure in Clojure can be viewed as a sequence.

A sequence has three core capabilities:

• You can get the first item in a sequence:

– (first aseq)

– first returns nil if its argument is empty or nil

• You can get everything but the first item, the rest of a sequence:

– (rest aseq)

– rest returns an empty seq (not nil) if there are no more items.

• You can construct a new sequence by adding an item to the front

of an existing sequence. This is called consing:

– (cons elem aseq)

The seq function will return a seq on any seq-able collection:

– (seq coll)
5

Friday, December 16, 11

Lazy Sequences

• The first/rest architecture of the sequence is the basis for laziness

• Lazy sequences is a simple and efficient way to operate on data sets too

large to be loaded into the computer’s memory at once

• The rest part doesn’t necessarily need to exist

6

item instructions to generate next item

first rest

Friday, December 16, 11

Example of Laziness

7

user=> (defn square [x]
! (do
! (println (str "Processing: " x))
! (* x x)))
#'user/square

user=> (map square '(1 2 3 4 5 6 7))
(Processing: 1
Processing: 2
1 Processing: 3
4 Processing: 4
9 Processing: 5
16 Processing: 6
25 Processing: 7
36 49)

Friday, December 16, 11

Example of Laziness, cont’d

8

user=> (def result (map square '(1 2 3 4 5 6 7)))
#'user/result

user=> (nth result 2)
Processing: 1
Processing: 2
Processing: 3
9

user=> (nth result 2)
9

user=> (println result)
(1 4 Processing: 4
9 Processing: 5
16 Processing: 6
25 Processing: 7
36 49)

Friday, December 16, 11

Constructing Lazy Sequences

• To construct a lazy sequence manually in Clojure, the sequence is

wrapped in the built-in lazy-seq macro, which handles the magic

9

(lazy-counter 0 2) -> (0 2 4 6 8 10 12 14 16 18 ...)

Friday, December 16, 11

Constructing Lazy Sequences Manually

• To construct a lazy sequence manually in Clojure, the sequence is

wrapped in the built-in lazy-seq macro, which handles the magic

10

(lazy-counter 0 2) -> (0 2 4 6 8 10 12 14 16 18 ...)

(defn counter [base increment]
! (cons base (counter (+ base increment) increment)))

Friday, December 16, 11

Constructing Lazy Sequences Manually

• To construct a lazy sequence manually in Clojure, the sequence is

wrapped in the built-in lazy-seq macro, which handles the magic

11

(lazy-counter 0 2) -> (0 2 4 6 8 10 12 14 16 18 ...)

(defn counter [base increment]
! (cons base (counter (+ base increment) increment)))

user=> (defn lazy-counter [base increment]
! (lazy-seq
! (cons base (lazy-counter (+ base increment) increment))))
#'user/lazy-counter

Friday, December 16, 11

Constructing Lazy Sequences Manually

• To construct a lazy sequence manually in Clojure, the sequence is

wrapped in the built-in lazy-seq macro, which handles the magic

12

user=> (defn lazy-counter [base increment]
! (lazy-seq
! (cons base (lazy-counter (+ base increment) increment))))
#'user/lazy-counter

user=> (take 10 (lazy-counter 0 2))
(0 2 4 6 8 10 12 14 16 18)

user=> (nth (lazy-counter 2 3) 1000000)
3000002

user=> (defn counter [base increment]
! (cons base (counter (+ base increment) increment)))
#'user/counter

user=> (counter 0 2)
StackOverflowError user/counter (NO_SOURCE_FILE:24)

Friday, December 16, 11

Lazy Sequences Through Sequence Generator Functions

• It’s often easier to use sequence generators than the lazy-sec macro

directly (iterate, repeat, range, cycle, ...)

13

user=> (def integers (iterate inc 0))
#'user/integers

user=> (take 10 integers)
(0 1 2 3 4 5 6 7 8 9)

user=> (defn lazy-counter-iterate [base increment]
! (iterate (fn [n] (+ n increment)) base))
#'user/lazy-counter-iterate

user=> (nth (lazy-counter-iterate 2 3) 1000000)
3000002

Friday, December 16, 11

Lazy Sequences – Losing Your Head

• If you manage to hold onto the head of a sequence somewhere within a

function, then that sequence will be prevented from being garbage

collected.

• Clojure’s compiler can deduce that in the first example, the retention of

r is no longer needed when the computation of (last r) occurs, and

therefore aggressively clears it

14

user=> (let [r (range 1e9)] [(first r) (last r)])
[0 999999999]

user=> (let [r (range 1e9)] [(last r) (first r)])
OutOfMemoryError Java heap space java.lang.Long.valueOf
(Long.java:557)

Friday, December 16, 11

Next vs. Rest

• Rest returns a seq, that might be empty or contain elements

• Next returns nil if the rest of the seq is empty. This means that we need

to look at the rest of the list to determine if it should be a seq or nil

• Next is less lazy than rest

15

user=> (rest '(3))
()

user=> (next '(3))
nil

Friday, December 16, 11

Data Structures

16

Friday, December 16, 11

Sequence Library

17

user=> (drop 2 '(1 2 3 4 5))
(3 4 5)

user=> (take 10 (cycle (range 3)))
(0 1 2 0 1 2 0 1 2 0)

user=> (interleave [:a :b :c] [1 2 3 4 5])
(:a 1 :b 2 :c 3)

user=> (partition 3 '(1 2 3 4 5 6 7 8 9))
((1 2 3) (4 5 6) (7 8 9))

user=> (map vector[:a :b :c] '(1 2 3))
([:a 1] [:b 2] [:c 3])

user=> (apply str (interpose \, "qwerty"))
"q,w,e,r,t,y"

user=> (reduce + (range 100))
4950

Friday, December 16, 11

Sequence Library

18

• Maps and sets have a stable traversal order, but that order depends on

implementation details, and you should not rely on it

user=> (first {:fname "Alonzo" :lname "Church"})
[:lname "Church"]

user=> (rest {:lname "Church" :fname "Alonzo"})
([:fname "Alonzo"])

user=> (cons [:langname "Lambda calculus"] {:lname
"Church" :fname "Alonzo"})
([:langname "Lambda calculus"] [:lname "Church"] [:fname
"Alonzo"])

user=> (first #{:the :quick :brown :fox})
:brown

user=> (rest #{:the :quick :brown :fox})
(:quick :fox :the)

user=> (cons :jumped #{:the :quick :brown :fox})
(:jumped :brown :quick :fox :the)

Friday, December 16, 11

conj and into

Both conj and into add items at an efficient insertion spot for the

underlying data structure

• For lists, conj and into add to the front:

• For vectors, conj and into add elements to the back:

19

user=> (conj '(1 2 3) :a)
(:a 1 2 3)

user=> (into '(1 2 3) '(:a :b :c))
(:c :b :a 1 2 3)

user=> (conj [1 2 3] :a)
[1 2 3 :a]

user=> (into [1 2 3] [:a :b :c])
[1 2 3 :a :b :c]

Friday, December 16, 11

Macros

20

Friday, December 16, 11

If you give someone Fortran, he has Fortran. If you give
someone Lisp, he has any language he pleases.

—Guy Steele

21

Friday, December 16, 11

Data is Code is Data

• A Clojure program is made entirely out of data

• Function definitions in Clojure programs are

also represented using an aggregation of the

various data structures we use to represent data

• Expressions representing the execution of

functions and the use of control structures are

also data structures

• When a program is the data that composes the

program, then you can write programs to write

programs

22

Friday, December 16, 11

Macros

• A Clojure macro is a construct which can be used to transform or replace

code before it is compiled

• Syntactically, a macro is similar to a function, but there are some

important differences:

– A macro shouldn’t return a value, but a form

– Arguments to macros are passed in without being evaluated. They can

be altered, ignored or added to the macro’s output

– Macros are evaluated only at compile time

• The macro expression will be replaced with the expression returned by

the macro

23

Friday, December 16, 11

Macros

• Some are supplied with Clojure

– and, or, when, defmacro, defn, lazy-seq, doc ...

• New ones can be defined by user

24

Friday, December 16, 11

Triple-do

• The expression

• Should be compiled to:

• There’s really no need (except for debugging) for the programmer to see

the expansion

25

(triple-do (println “Hello”))

(do (println “Hello”) (println “Hello”) (println “Hello”))

user=> (triple-do (println “Hello”))
Hello
Hello
Hello
nil

Friday, December 16, 11

Triple-do, cont’d

• defmacro is a macro that defines a function and registers it as a macro

with the compiler. When the compiler finds the macro, the function will

be called and the resulting value will be used to replace the original

expression

•

26

user=> (defmacro triple-do [form]
 (list 'do form form form))
#'user/triple-do

user=> (triple-do (println "does it work?"))
does it work?
does it work?
does it work?
nil

Friday, December 16, 11

Infix Operators

• The expression

• Should be compiled to:

• Knowing that:

• The macro:

27

(infix (1 + 1))

(+ 1 1)

user=> (second '(2 + 3)) => +
user=> (first '(2 + 3)) => 2
user=> (nnext '(2 + 3)) => (3)

(defmacro infix [form]
 (cons (second form) (cons (first form)) (nnext form))))

user=> (infix (2 + 3)) => 5
user=> (infix (2 - 1)) => 1

Friday, December 16, 11

What does the macro do?

28

user=> (macroexpand '(defmacro triple-do [form]
 (list 'do form form form)))
(do (clojure.core/defn triple-do ([&form &env form] (list
(quote do) form form form))) (. (var triple-do) (setMacro))
(var triple-do))

user=> (macroexpand '(triple-do (println "does it work?")))
(do (println "does it work?") (println "does it work?")
(println "does it work?"))

user=> (macroexpand '(infix (2 + 3)))
(+ 2 3)

user=> (macroexpand '(infix (+ 2 3)))
(2 + 3)

Friday, December 16, 11

Code Templating

• Another way of creating macros, than manually creating forms, is code

templating

• Makes it possible to enter the return forms as literals, splicing values in

where they are wanted

• `– syntax-quote, which can be unquoted by ~to insert values into the

syntax-quoted expression

29

user=> (defmacro template-triple-do [form]
 `(do ~form ~form ~form))
#'user/template-triple-do

user=> (macroexpand '(template-triple-do (println "yes, it works")))
(do (println "yes, it works") (println "yes, it works") (println
"yes, it works"))
us

Friday, December 16, 11

Code Templating, cont’d

• Splicing unquote

30

user=> (defmacro template-infix [form]
! `(~(second form) ~(first form) ~(nnext form)))
#'user/template-infix

user=> (macroexpand '(template-infix (1 / 2)))
(/ 1 (2))

user=> (defmacro template-infix [form]
! `(~(second form) ~(first form) ~@(nnext form)))
#'user/template-infix

user=> (macroexpand '(template-infix (1 / 2)))
(/ 1 2)

Friday, December 16, 11

Code Templating, cont’d

• Generated code should look like:

• Macro:

31

(+ 5 (* 4 (debug-println(/ 4 3))))

(let [result (/ 4 3)]
 (println (str “Value is: “ result))
 result)

user=> (defmacro debug-println [expr]
! `(let [result# ~expr]
! (println (str "Value is: " result#))
! result#))
#'user/debug-println

user=> (macroexpand '(debug-println (/ 4 3)))
(let* [result__167__auto__ (/ 4 3)] (clojure.core/println
(clojure.core/str "Value is: " result__167__auto__))
result__167__auto__)

user=> (+ 5 (* 4 (debug-println(/ 4 3))))
Value is: 4/3
31/3

Friday, December 16, 11

Code Templating, cont’d

• Generated code should look like:

• Macro:

32

(rand-expr (println "A") (println "B"))

(let [n rand-int 2]
 (if (zero? n) (println “A”) (println “B”)))

user=> (defmacro rand-expr [form1 form2]
! `(let [n# (rand-int 2)]
! (if (zero? n#) ~form1 ~form2)))
#'user/rand-expr

user=> (rand-expr (println "A") (println "B"))
B
nil
user=> (rand-expr (println "A") (println "B"))
A
nil
user=> (rand-expr (println "A") (println "B"))
B
nil

Friday, December 16, 11

Macro rules of thumb

• Don’t write a macro if a function will do. Reserve macros to provide

syntactic abstractions or create binding forms

• Write an example usage

• Expand your example usage by hand

• Use macroexpand, macroexpand-1, and clojure.walk/
macroexpand-all liberally to understand how your implementation

works

• Experiment at the REPL

• Break complicated macros into smaller functions whenever possible

33

Friday, December 16, 11

Six Rules of Clojure FP

• Avoid direct recursion. The JVM cannot optimize recursive calls, and

Clojure programs that recurse will blow their stack

• Use recur when you are producing scalar values or small, fixed

sequences. Clojure will optimize calls that use an explicit recur

• When producing large or variable-sized sequences, always be lazy. (Do

not recur.) Then, your callers can consume just the part of the sequence

they actually need

• Be careful not to realize more of a lazy sequence than you need.

• Know the sequence library. You can often write code without using

recur or the lazy APIs at all

• Subdivide. Divide even simple-seeming problems into smaller pieces,

and you will often find solutions in the sequence library that lead to

more general, reusable code

34

Friday, December 16, 11

The End

Friday, December 16, 11

References

36

• Sebesta, R., “Concepts of Programming Languages”

• Fogus, M. and Houser, C., “The Joy of Clojure”, 2011

• Halloway, S., “Programming Clojure”, 2009

• VanderHart, L. and Sierra, S., “Practical Clojure”, 2010

• clojure.org

Friday, December 16, 11

