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Limits for Recursion

• There is a limit on the number of possible nested functions that is 
machine-specific
– Imperative languages solves this through not using recursion for 

everything
– Functional languages solves this through tail-call-optimisation
– Recursion from a tail position is in many ways like a structured goto, 

and has more in common with an imperative loop than it does with 
other kinds of recursion

– Clojure does not automatically use tail-call-optimisation, but we can 
explicitly ask for it using recur
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user=> (defn add-up
! "adds all the numbers below a given limit"
! ([limit] (add-up limit 0 0))
! ([limit current sum]
!   (if (< limit current)
!      sum
!      (add-up limit (+ 1 current) (+ current sum)))))
#'user/add-up

user=> (add-up 3)
6

user=> (add-up 10000)
StackOverflowError   java.lang.Number.<init> (Number.java:32)
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user=> (defn add-up 
! "adds all the numbers below a given limit"
! ([limit] (add-up limit 0 0))
! ([limit current sum]
!    (if (< limit current)
!        sum
!        (recur limit (+ 1 current) (+ current sum)))))
#'user/add-up

user=> (add-up 3)
6

user=> (add-up 10000)
50005000

(fn [x] (recur x) (println x))
; java.lang.UnsupportedOperationException:
;    Can only recur from tail position

Thursday, December 15, 11



Side Effects
• Clojure avoids side effects, but some tasks are, by nature, side effects, 

e.g.:
– IO
– Explicit state management
– Java interaction

• Using do, all the expressions will be evaluated, but only the last one will 
be returned:
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user=> (do
          (println "hello")
!        (println "from")
          (println "side effects")
          (+ 5 5))
hello
from
side effects
10

user=> (do (let [in (read-line)]
! (println in)))
hej
hej
nil
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Side Effects, cont’d

• Functions can also be written to contain side effects, by providing 
multiple expressions instead of just one as the body of the function

• This can also be done for loops
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user=> (defn square
! "Squares a number, with side effects"
! [x]
! (println "Squaring" x)
! (println "The return value will be" (* x x))
! (* x x))
#'user/square

user=> (square 8)
Squaring 8
The return value will be 64
64
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Functional Programming 
Techniques
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“One can write FORTRAN in 
any language”
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Functional Programming

• First-class functions & immutable data
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Earlier conclusion: We “can” 
write our OO programs in C

We “can” write our functional 
programs in C
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Functions are First Class Objects

• Functions are first-class objects that can be:
– dynamically created at any time during runtime 
– used in the same way as any value
– stored in Vars, held in lists and other collection types 
– passed as arguments to and returned as the result of other functions
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user=> (def my-funcs [make-a-set make-a-set-2 print-down-from])
#'user/my-funcs

user=>  (nth my-funcs 0)
#<user$make_a_set user$make_a_set@44755866>

user=> ((nth my-funcs 0) 2 3 4 5)
#{2 3 4 5}
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Pure functions
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• Pure functions are functions without side effects
– do not depend on anything but arguments
– only influence on the outside world is through return value
– use immutable data

• Though Clojure is designed to minimize and isolate side-effects, it’s by 
no means a purely functional language

• Pure functions are easy to develop, test, and understand, and you should 
prefer them for many tasks
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Higher-order Functions

• A higher-order function, or functional form, is one that either takes 
functions as parameters or yields a function as its result, or both

 Form: h ≡ f ° g
 which means  h(x) ≡ f(g(x))

• Example: 
 f(x) ≡ x + 2  
! g (x) ≡ 3 * x
 then      h ≡ f ° g       yields       (3 * x)+ 2
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Functions as Arguments

• Functions that take other functions as arguments are very useful and 
very common
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user=> (map pos? '(1 -2 3 -4 5))
(true false true false true)

user=> (filter pos? '(1 -2 3 -4 5))
(1 3 5)

user=> (reduce + '(1 -2 3 -4 5))
3

...
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Functions as Arguments, cont’d
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user=> (defn arg-switch
! [f arg1 arg2]
! (list (f arg1 arg2) (f arg2 arg1)))
#'user/arg-switch

user=> (arg-switch str "clo" "jure")
("clojure" "jureclo")

user=> (arg-switch - 2 5)
(-3 3)

user=> (arg-switch (fn [a b] (/ a (* b b))) 2 3)
(2/9 3/4)
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Functions as Return Values
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user=> (defn rangechecker
! [min max]
! (fn [num]
!     (and (<= num max) (<= min num))))
#'user/rangechecker

user=> (def myrange (rangechecker 5 10))
#'user/myrange

user=> (myrange 7)
true

user=> (myrange 22)
false
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Closures

• A closure is a first class function that contains values as well as code,  the 
locals from the context in which it was defined
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user=> (def times-two
          (let [x 2]
            (fn [y] (* y x))))
#'user/times-two

user=> (times-two 12)
24

user=> (defn times-n [n]
  (let [x n]
    (fn [y] (* y x))))
#'user/times-n

user=> (def times-four (times-n 4))
#'user/times-four

user=> (times-four 10)
40
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Closures, cont’d
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user=> (defn divisible [denom]
  (fn [num]
    (zero? (rem num denom))))
#'user/divisible

user=> ((divisible 3) 6)
true

user=> ((divisible 3) 7)
false

user=> (filter (divisible 4) (range 10))
(0 4 8)
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Currying vs Partial Application

• In e.g. ML and Haskell, all functions are really unary functions (i.e. they 
accept a single argument) and functions of n arguments are actually 
unary functions returning closures in n “layers”
– The function f (x, y, z) -> N will in fact be built up by several 

functions (x ->(y ->(z-> N)))

• Partial application returns a function which takes fewer arguments, the 
others having been bound. Applying one value to a function taking three 
arguments will give us a new function taking two arguments
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user=> (def add-four (partial + 4))
#'user/add-four
user=> (add-four 4)
8
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Referential Transparency

• If a function of some arguments always results in the same value and 
changes no other values within the greater system, then it’s essentially a 
constant, or referentially transparent (the reference to the function is 
transparent to time)
– Function call may be replaced by its value without changing the 

program’s behaviour

• Pure functions are referentially transparent by definition. Most other 
functions are not referentially transparent, and those that are must be 
proven safe by code review.
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user=> (defn square
! ([num] (* num num)))
#'user/square
user=> (square 4)
16

user=> (print (.getTime (now))) 
1323776904436nil
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Immutability

• Immutable data is critical to Clojure’s approach to both FP and concur- 
rency.

• When all data is immutable, “update” translates into “create a copy of the 
original data, plus my changes.” 
– This will use up memory quickly!
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Persistent Data Structures

• Persistent data structures always preserves the previous version of itself 
when it is modified

• This means that they are effectively immutable 
– their operations do not make (visibly) updates in-place 
– operations always yield a new updated structure

• All data structures in Clojure are persistent

22
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Persistent Data Structures

• Persistent data structures always preserves the previous version of itself 
when it is modified

• This means that they are effectively immutable 
– their operations do not make (visibly) updates in-place 
– operations always yield a new updated structure

• All data structures in Clojure are persistent
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Note that the word persistent 
here has nothing to do with 
disk storage or data bases
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Persistent Data Structures in Clojure

• All versions will have the same update and lookup complexity 
guarantees

• The specific guarantees depend on the collection type

• Java array (non-persistent):

• Change to the Java array ds happens in- place, obliterating any historical 
version:
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user=> (def ds (into-array [:willie :barnabas :adam]))
(:willie :barnabas :adam)
user=> user=> #'user/ds

user=> (seq ds)    ;repl doesn’t know how to print Java objects
(:willie :barnabas :adam)

user=> (aset ds 1 :quentin) ;set pos 1 to :quentin
:quentin

user=> (seq ds)
(:willie :quentin :adam)
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Persistent Data Structures in Clojure, cont’d

• Clojure’s persistent data structures give a different result:
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user=> (def ds [:willie :barnabas :adam])
#'user/ds

user=> ds
[:willie :barnabas :adam]

user=> (def ds1 (replace {:barnabas :quentin} ds))
#'user/ds1

user=> ds
[:willie :barnabas :adam]

user=> ds1
[:willie :quentin :adam]
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Persistent Data Structures in Clojure, cont’d
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user=>  (def baselist (list :barnabas :adam))
#'user/baselist
user=> (def lst1 (cons :willie baselist))
#'user/lst1
user=> (def lst2 (cons :phoenix baselist))
#'user/lst2

user=> baselist
(:barnabas :adam)
user=> lst1
(:willie :barnabas :adam)
user=> lst2
(:phoenix :barnabas :adam)

user=> (= (next lst1) (next lst2))
true
user=> (identical? (next lst1) (next lst2))
true

:adam

:barnabas

baselist

:willie

:phoenixlst2

lst1
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Persistent Data Structures in Clojure, cont’d

• Data structures in Clojure are implemented as trees
• Untouched parts are reused in “copy”
• Structures that can’t be reached will be garbage collected

27
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The End
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