
Programming Languages &
Paradigms
PROP HT 2011

Lecture 14

Functional Programming III – Functional
Programming in Clojure
Beatrice Åkerblom
 beatrice@dsv.su.se

Thursday, December 15, 11

Limits for Recursion

• There is a limit on the number of possible nested functions that is
machine-specific
– Imperative languages solves this through not using recursion for

everything
– Functional languages solves this through tail-call-optimisation
– Recursion from a tail position is in many ways like a structured goto,

and has more in common with an imperative loop than it does with
other kinds of recursion

– Clojure does not automatically use tail-call-optimisation, but we can
explicitly ask for it using recur

2

Thursday, December 15, 11

3

user=> (defn add-up
! "adds all the numbers below a given limit"
! ([limit] (add-up limit 0 0))
! ([limit current sum]
! (if (< limit current)
! sum
! (add-up limit (+ 1 current) (+ current sum)))))
#'user/add-up

user=> (add-up 3)
6

user=> (add-up 10000)
StackOverflowError java.lang.Number.<init> (Number.java:32)

Thursday, December 15, 11

4

user=> (defn add-up
! "adds all the numbers below a given limit"
! ([limit] (add-up limit 0 0))
! ([limit current sum]
! (if (< limit current)
! sum
! (recur limit (+ 1 current) (+ current sum)))))
#'user/add-up

user=> (add-up 3)
6

user=> (add-up 10000)
50005000

(fn [x] (recur x) (println x))
; java.lang.UnsupportedOperationException:
; Can only recur from tail position

Thursday, December 15, 11

Side Effects
• Clojure avoids side effects, but some tasks are, by nature, side effects,

e.g.:
– IO
– Explicit state management
– Java interaction

• Using do, all the expressions will be evaluated, but only the last one will
be returned:

5

user=> (do
 (println "hello")
! (println "from")
 (println "side effects")
 (+ 5 5))
hello
from
side effects
10

user=> (do (let [in (read-line)]
! (println in)))
hej
hej
nil

Thursday, December 15, 11

Side Effects, cont’d

• Functions can also be written to contain side effects, by providing
multiple expressions instead of just one as the body of the function

• This can also be done for loops

6

user=> (defn square
! "Squares a number, with side effects"
! [x]
! (println "Squaring" x)
! (println "The return value will be" (* x x))
! (* x x))
#'user/square

user=> (square 8)
Squaring 8
The return value will be 64
64

Thursday, December 15, 11

Functional Programming
Techniques

7

Thursday, December 15, 11

8

“One can write FORTRAN in
any language”

Thursday, December 15, 11

Functional Programming

• First-class functions & immutable data

9

Thursday, December 15, 11

10

Earlier conclusion: We “can”
write our OO programs in C

We “can” write our functional
programs in C

Thursday, December 15, 11

Functions are First Class Objects

• Functions are first-class objects that can be:
– dynamically created at any time during runtime
– used in the same way as any value
– stored in Vars, held in lists and other collection types
– passed as arguments to and returned as the result of other functions

11

user=> (def my-funcs [make-a-set make-a-set-2 print-down-from])
#'user/my-funcs

user=> (nth my-funcs 0)
#<user$make_a_set user$make_a_set@44755866>

user=> ((nth my-funcs 0) 2 3 4 5)
#{2 3 4 5}

Thursday, December 15, 11

Pure functions

12

• Pure functions are functions without side effects
– do not depend on anything but arguments
– only influence on the outside world is through return value
– use immutable data

• Though Clojure is designed to minimize and isolate side-effects, it’s by
no means a purely functional language

• Pure functions are easy to develop, test, and understand, and you should
prefer them for many tasks

Thursday, December 15, 11

Higher-order Functions

• A higher-order function, or functional form, is one that either takes
functions as parameters or yields a function as its result, or both

 Form: h ≡ f ° g
 which means h(x) ≡ f(g(x))

• Example:
 f(x) ≡ x + 2
! g (x) ≡ 3 * x
 then h ≡ f ° g yields (3 * x)+ 2

13

Thursday, December 15, 11

Functions as Arguments

• Functions that take other functions as arguments are very useful and
very common

14

user=> (map pos? '(1 -2 3 -4 5))
(true false true false true)

user=> (filter pos? '(1 -2 3 -4 5))
(1 3 5)

user=> (reduce + '(1 -2 3 -4 5))
3

...

Thursday, December 15, 11

Functions as Arguments, cont’d

15

user=> (defn arg-switch
! [f arg1 arg2]
! (list (f arg1 arg2) (f arg2 arg1)))
#'user/arg-switch

user=> (arg-switch str "clo" "jure")
("clojure" "jureclo")

user=> (arg-switch - 2 5)
(-3 3)

user=> (arg-switch (fn [a b] (/ a (* b b))) 2 3)
(2/9 3/4)

Thursday, December 15, 11

Functions as Return Values

16

user=> (defn rangechecker
! [min max]
! (fn [num]
! (and (<= num max) (<= min num))))
#'user/rangechecker

user=> (def myrange (rangechecker 5 10))
#'user/myrange

user=> (myrange 7)
true

user=> (myrange 22)
false

Thursday, December 15, 11

Closures

• A closure is a first class function that contains values as well as code, the
locals from the context in which it was defined

17

user=> (def times-two
 (let [x 2]
 (fn [y] (* y x))))
#'user/times-two

user=> (times-two 12)
24

user=> (defn times-n [n]
 (let [x n]
 (fn [y] (* y x))))
#'user/times-n

user=> (def times-four (times-n 4))
#'user/times-four

user=> (times-four 10)
40

Thursday, December 15, 11

Closures, cont’d

18

user=> (defn divisible [denom]
 (fn [num]
 (zero? (rem num denom))))
#'user/divisible

user=> ((divisible 3) 6)
true

user=> ((divisible 3) 7)
false

user=> (filter (divisible 4) (range 10))
(0 4 8)

Thursday, December 15, 11

Currying vs Partial Application

• In e.g. ML and Haskell, all functions are really unary functions (i.e. they
accept a single argument) and functions of n arguments are actually
unary functions returning closures in n “layers”
– The function f (x, y, z) -> N will in fact be built up by several

functions (x ->(y ->(z-> N)))

• Partial application returns a function which takes fewer arguments, the
others having been bound. Applying one value to a function taking three
arguments will give us a new function taking two arguments

19

user=> (def add-four (partial + 4))
#'user/add-four
user=> (add-four 4)
8

Thursday, December 15, 11

Referential Transparency

• If a function of some arguments always results in the same value and
changes no other values within the greater system, then it’s essentially a
constant, or referentially transparent (the reference to the function is
transparent to time)
– Function call may be replaced by its value without changing the

program’s behaviour

• Pure functions are referentially transparent by definition. Most other
functions are not referentially transparent, and those that are must be
proven safe by code review.

20

user=> (defn square
! ([num] (* num num)))
#'user/square
user=> (square 4)
16

user=> (print (.getTime (now)))
1323776904436nil

Thursday, December 15, 11

Immutability

• Immutable data is critical to Clojure’s approach to both FP and concur-
rency.

• When all data is immutable, “update” translates into “create a copy of the
original data, plus my changes.”
– This will use up memory quickly!

21

Thursday, December 15, 11

Persistent Data Structures

• Persistent data structures always preserves the previous version of itself
when it is modified

• This means that they are effectively immutable
– their operations do not make (visibly) updates in-place
– operations always yield a new updated structure

• All data structures in Clojure are persistent

22

Thursday, December 15, 11

Persistent Data Structures

• Persistent data structures always preserves the previous version of itself
when it is modified

• This means that they are effectively immutable
– their operations do not make (visibly) updates in-place
– operations always yield a new updated structure

• All data structures in Clojure are persistent

23

Note that the word persistent
here has nothing to do with
disk storage or data bases

Thursday, December 15, 11

Persistent Data Structures in Clojure

• All versions will have the same update and lookup complexity
guarantees

• The specific guarantees depend on the collection type

• Java array (non-persistent):

• Change to the Java array ds happens in- place, obliterating any historical
version:

24

user=> (def ds (into-array [:willie :barnabas :adam]))
(:willie :barnabas :adam)
user=> user=> #'user/ds

user=> (seq ds) ;repl doesn’t know how to print Java objects
(:willie :barnabas :adam)

user=> (aset ds 1 :quentin) ;set pos 1 to :quentin
:quentin

user=> (seq ds)
(:willie :quentin :adam)

Thursday, December 15, 11

Persistent Data Structures in Clojure, cont’d

• Clojure’s persistent data structures give a different result:

25

user=> (def ds [:willie :barnabas :adam])
#'user/ds

user=> ds
[:willie :barnabas :adam]

user=> (def ds1 (replace {:barnabas :quentin} ds))
#'user/ds1

user=> ds
[:willie :barnabas :adam]

user=> ds1
[:willie :quentin :adam]

Thursday, December 15, 11

Persistent Data Structures in Clojure, cont’d

26

user=> (def baselist (list :barnabas :adam))
#'user/baselist
user=> (def lst1 (cons :willie baselist))
#'user/lst1
user=> (def lst2 (cons :phoenix baselist))
#'user/lst2

user=> baselist
(:barnabas :adam)
user=> lst1
(:willie :barnabas :adam)
user=> lst2
(:phoenix :barnabas :adam)

user=> (= (next lst1) (next lst2))
true
user=> (identical? (next lst1) (next lst2))
true

:adam

:barnabas

baselist

:willie

:phoenixlst2

lst1

Thursday, December 15, 11

Persistent Data Structures in Clojure, cont’d

• Data structures in Clojure are implemented as trees
• Untouched parts are reused in “copy”
• Structures that can’t be reached will be garbage collected

27

Thursday, December 15, 11

The End

Thursday, December 15, 11

References

29

• Sebesta, R., “Concepts of Programming Languages”
• Biancuzzi, F. and Warden, S.,“Masterminds of Programming –

Conversations with the Creators of Major Programming Languages”,
2009

• Fogus, M. and Houser, C., “The Joy of Clojure”, 2011
• Halloway, S., “Programming Clojure”, 2009
• VanderHart, L. and Sierra, S., “Practical Clojure”, 2010
• clojure.org

• http://blog.higher-order.net/2009/02/01/understanding-clojures-
persistentvector-implementation/

Thursday, December 15, 11

