
Programming Languages &
Paradigms
PROP HT 2011

Lecture 13

Functional Programming II – Introcuction to Clojure
Beatrice Åkerblom
 beatrice@dsv.su.se

Sunday, December 11, 11

Reminder

• Strong typing vs. static typing

2

Sunday, December 11, 11

3

x=x+1

Sunday, December 11, 11

Programming Without State

• Imperative style:

• Declarative (functional) style:

• Programs in pure functional languages have no explicit state. Programs
are constructed entirely by composing expressions.

4

int n = 5;
int a = 1;
while (n>0) {
 a = a*n;
 n = n-1;
}

fac n =
 if n==0 then 1
 else n * fac (n-1)

Sunday, December 11, 11

Pure Functional Languages

• Imperative Programming:
– Program = Algorithms + Data

• Functional Programming:
– Program = Functions Functions

• What is a Program?
– A program (computation) is a transformation from input data to

output data.

5

Sunday, December 11, 11

Key features of pure functional languages

• All programs and procedures are functions
• There are no variables or assignments — only input parameters
• There are no loops — only recursive functions
• The value of a function depends only on the values of its parameters
• Functions are first-class values

6

Sunday, December 11, 11

Merits of Functional Programming

• By avoiding variables and assignments, we gain:
– Clearer semantics, since programs correspond closer to abstract

mathematical objects
– More freedom in implementation, e.g. for parallelisation

• By using more flexible function, we gain:
– Conciseness and elegance
– Better parameterisation and modularity of programs
– Convenient ways of representing infinite data

7

Sunday, December 11, 11

Functional Programming Imperative Language

int sum (int i, int j)

{ int k, temp;

 temp = 0;

 for (k = i; k <= j; k++)

 temp += k;

 return temp;

}

int sum (int i, int j)

{ if (i > j) return 0;

 else return i + sum(i+1, j);

}

8

Sunday, December 11, 11

Tail Recursion

int sum1(int i, int j, int sumSoFar)

{

 if (i > j) return sumSoFar;

 else

 return sum1(i+1, j, sumSoFar+i);

}

int sum(int i, int j)

{

 return sum1(i, j, 0);

}

9

Sunday, December 11, 11

Clojure

• Java + Lisp

10

Sunday, December 11, 11

Lisp, with Fewer Parentheses

• Clojure generalizes Lisp’s physical list into an abstraction called a
sequence. This preserves the power of lists, while extending that power
to a variety of other data structures.

• Clojure’s reliance on the JVM provides a standard library and a
deployment platform with great reach.

• Clojure provides a convenient literal syntax for a wide variety of data
structures besides just lists. These features make Clojure code less “listy”
than most Lisps.

• In Clojure, unlike most Lisps, commas are whitespace. Adding commas
can make some data structures more readable.

11

Sunday, December 11, 11

Homoiconic Languages

• Clojure is homoiconic, that is, Clojure code is composed of Clojure data.
• When you run a Clojure program, a part of Clojure called the reader

reads the text of the program in chunks called forms and translates them
into Clojure data structures.

• Clojure then compiles and executes the data structures.
• Examples: Lisp (Clojure), Prolog, PostScript, Io, R

12

Sunday, December 11, 11

Forms

Form Example(s)

Boolean true, false
Character \a, \newline
Keyword :tag, :doc
List (1 2 3), (println "foo"), (\a \b \c)
Map {:name "Bill", :age 42}, {:x 1 :y 2}
Nil nil
Number 1, 4.2, 27/2
Set #{:snap :crackle :pop}
String "hello"
Symbol user/foo, java.lang.String
Vector [1 2 3]

13

Sunday, December 11, 11

Truth

• Every value looks like true to if, except for false and nil

14

(if true :truthy :falsey) ;=> :truthy

(if [] :truthy :falsey) ;=> :truthy

(if nil :truthy :falsey) ;=> :falsey

(if false :truthy :falsey) ;=> :falsey

Sunday, December 11, 11

Scalars

15

user=> 42
42
user=> +9
9
user=> -107
-107
user=> 127 ;decimal
127
user=> 0x7F ;hexadecimal
127
user=> 0177 ;octal
127
user=> 32r3V ;radix-32
127
user=> 2r01111111 ;binary
127
user=> 1.17
1.17
user=> +1.22
1.22
user=> -2.
-2.0

Sunday, December 11, 11

Scalars, cont’d

16

user=> 366e7
3.66E9
user=> 10.7e-3
0.0107
user=> 22/7
22/7
user=> 7/22
7/22
user=> 1028798300297636767687409028872/88829897008789478784
128599787537204595960926128609/11103737126098684848
user=> -103/4
-103/4
user=> user/foo
CompilerException java.lang.RuntimeException: No such var: user/foo,
compiling:(NO_SOURCE_PATH:0)
user=> user/helloo
#<user$helloo user$helloo@3c2c7ac5>
user=> helloo
#<user$helloo user$helloo@3c2c7ac5>

Sunday, December 11, 11

Scalars, cont’d

17

user=> :chumby
:chumby
user=> :2
:2
user=> :?
:?
user=> :aKeyword
:aKeyword
user=> "This is a string"
"This is a string"
user=> "Another
string"
"Another\nstring"
user=> \a ; The character lowercase a
\a
user=> \A
\A
user=> \u0042
\B
user=> \\ ; The backslash character
\\
user=> \u30DE ; The unicode katakana character
\?

Sunday, December 11, 11

Strings

18

• Clojure Strings are Java Strings
• Strings can be created using the str function

user=> (str 1)
"1"

user=> (str 1 2 nil 3)
"123"

user=> (doc str)

clojure.core/str
([] [x] [x & ys])
 With no args, returns the empty string. With one arg x, returns
 x.toString(). (str nil) returns the empty string. With more than
 one arg, returns the concatenation of the str values of the args.
nil

Sunday, December 11, 11

Strings

19

• Clojure does not wrap most of Java’s string functions like with str.
Instead, you can call them directly using Clojure’s Java interop forms

• The dot before toUpperCase tells Clojure to treat it as the name of a Java
method instead of a Clojure function

user=> (.toUpperCase "hello")
"HELLO"

Sunday, December 11, 11

Symbols

• Symbols name all sorts of things in Clojure:
– Functions like str and concat
– “Operators” like + and -, which are, after all, just functions
– Java classes like java.lang.String and java.util.Random
– Namespaces like clojure.core and Java packages like
java.lang

– Data structures and references

20

user=> cons
#<core$cons clojure.core$cons@3c32fb80>
user=> str
#<core$str clojure.core$str@5e3d5149>
user=> +
#<core$_PLUS_ clojure.core$_PLUS_@2b8f73cb>
user=> java.lang.String
java.lang.String
user=> 1
1
user=> [2 3 4]
[2 3 4]

Sunday, December 11, 11

But...

21

user=> (2 3 4)
ClassCastException java.lang.Long cannot be cast to clojure.lang.IFn
user/eval320 (NO_SOURCE_FILE:406)

• That’s Clojure telling us that an integer (the number 2 here) can’t be
used as a function...

Sunday, December 11, 11

Prevent Evaluation

• Remember that ‘ affects all of its argument, not only top level

22

user=> (quote (2 3 4 5))
(2 3 4 5)

user=> '(3 4 5 6)
(3 4 5 6)

user=> (quote (pos? 3))
(pos? 3)

user=> [1 (+ 2 3)]
[1 5]

user=> '(1 (+ 2 3))
(1 (+ 2 3))

Sunday, December 11, 11

Basics About Collections

23

user=> () ;empty list, not nil
()
user=> (1 2 3 4)
ClassCastException java.lang.Long cannot be cast to clojure.lang.IFn
user/eval120 (NO_SOURCE_FILE:110)
user=> (+ 1 2 3)
6
user=> '(1 2 3 4)
(1 2 3 4)
user=> '("hello" 1 2.3 \b)
("hello" 1 2.3 \b)
user=> [1 2 :a :b :c]
[1 2 :a :b :c]
user=> []
[] ;empty vector, not nil
user=> {1 "one", 2 "two", 3 "three"}
{1 "one", 2 "two", 3 "three"}
user=> #{1 2 "three" :four 0x5 1}
IllegalArgumentException Duplicate key: 1
clojure.lang.PersistentHashSet.createWithCheck (PersistentHashSet.java:
68)
user=> #{1 2 "three" :four 0x5}
#{1 2 5 :four "three"}

Sunday, December 11, 11

Functions

24

• Function call:

• Function definition using the special form def, which can be used to
assign a symbolic name to a piece of Clojure data

(+ 1 2 3)

;=> 6

user=> (def mk-set
 (fn
 ([x y] #{x y})))
#'user/mk-set

user=> (mk-set 2 3)
#{2 3}

Sunday, December 11, 11

Functions, cont’d

• What we really did was capturing and naming a function:

• There are still even better ways:

25

user=> (fn mk-set [x y] #{x y})
#<user$eval150$mk_set__151 user$eval150$mk_set__151@1b72290f>

user=> ((fn [x y] #{x y}) 1 2)
#{1 2}

user=> (defn mk-set
 ([x y] #{x y}))
#'user/mk-set

user=> (mk-set 3 4)
#{3 4}

Sunday, December 11, 11

Functions, cont’d

• And even better, with documentation and different numbers of
arguments:

26

user=> (defn make-a-set
 "Takes a number of values and makes a set from them"
 ([x] #{x})
 ([x y] #{x y})
 ([x y & z] (set (conj z x y)))
)
#'user/make-a-set

user=> (make-a-set 2 3 4 5)
#{2 3 4 5}

user=> (doc make-a-set)

user/make-a-set
([x] [x y] [x y & z])
 Takes a number of values and makes a set from them
nil

Sunday, December 11, 11

Vars

• A Var is named by a symbol and holds a single value.
• Using def creates a “root binding”—a binding that’s the same across all

threads, unless rebound in a specific thread:

27

user=> (def x 42)
#'user/x
user=> x
42

user=> (def y)
#'user/y
user=> y
#<Unbound Unbound: #'user/y>

user=> (def mk-set
 (fn
 ([x y] #{x y})))
#'user/mk-set
user=> (mk-set 2 3)
#{2 3}

user=> (def make-a-set-2 make-a-set)
#'user/make-a-set-2
user=> (make-a-set-2 2 3 4 5)
#{2 3 4 5}

Sunday, December 11, 11

Functions are First Class Objects

• Functions are first-class objects that can be:
– dynamically created at any time during runtime
– used in the same way as any value
– stored in Vars, held in lists and other collection types
– passed as arguments to and returned as the result of other functions

28

user=> (def my-funcs [make-a-set make-a-set-2 print-down-from])
#'user/my-funcs

user=> (nth my-funcs 0)
#<user$make_a_set user$make_a_set@44755866>

user=> ((nth my-funcs 0) 2 3 4 5)
#{2 3 4 5}

Sunday, December 11, 11

Conditionals

• Clojure doesn’t have local variables, it does have locals but they can’t
vary:

29

user=> (if (= 1 1)
! "Math works")
"Math works"

user=> (if (= 1 3)
! "Math broken"
! "Math works")
"Math works"

user=> (defn weather-judge
 [temp]
 (cond
 (< temp 20) "It's cold"
 (> temp 25) "It's hot"
 :else "It's comfortable"))

#'user/weather-judge
user=> (weather-judge 12)
"It's cold"
user=> (weather-judge 22)
"It's comfortable"

Sunday, December 11, 11

Locals

• Clojure doesn’t have local variables, it does have locals but they can’t
vary:

30

user=> (let [a 2 b 3] (+ a b))
5

user=> (let
 [r 5 pi 3.14 r-sq (* r r)]
 (println "radius is" r)
 (* pi r-sq))
radius is 5
78.5

Sunday, December 11, 11

Locals, cont’d

• Locals can be useful for making code more readable, e.g the function

• Can be rewritten in a more

31

user=> (defn seconds-to-weeks
 "Converts seconds to weeks"
 [seconds]
 (/(/(/(/ seconds 60) 60) 24) 7))
#'user/seconds-to-weeks

user=> (defn seconds-to-weeks
 "Converts seconds to weeks"
 [seconds]
 (let [minutes (/ seconds 60)
 hours (/ minutes 60)
 days (/ hours 24)
 weeks (/ days 7)]
 weeks))
#'user/seconds-to-weeks

Sunday, December 11, 11

Loops

• Clojure encourages the use of immutable data, and to support this
looping is done by recursion (like in other functional languages)
– Function arguments are used to store and modify computational

progress

32

user=> (defn power
! "Calculates a number to the power of the provided exponent"
! [number exponent]
! (if (zero? exponent)
! 1
 (* number (power number (- exponent 1)))))
#'user/power

user=> (power 2 2)
4

Sunday, December 11, 11

33

user=> (defn avg
 "Returns the average of two arguments"
 [a b]
 (/ (+ a b) 2))
#'user/avg

user=> (defn good-enough?
 "Tests if a guess is close enough to the real square root"
 [number guess]
 (let [diff (- (* guess guess) number)]
 (if (< (abs diff) 0.001)
 true
 false)))
#'user/good-enough?

user=> (defn sqrt
 "Returns the square root of the supplied number"
 ([number] (sqrt number 1.0))
 ([number guess]
 (if (good-enough? number guess)
 guess
 (sqrt number (avg guess (/ number guess))))))
#'user/sqrt

user=> (sqrt 25)
5.000023178253949
user=> (sqrt 10000)
100.00000025490743

Sunday, December 11, 11

34

user=> (java.lang.Math/sqrt 25)
5.0

Sunday, December 11, 11

Limits for Recursion

• There is a limit on the number of possible nested functions that is
machine-specific
– Imperative languages solves this through not using recursion for

everything
– Functional languages solves this through tail-call-optimisation
– Recursion from a tail position is in many ways like a structured goto,

and has more in common with an imperative loop than it does with
other kinds of recursion

– Clojure does not automatically use tail-call-optimisation, but we can
explicitly ask for it using recur

35

Sunday, December 11, 11

Functional

Sunday, December 11, 11

37

user=> (defn add-up
! "adds all the numbers below a given limit"
! ([limit] (add-up limit 0 0))
! ([limit current sum]
! (if (< limit current)
! sum
! (add-up limit (+ 1 current) (+ current sum)))))
#'user/add-up

user=> (add-up 3)
6

user=> (add-up 10000)
StackOverflowError java.lang.Number.<init> (Number.java:32)

Sunday, December 11, 11

38

user=> (defn add-up
! "adds all the numbers below a given limit"
! ([limit] (add-up limit 0 0))
! ([limit current sum]
! (if (< limit current)
! sum
! (recur limit (+ 1 current) (+ current sum)))))
#'user/add-up

user=> (add-up 3)
6

user=> (add-up 10000)
50005000

(fn [x] (recur x) (println x))
; java.lang.UnsupportedOperationException:
; Can only recur from tail position

Sunday, December 11, 11

Side Effects

• Clojure avoids side effects, but some tasks are, by nature, side effects,
e.g.:
– IO
– Explicit state management
– Java interaction

• Using do, all the expressions will be evaluated, but only the last one will
be returned:

39

user=> (do
 (println "hello")
! (println "from")
 (println "side effects")
 (+ 5 5))
hello
from
side effects
10

Sunday, December 11, 11

Side Effects, cont’d

• Functions can also be written to contain side effects, by providing
multiple expressions instead of just one as the body of the function

• This can also be done for loops

40

user=> (defn square
! "Squares a number, with side effects"
! [x]
! (println "Squaring" x)
! (println "The return value will be" (* x x))
! (* x x))
#'user/square

user=> (square 8)
Squaring 8
The return value will be 64
64

Sunday, December 11, 11

The End

Sunday, December 11, 11

References

42

• Sebesta, R., “Concepts of Programming Languages”
• Biancuzzi, F. and Warden, S.,“Masterminds of Programming –

Conversations with the Creators of Major Programming Languages”,
2009

• Fogus, M. and Houser, C., “The Joy of Clojure”, 2011
• Halloway, S., “Programming Clojure”, 2009
• VanderHart, L. and Sierra, S., “Practical Clojure”, 2010
• clojure.org

Sunday, December 11, 11

